


LASER PHYSICS

PETER W. MILONNI

JOSEPH H. EBERLY





LASER PHYSICS





LASER PHYSICS

PETER W. MILONNI

JOSEPH H. EBERLY



Copyright # 2010 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.
com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the
contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Milonni, Peter W.
Laser physics / Peter W. Milonni, Joseph H. Eberly

p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-38771-9 (cloth)
1. Lasers. 2. Nonlinear optics. 3. Physical optics. I. Eberly, J. H., 1935- II. Title.
QC688.M55 2008
621.3606—dc22

2008026771

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com/go/permission
http://www.wiley.com


To our wives, Mei-Li and Shirley





CONTENTS

Preface xiii

1 Introduction to Laser Operation 1

1.1 Introduction, 1
1.2 Lasers and Laser Light, 3
1.3 Light in Cavities, 8
1.4 Light Emission and Absorption in Quantum Theory, 10
1.5 Einstein Theory of Light–Matter Interactions, 11
1.6 Summary, 14

2 Atoms, Molecules, and Solids 17

2.1 Introduction, 17
2.2 Electron Energy Levels in Atoms, 17
2.3 Molecular Vibrations, 26
2.4 Molecular Rotations, 31
2.5 Example: Carbon Dioxide, 33
2.6 Conductors and Insulators, 35
2.7 Semiconductors, 39
2.8 Semiconductor Junctions, 45
2.9 Light-Emitting Diodes, 49
2.10 Summary, 55
Appendix: Energy Bands in Solids, 56
Problems, 64

3 Absorption, Emission, and Dispersion of Light 67

3.1 Introduction, 67
3.2 Electron Oscillator Model, 69

vii



3.3 Spontaneous Emission, 74
3.4 Absorption, 78
3.5 Absorption of Broadband Light, 84
3.6 Thermal Radiation, 85
3.7 Emission and Absorption of Narrowband Light, 93
3.8 Collision Broadening, 99
3.9 Doppler Broadening, 105
3.10 The Voigt Profile, 108
3.11 Radiative Broadening, 112
3.12 Absorption and Gain Coefficients, 114
3.13 Example: Sodium Vapor, 118
3.14 Refractive Index, 123
3.15 Anomalous Dispersion, 129
3.16 Summary, 132
Appendix: The Oscillator Model and Quantum Theory, 132
Problems, 137

4 Laser Oscillation: Gain and Threshold 141

4.1 Introduction, 141
4.2 Gain and Feedback, 141
4.3 Threshold, 143
4.4 Photon Rate Equations, 148
4.5 Population Rate Equations, 150
4.6 Comparison with Chapter 1, 152
4.7 Three-Level Laser Scheme, 153
4.8 Four-Level Laser Scheme, 156
4.9 Pumping Three- and Four-Level Lasers, 157
4.10 Examples of Three- and Four-Level Lasers, 159
4.11 Saturation, 161
4.12 Small-Signal Gain and Saturation, 164
4.13 Spatial Hole Burning, 167
4.14 Spectral Hole Burning, 169
4.15 Summary, 172
Problems, 173

5 Laser Oscillation: Power and Frequency 175

5.1 Introduction, 175
5.2 Uniform-Field Approximation, 175
5.3 Optimal Output Coupling, 178
5.4 Effect of Spatial Hole Burning, 180
5.5 Large Output Coupling, 183
5.6 Measuring Gain and Optimal Output Coupling, 187
5.7 Inhomogeneously Broadened Media, 191
5.8 Spectral Hole Burning and the Lamb Dip, 192
5.9 Frequency Pulling, 194
5.10 Obtaining Single-Mode Oscillation, 198
5.11 The Laser Linewidth, 203
5.12 Polarization and Modulation, 207

viii CONTENTS



5.13 Frequency Stabilization, 215
5.14 Laser at Threshold, 220
Appendix: The Fabry-Pérot Etalon, 223
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PREFACE

Judged by their economic impact and their role in everyday life, and also by the
number of Nobel Prizes awarded, advances in laser science and engineering in
the past quarter-century have been remarkable. Using lasers, scientists have produced
what are believed to be the coldest temperatures in the universe, and energy densities
greater than in the center of stars; have tested the foundations of quantum theory
itself; and have controlled atomic, molecular, and photonic states with unprecedented
precision.

Questions that previous generations of scientists could only contemplate in terms of
thought experiments have been routinely addressed using lasers. Atomic clock frequen-
cies can be measured to an accuracy exceeding that of any other physical quantity.
The generation of femtosecond pulses has made it possible to follow chemical processes
in action, and the recent availability of attosecond pulses is allowing the study of
phenomena on the time scale of electron motion in atoms. Frequency stabilization
and the frequency-comb spectra of mode-locked lasers have now made practical the
measurement of absolute optical frequencies and promise ever greater precision in spec-
troscopy and other areas. Lasers are being used in adaptive optical systems to obtain
image resolution with ground-based telescopes that is comparable to that of telescopes
in space, and they have become indispensable in lidar and environmental studies.
Together with optical fibers, diode lasers have fueled the explosive growth of optical
networks and the Internet. In medicine, lasers are finding more and more uses in surgery
and clinical procedures. Simply put, laser physics is an integral part of contemporary
science and technology, and there is no foreseeable end to its progress and application.

The guiding theme of this book is lasers, and our intent is for the reader to arrive at
more than a command of tables and formulas. Thus all of the chapters incorporate
explanations of the central elements of optical engineering and physics that are required
for a basic and detailed understanding of laser operation. Applications are important and
we discuss how laser radiation interacts with matter, and how coherent and often very
intense laser radiation is used in research and in the field. We presume that the reader
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has been exposed to classical electromagnetic theory and quantum mechanics at an
undergraduate or beginning graduate level, but we take opportunities throughout to
review parts of these subjects that are particularly important for laser physics.

The perceptive reader will notice that there is substantial overlap with a book we
wrote 20 years ago called simply Lasers, also published by Wiley and still in print
without revision or addition. Many readers and users of that book have told us that
they particularly appreciated the frequent concentration on background optical physics
as well as explanations of the physical basis for all aspects of laser operation. Naturally a
book about lasers that is two decades old needs many new topics to be added to be even
approximately current. However, while recognizing that additions are necessary, we
also wanted to resist what is close to a law of nature, that a second book must weigh
significantly more than its predecessor. We believe we have accomplished these goals
by describing some of the most significant recent developments in laser physics together
with an illustrative set of applications based on them.

The basic principles of lasers have not changed in the past twenty years, but there
has been a shift in the kinds of lasers of greatest general interest. Considerable attention
is devoted to semiconductor lasers and fiber lasers and amplifiers, and to considerations
of noise and dispersion in fiber-optic communications. We also treat various aspects of
chirping and its role in the generation of extremely short and intense pulses of radiation.
Laser trapping and cooling are explained in some detail, as are most of the other
applications mentioned above. We introduce the most important concepts needed to
understand the propagation of laser radiation in the turbulent atmosphere; this is an
important topic for free-space communication, for example, but it has usually been
addressed only in more advanced and specialized books. We have attempted to present
it in a way that might be helpful for students as well as laser scientists and engineers with
no prior exposure to turbulence theory.

The book is designed as a textbook, but there is probably too muchmaterial here to be
covered in a one-semester course. Chapters 1–7 could be used as a self-contained,
elementary introduction to lasers and laser—matter interactions. In most respects the
remaining chapters are self-contained, while using consistent notation and making
reference to the same fundamentals. Chapters 9 and 10, for example, can serve as intro-
ductions to coherent propagation effects and nonlinear optics, respectively, and Chapters
12 and 13 can be read separately as introductions to photon detection, photon counting,
and optical coherence. Chapters 14 and 15 describe some applications of lasers that will
likely be of interest for many years to come.

We are grateful to A. Al-Qasimi, S. M. Barnett, P. R. Berman, R. W. Boyd, L. W.
Casperson, C. A. Denman, R. Q. Fugate, J. W. Goodman, D. F. V. James, C. F.
Maes, G. H. C. New, C. R. Stroud, Jr., J. M. Telle, I. A. Walmsley, and E. Wolf for
comments on some of the chapters or for contributing in other ways to this effort.
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USEFUL TABLES

TABLE 3 The Electromagnetic Spectrum

Typical Wavelength
(cm)

Frequency
(Hz)

Photon Energy
(eV)

Longwave radio 3 �105 105 4 �10210

AM radio 3 �104 106 4 �1029

FM radio 300 108 4 �1027

Radar 3 1010 4 �1025

Microwave 0.3 1011 4 �1024

Infrared 3 �1024 1014 0.4
Light (orange) 6 �1025 5 �1014 2
Ultraviolet 3 �1026 1016 40
X-rays 3 �1028 1018 4000
Gamma rays 3 �10211 1021 4 �106
Cosmic-ray photons 3 �10213 1023 4 �108

Human eyes are sensitive to only a rather narrow band of wavelengths ranging from about 430 to 690 nm.
Figure 9.11 shows the wavelength sensitivity of the human eye for a “standard observer.”

TABLE 1 Physical Constants

Velocity of light in vacuum c ¼ 2.998 �108 m/s
Electron charge e ¼ 1.602 �10219 C
Coulomb force constant 1/4pe0 ¼ 8.988 �109 N-m2/C2

e2/4pe0 ¼ 1.440 eV-nm
Electron rest mass me ¼ 9.108 �10231 kg
Proton rest mass mp ¼ 1.672 �10227 kg
Bohr radius a0 ¼ 0.528 Å ¼ 0.0528 nm
Planck’s constant h ¼ 6.626 �10234 J-s

h� ¼ h/2p ¼ 1.054 �10234 J-s
hc ¼ 1240 eV-nm

Avogadro’s number NA ¼ 6.023 �1023
Boltzmann constant k ¼ 1.380 �10223 J/K
Universal gas constant R ¼ NAk ¼ 8.314 J/K
Stefan–Boltzmann constant s ¼ 5.670 �1028 Watt/m2-K4

TABLE 2 Conversion Factors

1 electron volt (eV) ¼ 1:602� 10�19 joule (J)
¼ 1:16� 104 K
¼ 2:42� 1014 Hz
¼ 8:07� 103 cm�1

300K ¼ 2:59� 10�2 eV � 1
40 eV

760 Torr ¼ 1.013 �105 N/m2





1 INTRODUCTION TO LASER OPERATION

1.1 INTRODUCTION

The word laser is an acronym for the most significant feature of laser action: light
amplification by stimulated emission of radiation. There are many different kinds of
laser, but they all share a crucial element: Each contains material capable of amplifying
radiation. This material is called the gain medium because radiation gains energy pas-
sing through it. The physical principle responsible for this amplification is called stimu-
lated emission and was discovered by Albert Einstein in 1916. It was widely recognized
that the laser would represent a scientific and technological step of the greatest magni-
tude, even before the first one was constructed in 1960 by T. H. Maiman. The award of
the 1964 Nobel Prize in physics to C. H. Townes, N. G. Basov, and A. M. Prokhorov
carried the citation “for fundamental work in the field of quantum electronics, which
has led to the construction of oscillators and amplifiers based on the maser-laser
principle.” These oscillators and amplifiers have since motivated and aided the work
of thousands of scientists and engineers.

In this chapter wewill undertake a superficial introduction to lasers, cutting corners at
every opportunity. We will present an overview of the properties of laser light, with the
goal of understanding what a laser is, in the simplest terms. Wewill introduce the theory
of light in cavities and of cavity modes, and we will describe an elementary theory of
laser action.

We can begin our introduction with Fig. 1.1, which illustrates the four key elements of
a laser. First, a collection of atoms or other material amplifies a light signal directed
through it. This is shown in Fig. 1.1a. The amplifying material is usually enclosed by
a highly reflecting cavity that will hold the amplified light, in effect redirecting it through
the medium for repeated amplifications. This refinement is indicated in Fig. 1.1b. Some
provision, as sketched in Fig. 1.1c, must be made for replenishing the energy of the
amplifier that is being converted to light energy. And some means must be arranged
for extracting in the form of a beam at least part of the light stored in the cavity, perhaps
as shown in Fig. 1.1d. A schematic diagram of an operating laser embodying all these
elements is shown in Fig. 1.2.

It is clear that a well-designed laser must carefully balance gains and losses. It can be
anticipated with confidence that every potential laser system will present its designer
with more sources of loss than gain. Lasers are subject to the basic laws of physics,
and every stage of laser operation from the injection of energy into the amplifying
medium to the extraction of light from the cavity is an opportunity for energy loss
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and entropy gain. One can say that the success of masers and lasers came only after
physicists learned how atoms could be operated efficiently as thermodynamic engines.

One of the challenges in understanding the behavior of atoms in cavities arises from
the strong feedback deliberately imposed by the cavity designer. This feedback means
that a small input can be amplified in a straightforward way by the atoms, but not inde-
finitely. Simple amplification occurs only until the light field in the cavity is strong
enough to affect the behavior of the atoms. Then the strength of the light as it acts on
the amplifying atoms must be taken into account in determining the strength of the
light itself. This sounds like circular reasoning and in a sense it is. The responses of
the light and the atoms to each other can become so strongly interconnected that they
cannot be determined independently but only self-consistently. Strong feedback also
means that small perturbations can be rapidly magnified. Thus, it is accurate to anticipate
that lasers are potentially highly erratic and unstable devices. In fact, lasers can provide
dramatic exhibitions of truly chaotic behavior and have been the objects of fundamental
study for this reason.

For our purposes lasers are principally interesting, however, when they operate stably,
with well-determined output intensity and frequency as well as spatial mode structure.

Atoms 

(a) (b)

(d )

(c)

Atoms 

Atoms 

1 2 

4 3 

in out 

Figure 1.1 Basic elements of a laser.

High power flash lamp

Transparent medium or cell
with atoms, and light being
amplified

100%
Mirror

90%
Mirror

Output
of laser

Figure 1.2 Complete laser system, showing elements responsible for energy input, amplification,
and output.
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The self-consistent interaction of light and atoms is important for these properties, and
we will have to be concerned with concepts such as gain, loss, threshold, steady state,
saturation, mode structure, frequency pulling, and linewidth.

In the next few sections we sketch properties of laser light, discuss modes in cavities,
and give a theory of laser action. This theory is not really correct, but it is realistic within
its own domain and has so many familiar features that it may be said to be “obvious.” It
is also significant to observe what is not explained by this theory and to observe the ways
in which it is not fundamental but only empirical. These gaps and missing elements are
an indication that the remaining chapters of the book may also be necessary.

1.2 LASERS AND LASER LIGHT

Many of the properties of laser light are special or extreme in one way or another. In
this section we provide a brief overview of these properties, contrasting them with the
properties of light from more ordinary sources when possible.

Wavelength

Laser light is available in all colors from red to violet and also far outside these conven-
tional limits of the optical spectrum.1 Over a wide portion of the available range laser
light is “tunable.” This means that some lasers (e.g., dye lasers) have the property of
emitting light at any wavelength chosen within a range of wavelengths. The longest
laser wavelength can be taken to be in the far infrared, in the neighborhood of 100–
500mm. Devices producing coherent light at much longer wavelengths by the
“maser–laser principle” are usually thought of as masers. The search for lasers with
ever shorter wavelengths is probably endless. Coherent stimulated emission in the
XUV (extreme ultraviolet) or soft X-ray region (10–15 nm) has been reported.
Appreciably shorter wavelengths, those characteristic of gamma rays, for example,
may be quite difficult to reach.

Photon Energy

The energy of a laser photon is not different from the energy of an “ordinary” light
photon of the same wavelength. A green–yellow photon, roughly in the middle of the
optical spectrum, has an energy of about 2.5 eV (electron volts). This is the same as
about 4�10219 J ( joules) ¼ 4�10212 erg. The large exponents in the last two numbers
make it clear that electron volts are a much more convenient unit for laser photon energy
than joules or ergs. From the infrared to the X-ray region photon energies vary from
about 0.01 eV to about 100 eV. For contrast, at room temperature the thermal unit of
energy is kT � 1

40 eV ¼ 0:025 eV. This is two orders of magnitude smaller than the
typical optical photon energy just mentioned, and as a consequence thermal excitation
plays only a very small role in the physics of nearly all lasers.

1A list of laser wavelengths may be found in M. J. Weber, Handbook of Laser Wavelengths, CRC, Boca
Raton, FL, 1999.
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Directionality

The output of a laser can consist of nearly ideal plane wavefronts. Only diffraction
imposes a lower limit on the angular spread of a laser beam. The wavelength l
and the area A of the laser output aperture determine the order of magnitude of the
beam’s solid angle (DV) and vertex angle (Du) of divergence (Fig. 1.3) through the
relation

DV � l2

A
� (Du)2: (1:2:1)

This represents a very small angular spread indeed if l is in the optical range, say
500 nm, and A is macroscopic, say (5 mm)2. In this example we compute DV �
(500)2�10218 m2/(52�1026 m2) ¼ 1028 sr, or Du ¼ 1/10 mrad.

Monochromaticity

It is well known that lasers produce very pure colors. If they could produce exactly one
wavelength, laser light would be fully monochromatic. This is not possible, in principle
as well as for practical reasons. We will designate by Dl the range of wavelengths
included in a laser beam of main wavelength l. Similarly, the associated range of
frequencies will be designated by Dn, the bandwidth. In the optical region of the spec-
trum we can take n � 5�1014 Hz (hertz, i.e., cycles per second). The bandwidth of sun-
light is very broad, more than 1014 Hz. Of course, filtered sunlight is a different matter,
and with sufficiently good filters Dn could be reduced a great deal. However, the cost in
lost intensity would usually be prohibitive. (See the discussion on spectral brightness
below.) For lasers, a very low value of Dn is 1 Hz, while a bandwidth around 100 Hz
is spectroscopically practical in some cases (Fig. 1.4). ForDn ¼ 100Hz the relative spec-
tral purity of a laser beam is quite impressive: Dn/n � 100/(5�1014) ¼ 2�10213.

A 

Dq 

Figure 1.3 Sketch of a laser cavity showing angular beam divergence Du at the output mirror
(area A).

Sun
Dn ~ 1014 Hz

Dn ~ 100 Hz

n

Laser

Figure 1.4 Spectral emission bands of the sun and of a representative laser, to indicate the much
closer approach to monochromatic light achieved by the laser.
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This exceeds the spectral purity (Q factor) achievable in conventional mechanical and
electrical resonators by many orders of magnitude.

Coherence Time

The existence of a finite bandwidth Dn means that the different frequencies present in
a laser beam can eventually get out of phase with each other. The time required for
two oscillations differing in frequency by Dn to get out of phase by a full cycle is
obviously 1/Dn. After this amount of time the different frequency components in the
beam can begin to interfere destructively, and the beam loses “coherence.” Thus,
Dt ¼ 1/Dn is called the beam’s coherence time. This is a general definition, not
restricted to laser light, but the extremely small values possible for Dn in laser light
make the coherence times of laser light extraordinarily long.

For example, even a “broadband” laser with Dn � 1 MHz has the coherence time
Dt� 1 ms. This is enormously longer than most “typical” atomic fluorescence lifetimes,
which are measured in nanoseconds (1029 s). Thus even lasers that are not close to the
limit of spectral purity are nevertheless effectively 100% pure on the relevant
spectroscopic time scale. By way of contrast, sunlight has a bandwidth Dn almost as
great as its central frequency (yellow light, n ¼ 5�1014 Hz). Thus, for sunlight the
coherence time isDt � 2�10215 s, so short that unfiltered sunlight cannot be considered
temporally coherent at all.

Coherence Length

The speed of light is so great that a light beam can travel a very great distance within
even a short coherence time. For example, within Dt � 1ms light travels Dz �
(3�108 m/s)� (1ms) ¼ 300 m. The distance Dz ¼ c Dt is called the beam’s coherence
length. Only portions of the same beam that are separated by less than Dz are capable of
interfering constructively with each other. No fringes will be recorded by the film in
Fig. 1.5, for example, unless 2L, c Dt ¼ Dz.

Spectral Brightness

A light beam from a finite source can be characterized by its beam divergence DV,
source size (usually surface area A), bandwidth Dn, and spectral power density Pn

(watts per hertz of bandwidth). From these parameters it is useful to determine the spec-
tral brightness bn of the source, which is defined (Fig. 1.6) to be the power flow per unit

Film

Beam splitter

L

L

Figure 1.5 Two-beam interferometer showing interference fringes obtained at the recording plane if
the coherence length of the light is great enough.
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area, unit bandwidth, and steradian, namely bn ¼ Pn/A DVDn. Notice that Pn/A Dn is
the spectral intensity, so bn can also be thought of as the spectral intensity per steradian.

For an ordinary nonlaser optical source, brightness can be estimated directly from the
blackbody formula for r(n), the spectral energy density (J/m3-Hz):

r(n) ¼ 8pn2

c3
hn

ehn=kBT�1 : (1:2:2)

The spectral intensity (W/m2-Hz) is thus cr, and cr/DV is the desired spectral intensity
per steradian. Taking DV ¼ 4p for a blackbody, we have

bn ¼
2n2

c2
hn

ehn=kBT�1 : (1:2:3)

The temperature of the sun is about T ¼ 5800K � 20�(300K). Since the main solar
emission is in the yellow portion of the spectrum, we can take hn � 2.5 eV. We recall
that kBT � 1

40 eV for T ¼ 300K, so hn/kBT � 5, giving ehn=kBT � 150 and finally

bn � 1:5� 10�8 W=m2-sr-Hz (sun): (1:2:4)

Several different estimates can bemade for laser radiation, depending on the type of laser
considered. Consider first a low-power He–Ne laser. A power level of 1 mW is normal,
with a bandwidth of around 104 Hz. From (1.2.1) we see that the product of beam
cross-sectional area and solid angle is just l2, which for He–Ne light is l2 � (6328�
10210 m)2 � 4�10213 m2. Combining these, we find

bn � 2:5� 105 W=m2-sr-Hz (He–Ne laser): (1:2:5)

Another common laser is the mode-locked neodymium–glass laser, which can easily
reach power levels around 104 MW. The bandwidth of such a laser is limited by the
pulse duration, say tp � 30 ps (30�10212 s), as follows. Since the laser’s coherence
time Dt is equal to tp at most, its bandwidth is certainly greater than 1/tp �
3.3�1010 s21. We convert from radians per second to cycles per second by dividing
by 2p and get Dn � 5�109 Hz. The wavelength of a Nd : glass laser is 1.06 mm, so
l2 � 10212 m2. The result of combining these, again using ADV ¼ l2, is

bn � 2� 1012 W=m2-sr-Hz (Nd : glass laser): (1:2:6)

A

DW

Figure 1.6 Geometrical construction showing source area and emission solid angle appropriate to
discussion of spectral brightness.
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Recent developments have led to lasers with powers of terawatts (1012 W) and even
petawatts (1015 W), so bn can be even orders of magnitude larger.

It is clear that in terms of brightness there is practically no comparison possible
between lasers and thermal light. Our sun is 20 orders of magnitude less bright than
a mode-locked laser. This raises an interesting question of principle. Let us imagine a
thermal light source filtered and collimated to the bandwidth and directionality of
a He–Ne laser, and the He–Ne laser attenuated to the brightness level of the thermal
light. The question is: Could the two light beams with equal brightness, beam
divergence, polarization, and bandwidth be distinguished in any way? The answer is
that they could be distinguished, but not by any ordinary measurement of optics.
Differences would show up only in the statistical fluctuations in the light beam. These
fluctuations can reflect the quantum nature of the light source and are detected by
photon counting, as discussed in Chapter 12.

Active Medium

The materials that can be used as the active medium of a laser are so varied that a listing
is hardly possible. Gases, liquids, and solids of every sort have been made to lase (a verb
contributed to science by the laser). The origin of laser photons, as shown in Fig. 1.7, is
most often in a transition between discrete upper and lower energy states in the medium,
regardless of its state of matter. He–Ne, ruby, CO2, and dye lasers are familiar examples,
but exceptions are easily found: The excimer laser has an unbound lower state, the semi-
conductor diode laser depends on transitions between electron bands rather than discrete
states, and understanding the free-electron laser does not require quantum states at all.

Type of Laser Cavity

All laser cavities share two characteristics that complement each other: (1) They are
basically linear devices with one relatively long optical axis, and (2) the sides parallel
to this axis can be open, not enclosed by reflecting material as in a microwave cavity.
There is no single best shape implied by these criteria, and in the case of ring lasers
the long axis actually bends and closes on itself (Fig. 1.8). Despite what may seem

hn    E2 – E1

E2

E1

Figure 1.7 Photon emission accompanying a quantum jump from level 2 to level 1.

Figure 1.8 Two collections of mirrors making laser cavities, showing standing-wave and traveling-
wave (ring) configurations on left and right, respectively.
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obvious, it is not always best to design a cavity with the lowest loss. In the case of Q
switching an extra loss is temporarily introduced into the cavity for the laser to over-
come, and very high-power lasers sometimes use mirrors that are deliberately designed
to deflect light out of the cavity rather than contain it.

Applications of Lasers

There is apparently no end of possible applications of lasers. Many of the uses of lasers
are well known by now to most people, such as for various surgical procedures, for
holography, in ultrasensitive gyroscopes, to provide straight lines for surveying, in
supermarket checkout scanners and compact disc players, for welding, drilling, and
scribing, in compact death-ray pistols, and so on. (The sophisticated student knows,
even before reading this book, that one of these “well-known” applications has never
been realized outside the movie theater.)

1.3 LIGHT IN CAVITIES

In laser technology the terms cavity and resonator are used interchangeably. The theory
and design of the cavity are important enough for us to devote all of Chapter 7 to them.
In this section we will consider only a simplified theory of resonators, a theory that
is certain to be at least partly familiar to most readers. This simplification allows us to
introduce the concept of cavity modes and to infer certain features of cavity modes
that remain valid in more general circumstances. We also describe the great advantage
of open, rather than closed, cavities for optical radiation.

We will consider only the case of a rectangular “empty cavity” containing radiation
but no matter, as sketched in Fig. 1.9. The assumption that there is radiation but no
matter inside the cavity is obviously an approximation if the cavity is part of a working
laser. This approximation is used frequently in laser theory, and it is accurate enough for
many purposes because laser media are usually only sparsely filled with active atoms or
molecules.

Lz

Ly

Lx

y

z

x

0

Figure 1.9 Rectangular cavity with side lengths Lx, Ly, Lz.
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In Chapter 7 full solutions for the electric field in cavities of greatest interest are given.
For example, the z dependence of the x component of the field takes the form

Ex(z) ¼ E0 sin kzz, (1:3:1)

where E0 is a constant. However, here we are interested only in the simplest features of
the cavity field, and these can be obtained easily by physical reasoning.

The electric field should vanish at both ends of the cavity. It will do so if we fit exactly
an integer number of half wavelengths into the cavity along each of its axes. This means,
for example, that l along the z axis is determined by the relation L ¼ n(l/2), where n ¼
1, 2, . . . , is a positive integer and L is the cavity length. If we use the relation between
wave vector and wavelength, k ¼ 2p/l, this is the same as

kz ¼ p

L
n, (1:3:2)

for the z component of the wave vector. By substitution into the solution (1.3.1) we
see that (1.3.2) is sufficient to guarantee that the required boundary condition is met,
i.e., that Ex(z) ¼ 0 for both z ¼ 0 and z ¼ L.

If there were reflecting sides to a laser cavity, the same would apply to the x and y
components of the wave vector. As wewill show later, if the three dimensions are equiv-
alent in this sense, the number of available modes grows extremely rapidly as a function
of frequency. For example, a cubical three-dimensionally reflecting cavity 1 cm on a side
has about 400 million resonant frequencies within the useful gain band of a He–Ne
laser. Then lasing could occur across the whole band, eliminating any possibility of
achieving the important narrow-band, nearly monochromatic character of laser light
that we emphasized in the preceding sections.

The solution to this multimode dilemma was suggested independently in 1958
by Townes and A. L. Schawlow, R. H. Dicke, and Prokhorov. They recognized that a
one-dimensional rather than a three-dimensional cavity was desirable, and that this
could be achieved with an open resonator consisting of two parallel mirrors, as in
Fig. 1.10. The difference in wave vector between twomodes of a linear cavity, according
to Eq. (1.3.2), is just p/L, so the mode spacing is given by Dk ¼ (2p/c) Dn, or Dn ¼
c/2L. For L ¼ 10 cm we find

Dn ¼ 3� 108 m=s
(2)(0:10 m)

¼ 1500MHz, (1:3:3)

for the separation in frequency of adjacent resonator modes. As indicated in Fig. 1.11,
the number of possible modes that can lase is therefore at most

1500MHz
1500MHz

¼ 1: (1:3:4)

(a) (b)

Figure 1.10 Sketch illustrating the advantage of a one-dimensional cavity. Stable modes are
associated only with beams that are retroreflected many times.
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The maximum number, including two choices of polarization, is therefore 2, consider-
ably smaller than the estimate of 400 million obtained for three-dimensional cavities.

These results do not include the effects of diffraction of radiation at the mirror
edges. Diffraction determines the x, y dependence of the field, which we have ignored
completely. Accurate calculations of resonator modes, including diffraction, are often
done with computers. Such calculations were first made in 1961 for the plane-parallel
resonator of Fig. 1.10 with either rectangular or circular mirrors. Actually lasers are
seldom designed with flat mirrors. Laser resonator mirrors are usually spherical
surfaces, for reasons to be discussed in Chapter 7. A great deal about laser cavities
can nevertheless be understood without worrying about diffraction or mirror shape. In
particular, for most practical purposes, the mode-frequency spacing is given accurately
enough by Dn ¼ c/2L.

1.4 LIGHT EMISSION AND ABSORPTION IN QUANTUM THEORY

The modern interpretation of light emission and absorption was first proposed by
Einstein in 1905 in his theory of the photoelectric effect. Einstein assumed the difference
in energy of the electron before and after its photoejection to be equal to the energy hn of
the photon absorbed in the process.

This picture of light absorption was extended in twoways by Bohr: to apply to atomic
electrons that are not ejected during photon absorption but instead take on a higher
energy within their atom, and to apply to the reverse process of photon emission, in
which case the energy of the electron should decrease. These extensions of Einstein’s
idea fitted perfectly into Bohr’s quantum mechanical model of an atom in 1913.
This model, described in detail in Chapter 2, was the first to suggest that electrons
are restricted to a certain fixed set of orbits around the atomic nucleus. This set of
orbits was shown to correspond to a fixed set of allowed electron energies. The idea
of a “quantum jump” was introduced to describe an electron’s transition between two
allowed orbits.

The amount of energy involved in a quantum jump depends on the quantum system.
Atoms have quantum jumps whose energies are typically in the range 1–6 eV, as long
as an outer-shell electron is doing the jumping. This is the ordinary case, so atoms
usually absorb and emit photons in or near the optical region of the spectrum. Jumps
by inner-shell atomic electrons usually require much more energy and are associated
with X-ray photons. On the other hand, quantum jumps among the so-called Rydberg
energy levels, those outer-electron levels lying far from the ground level and near to

1500 MHz

Gain curve 

Cavity mode
frequencies

n

Figure 1.11 Mode frequencies separated by 1500 MHz, corresponding to a 10-cm one-dimensional
cavity. A 1500-MHz gain curve overlaps only 1 mode.
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the ionization limit, involve only a small amount of energy, corresponding to far-infrared
or even microwave photons.

Molecules have vibrational and rotational degrees of freedom whose quantum jumps
are smaller (perhaps much smaller) than the quantum jumps in free atoms, and the same
is often true of jumps between conduction and valence bands in semiconductors. Many
crystals are transparent in the optical region, which is a sign that they do not absorb
or emit optical photons, because they do not have quantum energy levels that permit
jumps in the optical range. However, colored crystals such as ruby have impurities
that do absorb and emit optical photons. These impurities are frequently atomic ions,
and they have both discrete energy levels and broad bands of levels that allow optical
quantum jumps (ruby is a good absorber of green photons and so appears red).

1.5 EINSTEIN THEORY OF LIGHT–MATTER INTERACTIONS

The atoms of a laser undergo repeated quantum jumps and so act as microscopic
transducers. That is, each atom accepts energy and jumps to a higher orbit as a result
of some input or “pumping” process and converts it into other forms of energy—for
example, into light energy (photons)—when it jumps to a lower orbit. At the same
time, each atom must deal with the photons that have been emitted earlier and reflected
back by the mirrors. These prior photons, already channeled along the cavity axis, are
the origin of the stimulated component to the atom’s emission of subsequent photons.

In Fig. 1.12 we indicate some ways in which energy conversion can occur. For sim-
plicity we focus our attention on quantum jumps between two energy levels, 1 and 2, of
an atom. The five distinct energy conversion diagrams of Fig. 1.12 are interpreted as
follows:

(a) Absorption of an increment DE ¼ E22E1 of energy from the pump: The atom is
raised from level 1 to level 2. In other words, an electron in the atom jumps from
an inner orbit to an outer orbit.

(b) Spontaneous emission of a photon of energy hn ¼ E22E1: The atom jumps
down from level 2 to the lower level 1. The process occurs “spontaneously” with-
out any external influence.

(c) Stimulated emission: The atom jumps down from energy level 2 to the lower
level 1, and the emitted photon of energy hn ¼ E22E1 is an exact replica
of a photon already present. The process is induced, or stimulated, by the
incident photon.

(d) Absorption of a photon of energy hn ¼ E22E1: The atom jumps up from level 1
to the higher level 2. As in (c), the process is induced by an incident photon.

(e) Nonradiative deexcitation: The atom jumps down from level 2 to the lower level 1,
but no photon is emitted so the energy E22E1 must appear in some other form
[e.g., increased vibrational or rotational energy in the case of a molecule, or
rearrangement (“shakeup”) of other electrons in the atom].

All these processes occur in the gain medium of a laser. Lasers are often classified
according to the nature of the pumping process (a) which is the source of energy for
the output laser beam. In electric-discharge lasers, for instance, the pumping occurs
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as a result of collisions of electrons in a gaseous discharge with the atoms (or molecules)
of the gain medium. In an optically pumped laser the pumping process is the same as
the absorption process (d), except that the pumping photons are supplied by a lamp or
perhaps another laser. In a diode laser an electric current at the junction of two different
semiconductors produces electrons in excited energy states from which they can jump
into lower energy states and emit photons.

This quantum picture is consistent with a highly simplified description of laser action.
Suppose that lasing occurs on the transition defined by levels 1 and 2 of Fig. 1.12. In the
most favorable situation the lower level (level 1) of the laser transition is empty. To
maintain this situation a mechanism must exist to remove downward jumping electrons
from level 1 to another level, say level 0. In this situation there can be no detrimental
absorption of laser photons due to transitions upward from level 1 to level 2. In practice
the number of electrons in level 1 cannot be exactly zero, but we will assume for sim-
plicity that the rate of deexcitation of the lower level 1 is so large that the number of
atoms remaining in that level is negligible compared to the number in level 2; this is
a reasonably good approximation for many lasers. Under this approximation laser
action can be described in terms of two “populations”: the number n of atoms in the
upper level 2 and the number q of photons in the laser cavity.

The number of laser photons in the cavity changes for two main reasons:

(i) Laser photons are continually being added because of stimulated emission.
(ii) Laser photons are continually being lost because of mirror transmission, scattering

or absorption at the mirrors, etc.

E2 

E1 

E2 

E1 

hn 

E2 hn 

hn 

hn 

(a) (b)

(c)

(d ) (e)

hn 
E1 

E2 

E1 

E2

E1

Figure 1.12 Energy conversion processes in a lasing atom or molecule: (a) absorption of energy
DE ¼ E2 2 E1 from the pump; (b) spontaneous emission of a photon of energyDE; (c) stimulated emis-
sion of a photon of energy DE; (d ) absorption of a photon of energy DE; (e) nonradiative deexcitation.
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Thus, we can write a (provisional) equation for the rate of change of the number of
photons, incorporating the gain and loss described in (i) and (ii) as follows:

dq

dt
¼ anq� bq: (1:5:1)

That is, the rate at which the number of laser photons changes is the sum of two separate
rates: the rate of increase (amplification or gain) due to stimulated emission, and the rate
of decrease (loss) due to imperfect mirror reflectivity.

As Eq. (1.5.1) indicates, the gain of laser photons due to stimulated emission is not
only proportional to the number n of atoms in level 2, but also to the number q of photons
already in the cavity. The efficiency of the stimulated emission process depends on the
type of atom used and other factors. These factors are reflected in the size of the ampli-
fication or gain coefficient a. The rate of loss of laser photons is simply proportional to
the number of laser photons present.

We can also write a provisional equation for n. Both stimulated and spontaneous
emission cause n to decrease (in the former case in proportion to q, in the latter case
not), and the pump causes n to increase at some rate we denote by p. Thus, we write

dn

dt
¼ �anq� fnþ p: (1:5:2)

Note that the first term appears in both equations, but with opposite signs. This reflects
the central role of stimulated emission and shows that the decrease of n (excited atoms)
due to stimulated emission corresponds precisely to the increase of q (photons).

Equations (1.5.1) and (1.5.2) describe laser action. They show how the numbers of
lasing atoms and laser photons in the cavity are related to each other. They do not indi-
cate what happens to the photons that leave the cavity, or what happens to the atoms
when their electrons jump to some other level. Above all, they do not tell how to evaluate
the coefficients a, b, f, p. They must be taken only as provisional equations, not well
justified although intuitively reasonable.

It is important to note that neither Eq. (1.5.1) nor (1.5.2) can be solved independently
of the other. That is, (1.5.1) and (1.5.2) are coupled equations. The coupling is due phys-
ically to stimulated emission: The lasing atoms of the gain medium can increase the
number of photons via stimulated emission, but by the same process the presence of
photons will also decrease the number of atoms in the upper laser level. This coupling
between the atoms and the cavity photons is indicated schematically in Fig. 1.13.

We also note that Eqs. (1.5.1) and (1.5.2) are nonlinear. The nonlinearity (the product
of the two variables nq) occurs in both equations and is another manifestation of

Atoms

Cavity
photons

Equation
(1.5.1)

Equation
(1.5.2)

Figure 1.13 Self-consistent pair of laser equations.
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stimulated emission. No established systematic methods exist for solving nonlinear
differential equations, and there is no known general solution to these laser equations.
However, they have a number of well-defined limiting cases of some practical
importance, and some of these do have known solutions. The most important case is
steady state.

In steady state we can put both dq/dt and dn/dt equal to zero. Then (1.5.1) reduces to

n ¼ b

a
; nt, (1:5:3)

which can be recognized as a threshold requirement on the number of upper-level atoms.
That is, if n , b/a, then dq/dt , 0, and the number of photons in the cavity decreases,
terminating laser action. The steady state of (1.5.2) also has a direct interpretation.
From dn/dt ¼ 0 and n ¼ nt ¼ b/a we find

q ¼ p

b
� f

a
: (1:5:4)

This equation establishes a threshold for the pumping rate, since the number of photons
q cannot be negative. Thus, the minimum or threshold value of p compatible with
steady-state operation is found by putting q ¼ 0:

pt ¼ f b

a
¼ f nt: (1:5:5)

In words, the threshold pumping rate just equals the loss rate per atom times the number
of atoms present at threshold.

In Chapters 4–6 we will return to a discussion of laser equations. We will deal there
with steady state as well as many other aspects of laser oscillation in two-level, three-
level, and four-level quantum systems.

1.6 SUMMARY

The theory of laser action and the description of cavity modes presented in this chapter
can be regarded only as caricatures. In common with all caricatures, they display
outstanding features of their subject boldly and simply. All theories of laser action
must address the questions of gain, loss, steady state, and threshold. The virtues of
our caricatures in addressing these questions are limited. They do not even suggest mat-
ters such as linewidth, saturation, output power, mode locking, tunability, and stability.

Obviously, one must not accept a caricature as the truth. Concerning the many
aspects of the truth that are distorted or omitted by these first discussions, it will take
much of this book to get the facts straight. This is not only a matter of dealing with
details within the caricatures, but also with concepts that are larger than the caricatures
altogether.

One should ask whether lasers are better described by photons or electric fields. Also,
is Einstein’s theory always satisfactory, or does Schrödinger’s wave equation play a role?
Are Maxwell’s equations for electromagnetic waves significant? The answer to these
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questions is no, yes, yes. Laser theory is usually based on Schrödinger’s and Maxwell’s
equations, neither of which was needed in this chapter.

From a different point of view another kind of question is equally important in
trying to understand what a laser is. For example, why were lasers not built before
1960? Are there any rules of thumb that can predict, approximately and without detailed
calculation, how much one can increase the output power or change the operating
frequency? What are the most sensitive design features of a gas laser? a chemical
laser? a semiconductor laser? Is a laser essentially quantum mechanical, or can classical
physics explain all the important features of laser operation?

It will not be possible to give detailed answers to all of these questions. However,
these questions guide the organization of the book, and many of them are addressed
individually. In the following chapters the reader should encounter the concepts of
physics and engineering that are most important for understanding laser action in general
and that provide the background for pursuing further questions of particular theoretical
or practical interest.
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2 ATOMS, MOLECULES, AND SOLIDS

2.1 INTRODUCTION

It is frequently said that quantum physics began with Max Planck’s discovery of
the correct blackbody radiation formula in 1900. But it was more than a quarter of a
century before Planck’s formula could be fully derived from a satisfactory theory of
quantum mechanics. Nevertheless, once formulated, quantum mechanics answered so
many questions that it was adopted and refined with remarkable speed between 1925
and 1930. By 1930 there were new and successful quantum theories of atomic and
molecular structure, electromagnetic radiation, electron scattering, and thermal, optical,
and magnetic properties of solids.

Lasers can be understood without a detailed knowledge of the quantum theory of
matter. However, several consequences of the quantum theory are essential. This chapter
provides a review of some results of quantum theory applied to simple models of atoms,
molecules, and semiconductors.

2.2 ELECTRON ENERGY LEVELS IN ATOMS

In 1913 Niels Bohr discovered a way to use Planck’s radiation constant h in a radically
new, but still mostly classical, theory of the hydrogen atom. Bohr’s theory was the first
quantum theory of atoms. Its importance was recognized immediately, even though it
raised as many questions as it answered.

One of the most important questions it answered had to do with the Balmer formula:

l ¼ bn2

n2 � 4
, (2:2:1)

where n denotes an integer. This relation had been found in 1885 by Johann Jacob
Balmer, a Swiss school teacher. Balmer pointed out that if b were given the value
3645.6, then l equaled the wavelength (measured in Ångstrom units, 1 Å ¼ 10210 m)
of a line in the hydrogen spectrum1 for n ¼ 3, 4, 5, and 6 (and possibly for higher
integers as well, but no measurements existed to confirm or deny the possibility).

Laser Physics. By Peter W. Milonni and Joseph H. Eberly
Copyright # 2010 John Wiley & Sons, Inc.

1Historically, the term spectral “line” arose because lines appeared as images of slits in spectrometers.
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For almost 30 years the Balmer formula was a small oasis of regularity in the field
of spectroscopy—the science of measuring and cataloging the wavelengths of radiation
emitted and absorbed by different elements and compounds. Unfortunately, the Balmer
formula could not be explained, or applied to any other element, or even applied to
other known wavelengths emitted by hydrogen atoms. It might well have been a mere
coincidence, without any significance. Bohr’s model of the hydrogen atom not only
explained the Balmer formula, but also gave scientists their first glimpse of atomic
structure. It still serves as the basis for most scientists’ working picture of an atom.

Bohr adopted Rutherford’s nuclear model that had been successful in explaining
scattering experiments with alpha particles between 1910 and 1912. In other words,
Bohr assumed that almost all the mass of a hydrogen atom is concentrated in a positively
charged nucleus, allowing most of the atomic volume free for the motion of the much
lighter electron. The electron was assumed attracted to the nucleus by the Coulomb
force law governing opposite charges (Fig. 2.1). In magnitude this force is

F ¼ 1
4pe0

e2

r2
: (2:2:2)

Bohr also assumed that the electron travels in a circular orbit about the massive
nucleus. Moreover, he assumed the validity of Newton’s laws of motion for the orbit.
Thus, in commonwith every planetary body in a circular orbit, the electron was assumed
to experience an inward (centripetal) acceleration of magnitude

a ¼ v2

r
: (2:2:3)

Newton’s second law of motion, F ¼ ma, then gives

mv2

r
¼ 1

4pe0

e2

r2
, (2:2:4)

which is the same as saying that the electron’s kinetic energy, T ¼ 1
2mv

2, is half as great
as the magnitude of its potential energy, V¼2e2/4pe0r. In the Coulomb field of the

e 

p 

r 

Figure 2.1 The electron in the Bohr model is attracted to the nucleus with a force of magnitude
F ¼ e2/4pe0r

2.
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nucleus the electron’s total energy is therefore

E ¼ T þ V ¼ � 1
4pe0

e2

2r
: (2:2:5)

These results are familiar consequences of Newton’s laws. Bohr then introduced a
single, radical, unexplained restriction on the electron’s motion. He asserted that only
certain circles are actually used by electrons as orbits. These orbits are the ones that
permit the electron’s angular momentum L to have one of the values

L ¼ n
h

2p
, (2:2:6)

where n is an integer (n ¼ 1, 2, 3, . . .) and h is the constant of Planck’s radiation formula:

h � 6:625� 10�34 J-s: (2:2:7)

With the definition of angular momentum for a circular orbit,

L ¼ mvr, (2:2:8)

it is easy to eliminate r between (2.2.4) and (2.2.8) and find

v ¼ 1
4pe0

e2

L
¼ 1

4pe0

2pe2

nh
: (2:2:9)

Then the combination of (2.2.4) and (2.2.5), namely

E ¼ �mv
2

2
, (2:2:10)

together with (2.2.9), gives the famous Bohr formula for the allowed energies of a
hydrogen electron:

En ¼ � 1
4pe0

� �2 me4

2n2h�2 : (2:2:11)

This can be seen, by comparison with (2.2.5), to be the same as a formula for the allowed
values of electron orbital radius:

rn ¼ 4pe0
n2h�2
me2

: (2:2:12)

In both (2.2.11) and (2.2.12) we have adopted the modern notation for Planck’s constant:

h� ¼ h

2p
� 1:054� 10�34 J-s: (2:2:13)

The first thing to be said about Bohr’s model and his unsupported assertion (2.2.6) is
that they were not contradicted by known facts about atoms, and, for small values of n,
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the allowed radii defined by (2.2.12) are numerically about right.2 For example, the
smallest of these radii (conventionally called “the Bohr radius” and denoted a0) is

a0 ¼ r1 ¼ 4pe0
h�2
me2
� 0:53A�: (2:2:14)

This might have been an accident without further consequences. Since no way existed to
measure such small distances with any precision, Bohr needed a connection between
(2.2.12) and a possible laboratory experiment. A second unsupported assertion supplied
the connection.

Bohr’s second assertion was that the atom was stable when the electron was in one
of the permitted orbits, but that jumps from one orbit to another were possible if
accompanied by light emission or absorption. To be specific, Bohr combined earlier
ideas of Planck and Einstein and stated that a jump from a higher to a lower orbit
would find the decrease of the electron’s energy transformed into a quantum of radiation
that would be emitted in the process. In other words, Bohr postulated that

(DE)n,n0 ¼ hn ¼ energy of emitted photon: (2:2:15)

Here (DE)n,n0 denotes the energy lost by the electron in switching orbits from rn to rn0 and
n is the frequency of the photon emitted in the process (Fig. 2.2).

The relation (2.2.15) led immediately to a connection between Bohr’s theory and all
the spectroscopic data known for atomic hydrogen. By using (2.2.11) for two different
orbits, that is, for two different values of the integer n, we easily find for the energy
decrement (DE)n,n0 the expression

En � En0 ¼ 1
4pe0

� �2me4
2h�2

1
n02
� 1
n2

� �
: (2:2:16)

Furthermore, the connection between the frequency and wavelength of a light wave is

l ¼ c

n
: (2:2:17)

+

En

En ¢

hn

Figure 2.2 A radiative transition of an atomic electron in the Bohr model.

2Lord Rayleigh (1890) was able to estimate molecular dimensions by dropping olive oil onto a water surface.
Assuming that an oil drop spreads until it forms a layer one molecule thick (amolecular monolayer), he could
give a reasonable estimate of a molecular diameter from the area of the layer and the volume of the original
drop. A century earlier, Benjamin Franklin tried the same oil-on-water experiment on a pond in London while
on diplomatic assignment there.
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Thus, Bohr’s statement (2.2.15) and his energy formula (2.2.11) are actually equivalent
to the postulate that all spectroscopic wavelengths of light associated with atomic
hydrogen fit the formula

l ¼ hc

DEn,n0
¼ (4pe0)

2 4ph�3c
me4

n2n02

n2 � n02
, (2:2:18)

where n and n0 are integers to be chosen, but where all the other parameters are fixed.
It is obvious that if n0 ¼ 2 and n . 2, then (2.2.18) becomes

l ¼ (4pe0)
2 16ph�

3
c

me4
n2

n2 � 4
, (2:2:19)

which is exactly the Balmer formula (2.2.1). The numerical value of the product of the
coefficients in (2.2.19) is 3645.6 Å, just what Balmer had said the constant b was,
28 years earlier. Bohr’s expression (2.2.18) was quickly found, for values of n0 not
equal to 2, to agree with other wavelengths associated with hydrogen but which had
not fitted the Balmer formula (Problem 2.1).

Bohr’s theory opened a new viewpoint on atomic spectroscopy. All observed spectro-
scopic wavelengths could be interpreted as evidence for the existence of certain allowed
electron orbits in all atoms, even if formulas corresponding to Bohr’s (2.2.18) were not
known for any atom but hydrogen.

In Chapter 3 we will see that, for many aspects of the interaction of light and
matter, atoms can be regarded as a set of electrons acting as harmonic oscillators.
It might be supposed that the oscillation frequencies of the electrons in this classical
electron oscillator model of an atom, which was used with considerable success
before quantum theory, are associated somehow with the “transition frequencies” n
in Bohr’s formula (2.2.15). In this way the most useful features of the classical
oscillator model of an atom survived the quantum revolution unchanged. How this
is possible, in view of the obvious fact that the assumed Coulomb force (2.2.2)
between electron and nucleus is not a harmonic oscillator force, will be explained in
Chapter 3.

It is easy to have second thoughts about Bohr’s model, no matter how successful
it is. For example, one can ask why (2.2.6) does not include the possibility n ¼ 0.
There is no apparent reason why zero angular momentum must be excluded, except
that the energy formula (2.2.11) is not defined for n ¼ 0. This point, whether physical
significance can be assigned to the orbit with zero angular momentum, cannot be
clarified within the Bohr theory, and it proved puzzling to physicists for more than a
decade until quantum mechanics was developed. In a similar fashion, one can ask
how Bohr’s results are modified by relativity. The kinetic energy formula used above,
T ¼ 1

2mv
2, is certainly nonrelativistic. Again, this point was not fully answered until

the development of quantum mechanics.

† Relativistic corrections to Newtonian physics become important when particle
velocities approach the velocity of light. If v is the velocity of a particle, then typically the first
correction terms are found to be proportional to (v/c)2, where c is the velocity of light. The
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value of (v/c)2 can easily be estimated within the Bohr theory. It follows from (2.2.4) that

v

c

� �2
¼ 1

4pe0

e2

rmc2
: (2:2:20)

By inserting r from (2.2.12) and taking the square root, the ratio v/c can be found for any of the
allowed orbits:

v

c
¼ 1

4pe0

e2

nh�c : (2:2:21)

Equation (2.2.21) shows that the largest velocity to be expected in the Bohr atom is associated
with the lowest orbit, n ¼ 1. The ratio of this maximum velocity to the velocity of light
is given by the remarkable (dimensionless) combination of electromagnetic and quantum
mechanical constants, e2=4pe0h�c. The numerical value of this parameter is easily found:

1
4pe0

e2

h�c ¼
(1:602� 10�19 C)2

(4p)(8:854� 10�12 C=V-m)(1:054� 10�34 J-s)(2:998� 108 m=s)

¼ 0:007297 (¼1=137:04): (2:2:22)

The value found in (2.2.22) is small enough that corrections to the Bohr model from relati-
vistic effects are of the relative order of magnitude 1024 or smaller, and thus negligible in
most circumstances. Spectroscopic measurements, however, are commonly accurate to five sig-
nificant figures. Arnold Sommerfeld, in the period 1915–1920, studied the relativistic corrections
to Bohr’s formulas and showed that they accounted accurately for some of the fine details or fine
structure in observed spectra. For this reason the parameter e2=4pe0h�c is called Sommerfeld’s
fine-structure constant.

The fine-structure constant appears so frequently in expressions of atomic radiation
physics that it is very useful to remember its numerical value. Because the value given in
(2.2.22) is very nearly equal to 1/137, it is in this form that its value is memorized
by physicists. †

Quantum States and Degeneracy

In the Bohr model a state of the electron is characterized by the quantum number n.
Everything the model can say about the allowed states of the electron is given in
terms of n.

The full quantum theory of the hydrogen atom also yields the allowed energies
(2.2.11). However, in the quantum theory a state of the electron is characterized by
other quantum numbers in addition to the principal quantum number n appearing
in (2.2.11). The results of the quantum theory for the hydrogen atom, in addition to
(2.2.11), are mainly the following:

(i) For each principal quantum number n (¼1, 2, 3, . . .) there are n possible values of
the orbital angular momentum quantum number ‘. The allowed values of ‘ are 0,
1, 2, . . . , n21. Thus, for n ¼ 1 we can have only ‘ ¼ 0, whereas for n ¼ 2 we can
have ‘ ¼ 0 or 1, and so on.

(ii) For each ‘ there are 2‘þ 1 possible values of the magnetic quantum number m.
The possible values of magnetic quantum number m are �‘,� ‘þ 1, . . . ,
�1, 0, 1, . . . , ‘� 1, ‘.
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(iii) In addition to orbital angular momentum, an electron also carries an intrinsic
angular momentum, which is called simply spin. The spin of an electron always
has magnitude 1

2 (in units of h�). But in any given direction the electron spin can
be either “up” or “down”; that is, quantum theory says that when the component
of electron spin along any direction is measured, we will always find it to have
one of two possible values.3 Because of this, an electron state must also be labeled
by an additional quantum number ms, called the spin magnetic quantum number,
whose only possible values are +1

2.

Thus, for a given n, there are n possible values of ‘, and for each ‘ there are 2‘þ 1
possible values of m, for a total of

Xn�1
‘¼0

(2‘þ 1) ¼ n2, (2:2:23)

states. And each of these states is characterized further by ms, which may be þ 1
2 or � 1

2.
Therefore, there are 2n2 states associated with each principal quantum number n. In con-
trast to the Bohr model, in which an allowed state of the electron in the hydrogen atom is
characterized by n, quantum theory characterizes each allowed state by the four quantum
numbers n, ‘, m, and ms; and since the electron energy depends only on n [recall
(2.2.11)], there are 2n2 states with the same energy for every value of n. These 2n2

states are called degenerate states or are said to be degenerate in energy.
Historical designations for the orbital angular momentum quantum numbers are

still in use:

‘ ¼ 0
‘ ¼ 1
‘ ¼ 2
‘ ¼ 3
‘ ¼ 4

designates the so-called s orbital
p orbital
d orbital
f orbital
g orbital

The first three letters came from thewords sharp, principal, and diffuse, which described
the character of atomic emission spectra in a qualitative way long before quantum theory
showed that they could be associated systematically with different orbital angular
momentum values for an electron in the atom.

The Periodic Table

Although hydrogen is the only atom for which explicit expressions such as (2.2.11) can
be written down, we can nevertheless understand the gross features of the periodic table
of the elements. That is, we can understand the chemical regularity, or periodicity, that
occurs as the atomic number Z increases. The key to this understanding is the exclusion
principle of Wolfgang Pauli (1925), which forbids two electrons from occupying the

3The magnitude of the spin angular momentum vector is (Section 2.4)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(sþ 1)
p

h� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

� �
1
2þ 1
� �q

h� ¼
ffiffi
3
4

q
h� ,

so that its two allowed components (spin “up” and spin “down”) make angles cos�1 (+1
2)=

ffiffi
3
4

qh i
¼ 54:748 and

(180� 54:74) ¼ 125:268 with the axis along which the spin is measured.

2.2 ELECTRON ENERGY LEVELS IN ATOMS 23



same quantum mechanical state. The Pauli exclusion principle may be proved only at an
advanced level that is well beyond the scope of this book. We will simply accept it as a
fundamental truth.

But the Pauli principle alone is not sufficient for an understanding of the periodic
table. We must also deal with the electron–electron interactions in a multielectron
atom. These interactions present us with an extremely complicated many-body problem
that has never been solved. A useful approximation, however, is to assume that each
electron moves independently of all the others; each electron is thought of as being in
a spherically symmetric potential V(r) due to the Coulomb field of the nucleus plus
the Z21 other electrons. In this independent-particle approximation an electron state
is still characterized by the four quantum numbers (n, ‘, m, ms), as in the case of hydro-
gen. However, in this case the simple energy formula (2.2.11) does not apply, and in
particular the energy depends on both n and ‘ (but not m or ms) as sketched in Fig. 2.3.

The simplest multielectron atom, of course, is helium, in which there are Z ¼ 2 elec-
trons. The lowest energy state for each electron is characterized in the independent-
particle approximation by the quantum numbers n ¼ 1, ‘ ¼ 0, m ¼ 0, and ms ¼+ 1

2.
Since the energy depends now on both n and ‘, we can label this particular electron
configuration as 1s, a shorthand notation meaning n ¼ 1 and ‘ ¼ 0. Both electrons
are in the shell n ¼1, one having spin up ms ¼ 1

2

� �
, the other spin down ms ¼ � 1

2

� �
.

Since 2 is the maximum number of electrons allowed by the Pauli exclusion principle
for the 1s configuration, we say that the 1s shell is completely filled in the helium atom.

Energy

Bohr’s
hydrogen

Generic
atom

Energy

3d (10)
3p (6)

2p (6)

3s (2)

2s (2)

1s (2)

n = 3

n = 2

n = 1

Figure 2.3 The main differences between Bohr’s model for hydrogen and a generic many-electron
atom arise from the Pauli exclusion principle and the dependence of level energies on both n and ‘. In
parentheses we show the number of different states, (2‘ þ 1) � 2, permitted by assignment ofm andms

values for each ‘. Carbon’s 6 electrons, for example, occupy the 2 states in each of the 1s and 2s levels
and 2 of the 2p states. For clarity the energy separations are not properly scaled.
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In the case Z ¼ 3 (lithium), there is one electron left over after the 1s shell is filled.
The next allowed electron configuration is 2s (n ¼ 2, ‘ ¼ 0), and one of the electrons
in lithium is assigned to this configuration. Since the 2s configuration can accommodate
two electrons, the 2s subshell in lithium is only partially filled. The next element is
beryllium, with Z ¼ 4 electrons, and in this case the 2s subshell is completely filled,
there being two electrons in this “slot.”

For Z ¼ 5 (boron), the added electron goes into the 2p configuration (n ¼ 2, ‘ ¼ 1).
This configuration can accommodate 2(2‘þ 1) ¼ 6 electrons. Thus, there are five other
elements (C, N, O, F, and Ne) in which the outer subshell of electrons corresponds to the
configuration 2p. The eight elements lithium through neon, for which the outermost
electrons belong to the n ¼ 2 shell, constitute the first full row of the periodic table.

Inside the back cover of this book we list the first 36 elements and their electron
configurations. The configurations are assigned in a similar manner as done above for
Z ¼ 1–10. Also listed is the ionization energy, defined as the energy required to
remove one electron from the atom. For hydrogen the ionization energyWI may be cal-
culated from Eq. (2.2.11) with n ¼ 1, that is,WI is just the binding energy of the electron
in ground-state hydrogen:

WI ¼ jE1j ¼ 1
4pe0

� �2me4
2h�2 ¼ 2:17� 10�18 J: (2:2:24)

We already pointed out, in connection with photon energy in Chapter 1, that such small
energies are usually expressed in units of electron volts, an electron volt being the energy
acquired by an electron accelerated through a potential difference of 1 volt:

1 eV ¼ (1:602� 10�19 C)(1V) ¼ 1:602� 10�19 J: (2:2:25)

The ionization energy of hydrogen is therefore

WI ¼ 2:17� 10�18 J
1:602� 10�19 J=eV

¼ 13:6 eV: (2:2:26)

The ionization energy of a hydrogen atom in any state (n, ‘, m, ms) is likewise
(13.6 eV)/n2.

The elements He, Ne, Ar, and Kr are chemically inactive. We note that each of these
atoms has a completely filled outer shell. Evidently, an atom with a filled outer shell
of electrons tends to be “satisfied” with itself, having very little proclivity to share its
electrons with other atoms (i.e., to join in chemical bonds). However, a filled outer
subshell does not necessarily mean chemical inertness. Beryllium, for instance, has a
filled 2s subshell, but it is not inert. Furthermore, even some of the noble gases are
not entirely inert.

The alkali metals Li, Na, and K have only one electron in an outer subshell, and their
outer electrons are weakly bound, leading to low ionization energies of these elements.
These elements are highly reactive; they will readily give up their “extra” electron. On
the other hand, the halogens F, Cl, and Br are one electron short of a filled outer subshell.
These atoms will readily take another electron, and so they too are quite reactive chemi-
cally and the halogens are sufficiently “eager” to combine with elements that can easily
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contribute an electron that they can form negative ions, stably but weakly binding an
extra electron. This even includes H2, the negative hydrogen ion. Hydrogen is in the
odd position of having some properties in common with the alkali metals and some
in common with the halogens.

The characterization of atomic electron states in terms of the four quantum numbers
n, ‘, m, and ms, together with the Pauli exclusion principle, thus allows us to understand
why Na is chemically similar to K, Mg is chemically similar to Ca, and so forth. These
chemical periodicities, according to which the periodic table is arranged, are con-
sequences of the way electrons fill in the allowed “slots” when they combine with
nuclei to form atoms.

Of course, there is a great deal more that can be said about the periodic table. For a
rigorous treatment of atomic structure, we must refer the reader to textbooks on atomic
physics. As mentioned earlier, however, we can understand lasers without a more
detailed understanding of atomic and molecular physics.

2.3 MOLECULAR VIBRATIONS

As in the case of atoms, there are only certain allowed energy levels for the electrons of
a molecule. Quantum jumps of electrons in molecules are accompanied by the emission
or absorption of photons that typically belong to the ultraviolet region of the electro-
magnetic spectrum. For our purposes the electronic energy levels of molecules are
quite similar to those of atoms.

However, in contrast with atoms, molecules have vibrational and rotational as well
as electronic energy. This is because the relative positions and orientations of the indi-
vidual atomic nuclei in molecules are not absolutely fixed. The energies associated
with molecular vibrations and rotations are also quantized, that is, restricted to certain
allowed values. In this section and the next we will discuss the main features of mole-
cular vibrational and rotational energy levels. Transitions between vibrational levels
lie in the infrared portion of the electromagnetic spectrum, whereas rotational spectra
are in the microwave region. Some of the most powerful lasers operate on molecular
vibrational-rotational transitions.

Consider the simplest kind of molecule, namely a diatomic molecule such as O2, N2,
or CO. There is a molecular binding force that is responsible for holding the two atoms
together. To a first (and often very good) approximation the binding force is linear, so
that the potential energy function is

V(x) ¼ 1
2(x2 � x1 � x0)

2 ¼ 1
2 k(x� x0)

2, (2:3:1)

where k is the “spring constant,” x ¼ x22x1 is the distance between the two nuclei, and
x0 is the internuclear separation for which the spring force

F ¼ �k(x� x0), (2:3:2)

vanishes (Fig. 2.4). In other words, if the separation x is greater than x0, the binding force
is attractive and brings the nuclei closer; if x is less than x0, the force is repulsive. The
separation x ¼ x0 is therefore a point of stable equilibrium. The origin of the binding
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force is quantummechanical; we will not attempt to explain it but will simply accept the
result (2.3.1) and consider its consequences.

For simplicity, let us assume that the nuclei can move only in one dimension.
The total energy of a diatomic system (i.e., the sum of kinetic and potential energies)
is then

E ¼ 1
2 m1 _x

2
1 þ 1

2 m2 _x
2
2 þ 1

2 k(x2 � x1 � x0)
2, (2:3:3)

where the dots denote differentiation with respect to time, that is, _x ¼ dx=dt. In terms of
the reduced mass

m ¼ m1m2

M
, (2:3:4)

where M ¼ m1þm2 is the total mass, and the center-of-mass coordinate

X ¼ m1x1 þ m2x2
M

, (2:3:5)

we may write (2.3.3) as (Problem 2.2)

E ¼ 1
2 M

_X
2 þ 1

2 m _x 2 þ 1
2 k(x� x0)

2: (2:3:6)

The first term is just the kinetic energy associated with the center-of-mass motion.We
ignore it and focus our attention on the internal vibrational energy

E ¼ 1
2 m_x2 þ 1

2 k(x� x0)
2: (2:3:7)

The vibrational motion of a diatomic molecule must clearly be one dimensional, and so
we lose nothing in the way of generality by restricting ourselves to one-dimensional
vibrations from the start [Eq. (2.3.3)].

The quantum mechanics of the motion associated with the energy formula (2.3.7)
has much in common with that for the hydrogen atom electron. The most important
result is that the allowed energies E of the oscillator are also quantized. The quantized

m1 m2 
F F F F 

x0 x x 

(a) (b) (c)

Figure 2.4 (a) When the two nuclei of a diatomic molecule are separated by the equilibrium distance
x0, there is no force between them. If their separation x is larger than x0, there is an attractive force (b),
whereas when x is less than x0 the force is repulsive (c). The internuclear force is approximately
harmonic, that is, springlike.
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energies are given by

En ¼ h�v(nþ 1
2), n ¼ 0, 1, 2, 3, . . . , (2:3:8)

with

v ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
: (2:3:9)

This formula is clearly quite different from Bohr’s formula for hydrogen. The quantum
mechanical energy spectrum for a harmonic oscillator is simply a ladder of evenly
spaced levels separated by h�v (Fig. 2.5). The ground level of the oscillator corresponds
to n ¼ 0. However, an oscillator in its ground level is not at rest at its stable equilibrium
point x ¼ x0. Even the lowest possible energy of a quantum mechanical oscillator
has finite kinetic and potential energy contributions. At zero absolute temperature,
where classically all motion ceases, the quantum mechanical oscillator still has a
finite energy 1

2 h
�v. For this reason the energy 1

2 h
�v is called the zero-point energy of

the harmonic oscillator.
Of course, real diatomic molecules are not perfect harmonic oscillators, and their

vibrational energies do not satisfy (2.3.8) precisely. Figure 2.6 shows the sort of potential

E4 = —

E

9
2

E3 = —72

E2 = — 5
2

E1 = — 3
2

E0 = —12

hw

hw

hw

hw

hw

Figure 2.5 The energy levels of a harmonic oscillator form a ladder with rung spacing h�v.

V (x)
Harmonic
oscillator

Real diatomic
molecule

x0 x (Internuclear separation)

Figure 2.6 The potential energy function of a real diatomic molecule is approximately like that of a
harmonic oscillator for values of x near x0.
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energy function V(x) that describes the bonding of a real diatomic molecule. The Taylor
series expansion of the function V(x) about the equilibrium point x0 is

V(x) ¼ V(x0)þ (x� x0)
dV

dx

� �
x¼x0
þ 1
2
(x� x0)

2 d2V

dx2

� �
x¼x0

þ 1
6
(x� x0)

3 d3V

dx3

� �
x¼x0
þ � � � : (2:3:10)

Here V(x0) is a constant, which we put equal to zero by shifting the origin of the energy
scale. Also (dV/dx)x¼x0¼ 0 because, by definition, x ¼ x0 is the equilibrium separation,
at which the potential energy is a minimum. Furthermore (d2V/dx2) at x ¼ x0 is positive
if x0 is a point of stable equilibrium (Fig. 2.6). Thus, we can replace (2.3.10) by

V(x) ¼ 1
2 k(x� x0)

2 þ A(x� x0)
3 þ B(x� x0)

4 þ � � � , (2:3:11)

where A, B, . . . are constants and k ¼ (d2V=dx2)x¼x0 .
From (2.3.10) we can conclude that any potential energy function describing a stable

equilibrium [i.e., (dV=dx)x¼x0 ¼ 0, (d2V=dx2)x¼x0 . 0] can be approximated by the
harmonic oscillator potential (2.3.1) for small enough displacements from equilibrium.
Of course, what is “small” is determined by the constants A, B, . . . in (2.3.11), that is, by
the shape of the potential function V(x). If the terms involving third and/or higher
powers of x 2x0 in (2.3.11) are not negligible, however, we have what is called an
anharmonic potential. The energy levels of an anharmonic oscillator do not satisfy
the simple formula (2.3.8).

Real diatomic molecules have vibrational spectra that are usually only slightly anhar-
monic. In conventional notation the vibrational energy levels of diatomic molecules are
written in the form

Ev ¼ hcve vþ 1
2

� �� xe vþ 1
2

� �2þ ye vþ 1
2

� �3þ � � �h i
, (2:3:12)

where

v ¼ 0, 1, 2, 3, . . . , (2:3:13)

and ve is in units of “wave numbers,” i.e., cm21; cve is the same as v/2p ¼ n in this
notation. If the anharmonicity coefficients xe, ye, . . . are all zero, we recover the harmonic
oscillator spectrum (2.3.8). Numerical values of ve, xe, ye, . . . are tabulated in the litera-
ture.4 Values of ve, xe, ye, . . . are given for several diatomic molecules in Table 2.1. The
deviations from perfect harmonicity are small until v becomes large, that is, until we
climb fairly high up the vibrational ladder. The level spacing decreases as v increases,
in contrast to the even spacing of the ideal harmonic oscillator (Fig. 2.7).

4A standard source is G. Herzberg, Molecular Spectra and Molecular Structure. Volume I, Spectra of
Diatomic Molecules, Robert E. Krieger, Malabar, FL, 1989.
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† For a simple check on our theory, consider the two molecules hydrogen fluoride (HF) and
deuterium fluoride (DF). These molecules differ only to the extent that D has a neutron and a
proton in its nucleus and H has only a proton. Since neutrons have no effect on molecular bond-
ing, we expect HF and DF to have the same potential function V(x) and therefore the same “spring
constant” k. According to (2.3.9), therefore, we should have

vHF
e

vDF
e

¼ mDF

mHF

� �1=2
, (2:3:14)

where mDF and mHF are the reduced masses of DF and HF, respectively, so that

mDF

mHF
¼ mDmF

mD þ mF

	
mHmF

mH þ mF
� (2)(19)

2þ 19
� 1þ 19
(1)(19)

� 1:90: (2:3:15)

From the value of ve for HF given in Table 2.1, therefore, we calculate

vDF
e � (4138:52)(1:90)�1=2 ¼ 2998:64 cm�1, (2:3:16)

and indeed this is very close to the tabulated value ve ¼ 2998.25 cm21 for DF.4

Regarding the zero-point energy of molecular vibrations, consider a transition in which there
is a change in both the electronic (e) and the vibrational (v) states of a diatomic molecule.

E

Ev+1

Ev

Ev –1

Figure 2.7 The vibrational energy level spacing of a real (anharmonic) diatomic molecule decreases
with increasing vibrational energy.

TABLE 2.1 Vibrational Constants of the Ground Electronic
State for a Few Diatomic Molecules

Molecule ve (cm
21) xe ye

H2 4395.24 0.0268 6.67 � 1025

O2 1580.36 0.00764 3.46 � 1025

CO 2170.21 0.00620 1.42 � 1025

HF 4138.52 0.0218 2.37 � 1024

HCl 2989.74 0.0174 1.87 � 1025
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The transition energy is approximately

DEe0v0,ev ¼ Ee0 � Ee þ hc ve0 v
0 þ 1

2

� �� ve vþ 1
2

� �
 �
, (2:3:17)

where the unprimed and primed labels refer to the initial and final states, respectively, and ve and
ve0 are the vibrational constants associated with the two electronic states. Now suppose that one of
the nuclei of the diatomic molecule is replaced by a different isotope, for example, HF is replaced
by DF. The electronic energy levels are approximately unchanged by this replacement, but the
vibrational constants ve and ve0 are changed to rve and rve0, where r is the square root of the
ratio of reduced masses of the two molecules, as in our example above comparing HF and DF.
For the second, isotopically different molecule, then, the transition energy (2.3.17) is replaced by

DEi
e0v0 ,ev ¼ Ee0 � Ee þ hc rve0 v

0 þ 1
2

� �� rve vþ 1
2

� �
 �
: (2:3:18)

The vibrational spectra of the two isotopic molecules for the same electronic transition Ee! Ee0

therefore differ by

DEi
e0v0 ,ev � DEe0v0 ,ev ¼ hc(r� 1) ve0 v

0 þ 1
2

� �� ve vþ 1
2

� �
 �
, (2:3:19)

and in particular, for v ¼ 0 ! v0 ¼ 0,

DEi
e00,e0 � DEe00,e0 ¼ 1

2 hc(r� 1)(ve0 � ve): (2:3:20)

This is nonzero because of zero-point energy, that is, it would vanish if the energy levels
of a harmonic oscillator were given by En ¼ nh�v instead of En ¼ (nþ 1

2)h
�v. The zero-point

energy of molecular vibrations was confirmed in this way by R. S. Mulliken (1924),
who compared the observed vibrational spectra of B10O16 and B11O16. This was before the
quantum mechanical derivation by Heisenberg (1925) of the formula (2.3.8) for the energy
levels of a harmonic oscillator. †

2.4 MOLECULAR ROTATIONS

The rotations of a diatomic molecule can be understood in two stages. First, we imagine
the molecule to be a dumbbell consisting of two masses, m1 and m2, held together by a
(massless) rigid rod of length x0 (Fig. 2.8). The dumbbell can rotate about its center of
mass. The moment of inertia I is mx20, where m is the reduced mass (2.3.4) and x0 is the
distance separating the massesm1 andm2. If the angular velocity of rotation (radians per
second) is vR, the angular momentum and kinetic energy are, respectively,

L ¼ IvR (magnitude of angular momentum vector) (2:4:1)

m1 m2
C.M.

Figure 2.8 A dumbbell rotating about an axis through its center of mass serves as a classical model
for the rotations of a diatomic molecule.
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and

E ¼ 1
2 Iv

2
R ¼

L2

2I
: (2:4:2)

These classical formulas are the starting point of a quantum-mechanical treatment of
the rigid dumbbell, just as similar classical formulas underlie treatments of the hydrogen
atom and the vibrations of molecules. It is found that the rotational energy (2.4.2) of the
molecule has the allowed values

EJ ¼ h�2
2I

J(J þ 1), J ¼ 0, 1, 2, . . . : (2:4:3)

Actual diatomic molecules are, of course, not rigid dumbbells. In particular, the
masses m1 and m2 do not stay a fixed distance x0 apart. As the molecule rotates, the
centrifugal force tends to increase the separation of the two masses, and therefore also
the moment of inertia I. This decreases the rotational energy, the more so as the rate
of rotation (i.e., J ) increases. In the notation of molecular spectroscopy this is accounted
for by writing

EJ ¼ hcBJ(J þ 1)� hcDJ2(J þ 1)2, (2:4:4)

where the J-independent quantities B and D have units of wave numbers.
The fact that the molecule can vibrate also tends to increase the effective moment

of inertia, the more so as the vibrational quantum number v increases. This is accounted
for by writing

B ¼ Be � ae vþ 1
2

� �
, (2:4:5)

where Be and ae (in cm21) are independent of v and J. The rotational energy levels
associated with the vibrational level v of a diatomic molecule are therefore written as

EJ(v) ¼ hc Be � ae vþ 1
2

� �
 �
J(J þ 1)� hcDJ2(J þ 1)2: (2:4:6)

Higher-order corrections are necessary in general to explain the fine details of the
rotational energy spectrum of a diatomic molecule. However, (2.4.6) is often accurate
enough for practical purposes, and in fact the term involving D is often negligible.

The constants Be, ae, . . . for different molecules are tabulated in the spectroscopic
literature. The constants Be and ae for several molecules are given in Table 2.2. For
our purposes it will suffice to make the rigid-dumbbell approximation and write

EJ(v) � EJ � hcBeJ(J þ 1): (2:4:7)

† Once again it is possible to check our theory with an example. A comparison of Eqs. (2.4.3)
and (2.4.7) shows that the rotational constant Be of a diatomic molecule should be inversely
proportional to its moment of inertia I ¼ mx20. Since the equilibrium separation x0 is determined
primarily by chemical (i.e., electromagnetic) forces, we expect that it should be practically the
same for the two molecules HF and DF. Thus, we expect

BHF
e

BDF
e

¼ mDF

mHF
¼ 1:90: (2:4:8)
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It follows from the data in Table 2.2, therefore, that the rotational constant for DF should
be BDF

e � 11:02 cm�1, in excellent agreement with the value 11.007 cm21 tabulated by
Herzberg.4

Equations (2.4.2) and (2.4.3) imply that the square of the angular momentum in a state with
angular momentum quantum number L is L(Lþ 1)h�2 rather than L2h�2. This is a general feature of
the quantum theory of angular momentum; the square of the orbital angular momentum for the
electron in a hydrogen atom in a state with orbital angular momentum quantum number ‘, for
example, is ‘(‘þ 1)h�2. It can be understood as a consequence of “space quantization,” that is,
the fact that the z component of angular momentum, Lz, has only the 2Lþ1 allowed values
M¼2L,2L þ 1, . . . , L21, L. Since there is nothing special about the “z direction,” and there
are three space dimensions, the average k L2l of the square of the angular momentum must be
three times the average of L2z :

kL2l ¼ 3kL2z l ¼ 3
1

2Lþ 1

XL
M¼�L

M2 ¼ 3
2Lþ 1

1
3
L(Lþ 1)(2Lþ 1) ¼ L(Lþ 1), (2:4:9)

where we have used the general identity

XL
M¼�L

M2 ¼ 1
3
L(Lþ 1)(2Lþ 1): (2:4:10)

In other words, once we accept space quantization as an experimental fact, we can understand
why the square of the angular momentum must be L(Lþ 1)h�2 in a state with angular momentum
quantum number L. †

In summary, with every electronic state of a molecule there are associated vibrational
constants ve, xe, ye, . . . and rotational constants Be, ae, . . . . In Tables 2.1 and 2.2 the
vibrational-rotational constants are given for the ground (lowest energy) electronic state.

2.5 EXAMPLE: CARBON DIOXIDE

In our treatment of molecular vibrations and rotations we have only considered the rela-
tively simple case of diatomic molecules. Rather than now discussing general poly-
atomic molecules, which are more complicated but fundamentally much the same as
diatomics, we will consider only the specific case of the carbon dioxide molecule. We
choose this example because the CO2 laser is one of the most important molecular lasers.

Carbon dioxide is a linear triatomic molecule (Fig. 2.9). Such a molecule has three
so-called normal modes of vibration, shown in Fig. 2.9b. For obvious reasons these

TABLE 2.2 Rotational Constants of the Ground Electronic
State for the Molecules Listed in Table 4.1

Molecule Be (cm
21) ae (cm

21)

H2 60.81 2.993
O2 1.44567 0.01579
CO 1.9314 0.01749
HF 20.939 0.770
HCl 10.5909 0.3019
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are called the asymmetric stretch, bending, and symmetric stretch modes. With each of
these normal modes is associated a characteristic frequency of vibration. Each mode of
vibration has a ladder of allowed energy levels associated with it, as in the case of a
diatomic molecule (which has only one normal mode of vibration). The vibrational
energy levels of the molecule may therefore be labeled by three integers v1, v2, and v3
(¼ 0, 1, 2, 3, . . .), and we have approximately

E(v1, v2, v3) ¼ hcv(1)
e v1 þ 1

2

� �þ hcv(2)
e v2 þ 1

2

� �þ hcv(3)
e v3 þ 1

2

� �
, (2:5:1)

where v(1)
e , v(2)

e , and v(3)
e are the normal-mode frequencies in units of wave numbers.

In reality each normal mode is slightly anharmonic, but the harmonic-oscillator
approximation will suffice for our purposes. For CO2 the normal-mode frequencies are

v(1)
e ¼ v(symmetric stretch) � 1388 cm�1, (2:5:2a)

v(2)
e ¼ v(bending) � 667 cm�1, (2:5:2b)

v(3)
e ¼ v(asymmetric stretch) � 2349 cm�1: (2:5:2c)

The first few vibrational energy levels (v1v2v3) of the CO2 molecule are indicated in
Fig. 2.10.

Since CO2 is a linear molecule, its rotational energy spectrum has the same character
as that for diatomic molecules. The CO2 rotational energy levels are thus given to a good
approximation by Eq. (2.4.7):

EJ ¼ hcBeJ(J þ 1), J ¼ 0, 1, 2, . . . , (2:5:3)

(i) 

(ii) 

(iii) 

(b)

O 

O O 

O 

O C 

C 

C 

O C 
(a)

O 

O 

Figure 2.9 (a) Carbon dioxide (CO2) is a linear triatomic molecule. (b) Normal modes of vibration
of the CO2 molecule: (i) the asymmetric stretch mode, (ii) the bending mode, and (iii) the sym-
metric stretch mode.
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where the rotational constant Be for the CO2 molecule is

Be ¼ 0:39 cm�1: (2:5:4)

2.6 CONDUCTORS AND INSULATORS

In a gas the average distance between molecules (or atoms) is large compared to mole-
cular dimensions. In liquids and solids, however, the intermolecular distance is compar-
able to a molecular diameter (Problem 2.3). Consequently the intermolecular forces
are roughly comparable in strength to the interatomic bonding forces in the molecules.
The molecules in liquids and solids are thus influenced very strongly by their neighbors.

What is generally called “solid-state physics” is mostly the study of crystalline solids,
that is, solids in which the molecules are arranged in a regular pattern called a crystal
lattice. The central fact of the theory of crystalline solids is that the discrete energy
levels of the individual atoms are split into energy bands, each containing many closely
spaced levels (Fig. 2.11). Between these allowed energy bands are gaps with no allowed
energies. The way this happens is easy to explain with a simple example.

Imagine a sodium atom with its 11 electrons distributed according to the Pauli exclu-
sion principle over its 1s level (2 electrons), 2s level (2 electrons), 2p level (6 electrons)
and 3s level (1 electron). A second sodium atom has exactly the same energy levels
occupied by 11 electrons in the same way. If the two sodium atoms are brought close
together their two equal-energy 1s levels turn into two levels of “di-sodium,” and
these two levels of di-sodium have slightly different energies from their Na values
and slightly different energies from each other. Similarly, the two 2s levels of Na
become two slightly different levels of di-sodium, and so on for the higher levels.

2349 cm–1

(001)

1388 cm–1

(100)

Symmetric
stretch mode

Asymmetric
stretch modeBending mode

667 cm–1

(010)

(000)

(020)

(030)

Figure 2.10 The first few vibrational energy levels of the CO2 molecule.
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The same process occurs for three sodium atoms, in which case the 1s label applies to
three slightly separated levels, the 2s label applies to three slightly separated levels, and
so on.When the number of atomsN is as large as is appropriate to a macroscopic piece of
sodium metal the N slightly separated levels are so closely bunched that they constitute
an effectively continuous band of energies. The relatively large gap between the 1s and
2s levels in sodium atoms becomes the “forbidden gap” between 1s and 2s bands in
sodium metal, where there are no longer any distinguishable levels. This is sketched
in Fig. 2.12 for 1, 2, 6, and N � 1023 atoms.

A one-dimensional model showing how such band structure arises in quantum theory
is discussed in the Appendix to this chapter.

We can reach a crude understanding of the formation of energy bands by beginning
with the case of two identical atoms. When the atoms are far apart and effectively non-
interacting, their electron configurations and energy levels are identical. As they are
brought closer together, however, the electrons of each atom begin to feel the presence

First
excited
state

1 atom 2 atoms 6 atoms N atoms

Ground
state

Figure 2.12 Sketch of the change in the energy values originally assigned to the ground and first
excited states of an atom as more and more atoms are combined to form a solid. Note that the band
gap energy can be identified with the original atomic level spacing, but is generally different in size.

Allowed energy band

Forbidden energy gap

Allowed energy band

Allowed energy band

Forbidden energy gap

Figure 2.11 In a crystalline solid the allowed electron energy levels occur in bands of closely spaced
levels. Between these allowed energy bands are forbidden gaps.
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of the other atom, and the energy levels become those of the two atoms as a whole.5 The
difference between these new energy levels depends upon the interatomic spacing
(Fig. 2.12).

The difference between the highest and the lowest of these N levels depends on
the interatomic distances, amounting typically to several electron volts for atomic
spacings of a few angstroms, typical of solids. Now if we increase N, keeping the
interatomic spacing fixed as in a crystalline solid, the total energy spread of the N
levels stays about the same, but the levels become more densely spaced. For the large
values of N typical of a solid (say, something like 1029 atoms/m3), each set of N
levels thus becomes in effect a continuous energy band (as in Fig. 2.13), which in
some solids can be even wider then the original atomic level spacing.

The chemical and optical properties of atoms are determined primarily by their outer
electrons. In solids, similarly, many important properties are determined by the electrons
in the highest energy bands, the bands evolving out of the higher occupied states of the
individual atoms. Consider, for instance, a solid in which the highest occupied energy
band is only partially filled, as illustrated in Fig. 2.14a. In an applied electric field the
electrons in this band can readily take up energy and move up within the band. A
solid whose highest occupied band is only partially filled is a good conductor of
electricity.

Now consider a solid whose highest occupied band is completely filled with
electrons, as illustrated in Fig. 2.14b. In this case it is quite difficult for an electron to
move because all the energetically allowed higher states in the band already have
their full measure of electrons permitted by the Pauli principle. Therefore, a solid
whose highest occupied energy band is filled will be an electrical insulator; in other
words, its electrons will not flow freely when an electric field is applied. Implicit in

En +1

En

En –1

Figure 2.13 Crystalline solid energy bands formed from energy levels of isolated atoms.

5These two energy levels correspond to symmetric and antisymmetric spatial wave functions for the
electrons, with correspondingly antisymmetric and symmetric spin eigenfunctions. The twofold exchange
degeneracy in the case of widely separated atoms is broken when their wave functions begin to overlap.
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this definition of an insulator is the assumption that the forbidden energy gap between
the highest filled band and the next allowed energy band, denoted Eg in Fig. 2.14, is large
compared to the amount of energy an electron can pick up in the applied field.

Solids in which this band gap is not so large are called semiconductors. Their
band structure is indicated in Fig. 2.14c. At the absolute zero of temperature the valence
band of a semiconductor is completely filled, whereas the conduction band, the next
allowed energy band, is empty. At room temperature, however, electrons in the valence
band may have enough thermal energy to cross the narrow energy gap and go into the
conduction band. Thus, diamond, which has a band gap of about 7 eV, is an insulator,
whereas silicon, with a band gap of only about 1 eV, is a semiconductor. In a metallic
conductor, by contrast, there is no band gap at all; the valence and conduction bands are
effectively overlapped.

This characterization of solids as insulators, conductors, and semiconductors is
obviously more descriptive than explanatory. To understand why a given solid is an
insulator, conductor, or semiconductor, we must consider the nature of the forces
binding the atoms (or molecules) together in the solid.

In covalent solids the atoms are bound by the sharing of outer electrons in partially
filled configurations. In a true covalent solid, there are no free electrons, and so such
solids do not conduct electricity very well. The covalent bonds tend to hold the atoms
tightly together, thus causing covalent solids to be rather hard and have high melting
points. A good example is diamond, in which carbon atoms are arranged in a lattice
such that each atom is at the center of a tetrahedron formed by its four nearest neighbors.

In ionic solids such as NaCl, the binding is produced by electrostatic forces between
oppositely charged ions. The reason for the binding is the same as in ionic molecules. In
NaCl, for instance, the energy required to remove the 3s electron from Na and transfer it
to Cl, to form Naþ and Cl2, is less than the electrostatic energy of attraction between the
ions. Here again there are no free electrons available to conduct heat or electricity, and so
ionic solids are not good conductors.

The so-called molecular solids, which include many organic compounds (e.g.,
teflon), are also poor conductors. In such solids the binding is due to the very weak
van der Waals forces, which were originally postulated by J. D. van der Waals (1873)
to explain deviations from the ideal gas law. The van der Waals energy of attraction
between two molecules ordinarily varies as the inverse sixth power of the distance

Conduction 
band 

Conduction 
band 

Valence 
band 

Valence 
band 

Valence
band

(a) (b) (c)

Eg 
Eg 

Figure 2.14 In a good conductor of electricity (a), the highest occupied band is only partially filled
with electrons, whereas in a good insulator (b) it is filled. In (b) the energy gap Eg between the valence
band and the conduction band is large. In the case (c) of a semiconductor, however, this gap is small,
and electrons in the valence band can easily be promoted to the conduction band.
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between the molecules. Because of the weakness of the van der Waals interaction,
molecular solids are much easier to deform or compress than covalent or ionic solids.

Of course, electrical technology as we know it would be impossible without metallic
solids, which are good conductors of electricity (copper, silver, etc.). In a metallic solid
the electrons are not all tightly bound at crystal lattice sites. Some of the electrons are
free to move over large distances in the metal, much as atoms move freely in a gas.
This occurs because metals are formed from atoms in which there are one, two, or
occasionally three outer electrons in unfilled configurations. The binding is associated
with these weakly held electrons leaving their parent ions and being shared by all
the ions, and so we can regard metallic binding as a kind of covalent binding. We
can also think of the positive ions as being held in place because their attraction to
the “electron gas” exceeds their mutual repulsion.

It is sometimes a useful approximation to regard the conduction electrons of a metal
as completely free to move about. Of course, conduction electrons are not really
completely free, as evidenced by the fact that even the very best conductors—copper,
silver, and gold—have a finite resistance to the flow of electricity.

It should be emphasized that many solids do not fit so neatly into the covalent, ionic,
molecular, or metallic categories. Furthermore many important properties of various
solids are determined by imperfections such as impurities and dislocations in the crystal
lattice. Steel, for instance, is much harder than pure iron because of the small amount of
carbon that was mixed into the iron melt. Impurities can also determine the color of a
crystal, as in the case of ruby (Section 3.1). We will shortly discuss how the addition
of certain impurities in semiconductors is responsible for modern electronic technology.

2.7 SEMICONDUCTORS

A semiconductor is distinguished from an insulator by the fact that the band gap between
the valence and conduction bands is small, about 2 eV or less. The important semicon-
ductors silicon and germanium, for instance, are covalent solids with band gaps of about
1.12 and 0.67 eV, respectively, at 300 K. At very low temperatures they are insulators,
but the conductivity increases rapidly with increasing temperature because valence-band
electrons can be thermally excited into the conduction band. This increase of conduc-
tivity with increasing temperature is an important distinction between semiconductors
and metals.6 It was known to Faraday and other physicists early in the nineteenth century
but was explained only when quantum mechanics and the band theory of solids were
developed.

Another way to promote electrons into the conduction band of a semiconductor is by
absorption of radiation, if the energy of an incident photon exceeds the gap energy Eg

(i.e., hn. Eg, where hn is the frequency of the radiation). This photoconductive
effect is quite similar to the photoelectric effect, except that electrons are not actually
released from the surface of the material. Photoconductive cells in which the current

6Perhaps it is worth emphasizing what a tremendous range of electrical conductivities is found in different
materials. A good insulator might have a resistivity (the inverse of the conductivity) of 1020 V-m, whereas a
metal may have a value 1028 V-m. Room temperature resistivities of semiconductors, by contrast, are typi-
cally somewhere between 1025 and 107V-m. This range of about 28 orders of magnitude is often cited as one
of the broadest variations of any physical parameter.
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in an electric circuit is controlled by the intensity of incident light have applications
similar to photoelectric cells (exposure meters in photography, automatic door openers,
etc.), except that they require an auxiliary voltage supply to move electrons that have
been put into the conduction band.

By far the most important means of producing conduction electrons in a semicon-
ductor is by doping it with a certain type of impurity. Tiny junctions of differently
doped semiconductors are the basis not only for transistors but also for light-emitting
diodes and diode lasers. To understand the operation of such devices, however, we
must first discuss the concept of a hole in the valence band of a semiconductor.

The basic idea is very simple. If an electron somehow goes from the valence band
to the conduction band, it leaves a hole—the absence of an electron—in the valence
band (Fig. 2.15). That is, a hole corresponds to the absence of an electron from an
otherwise filled valence band. It turns out to be very useful to think of a hole as a
particle like an electron. The removal of an electron increases the charge of the valence
band, so clearly a hole must be a positively charged “particle,” with charge opposite to
that of an electron.

Consider a piece of a semiconductor in which electron–hole pairs have been created
in some way (i.e., electrons have been put into the conduction band, leaving holes in the
valence band). If we connect it with wires to the terminals of a battery, there will be a
flow of current since there are “free” electrons in the conduction band ready to respond
to an externally applied field. These electrons drift in the direction shown in Fig. 2.16,
from the negative electrode to the positive. The net effect, as seen from the outside, is
that electrons enter the semiconductor from the right and exit to the left. However,
this is not the whole story, for electrons in the valence band are also affected by the
potential difference. Specifically, an electron to the right of the hole indicated in
Fig. 2.16 can fall into the hole; that is, it will go into the state previously occupied by
another electron. In doing so, it leaves a hole at the site it left, which can now be
filled by another electron.

This electron drift in the valence band constitutes a current in the same direction (left
to right, by convention, in Fig. 2.16) as the current of the electrons in the conduction
band. Equivalently, we can view the situation as one in which electrons in the conduc-
tion band are moving from right to left, while holes in the valence band are moving from
left to right. In other words, we can describe the charge motion in the conduction band in
terms of electrons, and that in the valence band in terms of holes, and both electrons and
holes contribute to the total current.

Conduction band electron 

hole 
Valence band

Figure 2.15 In going from the valence band to the conduction band, an electron leaves a hole in the
valence band.
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By doping a semiconductor with a certain kind of impurity, we can arrange for a
current in the semiconductor to be due predominantly to either electrons or holes. In
the former case the semiconductor is called n type (because electrons are negatively
charged) and in the latter it is called p type (because holes have positive charge). To
see how this works, we will consider the example of silicon doped with phosphorus.

In pure silicon each atom shares its four valence electrons in the unfilled 3s3p subshell
(see inside cover) to form covalent bonds with its four nearest neighbors. Each silicon
atom needs four more electrons to complete the sp configuration, and by sharing elec-
trons in this way it comes closer to having a filled outer subshell. The crystal structure
is that of diamond, with each silicon atom at the center of a regular tetrahedron (pyramid)
and its four nearest neighbors at the vertices. This structure is a consequence of the fact
that the bonds associated with shared electrons are spaced as far from each other as
possible at equal angles from each atom. It is useful to represent the situation in the
schematic, two-dimensional form of Fig. 2.17.

In its pure form silicon has a very low conductivity at room temperature
because so few electrons can be thermally excited across the 1.12-eV energy gap
(e�Eg=kT � e�1 eV=1=40 eV ¼ e�40). Under ordinary circumstances the current passed is
so small as to be practically useless. To pass useful current, we must find a way to get
more electrons into the conduction band or holes into the valence band.

Suppose that one of the silicon atoms in the crystal is replaced by an atom of
phosphorus, which has five electrons in the unfilled 3s3p subshell. Four of these
can contribute to the covalent bonding of the crystal, as indicated in Fig. 2.18, but
there is one electron left over that cannot take part in the bonding. This fifth electron
is very loosely bound, and so is free to move through the crystal when an electric
field is applied. In other words, if we add a small amount of phosphorus to a silicon
melt, the crystal that forms will be an n-type semiconductor.7 We can also make an
n-type semiconductor by doping silicon with other pentavalent elements such as arsenic
and antimony.

+

+ –

e

Figure 2.16 When a potential difference is applied to two ends of a semiconductor, electrons in the
valence and conduction bands drift from the negative side to the positive. In the valence band, the effect
is equivalent to the drift of positively charged holes from the positive side to the negative. The total
current can therefore be attributed to electrons in the conduction band and holes in the valence band.

7The proportion of dopant must be small in order to preserve the integrity of the host crystal lattice, since the
dopant by itself forms its own crystal lattice structure.
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Imagine instead that we replace a silicon atom by an atom of boron, which has three
electrons in an unfilled outer shell. In this case there is one electron short of the four
needed to join in complete covalent bonding in the host silicon lattice. Thus, if boron
shares its three valence electrons with neighboring silicon atoms, there will be a missing
bond in the crystal, as indicated in Fig. 2.19. This missing electron is a hole that can
be filled by an electron that happens to be nearby. But when that electron fills the
hole, it leaves another hole, which can be filled by another electron, and so in an electric
field we get a migration of holes (or equivalently, of course, a migration of electrons
in the opposite direction). In other words, by doping silicon with boron we can create

Si Si

Si Si

Figure 2.17 Schematic illustration of covalent bonding in silicon, in which each atom shares its four
valence electrons with its four nearest neighbors.

Si Si

Si

Extra
electron

Si

Figure 2.18 If a silicon atom is replaced by a phosphorus atom in Fig. 2.17, there is an extra electron
left over that cannot take part in the covalent bonding. This electron is very loosely bound and therefore
available for conduction of electric current.
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a p-type semiconductor. Other trivalent elements such as aluminum or gallium are also
suitable dopants for this purpose.

As a matter of terminology, a dopant that produces an n-type semiconductor is called
a donor because it donates electrons to the conduction band. A dopant that produces a
p-type semiconductor is called an acceptor because it puts holes in the valence band, that
is, it accepts electrons to fill the missing slots. In either case, of course, the crystal
remains charge-neutral. Note also that the added impurities produce either electrons
or holes, but no electron–hole pairs as in, for instance, photoconductivity. Thus,
in an n-type semiconductor any current is due predominantly to electrons, whereas in
p-type material it is due to holes.

Figure 2.20 shows an experiment that can distinguish between n-type and p-type
semiconductors. Two ends of the material are connected to battery terminals to produce
a current, and we also apply a magnetic field B at right angles to the current. The mag-
netic field exerts a force qv � B on particles of charge q moving with velocity v.
Regardless of the sign of q, this magnetic force is upward for the arrangement shown
(Problem 2.4). Therefore, the top will become positively charged or negatively charged,
depending on the sign of the charge carriers. This displacement of charge creates an
electric force on the charge carriers, and this electric force opposes the magnetic
force. This is called the Hall effect. In equilibrium these vertical electric and magnetic
forces exactly cancel each other and the current flows horizontally. By measuring
with a voltmeter the potential difference between the top and bottom of the sample,
we can determine whether the charge carriers are positive or negative, and therefore
whether the semiconductor is p type or n type.

Actually, some metals, such as beryllium, also exhibit an anomalous Hall effect in
which the dominant charge carriers are positive. This is because beryllium has a filled
2s subshell in which the holes happen to be much more mobile than the 2p electrons.
The important point, again, is that it is very convenient to think in terms of electrons
and holes, even though the real charge carriers are, of course, the electrons.

Si Si

Si

B

Hole

Si

Figure 2.19 If a silicon atom in Fig. 2.17 is replaced by a boron atom, there will be a missing bond
because there is one electron short of the number necessary for complete bonding. Themissing electron
is represented by a hole.
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† The extra electron indicated in Fig. 2.18 is not actually free but is attracted by the positively
charged impurity ion. The electron–ion system is thus analogous to the hydrogen atom. It might
be expected, therefore, that there are electron orbits about the ion with allowed energies given by
the Bohr formula (2.2.11). In particular, the energy of the lowest energy state should be

E1 ¼ � 1
4pe0

� �2me4
2h�2 , (2:7:1)

and an energy jE1 j ¼ 13.6 eV should be required to free the extra electron and make it available
for conduction.

This argument overestimates the binding energy of the extra electron for two reasons. First,
the free-space permittivity e0 in (2.7.1) should be replaced by the material dielectric constant
e. Second, it turns out that the band theory ascribes to electrons (and holes) a certain effective
mass m�; because the electron is in the periodic potential of the crystal and not in free space, it
acts as if its mass were smaller, say m� (see the Appendix to this chapter). The value of m�

depends on the energy of the electron within an energy band and can also vary with direction
within the crystal. Thus, we should replace e0 by e and m by m� in (2.7.1):

E1 ¼ � e0
e

� �2 m�

m

� �
1

4pe0

� �2me4
2h�2 ¼ �

e0
e

� �2 m�

m

� �
(13:6 eV): (2:7:2)

Using the values e ¼ 11.8e0 and m� ¼ 0.26m for silicon, we obtain

E1 ¼ �0:025 eV: (2:7:3)

Therefore, the extra electron is in fact bound very weakly, requiring only an energy
of about 0.025 eV to put it into the conduction band. This small energy is about equal to
kT � 1

40 eV at room temperature, so that thermal excitation is enough to free some extra
electrons in n-type doped silicon.

The Bohr levels of the extra electrons represent new energy levels not found in the pure
semiconductor. These levels are called donor levels. Because they are small and negative, the
donor levels lie just below the bottom of the conduction band.

+ + + + + + + + +

– – – – – – – – –

I

B

I

Figure 2.20 Experimental arrangement to determine the sign of the charge carriers (Hall effect).
A magnetic field B is applied in the direction into the page. The top and bottom of the sample
become charged þ and 2, respectively, if the carriers are positive, and 2 and þ, respectively, if
the carriers are negative.
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The hole produced by an acceptor impurity as in Fig. 2.19 is likewise bound, and it also
requires only a small amount of energy to be freed. Its Bohr energy levels, called acceptor
levels, lie just above the top of the valence band.

In summary, the doping of a semiconductor with a donor or acceptor does not by itself
produce conduction-band electrons or valence-band holes, as assumed in our discussion based
on Figs. 2.18 and 2.19. However, the energy required to “ionize” these donors or acceptors is
so small that thermal excitation at moderate temperatures will do the job. †

Another important semiconductor, germanium, is similar to silicon in that it is
tetravalent. It may, therefore, be doped in the same ways to produce n-type and p-type
materials. In addition to such elemental semiconductors are “III–V” binary semi-
conductors such as gallium arsenide or indium antimonide, in which trivalent
and pentavalent atoms share in covalent bonding as a result of unfilled sp subshells
(Problem 2.5).

2.8 SEMICONDUCTOR JUNCTIONS

Semiconductors of either n type or p type are not by themselves very useful. They are,
after all, just second-class conductors. Their great utility is realized only when they are
brought together to form junctions. All of semiconductor technology is based ultimately
on the properties of the pn junction, the joining of an n-type material to a p-type material
(Fig. 2.21).

We will imagine the junction to be abrupt, although, of course, it cannot be so on the
atomic scale. Junctions can be made in practice from a single crystal, one region of
which has been made p type whereas an adjoining region has been made n type. The
boundary between the two regions can be made very narrow, typically less than a
micron (1 mm ¼ 1026 m), and the sharp-boundary idealization is therefore a reasonable
approximation.

In a p-type material the negative acceptor ions are fixed in position and the holes are
mobile, whereas in an n-type material the positive donor ions are fixed and the electrons
are mobile. Figure 2.22 illustrates what happens at a pn junction. Electrons from the n
side are attracted by the positive holes at the boundary and drift over into the p side,
while holes on the p side are attracted by electrons and drift across the boundary to
the n side. When an electron meets a hole, it falls into it, becoming part of a covalent
bond. This diffusion and annihilation of mobile charge carriers produces a depletion
region at the boundary between the p- and n-type materials. The depletion region is
short of both electrons and holes, consisting mainly of negative acceptor ions on the
p side and positive donor ions on the n side (Fig. 2.22). Because of this charge separ-
ation, there is a static electric field pointing from the n side to the p side. This field

p n

Figure 2.21 A pn junction is formed by joining p-type and n-type semiconductor materials.
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opposes further diffusion of electrons and holes and thus keeps the depletion region
confined to a narrow layer at the boundary. In other words, there is some voltage
drop, which we call V0, in going from the n side to the p side (Fig. 2.23).

In thermal equilibrium there is a diffusion of individual electrons and holes across
the junction, but no net flow of current. Holes on the n side, for instance, have no diffi-
culty dropping down the potential-energy hill and going over to the p side. Holes on
the p side, on the other hand, have to cross the potential-energy barrier eV0 to get to
the n side (here e is understood to be positive). According to statistical mechanics, the
fraction of holes able to cross the barrier is given by the Boltzmann factor exp(2eV0/
kBT ), where kB is Boltzmann’s constant (kB � 1:38� 10�23 J=K � 1

40 eV=300K) and
T is the absolute temperature. If the current due to holes diffusing from the n side
to the p side is to be exactly balanced by the hole current in the opposite direction,
therefore, we must have

Np(n side) ¼ Np( p side)e�eV0=kBT , (2:8:1)

where Np denotes the number of holes per unit volume. This equation shows, as
expected, that there is a greater density of holes on the p side than on the n side. The
same reasoning leads to the relation

Nn( p side) ¼ Nn(n side)e�eV0=kBT , (2:8:2)

for the number density Nn of electrons. According to these relations, the product NnNp is
the same for the two sides of the junction.
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Figure 2.22 At a pn junction, electrons from the n side are attracted to the p side, and holes from the
p side are attracted to the n side. When electron–hole pairs meet they are “annihilated” as the electron
becomes part of a covalent bond. This results in a depletion region at the boundary, which is a region in
which there are very few electrons or holes.
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Figure 2.23 The charge separation due to donor and acceptor ions in the depletion layer of a pn
junction results in a potential difference V0.
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Now suppose that the p and n sides are connected to the terminals of a battery. If the p
side is connected to the positive terminal and the n side to the negative terminal, the
junction is said to be forward biased (Fig. 2.24a). Since the depletion layer is much
more resistive to current than the bulk regions, most of the applied voltage V is dropped
across the depletion layer. In other words, the applied voltage has the effect of lowering
the barrier voltage V0 to V02V. We will assume for the present that V is small compared
to V0.

This lowering of the barrier potential by a forward-biased voltage does not affect
very much the diffusion current of holes from the n side to the p side because with or
without it they have no potential-energy barrier to cross. Their diffusion current, there-
fore, is unaffected by the applied voltage. The hole current from the p side to the n side,
however, will increase with the applied voltage because now a fraction e�(V0�V)=kBT of
them are able to cross over. For the net current of holes diffusing from the p side to
the n side we have, therefore,

Ip / Np( p side)e�e(V0�V)=kBT � Np(n side)

¼ Np(n side)eeV=kBT � Np(n side)

¼ Np(n side)(eeV=kBT � 1), (2:8:3)

where in the second line we have used (2.8.1). In other words, we have the relation

Ip ¼ I p0(e
eV=kBT � 1), (2:8:4)

for the net hole current flowing from the p side to the n side under forward bias, where
In0 is the hole diffusion current from the n side to the p side. A similar expression is
obtained for the net electron current under forward biasing:

In ¼ In0(e
eV=kBT � 1), (2:8:5)

where In0 is the electron diffusion current flowing from the p side to the n side. The total
current flowing from the p side to the n side of a forward-biased pn junction is, therefore,

I ¼ Ip þ In ¼ I0(e
eV=kBT � 1) (forward biasing), (2:8:6)

where I0 ¼ Ip0 þ In0 is called the saturation current of the junction.

p 

(a) (b)
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n p 
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n 

Figure 2.24 Forward-biased (a) and reverse-biased (b) pn junctions.
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Suppose instead that the leads are reversed, as in Fig. 2.24b. In this case the junction
is said to be reverse biased. The barrier potential is now increased from V0 to V0 þ V,
and the net current is obtained simply by changing V to 2V in (2.8.6):

I ¼ I0(e
�eV=kBT � 1) (reverse bias): (2:8:7)

Equations (2.8.6) and (2.8.7) give the so-called current–voltage (IV ) characteristics
of an ideal pn junction (Fig. 2.25). Under forward biasing, the current increases rapidly
(exponentially) with increasing voltage. Under reverse bias, the current saturates with
increasing voltage to the value I0. Typical barrier voltages V0 in silicon and germanium
diodes are roughly on the order of half a volt. Saturation current densities are extremely
small, perhaps less than 10210 A/cm2; for a typical junction area of 1022 cm2, this
amounts to a saturation current I0 of less than 10

212 A. Formulas can be derived to esti-
mate V0 and I0 as a function of carrier concentrations and other parameters, but we will
not take the time to do so.

The key property of a pn junction, therefore, is that it will conduct current in
one direction but not the other. That is, it can act as a diode, a sort of automatic
switch that closes a circuit when voltage is applied in a forward sense, but blocks the
flow of current otherwise. This diode can be used as a rectifier, converting ac current
to dc current.

† Real semiconductor diodes do not display exactly the same IV characteristics as the
idealized diodewe have considered. For one thing, we have ignored electron–hole recombination
within the depletion layer. This and other effects may be taken into account by replacing
(2.8.6) by

I ¼ I0(e
eV=bkBT � 1), (2:8:8)

where the “ideality factor” b is a dimensionless parameter between 1 and 2, depending on T.
Furthermore, at large reverse-bias voltages a real diode no longer blocks the flow of current.

At a certain “breakdown” voltage there is a sudden jump in the reverse current. One reason for
this is that high-energy charge carriers colliding with atoms in the crystal lattice can ionize
them, producing more charge carriers, which lead to further ionization and therefore increasing
the current. This is called avalanche breakdown. Another mechanism for reverse-current gener-
ation is the Zener effect in which electrons undergo a quantummechanical “tunneling” from the p
side to the n side. †

V

I

I0
Negative bias Forward bias

Figure 2.25 Current–voltage characteristics of an ideal pn junction.
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2.9 LIGHT-EMITTING DIODES

In our discussion of electrons and holes we have mentioned several times that an
electron can “fall into” a hole, meaning that the electron can replace the missing electron
represented by the hole. In doing so the electron becomes part of a covalent bond. This
process is called recombination.

Now if an electron from the conduction band “recombines” with a hole in the valence
band, it loses energy, having been free (E. 0) and then becoming bound (E, 0). There
are two ways in which this energy can be discarded by the electron. One way is for it
to appear as heat in the form of vibrations of the crystal atoms about their equilibrium
positions. Another way is radiative recombination in which the electron transition is
accompanied by the emission of a photon (Fig. 2.26). This is analogous to (spontaneous)
emission by an atom. In fact the electron–hole pair forms an exciton, a mobile “quasi-
particle” in which the electron and hole are bound by their Coulomb interaction and that
decays with the emission of a photon in typically about a nanosecond. The emitted
photon has a frequency n satisfying hn ¼ Ef 2Ei, where Ei and Ef are the energies of
the initial and final electron states, respectively. In a transition from the conduction
band to the valence band, the minimum value of Ef 2Ei is clearly the gap energy.
The maximum photon wavelength in interband radiative recombination is in turn
given by

lmax ¼ c

nmin
¼ hc

Eg
: (2:9:1)

For silicon, therefore, with a gap energy of 1.12 eV, lmax ¼ 1100 nm. For germanium,
with Eg ¼ 0.67 eV, lmax ffi 1900 nm.

The light from a light-emitting diode (LED) is produced by radiative recombination
of electrons and holes injected across the junction of a forward-biased pn diode. The
electrons drifting from the n side to the p side recombine radiatively with holes, and

Conduction
band

Valence
band

hn
Eg

Figure 2.26 Radiative recombination process in which the electron–hole “annihilation” is
accompanied by the emission of a photon.
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the holes drifting from the p side to the n side recombine radiatively with electrons. On
either side, of course, the emitted photons are produced when an electron makes
a downward transition from a state of energy Ef to one of energy Ei. Not every recom-
bination of an electron with a hole will be radiative because there are competing,
nonradiative recombinations in which the energy lost by the electron appears in
the form of crystal lattice vibrations. Although there are LEDs in which nearly every
recombination process is radiative, the actual device efficiency is limited by other
factors, as discussed below.

Interband recombination radiation has a distribution of wavelengths arising from the
thermal distribution of electron energy within the conduction band. The maximum
wavelength lmax given by (2.9.1), however, provides a good estimate of the peak wave-
length. Thus, we can deduce from it that LEDs made from Si or Ge junctions will not
generate much visible radiation.

Actually there are other types of radiative recombination that produce longer
wavelengths than the interband maximum lmax. As noted in the preceding section,
there are donor levels and acceptor levels associated with the impurities of a doped
semiconductor, and these levels lie just below the bottom of the conduction band and
just above the top of the valence band, respectively. Radiative recombination processes
involving these impurity levels produce radiation of wavelengths l . lmax, as is clear
from Fig. 2.27. In part (a) of the figure we indicate an interband radiative recombination
transition, that is, a transition of an electron from the conduction band to the valence
band. Part (b) shows a transition from a donor level to the valence band, while (c)
shows a transition from the conduction band to an acceptor level. Finally, we show in
(d ) a transition from a donor level to an acceptor level. Processes (b)–(d ) obviously
lead to wavelengths greater than the interband process (a), and so LED wavelengths
are often greater than the interband maximum (2.9.1). Because the differences
Ec2Ed and Ea2Ev are small compared to Eg, however, (2.9.1) provides a good estimate
of the sort of wavelength that can be expected with a given semiconductor.

The question of wavelength is obviously an important one if an LED is to be used
for visual display purposes. Silicon and germanium, for instance, are eminently
useful electronically because of the relative ease with which they can be doped and
fabricated as diodes, but their band gaps are too small to make them useful as LEDs
for visible radiation. Moreover, Si and Ge are radiatively too inefficient to be used in
LEDs. This is because they are indirect-band-gap semiconductors, for which the
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Ed
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hn 

(a) (b) (c) (d)

Figure 2.27 Radiative recombination involving a transition from (a) the conduction band to the
valence band, (b) a donor level to valence band, (c) the conduction band to an acceptor level, and
(d ) a donor level to an acceptor level.
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interband radiative recombination rates are very low. GaAs, by contrast, is a direct-band-
gap semiconductor and is consequently a much more efficient radiator. Indirect-band-
gap materials can be used in LEDs if there are efficient radiative pathways in addition
to interband recombination.

† In the case of a direct band gap the minimum of the E2k curve for the conduction band
lies directly above the maximum of the E2k curve for the valence band. (See the Appendix
in this chapter for a discussion of a simplified one-dimensional model of electron wave
functions and E2k curves in a crystal, and also Fig. 15.2.) This means that a “vertical”
transition can occur in which the electron energy (E) decreases by an amount equal to the
energy of the emitted photon while there is no change in the k vector of the electron
wave function. More precisely, the calculation of the transition rate leads to the k selection
rule: the difference in the k vectors of the initial and final electron wave functions must be
equal to the wave vector of the emitted photon; otherwise the transition is forbidden. But since
the electron k vector has a much greater magnitude than the wave vector of the photon, this
selection rule says that the electron k vector is approximately unchanged and momentum (h�k)
as well as energy is conserved in the transition.

For an indirect band gap, however, the maximum of the E2k curve for the valence band
is offset from the minimum of the E2k curve for the conduction band, and the wave
vectors of the initial and final electron wave functions are not the same. To conserve momentum,
therefore, a radiative transition in this case must be accompanied by a change in the momentum
of the crystal lattice. Crystal lattice vibrations are characterized approximately in terms of the
equally spaced energy levels of a harmonic oscillator, and the particle-like excitations associated
with these energy levels are called phonons. Energy and momentum conservation in electron–
hole recombination for an indirect band gap involves not only electrons and photons but also
the phonons of the crystal lattice. As a consequence the rate and efficiency of the phonon-
mediated, indirect-band-gap photon emission are generally much smaller than for direct-band-
gap emission. †

In addition to having a band gap large enough to produce visible radiation, a semi-
conductor to be used in an LED must, of course, have both p-type and n-type forms
that can be made by suitable doping. As a rule of thumb, large-gap materials tend to
have high melting points, making doping of a melt more difficult, and furthermore
they tend to have low conductivities even when doped. Among the more commonly
used LED materials is gallium arsenide (GaAs), with a band gap of 1.44 eV (and there-
fore lmax � 861 nm). Depending on the dopant, the dominant radiative recombination
transition may be interband (Fig. 2.27a) or from the conduction band to an acceptor level
(Fig. 2.27c).

Even if every charge carrier injected across the junction gave rise to an emitted
photon, the efficiency of an LED would still be much less than 100%. An important
reason for this is a phenomenon well known in classical optics: total internal reflection.
For a quick review of this effect, recall that the refraction of light at an interface of two
media is governed by Snell’s law:

n1 sin u1 ¼ n2 sin u2, (2:9:2)

where n1 and n2 are the refractive indices on the two sides of the interface, and u1 and u2
are the corresponding angles of incidence, as in Fig. 2.28a. Now if n1 . n2, it is possible
for light propagating from medium 1 to medium 2 to be reflected back into medium
1 instead of penetrating the interface and going into medium 2. This total internal
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reflection occurs at angles of incidence u1 greater than the critical value uc for which
u2 ¼ 908:

n1 sin uc ¼ n2 sin 908 ¼ n2, (2:9:3)

or

uc ¼ sin�1
n2
n1

� �
: (2:9:4)

This is illustrated in Fig. 2.28b.
Any light emerging from an LED and propagating into air is passing from a medium

of higher index to a medium of lower index. This means that light approaching
the LED–air interface at an angle greater than the critical angle uc will be reflected
back into the LED instead of emerging as useful output radiation. In fact, the refractive
indices of LED materials are often quite large, making the critical angle for total
internal reflection rather small. In GaAs, for instance, n � 3.6, so that uc � 168 for
the GaAs–air interface.

The deleterious effect of total internal reflection is minimized in the common LED
design shown in Fig. 2.29. The junction is enclosed in a plastic case of refractive
index n � 1.5. This reduces the effect of total internal reflection at the emitting surface
because the critical angle for total internal reflection (2.9.4) is increased over that
appropriate to a diode–air interface. Of course, there is still total internal reflection at
the plastic–air interface, but this is minimized by shaping the plastic into the form of
a hemispherical or similarly shaped dome. With this geometry, most of the light rays
at the plastic–air interface have angles of incidence less than the critical angle for
total internal reflection, and as a result the emission efficiency can typically be increased
by �10 (Problem 2.6). The shape of the plastic enclosure also determines the extent
to which the light emission is directional. A tubular shape, for example, can increase
directivity as a result of side reflections. Alternatively, it is desirable in some applications
to have a more diffuse emission, which can be accomplished by using a “diffusing lens”
design in which tiny glass particles embedded in the plastic casing scatter the light from
the pn junction and thereby produce a wider angular spread of radiation from the LED.
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n1

q2

qc

a

a

b

b

n2

n1

Figure 2.28 (a) Geometry for Snell’s law if n1 , n2. (b) Total internal reflection occurs at the inter-
face if n1 . n2 and the angle of incidence exceeds the critical angle uc given by (2.9.4).
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There are two other effects that lower LED emission efficiency. One is simply the
absorption of light, which can be significantly reduced by using a transparent material
as the substrate for the pn junction. The other is the “Fresnel loss” due to reflection at
the interface between the LED and the surrounding medium, which of course occurs
even if total internal reflection is effectively eliminated. For light normally incident at
an interface between the LED with refractive index n and a medium with refractive
index n0, for example, the power reflection coefficient is given by the Fresnel formula
[Eq. (5.A.6)] r ¼ (n2n0)2/(n þ n0)2. Some of the reflected light can be retrieved by
using a reflecting layer or cup at the “bottom” of the pn junction.

A wide range of LED colors has been realized by “band gap engineering” of mixed
compound semiconductors such as gallium aluminum arsenide (GaAlAs) and gallium
arsenide phosphide (GaAsP). For example, the band structure of GaAs12xPx, where x
is the mole fraction of P, is such that there is a direct band gap that monotonically
increases with x from 1.44 eV when x ¼ 0 (GaAs) to 2.1 eV when x ¼ 0.45.
GaAs0.6P0.4, for example, has a peak emission wavelength of 650 nm and is used in
red LEDs. At x ¼ 0.45 the compound has an indirect band gap and is nonradiative. It
turns out, however, that doping the indirect-band-gap material with nitrogen allows
direct-band-gap and therefore radiative electron–hole recombination. Thus, N-doped
GaAs0.15P0.85, for example, has a peak emission wavelength of 589 nm and is used in
yellow LEDs.

Blue LEDs based on gallium indium nitride (GaInN) became widely available in the
1990s. Together with red and green LEDs, they made it possible to produce any (visible)
color by combining the light from three LEDs with appropriately adjusted currents and
therefore output light intensities. White light is also produced using single, blue LEDs
coated with wavelength-converting phosphors or “quantum dot” nanostructures that
confine electrons to regions of linear dimension �2–10 nm and act in some respects
as “artificial atoms” with electron transition energies that vary with the size of the dot.

Although (red and green) LEDs became commercially available in the 1960s,
research and development remained at a rather low level for a quarter-century. The
recent advances have stemmed in considerable part from work on semiconductor
lasers, including experimentation with different materials and dopants, progress in
pure wafer fabrication and bonding techniques, and the development of suitable sub-
strates for efficient extraction of radiation.

pn
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Figure 2.29 More light is extracted from an LED when there is a transparent plastic enclosure in the
form of a hemispherical dome to reduce total internal reflection at the plastic–air interface.
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Their use in cell phones resulted in a dramatic increase in the commercial production
of light-emitting diodes in the 1990s and early 2000s. Infrared LEDs had already
become ubiquitous in television remote controls and similar applications, while LEDs
in the visible had replaced incandescent lamps in applications demanding compactness,
low power consumption, and a high degree of reliability. For such purposes they are used
either singly or in arrays. In the latter case a pattern or message can be conveyed when
some of the LEDs are switched on. A simple and familiar example is the digital display
used in clock radios and calculators. These commonly employ the seven-segment dis-
play shown in Fig. 2.30 in which each segment is an individual LED. The numerals
0–9 are displayed by turning on only certain of these LEDs at a time.

The energy efficiency and robustness of LEDs compared to incandescent or fluores-
cent glass lamps have made them increasingly important. It is estimated that in 2000
lighting accounted for 6–7% of the total power consumption in the United States.
Incandescent lamps (like the everyday lightbulb) are notoriously inefficient: Only
about 5% of the electrical power consumed is converted to light, with the rest wasted
as heat. Efficiencies of fluorescent lights are 4–5 times greater but do not approach
the 90% efficiencies possible with LEDs. Low power consumption, compactness,
long life (tens of years or more), and resiliance under jolts and vibrations make LED
arrays ideal as light sources for traffic signals, for instance, and in the mid-1990s
some cities in the United States began replacing incandescent traffic signal lights with
LEDs. It is expected that in the near future most traffic lights will employ LED
arrays. LED arrays were first used in automobile rear-center brake lights in the late
1980s, and front-end lights employing white-light LEDs were introduced as early as
2004. High-brightness LED arrays make possible the huge outdoor television screens
that can be clearly seen even in daylight. Some industry analysts predict that by about
2015 most home lighting in the United States will employ LEDs.

† In applications in which only a very small amount of power from a small battery is available,
such as in digital wrist watches andmany pocket calculators, the liquid-crystal display, or LCD, is
used instead of the LED. LCDs consume less power because they do not generate any light of
their own but use ambient light. Their operation is based on the properties of certain organic
liquids of rod-shaped molecules. The molecules can take on certain organized relative alignments
(hence the term liquid “crystal”) in such a way that the polarization of an incident light wave is
rotated by 908 in passing through the LCD cell. The cell is a liquid-crystal layer, typically

�,10mm thick, sandwiched between two clear plates whose inner surfaces are coated with a

Figure 2.30 Seven-segment display format used with LEDs and LCDs. The ten digits 0 through 9
may be displayed by lighting selected segments.
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transparent conducting material arranged in a certain pattern. When a voltage is applied between
the plates, the molecular alignment is altered and the polarization of incident light is no longer
rotated by 908. By using orthogonally oriented polarizing sheets in front of and behind the
cell, and a mirror at the back, we can arrange for incident light to be reflected when there is no
applied voltage, but for no light to be reflected from those areas where there is an applied voltage.
Then we see the familiar black-and-white alphanumeric display patterns.

Liquid-crystal displays used in flat-screen televisions and laptop computers, for instance, are
transmissive, or “backlit,” rather than reflective, but the principle of operation is the same. The
backlighting is done with very small fluorescent tubes or LEDs, together with a white panel
behind the LCD that scatters light from the tubes to produce a uniform illumination of the
LCD. The light from the screen is strongly polarized. †

The light-emitting material in organic light-emitting diodes (OLEDs) consists of
large organic molecules or polymers in a very thin layer, typically only a few hundred
nanometers thick. The emitting layer is sandwiched between a cathode array and
an anode array, with additional conductive layers serving to facilitate the injection of
electrons and holes into the emitting layer. The color and brightness of the light pro-
duced by electron–hole recombination in the emitting layer depend on the type of
organic molecules used and on the strength of the applied current. The electrode
layers are anode and cathode strips, and the emitting pixels (picture elements) are at
the intersections of these strips. The application of different current levels to different
pixels determines which pixels are on or off for display or video. The emitting layers
for OLEDs can be produced in large and flexible sheets, suggesting applications such
as foldable electronic “newspapers” that can be updated minute by minute.

Transistors, consisting basically of two adjacent pn junctions ( pnp or npn), are the
most important application of semiconductor junctions, and their operation may be
understood within the electron–hole framework we have used to discuss LEDs.

2.10 SUMMARY

In this chapter we have introduced some aspects of atoms, molecules, and solids that will
be important for the remaining chapters. The most important aspect is the restriction of
internal energies to a fixed set of allowed values.

We discussed the Bohr model of the hydrogen atom for three reasons. First, it was the
first view of an atom that incorporated any quantum mechanical features (the postulated
discrete values of orbital angular momentum). Second, it is still the model that most
scientists and engineers use to think about atoms, although the mathematical machinery
of quantum mechanics is needed to calculate about atoms. And third, its main results
were correct. That is, it gives the right expression (2.2.11) for the energy levels of hydro-
gen, and Bohr’s interpretation of atomic spectral lines on the basis of electron jumps
between these levels was the key insight showing that atoms are not classical objects.

Obviously hydrogen is atypical in manyways. It is still the only element for which the
exact values of the allowed energies can bewritten explicitly. Nevertheless, the results of
the quantum theory of the hydrogen atom are useful in understanding the structure of
other atoms. We have seen, for instance, how these results, together with the Pauli prin-
ciple and the independent-particle approximation, explain the chemical regularities in
the periodic table of the elements.
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In much of laser physics it is sufficient to regard any atom as simply a “black box” for
electrons, with the special property that the electrons inside can only be in certain energy
slots. We can adopt a similar view for the electronic structure of molecules.

Of course, we cannot ignore the fact that molecules can also vibrate and
rotate. However, the most important vibrational and rotational characteristics of
molecules are, for us, very similar to their electronic characteristics. First and foremost
among these similarities, of course, is the restriction of the vibrational and rotational
energies to a fixed set of allowed values. Just as an electron can jump to a higher (or
lower) energy level with the absorption (or emission) of a photon, so too can the
molecule as a whole “jump” to a different vibrational or rotational state with the
simultaneous absorption (or emission) of a photon. In fact, the electronic, vibrational,
and rotational states of a molecule can all change as the molecule absorbs or emits a
photon. Molecular spectra are more complicated than atomic spectra, but this simply
means that the black box we call a molecule is more complicated on the inside than
an atom.

The properties of solids are determined to a large extent by the outermost occupied
electron orbitals of its constituent atoms or molecules. In crystalline solids the allowed
electron energies are spread into energy bands as a consequence of the tight packing and
periodic arrangement of atoms in a crystal lattice. The concept of energy bands provides
a satisfactory interpretation of insulators, conductors, and semiconductors.

Semiconductor junctions are an especially interesting and important application of
the quantum mechanics (band theory) of solids. In particular, the concept of a missing
electron, or hole, as a sort of particle in its own right, greatly facilitates our understanding
of semiconductor junctions. The basic pn junction acts as a diode, passing a current
when it is forward biased but not when it is reverse biased. Light-emitting diodes are
important not only in lighting and alphanumeric displays but also as the gain media
of diode lasers.

The existence of atomic and subatomic particles as the basic building blocks of matter
in all its forms is arguably the most basic and significant discovery of post-Newtonian
science. A strong argument can also be made that the most far-reaching technological
developments since the mid-20th century have involved the controlled manipulation
of quantum states of these particles. Among these developments are nuclear power
sources and transistor-based computer technology. The laser is another example. In
this case populations of excited atomic and molecular states are created and controlled
to generate light.

APPENDIX: ENERGY BANDS IN SOLIDS

In Section 2.6 we used the quantum mechanical result that the allowed electron energies
in crystalline solids occur in bands, with forbidden energy gaps between these bands.
We will now use a simple one-dimensional model of a solid to show how this band
structure arises in quantum mechanics. This will also serve as an example of a full
solution to the one-dimensional Schrödinger equation

d2c

dx2
þ 2m

h�2 [E � V(x)]c ¼ 0: (2:A:1)
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For the case of an electron in a periodic potential,

V(xþ d) ¼ V(x), (2:A:2)

where the distance d is the lattice spacing in our one-dimensional model. Note
that (2.A.2) implies that V(x þ nd) ¼ V(x), where n is any integer, so in our model
the solid is infinitely long.

If V(x) were identically zero, the reader could easily show by substitution that the
solution of (2.A.1) is the free-particle plane-wave

c(x) ¼ ueikx, (2:A:3)

with u some constant (complex) amplitude and k such that

E ¼ h�2k2
2m

: (2:A:4)

For a potential that is not identically zero, and that satisfies (2.A.2), it is natural to try to
satisfy the Schrödinger equation (2.A.1) with a wave function of the form

c(x) ¼ u(x)eikx, (2:A:5a)

with k a real number and u(x) now not a constant, but a function with the periodicity of
the potential:

u(xþ d) ¼ u(x): (2:A:5b)

Indeed, it may be shown that a solution of the Schrödinger equation, with a potential
satisfying (2.A.2), must be of the form (2.A.5). This statement is Floquet’s theorem,
and in solid-state physics it is called Bloch’s theorem. We will use it in our treatment
of the one-dimensional solid.

Different models of a one-dimensional solid are characterized by different choices
of the potential V(x) satisfying (2.A.2), but the most important results are insensitive
to the specific V(x) chosen. A particularly simple choice is the series of “square
wells” shown in Fig. 2.31. This will serve as a crude idealization of the sort of potential
encountered by an electron in a crystal lattice, each square well representing the effect of
an atom at a lattice site. The lattice spacing in Fig. 2.31 is a þ b, with a the width of each
potential well.

V(x) V0

–(a + b) –b 0 a a + b x

Figure 2.31 A model of the potential V(x) encountered by an electron in a one-dimensional crystal
lattice.
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We consider first the solution in the “unit cell” 0, x, a þ b. For 0 , x, a,
V(x) ¼ 0, and

c(x) ¼ Aeiax þ Be�iax, (2:A:6)

where A and B are constants and

a ¼ 2mE
h�2

� �1=2
: (2:A:7)

This solution is just a sum of free-particle, plane-wave solutions, one wave propagating
to the right and the other to the left. This is the most general possible solution of (2.A.1)
with V ¼ 0. Similarly, for a, x, a þ b, where V(x) ¼ V0, the general solution of
(2.A.1) is8

c(x) ¼ Cebx þ De�bx, (2:A:8)

where C and D are constants and

b ¼ 2m
h�2 (V0 � E)

� 1=2
: (2:A:9)

According to Bloch’s theorem the wave function must have the form (2.A.5). We there-
fore use the solutions (2.A.6) and (2.A.8) to identify the function u ¼ ce2ikx:

u(x) ¼ Aei(a�k)x þ Be�i(aþk)x, 0 , x , a, (2:A:10a)

u(x) ¼ Ce(b�ik)x þ De�(bþik)x, a < x < aþ b: (2:A:10b)

The wave equation (2.A.1) is a second-order differential equation. As such it
demands that both c and dc/dx be continuous functions of x because a function that
is differentiable must be continuous. This means that u and du/dxmust also be continu-
ous functions of x. In particular, continuity of u and du/dx at x ¼ 0 requires the follow-
ing relations among A, B, C, and D in (2.A.10):

Aþ B ¼ C þ D, (2:A:11a)

i(a� k)A� i(aþ k)B ¼ (b� ik)C � (bþ ik)D: (2:A:11b)

Now u(x) must, according to Bloch’s theorem, have the periodicity of the potential.
Thus, u and du/dx must have the same values at x ¼ a as at x ¼ 2b. This condition of
periodicity requires that

Aei(a�k)aþBe�i(aþk)a¼Ce�(b�ik)bþDe(bþik)b, (2:A:11c)

i(a�k)Aei(a�k)a� i(aþk)Be�i(aþk)a¼ (b� ik)Ce�(b�ik)b�(bþ ik)De(bþik)b: (2:A:11d)

8Since we will be interested in the case V0 . E, in which b is a real number, we have written (2.A.8) in terms
of real exponentials. If V0 , E, then b is purely imaginary and (2.A.8) is a sum of two plane waves, as in
(2.A.6) for the case V0 ¼ 0.
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The conditions (2.A.11) are four linear, homogeneous, algebraic equations for the
four “unknowns” A, B, C, D. A trivial, uninteresting solution is A ¼ B ¼ C ¼ D ¼ 0.
In order for a nontrivial solution to exist, the 4 � 4 determinant of the coefficients
must vanish. After some algebra we find that this condition for a nontrivial solution
takes the form

b2 � a2

2ab
sinhbb sinaaþ coshbb cosaa ¼ cos k(aþ b): (2:A:12)

Since a and b are fixed in our model of a one-dimensional solid, this equation imposes a
relation among a, b, and k. As we now show, this relation gives rise to allowed energy
bands separated by forbidden energy gaps.

It is convenient to consider a special case of (2.A.12) in which V0 is very large and b is
very small (Fig. 2.32). Specifically, we take V0!1 and b! 0 in such a way that V0b
remains a finite number. Since b2 � V0 for large V0, this limit is such that b2b has a finite
limit as b!1 and b! 0. For convenience we denote this limiting value 2P/a, which
is the same as defining

P ¼ lim
b!1

lim
b!0

1
2 b

2ab
� �

: (2:A:13)

Since bb ¼ (1/b)(b2b), it follows that bb! 0 in this limit. Thus,

lim
b!1

lim
b!0

coshbb¼ lim
x!0

coshx¼1, (2:A:14a)

and similarly

lim
b!1

lim
b!0

b2�a2

2ab
sinhbb¼ 1

aa
lim
b!1

lim
b!0

b2ab

2
sinhbb
bb

¼ 1
aa

lim
b!1

lim
b!0

b2ab

2
¼ P

aa
,

(2:A:14b)

since

lim
x!0

sinhx
x
¼ 1: (2:A:15)

V(x)

–a 0 a 2a x

Figure 2.32 The Kronig–Penney model for the potential energy V(x) for an electron in a one-
dimensional crystal lattice. This is the limit of the potential of Fig. 2.31 for the case in which V0 is
very large and b is very small, such that V0b is a finite number. In this limit the lattice spacing is a.

APPENDIX: ENERGY BANDS IN SOLIDS 59



This limit of b2!1 and b! 0, such that b2b stays finite, is called theKronig–Penney
model. It is useful as a simplification of (2.A.12). With (2.A.14), the condition (2.A.12)
in this limit reduces to

P
sinaa
aa
þ cosaa¼ coska: (2:A:16)

If P is very small, the first term on the left may be neglected, and (2.A.16) becomes
cos aa ¼ cos ka, or a ¼ k (except possibly for a trivial shift of 2p/a). Using the defi-
nition (2.A.7) of a, we see that a ¼ k gives the free-particle E2k relation (2.A.4).

If P is very large, on the other hand, then (2.A.16) can only make sense when
(sin aa)/aa is very small. In the limit P! 1, then, we must have

aa ¼ np, n ¼+1,+2,+3, . . . : (2:A:17)

From the expression (2.A.7) fora, this condition is seen to restrict the electron energy to
one of the values

En ¼ n2p 2h�2
2ma2

, n ¼ 1, 2, 3, . . . : (2:A:18)

These allowed energies are those for an electron in a single, infinitely deep (V0 ! 1)
square well of width a (Problem 2.7). They may be regarded heuristically as the allowed
levels of an electron in an isolated “atom” in the present model.

From the discussion in Section 2.6 we expect these discrete energy levels to broaden
into bands when the atoms are brought together to form a crystal lattice. In Fig. 2.33 we
plot the left-hand side of Eq. (2.A.16) for a case in which P ¼ 1 has been arbitrarily
chosen. Obviously, those values of aa for which this function exceeds unity do not
allow (2.A.16) to be satisfied, since jcos kaj 	 1 for all (real) values of ka. Those
values of a for which j(P sin aa)/aa þ cos aaj.1 define the forbidden values of E
via the relation (2.A.4):

E ¼ h�2a 2

2m
¼ p 2h�2

2ma2
aa

p

� �2
: (2:A:19)

2 sin aa + cos aaaa

1

0

0 4
a

8 12

–1

α

Figure 2.33 Plot of the left side of Eq. (2.A.16) for the Kronig–Penney model when P ¼ 1.0.
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On the other hand, those values of aa for which jP(sin aa)/aa þ cos aaj 	 1 permit
(2.A.16) to be satisfied for real values of k, as required by Bloch’s theorem, and the
corresponding energies (2.A.19) are the allowed electron energies.

In Fig. 2.34 we plot the allowed energies, in units of p2h�2=2ma2, for the example
P ¼ 1 of Fig. 2.33. These are the results for a particularly simple one-dimensional model
crystal. The theory for a three-dimensional crystal lattice leads similarly from the period-
icity of the potential to a band structure for the allowed electron energies. This result is
brought out by the one-dimensional model we have considered, and so we will not
pursue a more complicated, albeit more realistic, three-dimensional model.

† Using certain physical assumptions, we can prove Bloch’s theorem as follows. First, the
periodicity of the potential in (2.A.1) suggests immediately that the probability distribution
jc(x)j2 for the electron should also be periodic:

jc (xþ d)j2 ¼ jc (x)j2, (2:A:20)

which means that

c (xþ d) ¼ Cc (x), (2:A:21)

with

jCj2 ¼ 1: (2:A:22)

Note that (2.A.21) implies that

c (xþ nd) ¼ Cnc (x): (2:A:23)

Our one-dimensional crystal is assumed to be infinitely long; this is implicit in the assumption
of the periodicity of the potential. The underlying assumption, of course, is that there are enough
atoms in a real crystal to make the model of an infinite lattice a reasonable one. That is, “edge
effects” in a real crystal are assumed to be very small. In this vein it is also reasonable to suppose

Allowed energies

Allowed energies Energy
gaps

E

1 –1

Allowed energies

Figure 2.34 Allowed energies given by the Kronig–Penney model for P ¼ 1.0. These energies
are given by (2.A.19) for those values of aa for which Eq. (2.A.19) allows jcos kaj	 1. The allowed
energies appear in bands.
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there is some integer N, perhaps very large, such that

c (xþ Nd) ¼ CNc (x) ¼ c (x): (2:A:24)

It can be assumed that the distance Nd, after which the wave function repeats itself according to
(2.A.24), is large enough that the assumption (2.A.24) will not affect any physical predictions of
the model. In other words, edge effects associated with the artificial periodic boundary condition
(2.A.24) do not have any real physical consequences.

Equation (2.A.24) implies that CN ¼ 1, which means that C must be one of the Nth roots of
unity:

C ¼ e2piM=N , M ¼ 0, 1, 2, . . . , N � 1: (2:A:25)

It then follows from (2.A.21) that c (x) must have the form

c (x) ¼ e2piMx=Ndu(x) ¼ eikxu(x), (2:A:26a)

with k ¼ 2pM/Nd and

u(xþ d) ¼ u(x): (2:A:26b)

That is, Eqs. (2.A.21) and (2.A.25) are satisfied when c (x) has the form (2.A.26). Bloch’s
theorem is easily extended to the case of a three-dimensional lattice. †

It is instructive to plot E vs. k, as shown in Fig. 2.35 for the example P ¼ 1. We also
show for comparison the free-particle E2k relation (2.A.4). In the E2k curve the
energy gaps occur at those values of k for which the right-hand side of (2.A.16) is
þ1, that is, for

k ¼ np

a
, n ¼+1,+2,+3, . . . : (2:A:27)

60
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Figure 2.35 Plot of E vs. k for the Kronig–Penney model with P ¼ 1.0.

62 ATOMS, MOLECULES, AND SOLIDS



This may be understood physically as follows. The wave function

C(x, t) ¼ c(x)e�iEt=h� ¼ u(x)ei(kx�Et=h�), (2:A:28)

for an electron propagating down the lattice has wavelength l ¼ 2p/jkj associated with
the plane-wave factor

ei(kx�vt) ¼ ei(px�Et=h�): (2:A:29)

If 2a ¼ nl, where n ¼ 1, 2, 3, . . . , the spacing between the potential barriers in Fig. 2.35
is an integral number of half wavelengths. This means that thewaves reflected from these
barriers are all in phase and interfere constructively. In other words, when

jkj ¼ 2p
l
¼ np

a
, n ¼ 1, 2, 3, . . . , (2:A:30)

thewave (2.A.28) is strongly reflected and forbidden from propagating unhindered down
the lattice. This is why the energies associated with the k values (2.A.30), or equivalently
(2.A.27), are forbidden.

† In Section 2.7 we invoked the concept of an effective mass, m�, of an electron in a crystal
lattice. To see how this concept arises, suppose that a force F acts on the electron. The rate of
change of the electron energy as a result of this force is

dE

dt
¼ Fv, (2:A:31)

where v is the electron velocity. Now the force equals the rate of change of the momentum
p ¼ h�k:

F ¼ dp

dt
¼ h� dk

dt
: (2:A:32)

Thus

dE

dt
¼ h�v dk

dt
, (2:A:33)

or

v ¼ 1
h�
dE=dt

dk=dt
¼ 1

h�
dE

dk
, (2:A:34)

which is the clear quantum analog of the well-known expression for the group velocity of a light
pulse, vg ¼ (dk/dv)21 (Section 8.3). The acceleration of the electron is therefore

a ¼ dv

dt
¼ 1

h�
d

dt

dE

dk

� �

¼ 1
h�
dk

dt

d

dk

dE

dk

� �
¼ F

h�2
d2E

dk2
: (2:A:35)
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This equation has the form F ¼ m�a, which defines the effective mass as

m� ¼ h�2 d2E

dk2

� ��1
: (2:A:36)

The physical basis for effective mass can be understood as follows. The total force acting on
the electron is the external force Fext plus the force Fcrys due to the atoms of the crystal lattice. This
total force equalsma. In our derivation above, however, the force F is only Fext; Fcrys is accounted
for only indirectly via the E2k relation for the electron in the crystal. Thus, m� arises from the
proportionality of the electron acceleration to the external force. †

PROBLEMS

2.1. (a) Equation (2.2.18) with n0 ¼ 2 and n ¼ 3, 4, 5, . . . gives the Balmer series of
the hydrogen spectrum. In what region of the electromagnetic spectrum (e.g.,
infrared, visible, ultraviolet) are the wavelengths of the Balmer series?

(b) Equation (2.2.18) with n0 ¼ 1 and n ¼ 2, 3, 4, . . . gives the Lyman series of
hydrogen. In what region of the spectrum are the wavelengths of the Lyman
series?

(c) Equation (2.2.18) with n0 ¼ 3 and n ¼ 4, 5, 6, . . . gives the Paschen series of
hydrogen. In what region of the spectrum are these wavelengths?

2.2. Verify Eq. (2.3.6).

2.3. Given the fact that the molecular weight of water is 18, estimate the average
distance between two water molecules in ice.

2.4. Show that the magnetic force acting on the charge carriers in the Hall-effect exper-
iment of Fig. 2.20 is upward, regardless of whether the charges are positive or
negative.

2.5. Assuming for GaAs a dielectric constant e ¼ 13.0e0, and an effective mass m� ¼
0.07m, estimate the energy required to ionize donor impurities.

2.6. (a) Consider emission into air of an LED employing a pn junction without the
dome indicated in Fig. 2.29. Show that total internal reflection at the interface
with air reduces the emission efficiency by the factor 12cos uc, where uc is the
critical angle for total internal reflection. (Note: The solid angle of a cone with
apex angle u is 2p[12cos(u/2)].)

(b) Show that the reduction factor calculated in part (a) is approximately equal to
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1=n2
p

, where n is the refractive index of the LED, and estimate
this factor for GaAs. What is the expected increase in efficiency for a GaAs
LED when it is designed with the plastic dome as in Fig. 2.29?

2.7. Consider a particle of mass m in an infinitely deep, one-dimensional square well of
width a. Between the walls the particle is free (V ¼ 0), but because it cannot penet-
rate the walls the wave function must vanish at x ¼ 0 and x ¼ a and for all x outside
those limits. Using the Schrödinger equation (2.A.1), show that the normalized
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stationary-state wave functions are given by

cn(x) ¼
2
a

� �1=2
sin

npx

a

� �
, n ¼ 1, 2, 3, . . . ,

with corresponding allowed energies

En ¼ n2p 2h�2
2ma2

:

2.8. The binding energy of the ion H2
þ (the energy required to separate to infinity the

two protons and the electron) is 216.3 eV at the equilibrium separation 0.106 nm.
(a) What is the contribution to the energy from the Coulomb repulsion of the

nuclei?
(b) What is the contribution to the energy from the Coulomb attraction of the

electron to the nuclei?
(c) The Hellman–Feynman theorem says, in effect, that the force between

the nuclei in a molecule can be calculated from the electrostatic repulsion
between the nuclei and the electrostatic attraction of the nuclei to the electron
distribution. According to this theorem, where must the squared modulus of the
electron wave function in H2

þ have its maximum value?
(d) Estimate the rotational constant Be for H2

þ, and compare your result with the
value 29.8 cm21 tabulated in Herzberg’s Spectra of Diatomic Molecules.4
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3 ABSORPTION, EMISSION, AND
DISPERSION OF LIGHT

3.1 INTRODUCTION

Most objects around us are not self-luminous but are neverthess visible because they
scatter the light that falls upon them. Most objects are colored, however, because they
absorb light, not simply because they scatter it. The colors of an object typically arise
because materials selectively absorb light of certain frequencies, while freely scattering
or transmitting light of other frequencies. Thus, if an object absorbs light of all visible
frequencies, it is black. An object is red if it absorbs all (visible) frequencies except those
our eyes perceive to be “red” (wavelengths roughly between about 630 and 680 nm),
and so on.1

The physics of the absorption process is simplest in well-isolated atoms. These are
found most commonly in gases. White light propagating through a gas is absorbed at
the resonance frequencies of the atoms or molecules, so that one observes gaps in the
wavelength distribution of the emerging light. On a spectrogram these gaps appear as
bright lines on the dark, exposed background. The gaps, shown as lines in Fig. 3.1,
correspond to the absorption of sunlight by the atmosphere of the sun before the light
reaches Earth. The absorbed energy is partially converted into heat (translational kinetic
energy of the atoms) when excited atoms (or molecules) that have absorbed radiation
collide with other particles. The absorbed radiation is also partially reradiated in all
directions at the frequency of the absorbed radiation. This is called resonance radiation,
or resonance fluorescence. When the pressure of the gas is increased, collisions may
rapidly convert the absorbed radiation into heat before it can be reradiated. In this
case the resonance radiation is said to be quenched.

Most atoms have electronic resonance frequencies in the ultraviolet, although reson-
ances in the visible and infrared are not uncommon. Sodium, for instance, has strong
absorption lines in the yellow region at 589.0 and 589.6 nm, the Fraunhofer “D lines,”
and their position is indicated in Fig. 3.1.

Electronic resonances in molecules also tend to lie in the ultraviolet. We have “white”
daylight because the atmosphere, consisting mostly of N2 and O2, does not absorb
strongly at visible frequencies. As discussed in Chapter 2, the atoms of a molecule

Laser Physics. By Peter W. Milonni and Joseph H. Eberly
Copyright # 2010 John Wiley & Sons, Inc.

1The principal features of the electromagnetic spectrum for our purposes are summarized inside the front
cover of the book.
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can vibrate back and forth, and the molecule as a whole can rotate. The vibrational and
rotational resonances of molecules typically correspond to infrared and microwave fre-
quencies, respectively, so that molecules typically have absorption resonances in the
ultraviolet, infrared, and microwave regions of the spectrum.

Absorption in liquids and solids is much more complicated than in gases. In liquids
and amorphous solids such as glass, the absorption lines have such largewidths that they
overlap. Water, for example, is obviously transparent in the visible but absorbs in the
near infrared, that is, at infrared wavelengths not far removed from the visible. Its absorp-
tion curve is wide enough, in fact, that it extends into the red edge of the visible
(Fig. 3.2). The weak absorption in the red portion of the visible spectrum explains
why things appear green when one is sufficiently submerged under water.
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Figure 3.1 Absorption lines of the sun’s atmosphere. The Fraunhofer D lines of sodium at 589.0 and
589.6 nm are not resolved in this sketch.
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Figure 3.2 Absorption coefficient of water. (From D. Segelstein, M.S. Thesis, University of
Missouri-Kansas City, 1981, as reproduced on the website of the Oregon Medical Laser Center
(2007), http://omlc.ogi.edu/)
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A broad absorption curve covering all visible wavelengths except those in a particular
narrow band is characteristic of the molecules of a dye. The absorbed radiation is con-
verted into heat before it can be reradiated. Such broad absorption curves and fast
quenching rates require the high molecular number densities of liquids and solids.

The fact that metals contain approximately free electrons, as discussed in Chapter 2,
makes them good reflectors of electromagnetic radiation of frequency less than the
so-called plasma frequency, which for metals is usually in the ultraviolet. Thus, visible
radiation is completely reflected by a metal, just as AM radio waves are reflected by
the ionosphere. This strong reflection gives metals their shine. In a metal such as gold
there is also absorption, associated with the electrons that remain bound to atoms, and
it is this that gives the metal a characteristic color.

An insulator is usually transparent in the visible but opaque in the ultraviolet because
its electrons are tightly bound and consequently give rise to absorption only at high fre-
quencies, typically corresponding to wavelengths less than 400 nm. In semiconductors
the absorption frequencies are smaller. Silicon, for example, absorbs visiblewavelengths
(it is black), but transmits radiation of wavelength greater than about 1 micron (1mm).

Lattice defects (deviations from periodicity) can substantially modify the absorption
spectra of crystalline solids. Ruby, for instance, is corundum (Al2O3) with an occasional
(roughly 0.05% by weight) random substitution of Cr3þ ions in place of Al3þ. The
chromium ions absorb green light and thus ruby is pink, in contrast to the transparency
of pure corundum.

The variety of phenomena resulting from the selective absorption of certain wave-
lengths and the transmission of others is too broad to treat here. We mention only one
important example, the “greenhouse effect.”2 Visible sunlight is transmitted by Earth’s
atmosphere and heats (by absorption) both land and water. The warmed Earth’s surface
is a source of thermal radiation, the dominant emission for ambient temperatures being
in the infrared (Problem 3.1). This infrared radiation, however, is strongly absorbed by
CO2 and H2O vapor in the atmosphere, preventing rapid escape into space. Without
this effect Earth would be a much colder place. An increased burning of fossil fuels
could conceivably enhance the greenhouse effect by increasing the level of CO2 and
other “greenhouse gases” in the atmosphere.

3.2 ELECTRON OSCILLATOR MODEL

In classical physics the motion of a particle is described by Newton’s second law,
F ¼ ma. For a charged particle in an electromagnetic field F is the Lorentz force,

F ¼ e(Eþ v� B), (3:2:1)

where e and v are the charge and velocity, respectively, of the particle.

2The term greenhouse effect is actually a misnomer, originating in the observation that the glass in a green-
house, which is transparent in the visible but opaque to the infrared, plays an absorptive role similar to that of
CO2 and H2O in Earth’s atmosphere. This effect, however, does not contribute significantly to the warming
of the air inside a greenhouse. A real greenhouse mainly prevents cooling by air currents. Although this point
was demonstrated experimentally by R. W. Wood (1909), the contrary misperception persists even among
scientists.
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We assume that (3.2.1) applies to the individual protons and electrons in atoms.
Although these particles and their interactions can be properly treated only using quan-
tum theory, their interaction with light can be treated very accurately in most cases with
classical laws and concepts. The quantum theoretical basis for our classical treatment is
discussed in the Appendix to this chapter.

The electron has mass me and charge e (a negative number), and the oppositely
charged core of the atom (“nucleus”) has mass mn and charge 2e. The nucleus exerts
a binding force Fen on the electron, depending on the relative separation ren ¼ re 2 rn,
as shown in Fig. 3.3. The electron also exerts a force Fne on the nucleus, and according
to Newton’s third law,

Fne(ren) ¼ �Fen(ren): (3:2:2)

The Newton equations of motion for the electron and nucleus are therefore

me
d2re
dt2
¼ eE(re, t)þ Fen(ren), (3:2:3a)

mn
d2rn
dt2
¼ �eE(rn, t)þ Fne(ren): (3:2:3b)

In writing these equations we have dropped the magnetic contributions to the Lorentz
force because optical phenomena do not normally involve relativistic particle velocities.
We can safely disregard the magnetic force for our purposes here (Problem 3.2).

The interaction of electromagnetic fields with charges is mainly determined by the
acceleration of the charges. The nucleus is so massive compared to an electron that its
acceleration is generally negligible. In this case only the electron equation is needed.
The binding force Fen is strong enough to restrict the atomic electrons to small excursions
about the (approximately stationary) nucleus. Thus we can write re ¼ rn þ x, where x is a
displacement of atomic dimension in size (jxj �, 1nm). The electric field varies spatially
on the scale of an optical wavelength (l � 600 nm for yellow light) and is not sensitive
to variations as small as jxj, so we have E(re, t) � E(rn, t).

O

n

e

rn

re

re – rn

Figure 3.3 The position vectors re and rn of the electron and nucleus, measured from some origin O.
By Newton’s third law the force Fen(re 2 rn) exerted by the nucleus on the electron is equal in
magnitude but opposite in direction to the force Fne(re 2 rn) exerted by the electron on the nucleus.
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Within these approximations we can replace Eqs. (3.2.3) by

m
d2x
dt2
¼ eE(R, t)þ Fen(x), (3:2:4)

as shown below. Here we have dropped the subscript e from the electron mass and have
written R for the position of the stationary nucleus. Actually, x and R are the relative
coordinate and center-of-mass coordinate of the electron–nucleus pair, and m is the
associated reduced mass. These terms are defined in the black-dot section below. For
our purposes it is accurate to continue to think of R as the position of the nucleus and
m as the electron mass. Only in exceptional cases in which the two charges have
nearly equal mass, such as the positronium atom (an atom in which the nucleus is a posi-
tron, i.e., an antielectron, rather than a proton), would significant corrections be required.

† The position of the center of mass of the electron–nucleus system is defined to be

R ¼ mere þ mnrn
M

, (3:2:5)

where M ¼ me þ mn and x is the electron coordinate relative to the nucleus, x ¼ ren, in terms of
which

re ¼ Rþ mn

M
x, (3:2:6a)

rn ¼ R� me

M
x: (3:2:6b)

Then Eqs. (3.2.3) may be written as

me
d2R
dt2
þ m

d2x
dt2
¼ eE Rþ mn

M
x, t

� �
þ Fen(x), (3:2:7a)

mn
d2R
dt2
� m

d2x
dt2
¼ �eE R� me

M
x, t

� �
þ Fne(x), (3:2:7b)

where

m ¼ memn

M
¼ memn

me þ mn
(3:2:8)

is the reduced mass of the electron–nucleus system.
By adding and subtracting Eqs. (3.2.7a) and (3.2.7b), and using (3.2.2), we obtain the

equations of motion

M
d2R
dt2
¼ e E Rþ mn

M
x, t

� �
� E R� me

M
x, t

� �h i
(3:2:9a)

and

m
d2x
dt2
¼ e

2
E Rþ mn

M
x, t

� �
þ E R� me

M
x, t

� �h i
þ Fen(x)þ 1

2
(mn � me)

d2R
dt2

: (3:2:9b)

3.2 ELECTRON OSCILLATOR MODEL 71



Equation (3.2.9a) describes the motion of the center of mass of the atom. In the absence of an
external field E, the center of mass moves with constant velocity. Equation (3.2.9b) describes
the motion of the relative coordinate x of the electron–nucleus system.

We have already remarked that optical radiation is characterized by wavelengths that are a few
hundred nanometers or larger, and the electron–nucleus separations in atoms are typically only
0.1–1 nm in size. The extreme disparity of these sizes is the basis of a fundamental approximation
called the dipole approximation. The dipole approximation arises from the leading terms of a
Taylor series expansion of the type

F(X þ dX) ¼ F(X)þ dXF0(X)þ 1
2(dX)

2F00(X)þ � � � (3:2:10)

applied to the electric field vectors in (3.2.9a) and (3.2.9b). The vector analog of the
Taylor series is

E R� me

M
x, t

� �
¼ E(R, t)� me

M
x �rRE(R, t)þ � � � (3:2:11a)

and

E Rþ mn

M
x, t

� �
¼ E(R, t)þ mn

M
x �rRE(R, t)þ � � � , (3:2:11b)

whererR is the gradient operation with respect to the coordinateR. If we retain only the first two
terms in these Taylor series, Eqs. (3.2.9) become

M
d2R
dt2
� ex �rRE(R, t) (3:2:12a)

m
d2x
dt2
� eE(R, t)þ mn � me

M

� �
ex �rRE(R, t)þ Fen(x): (3:2:12b)

The vector

d ¼ ex (3:2:13)

is the electric dipole moment of the electron–nucleus pair. In terms of d Eq. (3.2.12a) is

M
d2R
dt2
¼ d �rRE(R, t): (3:2:14)

A more complete expression for the force on an electric dipole is given in Section 14.4.
Finally, we retain only the leading E term on the right-hand side of (3.2.12b) and obtain

m
d2x
dt2
� eE(R, t)þ Fen(x) (electric-dipole approximation), (3:2:15)

which is Eq. (3.2.4) again, this time with m, x, and R more carefully defined.
For most of our purposes we can assume that the center-of-mass motion of the atom is

unaffected by the field, so that we can ignore (3.2.14). However, this is possible only because
we are interested mainly in effects associated with laser action, which depends mostly on internal
transitions within atoms or molecules, transitions based on the relative coordinate x. For other
purposes Eq. (3.2.12a) is essential. For example, the important topics of laser trapping and laser
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cooling (Section 14.4) depend directly on the effects produced by laser light on the atomic center
of mass. †

Note that with our approximations the force due to the electric field E(R, t) in (3.2.4)
can be written in terms of a potential

V(x, R, t) ¼ �ex �E(R, t) (3:2:16)

such that

eE(R, t) ¼ �rx[�ex �E(R, t)] ¼ �rxV(x, R, t), (3:2:17)

where rx denotes the gradient with respect to the coordinate x.
To proceed with (3.2.4) it is necessary to know Fen(x). For reasons that only quantum

theory can explain (see the Appendix), the classical theory satisfactorily treats many
important features of the interaction of light with matter by adopting an ad hoc hypoth-
esis about Fen due to H. A. Lorentz (around 1900). This hypothesis states that an electron
in an atom responds to light as if it were bound to its atom or molecule by a simple
spring. As a consequence the electron can be imagined to oscillate about the nucleus.

This electron oscillator model, which was developed before atoms were understood to
have massive nuclei, is not really a model of an atom as such, but rather a model of the
way an atom responds to a perturbation. It simply asserts that each electron in an atom
has a certain equilibrium position when there are no external forces. Under the influence
of an electromagnetic field, the electron experiences the Lorentz force (3.2.1) and is
displaced from its equilibrium position; according to Lorentz “the displacement will
immediately give rise to a new force by which the particle is pulled back towards its
original position, and which we may therefore appropriately distinguish by the name
of elastic force.”3 Lorentz’s assertion is equivalent to the replacement Fen(x)! 2ksx,
where ks is the “spring constant” associated with the hypothetical elastic force. This
leads to the equation

m
d2x
dt2
¼ eE(R, t)� ksx, (3:2:18a)

or

d2

dt2
þ v2

0

� �
x ¼ e

m
E(R, t), (3:2:18b)

where we have defined the electron’s natural oscillation frequency v0 ¼
ffiffiffiffiffiffiffiffiffiffi
ks=m

p
(see

Problem 3.3).
The reader who has even a slight familiarity with the quantum theory of atomic struc-

ture might well object that this is a hopelessly crude model of an atom. However, the
Lorentz model is not intended to describe an atom as such, but only how an atom inter-
acts with light:

You may think that this is a funny model of an atom if you have heard about electrons whirling
around in orbits. But that is just an oversimplified picture. The correct picture of an atom, which

3H. A. Lorentz, The Theory of Electrons, Dover, New York, 1952, p. 9.
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is given by [quantum mechanics], says that, so far as problems involving light are concerned,
the electrons behave as though they were held by springs.4

In fact, the electron oscillator does not correctly describe all aspects of the interaction
of light with atoms, and in particular it does not describe some of the most important
features of lasers. With some appropriate modifications, however, the electron oscillator
model will allow us to proceed rather quickly and easily to a realistic theory of laser oper-
ation, and to do so using mainly physical rather than mathematical aspects of quantum
theory. In the Appendix we show that the electron oscillator model can be regarded as a
good approximation to the quantum theory of the interaction of an atom with light.

3.3 SPONTANEOUS EMISSION

In the case that there is no applied field the electron oscillator equation is

d2x
dt2
þ v2

0x ¼ 0, (3:3:1)

and the general solution of this equation is

x(t) ¼ x0 cosv0t þ v0
v0

sinv0t, (3:3:2)

where x0 and v0 are, respectively, the initial displacement and the initial velocity of the
electron. Thus, provided x0 and v0 are not both zero, there is an oscillating electric dipole
moment d(t) ¼ ex(t). According to the Larmor formula of classical electromagnetic
theory, such an oscillating dipole radiates electromagnetic energy at the rate

Pwr ¼ 1
4pe0

� �
2€d

2

3c3
¼ � dW

dt
, (3:3:3)

where W denotes the oscillator energy. Therefore, from (3.3.2), our electron oscillator
should lose energy at the rate

dW

dt
¼ � 1

4pe0

� �
2e2

3c3
v4
0x

2
0 cos

2 v0t þ v3
0x0� v0 sin 2v0t þ v2

0v
2
0 sin

2 v0t

 �

, (3:3:4)

where we have used the identity 2 sinv0t cosv0t ¼ sin 2v0t.
As discussed below, we will be interested in frequencies v0 that are large, say

1015 s21. Such rapid oscillations are not measured; what is measured is an average
over times much larger than 1/v0. Therefore, we replace cos2v0t, sin

2v0t, and sin
2v0t in (3.3.4) by their average values over such times, namely 1

2 ,
1
2, and 0. This

“cycle-averaged” rate at which the electron oscillator’s energy changes (decreases) as

4R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Addison-Wesley,
Reading, MA, 1963, Vol. I, p. 31–4.

74 ABSORPTION, EMISSION, AND DISPERSION OF LIGHT



electromagnetic energy is radiated is then

dW

dt
¼ � 1

4pe0

� �
e2

3c3
[v4

0x
2
0 þ v2

0v
2
0] ¼ �

1
4pe0

� �
2e2v2

0

3mc3
1
2
mv20 þ

1
2
mv2

0x
2
0

� 

¼ � 1
4pe0

� �
2e2v2

0

3mc3
E, (3:3:5)

wherewe have recognized the quantity in brackets in the second equality as the oscillator
energy W.

This radiation by an electron oscillator that has been “excited,” i.e., given a non-
vanishing d2d/dt2, corresponds to the spontaneous emission of radiation by an excited
atom, which was mentioned briefly in Section 1.5. Since the frequency of the field
radiated by the electron oscillator is the same as the oscillator frequency n0 ¼ v0/2p,
we associate the electron oscillator with an atomic transition of frequency n0 (Fig. 3.4).
Thus, for an optical transition of wavelength l0 ¼ 500 nm, v0 ¼ 2pc/l0 � 3.8 �
1015 s21 and the rate of spontaneous emission predicted by the electron oscillator
model is

1
4pe0

� �
2e2v2

0

3mc3

� �
� 9� 107 s�1: (3:3:6)

This is a reasonable estimate for spontaneous emission rates of atomic transitions at
optical wavelengths. However, spontaneous emission rates are not a quadratic function
of transition frequency as predicted by (3.3.6). The 2p–1s transition of hydrogen at
121.6 nm, for instance, has a spontaneous emission rate 6.26 � 108 s21, whereas for
the 3s–2p transition at 656.3 nm the rate is 6.31�106 s21 (see Table 3.2). The ratio
of these two rates is (6.26 � 108/6.31 � 106) � 100, whereas according to (3.3.6)
this ratio should be (6563/1216)2 � 30. To bring the classical radiation rate into numeri-
cal agreement with the rate at which excited atoms jump spontaneously from an energy
level E2 to a lower energy level E1, with E2 2 E1 ¼ hn0, we multiply (3.3.6) by a factor
that, to conform to a notational convention, we write as 3f. Thus, denoting the spon-
taneous emission rate for the quantum jump from energy level E2 to energy level E1

n0

E1

E2

Figure 3.4 An atomic transition of frequency n0 ¼ v0/2p ¼ (E2 2 E1)/h and wavelength
l0 ¼ c/n0.
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by A21, we write

A21 ¼ 1
4pe0

� �
2e2v2

0

mc3
f : (3:3:7)

It is evident that f must have different numerical values for different atomic transitions
and provides a measure of the “strength” of the transition.

The factor f, called the oscillator strength, was introduced before the development of
quantum theory in order to bring the electron oscillator model into numerical agreement
with various spectroscopic data. It remains useful as a measure of the “strength” of a
transition; numerical values of oscillator strengths are tabulated in various handbooks.5

The quantum theoretical formula for the oscillator strength is derived in the Appendix.
A second modification of the classical oscillator model is required to describe spon-

taneous radiative transitions: We must take into account that atoms can only be found in
certain states with “allowed” energies. Thus, the spontaneous emission rate A21 is the
rate at which the number N2 of atoms in the upper state of energy E2 decreases and
the number N1 of atoms in the lower state of energy E1 correspondingly increases
(Fig. 3.4). The changes in the “populations” N2 and N1 due to spontaneous emission
are described by the rate equations

dN2

dt
¼ �A21N2 (3:3:8)

and

dN1

dt
¼ A21N2, (3:3:9)

implying that d(N1 þ N2)/dt ¼ 0, i.e., the total number of atoms N1 þ N2 in the upper
and lower states of the transition stays the same.

As discussed in Section 3.6, most of the light around us is ultimately the result of
spontaneous emission, and the phenomenon appears in many different contexts. The
term luminescence, for instance, describes spontaneous emission from atoms or mole-
cules excited by some means other than heating. If excitation occurs in an electric dis-
charge such as a spark, the term electroluminescence is used. If the excited states are
produced as a by-product of a chemical reaction, the emission is called chemilumines-
cence, or, if this occurs in a living organism (such as a firefly), bioluminescence.
Fluorescence refers to spontaneous emission from an excited state produced by the
absorption of light. Phosphorescence describes the situation in which the emission per-
sists long after the exciting light is turned off and is associated with a metastable (long-
lived) level, as illustrated in Fig. 3.5. Phosphorescent materials are used, for instance, in
toy figurines that magically glow in the dark.

5A useful collection of atomic reference data is provided by the National Institute of Standards and
Technology (NIST) and may be found on the Web as well as in a variety of published sources. See, for
example, A. N. Cox, ed., Allen’s Astrophysical Quantities, 4th ed., AIP Press, New York, 2000, or
W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities, U.S. Government
Printing Office, Washington, D.C., 1966. A more recent and readily available compendium of useful data
on atomic transitions of interest has been prepared by D. A. Steck at http://steck.us/alkalidata/.
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In most situations an excited level has several or many spontaneous decay channels,
so that the general case is somewhat more complex than our notation A21 implies. For
example, the solution of Eq. (3.3.8), the exponential decay law,

N2(t) ¼ N2(0)e
�A21t, (3:3:10)

indicates that the population of the upper level decays to zero with the characteristic time
constant t2 ¼ 1/A21. However, if level 2 has other decay channels open to it, they will
obviously shorten the effective lifetime of level 2 and this expression for t2 will be
incomplete.

According to quantum theory the spontaneous radiative lifetime of level n is deter-
mined by the sum of the rates for all possible radiative channels:

An ¼
X
m

Anm, (3:3:11)

An1

An2

An3

n

3 

2 

1

Figure 3.6 An atomic state nmay make spontaneous transitions to lower statesmwith rates Anm. The
total spontaneous decay rate of state n is An ¼ Sm Anm.

1

2

3

4

Phosphorescence (slow)Pump

Non-radiative decay (fast)

Figure 3.5 Model of phosphorescence. A molecule is pumped to level 4 by absorption of radiation,
and then decays to level 3. Level 3 is metastable, i.e., it has a very small spontaneous emission rate. As a
result the molecule continues to fluoresce long after the source of radiation has been shut off.
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and the correct expression for the upper-state lifetime is

tn ¼ 1
An
¼ 1P

m Anm
, (3:3:12)

where the summation is over all states m with energy Em lower than the energy level n
(see Fig. 3.6). Numerical values of the “A coefficients”Anm are usually included in tables
of oscillator strengths. Radiative lifetimes of excited atomic states are typically on the
order of 10–100 ns.

3.4 ABSORPTION

To account for the absorption of radiation in the electron oscillator model, it must be
assumed that the oscillator is subject to a frictional force in addition to the applied
field. Without a frictional force the electron oscillations induced by an applied field
simply cause the radiation of electromagnetic energy according to the formula (3.3.3),
with no change in the total electromagnetic energy. This corresponds to scattering of
radiation rather than absorption. The actual origin of the friction-like force is itself a sub-
ject for discussion, which will be found in Section 3.8. For present purposes, however,
we will take a frictional force for granted and explore its consequences.

We simply amend the Newton force law (3.2.18a) to read

m
d2x
dt2
¼ eE(R, t)� ksxþ Ffric, (3:4:1)

and make the simplest assumption compatible with the idea of frictional drag, namely
that the frictional force is proportional to the velocity:

Ffric ¼ �bv ¼ �b dxdt : (3:4:2)

Then the Newton equation of motion (3.2.18b) for an electron oscillator in a linearly
polarized monochromatic plane wave takes the form

d2x
dt2
þ 2b

dx
dt
þ v2

0x ¼ 1̂
e

m
E0 cos(vt � kz), (3:4:3)

where for later convenience we have defined b ¼ b/2m. The unit vector 1̂ defines the
polarization of the applied field (see Problem 3.4).

Equation (3.4.3) for the electron oscillator with frictional damping is most easily
solved by first writing it in complex form:

d2x
dt2
þ 2b

dx
dt
þ v2

0x ¼ 1̂
e

m
E0e

�i(vt�kz), (3:4:4)

where we follow the convention of writing E0 cos(vt 2 kz) as E0e
2i(vt2kz). This means

that x(t) in (3.4.4) is also regarded mathematically as a complex quantity in our calcu-
lations, but only its real part is physically meaningful. In other words, we may defer
the process of taking the real part of (3.4.4) until after our calculations, at which point
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the real part of our solution for x(t) is the (real) electron displacement. This approach is
used frequently in solving linear equations such as (3.4.3). We solve (3.4.4) by writing

x(t) ¼ ae�i(vt�kz), (3:4:5)

and after inserting this in (3.4.4) we obtain

(�v2 � 2ibvþ v2
0)a ¼ 1̂

e

m
E0: (3:4:6)

Therefore the assumed solution (3.4.5) satisfies Eq. (3.4.4) if

a ¼ �1̂(e=m)E0

v2 � v2
0 þ 2ibv

, (3:4:7)

and the physically relevant solution is therefore

x(t) ¼ Re
1̂(e=m)E0e�i(vt�kz)

v2
0 � v2 � 2ibv

� 
: (3:4:8)

Note that (3.4.8) actually gives only the steady-state solution of (3.4.3). Any solution
of the homogeneous version of (3.4.3) can be added to (3.4.8), and the sum will still be a
solution of (3.4.3). The homogeneous version is

d2xhom
dt2

þ 2b
dxhom
dt
þ v2

0xhom ¼ 0, (3:4:9)

and its general solution is

xhom ¼ [A cosv00t þ B sinv00t]e
�bt, (3:4:10)

where underdamped oscillation (b
 v0) is by far the most common occurrence, so

v00 ¼ (v2
0 � b2)1=2 � v0: (3:4:11)

We will usually neglect the homogeneous part of the full solution to (3.4.3). This
is obviously an approximation. The approximation is, however, an excellent one
whenever

t � 1
b
: (3:4:12)

Under this condition, e�bt 
 1, and we can safely neglect the homogeneous component
(3.4.10) because it makes only a short-lived transient contribution to the solution.

Even though the damping time 1/b is very short, it is not the shortest time in the pro-
blem. Typically, the oscillation periods T0 ¼ 2p/v0 and T ¼ 2p/v associated with the
natural oscillation frequency v0 or the forcing frequency v are very much shorter. In the
case of ordinary optically transparent materials such as atomic vapors, glasses, andmany
crystals and liquids, both v0 and v are typically in the neighborhood of 1015 s21, and b
falls in a wide range of much smaller frequencies:

b � 106–1012 s�1 
 v0, v: (3:4:13)
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Relations (3.4.12) and (3.4.13), taken together, imply that times of physical interest must
be much longer than an optical period:

t � b�1 � v�10 , v�1: (3:4:14)

That is, steady-state solutions of (3.4.3) are valid for times that are many periods of oscil-
lator vibration (T0 ¼ 2p/v0) and forced vibration (T ¼ 2p/v) removed from t ¼ 0, but
they cannot be used to predict the oscillator’s response within the first few cycles after
t ¼ 0. This is, however, no real restriction in optical physics, as it is equivalent to

t � 10�15 s (¼10�3 ps ¼1 fs): (3:4:15)

One femtosecond (fs) is a time span one or two orders of magnitude smaller than can
ordinarily be resolved optically.

To calculate the rate at which energy is absorbed from the field, we consider the rate at
which work is done by the field on an oscillator at position z along the direction of propa-
gation of the presumed plane-wave, monochromatic field:

dW

dt
¼ F � v ¼ F � dxdt ¼ 1̂eE0 cos(vt � kz) � dx

dt

� �
: (3:4:16)

The (steady-state) velocity dx/dt for the oscillator follows by differentiation of (3.4.8):

dx
dt
¼ 1̂(e=m)E0

(v2
0 � v2)2 þ 4b2v2

[2bv2 cos(vt � kz)� v(v2
0 � v2) sin(vt � kz)]: (3:4:17)

We now use this expression in (3.4.16) and average over times large compared to 1/v
as in the preceding section. This amounts to the replacement of cos2(vt2 kz) by 1

2 and
sin(vt2 kz) cos(vt 2 kz) by 0, resulting in

dW

dt
¼ e2

m
E2
0
1
b

b2v2

(v2
0 � v2)2 þ 4b2v2

� 
(3:4:18)

for the cycle-averaged rate of work. We have used the fact that 1̂� 1̂ ¼ 1, i.e., that 1̂ is a
unit vector (see also Problem 3.5).

Since b
 v, v0, the dimensionless quantity in brackets in Eq. (3.4.18) will have a
very small value unless the field frequency v is near the oscillator resonance frequency
v0. More precisely, frequency “detunings” jv0 2 v j much larger than b result in very
little absorption. Thus we make the approximation v0 þ v � 2v0, or

(v2
0 � v2)2 ¼ (v0 � v)2(v0 þ v)2 � 4v2

0(v0 � v)2 (3:4:19)

in (3.4.18), and likewise approximate v3 byv3
0 in the numerator and 4b2v2 by 4b2v2

0 in
the denominator inside the brackets:

dW

dt
� e2

m
E2
0

bv2
0

4v2
0(v0 � v)2 þ 4b2v2

0

� 
¼ pe2

4m
E2
0

(1=p)b

(v0 � v)2 þ b2

� 
: (3:4:20)
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We can write the rate of absorption of energy by the oscillator, dW/dt, in terms of the
circular frequency n ¼ v/2p ¼ c/l of the field:

dW

dt
¼ e2

8m
E2
0

(1=p)dn0
(n� n0)2 þ dn20

� 
, (3:4:21)

where

n0 ¼ v0

2p
(3:4:22)

and

dn0 ¼ b

2p
: (3:4:23)

It is also convenient to write the absorption rate in terms of the field intensity

In ¼ 1
2ce0E

2
0, (3:4:24)

where the subscript indicates that In is the intensity of the assumed monochromatic field
of frequency n. Thus,

dW

dt
¼ e2

4mce0
InL(n), (3:4:25)

where the “lineshape function” L(n), which determines the dependence of the absorption
on the field frequency, is defined by

L(n) ¼ dn0=p

(n� n0)2 þ dn20
: (3:4:26)

This is called the Lorentzian lineshape function, or Lorentzian distribution, and is
plotted in Fig. 3.7.

The Lorentzian function is a mathematically idealized lineshape in several respects.
We have already shown that it is the near-resonance approximation to the more compli-
cated function appearing in (3.4.18). The function is definedmathematically for negative
frequencies, even though they have no physical significance. It is exactly normalized to
unity when integrated over all frequencies, as is easily checked:

ð1
�1

dn L(n) ¼ dn0
p

ð1
�1

dn

(n� n0)2 þ dn20
¼ 1, (3:4:27)

and the normalization is approximately the same when only the physical, positive fre-
quencies are used. The approximation is excellent for dn0 
 n0 [recall (3.4.13)]. In
other words, the contribution of the unphysical negative frequencies is negligible
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because the linewidth is negligible compared to the resonance frequency, and in this
sense L(n) is physically as well as mathematically normalized to unity.

The maximum value of L(n) occurs at the resonance frequency n ¼ n0:

L(n)max ¼ L(n0) ¼ 1
pdn0

: (3:4:28)

At n ¼ n0+dn0 we have

L(n0 + dn0) ¼ 1
2pdn0

¼ 1
2
L(n)max: (3:4:29)

Because of this property, 2dn0 is called the width of the Lorentzian function, or the full
width at half-maximum (FWHM), and dn0 is called the half width at half-maximum
(HWHM). The Lorentzian function is fully specified by its width (FWHM or HWHM)
and the frequency n0 where it peaks. The peak value of the absorption rate is

dW

dt

� �
max

¼ e2

4mce0
InL(n0) ¼ 1

4pe0

� �
e2

mcdn0
In, (3:4:30)

and it decreases to half this resonance value when the field is “detuned” from resonance
by the half width dn0 of the Lorentzian function.

Our classical theory thus predicts that the absorption is strongest when the frequency
of the light equals the oscillation frequency of the electron oscillator. Far out in thewings
of the Lorentzian, where jn� n0j � dn0, there is very little absorption. A knowledge of
the width dn0 is therefore essential to a quantitative interpretation of absorption data.
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Figure 3.7 Lorentzian lineshape function.
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To determine the numerical value of dn0 in a given situation, we must consider in some
detail the physical origin of this absorption width. This we do in Section 3.8.

We shall see that the absorption rate does not always have the Lorentzian form
(3.4.25). However, we can in general write

dW

dt
¼ e2

4mce0
InS(n), (3:4:31)

where the lineshape function S(n), whatever its form, is normalized to unity:

ð1
0
dn S(n) ¼ 1: (3:4:32)

As in the case of spontaneous emission, two changes to the classical oscillator theory
of absorption are required to obtain quantitatively correct formulas. First, we introduce
the oscillator strength f, in this case replacing (3.4.31) with

dW

dt
¼ e2f

4mce0
InS(n): (3:4:33)

Second, we account for the fact that atoms are found only in states of allowed energy.
That is, the absorption process proceeds from a state in which N1 atoms are in a state
of lower energy E1 to a state in which N2 atoms are in a state of higher energy E2 ¼
E1 þ hn0, as indicated in Fig. 3.8. This suggests the replacement of dW/dt of the
classical theory by �h�v0dN1=dt since the actual rate of energy absorption should be
proportional to the number of atoms in the lower energy state from which the absorption
proceeds. Thus, we relate the rate (3.4.31) at which energy is absorbed according to the
classical theory to the rate of change of the “population” N1 as follows:

dW

dt
¼ � d

dt
(h�v0N1), (3:4:34)

or

dN1

dt
¼ � 1

4pe0

� �
pe2f

mch�v0

� �
N1InS(n): (3:4:35)

n0

E1

E2

Figure 3.8 Atomic absorption transition of frequency n0 ¼ (E2 2 E1)/h.
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Similarly, because dN2/dt ¼ 2dN1/dt, the rate of change of the upper-level population
N2 due to absorption of light of frequency n and intensity In is

dN2

dt
¼ 1

4pe0

� �
pe2f

mch�v0

� �
N1InS(n): (3:4:36)

It is convenient to use Eq. (3.3.7) to write the rate Eq. (3.4.35) for absorption in terms
of the spontaneous emission rate A21 for the E2 ! E1 transition. Simple algebra yields

dN1

dt
¼ � 1

hn

l2A21

8p

� 
N1InS(n) ¼ � dN2

dt
: (3:4:37)

Because we are assuming that the applied field is close to the transition resonance fre-
quency n0, we have used n in place of n0 in this equation, and for later convenience
we have also written the quantity in brackets in terms of the wavelength l ¼ c/n
rather than n.

3.5 ABSORPTION OF BROADBAND LIGHT

Thus far, we have considered only absorption from a very narrowband, in fact perfectly
monochromatic, field of frequency n. In reality, of course, the applied field will not be
perfectly monochromatic. For many purposes the rate of absorption of light having a dis-
tribution of frequencies can be obtained by simply summing the absorption rates associ-
ated with each frequency component:

dN1

dt
¼ � A21

8ph
N1

X
n

l2

n
InS(n): (3:5:1)

In many cases of interest the field is composed of a continuous range of frequencies, and
the summation in (3.5.1) must be replaced by an integral:

dN1

dt
�! � A21

8ph
N1

ð1
0

c2

n3
I(n)S(n) dn, (3:5:2)

where I(n) dn is the intensity of radiation in the frequency band from n to n þ dn.
It is convenient to define a spectral energy density r(n), such that r(n) dn is the

electromagnetic energy per unit volume in the same frequency band (Fig. 3.9). The
intensity, or energy flux, is the velocity of light times the energy density. Therefore
I(n) ¼ cr(n) and

dN1

dt
¼ � A21

8ph
N1

ð1
0

c3

n3
r(n)S(n) dn: (3:5:3)

We can now define “broadband light” as follows. Whenever the spectral energy
density r(n) is a broad, almost constant function of n compared to the atomic lineshape
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function S(n), we can writeð1
0

c3

n3
r(n)S(n) dn � c3

n30
r(n0)

ð1
0
S(n) dn ¼ c3

n30
r(n0): (3:5:4)

Whether r(n) is flat enough in its variation to justify the approximation (3.5.4) depends
on the lineshape function S(n). The narrower the width of S(n), the easier it is to satisfy
(3.5.4). When this approximation is valid, we may say that we have broadband light and
broadband absorption, as opposed to the opposite extreme of narrowband (i.e., nearly
monochromatic) absorption. Both extremes are limiting cases of (3.5.3). The absorption
rate for an atom exposed to broadband radiation is thus

dN1

dt
¼ � A21

8ph
c3

n30
N1r(n0) ¼ � dN2

dt
: (3:5:5)

We see that for broadband absorption the rate at which the lower- and upper-state popu-
lations change is completely independent of the form of the lineshape function S(n) and
is simply proportional to the spectral energy density of the field at the atomic transition
frequency n0. In the classical electron oscillator model, similarly, the rate of absorption
of energy by an atom in a broadband field is (Problem 3.6)

dW

dt
¼ 1

4pe0

� �
pe2

m
r(n0): (3:5:6)

3.6 THERMAL RADIATION

In thermal equilibrium the processes of absorption and emission balance each other in
such a way that the spectral density of radiation is completely characterized by the temp-
erature T. The spectral energy density of thermal radiation is the Planck spectrum:

r(n) ¼ 8phn3=c3

ehn=kBT�1 , (3:6:1)

where kB (¼ 1.380 � 10223 J/K ¼ 0.08614 � 1023 eV/K) is Boltzmann’s constant.
The historical significance of the Planck spectrum in the development of quantum

n n + Dn

Du(n) = r(n)Dn

r(n)

Figure 3.9 Spectral energy density r (n) is defined such that Du(n) ¼ r (n) Dn is the electromagnetic
energy per unit volume in the narrow frequency interval from n to n þ Dn.
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theory is discussed in many textbooks. Our aim here is to see what the classical electron
oscillator model and the quantum theory of emission and absorption, as formulated thus
far, imply about thermal equilibrium radiation. Because the thermal spectral density r(n)
is certainly “broadband,” we will use the absorption formulas appropriate to broadband
radiation.

Consider first the classical electron oscillator model. The rates of emission and
absorption are given by Eqs. (3.3.5) and (3.5.6), respectively. The equilibrium condition
that emission and absorption are equal in the electron oscillator model is then

1
4pe0

� �
2e2v2

0

3mc3
E ¼ 1

4pe0

� �
pe2

m
r(n), (3:6:2)

or, since v0 ¼ 2pn0,

r(n0) ¼ 8pn20
3c3

E: (3:6:3)

It is a well-known theorem of classical physics that, in thermal equilibrium at
temperature T, the average energy E of an oscillator free to oscillate in three dimensions
is 3kBT. Using this result in (3.6.3), we have

r(n) ¼ 8pn2

c3
kBT (3:6:4)

for the spectral density of thermal radiation predicted by the classical electron oscillator
model. We have written this result in terms of an arbitrary frequency n rather than a
single resonance frequency n0 in order to model an idealized blackbody that, as dis-
cussed below, absorbs radiation at all frequencies.

The spectrum (3.6.4) is the Rayleigh–Jeans spectrum, and it is an inexorable conse-
quence of classical physics. It is an approximation to the Planck spectrum (3.6.1) when
the quantum of energy hn is small compared to kBT, and so can be regarded as the
“classical limit” of the Planck spectrum.

Let us now use the formulas (3.3.8), (3.3.9), and (3.5.5) of quantum theory for the
emission and absorption. For dN1/dt, for instance, we have

dN1

dt
¼ A21N2 � A21

8ph
c3

n30
N1r(n0), (3:6:5)

the first term being due to spontaneous emission and the second to absorption. Setting
dN1/dt (or dN2/dt) equal to zero, since the populations of the atomic states must be
constant when the atoms and the radiation are in equilibrium, we obtain the equilibrium
radiation spectrum:

r(n0) ¼ 8phn30
c3

N2

N1
: (3:6:6)
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Now in thermal equilibrium at temperature T the ratio of the populations N2 and N1 must
satisfy a general result of quantum statistical mechanics:6

N2

N1
¼ e�(E2�E1)=kBT ¼ e�hn0=kBT : (3:6:7)

Therefore, the spectrum of thermal radiation predicted by this (not quite correct) argu-
ment is

r(n) ¼ 8phn3

c3
e�hn=kBT , (3:6:8)

where, for the reason noted following Eq. (3.6.4), we have written the spectrum in terms
of an arbitrary frequency n rather than a specific frequency n0. The spectrum (3.6.8),
which is called the Wien spectrum, is an approximation to the Planck spectrum when
the quantum of energy hn is large compared to kBT.

To see why we have not obtained the correct spectrum of thermal equilibrium radi-
ation using the (correct) results of the quantum theory of spontaneous emission and
absorption, let us use (3.6.7) to write the Planck spectrum as

r(n0) ¼ 8phn30
c3

1
N1=N2�1 ¼

8phn30
c3

N2

N1�N2
, (3:6:9)

or

c3

8phn30
r(n0)(N1�N2) ¼ N2, (3:6:10)

and therefore

A21

8ph
c3

n30
N1r(n0) ¼ A21N2 þ A21

8ph
c3

n30
N2r(n0), (3:6:11)

where we have multiplied through by the spontaneous emission rate A21. This equation
for r(n0), together with the Boltzmann condition (3.6.7), yields the Planck spectrum.

Without the second term on the right-hand side of (3.6.11) wewould have Eq. (3.6.6),
which was obtained by equating the rates of absorption [the left-hand side of (3.6.11)]
and spontaneous emission (the first term on the right). To obtain the correct thermal radi-
ation spectrum, therefore, we require another effect in addition to absorption and spon-
taneous emission. This “new” effect is described by the second term on the right-hand
side of (3.6.11). Like spontaneous emission, the rate for this effect is proportional to the
upper-state population N2, so that it too is associated with the emission of radiation.
Unlike spontaneous emission, however, the rate for this emission process is proportional

6We are ignoring any degeneracy of the energy levels E2 and E1, which does not affect the thermal radiation
spectrum (Problem 3.8).
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to the spectral density r(n0) of radiation already present. That is, the process described by
the second term on the right-hand side of (3.6.11) is stimulated emission.

According to (3.6.11) the rate coefficient for stimulated emission, which we write as

A21

8ph
c3

n30
r(n0) ¼ B21r(n0), (3:6:12)

is identical to the rate coefficient for absorption, which we write as B12r(n0). That is,
7

B12 ¼ B21: (3:6:13)

With this notation we can write Eq. (3.6.11) as

N1B12r(n0) ¼ N2A21 þ N2B21r(n0), (3:6:14)

the left-hand side being the rate of absorption and the right-hand side the rate of spon-
taneous and stimulated emission.

† Equation (3.6.14) was first presented by Albert Einstein in 1916, more than a decade before
what are now called the “Einstein A and B coefficients” could be derived from quantum theory. To
obtain the Planck spectrum using discrete energy states and other aspects of the Bohr theory,
Einstein postulated the processes of spontaneous emission, absorption, and stimulated emission,
and that these processes could be characterized by rate coefficients as in (3.6.14). Arguing that
(3.6.14) must be true for all temperatures and therefore for arbitrarily large spectral densities
r(n), Einstein concluded that B12 ¼ B21.

Equations (3.6.14) and (3.6.7) imply

r(n0) ¼ A21=B21

ehn0=kBT � 1
, (3:6:15)

which in the “classical limit” hn0=kBT 
 1 reduces to

r(n0) ¼ A21

B21

kBT

hn0
: (3:6:16)

Reasoning that this limit should yield the Rayleigh–Jeans spectrum (3.6.4), Einstein deduced that

A21

B21
¼ 8phn30

c3
, (3:6:17)

a result implied by our Eq. (3.5.5) when it is written as

dN1

dt
¼ �N1B12r(n0), (3:6:18)

7Equation (3.6.13) and a few others are generalized in Section 3.7 when degenerate energy levels are
considered.
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where, using (3.3.7), we identify

B12 ¼ 1
4pe0

� �
pe2f

mhn0
: (3:6:19)

Einstein was thus able to derive essentially all the results for emission and absorption in broad-
band fields that we have obtained starting from the electron oscillator model and modifying it to
incorporate results of quantum theory. A truly new insight achieved by Einstein was that the
observed Planck spectrum implied that there must be stimulated emission in addition to spon-
taneous emission. The practical utilization of this new concept—the laser—was to occur more
than 40 years later. †

It is instructive to write the energy per unit volume of thermal radiation in the small
frequency interval Dn about n, Du(n) ¼ r(n)Dn, in the form

r(n)Dn ¼ hn
8pn2

c3
Dn

� �
1

ehn=kBT � 1
: (3:6:20)

The first factor on the right is the energy of a photon of frequency n. The quantity in
parentheses is the number of electromagnetic field modes per unit volume in the
small frequency interval [n, n þ Dn], assuming that any cavity containing the thermal
radiation is large compared to the wavelength c/l (Section 3.12). The last factor,
1=(ehn=kBT�1), can therefore be identified as the average number of photons of fre-
quency n in thermal equilibrium at temperature T.

This last quantity has a further significance that can be inferred by considering the
ratio of the rate of stimulated emission in thermal equilibrium, N2B21r(n0), to the rate
of spontaneous emission, N2A21, for a transition of frequency n0:

N2B21r(n0)
N2A21

¼ B21

A21
r(n0) ¼ 1

ehn0=kBT � 1
, (3:6:21)

where we have used Eq. (3.6.15). In other words, the stimulated emission rate is equal to
the spontaneous emission rate times the average number of photons at the transition fre-
quency. Although this result has been inferred for the case of thermal radiation, it is more
generally valid and may be stated as follows: The rate of stimulated emission into any
mode of the field is equal to the spontaneous emission rate into the mode, times the
average number of photons already occupying that mode. (See also Section 3.7.)

The Planck spectrum is independent of the atomic or molecular properties of the
material in thermal equilibrium with radiation. According to (3.6.7), there will be
more atoms in the lower level than the upper level of any transition. This means that
any radiation incident on the material will lose energy. It is convenient to define an
ideal blackbody as an object that absorbs all the radiation, of any frequency, incident
upon it. In such a blackbody the absorption and emission of radiation are exactly
balanced in a steady state of thermal equilibrium, and any radiation incident upon its
surface would be completely absorbed.

Although no perfect blackbody is known to exist, it is possible to construct an excel-
lent approximation to an ideal blackbody surface. Consider a cavity inside a metal block,
with a small hole drilled through to provide an opening to the outside, as illustrated in
Fig. 3.10. Any radiation incident on the hole from the outside is repeatedly reflected
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within the cavity, and eventually absorbed, so that the amount of incident radiation
escaping back through the hole to the outside is negligibly small. The hole itself thus
acts as the “surface” of a blackbody. Furthermore a small amount of equilibrium thermal
radiation inside the cavity, produced by spontaneous and stimulated emission from the
cavity walls, can escape through the hole to the outside. This radiation escaping through
the hole is a sampling of the thermal radiation inside the cavity, and therefore the spectral
density of this “cavity radiation” should satisfy the Planck formula. If the block is placed
inside an oven, it can be kept in thermal equilibrium at some fixed temperature T. The
earliest accurate measurements of such cavity radiation in the far-infrared spectral
region from 12 to 18 mm, where the Wien law fails to agree with the data, were carried
out by O. Lummer and E. Pringsheim in 1900. These and other measurements, particu-
larly those of H. Rubens and F. Kurlbaum, motivated Planck to reconsider the existing
theory of thermal radiation and led to his announcement of formula (3.6.1) at the
October 19, 1900, session of the Prussian Academy of Science.

Many sources of radiation have spectral characteristics approximating those of an
ideal blackbody. Stars, for instance, are certainly not perfect blackbodies, but they
come sufficiently close to the ideal that we can estimate their surface temperatures by
fitting their spectra to Planck’s law (Fig. 3.11). In particular, the peak emission wave-
length lmax of a blackbody at temperature T (K) is given by (Problem 3.1)

lmax ¼ 2:898� 106

T
nm: (3:6:22)

Thus, the sun, which has a spectrum approaching that of a blackbody at 5800K, has a
peak emission wavelength lmax � 500 nm. Its total intensity at Earth’s surface is about
0.14W/cm2 ¼ 1.4 kW/m2. Equation (3.6.22) is consistent with the observation that the
color of hot bodies shifts to shorter wavelengths with increasing temperature T. Thus,
“white hot” is hotter than “red hot”; the filament of an incandescent lightbulb glows
white, whereas a (cooler) toaster glows red. This shift of peak wavelength with tempera-
ture is evident in Fig. 3.12.

For wavelengths in the visible, and for temperatures less than several tens of thou-
sands of kelvins, the ratio (3.6.21) is much less than unity. For the solar temperature
T ¼ 5800K, for instance, and l ¼ 500 nm, the ratio is about 1/142. Thus, we can
infer that more than 99% of the light from the sun is due to spontaneous rather than
stimulated radiation processes.

Figure 3.10 A cavity inside a metal block kept at constant temperature. A small hole allows radiation
to enter the cavity, and the radiation is diffused by repeated internal scattering. The hole itself acts as
the surface of a blackbody.
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The total electromagnetic energy density of a blackbody is found by integrating
(3.6.1), which leads to

ð1
0
r(n) dn ¼ 8p 5k4B

15c3h3
T4: (3:6:23)

The total intensity, or power radiated per unit area, is then

Itotal ¼ c

4

ð1
0
r(n) dn ¼ 2p 5k4B

15c2h3
T4 ¼ sT4, (3:6:24)
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Figure 3.11 Comparison of blackbody emission (smooth curves) and stellar emission spectra for two
temperatures, 8000 and 5800K. (After W.M. Protheroe, E. R. Capriotti, and G. H. Newsom, Exploring
the Universe, 3rd ed., Merrill, Columbus, 1984.)
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Figure 3.12 Log10r(l) vs. l for an ideal blackbody radiator at four temperatures.
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where s ¼ 5.67 � 1028 J-m22-s21-K24 ¼ 5.67 � 10212 W/cm2/K4 is the Stefan–
Boltzmann constant. Note that the intensity at each frequency in this formula is not
simply the speed of light c times the spectral energy density at that frequency. The
extra factor 1

4 arises for two reasons. First, a factor 1
2 arises because, along any axis

through the blackbody, there are equal intensities of radiation propagating in opposite
directions, but in (3.6.24) we are only interested in radiation propagating outward
through the surface. A second factor of 1

2 arises because the average component of
light velocity normal to the surface is

(cos u)avg ¼
1
2p

ð2p
0

df

ðp=2
0

cos u sin u du ¼ 1
2
: (3:6:25)

Except at very high pressures, an atomic gas radiates only at certain discrete wave-
lengths corresponding to the spectral lines of the atoms. In solids, however, the inter-
actions of the closely packed atoms cause the emitted radiation to have a continuous
spectrum, which is approximately the Planck spectrum for the temperature T of the
solid. The ratio of the power radiated by a given solid to the power radiated by a black-
body of equal area and temperature is called the total emissivity, 1, of the solid. The spec-
tral emissivity, 1l, is defined similarly in terms of the power radiated within a narrow
wavelength interval between l and l þ dl. The spectral emissivity and the reflectivity
rl satisfy 1l þ rl ¼ 1, so that the spectral emissivity can be determined by measuring
the reflectivity. For passive surfaces (not part of some laser device) we have rl ,1,
so emissivities are always less than 1. Typically 0.2, 1 , 0.9, but emissivities can
be very small for highly reflecting surfaces.

The radiation of a perfect blackbody is isotropic, that is, the Planck spectrum does not
depend on any direction of propagation. For real bodies, however, the spectral emissivity
can depend not only on wavelength but also on direction and temperature. Emissivities
of different materials are tabulated in handbooks.8

Figure 3.13 shows the radiation spectrum of tungsten, the filament material in house-
hold incandescent lightbulbs, compared with that of a blackbody for the temperature
T ¼ 3000K. In order for the filament to produce significant visible radiation, it must
be heated to high temperatures; tungsten is used because, among other things, it has a
high melting temperature (3655K) and proper working gives it the strength and ductility
necessary for it to be formed in finewire filaments.9 As can be seen from Fig. 3.13, how-
ever, only a small part of the radiation from the heated filament lies in the visible.

† The limited lifetime (�1000 h) of tungsten filament lightbulbs is due to the evaporation of
tungsten, which causes the blackening of a bulb over time. An inert fill gas (usually argon) is
used to reduce the evaporation of tungsten particles, which are deposited on the upper part of
the bulb as a result of convection currents that carry them upward. Thus, a bulb used “base
up” on a ceiling will blacken near the stem of the bulb, whereas “base down” use results in black-
ening over the dome. The tungsten halogen lamps marketed in recent years employ a tungsten–
halogen regenerative cycle in which the evaporated tungsten combines with a halogen (e.g.,
iodine) to form a compound, thus preventing the tungsten from being deposited on the glass

8See, for instance, R. C. Weast, ed., CRC Handbook of Physics and Chemistry, CRC, Boca Raton, FL, 1988,
pp. E-390–E-392.
9This was one of the first successes of American industrially organized science. It came from the discovery in
1908 of how to make tungsten ductile by W. D. Coolidge in the General Electric Company laboratory in
Schenectady, NY.
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bulb. When this compound comes in contact with the filament, however, the heat is sufficient to
dissociate the compound into tungsten, which is redeposited on the filament, and the halogen,
which is then available to continue the regenerative cycle.

The more efficient fluorescent tubes are, of course, not thermal light sources, but like thermal
and all other nonlaser sources the light they generate derives from spontaneous emission. At each
end of the tube is an electrode, one of which is a tungsten coil coated with a material that increases
the efficiency with which electrons are ejected when the coil temperature exceeds about 1300K.
The low-pressure (� 0.008 Torr mercury and 1–3 Torr of other gases, 1 Torr ¼ 1/760 atm of
pressure) electric discharge along the axis of the tube causes the emission of 253.7 nm radiation
from mercury atoms excited by collisions with electrons. The inner walls of the tube are coated
with a “phosphor” that absorbs in the ultraviolet and emits in the visible. The operating lifetime in
this case is determined primarily by the erosion of the electron emissive coating each time the
lamp is turned on, so that the rated average life of fluorescent tubes is based on the number of
starts, assuming 3 h of operation per start.

Lighting technology remains an active area of research and development, with particular focus
in recent years on light-emitting diodes (LEDs). The reader wishing to pursue some of the many
interesting aspects of the subject is referred not only to books and journals devoted to it but also to
lighting and optical company catalogs or websites that sometimes contain tutorial information
about lighting products. †

3.7 EMISSION AND ABSORPTION OF NARROWBAND LIGHT

For lasers we are interested in stimulated emission in narrowband fields. Equation
(3.4.37) gives the rate of change of level populations due to absorption in a narrowband
field of intensity In. As in the case of a broadband field, the stimulated emission rate in a
narrowband field is the same as the absorption rate. Thus, the rate of change of N2 due to
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Figure 3.13 Radiation from tungsten at 3000K compared with a blackbody at the same temperature.
Curves A and B give the relative intensities from 1 cm2 of a blackbody and 1 cm2 of tungsten, respect-
ively, while curve B0 is the relative intensity from 2.27 cm2 of tungsten, which is seen to produce the
same total intensity in the visible as the blackbody. (After J. E. Kaufman, IES Lighting Handbook,
Reference Volume, Illuminating Engineering Society of North America, New York, 1984.)
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both absorption and stimulated emission in a narrowband field is

dN2

dt
¼ (absorption rate)� N1� (stimulated emission rate)� N2

¼ (absorption rate)� (N1� N2)

¼ � 1
hn

l2A21

8p
(N2� N1)InS(n): (3:7:1)

Similarly, we must modify Eq. (3.4.37) for dN1/dt to include the effect of stimulated
emission:

dN1

dt
¼ 1

hn

l2A21

8p
(N2 � N1)InS(n): (3:7:2)

The absorption rate of narrowband light in these formulas was obtained assuming a
linearly polarized, plane-wave, monochromatic field propagating in the z direction
[recall Eq. (3.4.4)]. When absorption occurs, the field propagates in the same direction
with the same polarization and frequency but with less intensity. In the case of stimu-
lated emission the field also propagates in the same direction and with the same polar-
ization and frequency as the incident field, but with greater intensity.

We have confined ourselves thus far to showing how absorption and stimulated emis-
sion affect the atomic level populations, without regard for how these processes affect
the field except insofar as they decrease or increase the field energy. In Section 3.12
we derive an equation describing how the field intensity In depends on the level popu-
lations N1 and N2.

The intensity In can be expressed as the number of photons crossing a unit area per
unit time, times the energy hn of a single photon. Thus,

Stimulated emission rate ¼ l2A21

8p
S(n)

� number of incident photons=(area-time): (3:7:3)

The quantity

s (n) ¼ l2A21

8p
S(n), (3:7:4)

which has the dimensions of an area, is the cross section for stimulated emission (and
absorption). The relation (3.7.3) identifies the cross section as an effective area associ-
ated with the atomic transition, such that every photon intercepted by this area would
induce an atom to undergo stimulated emission (or absorption). Needless to say there
is no actual geometric object associated with this area; the cross section is nothing
more than a conventional measure of the absorption strength of a transition. Note that
it depends not only on the transition wavelength and spontaneous emission rate, but
also on the lineshape function S(n).
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Of course, the level populations N1 andN2 can also change by spontaneous emission.
The rate equations describing all three emission and absorption processes are obtained
by adding the spontaneous emission terms (3.3.8) and (3.3.9) to (3.7.1) and (3.7.2):

dN2

dt
¼ �s (n)

hn
In(N2 � N1)� A21N2, (3:7:5a)

dN1

dt
¼ s (n)

hn
In(N2 � N1)þ A21N2: (3:7:5b)

These are among the most important equations needed for a quantitative understanding
of lasers. In general, it is necessary to modify them to include other processes, such as an
external mechanism to supply and/or maintain atoms in the upper level, as well as col-
lisions among atoms that can excite or deexcite the level populations. It is also necessary
in general to account for the possibility that the two energy levels of the transition are
degenerate and that the refractive index of the medium might differ significantly from
unity. And in the case of semiconductor lasers, we must deal with a more complicated
version of these rate equations because there the transitions are between bands of levels
rather than between two discrete states. Nevertheless Eqs. (3.7.5) are the foundation for a
considerable part of the theory of lasers.

† A well-known result of the quantum theory of radiation is that the stimulated emission rate
into a single mode of the field is equal to q times the spontaneous emission rate into that
mode, where q is the average number of photons initially occupying the mode. Thus, if Rspon

is the rate for spontaneous emission into a certain mode, then the rate for stimulated emission
into that mode is Rstim ¼ qRspon, or in other words the total emission rate into the mode is
(q þ 1) Rspon. We have already referred to this result following Eq. (3.6.21).

It is not immediately obvious that Eqs. (3.7.5) are consistent with this “q þ 1” rule, one reason
being that the stimulated emission rate Rstim ¼ s(n)In/hn ¼ (l2A21/8p)[In S(n)/hn] in these
equations refers to a single field mode, that is, a field with a single frequency and polarization
and propagating in a single direction, whereas A21 is the total rate for spontaneous emission in
all possible directions of propagation and polarization. Moreover the stimulated emission rate
depends on the lineshape function S(n) at the applied field frequency n, whereas A21 does not.
It is therefore instructive to show that Eqs. (3.7.5) are in fact consistent with the q þ 1 rule
and can indeed be inferred from it.

As the remarks above suggest, Rspon = A21. Let us write A21 [Eq. (3.3.7)] as

A21 ¼ 1
4pe0

� �
pe2f

m

8pn20
c3

� 
: (3:7:6)

We recall that (8pn2/c3) dn is the number of modes per unit volume in the frequency interval
[n, n þ dn], so that the factor in square brackets in (3.7.6) is the density, in frequency, of
modes per unit volume at the frequency n0 of the atomic transition. Thus, (3.7.6) expresses the
spontaneous emission rate A21 as a sum of rates into all possible modes having the frequency n0.

But for a single field mode in a volume V—which for our purposes here might be imagined to
be the volume of a laser cavity—the density in frequency of possible final states per unit volume is
determined not by the field, which by assumption has only one frequency, n, but by the
atomic lineshape function S(n). Therefore, to obtain the rate of spontaneous emission into a
single field mode we replace the factor in square brackets in (3.7.6) by the frequency–space
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density (1/V )S(n):

Rspon ¼ 1
4pe0

� �
pe2f

m

1
V
S(n): (3:7:7)

Comparison with (3.3.7) shows that

Rspon ¼ l2A21

8p
c

V
S(n) (3:7:8)

and therefore, when we multiply this by the photon number q, that the stimulated emission rate in
Eqs. (3.7.5) is consistent with the q þ 1 rule:

qRspon ¼ 1
hn

l2A21

8p
c
qhn

V

� 
S(n) ¼ 1

hn

l2A21

8p
InS(n) ¼ s(n)

hn
In ¼ Rstim, (3:7:9)

where we have used In ¼ c(qhn=V), i.e., the intensity is the velocity of light times the field
energy density qhn/V. †

The relation A21 ¼ (8phn30=c
3)B21 [cf. Eq. (3.6.17)] can be used to write the stimu-

lated emission rate as10

Rstim ¼ s (n)
hn

In ¼ 1
hn

l2A21

8p
InS(n) ¼ 1

c
B21InS(n), (3:7:10)

so that (3.7.5a), for instance, takes the form

dN2

dt
¼ � 1

c
(B21N2 � B12N1)InS(n)� A21N2: (3:7:11)

The reader is encouraged to compare this equation with the simple model laser
equation (1.5.2). N2 here corresponds to n there, and N1 is assumed zero there (complete
inversion). What is the physical meaning of other differences? Can you identify f ?

In our treatment of emission and absorption thus far we have not dealt explicitly with
the possibility of level degeneracy, that is, that there might be more than one quantum
state associated with each of the energy levels E2 and E1. The level populations N2

and N1 in Eq. (3.7.11), for example, are the total populations of the two energy
levels, regardless of any degeneracies. Let us now label different possible states of
energy E2 and E1 bym2 andm1, respectively. LetN 2(m2) andN 1(m1) denote the popu-
lations in these specific states, A(m2, m1) the rate of spontaneous emission from the
upper state m2 to the lower state m1, and R(m1, m2) and R(m2, m1) the corresponding

10Recall that we are assuming n � n0, so that we can replace n by n0 in these formulas except in the lineshape
function S(n).
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rates for absorption and stimulated emission, respectively. Thus

dN 2(m2)
dt

¼ �
X
m1

[R(m2, m1)N 2(m2)�R(m1, m2)N 1(m1)]

�
X
m1

A(m2, m1)N 2(m2): (3:7:12)

Note that, for each of the three processes described by this rate equation, the total rate
of change of N 2(m2) is the sum of the rates for each possible channel m2 $ m1. We
now sum both sides of (3.7.12) over the degenerate states m2 and use the fact
that N2 ¼

P
m2

N 2(m2):

dN2

dt
¼ �

X
m1,m2

[R(m2, m1)N 2(m2)�R(m1, m2)N 1(m1)]

�
X
m1,m2

A(m2, m1)N 2(m2): (3:7:13)

This more general equation, and the one forN1 that follows from dN1/dt ¼ 2dN2/dt,
can sometimes be simplified. The most widely used simplification is to assume that
all the states of a given level are equally populated, so that N 1(m1) and N 2(m2) are
independent of m1 and m2 and equal to N1/g1 and N2/g2, respectively, where gj is the
degeneracy, or statistical weight, of level j. In this case

dN2

dt
¼ �

X
m1,m2

N2

g2
R(m2, m1)� N1

g1
R(m1, m2)

� 
� N2

g2

X
m1,m2

A(m2, m1)

¼ � N2

g2
� N1

g1

�  X
m1,m2

R(m1, m2)� N2

g2

X
m1,m2

A(m2, m1): (3:7:14)

Comparing with (3.7.11), we make the identifications

A21 ¼ 1
g2

X
m1,m2

A(m2, m1), (3:7:15)

1
c
InS(n)B21 ¼ 1

g2

X
m1,m2

R(m1, m2), (3:7:16)

1
c
InS(n)B12 ¼ 1

g1

X
m1,m2

R(m1, m2): (3:7:17)

Note therefore that

g2B21 ¼ g1B12, (3:7:18)
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which generalizes (3.6.13). Using (3.7.15)–(3.7.17) in (3.7.14), we have

dN2

dt
¼ � dN1

dt
¼ � 1

c
InS(n)[B21N2 � B12N1]� A21N2

¼ � 1
c
InS(n)B21 N2 � g2

g1
N1

� 
� A21N2

¼ � 1
hn

l2A21

8p
N2 � g2

g1
N1

� 
InS(n)� A21N2, (3:7:19)

Situations wherewe cannot assume that degenerate states are equally populated can arise
under excitation by polarized light, as discussed in Section 14.3.

We can use these relations to write the A and B coefficients in terms of the oscillator
strength and level degeneracies. Equations (3.6.17) and (3.7.15)–(3.7.17) give

A21 ¼ 8phn30
c3

B21 ¼ g1
g2

8phn30
c3

B12 ¼ g1
g2

2pe2f

e0mcl
2
0

, (3:7:20)

where we have used Eq. (3.6.19) for B12. In particular, if the transition wavelength l0 is
expressed in meters,

A21 ¼ (6:67� 10�5)
g1
g2

f

l20
s�1: (3:7:21)

The appearance of the dimensionless factor (g1/g2)f in this formula explains why the
spontaneous emission rate is not simply a universal constant times l�20 , as predicted
by classical theory and discussed following Eq. (3.3.6).

† Denoting the nondegenerate states 1 and 2 in Eq. (3.A.26) by m1 and m2, we can write

A(m2, m1) ¼ e2v3
0

3pe0h�c3 jxm1m2 j2, (3:7:22)

where xm1m2 is the matrix element between states m1 and m2 of the electron coordinate x. (For a
multielectron atom, x is the sum of the position vectors of all the electrons.) In the case of g2
degenerate states m2 associated with an atomic energy level E2, each state m2 has the same
total radiative decay rate, namely A21 ¼

P
m1
A(m2, m1), the sum of the spontaneous emission

rates from m2 to all possible lower states m1 of the transition. This must be so because the
states m2 correspond simply to different “z components” of angular momentum, but the
z direction is chosen arbitrarily; in other words, spherical symmetry requires that

A21 ¼
X
m1

e2v3
0

3pe0h�c3 jxm1m2 j2 ¼
1
g2

X
m1,m2

e2v3
0

3pe0h�c3 jxm1,m2 j2: (3:7:23)

Thus, the last equality in (3.7.20) implies that

f ¼ 1
g1

2mv0

3h�
X
m1,m2

jxm1m2 j2, (3:7:24)

which generalizes (3.A.25) to the case of degenerate levels.
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Let us write Eq. (3.7.24) as

f12 ¼ 1
g1

2mv 21

3h�
X
m1m2

jxm1m2 j2 (3:7:25)

for the transition between levels 1 and 2, where v 21 ¼ (E2 � E1)=h� (.0). Interchanging 1 and 2,
we define

f21 ¼ 1
g2

2mv12

3h�
X
m1m2

jxm1m2 j2 ¼ �
g1
g2

f12, (3:7:26)

which is negative; f12 and f21 are called oscillator strengths for absorption and emission, respect-
ively. One motivation for introducing a separate oscillator strength for emission, which is not
really necessary for our purposes, may be found at the end of Section 3.14. †

The degenerate states belonging to a given atomic energy level are those correspond-
ing to different magnetic quantum numbersm. The application of a relatively weak mag-
netic field B establishes a preferred z direction and removes the degeneracy: Each of the
states is shifted in energy by an amount proportional to mjBj. This is the Zeeman effect
discussed in many textbooks on quantum mechanics. The different values of m are
defined with respect to some “z” direction, such as the direction of the magnetic field
in the Zeeman effect. If the atom is exposed to isotropic (e.g., thermal) radiation, then
by spherical symmetry the different magnetic substates must have equal populations,
so that (3.7.19) is an exact consequence of the more general (3.7.12). In the case of
atoms in unidirectional narrowband light, simplified rate equations such as (3.7.19)
are often a good approximation if collisions between atoms or between atoms and con-
tainer walls are effective in maintaining a nearly equal population distribution among
degenerate magnetic substates, or if the intensity of the light is not large enough to pro-
duce a significant change in an initial thermal distribution of level populations. In the
latter case the generalization of Eq. (3.6.7),

N2

N1
¼ g2N 2(m2)

g1N 1(m1)
¼ g2

g1
e�(E2�E1)=kBT , (3:7:27)

ensures the validity of (3.7.19). As discussed in Section 14.3, however, atoms can be
“optically pumped” or “aligned” preferentially in certain magnetic substates.

3.8 COLLISION BROADENING

In Section 3.4 we showed that light is most strongly absorbed when it is nearly resonant
with one of the natural oscillation frequencies of the atoms of a medium, and that absorp-
tion is due to “frictional” processes that damp out the electron oscillations. We have also
shown that any frictional force in the Newton equation of an electron oscillator leads to a
broadened absorption line, the lineshape being Lorentzian. We did not, however, give
any fundamental explanation for the existence of frictional processes. We will now
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approach the question of absorption and lineshape from a more fundamental viewpoint,
focusing our attention on “line-broadening” mechanisms in gases to answer the question
of the origin of the frictional coefficient b.

It is a well-known result of experiment that, for sufficiently large pressures, the width
of an absorption line in a gas increases as the pressure increases. This broadening is due
to collisions of the atoms and is therefore called collision broadening or sometimes
pressure broadening. Collision broadening is the most important line-broadening mech-
anism in gases at atmospheric pressures and is often dominant at much lower pressures
as well. We will begin our study by considering the details of collision broadening.

Our treatment will follow the original approach of Lorentz. Wewill find, for instance,
that a kind of frictional force arises naturally as a result of collisions, and that the damp-
ing rate b can be interpreted as simply the collision rate.We start with (3.4.1)without the
frictional term and introduce the oscillator momentum p by writing

dx
dt

;
p
m
: (3:8:1)

Then (3.4.1) can be rewritten in simple complex form as

d

dt
xþ i

p
mv0

� �
þ iv0 xþ i

p
mv0

� �
¼ i1̂

e

mv0
E(R, t), (3:8:2)

where one can easily check that the real part simply repeats the defining relation (3.8.1),
and with the use of (3.8.1) the imaginary part is nothing other than (3.4.1) with the fric-
tional force omitted. It will be convenient to have a shorthand form of this equation, so
we define

xþ i
p

mv0
; S (3:8:3)

and will examine the solution of the S equation,

d

dt
Sþ iv0S ¼ i1̂

e

mv0
E(R, t), (3:8:4)

under the following interpretation of the effect of collisions.
We imagine collisions to occur in billiard-ball fashion, each collision lasting for a

time that is very short compared to the time between collisions. We suppose that,
immediately prior to a collision, the active electrons in an atom are oscillating along
the axis defined by the field polarization, as indicated by (3.4.8). During a collision,
the interaction between the two atoms causes a reorientation of the axes of oscillation.
Since each atom in a gas may be bombarded by other atoms from any direction, we
can assume that on the average all orientations of the displacements and momenta of
the atomic electrons are equally probable following a collision, so after a collision the
displacement and momentum both vanish on average. This is the assumption made
by Lorentz. It is an assumption about the statistics of a large number of collisions
rather than about the details of a single collision.
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We will examine the consequences of this assumption as follows. We consider the
evolution of the electron displacements of atoms that underwent their most recent col-
lision at the representative earlier time t1. The time of the last collision is known only
in a statistical sense, and we will obtain a picture valid for the electrons in all the
atoms by averaging over t1. The simplest statistical model for the frequency of collisions
is “Markovian,” meaning memoryless. The fraction of atoms without a collision since t1
must decrease during the waiting interval between t and t þ dt, and in the memoryless
model this change is directly proportional to the length of the interval dt but does not
depend on t.

Specifically, if f (t; t1) is the fraction of dipoles at time t not having suffered a collision
since t1, then the fraction collision free at a time dt later is smaller by an amount
proportional to the fraction “available” for collision, namely f itself, and to the time
interval dt:

f (t þ dt; t1) ¼ f (t; t1)� gc f (t; t1) dt, (3:8:5)

where the proportionality constant gc is the rate at which collisions are occurring. In the
limit of very small dt, this recipe for the surviving fraction becomes the simple equation

df

dt
¼ �gc f , (3:8:6)

and so long as gc is not dependent on t itself (the collisions areMarkovian) the solution is

f (t; t1) ¼ e�gc(t�t1): (3:8:7)

Since the probability that a collision occurs in the time dt1 is gc f dt1, we can take
account of all collisions by integrating over t1. We will now indicate the time of latest
collision explicitly and write the complex displacement as S(t, t1), where wewill enforce
S(t1, t1) ¼ 0, corresponding to the fact that the starting displacement and momentum
were zero following the collision. The collision-averaged complex displacement S,
which we will denote �S(t), is thus given by

�S(t) ;
ðt
�1

S(t; t1)gc f (t; t1) dt1: (3:8:8)

By differentiating �S with respect to t we find that it satisfies a simple equation, one with
an obvious physical interpretation. Using the evolution equation (3.8.4), and remember-
ing that S(t1, t1) ¼ 0, we obtain

d

dt
�Sþ i(v0 � igc)�S ¼ i1̂

e

mv0
E(R, t), (3:8:9)

which we see to be exactly the same as Eq. (3.8.4) for the collisionless displacement,
except for the appearance of the new gc term. Such an extra term is exactly what is
needed to reproduce the b coefficient in the electron oscillator equation: writing
�S ¼ �xþ (i=mv0)�p in (3.8.9) and then taking the real and imaginary parts of that
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equation, we obtain

d2�x
dt2
þ 2gc

d�x
dt
þ (v2

0 þ g 2
c )�x ¼ 1̂

e

m
E(R, t): (3:8:10)

While collisions occur frequently on a “normal” time scale, they are rare on the scale of
an optical period (roughly 1 fs), so

v2
0 � g 2

c , (3:8:11)

and one safely ignores the contribution of g 2
c to the last term on the left side of (3.8.10).

Then (3.8.10) is exactly the same as (3.4.4) when we equate b in (3.4.4) to the collision
rate gc. In other words, an averaged treatment of collisions leads directly to “frictional”
drag in the electron oscillation. The linewidth of the collision-broadened lineshape is
[Eq. (3.4.23)]

dn0 ¼ gc
2p
¼ 1

2p
� (collision rate): (3:8:12)

Collision broadening is often described in terms of a “dephasing” of the electron
oscillators, as follows. Immediately after a collision the phase of the electron’s oscil-
lation has no correlation with the precollision phase. Collisions have the effect of “inter-
rupting” the phase of oscillation, leading to an overall decay of the average electron
displacement from equilibrium (Fig. 3.14). The damping rate gc is sometimes called a
dephasing rate in order to distinguish it from an “energy decay” rate. The latter would
appear as a frictional term in the equation of motion of each electron oscillator as
well as in the average equation. In the absence of any inelastic collisions to decrease
the energy of the electron oscillators, each oscillator would satisfy the Newton equation
(3.2.18b) with no damping term. Due to elastic collisions, that is, collisions that only

Collision Collision Collision

t

t

t

Atom 1

Atom 2

Atom 3

Figure 3.14 Electron oscillations in three different atoms in a gas. Collisions completely interrupt
the phase of the oscillation. The average electron displacement associated with all the atoms in the
gas therefore decays to zero at a rate given by gc, the inverse of the mean time between collisions.
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interrupt the phase of the oscillation but do not produce any change in energy, the
average electron displacement follows Eq. (3.4.4), which includes damping.

Collision Cross Sections

The collision rate gc may be expressed in terms of the number density N of atoms, the
collision cross section s between atoms, and the average relative velocity �v of the atoms.
Imagine some particular atom to be at rest and bombarded by a stream of identical atoms
of velocity �v. If the number of atoms per unit volume in the stream is N, then the number
of collisions per unit time undergone by the atom at rest is Ns�v, where the area s is the
collision cross section between the atom at rest and the atoms in the stream. The number
of collisions per second is the same as if all the stream atomswithin a cross-sectional area
s collide with the stationary atom. The idea here is the same as that used to define the
absorption cross section for incident light.

According to the kinetic theory of gases, an atom of mass mX has a mean velocity

vrms ¼ 8kBT
pmX

� �1=2
(3:8:13)

in a gas in thermal equilibrium at temperature T. To obtain the average relative velocity
�vrel of colliding atoms of masses mX and mY in the gas, we replace mX in (3.8.13) by the
reduced mass

mX,Y ¼
mXmY

mX þ mY
¼ 1

mX
þ 1
mY

� ��1
: (3:8:14)

Thus,

�vrel ¼ 8kBT
p

1
mX
þ 1
mY

� �� 1=2
: (3:8:15)

It is convenient to express this in terms of the atomic (or molecular) weightsMX andMY:

�vrel ¼ 8RT
p

1
MX
þ 1
MY

� �� 1=2
, (3:8:16)

where R, the universal gas constant, is Boltzmann’s constant times Avogadro’s number.
The collision rate for molecules of type X is therefore

gc ¼
X
Y

N(Y)s (X, Y)�vrel(X, Y)

¼
X
Y

N(Y)s (X, Y)
8RT
p

1
MX
þ 1
MY

� �� 1=2
, (3:8:17)

where the sum is over all species Y, including X.
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The important “unknowns” in expression (3.8.17) are the collision cross sections
s (X, Y), which often are not known very accurately. The simplest approximation to
the cross section is the “hard-sphere” approximation. We write

�s (X, Y) ¼ p

4
(dX þ dY)

2, (3:8:18)

where dX and dY are the hard-sphere molecular diameters, estimates of which can be
made from measurements of various transport quantities such as thermal conductivities
or diffusion constants; �s (X,Y) is the area of a circle of diameter dX þ dY, just what we
would expect if the molecules acted like spheres of diameters dX and dY. For CO2, for
example, the hard-sphere diameter is about 0.4 nm. From (3.8.18), therefore, the hard-
sphere cross section for two CO2 molecules is s (CO2, CO2) ¼ 5.03� 10219 m2. For a
gas of pure CO2 at T ¼ 300K we find the average relative velocity of two colliding CO2

molecules to be �vrel ¼ 5:37� 102 m=s. The collision rate (3.8.17) in the hard-sphere
approximation is therefore

gc ¼ N(5:03� 10�19 m2)(5:37� 102 m=s) ¼ 2:70� 10�16N=s, (3:8:19)

where N is the number of CO2 molecules per cubic meter. For an ideal gas we calculate
(Problem 3.10)

N ¼ 9:65� 1024
P(Torr)

T
, (3:8:20)

where P(Torr) is the pressure in Torr (1 atm ¼ 760 Torr) and T is the temperature (K).
From (3.8.17), finally, the collision rate for a gas of CO2 at 300K is

gc ¼ 8:69� 106P(Torr) s�1: (3:8:21)

Thus, at a pressure of 1 atm we calculate the collision rate

gc ¼ 6:60� 109 s�1, (3:8:22)

and from (3.8.12) the collision-broadened linewidth

dn0 ¼ 1:05� 109 Hz: (3:8:23)

The actual collision-broadened linewidths can be larger, by as much as an order
of magnitude or more, than those calculated in the hard-sphere approximation. The
value calculated above, however, is reasonable, and it allows us to point out some
general features of collision-broadened linewidths. First, we note that the collision rate
(3.8.22) is very much smaller than an optical frequency, as assumed in (3.8.11). The
linewidth dn0 is thus also orders of magnitude less than an optical frequency. This
explains why we can speak of absorption “lines” in a gas, even though the absorption
occurs over a band of frequencies: the band has a width (�2dn0) that is very small
compared to the resonance frequency n0.

From (3.8.21) we note that the linewidth is linearly proportional to the pressure. For
this reason, experimental results for collision-broadened linewidths are often reported in
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units such as MHz-Torr21. The linewidth calculated above, for instance, may be
expressed as 1.38 MHz-Torr21 at 300K.

Our treatment of collision broadening only highlights some general features of a
complex subject. In actual calculations we prefer always to use measured values of
the collision-broadened linewidths. We note parenthetically that, for the 10.6-mm
CO2 laser line, the linewidth (1.38 MHz-Torr21) computed above is about three times
smaller than the experimentally determined value. It is possible to calculate these
widths more accurately, but this will not concern us. See also Problem 3.11.

3.9 DOPPLER BROADENING

The Doppler effect was demonstrated for sound waves in 1845 by C. H. D. Buys Ballot,
who employed trumpeters performing in a moving train to demonstrate it. The mathe-
matician C. J. Doppler had predicted the effect in 1842. His prediction applied also to
light, although Maxwell’s electromagnetic theory of light waves was still nearly a quar-
ter of a century away.

Let us consider again a gaseous medium, this time only very weakly influenced by
collisions (i.e., b is very small). Every electron oscillator will undergo practically
undamped oscillation at the field frequency. Nevertheless, we will show that, because
of the Doppler effect, an absorption line is broadened and its width can be much
larger than b. We will find that the lineshape associated with the Doppler effect is
not the Lorentzian function (3.4.26) but rather the Gaussian function given in
Eq. (3.9.9) below.

To an atommoving with velocity v
 c away from a source of radiation of frequency
n, the frequency of the radiation appears to be shifted:

n0 ¼ n 1� v

c

� �
: (3:9:1)

This is the Doppler effect. It implies that a source of radiation (e.g., a laser) exactly res-
onant in frequency with an absorption line of a stationary atom will not be in resonance
with the same absorption line in a moving atom, and the frequency offset is dn ¼ (v/c)n.
Similarly, a nonresonant absorption line of an atom may be brought into resonance with
the field as a result of atomic motion. Since the atoms in a gas exhibit a wide variety of
velocities, a broad range of different effective resonance frequencies will be associated
with a given absorption line. In other words, the absorption line is broadened because of
the Doppler effect, and is said to be Doppler-broadened.

For a gas in thermal equilibrium at the temperature T, the fraction df(v) of atoms
having velocities between v and v þ dv along any one axis is given by the (one-
dimensional) Maxwell–Boltzmann distribution,

df (v) ¼ mX

2pkBT

� �1=2
e�mXv

2=2kBT dv: (3:9:2)

Here again kB is the Boltzmann constant and mX is the mass of an atom or molecule of
species X. Because we have assumed that collisions are almost negligible, an atom with
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resonance frequency n0 and velocity v moving away from the source of radiation will
only absorb radiation very near to (within Dn ¼ b/2p of) the frequency

n ¼ n0 1þ v

c

� �
: (3:9:3)

The fraction of atoms absorbing within the frequency interval from n to n þ dn is thus
equal to the fraction of atoms with velocity in the interval from v to v þ dv. From (3.9.3)
we have (see also Problem 3.12)

v ¼ c

n0
(n� n0) (3:9:4)

and dv ¼ (c/n0) dn. Using (3.9.2) we can determine that this fraction is

dfn(v) ¼ mX

2pkBT

� �1=2
e�mXc2(n�n0)2=2kBTn20 c

n0
dn

� �
: (3:9:5)

Since the absorption rate at frequency nmust be proportional to dfn(v), we may write the
Doppler lineshape function as

S(n) ¼ mXc2

2pkBTn20

� �1=2
e�mXc2(n�n0)2=2kBTn20 : (3:9:6)

Because (3.9.2) was normalized to unity when integrated over velocity, (3.9.6) is nor-
malized to unity with respect to the frequency offset (or “detuning”) n 2 n0, as required
by the definition of a lineshape function. By direct calculation using (3.9.6) we find

ð1
0
dn S(n) ¼ mXc2

2pkBTn20

� �1=2ð1
0
dn e�mXc2(n�n0)2=2kBTn20

¼ mXc2

2pkBTn20

� �1=2ð1
�n0

dm e�mXc2m2=2kBTn20

� mXc2

2pkBTn20

� �1=2ð1
�1

dm e�mXc2m2=2kBTn20

¼ mXc2

2pkBTn20

� �1=2
n0
c

2pkBT
mX

� �1=2" #
¼ 1: (3:9:7)

We have used mXc2=kB� T to replace the lower limit of the integral by 21. (For the
hydrogen atom, for example, mXc

2/kB � 1013K.)
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It is convenient to define

dnD ¼ 2
n0
c

2kBT
mX

ln 2

� �1=2
, (3:9:8)

in terms of which

S(n) ¼ 1
dnD

4 ln 2
p

� �1=2
e�4(n�n0)

2 ln 2=dn2D , (3:9:9)

and we recognize that dnD is the width (FWHM) of the Doppler absorption curve, since
(Fig. 3.15)

S n0 + 1
2dnD

� � ¼ S(n0)e
� ln 2 ¼ 1

2S(n0): (3:9:10)

dnD is called the Doppler width.
The Doppler width is sometimes defined in terms of the 1/e point of the curve rather

than the half-maximum point. Sometimes it is defined as the half width at half-maximum
(HWHM) rather than the FWHM. Thus, one finds formulas in the literature differing by
factors of 2, ln 2, and so forth. It is important to keep these possible differences in mind
when comparing calculations.

In terms of the molecular weightMX, and the wavelength l0 ¼c/n0 of the absorption
line, the Doppler width is

dnD ¼ 2
l0

2RT
MX

ln 2

� �1=2
¼ 2:15� 1011

1
l0

T

MX

� �1=2" #
Hz, (3:9:11)

–2 –1 0
0

Doppler lineshape
S(n)

n – n0

dnD

dnD

1 2

Figure 3.15 Doppler lineshape function.
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where l0 is expressed in nanometers,MX in grams, and T in kelvins. In these same units
the formula

dnD
n0
� 7:16� 10�7

T

MX

� �1=2
(3:9:12)

for the ratio of the Doppler width to the resonance frequency is also useful.
The Doppler width depends only on the transition frequency, the gas temperature, and

the molecular weight of the absorbing species. It is, therefore, much simpler to calculate
than the collision-broadened width, which involves the collision cross section. As an
example, consider the 632.8-nm line of Ne in the He–Ne laser. Since MNe ¼ 20.18 g,
we obtain from (3.9.11) the Doppler width

dnD � 1500MHz (3:9:13)

for T ¼ 400K. For the 10.6-mm line of CO2 and the same temperature, however, we find
a much smaller Doppler width:

dnD � 61MHz: (3:9:14)

3.10 THE VOIGT PROFILE

Doppler broadening is an example of what is called inhomogeneous broadening. The
term inhomogeneous means that individual atoms within a collection of otherwise iden-
tical atoms do not have the same resonant response frequencies. Thus, atoms in the col-
lection can show resonant response over a range of frequencies. In the Doppler case this
is because nominally identical individual atoms can have different velocities. These
different velocities serve as tags or labels for the individual atoms, and any discussion
of the behavior of a sample of such atoms must take account of all the velocity labels.

There are other possible inhomogeneities that have the same effect as the Doppler
distribution of velocities. For example, impurity atoms embedded randomly in a crystal
are subjected to different local crystal fields due to strains and defects. These have the
effect of shifting the resonance frequency of each atom slightly differently. The distri-
bution of such shifts acts very much like the Doppler distribution and gives rise to an
inhomogeneous broadening of the absorption line associated with the nominally identi-
cal impurity atoms subjected to different local fields in the crystal. This type of random
strain broadening is present in the resonance lines of impurity ions such as titanium or
chromium in Ti:sapphire and ruby laser crystals, where the host is Al2O3 (corundum).

The line broadening associated with collisions is different, and is called homo-
geneous. This is because each atom can itself absorb light over a range of frequencies,
due to the interruptions of its dipole oscillations by collisions. Since the collisional
history of every atom is assumed to be the same, no greater collisional broadening is
associated with the collection of atoms than is associated with an individual atom.

In general, we cannot characterize an absorption lineshape of a gas as a pure collision-
broadened Lorentzian or a pure Doppler-broadened Gaussian. Both phase interrupting
collisions and the Doppler effect may play a role in determining the lineshape.

108 ABSORPTION, EMISSION, AND DISPERSION OF LIGHT



We will now derive the absorption lineshape when both collision broadening and
Doppler broadening must be taken into account.

Equation (3.4.26) gives the collision-broadened lineshape for each atom in the gas. If
an atom has a velocity component v moving away from the source of light of frequency
n � n0, its absorption curve is Doppler shifted to

S(n, v) ¼ (1=p)dn0
(n0 � nþ vn=c)2 þ dn20

: (3:10:1)

In other words, the peak absorption for this atom will occur at the field frequency n such
that (3.9.3) is satisfied:

n � n0 þ n0v

c
: (3:10:2)

The lineshape function for the gas is obtained by integrating over the velocity distri-
bution (3.9.2):

S(n) ¼
ð1
�1

dv S(n, v)
MX

2pRT

� �1=2
e�MXv

2=2RT

¼ MX

2pRT

� �1=2dn0
p

ð1
�1

dv e�MXv
2=2RT

(n0 � nþ n0v=c)2 þ dn20

¼ 1

p 3=2

b2

dn0

ð1
�1

dy e�y
2

( yþ x)2 þ b2
, (3:10:3)

where we have made the change of variables

x ¼ (4 ln 2)1=2
n0 � n

dnD

� �
, (3:10:4)

and we have defined

b ¼ (4 ln 2)1=2
dn0
dnD

: (3:10:5)

The lineshape function (3.10.3) is called the Voigt profile.
In the case when the applied field is tuned exactly to the resonance frequency n0, we

have x ¼ 0 and therefore

S(n0) ¼ b2

p 3=2dn0

ð1
�1

dy e�y
2

y2 þ b2
: (3:10:6)

The integral defines a known function:

ð1
�1

dy e�y
2

y2 þ b2
¼ p

b
eb

2
erfc(b), (3:10:7)
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where

erfc(b) ¼ 2

p1=2

ð1
b
du e�u

2
(3:10:8)

is the complementary error function. From (3.10.6) and (3.10.7), therefore, the lineshape
function for the resonance frequency n ¼ n0 has the value

S(n0) ¼ b2

p3=2dn0

p

b
eb

2
erfc(b) ¼ b

p1=2dn0
eb

2
erfc(b)

¼ 4 ln 2
p

� �1=2 1
dnD

eb
2
erfc(b): (3:10:9)

This function is plotted versus the parameter b in Fig. 3.16.
S(n0) depends strongly on the ratio of the linewidths for collision and Doppler broad-

ening. When the collision width dn0 is much greater than the Doppler width dnD, we
have b� 1. For large values of b,

eb
2
erfc(b) � 1

p1=2b
(b� 1): (3:10:10)

In this “collision-broadened limit,” therefore, we have from (3.10.9) the result

S(n0) � 1
pdn0

(b� 1), (3:10:11)

which is exactly (3.4.28) for the case of pure collision broadening. In the limit in which
the Doppler width is much greater than the collision-broadenedwidth, on the other hand,
we have b
 1, in which case the function

eb
2
erfc(b) � 1 (b
 1): (3:10:12)
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b 
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2.52.0

Figure 3.16 The function eb
2
erfc(b).
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Then from (3.10.9)

S(n0) � 1
dnD

4 ln 2
p

� �1=2
(b
 1), (3:10:13)

which is the result (3.9.9) for pure Doppler broadening and n ¼ n0. The limits
dn0 � dnD and dn0 
 dnD thus reproduce the results for pure collision broadening
and pure Doppler broadening, respectively. In general, for arbitrary values of b, S(n0),
given by (3.10.9), must be evaluated using tables of erfc(b).

For the general case of arbitrary values of both the parameter b and the detuning
parameter x, the lineshape function S(n) given by Eq. (3.10.3) must be evaluated from
tabulated values of the more complicated function

ð1
�1

dy e�y
2

( yþ x)2 þ b2
¼ p

b
Re

i

p

ð1
�1

dy e�y
2

xþ yþ ib

 !
¼ p

b
Re[w(xþ ib)], (3:10:14)

where w is the “error function of complex argument.” Numerical values are tabulated in
various mathematical handbooks.

In Table 3.1 we summarize our results for collision broadening and Doppler broad-
ening, as well as the more general case of the Voigt profile.

TABLE 3.1 Collision, Doppler, and Voigt Lineshape Functions

Collision-Broadening Lineshape

S(n) ¼ (1=p)dn0
(n� n0)

2 þ dn20

dn0 ¼ collision rate
2p

Doppler-Broadening Lineshape

S(n) ¼ 0:939
dnD

e�2:77(n�n0)
2=dn2D

dnD ¼ 2:15� 105
1
l0

T

M

� �1=2" #
MHz

T ¼ gas temperature (K)
M ¼ molecular weight (g) of absorber
l0 ¼ wavelength (nm) of absorption line

Voigt Lineshape

S(n) ¼ 0:939
dnD

Rew(xþ ib)

x ¼ 1:67
n0 � n

dnD

b ¼ 1:67 dn0
dnD

w ¼ error function of complex argument
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† Without going to numerical tables, and even without a study of the asymptotic properties of
w(x þ ib), it is possible to evaluate the Voigt integral (3.10.3) in several limits because both fac-
tors in the integrand are normalized lineshapes themselves. There are three limits of interest, as
shown in Fig. 3.17.

Collisional Limit (dn0 � dnD) In this case S(n, v) is very broad and slowly varying
compared to the narrow Gaussian velocity distribution (Fig. 3.17a). Since the Gaussian is
normalized to unity, it acts like the delta function d(v), and the Voigt integral reduces
to S(n) ¼ S(n, v ¼ 0), which is just the original collisional Lorentzian lineshape given
in (3.4.26).

Doppler Limit (dnD � dn0) In this case the reverse is true (Fig. 3.17b), and the collisional
function S(n, v) acts like the delta function d(n0 2 n þ vn/c). Thus, the Voigt integral gives back
the Gaussian function (3.9.9). Except at high pressures or in cases where the Doppler distribution
is altered by atomic beam collimation it is usually valid to assume that the inequality dnD � dn0
is accurate and the Doppler limit applies.

Far-Wing Limit (jn� n0j � dnD, dn0) This case refers to the spectral region far from line
center, far outside the half widths of either the collisional or Doppler factors in the Voigt inte-
grand. Thus, the integrand is the product of two peaked functions. Each peak falls in the
remote wing of the other function (see Fig. 3.17c). Here the qualitative difference between
Gaussian and Lorentzian functions is significant. The Gaussian is much more compact. It falls
to zero much more rapidly than the Lorentzian. Because the Lorentzian’s wings are falling rela-
tively slowly, as 1/n2 for large n, it still has nonzero value at the position of the Gaussian peak.
However, the value of the Gaussian function is effectively zero by comparison near the
Lorentzian’s peak. Thus, the contribution of the Gaussian function in the Lorentzian wing is
much greater than that of the Lorentzian function in the Gaussian wing, and the Voigt integral
can be replaced by (3.4.26) in its far wing:

S(n) �! dn0=p

(n�n0)2
: (3:10:15)

This result, which can be derived more formally from the asymptotic behavior of the
complementary error function, is anomalous in the sense that the lineshape behaves
like a Lorentzian in the far wing even if the broadening is principally Doppler, not
collisional (dnD � dn0). †

3.11 RADIATIVE BROADENING

Under most circumstances in gaseous media the broadening of spectral lines is due
mainly to collisions and atomic motion. However, even if these effects could be neg-
lected, a spectral line would still have a nonvanishing “natural” width. This natural or
radiative line broadening is associated with spontaneous emission.

G 

(a) (b) (c)

L 

Collision 

G 
G L L 

Doppler Far-wing 

Figure 3.17 Sketch of factors in the integrand of (3.10.3) in three limiting cases: (a) collision-
broadened limit, (b) Doppler-broadened limit, and (c) far-wing limit.
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If A2 and A1 are the spontaneous emission rates of the upper and lower states, respect-
ively, of a transition, then the radiative lineshape given by quantum theory is the
Lorentzian function

S(n) ¼ dnrad=p

(n� n0)2 þ dn2rad
, (3:11:1)

where the radiative linewidth dnrad is

dnrad ¼ 1
4p

(A2 þ A1): (3:11:2)

The total spontaneous emission rates of the two states, A2 and A1, are each the sum of
spontaneous emission rates to all possible lower states. In particular, A2 includes A21, the
rate of spontaneous emission on the 2! 1 transition. Thus, if state 1 is the ground state
and state 2 the first excited state of an atom, then A2 ¼ A21, A1 ¼ 0, and dnrad ¼ A21/4p.

In a gas the total homogeneous linewidth of a transition is dnh ¼ dn0 þ dnrad, where
dn0 is the width due to collision broadening. As the pressure goes to zero, dn0 also goes
to zero and the only contribution to the homogeneous linewidth is dnrad. If furthermore
the inhomogeneous (Doppler) broadening is negligible, then the line is homogeneously
broadened with lineshape function (3.11.1). Unlike other sources of line broadening,
spontaneous emission cannot ordinarily be reduced by changing certain variables
such as pressure or temperature in an experiment. This is why the broadening due to
spontaneous emission is called natural line broadening: the term “natural” is meant to
imply that the linewidth dnrad is immutable, that is, that dnrad is fundamentally the smal-
lest possible linewidth that can be realized in any experiment. This is not strictly true,
however. We will see, for instance, that the spectrum of laser radiation can be much
narrower than the natural linewidth of the laser transition.

† As remarked following Eq. (3.12.19), the spontaneous emission rate, and therefore dnrad, is
changed from its “free-space” value when the emission occurs in a host medium of refractive
index n(n0)= 1. The spontaneous emission rate can also be changed by placing the emitting
atom inside a cavity in which only certain resonant frequencies are possible. If the transition fre-
quency n0 is not an allowed cavity mode frequency, there is no spontaneous emission at n0.
Similarly, if n0 is a cavity mode frequency, the spontaneous emission rate will vary with the pos-
ition of the atom inside the cavity. The spontaneous emission rate also varies, for instance, with
the distance of an atom from a reflecting surface. All of these effects have been observed and
studied experimentally under the rubric of “cavity QED” (cavity quantum electrodynamics).

Radiative broadening can be understood as a consequence of the finite lifetime of the excited
state. Any process that causes population to be removed from states 1 and 2 at the rates A1 and A2

will result in a (homogeneous) linewidth of the form (3.11.2). Note, however, that the collisional
linewidth dn0 does not involve population changes but only “elastic” collisions that, classically
speaking, disrupt the electron oscillations without changing its energy (Section 3.8). The “life-
time” in this case is the average time between collisions. Population-changing collisions make
a smaller contribution than dn0 to the homogeneous linewidth because the probability of a popu-
lation change in a collision is smaller (often much smaller) than one.

It follows from these remarks that stimulated emission and absorption should also produce
a homogeneous line broadening. This power broadening is discussed in the following
chapter. †
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3.12 ABSORPTION AND GAIN COEFFICIENTS

We now consider the propagation of narrowband radiation in a medium of atoms having
a transition frequency equal, or nearly equal, to the frequency of the radiation. Our goal
is to derive an equation describing the propagation of the intensity In of the field. A more
rigorous treatment is given in Chapter 9.While the treatment here is simplified, it yields a
correct and very important formula for the absorption coefficient in the case of attenu-
ation of light in an absorbing medium, and for the gain coefficient for the amplification
of light that occurs in a laser.

The intensity In is equal to the field energy density un times thewave propagation velo-
city. The rate at which electromagnetic energy passes through a plane cross-sectional area
A at z is In(z)A, and at an adjacent plane at z þ Dz this rate is In(z þ Dz)A; the difference is

[In(zþ Dz)� In(z)]A ffi In(z)þ @In
@z

Dz� In(z)

� 
A ¼ @

@z
(InA)Dz (3:12:1)

in the limit inwhichDz is verysmall. This equationgives the rate atwhich electromagnetic
energy leaves the volume A Dz, that is,

@

@t
(unADz) ¼ � @

@z
(InA)Dz, (3:12:2)

where un is the field energy density. Since A and Dz are constant, and un ¼ In/c, we may
write this equation in the form

1
c

@In
@t
þ @In

@z
¼ 0, (3:12:3)

the so-called equation of continuity. Equation (3.12.3) is an example of Poynting’s theo-
rem, in one space dimension, and is applicable to a plane wave propagating in vacuum.

If the wave propagates in a medium, however, we must replace the zero on the right-
hand side of (3.12.3) by the rate per unit volume at which electromagnetic energy
changes due to the medium. We can calculate this from the rate of change of the
atomic level populations due to both absorption and stimulated emission. Letting N1

be the number of atoms per unit volume in the lower energy level of the resonant tran-
sition, and N2 the number per unit volume in the upper level, we can write the rate of
change of the energy per unit volume in the medium due to stimulated emission and
absorption as [recall Eq. (3.7.19)]

hn
dN2

dt
¼ �s (n)In N2 � g2

g1
N1

� �
¼ � hn

c
InS(n)B21 N2 � g2

g1
N1

� �

¼ �hnB21unS(n) N2 � g2
g1

N1

� �
: (3:12:4)

Conservation of energy demands that the rate of change of field energy be minus the rate
of change of the energy of the atoms of the medium. Thus, the change in intensity due to
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stimulated emission and absorption is described in the plane-wave approximation by
the equation

1
c

@

@t
þ @

@z

� �
In ¼ s (n) N2 � g2

g1
N1

� �
In: (3:12:5)

It is convenient to group the factors multiplying In on the right-hand side into a single
coefficient g(n) having units of (length)21:

g(n) ¼ s (n) N2 � g2
g1

N1

� �
¼ l2A21

8p
N2 � g2

g1
N1

� �
S(n): (3:12:6)

Depending on whether N22 (g2/g1)N1 is positive or negative, g(n) is called the gain
coefficient or the absorption coefficient, respectively. Thus, if N22 (g2/g1)N1,0,
we define the (positive) absorption coefficient as

a(n) ¼ l2A21

8p
g2
g1

N1�N2

� �
S(n) [absorption coefficient, (g2=g1)N1 . N2]: (3:12:7)

An important special case is that in which practically all the atoms are in their ground
states, so that N2 � 0 and N1 � N, the total number of absorbing atoms per unit
volume of the medium. In this case

a(n) � l2A21

8p
g2
g1

NS(n): (3:12:8)

The terms absorption coefficient and gain coefficient are easily understood by con-
sidering the temporal steady state in which In is independent of time and varies only
with the distance z of propagation in the plane-wave approximation we are assuming.
Then (3.12.5) simplifies to

dIn
dz
¼ g(n)In: (3:12:9)

If furthermore the numbers of atoms per unit volume in the two levels of the resonant
transition are independent of In and z, so that g(n) is independent of In and z, then

In(z) ¼ In(0)e
g(n)z: (3:12:10)

Thus, the intensity decreases or increases exponentially with distance of propagation z in
the medium, depending on whether the medium is absorbing [a(n) . 0] or amplifying
[g(n) . 0], respectively. The exponential attenuation formula In(z) ¼ In(0) e

2a(n)z for an
absorber is often called Lambert’s law or Beer’s law, and a(n)21 is called the Beer length
(Problem 3.14).

The approximation of exponential attenuation of intensity in an absorber or exponen-
tial growth in an amplifier is a useful and often very accurate one. However, we cannot in
general assume, as we have done in obtaining (3.12.10), that the atomic level
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populations are independent of the field intensity. In general, the intensity In and the
populations N1 and N2 are not independent but are determined by the coupled differen-
tial equations (3.12.5) and (3.7.5). These equations account not only for the change in
intensity as the field propagates in the medium but also for the change in the level popu-
lations of the atoms due to absorption and emission induced by the field. That is, these
equations determine the field intensity and the atomic level populations self-consistently.

More often than not we must account for changes in intensity and atomic level popu-
lations produced by effects other than absorption, stimulated and spontaneous emission.
In other words, it is generally necessary to add more terms to Eqs. (3.12.5) and (3.7.5).
For example, inelastic collisions of atoms will causeN2 andN1 to change in ways that are
not accounted for by Eqs. (3.7.5), and these equations certainly do not account for the
physical mechanisms responsible for creating “gain” [g(n) . 0] in a laser. And there
may be scattering, diffraction, and other “loss” processes that cause the field intensity
to change but are not included in Eq. (3.12.10). We shall deal with such effects in the
following chapters.

Expression (3.12.6) for the gain coefficient may be generalized to include the refrac-
tive index of the host medium. This generalization, which is derived below, is11

g(n) ¼ l2A21

8pn2
N2 � g2

g1
N1

� �
S(n), (3:12:11)

where n is the refractive index at the frequency n. This modification is significant in
solid-state lasers, where n may differ appreciably from unity.

† To derive this result we first return to the thermal radiation energy density (3.6.1) and see
how it is modified when the radiation is in a medium with refractive index n(n). The denominator
in (3.6.1) is unaffected by the refractive index, but the following argument shows that the numer-
ator, the number of modes per unit volume in the frequency interval [n, n þ dn], must depend
upon n(n).

Let the medium of refractive index n(n) be a box with sides of length Lx, Ly, and Lz, such that
radiation of frequency n consists of standing waves inside the box. Along each of the x, y, and z
directions there is one node of the field of frequency n for each integral multiple of
the wavelength. The number of nodes along the x direction, for instance, is Nx ¼ kxLx/2p,
where kx is the x component of the wave vector k and jkj ¼ k ¼ 2pn(n)n/c is the wave
number (see Sec. 8.2). A small change Dkx in kx, therefore, implies a change DNx ¼ Lx �
Dkx/2p in the number of nodes along the x direction. (We assume Nx � 1.) Equating the
change in the number of nodes with the change in the number of modes, we see that
the number of modes of frequency n in a volume Dkx Dky Dkz ! d3k of “k space” must be
DNx DNy DNz ¼ [LxLyLz/(2p)

3]d3k ¼ Vd3k/(2p)3, where V is the volume of the box.
Multiplying by 2 in order to account for the two independent (orthogonal) polarizations for
each frequency and direction of propagation, we obtain the number of field modes of
frequency n per unit volume,

dN n ¼ 2

(2p)3
d3k ¼ 2

(2p)3
4pk2 dk, (3:12:12)

in the volume element d3 k ¼ 4p k2 dk of k space.

11l in this expression, and throughout this book, is the wavelength in vacuum.
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If n(n) ¼ 1, k ¼ 2pn/c and

dN n ¼ 8pn2

c3
dn: (3:12:13)

This result for the number of field modes per unit volume in the frequency interval [n, n þ dn]
has already been used (Section 3.6), and we have now derived it.

If n(n) = 1,

dN n ¼ 2
8p3

4p
2pnn
c

� �2 2p
c

d

dn
[nn] dn, (3:12:14)

where we have used the fact that dk ¼ d[2pnn/c] ¼ (2p/c)d[nn].
Suppose that d[nn]/dn ¼ n dn/dn þ n � n at the frequency n. Then

dNn � 8p n3n3

c3
dn: (3:12:15)

In this approximation the spectral energy density of thermal radiation is [cf. (3.6.20)]

r(n) ¼ hn(dNn=dn)

ehn=kBT � 1
¼ 8phn3n3=c3

ehn=kBT � 1
: (3:12:16)

According to Eq. (3.6.15), therefore,

A21

B21
¼ 8phn3(n0)n30

c3
, (3:12:17)

where A21 and B21 are now the Einstein A and B coefficients for the case where the atom is inside a
host medium of refractive index n(n).

Equation (3.12.4) implies that the stimulated emission cross section may be expressed as

s (n) ¼ hn
B21un
In

S(n): (3:12:18)

If we relate the intensity to the energy density by the formula In ¼ (c/n)un, then (3.12.18) gives

s (n) ¼ hn
n

c
S(n)

c3A21

8pn3n3
¼ l2A21

8pn2
S(n), (3:12:19)

and, using this result for the cross section in (3.12.6), we obtain (3.12.11).
The terms A21, B21, In, and un all depend on the refractive index. In the formula (3.12.11) for

the gain coefficient, A21 is the spontaneous emission rate in the host medium; it may be shown
that, aside from a possible Lorenz–Lorenz local field correction factor, the spontaneous emission
rate in the medium is n(n0) times the rate in free space in the case of electric dipole transitions. In
this case the gain (or absorption) coefficient is actually 1/n times its value when there is no “host”
medium of refractive index n.

The generalization of (3.12.15) when d[nn]/dn is not well approximated by n is

dNn ¼ 8pn2n3

c3
d

dn
[nn] dn ¼ 8pn2n3

c2vg
dn, (3:12:20)
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where

vg ;
c

d[nn]=dn
(3:12:21)

is the group velocity at frequency n (Section 8.3). Note that (3.12.15) differs from (3.12.20) by the
replacement of the group velocity by the phase velocity, c/n. Equation (3.12.11) is valid even if
the group velocity is not well approximated by the phase velocity. In this case (3.12.17) is
replaced by A21=B21 ¼ 8phn2(n0)n30=vgc

2, and the formula In ¼ (c/n)un by In ¼ vgun. This
leads again to the cross section s (n) ¼ (l2A21/8pn

2)S(n) and therefore to Eq. (3.12.11) for
the gain coefficient. †

3.13 EXAMPLE: SODIUM VAPOR

Application of the formulas derived in this chapter to specific absorbing or amplifying
media requires some information about the absorbing or emitting species. In addition to
the obvious requirement that we know at what wavelengths the atoms or molecules
absorb or emit light, we must know the strength of the transitions as characterized, for
instance, by a spontaneous emission rate or an oscillator strength. It is a highly nontrivial
matter in general to calculate such quantities. Normally, we obtain such information
from tabulations made by sophisticated computations or, more commonly, by laboratory
measurements.

We will consider as an example the absorption of (yellow) light whose frequency is
near the D lines of atomic sodium (Section 3.1). The spectroscopic features of the D lines
are well known, and we begin by summarizing some of the most important of these
features.

The single valence electron in the (3s) ground level of sodium is characterized by the
spin angular momentum quantum number S ¼ 1

2 as well as the orbital angular momen-
tum quantum number L ¼ 0. The orbital, spin, and total (orbital plus spin) angular
momentum vectors are denoted by L, S, and J, respectively, with J ¼ L þ S.
According to quantum theory the (2J þ 1) allowed values of the angular momentum
quantum number J are jL 2 Sj, jL 2 Sj þ1, . . . , L þ S. Since L ¼ 0 and S ¼ 1

2, J has
the single allowed value 1

2. The ground state of sodium is labeled 3S1/2, the 3 correspond-
ing to the principle quantum number n, S indicating an s orbital (L ¼ 0), and the sub-
script 12 being the value of J.

The first excited level is a 3p orbital (L ¼ 1), so that the allowed values of J, according
to the rule given in the preceding paragraph, are 1

2 and
3
2. The different states correspond-

ing to these values of J are labeled 3P1/2 and 3P3/2, respectively, and have different ener-
gies as indicated in Fig. 3.18. This splitting of the 3p configuration into two energy
levels is an example of fine structure. The 589.6-nm 3S1=2 $ 3P1=2 transition in
sodium is called the D1 line, while the 589.0-nm transition 3S1=2 $ 3P3=2 is referred
to as the D2 line. The splitting of the D lines is relatively small, corresponding to a fre-
quency of about 520 GHz, and consequently its observation requires a spectrometer of
moderately high resolution.

At a much finer scale of resolution it is observed that all three levels in Fig. 3.18 have
a hyperfine structure, as shown in Fig. 3.19. Hyperfine structure arises from the fact that
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there is an intrinsic (spin) angular momentum I of the nucleus in addition to the orbital
and spin angular momenta of the electrons. The angular momentum F obtained by the
addition of I and J has allowed quantum numbers found by applying again the quantum-
mechanical rule for the addition of two angular momenta: F ¼ jJ2 Ij, jJ2 Ij þ1, . . . ,
J þ I. Since I ¼ 3

2 for the sodium nucleus, we can have either F ¼ 3
2� 1

2

� �
or

F ¼ 3
2þ 1

2

� �
for 3S1/2, and these states have an energy difference corresponding to

about 1772 MHz. For 3P3/2, similarly, F can have the values 0, 1, 2, or 3 obtained
from J ¼ I ¼ 3

2, while for 3P1/2 F can be 1 or 2. The hyperfine splittings of the 3P
levels are considerably smaller than the 1772-MHz hyperfine splitting of 3S1/2
(Fig. 3.19.)

In the absence of any magnetic field there is associated with each F level a set of
2F þ1 degenerate substates, MF ¼ 2F, 2Fþ1, . . . , F2 1, F. The D2 line, for
instance, actually involves a total of 24 states (Fig. 3.19).

We will consider specifically the absorption of narrowband radiation with frequency
n near the D2 resonance. For T � 200K and vapor pressures .0:1 Torr, the D2 line is

D2 D1 

3P1/2

3S1/2 

3P3/2 

Figure 3.18 The sodium D lines associated with fine structure splitting.
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F = 2

F = 1

F = 1

F = 0

3S1/2

3P3/2

Figure 3.19 Hyperfine splittings of the sodium 3S1/2 and 3P3/2 levels. The energy differences indi-
cated are not to scale.
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Doppler broadened, with Doppler width [Eq. (3.9.11)]

dnD ¼ 2:15� 1011
1
589

200
23

� �1=2" #
ffi 1GHz: (3:13:1)

This is less than the 1.772-GHz hyperfine separation of the 3S1/2(F ¼ 1) and 3S1/2(F ¼
2) levels, but large compared to the separation of the different 3P3/2 levels. Therefore we
will ignore the hyperfine splittings of the 3P3/2 level, giving a degeneracy 7 þ 5 þ 3 þ
1 ¼ 16 for it. (See the black-dot section below.)

If the population of 3P3/2 is negligible, the rate of change due to absorption of the
population of 3S1/2(F ¼ 1) is simply [cf. Eq. (3.7.13)]

dN (1)
1

dt

" #
abs

¼ �
X1

m1¼�1

X
m2

R(m1, m2)N (1)
1 (m1), (3:13:2)

where the superscript (1) is used to designate 3S1/2(F ¼ 1) states. Thus,N (1)
1 (m1), with

m1 ¼ 21, 0, 1, are the populations of atoms in the three 3S1/2(F ¼ 1) states. In thermal
equilibrium at T � 200K the 3S1/2(F ¼ 1)23S1/2(F ¼ 2) splitting is small compared
to kBT, so that each of the eight (¼ g1) 3S1/2 states has practically the same popu-
lation, namely N (1)

1 (m1) ¼ N1=g1, where N1 is the total 3S1/2 population. Therefore,
from (3.7.16),

dN (1)
1

dt

" #
abs

¼ �N1

g1

X1
m1¼�1

X
m2

R(m1, m2)

¼ �N1

g1
g2

1
c
InS

(1)(n)B21

¼ � l2A(1)

8phn
g2
g1

InS
(1)(n)N1, (3:13:3)

where

S(1)(n) ¼ 1
dnD

4 ln 2
p

� �1=2
e�4(n�n

(1)
0 )2 ln 2=dn2D , (3:13:4)

n(1)0 is the 3S1/2(F ¼ 1)! 3P3/2 transition frequency, and A
(1) is the rate of spontaneous

emission from 3P3/2 due to 3P3/2! 3S1/2(F ¼ 1) transitions. Similarly, using the
superscript (2) to designate 3S1/2(F ¼ 2) states, we have

dN(2)
1

dt

" #
abs

¼ � In
hn

l2A(2)

8p
g2
g1

N1S
(2)(n), (3:13:5)
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where A(2) is the spontaneous emission rate of 3P3/2 due to 3P3/2! 3S1/2(F ¼ 2)
transitions and

S(2)(n) ¼ 1
dnD

4 ln 2
p

� �1=2
e�4(n�n

(2)
0 )2 ln 2=dn2D , (3:13:6)

with n(2)0 the 3S1/2(F ¼ 2) ! 3P3/2 transition frequency, n(2)0 ¼ n(1)0 � 1772 MHz.
The total rate of change of 3S1/2 population due to absorption is [dN1=dt]abs ¼
[dN(1)

1 =dt]abs þ [dN(2)
1 =dt]abs, that is,

dN1

dt

� 
abs

¼ � In
hn

l2

8p
g2
g1

N1 A(1)S(1)(n)þ A(2)S(2)(n)

 �

: (3:13:7)

Equivalently, the absorption cross section for narrowband radiation with frequency near
the D2 line is

s(n) ¼ l2

8p
g2
g1

A(1)S(1)(n)þ A(2)S(2)(n)

 �

, (3:13:8)

and the absorption coefficient is a(n) ¼ N1s (n).
The sodium 3P3/2 radiative lifetime is known experimentally to be about 16 ns,

corresponding to a spontaneous emission rate A21 ¼ A(1) þ A(2) ¼ 1/(16 ns) ¼ 6.2 �
107 s21. It might be expected, since there are five possible lower states in 3P3/2!
3S1/2(F ¼ 2) spontaneous emission, and three possible lower states for 3P3/2!
3S1/2(F ¼ 1), that A(2) ¼ 5

3

� �
A(1) and therefore that A21¼ 8

3

� �
A(1), A(1)¼ 3

8

� �
A21, and

A(2) ¼ 5
8

� �
A21. These relations are in fact correct. They imply that

s (n) ¼ l2A21

8p
g2
g1

3
8
S (1)(n)þ 5

8
S (2)(n)

� 
: (3:13:9)

For T ¼ 200K and n ¼ n(2)0 ,

s (n) ffi l2A21

8p
g2
g1

5
8

1
dnD

4 ln 2
p

� �1=2

¼ (5890� 10�10 m)2

8p
(6:2� 107 s�1)

16
8

� �
5
8

� �

� 1
1:08� 109 s�1

4 ln 2
p

� �1=2
¼ 9:3� 10�16 m2: (3:13:10)

The cross section (3.13.9) is plotted in Fig. 3.20 for several different values of the temp-
erature T, each of which implies a different Doppler width. As discussed in Section 14.1,
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the dependence of the sodium absorption cross section on temperature has been used to
measure the temperature variation in the mesosphere.

The transmission coefficient for narrowband radiation of frequency n near the D2

resonance is

In(z)
In(0)

¼ e�a(n)z ¼ e�N1s (n)z, (3:13:11)

where z is the distance of propagation through the sodium vapor. The exponential
dependence on N1s (n)z, together with the curves for s (n) shown in Fig. 3.20,
indicates how strongly dependent on frequency the transmission coefficient can be
(Problem 3.17).

These results are based on the assumption that the 3P3/2 population is very small,
so that (3.13.2), (3.13.3), and (3.13.5) are valid. In other words, we have assumed
that the effect of stimulated emission can be neglected in writing the rate equations
for N (1)

1 and N (2)
1 . For the population of 3P3/2 to remain small, its loss rate A21 due to

spontaneous emission—which is assumed here to be larger than any collisional deexci-
tation rate—must be large compared to its growth rate s (n)In=hn due to absorption:
A21 � s (n)In=hn, or

In 
 hnA21

s (n)
� 20 kW=m2 ¼ 2W=cm2 (3:13:12)

if we assume n ¼ n(2)0 , in which case s (n) is given by (3.13.10). In the following chapter
we discuss in more detail what it means for a field intensity to be large or small in its
effect on level populations.
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Figure 3.20 Absorption cross section of the sodium D2 line [Eq. (3.13.9)] for different values of the
temperature T. The hyperfine splitting shown is obviously unresolved at T ¼ 5800K and so inaccess-
ible to Fraunhofer when he first resolved and named D2 as distinct from D1.
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† Note that, if the 3S1/2(F ¼ 1)23S1/2(F ¼ 2) splitting were very small compared to the
Doppler width, we would have S(1)(n) ffi S(2)(n) ; S(n) and

s(n) ffi l2A21

8p
g2
g1

3
8
þ 5
8

� 
S(n) ¼ l2A21

8p
g2
g1

S(n): (3:13:13)

We would in effect be justified in ignoring the energy difference between the F ¼ 1 and F ¼ 2
levels.

The same sort of arguments as used in Section 3.5 for broadband radiation can be made
to show that, if the radiation has a spectral width dn large compared to the 3S1/2(F ¼ 1)2
3S1/2(F ¼ 2) separation, then the absorption is also given approximately by (3.13.13). In other
words, if either the spectral width of the transition or the spectral width of the radiation is large com-
pared to the 3S1/2 hyperfine splitting, we can treat 3S1/2 as a single “unresolved” level. In particular,
this approximation can bemade if the radiation is in the form of a pulse of duration tp(�1=dn) that is
short compared to 1/(2p �1772MHz) ¼ 90 ps.

Such considerations can also be applied, of course, to excited states and can be used to justify
our treatment of 3P3/2 as a single unresolved level in the calculation of s(n). †

3.14 REFRACTIVE INDEX

Recall the classical oscillator formula (3.4.8) for the electron displacement due to an
applied electric field 1̂E0 cos(vt � kz):

x(t) ¼ 1̂
e

m
E0

v2
0 � v2

(v2
0 � v2)2 þ 4b2v2

cos(vt � kz)þ 2bv

(v2
0 � v2)2 þ 4b2v2

sin(vt � kz)

� 
:

(3:14:1)

The first term in brackets is in phasewith the electric field, whereas the second term is “in
quadrature,” that is, its phase differs by p/2 from that of the field. It is clear from the
discussion leading to Eq. (3.4.20) that the in-quadrature part of the induced electric
dipole moment d ¼ ex is responsible for absorption (or stimulated emission) of light.
See also Problem 3.18.

The in-phase part of the induced dipole moment is responsible for the refractive
index.12 According to basic electromagnetic theory [see Eq. (8.2.21)], the refractive
index at frequency v of a medium of N atoms per unit volume is given by the formula
n2(v) ¼ 1 þ Na(v)/e0, where the polarizabilitya(v) is defined by writing the in-phase
component of d as a1̂E0 cos (vt � kz). Thus, from Eq. (3.14.1),

a(v) ¼ e2

m

v2
0�v2

(v2
0�v2)2 þ 4b2v2

(3:14:2)

and

n2(v)�1 ¼ Ne2

me0

v2
0�v2

(v2
0�v2)2 þ 4b2v2

: (3:14:3)

12The theory of the propagation of light, including refractive effects, is treated in Chapters 8 and 9.

3.14 REFRACTIVE INDEX 123



As in the case of spontaneous emission and absorption, this result of the classical
oscillator model must be modified to include the oscillator strength f :

n2(v)�1 ¼ Ne2f

me0

v2
0�v2

(v2
0�v2)2 þ 4b2v2

: (3:14:4)

Unlike absorption, the refractive index is usually attributable to nonresonant transitions,
that is, transitions such that jv2

0�v2j � bv. In this case

n2(v)�1 � Ne2f

me0

1

v2
0�v2

: (3:14:5)

In this nonresonant situation, however, no one transition is necessarily dominant, and so
we must add the contributions of all transitions connected to the ground state in which
the atoms are presumed (for now) to reside. Thus, if the transitions from the ground state
have oscillator strengths fj and transition frequencies vj, the refractive index at the radi-
ation frequency v is given by the formula

n2(v)�1 ¼ Ne2

me0

X
j

fj
v2
j �v2

: (3:14:6)

This result applies when there is one type of atom or molecule in the medium; more
generally we simply add the contributions of the different species. In a gas, further-
more, the density N is generally sufficiently low that n(v) � 1 and therefore n221 ¼
(n21)(n þ 1) � 2(n21). Thus, for a gas consisting of a single type of atom or molecule
with number density N, the formula for the refractive index is approximately

n(v) ¼ 1þ Ne2

2me0

X
j

fj
v2
j � v2

: (3:14:7)

It is interesting to relate this result to a formula that is often used in tabulations of the
refractive index of gases. For this purpose we first rewrite (3.14.7) in terms of radiation
wavelength l (¼ 2pc/v) and transition wavelengths lj (¼ 2pc/vj):

n(l) ¼ 1þ Ne2

8p2e0mc2
X
j

l2j fj

1� l2j =l
2 : (3:14:8)

As noted in the Introduction, electronic resonances in molecules (and in many atoms)
tend to lie in the ultraviolet, in which case lj 
 l for optical wavelengths l. In this
case we can approximate (1�l2j =l2)�1 by the first two terms of its binomial series

expansion, 1þ l2j =l
2:

n(l)� 1 � A1(1þ B1=l
2), (3:14:9)
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where

A1 ¼ Ne2

8p2e0mc2
X
j

fjl
2
j (3:14:10)

and

B1 ¼
P

j fjl
4
jP

j fjl
2
j

: (3:14:11)

An empirical relation of the form (3.14.9) was proposed by Cauchy in 1830, before
the electromagnetic theory of light. Our derivation of Cauchy’s formula gives explicit
expressions for the coefficients A1 and B1. Unfortunately, it is difficult to calculate the
numerical values of A1 and B1 for a given atom or molecule because we require the tran-
sition wavelengths and the oscillator strengths of all transitions connected to the ground
state, including transitions to “continuum” states in which the electrons are unbound,
that is, in which an atom is ionized.

For a gas at STP [P ¼ 760 Torr, T ¼ 273K, and, from Eq. (3.8.20), N ¼
2.69 �1025 m23],

A1 ¼ 1:2� 1010
X
j

fjl
2
j : (3:14:12)

Consider as an example a gas of ground-state helium atoms, for which the 58.4-nm
transition from the ground state to the first excited state has an oscillator strength of
about 0.28. If we include only the contribution of this transition to the summations
in (3.14.10) and (3.14.11), we obtain A1¼1.2� 1025 and B1 ¼ 3.4 � 10215 m2, in
contrast to the tabulated (measured) values of 3.48�1025 and 2.3�10215 m2,
respectively.13 Adding the contributions of transitions from the ground state to
higher-energy bound states does not change these results very significantly because
the oscillator strengths for these transitions are considerably smaller than that for
the transition to the first excited state. We conclude that transitions to the conti-
nuum are mainly responsible for the discrepancy between our simple calculation
and the measured values of the Cauchy constants for helium.

Cauchy’s formula correctly accounts for the fact that most transparent materials we
encounter daily (e.g., water, air, glass) have refractive indices greater than unity at visible
wavelengths. According to our analysis, this is a consequence of these materials having
resonance wavelengths lj that are small compared to optical wavelengths (which lie
roughly between 400 and 700 nm). It also follows from (3.14.9) that dn/dl , 0,
which is also a familiar feature of refractive indices in the visible: A glass prism, for
instance, causes violet to be dispersed more than red when it separates white
light into its spectral components. In fact, the increase of n(l) with decreasing l (dn/
dl , 0) is sufficiently ubiquitous that it is called “normal dispersion.” An example of
normal dispersion appears in Fig. 3.21.

13M. Born and E. Wolf, Principles of Optics, 7th ed., Cambridge University Press, Cambridge, 1999, p. 101.
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It is also interesting to consider the case in which the frequency of the radiation is
much greater than the resonance frequencies of the medium. The simplest example
occurs for free electrons, for which there is no binding force. The resonance frequencies
vj are then zero, and the dispersion formula (3.14.6) reduces to [see Eq. (3.14.16)]

n(v) ¼ 1� Ne2

e0mv2

� �1=2
¼ 1� v2

p

v2

 !1=2
, (3:14:13)

where N is now the density of free electrons (Problem 3.20) and

vp ¼ Ne2

me0

� �1=2
(3:14:14)

is called the plasma frequency. In some cases this result is known to be fairly accurate; it
is applicable, for instance, to the upper atmosphere, where ultraviolet solar radiation pro-
duces free electrons by photoionization (Problem 3.20). Another example is the refrac-
tion of X rays by glass. In this case the resonance frequencies of the medium are not zero
but are much less than X-ray frequencies. In both examples the refractive index is less
than one.

If v , vp, the refractive index (3.14.13) is a pure imaginary number. In this case the
free-electron gas will not support a propagating electromagnetic wave, and an incident
wave is instead reflected. This applies, for instance, to the propagation of radio waves in
Earth’s atmosphere. High-frequency FM radio waves are not reflected by the ionosphere
(v. vp), whereas the lower frequency AM waves are. AM radio broadcasts, therefore,
reach more distant points on Earth’s surface (Problem 3.20).

† Consider the limit of Eq. (3.14.6) in which the field frequency v is very large compared to
any of the transition frequencies vj:

n2(v)�1 ¼ � Ne2

e0mv2

X
j

fj: (3:14:15)
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Figure 3.21 Refractive index of helium at standard temperature and pressure.
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In this limit the transition frequencies vj are effectively zero, that is, the atom behaves as though
its energy levels form a continuum, as is the case for unbound electrons. It is then plausible that in
this limit the refractive index should be identical to that ofN free electrons per unit volume, which
is given by Eq. (3.14.13). This implies that the oscillator strengths fjmust obey the electric dipole
sum rule

X
j

fj ¼ 1, (3:14:16)

which in fact may be derived using quantum mechanics. Our less rigorous “derivation” of this
sum rule is based on the assumption that each of the N atoms per unit volume has one bound elec-
tron. In the case of Z electrons per atom Eq. (3.14.15) should reduce to n2(v)21 for the case of
NZ free electrons per unit volume, so that the sum rule for a Z-electron atom is

X
j

fj ¼ Z: (3:14:17)

Table 3.2 lists oscillator strengths for the hydrogen atom for “allowed” electric dipole tran-
sitions, i.e., transitions for which D‘ ¼+1.14 The sum of the oscillator strengths of all the
bound–bound 1s2np transitions is 0.565, so that the electric dipole sum rule implies that the
sum of the oscillator strengths for transitions from 1s to continuum states is 0.435. For the 2s
state the corresponding bound–bound and bound–free contributions to the f sums are 0.649
and 0.351. Table 3.2 exemplifies the fact, noted above for helium, that transitions to the first
excited state tend to be stronger than transitions to higher-energy bound states. Note also that
the transitions to continuum states contribute significantly to the sum of the oscillator strengths.
For Z-electron atoms the transitions to continuum states make a contribution � Z to the sum of the
oscillator strengths for all the electrons. Bound–bound transitions of single electrons, such as
those for the valence electrons of the alkali atoms, have oscillator strengths comparable in
magnitude to those of hydrogen. †

We have assumed in our discussion of the refractive index that the N atoms per
unit volume are all in the ground state with high probability, but it is straightforward
to deal with the more general situation where there are Ni atoms per unit volume in

TABLE 3.2 Oscillator Strengths for Some Bound–Bound Transitions of Hydrogen

Initial state 1s 2s 2p 3s 3p 3d

Final state np np ns nd np ns nd np nf

n ¼ 1 — — 20.139 — — 20.026 — — —
n ¼ 2 0.4162 — — — 20.041 20.145 — 20.417 —
n ¼ 3 0.0791 0.435 0.0134 0.696 — — — — —
n ¼ 4 0.0290 0.103 0.0030 0.122 0.484 0.032 0.619 0.011 1.018
n ¼ 5 0.0139 0.042 0.0012 0.044 0.121 0.007 0.139 0.002 0.156

14Selection rules and many other fundamental aspects of atomic theory are discussed in R. D. Cowan, The
Theory of Atomic Structure and Spectra University of California Press, Berkeley, CA, 1981. Useful tabula-
tions of oscillator strengths and formulas for atomic and molecular transitions may be found in Allen’s
Astrophysical Quantities and other sources (see footnote 5).

3.14 REFRACTIVE INDEX 127



energy level Ei. Equation (3.14.7), for instance, generalizes to

n(v) ¼ 1þ e2

2me0

X
i

X
j

Ni fij
v2

ji�v2
, (3:14:18)

where v ji ¼ (Ej�Ei)=h� and fij is the oscillator strength for the i! j transition. In
particular, the contribution to the index from the 1! 2 transition is

n(v)12 ¼ 1þ e2

2me0

N1 f12
v2
21�v2

þ N2 f21
v2
21�v2

� �

¼ 1þ e2

2me0

f12
v2
21�v2

N1 � g1
g2

N2

� �
, (3:14:19)

where we have used Eq. (3.7.26) to relate f21 to f12.

† The sum rule (3.14.17) may be written more generally asX
j

fij ¼
X
j.i

fij þ
X
j,i

fij ¼
X
j.i

fij �
X
j,i

j fijj ¼ Z (3:14:20)

for any level i of an atom. In other words, the sum over oscillator strengths in the electric dipole
sum rule must, in the case of excited states, include both the oscillator strengths for absorption
(positive) and for emission (negative).

The sum rule for oscillator strengths played an important role in the formulation of quantum
theory in the 1920s. It was already known, based on the physical argument we have used in going
from (3.14.15) to (3.14.16), before some of the most important features of quantum mechanics
(e.g., before the Schrödinger equation).

Historically, downward transitions associated with stimulated emission were referred to in
terms of “negative oscillators.” In the case of the refractive index, the term proportional to N2

in Eq. (3.14.19) corresponds to such a negative oscillator. The contribution of negative oscillators
to the refractive index was studied experimentally by R. Ladenburg and H. Kopfermann around
1928. They measured the variation of refractive index with electric current of a discharge tube
filled with neon. According to our theory, for v, v21 in (3.14.19), with neither 1 nor 2 the
ground level, n(v)12 should initially increase with increasing current because electron–atom
collisions produce atoms in excited level 1. With further increase of the current, however, the
rate of growth of n(v)12 with current decreases because excited level 2 has appreciable population
N2 and acts as a negative oscillator. This sort of behavior was observed by Ladenburg and
Kopfermann, thus confirming the role of negative oscillators. †

The atoms or molecules of a medium do not form a continuum but have empty space
between them. As a result, there is a difference between the “mean” field and the actual
field acting on a given atom. In many cases the only practical consequence of this differ-
ence is that the relation between the refractive index and the polarizability a becomes

n2(v)� 1
n2(v)þ 2

¼ Na(v)
3e0

: (3:14:21)

The origin of this “Lorentz–Lorenz relation” is discussed in many textbooks on electro-
magnetism. Note that when the refractive index is close to unity, so that n2(v) þ 2 � 3,
the Lorentz–Lorenz relation reduces to the relation between n and a assumed in
writing (3.14.3).
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3.15 ANOMALOUS DISPERSION

In the preceding section we assumed that the radiation frequency v is far removed from
any absorption frequency of the medium. We now allow for the possibility that the radi-
ation frequency is near an absorption resonance.

Equation (3.14.18) shows that n2(v)21, and therefore the polarizability a(v), is
additive over all the transition frequencies. Thus, we can write

a(v) ¼ ab(v)þ ar(v), (3:15:1)

where ab and ar are the contributions to the polarizability from nonresonant “back-
ground” transitions and resonant transitions, respectively. The nonresonant transitions
may be associated with atoms in the host medium in which the absorbing atoms
reside, or with the absorbing atoms themselves. In either case, from n2 ¼ 1 þ Na/e0,
we have

n2(v) ¼ 1þ
X
j

Nb

e0
abj(v)þ Nr

e0
ar(v), (3:15:2)

where the sum is over all background species.
The first two terms in (3.15.2) determine nb(v), the index of refraction of the back-

ground or host material. Thus, we will write

n2(v) ¼ n2b(v)þ
Nrar(v)

e0
¼ n2b(v) 1þ Nrar(v)

n2b(v)e0

� �

¼ n2b(v) 1þ Nrar(v)
1b(v)

� �
, (3:15:3)

where 1b ¼ n2be0 is the dielectric permittivity of the background. If the resonant atoms
are present in a monatomic beam, then the background material is vacuum or nearly
so, and the background contributions can largely be ignored. Even in an atomic vapor
nb can be taken to be unity to three or four significant figures. However, in laser physics,
the backgroundmaterial is frequently a solid or liquid. For example, the active atoms of a
Ti : sapphire laser are titanium ions thinly dispersed throughout a solid lattice, and the
molecules of a dye laser are dissolved in a liquid solvent. Then nb is significantly differ-
ent from unity, typically in the range 1.3–2.0. Because the resonances of the background
are typically in the infrared or ultraviolet and nb is effectively constant at optical frequen-
cies, we will write nb in place of nb(v) hereafter.

The resonant atoms do not make a correspondingly large contribution since they are
usually present in such small concentrations. The concentration of the chromium ions
in a ruby laser, for example, may be only 1025 per cubic meter or even less, much
smaller than typical solid densities. As a consequence, the last term in (3.15.3) is typi-
cally much smaller than unity. Then, the total index of refraction can be expressed
compactly as follows:

n(v) ¼ nb 1þ Nrar(v)
1b

� �1=2
� nb þ Nrar(v)

2nbe0
, (3:15:4)
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where we have again used 1b ¼ n2be0 after expanding the square root and keeping only
the first term in the binomial series (1 þ x)1/2 ¼ 1 þ x/22 x2/8 þ . . . .

Now ar(v), the polarizability when v is close to a resonant frequency v0, is given
by (3.14.2) with v � v0. Thus, writing v2

0 � v2 ¼ (v0 þ v)(v0�v) � 2v(v0�v),
and introducing the oscillator strength f of the resonant transition, we have

a � e2f

m

2v(v0 � v)

4v2(v0 � v)2 þ 4b2v2
¼ e2f

2mv
v0 � v

(v0 � v)2 þ b2 (3:15:5)

and therefore, from (3.15.4),

n(v) � nb þ Ne2f

4nbe0mv
v0 � v

(v0 � v)2 þ b2 , (3:15:6)

where N ¼ Nr is now the density of resonant atoms. This refractive index is plotted
versus frequency in Fig. 3.22. On the low-frequency side of the resonance frequency,
n(v) increases with increasing frequency, that is, we have “normal dispersion.”
However, when v gets within b of v0, n(v) begins decreasing with increasing fre-
quency. This decrease continues until v is more than b from v0 on the high-frequency
side, whereupon it again increases with increasing frequency. Because most media show
normal dispersion at optical frequencies, the negative slope of the dispersion curve near
an absorption line is called, for historical reasons, anomalous dispersion.

† Anomalous dispersion was observed by R.W.Wood in 1904.Wood studied the dispersion of
light at frequencies near the sodium D lines. The basic idea of Wood’s experiment is sketched in
Fig. 3.23. Light enters a tube in which sodium vapor is produced by heating sodium. The vapor
pressure decreases upward in the tube, so that for normal dispersion the light would be bent down-
ward, in the direction of greater density and refractive index. The vapor thus acts as a kind of
prism. The light emerging from the tube is focused onto the entrance slit of a spectroscope.
Wood writes:

On heating the tube, the sodium prism deviates the rays of different wave-length up or down by differ-
ent amounts, curving the spectrum into two oppositely directed branches. The spectrum on the green
side of the D lines will be found to bend down in the spectroscope, which means that the rays are
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Figure 3.22 Anomalous dispersion curve for a collision-broadened absorption line.
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deviated upwards in passing through the sodium tube, since the spectroscope inverts the image of its
slit. This means that the phase velocity is greater in the sodium vapor than in vacuo, or the prism acts
for these rays like an air prism immersed in water. The red and orange region is deviated in the oppo-
site direction; these rays are therefore retarded by the vapor.

In other words, the refractive index on the low-frequency side of resonance was observed to be
greater than unity, whereas on the high-frequency side it was less than unity. This is the behavior
shown in Fig. 3.22. †

Equation (3.15.6) assumes that all the resonant atoms are in the lower state of the tran-
sition. More generally, if N1 and N2 are the densities of atoms in the lower and upper
states, respectively, of the resonant transition,

n(v)� 1þ e2f (N1�N2)
4e0mv

v0�v

(v0�v)2þb2¼ 1þ e2f (N1�N2)
16p2e0mn

n0�n

(n0�n)2þdn20
(3:15:7)

if, to simplify, we ignore level degeneracies and take the background refractive index nb
to be 1. Comparing this to the absorption coefficient (3.12.7) for a Lorentzian lineshape
and no degeneracy,

a(n)¼l2A21

8p
(N1�N2)

(1=p)dn0
(n0�n)2þdn20

, (3:15:8)

we note that

n(n)�1¼ l0
4p

n0�n

dn0
a(n), (3:15:9)

where we have used (3.7.20) for the spontaneous emission rate A21. Although this
relation was obtained for a collision-broadened lineshape, and various simplifying
assumptions were invoked, a similar relation holds more generally. Thus, in the case
of a Voigt profile it can be shown that

n(n)�1¼ l0
4p

Im[w(xþ ib)]
Re[w(xþ ib)]

a(n), (3:15:10)

where w, x, and b are defined in Section 3.10. The relation between the refractive index
and the absorption coefficient is an example of a so-called Kramers–Kronig relation
and may be derived on very general grounds based on “causality,” or the condition

Bunsen burner 

Sodium 
Flames 

Sodium vapor Spectroscope 

R. W.  Wood

Figure 3.23 One of R. W. Wood’s experiments on anomalous dispersion in sodium vapor.
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that an effect cannot precede its cause. In the present context the “effect” and the “cause”
are the induced electric dipole moment and the applied electric field, respectively.

Equation (3.15.9) exemplifies the general result that anomalous dispersion tends to be
strongest in media with strong absorption (or gain) and narrow linewidth. As discussed
in Section 5.9, the refractive index associated with the lasing transition can play an
important part in determining the oscillation frequency of the laser, and the effect is
largest in high-gain lasers with narrow gain profiles.

3.16 SUMMARY

Starting from the classical oscillator model of an atom, we have obtained some of the
most important formulas used to describe the absorption and emission of light. To
obtain these formulas we went beyond the classical oscillator model by introducing
the oscillator strength and the fact that absorption and emission involve transitions
between allowed energy levels.

We showed that the thermal radiation spectrum implies that there must be stimulated
emission as well as spontaneous emission and absorption. Thermal radiation is broad-
band in the sense that its spectrum is much broader than the lineshape function of the
atoms with which it is in equilibrium. In this case the atomic lineshape function does
not appear in the stimulated emission and absorption rates, which are defined in terms
of the Einstein B coefficients. In the opposite, narrowband limit of interest for lasers,
the rates are proportional to the atomic lineshape function S(n), where S(n) is a
Lorentzian function in the collision-broadening limit, for example, and a Gaussian in
the Doppler-broadening limit. The formulas obtained for the absorption or gain coeffi-
cient will be central to much of our discussion of laser theory.

While our results have been cast in terms of absorption and emission by atoms, they
apply more generally. The spectrum of thermal radiation, for instance, is independent of
whether the absorbers and emitters are atoms or molecules, or whether the material is a
gas, liquid, solid, or plasma. The formulas we have obtained will be found to be appli-
cable to transitions between, say, two vibrational states of a molecule or two energy
bands of a solid as well as between two states of an atom.

APPENDIX: THE OSCILLATOR MODEL AND QUANTUM THEORY

The electron oscillator model for the interaction of a bound electron with light can be
regarded as an approximation to the quantum theory, as we now discuss starting from
the time-dependent Schrödinger equation,

ih� @c

@t
¼ Hc, (3:A:1)

where c(x, t) is thewave function for the electron at position x andH is the “Hamiltonian
operator,” which is the quantum mechanical expression for the energy of the electron.

The form of H depends on the energy we associate with the electron. For a bound
electron in an electric field E(r, t) we take H ¼ H0 þ HI, where H0 accounts for the
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kinetic energy of the electron plus the potential energy associated with its binding
to the nucleus, and HI is the “interaction energy” arising from the applied electro-
magnetic field.

A standard approach to the solution of the Schrödinger equation (3.A.1) is based on
the assumption that c can be written as a linear combination of the eigenfunctions
of H0: c ¼

P
n anfn, where the functions fn(x) are solutions of the time-independent

Schrödinger equation that follows from (3.A.1) when we take H ¼ H0 and write
c(x, t) ¼ fn(x) exp(�iEnt=h� ):

H0fn(x) ¼ Enfn(x): (3:A:2)

Equation (2.A.1) is a special case of this equation with H0 ¼ �(h� 2=2m)d2=dx2 þ V(x):
The eigenvalues En are the allowed energies of the electron when there is no applied
field. For simplicity we will ignore the possibility of degeneracy, so that with each
allowed energy there corresponds only one eigenfunction fn. In writing c(x, t) as a
linear combination of the time-independent functions fn(x), it is evident that the coeffi-
cients an in this linear superposition must depend on the time t:

c(x, t) ¼
X
n

an(t)fn(x): (3:A:3)

The an are quantum mechanical “probability amplitudes” in the sense that jan(t)j2 is the
probability at time t that the state of the atomic electron is described by the eigenfunction
fn(x). Loosely speaking, we say that jan(t)j2 is the probability at time t that the electron is
in the state fn(x).

We now use the expression (3.A.3) for c in Eq. (3.A.1) and obtain

ih�
X
n

dan
dt

fn(x) ¼
X
n

an(t)H0fn(x)þ
X
n

an(t)HIfn(x)

¼
X
n

Enan(t)fn(x)þ
X
n

an(t)HIfn(x), (3:A:4)

where in the second line we have used (3.A.2). Next we use the fact that the eigenfunc-
tions fn(x) of H0 are orthogonal in the sense thatð

d3xf�m(x)fn(x) ¼ 0 if m = n: (3:A:5)

As discussed in quantum mechanics textbooks, this orthogonality is a consequence of
the fact that the Hamiltonian H0 is a Hermitian operator (the electron energy is a real
number). We assume furthermore that the fn are normalized such that

ð
d3xf�n(x)fn(x) ¼ 1, (3:A:6)

which, as also discussed in quantum mechanics texts, allows us to interpret
f�n(x)fn(x) ¼ jfn(x)j2 as a normalized probability density. We now multiply both
sides of (3.A.4) by f�m(x), integrate both sides over all space, and use the properties
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(3.A.5) and (3.A.6). The result is

ih� dam
dt
¼ Emam(t)þ

X
n

an(t)
ð
d3xf�m(x)HIfn(x)

; Emam(t)þ
X
n

Vmnan(t): (3:A:7)

This is a very general equation for the change in time of probability amplitudes.
Note that in arriving at Eq. (3.A.7) we have not had to know the form of H0, but
only that it has eigenvalues En and eigenfunctions fn, and HI, which is associated
with the effect of the applied field on the electron, has also remained unspecified.
To proceed further with the solution of the time-dependent Schrödinger
equation we must know something about the Vmn coefficients, usually called
“matrix elements”:

Vmn ¼
ð
d3xf�m(x)HIfn(x): (3:A:8)

To this end we note that a displacement x of the electron from the nucleus implies an
electric dipole moment d ¼ ex, and therefore the interaction energy 2d .E ¼ 2ex .E
in an electric field E. Thus we assume that

HI ¼ �ex �E, (3:A:9)

and therefore that

Vmn ¼
ð
d3xf�m(x)[�ex �E]fn(x): (3:A:10)

We assume furthermore that E is practically constant over the region of space for
which f�m(x)fn(x) in (3.A.10) is not negligibly small. That is, as in Section 3.2, if re
is the electron’s position, we can write E(re, t) ¼ E(R þ (mn/M )x, t) � E(R, t) when-
ever the electric field wavelength exceeds atomic dimensions. This is the electric dipole
approximation discussed in Section 3.2; in this approximationHI reduces to the potential
energy (3.2.16), andE is independent of electron position x and can be removed from the
integral in (3.A.10). The positionR of the center of mass can be identified with the coor-
dinate origin and wewill drop it from the argument of E. The matrix element (3.A.10) is
then

Vmn(t) ¼ �exmn �E(t), (3:A:11)

where

xmn ;
ð
d3xf�m(x)xfn(x): (3:A:12)
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According to quantum mechanics the average value (or “expectation value”) of the
electron displacement x at time t, denoted kx(t)l, is

kx(t)l ¼
ð
d3xxjc(x, t)j2 ¼

ð
d3xc�(x, t)xc(x, t)

¼
ð
d3x

X
m

a�m(t)f
�
m(x)

 !
x
X
n

an(t)fn(x)

 !

¼
X
m

X
n

a�m(t)an(t)
ð
d3xf�m(x)xfn(x)

¼
X
m

X
n

xmna�m(t)an(t): (3:A:13)

The variations in time of the coefficients an(t) thus determine the variation in time
of kx(t)l.

We want to compare kx(t)l with the displacement x(t) of the classical electron oscil-
lator model [Eq. (3.2.18b)]. For this purposewe nowmake an approximation that greatly
simplifies the solution of the time-dependent Schrödinger equation: We assume that at
any time t the electron has essentially zero probability of being found in any state other
than the ground state or the first excited state of the atom. We denote these two states by
subscripts 1 and 2, respectively. In this “two-state” approximation the set of Eqs. (3.A.7)
reduces to the two equations

ih� da1
dt
¼ E1a1 þ V12a2 ¼ E1a1� ex12 �Ea2 (3:A:14)

and

ih� da2
dt
¼ E2a2 þ V21a1 ¼ E2a2�ex12 �Ea1, (3:A:15)

while the expectation value of the electron coordinate is

kx(t)l ¼ [a�1(t)a2(t)þ a�2(t)a1(t)]x12: (3:A:16)

In writing these equations we have assumed that x21 ¼ x12 or, what is the same thing, that
x12 is a real number (Problem 3.21).

It follows from Eqs. (3.A.14) and (3.A.15) that

d

dt
(a�1a2) ¼ �iv0(a

�
1a2)þ

ie

h� x12 �E ja1j2 � ja2j2h i
, (3:A:17)

where

v0 ¼ E2 � E1

h� (3:A:18)
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is 2p times the Bohr frequency for transitions between the ground state and the first
excited state of the atom. Differentiating both sides of (3.A.17) with respect to t, and
adding the complex conjugate of the result, we obtain

d2

dt2
(a�1a2 þ a�2a1) ¼ �v2

0(a
�
1a2 þ a�2a1)þ

2e
h� v0x12 �E(ja1j2 � ja2j2) (3:A:19)

and consequently, from (3.A.16),

d2

dt2
kxlþ v2

0kxl ¼
2ev0

h� x12(x12 �E)(ja1j2 � ja2j2): (3:A:20)

This result obviously resembles the classical oscillator equation (3.2.18b), the differ-
ence being in the right-hand side. To interpret this difference, we recall the circum-
stances for which the classical oscillator model was invented in the period around
1900. The phenomena that Lorentz and others sought to explain involved only natural
light (from the sun) or light from man-made thermal sources (lamps). As discussed in
Section 1.2, the spectral intensity of any such radiation is weak. This suggests that we
focus our attention on the quantum mechanical equation (3.A.20) for the case in
which the excited-state probability is close to zero, i.e., for ja2j2 
 1 and ja1j2 � 1.
Then we can approximate (3.A.20) by

d2

dt2
kxlþ v2

0kxl ¼
2ev0

h� x12(x12 �E): (3:A:21)

This equation still differs from (3.2.18b), but only in the constants on the right-hand
side. To proceed further, let’s label the direction of the field as the z direction: E ¼ Eẑ,
where ẑ is the unit vector in the z direction. Then, taking the vector dot product of both
sides of (3.A.21) with ẑ, we have

d2

dt2
kzlþ v2

0kzl ¼
2ev0

h� z212E, (3:A:22)

where kzl ¼ kxl � ẑ is the component of kxl along the direction of the electric field. Note
that z212 means (z12)

2 and not (z2)12.
In the classical electron oscillator model an electric field pointing in the z direction

induces an electron displacement in the z direction, and the Newton equation of
motion for this displacement is

d2z

dt2
þ v2

0z ¼
e

m
E: (3:A:23)

The approximate quantum mechanical equation of motion (3.A.22) for the expectation
value of z is identical to the classical equation (3.A.23) if we replace e/m in the latter by
(ef/m), where

f ¼ 2mv0

h� z212: (3:A:24)

As the notation suggests, f is the oscillator strength introduced in Sections 3.3 and 3.4 in
order to bring results of the classical electron oscillator model for emission and
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absorption into numerical agreement with the results of quantum theory. Equation
(3.A.24) can be used to calculate the numerical value of the oscillator strength of
the atomic transition of frequency v0/2p if we know the wave functions f1(x) and
f2(x) of the two states of the transition [see Eq. (3.A.12)]. Using the fact that
x212 ¼ y212 ¼ z212 for any atomic transition, and that jx12j2 ¼ x212 þ y212 þ z212, we can
write the expression for the oscillator strength more generally as

f ¼ 2mv0

3h� jx12j2: (3:A:25)

Thus, for example, we can write the spontaneous emission rate (3.3.7) as

A21 ¼ e2jx12j2v3
0

3pe0h� c3 : (3:A:26)

Effects of level degeneracies on these expressions for f andA21 are derived in Section 3.7.
The quantum mechanical validation of the classical electron oscillator model is little

short of wonderful. We have shown that, under conditions of low excitation probability,
an atomic electron responds to an electric field exactly as if it were bound by a spring to
the nucleus, with the natural oscillation frequency corresponding to the Bohr transition
frequency. And to make the predictions of the electron-on-a-spring model agree quan-
titatively with quantum theory, we simply introduce the oscillator strength f. Thus, “so
far as problems involving light are concerned, the electrons behave as though they were
held by springs”4—provided that excited-state probabilities are small, which is certainly
the case in practically all naturally occurring phenomena. We can also call attention to
the h� in the denominator of f, showing that f is truly quantum mechanical—there is no
classical limit for it as h� ! 0.

We have justified the classical oscillator model using the approximation of including
only two atomic states in our calculations. It is not difficult to justify the classical model
without the two-state approximation; all that is really necessary is the approximation that
the atom remains with high probability in the ground state. As a practical matter, how-
ever, it is usually not necessary, under conditions of low excitation probability, to
include more than the ground and first excited levels of the atom. This is because
atomic transitions between the ground state and the first excited state typically have a
larger oscillator strength than other transitions involving the ground state, and therefore
contribute most strongly to the expectation value kxl.

When excited-state probabilities are not small, we cannot make the approximation
ja1j2 � 1. In particular, we cannot approximate ja1j2 2 ja2j2 in the two-state model
by 1. It is precisely this difference that gives rise to the “population difference”
(N12N2) appearing, for instance, in Eqs. (3.6.9) and (3.7.1), and which arises physically
because of the possibility of stimulated emission as well as absorption.

PROBLEMS

3.1. (a) Show that the spectrum of thermal radiation for T ¼ 300K peaks at approxi-
mately 10 microns.

(b) At what frequency n does r(n) have its maximum?
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(c) Support or refute the statement (from S. Weinberg, The First Three Minutes,
Bantam Books, New York, 1977, p. 57) that “the average distance between
photons in black-body radiation is roughly equal to the typical photon
wavelength.”

3.2. Assuming the classical forceF ¼ eE þ ev � B acting on a charge e in electric and
magnetic fields E and B, respectively, show that the magnetic force is small com-
pared to the electric force when the charge has a velocity jvj 
 c in a plane-wave
electromagnetic field.

3.3. Assume the “spring constants” ks for the binding of electrons in atoms are
approximately the same as those for the binding of atoms in molecules. If n ¼
5 � 1014 Hz is a typical electronic oscillation frequency, estimate the range of fre-
quencies typical of atomic vibrations in molecules, given typical electron–atom
mass differences. Does your estimate indicate that molecular vibrations lie in
the infrared region of the spectrum?

3.4. Show that if the field polarization vector in Eq. (3.4.4) is taken to be complex:
1̂ ¼ 1ffiffi

2
p (x̂þ iŷ), then the real part of the right-hand side of (3.4.4) represents a cir-

cularly polarized field with the same time-averaged intensity as the given linearly
polarized field, that is, E�E ¼ 1

2E
2
0. Does this field vector rotate clockwise when

viewed by an observer looking into the wave (i.e., looking back toward negative
z)? If so, the wave is called right circularly polarized according to the optics
convention for polarization.

3.5. Take the incident field to be circularly polarized (see Problem 3.4) and recalculate
dW/dt to show that the result given in Eq. (3.4.18) remains unchanged.

3.6. Show that the rate of absorption of energy by an atom in a broadband field is given
in the electron oscillator model by Eq. (3.5.6).

3.7. Estimate the temperature of a blacktop road on a sunny day. Assume the asphalt
is a perfect blackbody.

3.8. Show that the spectrum of thermal radiation in a gas at temperature T is unaffected
by degeneracies of the energy levels of the atoms.

3.9. Compare Eq. (3.7.11) with Eq. (1.5.2) obtained in the simplified laser model
described in Chapter 1. What term in Eq. (3.7.11) corresponds to the parameter
f in Eq. (1.5.2)? What is the physical meaning of the differences in the form of
these two equations?

3.10. Show that the number of atoms (or molecules) per cubic meter of an ideal gas at
pressure P and temperature T is given by (3.8.20).

3.11. The CO2molecule has strong absorption lines in the neighborhood of l ¼ 10mm.
Assuming that the cross sections of CO2 molecules with N2 and O2 molecules are
s (CO2, N2) ¼ 1.20 nm2 and s (CO2, O2) ¼ 0.95 nm2, estimate the collision-
broadened linewidth for CO2 in the atmosphere. (Note: Since the concentration
of CO2 is very small compared to N2 and O2 in air, you may assume that only
N2–CO2 and O2–CO2 collisions contribute to the linewidth.) Compare this to
the Doppler width.
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3.12. Consider an atom of mass m with a resonance frequency n0 and an initial velocity
v in a direction away from a stationary source of radiation of frequency n � n0.
Assume that a photon of frequency n carries an energy hn and a linear momentum
hn/c, that v
 c, and that hn=c
 mv. Using the conservation of energy and
linear momentum, derive the formula (3.9.4) for the Doppler-shifted absorption
frequency.

3.13. Consider a radiatively broadened transition of an atom. Assuming that the degen-
erate states of each energy level are equally populated, show that the stimulated
emission cross section for narrowband radiation of wavelength l ¼ c/n equal
to the transition wavelength is simply s (n) ¼ l2/2p. What is the cross section
for absorption? (Note: As discussed in Section 14.3, significantly different
cross sections can result when the degenerate substates of each level are not
equally populated, as occurs when there is “optical pumping.”)

3.14. Beer’s law in the study of dyes and optical filters states that, if T is the trans-
mission coefficient at a given wavelength and a given dye concentration r, then
an n-fold increase in r results in a transmission coefficient T n. The equivalent
statement in terms of the thickness z of a filter is called Bouguer’s law.What func-
tional dependence on r and z do these empirical laws imply for the transmitted
intensity In(z)?

3.15. Consider the absorption coefficient a(n0) of a pure gas precisely at resonance.
Show that a(n0) is proportional to the number density of atoms when the absorp-
tion line is Doppler broadened, but is independent of the number density when the
pressure is sufficiently large that collision broadening is dominant.

3.16. Consider a cell of length L along the direction of propagation of collimated radi-
ation of frequency n near that of an atomic line. Define the spectral brightness
I n(z) to be the radiant power per unit area, unit bandwidth, and steradian.
Assume that the radiation is unpolarized and that spontaneously emitted radiation
is isotropic.

(a) Derive the equation of radiative transfer,

dIn

dz
¼ hn

4p
A21N2S(n)þ hn

c
B12 N1 � g1

g2
N2

� �
S(n)In

; sn � knI n:

(b) Assuming that N1 and N2 are spatially uniform, show that

In(L) ¼ In(0)e
�knL þ sn

kn
[1� e�knL],

where In(0) is the spectral brightness of the radiation input to the cell.
(c) If the optical depth knL
 1, the medium is said to be optically thin.

Assuming that there is no radiation input to the cell [i.e., In(0) ¼ 0], show
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that for an optically thin medium

In(L) � hn

4p
A21N2S(n)L:

[Note that the spectrum of the emitted radiation is identical to the absorption
lineshape S(n).] This result is the basis of one method of measuring oscillator
strengths.

(d) If knL� 1 the medium is said to be optically thick. Show that in this case
[cf. Eq. (1.2.3)]

In(L) � 2hn3=c2

ehn=kBT � 1
,

where T is the temperature of the medium.
(e) Discuss the evolution of the spectrum of the emitted radiation as knL is

increased from a very small number to a very large one.

3.17. (a) Estimate the absorption coefficient for 589.0 nm radiation in sodium vapor
containing 2.7 � 1018 atoms/m3 at 2008C. [See J. E. Bjorkholm and A.
Ashkin, Physical Review Letters 32, 129 (1973)].

(b) Assuming the same conditions as in (a), plot In(z)/In(0) vs. z for n ¼ n(2)0 ,
n ¼ n(2)0 +dnD, and n ¼ n(2)0 +2dnD.

3.18. Show that for circularly polarized light, for which 1̂ ¼ 1ffiffi
2
p (x̂+ iŷ), the remarks

following Eq. (3.14.1) remain correct even though (3.14.1) itself applies only
to linearly polarized light.

3.19. (a) What is the spontaneous emission rate for the helium 1S0–2P1 transition at
58.4 nm?

(b) A cell is filled with helium at a temperature of 300K, and the density is suffi-
ciently low that collision broadening is negligible. Calculate the absorption
coefficient for the 58.4-nm transition.

3.20. (a) The position vector x for an electron moving with velocity much less than c in
a plane monochromatic wave 1̂E0 cos(vt � kz) is determined by the equation
of motion md2x=dt2 ¼ e1̂E0 cos(vt � kz). Show that the refractive index of
an electron gas is given by Eq. (3.14.13).

(b) Assume that in the ionosphere the refractive index for 100-MHz radiowaves is
0.90 and that the free electrons make the greatest contribution to the index.
Estimate the number density of electrons.

(c) Why is the contribution of positively charged ions to the refractive index
much smaller?

(d) Choose an AM and an FM radio station in your area and compare their
frequencies to the plasma frequency of the ionosphere.

3.21. Show how Eqs. (3.A.14)–(3.A.24) are altered if we do not make the assumption
that x21 ¼ x12.
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4 LASER OSCILLATION: GAIN AND
THRESHOLD

4.1 INTRODUCTION

In our superficial analysis of the laser in Chapter 1 we introduced certain concepts such
as gain, threshold, and feedback and indicated their importance in our understanding of
lasers. We also introduced certain coefficients (a, b, f, p), which we did not derive or
explain very carefully. In this chapter we will begin a detailed description of laser
oscillation.

The physical systemwe consider is a collection of atoms (ormolecules) between twomir-
rors. By some pumping process, such as absorption of light from a flashlamp or electron-
impact excitation in a gaseous discharge, some of these atoms are promoted to excited
states. The excited atoms begin radiating spontaneously, as in an ordinary fluorescent
lamp. A spontaneously emitted photon can induce an excited atom to emit another photon
of the same frequency and direction as the first. The more such photons are produced by
stimulated emission, the faster is the production of still more photons because the stimulated
emission rate is proportional to the flux of photons already in the stimulating field. (Recall the
discussion in Section 3.7.)

The mirrors of the laser keep photons from escaping completely, so that they can be
redirected into the active laser medium to stimulate the emission of more photons. By
making the mirrors partially transmitting, some of the photons are allowed to escape.
They constitute the output laser beam. The intensity of the output laser beam is determined
by the rate of production of excited atoms, the reflectivities of themirrors, and certain prop-
erties of the active atoms. We will see, in this chapter and the next, exactly how the laser
output depends on these quantities.

4.2 GAIN AND FEEDBACK

In Chapter 1 the growth rate of the number of laser photons in the cavity was described
by an amplification coefficient a. It is closely related to the gain coefficient derived in
Section 3.12.

Consider the propagation of narrowband radiation in a medium of atoms that
have a transition frequency equal, or nearly equal, to the frequency of the radiation
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(Fig. 4.1). If more atoms are in the upper level of the transition than the lower, there
will be more stimulated emission than absorption, and the radiation can be amplified
as it propagates. In such a case we say there is gain at the resonant frequency. The for-
mula (3.12.6) for the gain coefficient shows that the same lineshape function for the
medium applies for both absorption and stimulated emission. Our discussion of line-
shape functions in Chapter 3 is therefore relevant to laser media as well as absorbing
media. The only thing that distinguishes amplifying media from absorbing media is
the sign of the population inversion N2 2 N1 or, if the upper and lower levels have
degeneracies g2 and g1, respectively, N2 2 (g2/g1)N1.

Equation (3.12.10) gives an overly optimistic estimate of the growth of intensity in an
amplifying (g . 0) medium, for it assumes that the gain is independent of intensity. As
mentioned in Chapter 3 in connection with that equation, this is a valid assumption only
for low intensities. In Sections 4.11 and 4.12 we will explain what it means to have a
“high” intensity, and what are the implications of high intensity for the gain coefficient
g(n). For the present, however, let us accept the prediction of exponential growth as the
first approximation to the actual behavior of light in an amplifier.

It is reasonable to expect that a laser can be built in the form of a pencil-shaped con-
tainer of atoms for which g . 0 (Fig. 4.2). The consequences of such a geometry are
easy to predict. Some photons are emitted along the axis of the container, where they
can encounter other atoms and so induce the emission of more photons, propagating
in the same direction and with the same frequency, by stimulated emission. As the
number of such photons grows, the stimulated emission rate grows proportionately, so
that we expect a burst of radiation to emerge from either end of the container. The direc-
tion and cross-sectional area of the beam of light so produced are determined by the con-
tainer of the excited atoms.

As an example, suppose we have an amplifying medium with a gain coefficient g ¼
0.01 cm21, an achievable gain in many laser media. With a length L ¼ 1 m for the gain

Incident
radiation
of frequency
n @ n21

hn21

2

1

Figure 4.1 Propagation of radiation of frequency n � n21 in a medium of atoms with a transition
frequency n21.

Figure 4.2 Amirrorless “laser.” Photons emitted spontaneously along the axis of the tube of excited
atoms are multiplied by stimulated emission, resulting in a burst of radiation.
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cell, a spontaneously emitted photon at one end of the cell leads, according to Eq.
(3.12.10), to an average total of

e(0:01cm
�1)(100cm) ¼ e1 � 2:72 (4:2:1)

photons emerging at the other end. The output of such a “laser” is obviously not very
impressive.

Theway to increase the photon yield from such a device is to catch photons emerging
from one end and repeatedly feed them back for more amplification. In this way we can,
in effect, increase the length of the gain cell. The practical way to achieve this feedback,
of course, is to have mirrors at the ends of the container.

† It is possible, in media with very high gain, to build mirrorless (sometimes called “superra-
diant”) lasers. The light from such a device resembles that from a conventional laser insofar as it is
bright, is quasi-monochromatic, and produces a small spot on a screen. However, it does not have
the same degree of temporal and spatial coherence usually associated with lasers. We discuss
these coherence properties in Chapter 13. †

4.3 THRESHOLD

In a laser there is not only an increase in the number of cavity photons because of stimu-
lated emission but also a decrease because of loss effects. These include scattering and
absorption of radiation at the mirrors, as well as the “output coupling” of radiation in the
form of the usable laser beam. To sustain laser oscillation the stimulated amplification
must be sufficient to overcome these losses. This sets a lower limit on the gain coefficient
g(n), below which laser oscillation does not occur.

One thing we can do now is to predict, given the various losses that tend to diminish
the intensity of radiation within the cavity, what minimum gain is necessary to achieve
laser oscillation. The condition that the gain coefficient is greater than or equal to this
lower limit is called the threshold condition for laser oscillation.

Ordinarily, the scattering and absorption of radiation within the gain medium of
active atoms is quite small compared to the loss occurring at the mirrors of the laser.
We will therefore consider in detail only the losses associated with the mirrors.
Figure 4.3 shows a stylized version of a laser resonator, that is, an empty space bounded

z = 0 z = L 

(r2, t2, s2) (r1, t1, s1) 

I+

I–

Figure 4.3 The two oppositely propagating beams in a laser cavity.
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on two sides by highly reflecting mirrors. A beam of intensity I incident upon one of
these mirrors is transformed into a reflected beam of intensity rI, where r is the reflection
coefficient of the mirror. A beam of intensity tI, where t is the transmission coefficient,
passes through the mirror. We might expect from the law of conservation of energy that

r þ t ¼ 1, (4:3:1)

that is, the fraction of power reflected plus the fraction transmitted should be unity.
Actually, however, some of the incident beam power may be absorbed by the mirror,
tending to raise its temperature. Or some of the incident beam may be scattered away
because the mirror surface is not perfectly smooth. Thus, the law of conservation of
energy takes the form

r þ t þ s ¼ 1, (4:3:2)

where s represents the fraction of the incident beam power that is absorbed or scattered
by the mirror.

Each of the mirrors of Fig. 4.3 is characterized by a set of coefficients r, t, and s. At the
mirror at z ¼ L we have

I(�)n (L) ¼ r2I
(þ)
n (L), (4:3:3a)

and similarly

I(þ)n (0) ¼ r1I
(�)
n (0) (4:3:3b)

for the mirror at z ¼ 0. Equations (4.3.3) are boundary conditions that must be satisfied
by the solution of the equations describing the propagation of intensity inside the laser
cavity.

What are these equations? We are now interested only in steady-state, or continuous-
wave (cw), laser oscillation. Near the threshold of laser oscillation the intracavity inten-
sity is very small, and therefore Eq. (3.12.10) is applicable. For light propagating in the
positive z direction, therefore, we have

dI(þ)n

dz
¼ g(n)I(þ)n (4:3:4a)

near the threshold, where g may be taken to be constant. Light propagating in the nega-
tive z direction sees the same gain medium and so satisfies a similar equation (see
Problem 4.1):

dI(�)n

dz
¼ �g(n)I(�)n : (4:3:4b)

The solutions of these equations are

I(þ)n (z) ¼ I(þ)n (0)eg(n)z (4:3:5a)

144 LASER OSCILLATION: GAIN AND THRESHOLD



and

I(�)n (z) ¼ I(�)n (L)exp[g(n)(L� z)]: (4:3:5b)

From (4.3.5a) we see that

I(þ)n (L) ¼ I(þ)n (0)eg(n)L (4:3:6)

at the right mirror (z ¼ L), and the left-going beam has intensity

I(�)n (0) ¼ I(�)n (L)eg(n)L (4:3:7)

at the left mirror (z ¼ 0). In steady state the left-going beam has a fraction r1 of itself
reflected at the left mirror (at z ¼ 0), and this fraction is just the right-going beam at
z ¼ 0. A similar consideration applies at the right mirror. Thus, we have

I(þ)n (0) ¼ r1I
(�)
n (0) ¼ r1 eg(n)LI(�)n (L)


 � ¼ r1e
g(n)L r2I

(þ)
n (L)


 �
¼ r1r2e

g(n)L I(þ)n (0)eg(n)L

 � ¼ r1r2e

2g(n)L

 �

I(þ)n (0): (4:3:8)

Similar manipulations, applied to any of the quantities I(þ)n (L), I(�)n (L), and I(�)n (0) lead to
the same result. Therefore, if I(þ)n (0) is not zero, we must have, at steady state,

r1r2e
2gL ¼ 1: (4:3:9)

The steady-state value of gain that allows (4.3.9) to be satisfied is also the value at
which laser action begins. For smaller values there is net attenuation of In in the
cavity. Thus, the value of g that satisfies (4.3.9) is labeled gt and called the threshold
gain:

gt ¼ 1
2L

ln
1

r1r2

� �
¼ � 1

2L
ln (r1r2): (4:3:10)

This expression can be rewritten usefully in the common case that r1r2 � 1. Then we
define r1r2 ¼ 1 2 x, or x ¼ 1 2 r1r2, and use the first term in the Taylor series expansion
ln(12 x) � 2x, valid when x 
 1, to obtain

gt ¼ 1
2L

(1� r1r2) (high reflectivities), (4:3:11)

which is a satisfactory approximation to (4.3.10) if r1r2 . 0.90. The difference between
(4.3.11) and (4.3.10) is connected with the assumption that the intracavity field is
spatially uniform: We will see in the next chapter that spatial uniformity is a good
approximation when 12r1r2 is small, that is, when the mirrors are highly reflecting.
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Note that if we are given the mirror reflectivities r1 and r2 and their separation L,
and therefore the threshold gain, we can determine the population inversion necessary
to achieve laser action from (3.12.6) and the atomic absorption (or stimulated emission)
cross section.

Our derivation of (4.3.9) assumes that the gain medium fills the entire distance L
between the mirrors. This assumption is valid for many solid-state lasers in which the
ends of the gain medium are polished and coated with reflecting material. In gas and
liquid lasers, however, the gain medium is usually contained in a cell of length l , L
that is not joined to the mirrors (Fig. 4.4). In this case the threshold condition is

gt ¼ � 1
2l
ln (r1r2) � 1

2l
(1� r1r2) (high reflectivities): (4:3:12)

The threshold condition (4.3.12) [or (4.3.10)] assumes that “loss” occurs only at the
mirrors. This loss is associated with transmission through the mirrors, absorption by the
mirrors, and scattering off the mirrors into nonlasing modes. Absorption and scattering
are minimized as much as possible by using mirrors of high optical quality.
Transmission, of course, is necessary if there is to be any output from the laser.

Other losses might arise from scattering and absorption within the gain medium
(from nearly resonant but nonlasing transitions). Such losses are usually small, but
they are not difficult to account for in the threshold condition. If a is the effective loss
per unit length associated with these additional losses, then the threshold condition
(4.3.12) is modified as follows:

gt ¼ � 1
2l
ln(r1r2)þ a: (4:3:13)

For our purposes these “distributed losses” (i.e., losses not associated with the mirrors)
may usually be ignored.

It is instructive at this point to consider an example. A typical 632.8-nm He–Ne laser
might have a gain cell of length l ¼ 50 cm and mirrors with reflectivities r1 ¼ 0.998 and
r2 ¼ 0.980. Thus

gt ¼ �12(50)
ln(0:998)(0:980) cm�1 ¼ 2:2� 10�4 cm�1 (4:3:14)

is the threshold gain.

z = 0

Gain cell

l

z = L

Figure 4.4 A laser in which the gain medium does not fill the entire distance L between the mirrors.
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Using this value for gt and Eq. (3.12.6), we may calculate the threshold population
inversion necessary to achieve lasing:

DNt ¼ N2 � g2
g1

N1

� �
t

¼ 8pgt
l2AS(n)

¼ gt
s (n)

: (4:3:15)

The A coefficient for the 632.8-nm transition in Ne is

A � 1:4� 106 s�1: (4:3:16)

For T � 400K and the Ne atomic weight M � 20 g, we obtain from Table 3.1 the
Doppler width dnD �1500 MHz. Thus,

S(n) � 6:3� 10�10 s (4:3:17)

and

DNt � (8p)(2:2� 10�4 cm�1)
(6328� 10�8 cm)2(1:4� 106 s�1)(6:3� 10�10 s)

¼ 1:6� 109 atoms=cm3: (4:3:18)

This is a lot of atoms, but it is nevertheless quite a small number compared to the
total number of Ne atoms. For a (typical) Ne partial pressure of 0.2 Torr, the total

TABLE 4.1 Quantities and Formulas Related to Gain and Threshold

The Gain Coefficient

g(n) ¼ l2A

8p n2
N2 � g2

g1
N1

� �
S(n)

¼ s (n) N2 � g2
g1

N1

� �

l ¼ c

n
¼ wavelength of radiation

A ¼ Einstein A coefficient for spontaneous emission on the 2! 1 transition

n ¼ refractive index at wavelength l

N2,N1 ¼ number of atoms per unit volume in levels 2 and 1

g2, g1 ¼ degeneracies of levels 2 and 1

S(n) ¼ lineshape function (Table 3:1)

Threshold Gain

gt ¼ �12l ln(r1r2)þ a � 1
2l
(1� r1r2)þ a

l ¼ length of gain medium

r1, r2 ¼ mirror reflectivities

a ¼ distributed loss per unit length
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number of Ne atoms per cubic centimeter is [Eq. (3.8.20)] about 4.8 � 1015. Thus, the ratio
of the threshold population inversion to the total density of atoms of the lasing species
is only

DNt

N
¼ 1:6� 109

4:8� 1015
¼ 1

3
� 10�6: (4:3:19)

Sometimes the quantity egl is called the gain, and expressed in decibels, that is,

GdB ¼ 10 log10 (e
gl) ¼ 10 log10 (10

0:434gl) ¼ 4:34gl: (4:3:20)

The threshold gain in our example is, thus,

(GdB)t ¼ (4:34)(2:2� 10�4 cm�1) (50 cm) ¼ 0:048 dB: (4:3:21)

In the laser research literature gain is usually expressed in reciprocal centimeters,
although the decibel is the preferred unit in fiber optics.

In Table 4.1 we collect the formulas and terms we have used in discussing gain and
threshold.

4.4 PHOTON RATE EQUATIONS

To describe time-dependent phenomena, such as pulsed laser operation or the startup of
continuous-wave lasing, we must include the time derivative @In/@t in the propagation
equation (3.12.5). For the right- and left-going waves in the laser resonator (Fig. 4.3),
we write

@I(þ)n

@z
þ 1

c

@I(þ)n

@t
¼ g(n)I(þ)n , (4:4:1a)

and

� @I(�)n

@z
þ 1

c

@I(�)n

@t
¼ g(n)I(�)n , (4:4:1b)

respectively. Addition of these equations gives

@

@z
I(þ)n � I(�)n


 �þ 1
c

@

@t
I(þ)n þ I(�)n


 � ¼ g(n)(I(þ)n þ I(�)n ): (4:4:2)

Wewill see in the following chapter (Sections 5.2 and 5.5) that in many lasers there is
very little gross variation of I(þ)n � I(�)n with z. Assuming this result, we approximate
(4.4.2) by the ordinary differential equation

d

dt
I(þ)n þ I(�)n


 � ¼ cg(n) I(þ)n þ I(�)n


 �
: (4:4:3)

Note that herewe are assuming spatial uniformity, just as we assumed temporal uniform-
ity (steady state) in the preceding section. In Chapter 5 we will discuss the temporal
steady-state rate equation that results from a more detailed consideration of the spatial
boundary conditions.
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If the gain medium does not completely fill the resonator (Fig. 4.4), then g(n) ¼ 0
outside it. If we integrate both sides of (4.4.3) over z in the region 0 , z , L, then
the left side, which is independent of z, is simply multiplied by L. However, the right
side is multiplied by l, which is less than L, since g(n) is different from zero only
inside the gain medium. Thus,

d

dt
I(þ)n þ I(�)n


 � ¼ cl

L
g(n) I(þ)n þ I(�)n


 �
(4:4:4)

is the generalization of (4.4.3) to the case l , L. Since the number of photons inside the
cavity is proportional to the total intensity, we may also write

dqn
dt
¼ cl

L
g(n)qn, (4:4:5)

where qn is the number of cavity photons associated with the frequency n.
Equation (4.4.5) describes the growth in time of the number of cavity photons as a

result of the absorption and induced emission of photons by the gain medium. The
factor cg(n)l/L is the growth rate. Of course, we must also consider the loss of cavity
photons due to output coupling, absorption and scattering at the mirrors, and the like.
We can take account of the loss associated with the output coupling of laser radiation
from the cavity, which is usually the most important loss mechanism, as follows.

Radiation reflected from the mirror at z ¼ L (Fig. 4.3) has an intensity that is r2 times
the incident intensity. After it is reflected from the mirror at z ¼ 0, therefore, it has an
intensity r1r2 times its intensity before the round trip inside the resonator. In other
words, a fraction 12 r1r2 of intensity is lost. Since the time it takes to make a round
trip is 2L/c, the rate at which intensity is lost due to the imperfect reflectivity of the mir-
rors is c(12 r1r2)/2L. In terms of photons, this loss rate is

dqn
dt

� �
output coupling

¼ � c

2L
(1� r1r2)qn: (4:4:6)

The total rate at which the number of cavity photons changes is therefore

dqn
dt
¼ dqn

dt

� �
gain

þ dqn
dt

� �
output coupling

¼ cl

L
g(n)qn � c

2L
(1� r1r2)qn

¼ cl

L
g(n)qn � cl

L
gtqn: (4:4:7)

If there are significant losses besides those occurring at the mirrors, they may be
accounted for in a similar fashion. We will assume that these other losses are negligible,
in which case (4.4.7) gives the rate of change with time of the number of cavity photons.
Equivalently, we may write the rate equation

dIn
dt
¼ cl

L
g(n)In � c

2L
(1� r1r2)In (4:4:8)
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for the total intensity In ¼ I(þ)n þ I(�)n inside the cavity. If we assume equal upper and
lower level degeneracies, g1 ¼ g2, then we may write (4.4.8) as

dIn
dt
¼ cl

L

l2A

8p
(N2 � N1)S(n)In � c

2L
(1� r1r2)In

¼ cl

L
s (n)(N2 � N1)In � c

2L
(1� r1r2)In: (4:4:9)

4.5 POPULATION RATE EQUATIONS

The population densities N2 and N1 also change in time, of course, due to stimulated
emission, absorption, spontaneous emission, and collisions. The effects of the first
three processes on the rate equations for N2 and N1 are given by Eqs. (3.7.5).
Collisions affecting the upper- and lower-level populations are called “inelastic” in
order to distinguish them from “elastic” collisions, which do not result in a change in
the energy of the colliding atoms. To account for inelastic (population-changing) col-
lisions, we simply assert that their effect is to knock population out of levels 1 and 2
into unspecified levels at the rates G1 and G2. Thus, we replace Eqs. (3.7.5) by

dN2

dt
¼ �G2N2 � s (n)

hn
In(N2 � N1)� A21N2, (4:5:1a)

dN1

dt
¼ �G1N1 þ s (n)

hn
In(N2 � N1)þ A21N2: (4:5:1b)

Wemust also account for the pumping process that produces the (positive) population
inversion (N2 2 N1). To do this most simply we add a termK to the population equations
and call it the pumping rate into the upper level. There are several methods of arranging
pumping of this kind, as discussed in Chapter 11. For the time being we simply insert a
term K. With this minor modification of the population equations (4.5.1), we have the
following set of coupled equations for the light and the atoms in the laser cavity:

dN1

dt
¼ �G1N1 þ A21N2 þ g(n)Fn, (4:5:2a)

dN2

dt
¼ �(G2 þ A21)N2 � g(n)Fn þ K, (4:5:2b)

dFn

dt
¼ cl

L
g(n)Fn � c

2L
(1� r1r2)Fn: (4:5:2c)

We have used

In ¼ hnFn, (4:5:3)

where Fn is the photon flux, in rewriting (4.4.8) as (4.5.2c).
For some purposes it is useful to rewrite Eqs. (4.5.2) so that they refer to absolute

numbers, rather than densities, of atoms and photons. This is easy to do. The total
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number of atoms in level 2 is n2 ¼ N2Vg, where Vg is the volume of the gain medium.
Likewise the total number of atoms in the lower level of the laser transition is n1 ¼
N1Vg. The electromagnetic energy density un in the cavity is related to intensity In
and photon flux Fn by

un ¼ In
c
¼ hn

c

� �
Fn, (4:5:4)

and it is related to photon number qn by

un ¼ hnqn
V

,

where V is the cavity volume. These relations assume a uniform distribution of intensity
within the cavity and a refractive index n � 1. Thus,

Fn ¼ cqn
V

,

and Eqs. (4.5.2) may be rewritten in the form

dn1
dt
¼ �G1n1 þ A21n2 þ cl

L
g(n)qn, (4:5:5a)

dn2
dt
¼ �(G2 þ A21)n2 � cl

L
g(n)qn þ p, (4:5:5b)

dqn
dt
¼ cl

L
g(n)qn � c

2L
(1� r1r2)qn, (4:5:5c)

where we have used the relations

Vg

V
¼ l

L
and KVg ¼ p: (4:5:6)

Equations (4.5.5) imply that

d

dt
(n2 þ qn) ¼ �(G2 þ A21)n2 þ p� c

2L
(1� r1r2)qn: (4:5:7)

This equation has an obvious interpretation. The left-hand side is the rate of change of
the total number of excitations, that is, the number of atoms in the upper level 2 of the
lasing transition plus the number of photons in the cavity. The first term on the right is the
rate of decrease in the number of these excitations as a result of inelastic collisions and
spontaneous emission from level 2. The second term is the rate of change associated with
pumping of level 2. The last term is the rate at which excitation in the form of photons is
lost from the cavity. Note that contributions from stimulated emission (or absorption) do
not appear in (4.5.7) because they have canceled out: An increase in qn is always
accompanied by an equal decrease in n2. Further features of (4.5.7) are pointed out in
Problem 4.2.
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4.6 COMPARISON WITH CHAPTER 1

In Chapter 1, Section 1.5, we developed an intuitive quantum theory of the laser, intro-
ducing various rate constants in a largely ad hoc fashion. Now that we have developed
rate equations for level populations and photons, it is interesting to return to this intuitive
model and examine its validity.

First recall that g(n) ¼ s (n)(N2 2 N1) if the level degeneracies are equal. Thus,

g(n) � s (n)N2 ¼ s (n)n2
Vg

(4:6:1)

if there is negligible occupation of level 1: n2 � n1. Now define two constant coeffi-
cients a and b:

a ¼ cs (n)l=L
Vg

¼ cs (n)
V

(4:6:2)

and

b ¼ c

2L
(1� r1r2): (4:6:3)

Then Eq. (4.5.5c) for the photon number qn can be written in the compact form

dqn
dt
¼ an2qn � bqn, (4:6:4)

which is exactly Eq. (1.5.1). Recall that in Chapter 1 we identified n as the number of
atoms in level 2, here denoted n2.

The equation for n2 is easily obtained from (4.5.5b). We again invoke the assumption
n2 � n1 to get

dn2
dt
¼ �an2qn � fn2 þ p, (4:6:5)

where

f ¼ G2 þ A21: (4:6:6)

We see that Eq. (4.6.5) is the same as Eq. (1.5.2).
Thus, if the population inversion is large enough thatN1 is negligible compared toN2,

the theory developed in Chapter 1 agrees with our coupled photon-population rate
equations. If N2 is not much larger than N1, the theory of Chapter 1 requires some
minor modifications. What wewere not able to do in Chapter 1, however, was to identify
the constants a, b, f, and p in terms of fundamental atomic parameters like the Einstein A
coefficient, the inelastic collision rate, the atomic absorption cross section, and mirror
reflectivities. That has now been accomplished.
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4.7 THREE-LEVEL LASER SCHEME

Thus far, we have not specified where levels 1 and 2 appear in the overall energy-level
scheme of the lasing atoms.Wemight imagine that level 1 is the ground level and level 2
the first excited level of an atom (Fig. 4.5). When we attempt to achieve continuous
laser oscillation using the two-level scheme of Fig. 4.5, however, we encounter a serious
difficulty: The mechanism we use to excite atoms to level 2 can also deexcite them.
For example, if we try to pump atoms from level 1 to level 2 by irradiating the
medium, the radiation will induce both upward transitions 1! 2 (absorption) and down-
ward transitions 2!1 (stimulated emission).

As discussed in Section 4.11, the bestwe can do by this optical pumping process is to
produce nearly the same number of atoms in level 2 as in level 1; we cannot obtain a
positive steady-state population inversion using only two atomic levels in the pumping
process.

One resolution of this difficulty is to make use of a third level, as in the three-level
laser inversion scheme of Fig. 4.6. In such a laser, some pumping process acts between
level 1 and level 3. An atom in level 3 cannot stay there forever. As a result of the pump-
ing process, it may return to level 1, but for other reasons such as spontaneous emission
or a collision with another particle, the atom may drop to a different level of lower
energy. In the case of spontaneous emission the energy lost by the atom appears as radi-
ation. In the case of collisional deexcitation, the energy lost by the atom may appear as
internal excitation in a collision partner, or as an increase in the kinetic energy of the
collision partners, or both. The key to the three-level inversion scheme of Fig. 4.6 is
to have atoms in the pumping level 3 drop very rapidly to the upper laser level 2.
This accomplishes two purposes. First, the pumping from level 1 is, in effect, directly

2

3

1

Laser transitionPumping

Fast decay

Figure 4.6 A three-level laser. Level 1 is the ground level, and laser oscillation occurs on the 2! 1
transition.

2

1

Laser transitionPumping

Ground level

Figure 4.5 A two-level laser.
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from level 1 to the upper laser level 2, because every atom finding itself in level 3 con-
verts quickly to an atom in level 2. Second, the rapid depletion of level 3 does not give
the pumping process much chance to act in reverse and repopulate the ground level 1.

We will characterize the pumping process by a rate P, so that PN1 is the number of
atoms per cubic centimeter per second that are taken from ground level 1 to level 3.
Thus, the rate of change of the population N1 of atoms per cubic centimeter in level 1 is

dN1

dt

� �
pumping

¼ �PN1 (4:7:1)

as a result of the pumping process. Since the pumping takes atoms from level 1 to level 3,
and level 3 is assumed to decay very rapidly to level 2, we may also write (see
Problem 4.3)

dN2

dt

� �
pumping

� dN3

dt

� �
pumping

¼ � dN1

dt

� �
pumping

¼ PN1 (4:7:2)

for the rate of change of population of level 2 due to pumping.
Atoms in level 2 can decay, by spontaneous emission or via collisions, as indicated in

population Eq. (4.5.2b) or (4.5.5b). For simplicity we will now assume that level 2
decays only into level 1 by these processes, and we will denote the rate by G21. That
is, we assume

dN2

dt

� �
decay

¼ �G21N2,
dN1

dt

� �
decay

¼ G21N2, (4:7:3)

for the population changes associated with the decay of level 2. The total rates of change
of the populations of levels 1 and 2 are therefore

dN1

dt
¼ �PN1 þ G21N2 þ sFn(N2 � N1), (4:7:4a)

dN2

dt
¼ PN1 � G21N2 � sFn(N2 � N1): (4:7:4b)

Equations (4.7.4) imply the conservation law

d

dt
(N1 þ N2) ¼ 0,

or

N1 þ N2 ¼ const ¼ NT : (4:7:5)

By ignoring any other atomic energy levels, and assuming that level 3 decays practically
instantaneously into level 2, we are assuming that each active atom of the gain medium
must be either in level 1 or level 2. Therefore, the conserved quantity NT is simply the
total number of active atoms per unit volume.

We can now draw some important conclusions about the “threshold region” of
steady-state (cw) laser oscillation. Near threshold the number of cavity photons is
small enough that stimulated emission may be omitted from Eqs. (4.7.4). In particular,
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we can determine from these equations the threshold pumping rate necessary to achieve
a population inversion, together with the threshold power expended in the process.

In the steady state N1 and N2 are not changing in time. The steady-state values N1 and
N2, therefore, satisfy Eqs. (4.7.4) with dN1/dt ¼ dN2/dt ¼ 0. Thus, ifFn is so small that
the last terms in (4.7.4) are negligible, we find

N2 ¼ P

G21
N1 (4:7:6)

in the steady state. Since (4.7.5) must hold for all possible values of N1 andN2, including
the steady-state values N1 and N2, we also have

N1 þ N2 ¼ NT : (4:7:7)

Equations (4.7.6) and (4.7.7) may be solved for N1 and N2 to obtain

N1 ¼ G21

Pþ G21
NT (4:7:8a)

and

N2 ¼ P

Pþ G21
NT : (4:7:8b)

The steady-state threshold-region population inversion is therefore

N2 � N1 ¼ P� G21

Pþ G21
NT : (4:7:9)

To have a positive steady-state population inversion, and therefore a positive gain, we
must obviously have

P . G21, (4:7:10)

which simply says that the pumping rate into the upper laser level must exceed the decay
rate. The greater the pumping rate with respect to the decay rate, the greater the popu-
lation inversion and gain.

The pumping of an atom from level 1 to level 3 requires an energy

E3 � E1 ¼ hn31: (4:7:11)

The power per unit volume delivered to the active atoms in the pumping process is
therefore

Pwr
V
¼ hn31PN1 (4:7:12)

in the steady state. Using (4.7.8), we may write this as

Pwr
V
¼ hn31PG21

Pþ G21
NT : (4:7:13)

Now from (4.7.10) we may regard

Pmin ¼ G21 (4:7:14)
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as the minimum pumping rate necessary to reach positive gain. Substituting Pmin for P in
(4.7.13), we obtain

Pwr
V

� �
min

¼ 1
2
G21NThn31 (4:7:15)

as the minimum power per unit volume that must be exceeded to produce a positive gain.
With this amount of pumping power delivered to the active medium, we see from (4.7.8)
(with P ¼ Pmin ¼ G21) that half the active atoms are in the lower level of the laser tran-
sition and half are in the upper level. A pumping power density greater than (4.7.15)
makes N2 . N1.

4.8 FOUR-LEVEL LASER SCHEME

Another useful model for achieving population inversion is the four-level laser scheme
shown in Fig. 4.7. Pumping proceeds from the ground level 0 to the level 3, which, as in
the three-level laser, decays rapidly into the upper laser level 2. In this model the lower
laser level 1 is not the ground level, but an excited level that can itself decay into the
ground level. This represents an advantage over the three-level laser, for the depletion
of the lower laser level obviously enhances the population inversion on the laser tran-
sition. That is, a decrease in N1 results in an increase in N2 2 N1.

As in a three-level laser the decay from level 3 to level 2 is ideally instantaneous, that
is, extremely rapid compared to any other rates in the population rate equations. Then we
may take N3 � 0, and the population rate equations for the four-level laser take the form

dN0

dt
¼ �PN0 þ G10N1, (4:8:1a)

dN1

dt
¼ �G10N1 þ G21N2 þ s (n)(N2 � N1)Fn, (4:8:1b)

dN2

dt
¼ PN0 � G21N2 � s (n)(N2 � N1)Fn, (4:8:1c)

2

3

0

Laser transitionPumping

Fast decay

1

Fast decay

Figure 4.7 A four-level laser. The lower laser level 1 decays into the ground level 0.
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where P is again the pumping rate out of the ground level 0, and PN0 is the upper level
pumping rate denoted by K in (4.5.2). G21 and G10 are the rates for the decay processes
2 ! 1 and 1 ! 0, respectively, and we have made the same approximation (4.7.2) for
the pumping process as in the three-level case. Note that Eqs. (4.8.1) imply the conser-
vation law

N0 þ N1 þ N2 ¼ const ¼ NT : (4:8:2)

If the stimulated emission rate is very small compared to the pumping and decay rates,
Eqs. (4.8.1) give the steady-state populations

N0 ¼ G10G21

G10G21 þ G10Pþ G21P
NT , (4:8:3a)

N1 ¼ G21P

G10G21 þ G10Pþ G21P
NT , (4:8:3b)

N2 ¼ G10P

G10G21 þ G10Pþ G21P
NT : (4:8:3c)

The steady-state population inversion of the laser transition is therefore (Problem 4.4)

N2 � N1 ¼ P(G10 � G21)NT

G10G21 þ G10Pþ G21P
: (4:8:4)

Thus, the pumped (P = 0) four-level system will always have a steady-state population
inversion when

G10 . G21, (4:8:5)

that is, when the lower laser level decays more rapidly than the upper laser level. When
we have

G10 � G21,P, (4:8:6)

then N0 � NT, N1 � 0 and Eq. (4.8.4) reduces to

N2 � N1 � N2 � P

Pþ G21
NT : (4:8:7)

4.9 PUMPING THREE- AND FOUR-LEVEL LASERS

It is interesting to compare the pumping rates necessary for laser oscillation in the three-
and four-level lasers. To achieve laser oscillation, we must produce a gain larger than the
threshold value gt, and therefore a population inversion greater than DNt, where

gt ; s (n)DNt (4:9:1)

is the threshold gain for frequency n. SettingN2 � N1 equal to the threshold inversion in
(4.7.9), we obtain

(Pt)three-level laser ¼
NT þ DNt

NT � DNt
G21 (4:9:2)
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for the threshold pumping rate for laser oscillation in the three-level laser. From (4.8.7),
on the other hand, the pumping rate necessary for a four-level laser satisfying (4.8.6) is

(Pt)four-level laser ¼
DNt

NT � DNt
G21 (4:9:3)

The ratio of (4.9.3) to (4.9.2) is

(Pt)four-level laser
(Pt)three-level laser

¼ DNt

NT þ DNt
: (4:9:4)

Ordinarily, the population inversion (at threshold or otherwise) is very small compared
to the total number of active atoms; recall our example near the end of Section 4.3. From
(4.9.4), therefore, we see that

(Pt)four-level laser 
 (Pt)three-level laser: (4:9:5)

Thus, a much larger pumping rate is necessary to achieve laser oscillation in a three-level
laser than in a four-level laser.

In the three-level laser the pumping power density necessary to establish the threshold
inversion DNt is

(Pwr)t
V

� �
three-level laser

¼ hn31(N1)t(Pt)three-level laser, (4:9:6)

where (N1)t is given by (4.7.8a) with P ¼ (Pt)three-level laser. Assuming DNt 
 NT , we
conclude from (4.9.2) that

(Pt)three-level laser � G21, (4:9:7)

and from (4.7.8) that

(N1)t �
NT

2
: (4:9:8)

Equation (4.9.6) therefore becomes

(Pwr)t
V

� �
three-level laser

� 1
2
hn31NTG21, (4:9:9)

which, because of the approximation DNt 
 NT , is the same as (4.7.15). Thus, when
DNt 
 NT the minimum pumping power density necessary to achieve positive gain
is approximately the same as that necessary to reach threshold and laser oscillation. In
the four-level case, on the other hand, we obtain

(Pwr)t
V

� �
four-level laser

� hn30 DNt G21 (4:9:10)
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for DNt 
 NT . The ratio of (4.9.10) to (4.9.9) is

[(Pwr)t=V]four-level laser
[(Pwr)t=V]three-level laser

� 2n30 DNt

n31NT
(4:9:11)

if we take the upper-laser-level decay rate G21 to be the same in the two cases. This shows
again that, other things being roughly commensurate, much less power is required to
achieve laser oscillation in the four-level case.

4.10 EXAMPLES OF THREE- AND FOUR-LEVEL LASERS

Real lasers seldom fit very neatly into our three- and four-level categories. However,
these idealizations sometimes provide a useful framework for rough estimates of
pump power requirements. We will illustrate this for cw ruby and Nd :YAG solid-
state lasers, which are approximately three-level and four-level systems, respectively.

Ruby was the gain medium for the very first laser, but the ruby laser has largely been
replaced by other, more efficient solid-state lasers. It nevertheless illustrates nicely the
concept of a three-level laser. As mentioned in Section 3.1, ruby is the crystal Al2O3

with chromium ions (Cr3þ) replacing some of the aluminum ions (Al3þ); the concen-
tration of chromium is only about 0.05% by weight. The relevant energy levels for
the ruby laser are those of the Cr3þ ion in the host crystal lattice. The laser is optically
pumped, that is, a population inversion is obtained by the absorption of radiation from
another laser or a lamp, typically a high-pressure Xe or Hg flashlamp (Section 11.12). It
is approximately a three-level laser, although the third “level” really consists of two
broad bands of energy, both decaying rapidly (rate � 107 s21) into the upper laser
level 2. At room temperature the decay rate of the upper laser level is

G21 � 1
2� 103 s�1: (4:10:1)

The density of “active atoms” (i.e., Cr3þ ions) is (Problem 4.5)

NT � 1:6� 1019 cm�3: (4:10:2)

The excitation energy required from the pump, the energy difference between the ground
level and the lower pump band, is about 2.25 eV, corresponding to awavelength of about
550 nm (green). From (4.9.9), therefore, the minimum pumping power density necess-
ary to achieve nonnegative gain [and also, according to (4.7.15), approximately the
pumping power density necessary for laser oscillation] is

Pwr
V

� �
min

� 1
2

1
2
� 103 s�1

� �
(1:6� 1019 cm�3)(2:25 eV) � 1 kW=cm3: (4:10:3)

For a 5-cm-long ruby rod of radius 2 mm, the required pump power is

Pwr � 1 kW
cm3

� �
p (0:2 cm)2(5 cm) ¼ 600W: (4:10:4)
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This is a rather large amount of power. In fact, much more power is actually required to
operate a cw ruby laser because (4.10.4) only gives the power that must actually be
absorbed by the Cr3þ ions. In reality only a small fraction (typically � 0.1%) of the elec-
trical power delivered to the lamp is converted to useful laser radiation.

It is also interesting to estimate the population inversion necessary for threshold gain
in a typical ruby laser. At room temperature the 694.3-nm laser transition has a
Lorentzian lineshape of width (HWHM)

dn0 � 170GHz, (4:10:5)

and the A coefficient for spontaneous emission is

A � 230 s�1: (4:10:6)

The line-center cross section for stimulated emission is therefore

s ¼ l2A

8pn2
1

pdn0
� 2:7� 10�20 cm2, (4:10:7)

where we have used the value n ¼ 1.76 for the refractive index of ruby. If we assume a
resonator with mirror reflectivities r1 ¼ 1.0 and r2 ¼ 0.96, and a scattering loss of 3%
per round-trip pass through the gain cell, then the threshold gain for laser oscillation
is [Eq. (4.3.13)]

gt ¼ �1
2(5 cm)

ln (0:96)þ 0:03
2(5 cm)

¼ 7:1� 10�3 cm�1 (4:10:8)

for a ruby rod 5 cm long. From (4.3.15), (4.10.7), and (4.10.8), therefore, we calculate a
population inversion threshold

DNt � 7:1� 10�3 cm�1

2:7� 10�20 cm2
¼ 2:6� 1017 cm�3: (4:10:9)

This is much larger than the sort of population inversion necessary for a typical He–Ne
laser [Eq. (4.3.18)]. The difference stems from the much larger stimulated emission
cross section of the 632.8-nm laser transition of Ne, which in turn results from the
much larger A coefficient and much smaller linewidth than in ruby. This illustrates an
important point: Gas lasers obviously have a much smaller density of atoms than
solid-state lasers, but this does not necessarily mean that they have smaller gains. In
fact, many of the most powerful lasers are gas lasers. The reasons for this are discussed
in Chapter 11.

In the 1.06-mm (1064-nm) Nd :YAG laser, the active atoms are also impurities in a
crystal lattice, in this case Nd3þ ions in yttrium aluminum garnet (Y3Al5O12, called
YAG). The Nd :YAG laser is approximately a four-level system, with upper-level
decay rate

G21 � 4400 s�1 (4:10:10)
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and stimulated emission cross section1

s � 3� 10�19 cm2 (4:10:11)

at room temperature. If we assume the same threshold gain (4.10.8) as in our calculation
for the ruby laser, we obtain a population inversion threshold

DNt � 7:1� 10�3 cm�1

3� 10�19 cm2
� 2� 1016 cm�3, (4:10:12)

which, because of the relatively large stimulated emission cross section for Nd3þ, is con-
siderably smaller than the value (4.10.9) for ruby.

The pump “level 3” for the Nd :YAG laser is actually a series of energy bands located
between about 1.63 and 3.13 eV above the ground level. If we take the energy difference
E3 2 E0 in our four-level model (Fig. 4.7) to be the average value, 2.38 eV, we obtain
from (4.9.10) the pumping power density for threshold:

(Pwr)min

V
� 30W=cm3: (4:10:13)

For a 5-cm Nd :YAG rod of radius 2 mm, therefore, the threshold pump power is

Pwr � 20W, (4:10:14)

much smaller than the estimate (4.10.4) for ruby.

4.11 SATURATION

We remarked in Sections 3.12 and 4.2 that exponential growth of intensity in a gain
medium is only an approximation, and that the approximation breaks down when the
intensity is sufficiently large. Exponential attenuation in an absorbing medium is like-
wise a low-intensity approximation.

To understand this, let us return to the rate equations (3.7.5) for the populations of two
nondegenerate levels. No upper-level pumping processes are included in these
equations, only absorption and stimulated and spontaneous emission. We further
assume that the intensity In of the field is constant in time. The steady-state solutions
N2 and N1 obtained by setting the derivatives equal to zero are easily found to be

N2 ¼ s (n)In=hn
A21 þ 2s (n)In=hn

N ¼
1
2 In=I

sat
n

1þ In=Isatn

N, (4:11:1a)

N1 ¼ A21 þ s (n)In=hn
A21 þ 2s (n)In=hn

N ¼ 1þ 1
2 In=I

sat
n

1þ In=Isatn

N, (4:11:1b)

1There are significant differences in reported measurements of these parameters for Nd : YAG, and the esti-
mates used here should be considered reliable only to within about a factor of 2.
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where N ¼ N1 þ N2 ¼ N1 þ N2 and

Isatn ¼
hnA21

2s (n)
(4:11:2)

is the saturation intensity. The absorption coefficient is then

a(n) ¼ s (n)(N1 � N2) ¼ a0(n)
1þ In=Isatn

, (4:11:3)

where

a0(n) ¼ s (n)N (4:11:4)

is the small-signal absorption coefficient, the absorption coefficient when the intensity
In is small compared to Isatn . In this case N1 � N and N2 � 0, that is, practically all the
atoms are in the ground level 1.

As In=Isatn increases, the absorption coefficient “saturates,” becoming smaller and
smaller as In increases. For In � Isatn , N2 � N1 � N=2. In this strongly saturated
regime the (equal) rates of absorption and stimulated emission are so large that the
atoms are equally likely to be found in the excited level as the ground level. The
larger Isatn , the larger the field intensity In has to be to produce significant saturation of
the transition. Saturation of an absorbing transition arises from the excitation of the
upper level, which increases stimulated emission and reduces the absorption.

As discussed in the following section, the gain coefficient of an amplifying medium
exhibits essentially the same saturation behavior. In this case the saturation arises from
the growth due to stimulated emission of the lower-level population, which enhances
absorption and thereby reduces the amplification of the field. The dependence of g(n)
on In means that the solution of Eq. (3.12.9) is not the simple exponentially growing
intensity (3.12.10). The correct solution, which is given in the following chapter,
grows exponentially with z only as long as In is small compared to Isatn . The exponential
attenuation in an absorber is likewise a valid approximation only for intensities small
compared to Isatn . The saturation intensity, whose numerical value is determined by
the transition cross section and rates, thus provides the measure of whether a given
field intensity is “large” or “small” in terms of its ability to saturate the transition.

A different, somewhat more restrictive interpretation of saturation is possible.
Consider a homogeneously broadened transition having a Lorentzian lineshape of
width dn0. After some simple algebra, using Eqs. (4.11.2), (4.11.3), and (3.7.4), we
find that

a(n) ¼ l2A21

8p
N

(1=p)dn0
(n� n0)2 þ dn020

¼ a0(n0)dn20
(n� n0)2 þ dn020

, (4:11:5)

where we define

dn00 ¼ dn0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ In=Isatn0

q
: (4:11:6)
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We see that, in effect, the width dn0 of the transition is increased by the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ In=Isatn0

q
. In other words, we can interpret the saturation of the transition with

increasing intensity as an effective “power broadening” of the linewidth.
Saturation will always occur at sufficiently high intensities, regardless of whether the

transition is homogeneously or inhomogeneously broadened. The saturation intensity
(4.11.2), because of its dependence on s (n), will vary with the lineshape function
S(n). For a Doppler-broadened transition, for instance,

Isatn0
¼ hnA21

2(l2A21=8p)S(n0)
¼ 4p2hc

l3
dnD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4p ln 2

r
(4:11:7)

at line center (n ¼ n0), whereas for a transition with a Lorentzian lineshape (3.4.26),

Isatn0
¼ 4p2hc

l3
dn0: (4:11:8)

These formulas are based on the assumption that spontaneous emission is the only
(intensity-independent) decay process for the upper level of the transition, and that
the lower level is the ground level of the atom. In general the saturation intensity will
depend on both upper- and lower-level decay rates associated with collisional as well
as radiative processes, and it can also depend on the level degeneracies. Here we are
less interested in the detailed form of Isatn as we are in the fact that the absorption and
gain coefficients saturate, in many situations of practical interest, as 1=[1þ In=Isatn ],
whatever the form of Isatn . In the following section we will derive saturation formulas
specifically for the gain coefficient of our idealized three- and four-level lasers.

Although they account only for radiative excitation and deexcitation processes, the
formulas obtained here for Isatn are nevertheless useful in their own right. Consider as
an example the absorption by sodium vapor of radiation resonant with the
3S1=2(F ¼ 2)$ 3P3=2 transition: n ¼ n(2)0 in the notation of Section 3.13. For
Doppler broadening at T ¼ 200K, we calculated in Section 3.13 the Doppler width
dnD ¼ 1 GHz. Then, from (4.11.7),

Isatn0
� 1:3W=cm2: (4:11:9)

If instead we assume radiative broadening, for which dn0 ¼ A21/4p (Section 3.11), then

Isatn0
� phc

l3
A21 ¼ 19mW=cm2, (4:11:10)

wherewe have usedA21 ¼ 6.2 � 107 s21 for the spontaneous emission rate of the sodium
D2 line (Section 3.13). These results do not account for the level degeneracies and hyper-
fine structure, and thus do not include factors such as g2/g1 or 5

8 or 3
8

appearing in Eq. (3.13.9). However, because these omissions give rise only to factors
of order unity, the numerical values for Isatn are of the correct magnitude. The large dis-
parity in these two saturation intensities is not unusual; saturation intensities can vary
widely for the same absorbing or emitting atoms, depending on the physical situation.
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† Saturation of an atomic transition has been observed rather directly in experiments using a
sodium beam. Well-collimated atomic beams are formed by those atoms that have passed from
an oven (used to produce a vapor) through two (or more) successive pinholes. Irradiation by a
laser beam propagating at a right angle to the atomic beam nearly eliminates any Doppler broad-
ening and results, typically, in purely radiative broadening of the resonant transition. By moni-
toring the intensity of the spontaneously emitted radiation, one can infer the dependence of the
excited-state population on the laser intensity or frequency.

As discussed in Section 14.3, it is possible to “align” atoms by irradiating them with
polarized light. For instance, if a sodium beam is irradiated with circularly polarized laser radi-
ation, it can be “aligned” such that only transitions between the two states 3S1/2(F ¼ 2, M ¼ 2)
and 3P3/2(F ¼ 3, M ¼ 3) are possible. For this transition the saturation intensity Isatn0

can be
shown to be phcA21/3l

3, that is, 6.3 mW/cm2, or one third the value given by Eq. (4.11.10),
which assumes no alignment (Problem 14.8).

The FWHM radiative linewidth of the sodium D2 line is [Eq. (3.11.2)] 2dn0 ¼ A21/2p ¼
10MHz. According to (4.11.6), therefore, the power-broadened radiative linewidth (FWHM) of
the 3S1=2(F ¼ 2, M ¼ 2)$ 3P3=2(F ¼ 3, M ¼ 3) transition should be

dn00 � 10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ In=6:3

p
MHz, (4:11:11)

where In is the laser intensity in units of mW/cm2. Measurements of dn00 for In ¼ 0.84, 3.5, 90,
and 170mW/cm2 gave dn00 ¼ 12:4+ 0:8, 13.8+ 0.9, 41.2+1.8, and 53.7+2.8MHz, respect-
ively, in good agreement with the variation predicted by (4.11.11).2 The dependence of the scat-
tered intensity on the laser intensity at resonance, similarly, was found to be well described by the
factor 1=[1þ In=Isatn0

]. †

4.12 SMALL-SIGNAL GAIN AND SATURATION

Equation (4.7.9) gives the steady-state population inversion for a three-level laser when
the stimulated emission rate is negligible. In general, of course, the stimulated emission
rate is not negligible, and here we consider the steady-state population inversion in the
more general case. For this we require the steady-state solutions of Eqs. (4.7.4). These
may be obtained by noting that the following replacements for P and G21 (in the
equations without stimulated emission),

P �! Pþ sFn, (4:12:1a)

G21 �! G21 þ sFn, (4:12:1b)

are sufficient to reinstate all stimulated-emission terms. Here Fn is the steady-state (i.e.,
time-independent) cavity photon flux. Thus, the steady-state solutions of (4.7.4) may be
obtained by making the same replacements in the solutions (4.7.8). Likewise the steady-
state population inversion N2 � N1 in the general case follows when the replacements
(4.12.1) are made in (4.7.9):

N2 � N1 ¼ (P� G21)NT

Pþ G21 þ 2sFn
: (4:12:2)

This is the generalization of (4.7.9) to the case in which the stimulated emission rate is
not negligible compared to P and G21.

2M. L. Citron, H. R. Gray, C. W. Gabel, and C. R. Stroud, Jr., Physical Review A 16, 1507 (1977).
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The steady-state gain coefficient for a three-level laser follows from (3.12.6) and
(4.12.2). Assuming g1 ¼ g2, we have

g(n) ¼ s (n)(P� G21)NT

Pþ G21 þ 2s (n)Fn
¼ s (n)(P� G21)NT

Pþ G21

1
1þ [2s (n)Fn=(Pþ G21)]

¼ g0(n)

1þFn=F
sat
n

¼ g0(n)
1þ In=Isatn

, (4:12:3)

where we define the small-signal gain

g0(n) ¼ s (n)(P� G21)NT

Pþ G21
(4:12:4)

and the saturation flux

Fsat
n ¼

Pþ G21

2s (n)
: (4:12:5)

The corresponding expressions for the saturation intensity and photon number are (see
Problem 4.7)

Isatn ¼ hnFsat
n ¼

hn(Pþ G21)
2s (n)

(4:12:6)

and

qsatn ¼
V

c
Fsat

n ¼
Pþ G21

2cs (n)
V : (4:12:7)

The gain coefficient for the three-level laser, therefore, saturates in the same way as
the absorption coefficient (4.11.3) of a two-level transition. The saturation intensities in
the two cases are different; in particular, Isatn for the three-level laser depends not only on
hn/s (n) but also on the pumping rate P and the decay rate G21.

For In 
 Isatn , g(n) � g0(n), which, of course, is why g0(n) is called the “small-
signal” gain coefficient. The maximum gain is g0(n0), that is, the gain when In 
 Isatn

and the field frequency matches the line-center frequency n0, where s (n0) has its maxi-
mum value. When the lineshape is Lorentzian, with HWHM width dn0, we have

g(n) ¼ g0(n0)
1

(n0 � n)2=dn20 þ 1þ (Fn=F
sat
n0
)
: (4:12:8)

The cavity frequencies at which there is small-signal gain sufficient to overcome loss
in a laser are generally those within about dn0 of line center (n ¼ n0); dn0 can be called
the small-signal gain bandwidth. In Section 1.3 we showed by way of an example how
the gain bandwidth and the cavity mode spacing together determine the number of poss-
ible frequencies that can lase.

In Fig. 4.8 we plot g(n) vs. n as given in (4.12.8) for several values ofFn and g(n) vs.
Fn for several values of n. Clearly, it is harder to saturate g(n) away from line center.
Alternatively, for higher fluxes the halfwidth of g(n) is greater. This is exactly the
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same as the power broadening discussed in Section 4.11. The power-broadened gain
bandwidth is the half width implied by (4.12.8), namely

dng ¼ dn0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þFn=F

sat
n0

q
: (4:12:9)

It is greater than the small-signal gain bandwidth and is seen to be exactly the width dn00
given in (4.11.6), as it should be, if we put P ¼ 0 and G21 ¼ A21 in the expression
for Fsat

n .
In the case of a four-level laser we can obtain in a similar fashion a gain with the flux

dependence (4.12.3), butwith a saturationflux twice that given by (4.12.5) (Problem4.8).
The same basic flux dependence is also obtained when we include degeneracy and
refractive index corrections to the gain coefficient (Section 3.12).

Three- and four-level lasers are idealizations that are seldom fully realized in practice.
The gain–saturation formulas (4.12.3) and (4.12.8) are, however, applicable to a wide
variety of actual lasers. That is, although (4.12.3) may be derived from simple
models, it often applies outside the range of validity of these models. It is the most com-
monly assumed formula for the intensity dependence of the gain on a homogeneously
broadened laser transition. In Section 4.14 we will consider the case of an inhomogen-
eously broadened transition.

In Eq. (4.12.5) P and G21 are the “decay rates” of the lower and upper laser levels,
respectively [cf. Eqs. (4.7.4)]. The larger the decay rates, the larger the saturation
flux. This makes good sense physically, for the larger the decay rates, the larger must
be the stimulated emission rate necessary to saturate the transition, that is, to equalize
the population densities N1 and N2. In fact the saturation flux (4.12.5) for a three-
level laser is just the intensity for which the stimulated emission rate is the average of
the upper- and lower-level decay rates (Problem 4.8). In general, the larger these
decay rates, the larger the saturation flux. Equation (4.12.5) is an example of this general
result.

In most cases of practical interest the pump rate P is small compared to G21 in a three-
level laser and to G21 and G10 in a four-level laser. Then

Isatn ffi
hnG21

2s (n)
(three-level laser) (4:12:10)

(n0  –  n) / dn0

(n0 – n)/dn0 = 0
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Figure 4.8 Saturated gain curves, according to Eq. (4.12.8).
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and (Problem 4.8)

Isatn ffi
hnG21

s (n)
( four-level laser): (4:12:11)

The relation s (n)/ B21 [recall (3.12.18)] means that the saturation flux (4.12.5) is
inversely proportional to the Einstein B coefficient for stimulated emission. This is
another general result and is hardly surprising because the smaller B21 is, the greater
the intensity necessary to achieve a given stimulated emission rate. For a Lorentzian line-
shape function, (4.12.5) also predicts that the line-center saturation flux is directly pro-
portional to the transition linewidth dn0:

Fsat
n0
¼ Pþ G21

2s (n0)
¼ 4p 2dn0

l2A
(Pþ G21): (4:12:12)

This too is a general conclusion that is applicable beyond the three- and four-level
models.

The most important results of this section are Eqs. (4.12.3) and (4.12.8). We have
obtained these results for the specific case of an ideal three-level laser, but we have
emphasized that they apply to a large variety of real lasers under conditions of homo-
geneous line broadening. Whereas the detailed equations for the small-signal gain
and saturation intensity are specific to the particular laser under consideration, the
expressions (4.12.3) and (4.12.8) are more generally applicable. Indeed, it will usually
be difficult to calculate g0 and Isatn , but we can often be confident nevertheless that the
form of the intensity dependence of the gain described by (4.12.3) or (4.12.8) is correct.

We emphasize that these equations are applicable regardless of whether g0 is positive
(gain) or negative (absorption). That is, a medium may be saturated regardless of
whether it is amplifying or absorbing. Thus, the absorption coefficient a(n) of an absorb-
ing medium will decrease as the intensity of the radiation is raised, as discussed in the
preceding section. When the intensity is much larger than the line-center saturation
intensity Isatn0

characteristic of the medium, the absorption coefficient is very small
[a(n) � 0], whichmeans that the medium is practically transparent to high-intensity radi-
ation. In this case the medium is sometimes said to be “bleached” because it no longer
absorbs radiation that is resonant with one of its transition frequencies. What is happen-
ing in the case of such strong saturation is that the stimulated emission (and absorption)
rate has become much greater than the decay rate of the upper level of the transition. An
atom that has absorbed a photon will then be quickly induced to return to the lower level
and give the photon back to the field by stimulated emission. This occurs, with high
probability, before the absorbed energy can be dissipated as heat or fluorescence.
Thus, no energy is lost by the incident field; the medium has beenmade effectively trans-
parent (“bleached”) by virtue of the high intensity of the field.

4.13 SPATIAL HOLE BURNING

In this section we will consider more carefully the meaning of the “intensity.” Intensity
refers to the electromagnetic energy flow per unit area per unit time, but in most lasers we
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have standingwaves rather than traveling waves. The gain–saturation formulas (4.12.3)
and (4.12.8) are often written with Fn assumed to be the sum of the fluxes of the two
traveling waves (Fig. 4.3):

Fn �! Fn ¼ F(þ)
n þF(�)

n : (4:13:1)

However, this is not quite correct, for it ignores the interference of the two traveling
waves. The electromagnetic energy density u is proportional to the square of the electric
field:3

u ¼ e0E2(r, t) ¼ e0E2
0 cos

2 vt sin2 kz: (4:13:2)

We replace cos2 vt by 1
2, its average value over times long compared to an optical period

2p/v � 10214 s, and write

u ¼ e0
2
E2
0 sin

2 kz: (4:13:3)

Now a cavity standing-wave field is the sum of two oppositely propagating traveling-
wave fields:

E(z, t) ¼ E0 cosvt sin kz ¼ 1
2E0[sin(kz� vt)þ sin(kzþ vt)]

¼ Eþ(z, t)þ E�(z, t), (4:13:4)

where the two electric waves

E+(z, t) ¼ 1
2E0 sin(kz+ vt) (4:13:5)

propagate in the positive (þ) and negative (2) z directions. The time-averaged square of
the electric field (4.13.5) gives a field energy density u ¼ u(þ) þ u(�), where

u(+) ¼ e0
8
E2
0 : (4:13:6)

From (4.13.3) and (4.13.6), therefore, it follows that

Fn ;
c

hn
u ¼ 2 F(þ)

n þF(�)
n


 �
sin2 kz, (4:13:7)

or, in terms of the intensity In ; hnFn,

In ¼ 2 I(þ)n þ I(�)n


 �
sin2 kz: (4:13:8)

Thus, it is not correct to use (4.13.1) as the flux in the gain saturation formulas
(4.12.3) and (4.12.8). We should use (4.13.7), which accounts properly for the

3For simplicity we assume in this section that the refractive index n � 1.
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interference of the two traveling-wave fields. Then the gain–saturation formula for a
homogeneously broadened transition is

g(n) ¼ g0(n)

1þ 2 F(þ)
n þF(�)

n

� �
=Fsat

n


 �
sin2 kz

: (4:13:9)

This saturation formula replaces (4.12.3) when the standing-wave nature of the cavity
field is properly accounted for.

The sin2 kz term in Eq. (4.13.9) gives rise to what is called spatial hole burning in the
gain coefficient g(n). At points z for which sin2 kz ¼ 0, g(n) takes on its maximum value,
namely the small-signal value g0(n). Where sin2 kz ¼ 1, however, g(n) has its minimum
value, that is, it is most strongly saturated; a “hole” is “burned” in the curve of g(n) vs. z
(Fig. 4.9). The holes in this curve are separated by Dz ¼ p/k ¼ l/2. Thus, g(n) varies
with z on the scale of the laser wavelength.

This rapid variation of g(n) with z suggests the approximation of replacing sin2 kz by
its spatial average, 12, in Eq. (4.13.9). In this approximation we take

g(n) ¼ g0(n)

1þ F(þ)
n þF(�)

n

� �
=Fsat

n

, (4:13:10)

which is the result obtained by using (4.13.1) in the gain–saturation formula (4.12.3).
This approximation ignores the spatial dependence of the intracavity field and, therefore,
also the spatial hole burning of the gain coefficient. It is called the uniform-field approxi-
mation or the spatial mean-field approximation.

4.14 SPECTRAL HOLE BURNING

In an inhomogeneously broadened medium the different atoms have different central
transition frequencies n00. This may be due to their different velocities and the
Doppler effect (Section 3.9), the presence of different isotopes having slightly different
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Figure 4.9 Spatial hole burning in the gain curve, according to Eq. (4.13.9).
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energy levels, spatially nonuniform electric and magnetic fields causing shifts in the
energy levels, or a host of other effects.

Saturation of the absorption or gain coefficient is more complicated in the case of
inhomogeneous broadening. Atoms with different central frequencies n00 will be satu-
rated according to (4.11.5), but there is a distribution of resonance frequencies n00.
The absorption or gain coefficient is obtained by integrating the contributions from
different frequency components, or spectral packets, each of which saturates to a differ-
ent degree depending on its detuning from the cavity mode frequency n.

Equation (4.11.5) implies that the absorption or gain is more strongly saturated for
spectral packets with frequency n00 � n; spectral packets with frequencies detuned
from n by much more than the homogeneous linewidth are hardly saturated at all.
This is illustrated in Fig. 4.10. The selective saturation leads to spectral hole burning
in the gain curve. The width of a hole is just the homogeneous linewidth dn0 (if
power broadening is small), while the depth is determined by the field intensity.
When the field intensity is very large the hole “touches down,” that is, the gain at the
center of the hole is fully saturated.

Spectral hole burning is especially interesting in the case of a purely Doppler-broad-
ened gain medium.4 Suppose the cavity mode frequency n is different from the center
frequency n0 of the Doppler gain profile. Consider, for example, the traveling-wave
field propagating in the positive z direction. This wave will strongly saturate the spectral
packet of atoms with Doppler-shifted frequencies n00 ¼ n; the Doppler effect has brought
these atoms into resonance with the wave. Therefore these atoms have the z component
of velocity given by (cf. Section 3.9)

n ¼ n00 ¼ n0 1þ v

c

� �
, (4:14:1a)

or

v

c
¼ n� n0

n0
, (4:14:1b)

where n0 is the resonance frequency of a stationary atom. If n . n0, then v is positive.
This means that the atoms that have been Doppler shifted into resonance are moving in

g(n) 

2dn0

nLn0 n 

Figure 4.10 Spectral hole burning in an inhomogeneously broadened gain profile. Radiation of
frequency nL saturates only a spectral packet of atoms with frequency n � nL.

4Spectral hole burning is the origin of the Lamb dip in Doppler-broadened lasers, as discussed in Section 5.8.
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the positive z direction, the same direction in which the traveling wave is propagating. If
n , n0, on the other hand, v/c is negative, or in other words the atoms must be moving
in the negative z direction, opposite to the traveling wave, in order to be shifted into
resonance.

Consider the saturation of the gain coefficient when there is Doppler broadening. For
simplicity wewill assume a single traveling wave of frequency n. With atoms of velocity
v along the z direction we associate the saturated gain coefficient

g(n, v) ¼ l2A21

8p
P� G21

Pþ G21
NT

dn0=p

(n0 � nþ n0v=c)2 þ dn2g

; C
dn0=p

(n0 � nþ n0v=c)2 þ dn2g
(4:14:2)

that follows from the three-level laser model (Section 4.12) with the Doppler shift
included in the (power-broadened) Lorentzian lineshape function. We now calculate
the total gain coefficient due to atoms of all velocities by integrating over the
Maxwell–Boltzmann distribution for atoms of molecular weight MX, exactly as in
Section 3.9:

g(n) ¼
ð1
�1

dv
MX

2pRT

� �1=2
e�MXv

2=2RTg(n, v)

¼ C
MX

2pRT

� �1=2dn0
p

ð1
�1

dv e�MXv
2=2RT

(n0 � nþ n0v=c)2 þ dn2g

¼ C
4 ln 2

p3=2

dn0
dn 2

D

ð1
�1

dy e�y
2

(xþ y) 2 þ b0 2
, (4:14:3)

where we have made the same change of variables as in Section 3.10 and defined x as in
Eq. (3.10.4); b0 is defined by replacing dn0 by dng in (3.10.5):

b0 ¼ (4 ln 2)1=2
dng
dnD

: (4:14:4)

As in Section 3.10 it is convenient to consider the case x ¼ 0, the case where the field
frequency n exactly matches the central frequency n0 of the Doppler lineshape. Then,
using (3.10.7),

g(n) ¼ C
4 ln 2

p 3=2

dn0
dn2D

p

b0
eb
0 2
erfc(b0) ¼ C

4 ln 2
p

� �1=2 dn0
dnDdng

eb
0 2
erfc(b0): (4:14:5)

Suppose first that the transition is Doppler broadened and the intensity of the field is
well below saturation, so that dnD � dn0, dng � dn0, and b0 � (4 ln 2)1=2dn0=dnD 
 1.
Then, from (3.10.12), we obtain

g(n) � C
4 ln 2
p

� �1=2 1
dnD
¼ g(D)0 (n0), (4:14:6)
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where g(D)0 (n0) is the small-signal gain at n ¼ n0 for Doppler broadening. If dnD � dng
but dng differs significantly from dn0, then b0 
 1 and we can still use (3.10.13), but
now

g(n) � C
4 ln 2
p

� �1=2 dn0
dnDdng

¼ C
4 ln 2
p

� �1=2 1
dnD

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ In0=I

sat
n0

q

¼ g(D)0 (n0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ In0=I

sat
n0

q : (4:14:7)

Thus, a Doppler-broadened transition saturates not as 1=[1þ In0=I
sat
n0
] but as

1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ In0=Isatn0

q
. This is true so long as dng is not too large: if dng � dnD, then the

approximation (3.10.10) [with b0 replacing b] is applicable and (4.14.5) becomes

g(n) � C
4 ln 2
p

� �1=2 dn0
dnDdng

1

p1=2

dnD

(4 ln 2)1=2dng
¼ C

1
p

dn0
dn2g

¼ C
1=(pdn0)
1þ In0=I

sat
n0

¼ g(H)
0 (n0)

1þ In0=I
sat
n0

, (4:14:8)

where g(H)
0 (n0) is the line-center small-signal gain for the homogeneously broadened

transition with Lorentzian HWHM dn0. In this power-broadened limit we recover the
factor 1=[1þ In0=I

sat
n0
] characteristic of homogeneous broadening.

Inhomogeneously broadened lasers, and in particular Doppler-broadened lasers, are
generally much more complicated to treat theoretically than homogeneously broadened
lasers, especially if counterpropagating traveling waves and spatial hole burning are
taken into account.

4.15 SUMMARY

In Chapter 1 we gave a very crude description of laser action and introduced some fun-
damental concepts such as gain and threshold. In the intervening chapters we have gone
more deeply into the theory of the interaction of light andmatter, and in the present chap-
ter we have begun to apply what we have learned to laser theory.

The most important theoretical tools for our understanding of lasers are the rate
equations for level populations and field intensities. These equations generally include
effects of pumping, collisions, absorption, spontaneous and stimulated emission, field
gain and loss, and other processes that may be pertinent for a particular laser. We
have used such equations to discuss three- and four-level lasers, and in fact the use of
rate equations will be a dominant theme of the following chapters. We have also dis-
cussed the concept of saturation which, as wewill see in the next chapter, is a major con-
sideration in determining how much output power can be obtained with a given laser.
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PROBLEMS

4.1. Show how (3.12.5) and (4.3.4a) are modified if the light propagates toward 2z
rather than þz, and derive (4.3.4b).

4.2. (a) Solve (4.5.7) as a function of time for the (unusual) case that the equation’s loss
parameters satisfy G21 þ A21 ¼ (c/2L)(12 r1 r2). Give the steady-state value
of n2 þ qn.

(b) Find the steady-state solution for qn in terms of p and n2 for arbitrary loss
parameters.

4.3. (a) Write the full set of equations for a three-level laser by modifying (4.7.4) and
including the following equation for the third level (as shown in Fig. 4.6): dN3/
dt ¼ PN1 2 G32N3, and show that the full set of equations satisfies N1 þ N2 þ
N3 ¼ constant ¼ NT.

(b) Determine the steady-state values of the three level populations.
(c) Find the condition under which it is satisfactory to neglect level 3 [N3 � 0] and

to use Eqs. (4.7.2) and (4.7.4) as written in the text.

4.4. Solve Eqs. (4.8.1) for the steady-state value ofN2 � N1, and show that (4.8.4) gives
the limiting value as the stimulated emission rate decreases to zero.

4.5. Estimate the density of chromium ions in ruby, assuming that the concentration of
chromium in ruby is about 0.05% by weight.

4.6. (a) Calculate the transition dipole moment ej x12 j for the 3S1=2(F ¼ 2, M ¼ 2)$
3P3=2(F ¼ 3, M ¼ 3) transition of sodium.

(b) What is the oscillator strength of this transition?

4.7. Derive the formula analogous to (4.12.3) for a four-level laser, and write the
expression for the saturation intensity.

4.8. Show that the saturation intensity Isatn of a three-level laser [Eq. (4.12.6)] is the
intensity for which the stimulated emission rate is the average of the upper- and
lower-level decay rates of the laser transition. Find the corresponding expression
that follows from laser equations (4.5.2).

4.9. (a) A gain cell of length 10 cm has a small-signal gain coefficient of 0.025 cm21.
Two mirrors having the same reflectivity are placed at the ends of the cell.
Assuming that scattering losses are negligible, calculate the reflectivity necess-
ary for lasing.

(b) If the gain curve has a FWHM width of 1 GHz, what is the maximum number
of modes that can lase?
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5 LASER OSCILLATION: POWER AND
FREQUENCY

5.1 INTRODUCTION

In this chapter we will consider mainly the output power and frequency of a continuous-
wave (cw) laser, that is, a laser in the steady-state, time-independent mode of operation.
Such a laser emits a steady, continuous beam of radiation. The other common mode of
operation, in which the laser output is in the form of single or repeated pulses of radi-
ation, will be discussed in the following chapter.

We will also restrict ourselves to the case of laser oscillation on a single resonator
mode, postponing until the next chapter the case of multimode lasing. The assumption
of single-mode oscillation allows us to focus on the essential ideas without undue
complication.

5.2 UNIFORM-FIELD APPROXIMATION

We will now use the gain–saturation formula (4.12.3) to derive an expression for the
output intensity of a cw laser oscillating on a single cavity mode. We continue to
assume for now that the lasing transition is homogeneously broadened. In Section 5.4
we will consider the effect of spatial hole burning, but our discussion in the present
section will be restricted to the mean-field (uniform-field) approximation.

In cw laser oscillation the cavity photon number is constant in time. This means that
the field amplification due to stimulated emission exactly balances the attenuation due
to output coupling, scattering, and other cavity loss processes. That is, the growth rate
of the cavity photon number equals the decay rate.

We will assume all loss processes to be independent of the cavity intensity. This
implies that the field attenuation rate in steady-state oscillation is no different from
that at the threshold of oscillation, where the cavity intensity is practically zero. Thus,
the growth rate of cavity photons in steady-state oscillation must also be the same as
its threshold value. In other words, in cw oscillation the gain is precisely equal to its
threshold value gt. The gain is sometimes said to be “clamped” at its threshold value.
Since the steady-state gain equals gt, this clamping should determine the cavity intensity
of the laser. We will now justify these assertions and examine their implications.
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From the photon rate Eq. (4.4.8) [which applies when g(n) is independent of z,
consistent with the uniform-field approximation] we infer that

cl

L
g(n)In ¼ c

2L
(1� r1r2)In (5:2:1)

in steady-state oscillation (dIn/dt ¼ 0). Dividing through by In, therefore, we have the
condition

g(n) ¼ 1
2l
(1� r1r2) (5:2:2)

for steady-state oscillation. But from (4.4.7) we recognize the right-hand side as the
threshold gain necessary for oscillation. Equation (5.2.2), we recall, is applicable
when r1r2 � 1; our discussion in Section 4.4 implies that this case is consistent with
the uniform-field approximation. Thus, the condition for steady-state oscillation in the
uniform-field approximation is simply

g(n) ¼ gt (steady-state oscillation), (5:2:3)

as asserted above. Given the threshold gain gt, which may be calculated from the length
of the gain medium, the mirror reflectivities, and any significant scattering or other loss
coefficients, we therefore have also the “clamped” gain for cw oscillation.

Now from the gain–saturation formula (4.12.3), and the cw oscillation condition
(5.2.3), we must evidently have

g(n) ¼ g0(n)

1þ (I(þ)n þ I(�)n )=Isatn

¼ gt, (5:2:4)

or

I(þ)n þ I(�)n ¼ Isatn

g0(n)
gt
� 1

� �
: (5:2:5)

This simple formula gives the total cw cavity intensity in terms of the saturation intensity
Isatn , the small-signal gain g0(n), and the threshold gain gt.

Of course, the intensity on the left side of (5.2.5) is not the laser output intensity, but
the intracavity intensity. The output intensity is

Ioutn ¼ t1I
(�)
n þ t2I

(þ)
n , (5:2:6)

where t1 and t2 are the transmission coefficients of the mirrors at the laser frequency n
(Fig. 5.1a). Usually, only one of the mirrors is transmitting (Fig. 5.1b), in which case
we write

Ioutn ¼ tI(þ)n (5:2:7)
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instead of (5.2.6). Here t is the transmission coefficient of the output mirror, and I(þ)n is
the intensity of the traveling wave propagating toward the output mirror. For the cavity
mode defined by (4.13.4) we have

I(þ)n ¼ I(�)n : (5:2:8)

The equality of I(þ)n and I(�)n holds whenever the cavity mirrors of Fig. 5.1 are perfectly
reflecting, and so we might expect (5.2.8) to be a good approximation if the mirrors are
highly reflecting, as is the case in many lasers. This expectation will be borne out in
Section 5.5.

Combining the results (5.2.5), (5.2.7), and (5.2.8), we obtain

Ioutn ¼
t

2
Isatn

g0(n)
gt
� 1

� �
(5:2:9)

for the output intensity. Now according to (4.3.2), (5.2.2), and (5.2.3),

gt ¼ 1
2l
(1� r) ¼ 1

2l
(t þ s), (5:2:10)

so that

Ioutn ¼
1
2
tIsatn

2g0(n)l
t þ s

� 1

� �
(5:2:11)

for “small” (and typical) output couplings, for which (5.2.2) describes the threshold
gain.

It may be worthwhile to summarize the assumptions made in deriving the output
intensity (5.2.11) of a single-mode, homogeneously broadened, cw laser. First of all,
we have ignored any spatial variation of the intensity perpendicular to the cavity axis
(the z direction). Furthermore, we have assumed that the intensity is also constant
along the cavity axis; this is the uniform-field approximation, and it implies that the
gain coefficient is likewise independent of z. Thus, we have assumed that the gain
and intensity are constant throughout the laser cavity. In the derivation leading to
(5.2.11) we have also assumed that one of the mirrors is essentially perfectly reflecting,
while the output mirror’s reflectivity is high enough that I(þ)n � I(�)n .

Equation (5.2.11) gives the output intensity in terms of the small-signal gain g0(n),
the saturation intensity Isatn , and the length l of the gain medium, plus the coefficients
t and s of the output mirror. Thus, a given gain medium, characterized by g0, Isatn ,
and l, can yield different laser beam intensities, depending on how the laser cavity

t1 t2

(a) (b)

Figure 5.1 (a) A laser cavity with mirror transmission coefficients t1 and t2. (b) A laser cavity with
one output mirror.
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(i.e., t and s) is chosen. We will next determine the largest possible output intensity that
can be obtained from a given gain medium.

5.3 OPTIMAL OUTPUT COUPLING

It is a simple exercise to determine the optimum transmission coefficient topt of the
output mirror, the value for t that maximizes the output intensity (5.2.11). We obtain
(Problem 5.2)

topt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g0(n)ls

p
� s, (5:3:1)

and therefore the maximum possible output intensity is

[Ioutn ]max ¼ Isatn

ffiffiffiffiffiffiffiffiffiffiffiffi
g0(n)l

p
�

ffiffiffiffiffiffiffi
s=2

ph i2
: (5:3:2)

When t ¼ topt, the threshold gain, and therefore the gain in steady-state oscillation, is

(gt)opt ¼
1
2l
(1� r)opt ¼

1
2l
(topt þ s) ¼ 1

2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g0(n)ls

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
g0(n)s
2l

r
: (5:3:3)

The small-signal gain g0 (n) must be greater than s/2l in a laser, or else the threshold
condition (5.2.10) could not be satisfied. If the scattering and absorption losses are
small enough that g0(n)� s=2l, then from (5.3.2)

[Ioutn ]max � g0(n)I
sat
n l [g0(n)� s=2l] (5:3:4)

is the maximum possible intensity of radiation at frequency n that can be extracted from
the medium. That is, if the small-signal gain is much greater than the scattering loss coef-
ficient s/2l, and we design the resonator to have the optimal output coupling (5.3.1), we
will extract the maximum intensity (5.3.4) at frequency n. Since the small-signal gain is
generally greatest at line center (n ¼ n0), the maximum output intensity extractable from
the medium is

[Ioutn0
]max � g0(n0)I

satl, (5:3:5)

where Isat ; Isatn0
.

The result (5.3.4) may perhaps be better appreciated by deriving it in a different way,
using population rate equations. For this purpose we consider again the specific example
of the ideal three-level laser, the population rate equations for which are given by (4.7.4).
Since the ground level may be taken to have zero energy, the rate of change, due to stimu-
lated emission, of the energy per unit volume stored in the atoms is

hn
dN2

dt

� �
stimulated emission

¼ �s (n)(N2 � N1)In (5:3:6)
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in steady-state oscillation. Using Eq. (4.13.8) in the uniform-field approximation
(replacing sin2 kz by its average value 1

2), we may write (5.3.6) as

hn
dN2

dt

� �
stimulated emission

¼ �g(n)(I(þ)n þ I(�)n ): (5:3:7)

This is the power per unit volume extracted from the active atoms by stimulated emission.
It follows that g(I(þ)n þ I(�)n ) is the growth rate per unit volume of laser field energy in

the active medium. But in steady-state oscillation this must equal the loss rate due to
output coupling plus the loss rate associated with scattering and absorption processes;
these are characterized by t and s, respectively. When scattering and absorption losses
are small compared to output coupling, therefore, g(I(þ)n þ I(�)n ) is approximately the
power per unit volume lost by the active medium in the form of output laser radiation.
From (5.2.5),

g(n)(I(þ)n þ I(�)n ) ¼ g(n)Isatn

g0(n)
gt
� 1

� �
¼ gtI

sat
n

g0(n)
gt
� 1

� �
¼ Isatn [g0(n)� gt]: (5:3:8)

The maximum value of the power per unit volume that can be extracted as output laser
radiation of frequency n is therefore

power
volume

�! laser radiation
� �

max
¼ g0(n)I

sat
n , (5:3:9)

and this is obtained when the small-signal gain g0 is much larger than the threshold gain
gt. Thus, we can interpret the maximum possible intensity (5.3.4) that can be extracted
from the gain medium as simply the maximum possible power per unit volume g0Isatn

that can be extracted from the medium, multiplied by the length l of the medium.
The theoretical upper limit (5.3.9) to the extracted power per unit volume of the

gain medium is useful because it depends only on the properties of the active atoms
and the pumping process. Consider as an example the ideal three-level laser. The
input power per unit volume to the gain cell in steady-state oscillation is given by
Eq. (4.7.12). For pump rate P, the theoretical upper limit of the input-to-output power
conversion efficiency is therefore

emax ¼ g0(n0)Isatn

hn31PN1
(5:3:10)

for line-center operation. g0(n0) and I
sat for the three-level laser are given by (4.12.4) and

(4.12.6), respectively, and some simple algebra yields

emax ¼ (P� G21)NThn0
2hn31PN1

: (5:3:11)

Since we are considering the case of optimal output coupling and g0 � s=2l for the
purpose of obtaining a theoretical upper limit to the power conversion efficiency,
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we may take I(þ)n0
þ I(�)n0

� Isat, for from (5.2.5) and (5.3.3),

I(þ)n0
þ I(�)n0

Isat
¼ g0(n0)

gt
� 1 ¼ g0(n0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g0(n0)s=2l
p � 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g0(n0)l

s

r
� 1� 1: (5:3:12)

In this case the laser transition is strongly saturated, that is, N1 �N2 � 1
2NT , and

therefore

emax � P� G21

P

n0
n31

: (5:3:13)

Finally, we assume P� G21 in order to have a large small-signal gain [Eq. (4.12.4)].
Thus

emax � n0
n31
¼ E2 � E1

E3 � E1
: (5:3:14)

This is the theoretical upper limit to the power conversion efficiency. It is just the ratio of
the quantum of energy hn0 associated with the laser transition to the quantum of energy
hn31 associated with the pump transition of the three-level laser (Fig. 4.6). This ratio is
called the quantum efficiency of the three-level laser. It is a property only of the energy-
level structure of the active atoms. Similarly n0/n30 is the quantum efficiency of the ideal
four-level laser. In ruby and Nd :YAG lasers the pump level 3 is not a single, sharply
defined level. Viewing them as approximately three- and four-level lasers, and using
the numbers given in Section 4.10, we calculate that ruby and Nd :YAG lasers have
quantum efficiencies 	80% and 	50%, respectively (Problem 5.4).

Needless to say, the quantum efficiency is seldom approached in real lasers. First of
all, the input-to-output power conversion efficiency, of which the quantum efficiency is
the theoretical upper limit, does not give the actual overall efficiency of operation of the
laser. It only gives the fraction of the power actually delivered to the active medium that
is converted to laser output power. There is no account of the efficiency with which the
pump power is generated and delivered.

In a carefully designed cw ruby laser, for example, about 25% of the electric power
used by the lamp is actually converted to radiation with frequencies lying within the
pump bands of the chromium ion, and, of course, not all of this radiation is actually inci-
dent on the ruby rod. The fraction of the incident radiation actually absorbed by the ruby
is about 4%, and of this only the fraction equal to the quantum efficiencymay be used for
lasing. All things considered, the actual operating efficiency of a cw ruby laser system is
on the order of a tenth of a percent. Although much higher efficiencies are available with
modern lasers, the point is that the quantum efficiency defined by (5.3.14) usually has
little bearing on the actual operating efficiency of the complete laser system consisting
of the pump, the gain cell, and the laser resonator.

5.4 EFFECT OF SPATIAL HOLE BURNING

The effect of spatial hole burning is to reduce the output intensity. This can be under-
stood as follows.
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The gain saturates according to the formula (4.13.9), that is,

g(n) ¼ g0(n)

1þ 4(I(þ)n =Isatn ) sin2 kz
, (5:4:1)

where we have used Eq. (5.2.8) to write

In ¼ I(þ)n þ I(�)n ¼ 2I(þ)n : (5:4:2)

Our result (5.2.11) for the laser output intensity is based on the approximation of repla-
cing sin2 kz by its average value, that is, by ignoring the spatial dependence of the gain
arising from the interference of the two traveling waves. Wewill now consider the effect
of retaining the spatial variation (5.4.1) of the gain coefficient. In other words, we will
now improve upon the uniform-field approximation by including the effect of spatial
hole burning.

Equation (5.3.7) was written in the uniform-field approximation. Without this
approximation we arrive at the expression

�hn dN2

dt

� �
stimulated emission

¼ 2g(n)In sin
2 kz ¼ 2g0(n)In sin2 kz

1þ 2(In=Isatn ) sin2 kz
: (5:4:3)

This is the power (at frequency n) per unit volume, at the point z, extracted from the gain
medium by stimulated emission. Equation (5.3.7) follows when sin2 kz is replaced by 1

2,
its average value over distances large compared with a wavelength.

The gain “clamping” condition (5.2.3) does not apply in the “exact” theory in which
the gain and intensity vary with z. In other words, if g is a function of zwe can no longer
say that the gain and loss coefficients at every point in the gain medium are equal in
steady-state oscillation. It must still be true, however, that the rate at which the field
gains energy equals the rate at which it loses energy. The former follows from the gen-
eralization (5.4.3) of (5.3.7):ðl

0
gI dz ¼ 2g0I

ðl
0

dz sin2 kz

1þ 2(I=Isat) sin2 kz
, (5:4:4)

where we have dropped subscript n’s to simplify the notation.
The rate of field intensity loss from the cavity is just

(t þ s)I(þ) ¼ 1
2(t þ s)I ¼ gtlI: (5:4:5)

Note that the one-way intensity I(þ)n ¼ I=2 in the direction of the output mirror is inde-
pendent of z. The right-hand sides of (5.4.4) and (5.4.5) must be equal in cw oscillation,
and this equality determines I. From a table of integrals we find that, for kl� 1,ðl

0

dz sin2 kz

1þ 2(I=Isat) sin2 kz
ffi l

2
Isat

I
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2I=Isat
p

 !
, (5:4:6)

and, therefore, from the equality of (5.4.4) and (5.4.5),

1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2I=Isat

p ¼ gtI

g0Isat
: (5:4:7)
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This expression can be written more simply:

ffiffiffi
x
p ¼ 2g0

gt
� x, (5:4:8)

where

x ¼ 1þ 2I
Isat

: (5:4:9)

Squaring both sides of (5.4.8), we obtain a quadratic equation for x, with the two
solutions

x ¼ 1þ 2I
Isat
¼ 2g0

gt
þ 1
2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g0
gt
þ 1
4

s
: (5:4:10)

Since x should be equal to 1 (I ¼ 0) when g0/gt ¼ 1, the desired solution is the one
with the minus sign in the last term on the right:

1þ 2I
Isat
¼ 2g0

gt
þ 1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g0
gt
þ 1
4

s
, (5:4:11)

or

I ¼ Isat
g0
gt
� 1
4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0
2gt
þ 1
16

s !
: (5:4:12)

The output intensity is Iout ¼ tI(þ) ¼ (t=2)I, exactly as in the uniform-field approxi-
mation in which spatial hole burning is not included. This is because Iout is determined

0.04

0.03

0.02

0

0.01

6 12

Output Coupling t (%)

Eq. (5.4.13)

Eq. (5.2.9)
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Figure 5.2 Effect of spatial hole burning on output intensity, assuming g0l ¼ 0.10 and s ¼ 0.034.

182 LASER OSCILLATION: POWER AND FREQUENCY



directly by the one-way intensity I(þ) (Fig. 5.1), and there are no interference terms to
worry about. Thus

Iout ¼ t

2
Isat

g0(n)
gt
� 1
4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0(n)
2gt
þ 1
16

s !
, (5:4:13)

which is different from the result (5.2.9) obtained when spatial hole burning is
neglected.

Figure 5.2 shows the curve of output intensity vs. output coupling predicted by
(5.2.11) for the example g0l ¼ 0.10 and s ¼ 0.034. Also shown is the curve predicted
by the formula (5.4.13). The two predictions are seen to differ significantly, typically
by about 30%. Thus, the effect of spatial hole burning is to reduce the output intensity,
as already mentioned.

5.5 LARGE OUTPUT COUPLING

Our analysis of output power thus far has assumed that the output coupling is small and
that the two traveling waves have equal intensities, I(þ) ¼ I(2). We have also assumed
that the time-averaged intensities I(þ) and I(2) are independent of the axial coordinate
z. We will now allow arbitrary output coupling and, therefore, allow the possibility
that I(þ) and I(2) may vary with z. We assume, however, that the variation of interest
is much more gradual than the sin2 kz variation due to spatial hole burning, and replace
sin2 kz by its average value 1

2.
Thus, we work with the gain–saturation formula (5.2.4), which we now write in

the form

g(z) ¼ g0
1þ [I(þ)(z)þ I(�)(z)]=Isat

: (5:5:1)

For notational simplicity we have again suppressed the n dependence of the various
terms in this equation, but we indicate explicitly the z dependence. In principle, g0
could also depend on z, for example, if the pumping rate P depends on z, but here we
assume that it does not. In steady-state oscillation the intensities I(þ) and I(2) satisfy
Eqs. (4.3.4):

dI(þ)

dz
¼ g(z)I(þ)(z), (5:5:2a)

dI(�)

dz
¼ �g(z)I(�)(z): (5:5:2b)

We will assume that all cavity loss processes (output coupling, scattering, absorption)
occur at the mirrors. Thus, we will not include terms accounting for “distributed” loss
within the cavity.
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Equations (5.5.2) imply that

d

dz
I(þ)I(�)

 � ¼ I(þ)

dI(�)

dz
þ I(�)

dI(þ)

dz
¼ 0, (5:5:3)

or

I(þ)(z)I(�)(z) ¼ const ¼ C, (5:5:4)

where the constant C can be evaluated at either mirror:

I (þ)(0)I(�)(0) ¼ I(þ)(L)I(�)(L) ¼ C: (5:5:5)

Let us now make use of (5.5.4) and (5.5.1) in (5.5.2):

1
I(þ)

dI(þ)

dz
¼ g0

1þ [I(þ) þ C=I(þ)]=Isat
, (5:5:6a)

1
I(�)

dI(�)

dz
¼ �g0

1þ [I(�) þ C=I(�)]=Isat
: (5:5:6b)

In this form the equations for I(þ)(z) and I(2)(z) are uncoupled and can be solved
separately.

Consider first the equation for I(þ)(z). Writing (5.5.6a) in the form

g0 dz ¼ 1
I(þ)

1þ 1
Isat

I(þ) þ C

I(þ)

� �� 
dI(þ)

¼ dI(þ)

I(þ)
þ 1
Isat

dI(þ) þ C

Isat
dI(þ)

I(þ)2
, (5:5:7)

and integrating from z ¼ 0 to z ¼ L (Fig. 4.4), we have

ðL
0
g0 dz ¼

ðI(þ)(L)
I(þ)(0)

dI(þ)

I(þ)
þ 1
Isat

ðI(þ)(L)
I(þ)(0)

dI(þ) þ C

Isat

ðI(þ)(L)
I(þ)(0)

dI(þ)

I(þ)2
,

or

g0l ¼ ln
I(þ)(L)
I(þ)(0)

þ 1
Isat

I(þ)(L)� I(þ)(0)

 � � C

Isat
1

I(þ)(L)
� 1
I(þ)(0)

� �
: (5:5:8a)

Considering Eq. (5.5.6b), we obtain similarly

g0l ¼ ln
I(�)(0)
I(�)(L)

þ 1
Isat

I(�)(0)� I(�)(L)

 � � C

Isat
1

I(�)(0)
� 1
I(�)(L)

� �
: (5:5:8b)
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Since the small-signal gain g0 is assumed to be constant inside the gain cell of length l
(Fig. 4.4), but vanishes outside the gain cell, we have used, in both of Eqs. (5.5.8),ðL

0
g0 dz ¼ g0l: (5:5:9)

The boundary conditions (4.3.3), together with (5.5.4), may be used to express
I(2)(0), I(2)(L), and I(þ)(0) in terms of I(þ)(L). Thus,

I(�)(L) ¼ C

I(þ)(L)
¼ r2I

(þ)(L), (5:5:10)

so that

C ¼ r2 I(þ)(L)

 �2

: (5:5:11)

Furthermore,

I(þ)(0) ¼ C

I(�)(0)
¼ r1I

(�)(0), (5:5:12)

which means we may also write

I(�)(0) ¼
ffiffiffiffiffiffiffiffiffiffi
r2=r1

p
I(þ)(L), (5:5:13)

and from (5.5.12),

I(þ)(0) ¼ ffiffiffiffiffiffiffiffi
r1r2
p

I(þ)(L): (5:5:14)

We can use (5.5.11), (5.5.12), and (5.5.14) to express the right sides of (5.5.8) in
terms of I(þ)(L). From (5.5.8a),

g0l ¼ ln
1ffiffiffiffiffiffiffiffi
r1r2
p þ I(þ)(L)

Isat
(1� ffiffiffiffiffiffiffiffi

r1r2
p

)� I(þ)(L)
Isat

r2 �
ffiffiffiffi
r2
r1

r� �
, (5:5:15a)

while from (5.5.8b),

g0l ¼ ln
1ffiffiffiffiffiffiffiffi
r1r2
p þ I(þ)(L)

Isat

ffiffiffiffi
r2
r1

r
� r2

� �
� I(þ)(L)

Isat
(
ffiffiffiffiffiffiffiffi
r1r2
p � 1): (5:5:15b)

These equations are identical. We now solve for I(þ)(L):

I(þ)(L) ¼ Isat(g0lþ ln
ffiffiffiffiffiffiffiffi
r1r2
p

)

1þ ffiffiffiffiffiffiffiffiffiffi
r2=r1

p � r2 � ffiffiffiffiffiffiffiffi
r1r2
p

¼
ffiffiffiffi
r1
p

Isat

(
ffiffiffiffi
r1
p þ ffiffiffiffi

r2
p

)(1� ffiffiffiffiffiffiffiffi
r1r2
p

)
(g0lþ ln

ffiffiffiffiffiffiffiffi
r1r2
p

): (5:5:16)
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Finally, we can use (5.5.13) and (5.5.16) to obtain the output intensity:

Iout ¼ t1I
(�)(0)þ t2I

(þ)(L)

¼ Isat t2 þ
ffiffiffiffi
r2
r1

r
t1

� � ffiffiffiffi
r1
p

(
ffiffiffiffi
r1
p þ ffiffiffiffi

r2
p

)(1� ffiffiffiffiffiffiffiffi
r1r2
p

)
(g0lþ ln

ffiffiffiffiffiffiffiffi
r1r2
p

): (5:5:17)

These results generalize our previous ones in that they apply to arbitrary values of
output coupling. The principal assumptions in our derivation of (5.5.17) have been
that (1) the gain medium is homogeneously broadened; (2) the gain saturates according
to formula (5.5.1); (3) the small-signal gain g0 and the saturation intensity Isat are
constant throughout the gain medium; (4) spatial variations of the cavity intensity
transverse to the resonator axis can be neglected as a first approximation; (5) loss
occurs only at the mirrors; and (6) spatial hole burning is averaged.

The analysis leading to (5.2.11) assumed all these things, and also that the output
coupling (or other losses) is small. The analysis just given should therefore reproduce
(5.2.11) in the limit of high mirror reflectivities.

To see that this is so, suppose that one of the mirrors is perfectly reflecting
(r1 ¼ 1, t1 ¼ s1 ¼ 0). Then (5.5.17) becomes

Iout ¼ tIsat
1

(1þ ffiffi
r
p

)(1� ffiffi
r
p

)
(g0lþ ln

ffiffi
r
p

) ¼ t

1� r
Isat g0l� 1

2
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1
r

� �

¼ t

t þ s
Isat g0l� 1

2
ln(1� t � s)�1

� 

¼ ( 12 t) ln(1� t � s)�1

t þ s
Isat

2g0l

ln(1� t � s)�1
� 1

� �
, (5:5:18)

where r ¼ r2, t ¼ t2, s ¼ s2. This is a generalization of (5.2.11) (Problem 5.5).
When t þ s
 1, we have

Iout � t

2
Isat

2g0l
t þ s

� 1

� �
, (5:5:19)

which is just (5.2.11). In going from (5.5.18) to (5.5.19) we have used the approxi-
mation

�ln (1� t � s) � t þ s (t þ s
 1): (5:5:20)

One interesting result of our analysis is that the total two-way intensity is relatively
uniform in the z direction, even for moderately large output couplings. A simple way
to see this is to use the boundary conditions (5.5.10), (5.5.13), and (5.5.14) to calculate
the ratio of the total intensity at the output mirror to that at the other mirror, assumed
again to be perfectly reflecting. With r1 ¼ 1 and r2 ¼ r, we obtain

I(þ)(L)þ I(�)(L)
I(þ)(0)þ I(�)(0)

¼ 1þ r

2
ffiffi
r
p : (5:5:21)

186 LASER OSCILLATION: POWER AND FREQUENCY



This is plotted in Fig. 5.3. It is seen that the total intensities are comparable at the two
mirrors for reflectivities as low as 50%. This conclusion is consistent with a more
detailed analysis in which I(þ)(z) and I(2)(z) are calculated for 0 	 z 	 L. Equations
(5.5.6) are the starting points for such an analysis. We can conclude that for most
(but by no means all) lasers, I(þ) and I(2) vary only mildly with z. This justifies the
approximate theory of Section 5.4.

These results for arbitrarily large output couplings were first obtained by W. W.
Rigrod.1 The Rigrod analysis predicts an optimal output coupling that reduces to
(5.3.1) when t þ s
 1. We will not bother to show this. The reader is referred to
Rigrod’s study of graphs of optimal output coupling and output intensity as a function
of small-signal gain g0 and scattering loss coefficient s. Spatial hole burning in the case
of arbitrary output couplings has subsequently been included in numerical compu-
tations. The effect is to reduce the output intensity calculated without spatial hole burn-
ing by about the same relative magnitude as in the case of small output coupling
(cf. Fig. 5.2).

5.6 MEASURING GAIN AND OPTIMAL OUTPUT COUPLING

Equation (5.2.11) for output intensity, or its generalization (5.5.18), has been shown by
experiment to be quite accurate, and it has been used extensively in laser design. This is
so despite the fact that our formulas for laser output intensity were derived without
taking atomic motion into account. Atomic motion tends to smear out the effect of
spatial hole burning: An atom at a field nodal point does not stay there forever, as
assumed in our simple analysis. The result of rapid atomic motion will be to average
the field spatial variations, and so spatial hole burning is usually assumed to be negli-
gible in gas lasers.

Figure 5.4 shows experimental results for the output power of a He–Ne laser as a
function of mirror transmission. The three curves drawn through the experimental
points are based on (5.2.11) and are seen to fit the data very nicely.
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Figure 5.3 Ratio of total intensities at the two mirrors [Eq. (5.5.21)].

1W. W. Rigrod, Journal of Applied Physics 36, 2487 (1965).
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In general, the small-signal gain g0 and the saturation intensity I
sat are difficult to cal-

culate accurately because the pumping and decay rates of the relevant level populations
may not be well known. One way to measure g0 is the maximal-loss method. In this
method the cavity loss is increased until the laser oscillation ceases. Since laseroscillation
requires g0 . gt, and the cavity loss determines gt, the maximal loss allowing laser oscil-
lation is in fact just g0. As illustrated in Fig. 5.5, the cavity loss may be varied by inserting
a reflecting knife edge into the cavity.Amicrometer adjustment determines the fraction of
the intracavity intensity that is occluded by the knife edge, and thus the cavity loss is
varied by turning the micrometer screw.

A variant of the maximal-loss method2 may be used to determine not only the
small-signal gain but also the optimal output coupling topt and the output power obtain-
able with t ¼ topt. This method may be understood with reference to Fig. 5.6. The knife

Gain cell

Knife edge

Figure 5.5 A knife edge may be used to determine the small-signal gain by the maximal-loss
method. By a micrometer adjustment the knife edge is made to occlude an increasing fraction of the
intracavity beam, until lasing ceases because the total loss exceeds the gain. This determines the maxi-
mal loss and, therefore, the small-signal gain for laser oscillation.
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Figure 5.4 Experimental data on the output power of a 632.8-nm He–Ne laser. The solid curves are
based on Eq. (5.2.11) for output intensity vs. output coupling. The three curves correspond to s ¼ 0.06,
0.035, and 0.017. [After P. Laures, Physics Letters 10, 61 (1964).]

2T. F. Johnston, IEEE Journal of Quantum Electronics 12, 310 (1976).
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edge may be a small cube that has been coated on two adjacent faces with a reflecting
material. The knife edge deflects part of the intracavity field out of the cavity and
onto a power meter D; the amount of power deflected to D, (Pwr)in, may be varied by
a micrometer adjustment. MF is an extracavity folding mirror that directs the output
power (Pwr)out onto the same detector D.

With the knife edge inserted in the cavity there is a scattering coefficient

s ¼ (Pwr)in
Pwr(þ)

, (5:6:1)

so that the effective output coupling is t þ s, where t is the transmission coefficient
of the output mirror M0; here Pwr(þ) is the power in the wave traveling toward M0.
Since t ¼ (Pwr)out/Pwr

(þ), we have

s ¼ (Pwr)in
(Pwr)out

t: (5:6:2)

We are assuming that the knife edge represents a small perturbation, so that I(þ) is the
intensity at both M0 and the knife edge. Now the sum

(Pwr)total ¼ (Pwr)in þ (Pwr)out (5:6:3)

represents the total output power of the laser. The micrometer setting can be varied until
a value sopt is obtained for which (Pwr)total is a maximum. This gives the optimal output
coupling as (if we assume t , topt)

topt ¼ sopt þ t: (5:6:4)

Furthermore, the output power at this optimal output coupling is just the maximum value
obtained for (Pwr)total. The small-signal gain is determined by the value of s at which
laser oscillation stops. In practice, this must be determined by extrapolation since

Gain cell Knife edge MF

(Pwr)out

(Pwr)in

D

(Pwr)total = (Pwr)in + (Pwr)out

Output
mirror M0

Figure 5.6 Experimental setup for determining the small-signal gain, the optimal output coupling,
and the maximum possible output power. [After T. F. Johnston, IEEE Journal of Quantum
Electronics 12, 310 (1976).]
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both (Pwr)in and (Pwr)out go to zero as the laser threshold is approached, and (5.6.2)
becomes indeterminate.

In lasers with liquid or solid gain media the spatial hole burning is not smoothed out
by atomic motion to the same extent as in gas lasers, although other processes may tend
to weaken its effect. Convincing evidence for spatial hole burning has been obtained
with liquid dye lasers. The output power of a single-mode dye laser is found to increase
significantly when operated as a ring laser instead of the two-mirror standing-wave
configuration. In the ideal traveling-wave ring laser, sketched in Fig. 5.7, there is no
standing-wave interference pattern and therefore no spatial hole burning.

We will see in the following chapter that spatial hole burning plays an important role
in the multimode behavior of many lasers.

† When a linearly polarized field propagates a distance L through amaterial in which there is an
applied dc magnetic induction field B along the direction of propagation, the direction of polar-
ization is rotated by an angle

u ¼ VBL, (5:6:5)

where V, which depends on wavelength and temperature, is the Verdet constant of the material.
This rotation of the plane of polarization is called the Faraday effect. The angle u has the same
magnitude and direction for waves propagating in opposite directions. Verdet constants of glasses
used in commercial Faraday rotators are typically in the range 10–100 rad Tesla21 m21.

Isolator
Output

Gain cell

Figure 5.7 A unidirectional (traveling-wave) ring laser. An optical “isolator,” which transmits only
radiation propagating in the direction shown, is used to obtain traveling-wave rather than standing-wave
laser oscillation.

Incident light
Faraday
rotator

Polarized light

90° Polarizer P1 45° Polarizer P2

Incident light

Transmitted light

45°

F

Figure 5.8 An optical isolator. A light beam incident from the left emerges from a polarizer P1 with
vertical polarization, has its polarization rotated 458 by a Faraday rotator F, and then passes through
458 polarizer P2. Light incident on P2 from the right will emerge from P2 with the same 458 polariz-
ation but has its polarization rotated another 458 by F, so that it is then polarized horizontally and does
not pass through P1. The optical isolator therefore transmits light incident from the left but not from
the right.
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The Faraday effect is used to transmit light in one direction but not in the opposite direction,
that is, to make an optical isolator (see Fig. 5.7). To see how this is done, suppose that light passes
through a vertical polarizer P1 and then through a Faraday rotator F that rotates the polarization by
458 (Fig. 5.8). A second polarizer P2 oriented at the same 458 angle will then transmit the light.
Light incident on P2 from the opposite direction, however, will emerge from Fwith a polarization
orthogonal to that transmitted by P1, and will therefore not pass through P1. In other words, light
will propagate in the direction P1FP2 but not in the direction P2FP1.

In some applications it is necessary to avoid backreflections of laser radiation into the laser
cavity. Such backreflections can have deleterious effects, in some cases causing the laser oscil-
lation to become unstable. An optical isolator placed outside the laser cavity can substantially
reduce backreflections. †

5.7 INHOMOGENEOUSLY BROADENED MEDIA

Recall that in an inhomogeneously broadened gain medium the different active atoms
have different central transition frequencies n0, due to their different velocities and
the Doppler effect (recall Section 3.9), spatially nonuniform electric and magnetic
fields,3 the presence of different isotopes having slightly different energy levels, and
various other effects.

In the case of inhomogeneous broadening, the theory of laser oscillation can become
enormously complex. For one thing, it becomes much more difficult to justify our
assumption of single-mode oscillation, as we will see in Section 5.10. Here we will
simply restrict ourselves to a few remarks.

As in the case of homogeneous broadening, we can define a small-signal gain and a
saturation intensity for an inhomogeneously broadened gain medium. The small-signal
gain is simply the gain when the field intensity is so small that it does not affect the
population difference N22N1. In the case of Doppler broadening, for example, the
small-signal gain is given by

g0(n) ¼ l2A

8p
(DN)0S(n)

¼ l2A

8p
(DN)0

1
dnD

4 ln 2
p

� �1=2
exp
�4(n� n0)2( ln 2)

dn2D

� 
, (5:7:1)

where (DN )0 ¼ (N2 2 N1)0 is the small-signal (unsaturated) population difference and
we have used Eq. (3.9.9) for the Doppler lineshape function. Thus,

g0(n) ¼ g0(n0) exp
�4(n� n0)2( ln 2)

dn2D

� 
, (5:7:2)

which replaces the formula (4.12.8) in the small-signal limit when the gain profile has
the Doppler lineshape.

Real complications arise when we consider the saturation characteristics of an inho-
mogeneously broadened gain medium. Atoms with central transition frequency n0 will
be saturated according to (4.12.8), but there is a distribution of resonance frequencies n0.

3The energy levels of atoms and molecules may be shifted by electric or magnetic fields. The energy-level
shifts produced by electric and magnetic fields are called the Stark and Zeeman shifts, respectively. The rela-
tive shift is usually very small.
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The gain coefficient is obtained by integrating the contributions from the different fre-
quency components, each of which saturates to a different degree depending on its
detuning from the cavity mode frequency n. For many inhomogeneously broadened
laser media (in particular, low-pressure gas lasers), this integration results in a gain–
saturation formula of the form (4.14.7) if spatial hole burning and power broadening
are ignored. Thus, (5.2.9) is replaced by

Ioutn ¼
t

2
Isat

g0(n)
gt

� �2
�1

" #
(5:7:3)

in the case of inhomogeneous broadening (and small output coupling). However, these
results apply to single-mode operation, and we will see in the next chapter that single-
mode operation is seldom achieved with inhomogeneously broadened gain media.

In general, the gain profile is determined by both homogeneous and inhomogeneous
broadening mechanisms. In a gaseous medium, for example, there is inhomogeneous
broadening due to atomic motion. The lineshape function S(n) entering the small-
signal gain formula is then the Voigt profile, exactly as in the theory of absorption.
The assumptions of pure homogeneous broadening or pure inhomogeneous broadening
are, in general, approximations that apply when one type of broadening is dominant.

5.8 SPECTRAL HOLE BURNING AND THE LAMB DIP

We have noted that in the case of Doppler broadening the gains associated with different
frequencies (spectral packets) are saturated to different degrees, depending on the detun-
ing from the field frequency n. A traveling wave propagating to the right (positive z
direction) will saturate those atoms with the z component of velocity given by
(Section 4.14)

v

c
¼ n� �n

�n
: (5:8:1)

where �n is the resonance frequency of a stationary atom. In the same way, a traveling
wave propagating to the left will saturate those atoms with the z component of velocity
given by

v

c
¼ � n� �n

�n
: (5:8:2)

Therefore, a standing-wave cavity field will burn two holes in the Doppler line profile, as
shown in Fig. 5.9.

If a laser is operating with its cavity mode frequency detuned from the resonance
frequency �n of a stationary atom (i.e., from the center of the Doppler line), it will
burn a hole in the gain curve on either side of line center (Fig. 5.9). In other words,
the cavity mode is “feeding” off two spectral packets. When the mode frequency is
exactly at the center (v ¼ 0) of the Doppler line, however, the two holes merge together
because the field can now strongly saturate only those atoms having no z component of
velocity. The gain when n ¼ �n comes predominantly from these atoms, which are satu-
rated by both traveling waves. When jn� �nj is larger than about a homogeneous
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linewidth, however, the gain comes predominantly from the atoms with velocities given
by (5.8.1) or (5.8.2), and these atoms are saturated by a single traveling wave. The gain
saturation is therefore strongest at line center (n ¼ �n), and consequently there is a dip in
the laser output power at line center.

This dip in output power at line center was predicted by W. E. Lamb, Jr. in 1963, and
is called the Lamb dip. Figure 5.10 shows very early experimental results confirming
the prediction of the Lamb dip. The data also show, as expected, that the dip becomes
more pronounced at higher power levels, where the degree of selective saturation
(hole burning) is greatest.

The observation of the Lamb dip requires that the cavity mode frequency be swept
across the gain profile. Since the cavity mode frequencies are given (approximately)
by n ¼ mc=2L, where m is an integer, this may be done by slowly varying the cavity
length L, for example, by mounting one of the cavity mirrors on a piezoelectric crystal,
which expands or contracts in certain directions when an electric field is applied.
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Figure 5.10 Early observation of the Lamb dip in the output power of a 1.15-nmHe–Ne laser. [From
A. Szöke and A. Javan, Physical Review Letters 10, 521 (1963).]

g(v ¢)

2v– – v v– v v ¢

Figure 5.9 A standing-wave field burns two holes in the curve of gain vs. velocity. These holes are
centered at velocities v ¼+c(n� �n)=�n, where �n is the Bohr frequency of a stationary atom. This
results in the burning of two holes in the Doppler-broadened gain profile.
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† The fluctuations in the cavity length L due to mechanical vibrations and temperature vari-
ations cause the frequency of a single-mode laser to fluctuate. Various techniques are used
when a high degree of frequency stability is required. The Lamb dip is the basis of one such
method: The increase in laser power as the frequency drifts away from the center of the
Doppler line serves as the “error signal” for a feedback circuit that adjusts the cavity length piezo-
electrically to bring the output power back to its value at the center of the Doppler line. Frequency
stability on the order of 1 part in 1010 can be obtained by this method.

The “inverse” Lamb dip can be used for frequency stabilization more generally when the gain
medium may or may not exhibit a Lamb dip. The inverse Lamb dip occurs at the center of the
Doppler line of an intracavity saturable absorption cell. The saturation of the absorption cell
results in a peak of the laser output power instead of a dip, and a feedback system is used to
fix the output power at this peak value. Because the absorption line can be made very narrow,
the inverse Lamb dip can be used to stabilize the laser output frequency to 1 part in 1012 or better.

As implied by the preceding discussion, the width of the Lamb dip (or the inverse Lamb dip)
is determined by the homogeneous linewidth of the gain (or absorption) line. This fact can be
used to determine the ordinarily unobserved homogeneous linewidth of a Doppler-broadened
transition. †

5.9 FREQUENCY PULLING

We have mostly ignored the effect of the refractive index of the gain medium on laser
oscillation, except insofar as it enters into the equations of Table 4.1 for gain and
threshold. However, it turns out that the refractive index of the gain medium actually
determines to some extent the laser oscillation frequency. We will now examine how
this occurs.

A laser will oscillate at a frequency n such that the optical length of the cavity is an
integral number of half wavelengths. That is, L ¼ ml/2, or

n ¼ mc

2L
¼ nm, (5:9:1)

where m is a positive integer. This applies to the bare-cavity case in which the gain and
refractive index of the active medium are not taken into account.

In general, however, the effective optical length of a medium is not just its physical
length but rather the product of its physical length and its refractive index n(n). To
account for the index of refraction of the active medium, therefore, we divide the
cavity length into two parts: L ¼ l þ (L 2 l ), where l is the length of the gain cell
and the remainder is empty cavity, as in Fig. 4.4. The optical length of the gain cell
is n(n)l, so that (5.9.1) should be replaced by

n ¼ mc=2
n(n)lþ (L� l)

, (5:9:2a)

or

l

L
[n(n)� 1]n ¼ nm � n, (5:9:2b)

where nm ¼ mc/2L is a bare-cavity mode frequency. Thus, the laser oscillation fre-
quency n will be different from a bare-cavity mode frequency nm if n(n)=1.
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Equation (5.9.2b) determining the laser oscillation frequency may be written in a
different form. To do this, let us assume that n(n) is determined primarily by the single
nearly resonant, lasing atomic transition. In other words, we will assume that n(n) is
essentially the resonant (or “anomalous”) refractive index (Section 3.15). Since other
transitions contributing to the refractive index will usually be off resonance by many
transition linewidths, this will often be an excellent approximation.

In the case of an absorbing medium the resonant refractive index is simply related to
the absorption coefficient [recall (3.15.10)]. The same relation applies to an amplifying
(gain) medium, simply by replacing the absorption coefficient by the negative of the
gain coefficient. Thus, for a homogeneously broadened gain medium, we have

n(n)� 1 ¼ � l0
4p

n0 � n

dn0
g(n), (5:9:3)

where dn0 is the homogeneous linewidth (HWHM). From (5.9.2) and (5.9.3), therefore,
we obtain, using the fact that n � c/l0,

n ¼ n0[cg(n)l=4pL]þ nmdn0
[cg(n)l=4pL]þ dn0

: (5:9:4)

The quantity

dnc ¼ cg(n)l
4pL

(5:9:5)

is related to the mirror reflectivities through the gain-clamping condition (5.2.3), and
has the dimensions of frequency. It is called the cavity bandwidth. Thus, Eq. (5.9.4),
the equation for the laser oscillation frequency n, is usually written in the form

n ¼ n0 dnc þ nm dn0
dnc þ dn0

, (5:9:6a)

or alternatively

dnc(n� n0) ¼ dn0(nm � n): (5:9:6b)

Note that the second of these two expressions establishes that the lasing frequency n
lies between n0 and nm, no matter which of them is larger. The actual frequency of
laser radiation is therefore “pulled” toward the center of the gain profile and away
from the bare-cavity frequency. This effect is called frequency pulling.

We will discuss the cavity bandwidth in some detail at the end of this section. For
now it suffices to mention that dn0 � dnc in most lasers. In most lasers, therefore,

n ¼ n0dnc=dn0 þ nm
1þ dnc=dn0

� n0
dnc
dn0
þ nm

� �
1� dnc

dn0

� �

� nm þ (n0 � nm)
dnc
dn0

(homogeneous broadening): (5:9:7)

Now the starting point of our analysis leading to (5.9.7) was the relation (5.9.3)
between the resonant refractive index and the gain. Although we have assumed a
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homogeneously broadened line, it is in fact always possible to relate the index and the
gain (or absorption). [Eq. (3.15.10).] In the case of a Doppler-broadened medium, for
example, we are led by analogous manipulations (for jn0 � nj 
 dnD) to the formula

n � nm þ (n0 � nm)
dnc
dnD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ln 2=p

p

� nm þ 1:88(n0 � nm)
dnc
dnD

(Doppler broadening): (5:9:8)

If we use the gain-clamping condition (5.2.3), then (5.9.5) gives

dnc ¼ cl

4pL
gt, (5:9:9)

and therefore

dnc
dn0
¼ cl

4pL
gt
dn0

, (5:9:10)

dnc
dnD
¼ cl

4pL
gt
dnD

, (5:9:11)

for homogeneous broadening and Doppler broadening, respectively. These results indi-
cate that frequency pulling will be more readily observed for high-gain media with
narrow-gain profiles. This prediction is in fact borne out experimentally.

For a 632.8-nm He–Ne laser with a threshold gain of 0.001 cm21 and a Doppler
width of 1500 MHz, for example, we have

dnc
dnD
� 0:0016 (l � L): (5:9:12)

The 3.39-mm He–Ne laser, on the other hand, has a smaller Doppler width of about
280 MHz owing to the larger value of the transition wavelength. Furthermore, the
gain at the 3.39-mm transition is typically much larger than at the 632.8-nm transition,
so that lasing can be achieved with gt � 0.03 cm21. In this case

dnc
dnD
� 0:26 (l � L): (5:9:13)

Frequency pulling is therefore readily observed with a 3.39-mm He–Ne laser.
Frequency pulling is especially pronounced in the low-pressure He–Xe laser ope-

rating on the 3.51-mm transition of Xe. In this case the Doppler width is only about
100MHz owing to the relatively large mass of Xe. Furthermore, the gain may
be as high as 1 cm21. With gt ¼ 0.5 cm21 we obtain for this laser the ratio

dnc
dnD
� 12 (l � L): (5:9:14)

In this case the frequency pulling is so pronounced that the approximation (5.9.8) is
inapplicable.
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We can write (5.9.6) as

n(m) ¼ n0dnc þ nmdn0
dnc þ dn0

, (5:9:15)

where n(m) denotes the “frequency-pulled” value of the bare-cavity mode frequency nm.
The bare-cavity mode spacing nmþ1 2 nm ¼ c/2L given in (5.9.1) is, therefore, “renor-
malized” by frequency pulling to the value

n(mþ1) � n(m) ¼ (nmþ1 � nm)dn0
dnc þ dn0

¼ c

2L
1

1þ dnc=dn0
: (5:9:16)

An analogous expression applies for an inhomogenously broadened gain medium.
If a laser is oscillating on several modes, therefore, the effect of frequency pulling is to

reduce the mode spacing from c/2L to the value (5.9.16) or the analogous expression for
an inhomogeneous line. This effect of frequency pulling can be observed by looking at
the beat (difference) frequency of the laser output with a sufficiently fast photodetector.
In this way a reduction on the order of 2 has been observed in the mode spacing of a
He–Xe laser.

When spectral hole burning is present in the case of inhomogeneous broadening, the
analysis of frequency pulling becomes rather complicated, and our simple theory gives
only a crude approximation to the actual situation. Since frequency pulling in many
lasers is only a small effect, we will not discuss the complications due to hole burning.

It is not difficult to see why dnc is called the cavity bandwidth. According to
Eq. (4.4.8), in the absence of an active medium in the cavity the cavity intensity satisfies
the rate equation

dIn
dt
¼ � c

2L
(1� r1r2)In ¼ � c

l

L
gt

� �
In: (5:9:17)

In a bare cavity, therefore, the cavity intensity decays exponentially:

In(t) ¼ In(0) exp �c l

L

� �
gtt

� 
: (5:9:18)

Since the intensity is proportional to the square of the electric field amplitude En, we
may write

En(t) ¼ En(0) exp �c l

2L

� �
gtt

� 
e�2pint (5:9:19)

for the decay of the electric field in a bare cavity. Equation (5.9.18) can be used to deter-
mine the cavity lifetime L/(l cgt) by the cavity ring-downmethod: A pulse is injected into
the cavity and the intensity of light escaping from the cavity is measured as a function
of time.
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Now the fact that the field decays in time implies that it cannot be truly monochro-
matic. In fact, the frequency spectrum associated with the time-dependent field
(5.9.19) is Lorentzian:

s(n0) ¼ dnc=p

(n0 � n)2 þ dn2c
, (5:9:20)

where

dnc ¼ 1
2p

clgt
2L

, (5:9:21)

which, of course, is the same as (5.9.5) when the gain-clamping condition g(n) ¼ gt is
used. The step from (5.9.19) to (5.9.20) is a standard result of Fourier transform theory:
The frequency spectrum of a quantity that decays exponentially in time is a Lorentzian
function of frequency. We have already seen an example of this in Chapter 3, where we
found that the exponential decay of the atomic dipole moments due to collisions led to a
Lorentzian lineshape function.

Note that dnc depends only on properties of the bare cavity:

dnc ¼ 1
2p

cl

2L
1
2l
ln

1
r1r2

� �� 
¼ 1

4p
c

2L
ln

1
r1r2

� �� 
: (5:9:22)

Frequently a laser cavity is characterized by the dimensionless quality factor4

Q ¼ n

2dnc
¼ mode frequency

FWHM cavity bandwidth
: (5:9:23)

A high-Q cavity is one with low loss, whereas a low-Q cavity has a high power loss rate.
These results are easily generalized to include loss effects other than output coupling.

5.10 OBTAINING SINGLE-MODE OSCILLATION

In our discussion of laser theory we have thus far ignored any variations of the cavity
intensity transverse to the cavity axis (in the xy plane). We will extend the theory
beyond this approximation in Chapter 7, where we discuss the cavity modes of actual
laser resonators.

Our assumption of single-mode oscillation in this chapter, therefore, has really been
the assumption of a single longitudinalmode, whose frequency is given by (5.9.1): nm ¼
mc/2L. For many applications (e.g., holography) single-mode oscillation is highly
desirable, and we now consider ways of obtaining it.

4Awide variety of oscillatory systemswith damping can be characterized by aQ factor.Qwas first introduced
around 1920 by K. S. Johnson to characterize induction coils. Writing in American Scientist in 1955, E. I.
Green noted that “[Johnson’s] reason for choosing Q was quite simple. He says that it did not stand for
‘quality factor’ or anything else, but since the other letters of the alphabet had already been pre-empted
for other purposes, Q was all he had left.”
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The number of possible lasing modes can be estimated by counting the number of
cavity modes, separated in frequency by Dn ¼ c/2L, that lie within the gain bandwidth
dng. This number is on the order of dng/Dn for dng . Dn. If Dn . dng, however, the
cavity mode frequencies are separated by more than the width of the gain profile, and
at most only a single cavity frequency can have gain and lase (Fig. 5.11). In other
words, we can obtain single-mode oscillation by making the cavity short enough. For
a He–Ne laser with gain bandwidth dng ¼ dnD � 1500 MHz, for example, we require

c

2L
¼ 3� 1010 cm s�1

2L
. 1:5� 109s�1, (5:10:1)

or L ,10 cm. A disadvantage of this way of achieving single-mode oscillation is thus
evident: It requires a small gain cell and therefore typically results in low output power.

The linewidths of liquid- and solid-laser transitions are usually much larger than in
gases, 100 GHz being a typical order of magnitude. In such lasers the short-cavity
approach to single-mode oscillation is not generally practical except in the case of
diode lasers (Chapter 15).

Actually the gain-clamping condition (5.2.3) leads to a surprising conclusion: All
lasers operating on a homogeneously broadened transition should oscillate on only a
single mode, that for which the small-signal gain is greatest. This is illustrated in
Fig. 5.12. In Fig. 5.12a we show a small-signal gain profile broad enough to allow
five cavity modes to be above threshold. The saturated gain in steady-state oscillation
must equal the threshold gain gt (i.e., gain equals loss) according to the gain-clamping
condition. The saturated-gain profile is shown in Fig. 5.12b. The saturated gain of one of

n0

Figure 5.11 A case in which the cavity mode spacing c/2L is larger than thewidth of the gain profile.
Only a single longitudinal mode can lase.

c/2L 

Threshold 

(a)
n 

g(v )g0(v )

gt

Gain = loss 

(b)
n 

Figure 5.12 (a) A case in which five cavity modes have a small-signal gain g0 larger than the
threshold gt for laser oscillation. (b) If the gain saturates homogeneously, only the modewith the largest
small-signal gain is expected to lase. The others are saturated below the gain gt necessary for laser
oscillation.
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the cavity modes—that with the largest small-signal gain—equals the threshold gain gt.
But the laser oscillation on this mode has saturated the gain to the extent that all other
modes have gains below the threshold value; these other modes therefore cannot lase.
Only the one mode can lase (Problem 5.7).

Many lasers with homogeneously broadened gain media do indeed oscillate on a
single longitudinal mode. However, our argument for this assumes the validity of the
gain-clamping condition (5.2.3) and ignores spatial hole burning. When spatial hole
burning is present, the atoms of the gain medium are saturated to different degrees,
depending on where they are within the standing-wave field, as indicated by Eq.
(5.4.1). In this case the argument for single-mode oscillation illustrated in Fig. 5.12
does not apply. Multimode oscillation in a homogeneously broadened medium is there-
fore permitted.

In gas lasers for which the pressure is large enough to make the gain medium
predominantly homogeneously (collision-) broadened, however, the output tends to
be single-mode. In this case the effect of spatial hole burning is largely mitigated by
atomic motion.

The argument illustrated in Fig. 5.12 is also inapplicable to inhomogeneously broad-
ened laser media. In this case the presence of spectral hole burning means that different
atoms saturate differently. The gain does not saturate to the same degree (i.e., homoge-
neously) for different spectral packets of atoms, in contrast to the homogeneous case,
where there is in fact only a single spectral packet. One cavity mode might burn a
deep hole in a particular spectral packet, without at all saturating other spectral packets
on which other modes may lase. The He–Ne laser, for example, generally oscillates
multimode.

Spatial and spectral hole burning thus invalidate the argument for single-mode oscil-
lation illustrated in Fig. 5.12. If spatial hole burning is negligible, single-mode oscillation
can be expected for a homogeneously broadenedmedium. Since spectral hole burningwill
always be present to some degree in an inhomogeneously broadenedmedium, however,we
generally expect multimode oscillation in this case. These expectations are borne out
experimentally.

This leads us to consider methods other than the short-cavity approach for achieving
single-mode oscillation. These other methods have one feature in common: An
additional loss mechanism is introduced to discriminate against all possible laser
modes but one. That is, a situation is created in which all modes but one have a gain
less than their loss. Note that this is just an extended application of the open-cavity prin-
ciple, which is basic for optical-wave oscillation. An open cavity is extremely lossy
except for axial waves. What we want now is a way to make the losses very large for
most of these axial waves as well.

One important way to do this is to use a Fabry-Pérot etalon (Fig. 5.24). Consider the
situation illustrated in Fig. 5.13a. An incident plane monochromatic wave is normally
incident from a medium of refractive index n0 onto a slab of material of index n
and thickness d. Reflection and transmission occur at both interfaces. If n . n0, the
reflected wave at the first interface is shifted in phase by p radians from the incident
wave. This is a simple consequence of the Fresnel formulas for reflection and refraction
(Section 5.12).

Now the Fabry-Pérot etalon can also produce a reflected wave as a result of reflection
off the back face of the etalon and transmission again across the first interface
(Fig. 5.13b). If n . n0, there is no phase change associated with reflection from the
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internal back face of the etalon. The phase of this wave reflected from the etalon is thus
shifted from that of the incident wave only because of propagation, that is, because it
makes a round trip inside the etalon. This phase change is simply 2p times the optical
length of propagation in wavelengths:

2p
n(d þ d)

l
¼ 4pnd

c
n: (5:10:2)

The phase difference between the two reflected waves shown in Fig. 5.13 is thus

4pnd
c

n� p ¼ 2p
2nnd
c
� 1
2

� �
: (5:10:3)

These two reflected waves will interfere destructively if their phase difference is equal
to an odd integral multiple of p radians, that is, if

2p
2nnd
c
� 1
2

� �
¼ (2mþ 1)p ¼ 2p mþ 1

2

� �
, m ¼ 0, 1, 2, . . . : (5:10:4)

In other words, destructive interference occurs for frequencies

nm ¼ m
c

2nd
, m ¼ 1, 2, 3, . . . : (5:10:5)

These are the “resonance frequencies” of the Fabry-Pérot etalon in the sense that they
undergo minimal reflection and therefore maximal transmission. Actually, we should
include the effect of multiple reflections within the etalon. As shown in the Appendix
to this chapter, this leads to the same resonance frequencies (5.10.5) for maximal trans-
mission. Furthermore, we can easily generalize to the case of an arbitrary angle of inci-
dence (Problem 5.8), with the result that the resonance frequencies become

nm ¼ m
c

2nd cos u

� �
, m ¼ 1, 2, 3, . . . : (5:10:6)

(a) (b)
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n 

Figure 5.13 (a) A plane wave incident normally on a Fabry-Pérot etalon and the zeroth contribution
to the reflected wave. (b) Another contribution (A1) to the reflected wave in a Fabry-Pérot etalon.
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If d is small enough, the spacing

Dn ¼ nmþ1 � nm ¼ c

2nd cos u
(5:10:7)

between adjacent resonance frequencies of the etalon will be large compared to thewidth
dng of the gain profile. By adjusting u, a resonance frequency can be brought near the
center of the gain profile, while the next resonance frequency lies outside the gain
profile.5

The Fabry-Pérot etalon is widely used in spectroscopy. Because of its general import-
ance in laser technology, we devote the Appendix to a more detailed discussion of its
properties.

In referring to cavity modes in this section we have ignored polarization. A very
common and convenient way of obtaining a linearly polarized output from a laser is
to use Brewster windows. To understand this technique, it may be worthwhile to
review briefly some results of electromagnetic theory.

For a plane wave incident upon a plane interface between two dielectric media, we
define the plane of incidence as the plane formed by the propagation direction and a
line perpendicular to the interface; this definition is unambiguous whenever the incident
field is not normally incident. The polarization components parallel and perpendicular to
the plane of incidence are referred to as p polarization and s polarization (s for the
German word senkrecht for perpendicular), respectively, or alternatively as p polariz-
ation and s polarization. For p polarization there is a particular angle of incidence uB,
called Brewster’s angle, for which there is no reflected wave (Section 5.12). If the
wave is incident from a medium of index n0 � 1 onto a medium of index n, the
Brewster angle is given by

uB ¼ tan�1 n: (5:10:8)

For an air-to-glass interface (n � 1.5), uB is about 568.
Now if a plane wave of mixed polarization is incident at the angle uB, we can regard it

as composed of p and s components. The p component will not be reflected. If a wave of
arbitrary polarization is incident at Brewster’s angle, the reflected field will therefore be
completely polarized perpendicular to the plane of incidence. This is in fact a way of
producing polarized light. Furthermore, the reflected wave will be partially polarized
even if the angle is close but not quite equal to uB. This explains the success of
Polaroid sunglasses in reducing the glare of reflected sunlight.

Now we can understand the use of Brewster-angle windows for obtaining linearly
polarized laser radiation. Figure 5.14 illustrates a laser in which the ends of the gain
cell are cut at the Brewster angle with respect to the cavity axis. The plane of incidence
associated with the cavity field is obviously just the plane of the figure. Laser radiation
that is linearly polarized in this planewill not suffer any reflection off the ends of the gain
cell. Radiation polarized perpendicular to the plane of the figure, however, will have a
greater loss coefficient because it is reflected at the windows. Lasing is therefore more
favorable to linear polarization in the plane of incidence, as indicated in Fig. 5.14.

5In practice the tilt angle umust not be too small, or else the etalon modifies the cavity frequencies and can no
longer be regarded as a simple frequency filter.
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5.11 THE LASER LINEWIDTH

The spectral width of laser radiation is in general different from the bare-cavity band-
width. In steady-state laser oscillation the decay of the field amplitude described by
(5.9.19) is exactly balanced by amplification due to stimulated emission. That is, the
field amplitude does not actually decay. One might, therefore, expect that laser radiation
should have a very narrow spectral width, and no natural minimum value for the width is
readily apparent. Nevertheless, laser radiation, even from a cw single-mode laser, can
never be made perfectly monochromatic.

The fundamental reason for this is spontaneous emission. An excited atom in the gain
medium can drop spontaneously to the lower laser level, rather than be stimulated to do
so by the cavity field. Whereas stimulated emission adds coherently to the stimulating
field, that is, with a definite phase relationship, the spontaneously emitted radiation
bears no phase relation to the cavity field. It adds incoherently to the cavity field. And
the spontaneously emitted radiation has an inherent, Lorentzian distribution of frequen-
cies (Section 3.11). Spontaneous emission, therefore, sets a fundamental lower limit on
the laser linewidth. The actual laser linewidth will generally be much greater than this
lower limit as a consequence of other causes of spectral broadening that could in prin-
ciple be eliminated.

A proper treatment of spontaneous emission requires the quantum theory of radiation.
Therefore, the problem of determining the fundamental lower limit to the spectral width
of a laser can be solved rigorously only by using quantum electromagnetic theory.
However, it is possible to give an argument that leads to the same answer given by
the quantum theory of radiation.6

The argument is based on the heuristic energy–time uncertainty relation

DE Dt . h� , (5:11:1)

where we have multiplied the well-known Fourier result for root-mean-square devi-
ations, Dv Dt � 1, by h� on both sides, and defined DE from the Einstein relation
E ¼ h�v. Here DE is the uncertainty in the energy measured in a time interval Dt. If

qB

Linear polarization in 
the plane of the page 

Figure 5.14 A laser with the gain-cell windows cut at the Brewster angle. The indicated polarization
(parallel to the plane of incidence, which is the plane of the figure) will suffer no reflective loss at the
windows, and therefore will lase preferentially. The orthogonal polarization will have a greater loss due
to reflection at the windows.

6Two different derivations, which include the effects of the K and a parameters appearing in Eq. (5.11.16),
are presented in Section 15.4.
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an energy measurement process requires a time Dt, there is a lower limit DE ¼ h�=Dt to
the precision with which the energy can be determined.

In terms of the number of cavity photons qn, the energy E in a lasing cavity mode is
E ¼ hnqn, so that E may have uncertainties arising from both n and qn:

DE ¼ hnDqn þ hqn Dn: (5:11:2)

Now the condition that the gain balances the loss in steady-state oscillation suggests
that the amplitude of the cavity field should have a small relative uncertainty compared
to the frequency, that is,

jDqnj
qn

 jDnj

n
: (5:11:3)

In other words, we suspect that the field amplitude should be relatively stable com-
pared to the frequency; any small fluctuation of qn from its steady-state value �qn
should quickly relax to zero. Therefore, we assume

DE � h�qn Dn, (5:11:4)

or, using (5.11.1),

Dn � 1
2p �qn Dt

: (5:11:5)

The cavity-mode energy is determined both by stimulated emission and spontaneous
emission into the cavitymode. The uncertaintyDE, we argue, is due to spontaneous emis-
sion, which has not been accounted for in our laser intensity equations up to now. It is
reasonable to assume in this heuristic approach that any sort ofmeasurement ofE requires
a time interval Dt no larger than the spontaneous emission lifetime, i.e., 1/Dtmust be at
least as large as the spontaneous emission rate into the lasing cavitymode. Thus, wewrite
(5.11.5) as

Dn � C

2p�qn
, (5:11:6)

where C is the rate at which photons are emitted spontaneously into the single cavity
mode.

Nowwe use the fact (recall Section 3.7) that the rate of spontaneous emission into any
one field mode is equal to the rate of stimulated emission when there is one photon
already in that mode. Therefore,

C ¼ (stimulated emission rate for one atom when qn ¼ 1)

� (number of atoms in upper level): (5:11:7)

The first factor in parentheses is just cs (n)/V [recall (4.6.2) and (4.6.5) with n2 ¼ qn ¼
1]. The second factor is N2Vg, where N2 is the density of upper-state atoms and Vg is
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the gain volume. Therefore (5.11.7) is equivalent to

C ¼ cs (n)N2
Vg

V
¼ cs (n)

l

L
N2 (5:11:8)

in steady-state oscillation, whence it follows from (5.11.6) that

Dn � cs (n)N2l=L

2p�qn
: (5:11:9)

This is our expression for the minimum possible linewidth of laser radiation.
It is convenient to rewrite this using

cs (n) ¼ cg(n)
N2 � N1

¼ cgt
DNt

, (5:11:10)

where the second equality follows from the steady-state gain-clamping condition. As in
Section 4.3, DNt represents the threshold population inversion for laser oscillation.
Furthermore �qn can be related to the output power (Pwr)out of the laser, which is just
hn�qn times the rate cgtl/L [cf. Eq. (4.5.5c)] at which photons are removed from the
cavity, assuming that internal cavity losses are negligible:

�qn ¼
(Pwr)out
hncgt

L

l
: (5:11:11)

Using (5.11.10) and (5.11.11) in (5.11.9), therefore, we have

Dn � hnN2

2p DNt

cgtl

L

� �2 1
(Pwr)out

: (5:11:12)

Finally, we use (5.9.9) to write cgt in terms of the cavity bandwidth dnc:

Dn � N2

DNt

8phn(dnc)2

(Pwr)out
; DnST: (5:11:13)

A similar result was first obtained by Schawlow and Townes.7 Note that DnST is the
theoretical lower limit for the laser linewidth; the spectrum of single-mode laser radi-
ation in this limit is predicted to be a Lorentzian with FWHM DnST.

Consider, for example, a 632.8-nm He–Ne laser with mirror reflectivities r1 � 1.0,
r2 � 0.97, a mirror separation of 30 cm, and an output power of 1mW. Assuming
that N2=DNt is on the order of unity, we obtain a theoretical lower limit of 0.01 Hz
for the linewidth. To observe such a tiny spectral width at 632.8 nm would require a
cavity length that is fixed to an accuracy ofDL ¼ LDnST/n � 6 � 10216 cm! It is never-
theless possible in some circumstances, when DnST is large enough and when frequency
stabilization is employed, to approach a laser linewidth of DnST.

7A. L. Schawlow and C. H. Townes, Physical Review 112, 1940 (1958). This article is widely recognized as
containing the first analysis of the conditions necessary to achieve laser oscillation at optical frequencies.
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Examples like the one just given suggest that in most lasers the fundamental linewidth
DnST is too small to be of practical interest, as the actual linewidth will be dominated by
“technical noise” associated with mechanical vibrations and temperature variations that
cause the cavity length to fluctuate. In semiconductor lasers, however, DnST is in fact of
practical interest for certain applications, mainly because they have very small lengths
compared to other lasers and because they often have relatively small mirror reflectiv-
ities; these characteristics imply relatively large cavity bandwidths (Chapter 15) and
Schawlow–Townes linewidths that can easily dominate technical noise.

The Schawlow–Townes linewidth DnST is based on various approximations, one of
which is the assumption that the laser output coupling is small, that is, that the mirror
reflectivities are near unity. More generally the quantum lower limit to the laser line-
width can be written as

Dn ¼ K DnST, (5:11:14)

where

K ¼ (
ffiffiffiffi
r1
p þ ffiffiffiffi

r2
p

)(1� ffiffiffiffiffiffiffiffi
r1r2
p

)ffiffiffiffiffiffiffiffi
r1r2
p

ln (r1r2)

� 2
: (5:11:15)

The factor K, which is ascribed to “excess spontaneous emission noise,” approaches
unity as the mirror reflectivities r1, r2! 1, and is typically between 1 and 2 for
“stable” resonators of the type we have been assuming. For unstable resonators,
however, K can be much greater than 1.8

Another approximation made in the derivation (5.11.13) is that intensity fluctuations,
and in particular the coupling between intensity and phase fluctuations, can be ignored.
The correction factor accounting for this coupling is written as 1 þ a2 and leads,
together with the correction for excess spontaneous emission noise, to the expression

Dn ¼ K(1þ a2)DnST (5:11:16)

for the fundamental laser linewidth. In semiconductor lasers a � 5 2 6 is not unusual,
so that the correction to the Schawlow–Townes linewidth associated with this parameter
can be large. In general, DnST itself differs from (5.11.13) when internal cavity losses
and dispersion are accounted for. Corrections to (5.11.13) are derived in Section 15.4.

† Laser radiation typically has a linewidth much smaller than the “natural” linewidth due to
radiative broadening of the lasing transition (Section 3.11). In the case of a maser (“microwave
amplification by stimulated emission of radiation”), similarly, the linewidth can be much smaller
than the “natural” width 1/t associated with the transit time of molecules in the microwave cavity.
The fact that the radiation from a laser or maser could have a linewidth smaller than the “natural”
linewidth was not immediately obvious. In light of our simple derivation of the Schawlow–
Townes linewidth, it is interesting to note Charles Townes’s recollection that9

. . . there was the uncertainty principle relating time and energy, a basic law for physicists. With life-
time t of molecules in the cavity limited (for the beam-type maser) by the time of transit, how could

8The stability of laser resonators is discussed in Chapter 7.
9C. H. Townes,Making Waves, AIP Press, New York, 1995, p. 27. The frequency width 1/t referred to here
by Townes is due to “transit-time broadening,” which is discussed in Section 9.11.
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there be a frequency width much smaller than 1/t? An electrical engineer accustomed to the almost
monochromatic oscillation produced by an electron tube with positive feedback would perhaps not
have given the problem a second thought. However, before oscillation was achieved I never succeeded
in convincing two of my Columbia University colleagues, even after long discussion, that the fre-
quency width could be very narrow. One insisted on betting me a bottle of Scotch that it would
not. After successful oscillation, I remember interesting discussions on this point with Niels Bohr
and [John] von Neumann. Each immediately questioned how such a narrow frequency could be
allowed by the uncertainty principle. I was never sure that Bohr’s immediate acceptance of my expla-
nation based on a collection of molecules rather than a single one was because he was convinced, or
was due simply to his kindness to a young scientist. †

5.12 POLARIZATION AND MODULATION

The polarization of light plays a crucial role in the design of many optical components
used in laser technology. We have already seen examples of this in our discussion of
Faraday isolators (Section 5.6) and Brewster windows (Section 5.10), and in this section
wewill see how polarization can be used to modulate laser radiation. As discussed in the
following section, such modulation is employed in one of the most effective methods of
stabilizing the frequency of laser radiation.We begin by reviewing some basic aspects of
polarization.

For a monochromatic planewave propagating in the z direction in a medium of refrac-
tive index n we can write

E(z, t) ¼ x̂Ex cos(vt � kz)þ ŷEy cos(vt � kzþ f), (5:12:1)

where k ¼ nv/c, and the unit vectors x̂ and ŷ are orthogonal to each other and to the unit
vector ẑ pointing in the z direction (x̂� ŷ ¼ ẑ). If Ex ¼ 0 or Ey ¼ 0 we have linear (or
“plane”) polarization. If Ex ¼ Ey ¼ E0 and f ¼+p/2 we have circular polarization:

E(z, t) ¼ 1ffiffiffi
2
p E0[x̂ cos(vt � kz)+ ŷ sin(vt � kz)]: (5:12:2)

The x and y components of this electric field in a plane of constant z trace out a circle,
as indicated in Fig. 5.15. The field is said to be right-hand circularly polarized ifE rotates

x x

y 

e

e

y 

Right-hand 
polarized 

Left-hand 
polarized 

(a) (b)

Figure 5.15 The x and y components of a circularly polarized field propagating in the z direction
trace out a circle: (a) right-hand circular polarization; (b) left-hand circular polarization.
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clockwise for an observer viewing the incoming light, and left-hand circularly polarized
if E rotates counterclockwise.10 Right- and left-hand circular polarization correspond to
the 2 and þ signs, respectively, in Eq. (5.12.2).

Linear and circular polarization are special cases of the general elliptical polarization
described by the electric field (5.12.1). If jExj= jEyj but f ¼+p/2, E ¼ x̂Ex�
cos(vt � kz)+ ŷEy sin(vt � kz) traces out an ellipse with major and minor axes parallel
to x̂ and ŷ; for arbitrary f the major and minor axes are not parallel to x̂ and ŷ.

The light from natural sources is generally unpolarized. The resultant electric field
E from all the individual radiators of the source points in a single direction at a given
point and at a given instant, but it varies so rapidly that as a practical matter it appears
directionless. Linearly polarized light can be obtained by scattering, reflection, or trans-
mission (Section 5.10), or by using polarizers consisting of “dichroic” materials that
transmit light polarized in one direction but absorb light polarized in the perpendicular
direction. If a wave linearly polarized in some direction 1̂ is normally incident on a
polarizer in which the transmitting direction is x̂, the transmitted wave will be linearly
polarized in the x direction and will be diminished in amplitude by the factor 1̂ � x̂.
The intensity is therefore diminished by (1̂ � x̂)2 ¼ cos2u ; this is the familiar Malus
law. Similarly, unpolarized light incident on the polarizer will be reduced in intensity
by 50%.

Circular polarization may be obtained using a quarter-wave plate consisting of a
birefringent material, that is, a material in which the refractive index is different for
different polarizations. All transparent crystals with noncubic lattice structure, such as
ice and sugar, are birefringent. Such behavior can be understood using the electron oscil-
lator model (Chapter 3), assuming the “spring constant” is different for different direc-
tions of the electron displacement. The model then predicts different refractive indices
for different polarizations of the field propagating in the medium. It is easy to understand
how such anisotropy might arise. In particular, imagine a long, rod-shaped molecule
in which the elastic restoring force is different for electron displacements parallel and
perpendicular to the axis. There will be different refractive indices for different direc-
tions of polarization whenever there is some degree of molecular alignment.

Consider a birefringent material in which the molecules are aligned along the y axis,
as illustrated in Fig. 5.16. This preferred direction may be called the optic axis. Waves
that are linearly polarized in the x or y directions will propagate with different refractive

y

x

Figure 5.16 A birefringent material in which the molecules are aligned along the y axis.

10This is the convention in optics. It is unnatural in the sense that the right-hand rule applied to the wave
vector k ¼ kẑ would suggest the opposite.
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indices nx or ny. That is, a field

E(z, t) ¼ 1̂E0 cos(vt � kz) ¼ 1̂E0 cosv t � nz

c

� �
(5:12:3)

in the medium will propagate with refractive index n¼ nx if 1̂ ¼ x̂, or n ¼ ny if 1̂ ¼ ŷ. If
the linearly polarized field

E(0, t) ¼ 1xx̂E0 cosvt þ 1yŷE0 cosvt (12x þ 12y ¼ 1) (5:12:4)

is normally incident at the face z ¼ 0 of the material, the field at z ¼ l in the material
will be

E(l, t) ¼ 1xx̂E0 cosv t � nxl

c

� �
þ 1yŷE0 cosv t � nyl

c

� �
: (5:12:5)

Thus, the x and y components of the field, since they propagate with different phase
velocities, develop a phase difference

f(l) ¼ vl

c
(nx � ny): (5:12:6)

If the material has length l, the field at z � l is

E(z, t) ¼ 1xx̂E0 cos[vt � kxz]þ 1yŷE0 cos[vt � kxzþ f(l)], (5:12:7)

where kx ¼ nxv/c and f(l ) [Eq. (5.12.6)] is the phase difference of the x and y com-
ponents after a propagation distance l. The phase velocities for x and y polarizations
are c/nx and c/ny, and the larger of these phase velocities defines the fast axis of the
birefringent material.11

The field (5.12.7) has the form (5.12.1) with k ¼ kx andf ¼ f(l ). Thus, if j1xj ¼ j 1yj
and f(l ) ¼+p/2, an incident linearly polarized field will emerge from the material of
length l as a circularly polarized field. The first condition can be realized by orienting the
fast axis at 458 with respect to the direction of linear polarization of the incident field.
The second condition is satisfied when the length l is such that the optical path difference
ljnx2 nyj is a quarter of the wavelength under consideration, that is, when we have a
quarter-wave plate (QWP). When this condition is satisfied, an incident elliptically
polarized field will result in a linearly polarized output field.

Consider, for example, the situation shown in Fig. 5.17. Unpolarized light is incident
on a polarizing beam splitter (see the black-dot section below) that transmits linearly
polarized light. This light is then incident on a QWPwith its fast axis at 458with respect
to the polarization of the field. The circularly polarized light emerging from the QWP is
then reflected off a mirror, which results in a field coming back through the QWP with
linear polarization orthogonal to that of the field incident on the QWP from the polariz-
ing beam splitter (Problem 5.9). This field is therefore polarized for maximum reflection
from the polarizing beam splitter. Thus, if the QWP is aligned with its fast axis at 458 to
the linear polarization of the field incident on it, the intensity at P2 is maximized. This

11The propagation of light in birefringent media is discussed in more detail in Chapter 8.
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arrangement is useful not only for aligning a QWP, but also in certain applications as an
optical isolator for “picking off” a reflected field (Section 5.13).

† The reflection and transmission of light at the interface between two dielectrics with refrac-
tive indices n1 and n2 are described by the Fresnel formulas.12 These formulas are used in the
design of beam splitters and many other optical components.

If ui and ut are the angles of incidence and transmission, respectively, and the incident field is
linearly polarized parallel to the plane of incidence (Section 5.10), the Fresnel formulas relating
the reflected (r), transmitted (t), and incident (i) electric field amplitudes are (Fig. 5.18)

Ekr
Eki
¼ n2 cos ui � n1 cos ut

n2 cos ui þ n1 cos ut
¼ tan(ui � ut)

tan(ui þ ut)
, (5:12:8a)

Ekt
Eki
¼ 2n1 cos ui

n2 cos ui þ n1 cos ut
¼ 2 cos ui sin ut

sin(ui þ ut) cos(ui � ut)
: (5:12:8b)

If the incident field is polarized perpendicular to the plane of incidence, then

E?r
E?i
¼ n1 cos ui � n2 cos ut

n1 cos ui þ n2 cos ut
¼ � sin(ui � ut)

sin(ui þ ut)
, (5:12:9a)

E?t
E?i
¼ 2n1 cos ui

n1 cos ui þ n2 cos ut
¼ 2 cos ui sin ut

sin(ui þ ut)
: (5:12:9b)

Unpolarized
light

Polarizing
beam splitter

P1

P2

QWP Mirror

Figure 5.17 Arrangment for aligning a quarter-wave plate. When the fast axis of the QWP is at 458
with respect to the polarization of the light incident upon it, the light intensity at point P2 is maximized,
while that at P1 is minimized.

12See, for instance, M. Born and E. Wolf, Principles of Optics, 7th ed., Cambridge University Press,
Cambridge, 1999, Section 1.5.2, or J. D. Jackson, Classical Electrodynamics, 3rd ed., Wiley, New York,
1999, Section 7.3.
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The angles ui and ut are related by Snell’s law, n1 sin ui ¼ n2 sin ut, which has been used in writing
the second equality in each of these equations.13 The angle of reflection, ur, is equal to the angle ui
of incidence.

The Fresnel formula (5.12.8a) implies that polarized light can be obtained by reflection: if ui þ
ut ¼ p/2, Ekr ¼ 0 and the reflected field can only be s polarized. Using Snell’s law, it follows
that this condition is satisfied when n1 sin ui ¼ n2 sin(p/2 2 ui) ¼ n2 cos ui, that is, when
ui ¼ uB ; tan21(n2/n1), the Brewster angle.

A common type of beam splitter is a glass plate coated with a dielectric (or metallic) film
chosen so as to give the desired relative intensities (e.g., a 50/50 ratio) of the reflected and trans-
mitted beams at the design wavelength and angle. An antireflection coating (Problem 5.10) is
applied to the back surface to eliminate “ghost” images. As implied by the Fresnel formulas,
dielectric coatings result in polarization-dependent reflection/transmission ratios; this effect
can be reduced, if necessary, using polarizers or by specially designed multilayered dielectric
coatings. Coatings can be designed such that a polarized incident beam undergoes a 50/50
split into two beams having the same polarization as the incident beam.

Normal to
interface

(a)

(b)

Normal to
interface

n1 n2 

n1 n2 

qt 

qt 

qr 

qi 

qr 

qi 

Br

Er

Ei 

Bi 

Bt 

Bt 

Ei 

Er 

Bi 

Br 

Et 

Et 

Figure 5.18 Incident, reflected, and transmitted fields for polarization (a) parallel and (b) perpen-
dicular to the plane of incidence.

13It is assumed in writing these equations that the magnetic permeabilities m1 and m2 are equal. This is
generally an excellent approximation for optical frequencies.
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Polarizing beam splitters are used to separate a beam into two beams propagating in different
directions with different polarizations. Figure 5.17 indicates a polarizing beam splitter consisting
of two matched right-angle prisms with a dielectric coating on the hypotenuse face of one of the
prisms and with multilayer dielectric coatings to reduce reflections (“Fresnel losses”) at the input
and exit faces. The matched prisms result in equal path lengths for the reflected and transmitted
beams and, unlike plate beam splitters, do not produce a deflection of the transmitted beam with
respect to the incident beam. Other types of polarizing beam splitters employ birefringent
material to separate an incident beam into two orthogonally polarized beams. †

Many isotropic media can be made birefringent by the application of an electric field.
Consider, for instance, a liquid consisting of long molecules having permanent electric
dipole moments. The existence of a permanent dipole moment implies a certain asym-
metry, namely a preponderance of positive charge at one end of the molecule and nega-
tive charge at the other. Because of collisions, the molecules are randomly oriented and
the liquid will be macroscopically isotropic and will not exhibit birefringence. An
applied electric field, however, will tend to align the molecules, creating anisotropy
and making the liquid birefringent. This creation of birefringence by an applied electric
field is called the electro-optic effect. In the Kerr electro-optic effect the induced optic
axis is parallel to the applied field, and the difference in refractive indices for light polar-
ized parallel and perpendicular to the optic axis is proportional to the square of the
applied field.

In certain crystals an applied electric field creates an optic axis perpendicular to the
field, and the difference in refractive indices for light polarized parallel and perpendicu-
lar to the optic axis is linearly proportional to the applied field. This is called the Pockels
electro-optic effect.

The electro-optic effect provides one means of modulating laser radiation. In the case
of the Pockels effect an electric field E in the z direction results in refractive indices (see
Problem 5.11)

nx ¼ n0 þ 1
2PE, (5:12:10a)

ny ¼ n0 � 1
2PE, (5:12:10b)

for specific x and y components of a field propagating in the z direction. The constant P
characterizes the Pockels cell material at the optical frequency v of interest, and n0 is the
refractive index at this frequency in the absence of the applied electric field E. Suppose
the Pockels cell is between two “crossed” polarizers (Fig. 5.19). The field emerging from
the cell has the form [cf. Eq. (5.12.7)]

E(z, t) ¼ 1xx̂E0 cos vt � k0z� 1
2f

� �þ 1yŷE0 cos vt � k0zþ 1
2f

� �
, (5:12:11)

where k ¼ n0v/c, f ¼ vlPE=c, and l is the length of the Pockels cell. The field trans-
mitted by the second polarizer has the magnitude

Eout(z, t)¼ 1x(x̂ � â)E0 cos vt� k0z� 1
2f

� �þ1y( ŷ � â)E0 cos vt� k0zþ 1
2f

� �
, (5:12:12)

where the unit vector â defines the polarization direction transmitted by the second
polarizer. Let us assume that â is at 458 with respect to x̂ and ŷ, so that
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x̂ � â¼�ŷ � â¼�1= ffiffiffi
2
p

and 1x¼ 1y¼ 1=
ffiffiffi
2
p

(Fig. 5.19). Then

Eout(z, t)¼�1
2
E0[cos vt� k0z� 1

2f
� �

� cos(vt� k0zþ 1
2f)]¼�E0 sin(vt� k0z)sin

f

2

� �
(5:12:13)

and

E2
out(z, t)¼E2

0 sin
2(vt� k0z)sin

2 f

2

� �
: (5:12:14)

Averaging over a period 2p/v (�10215 s) of the optical field gives

E2
out(z, t)¼ 1

2E
2
0 sin

2 f

2

� �
: (5:12:15)

The time-averaged square of the field incident on the Pockels cell is similarly 1
2E

2
0, so that

the ratio of the transmitted intensity and the intensity incident on the Pockels cell is

Iout
Iin
¼ sin2

f

2

� �
¼ sin2

p

l
PV

h i
, (5:12:16)

where we have expressed f in terms of the wavelength l and the voltage V ¼ E‘
applied to the Pockels cell. Defining the half-wave voltage V0 ¼ l/2P, we can write
f ¼ p V/V0 and

Iout
Iin
¼ sin2

p

2
V

V0

� �
: (5:12:17)

where V ¼ V0 implies that the Pockels cell produces a phase retardance of p, or half a
wave. In this case maximum transmission is obtained. When V ¼ 2V0, the phase retar-
dance is a full wave and the minimum transmission is obtained. An optical chopper in
which the transmission varies in time between a minimum and a maximum can be made
by varying the phase retardance (voltage) in time between full-wave and half-wave.

Polarizer

x y

Polarizer

V

Pockels cell

Figure 5.19 A voltage-controlled light modulator consisting of a Pockels cell and two crossed
polarizers.
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Crystals such as KDP (KH2PO4) or lithium niobate (LiNO3) used to make Pockels
cells typically have half-wave voltages in the kilovolt range. Kerr cells, in which the
phase difference is proportional to the square of the voltage, have similar uses and typi-
cally require somewhat higher voltages than Pockels cells. Both Pockels and Kerr cells
are very fast, with switching times (�1 ns or less) set practically by the speed with which
the applied voltages can be varied. Liquid-crystal modulators require much smaller vol-
tages but, because they involve the alignment of molecules by the applied field (rather
than the motion of electrons), are fundamentally much slower, with switching times in
the microsecond to millisecond range.

Equation (5.12.17) describes an amplitude modulation of a light wave. The electro-
optic effect can also be used for phase modulation. Suppose, for instance, that a wave
polarized in the x direction enters a Pockels cell in which the applied voltage varies sinu-
soidally such that f ¼ 22b sinVt. Then [Eq. (5.12.11)]

E(z, t) ¼ 1xx̂E0 cos(vt � k0zþ b sinVt): (5:12:18)

It is convenient to write this in the complex form

E(z, t) ¼ 1xx̂E0e
�i(vt�k0z)e�ib sinVt (5:12:19)

where, as in Section 3.4, it is understood that we are to take the real part of the right-hand
side. Assuming b
 1, we have

e�ib sinVt ¼ 1� ib sinVt � 1
2b

2 sin2Vt þ � � � � 1� ib sinVt

¼ 1� 1
2b (eiVt � e�iVt): (5:12:20)

In this approximation

E(z, t) ¼ 1xx̂E0e
�i(vt�k0z) 1� 1

2be
iVt þ 1

2be
�iVt


 �
¼ 1xx̂E0 e

�ivt � 1
2be
�i(v�V)t þ 1

2be
�i(vþV)t


 �
eik0z

(5:12:21)

or, taking the real part of the right-hand side,

E(z, t) ¼ 1xx̂E0 cos(vt � k0z)� 1
2b cos[(v�V)t � k0z]þ 1

2b cos[(vþV)t � k0z]
� �

:

(5:12:22)

The (weak) sinusoidal modulation of the voltage across the Pockels cell, therefore, adds
to the carrier wave of frequency v two sidebands of frequency v2 V and v þ V.

† More generally we can use the identity

e�ib sinVt ¼ J0(b)� 2i
X1
k¼0

J2kþ1(b) sin(2k þ 1)Vt þ 2
X1
k¼1

J2k(b) cos 2kVt, (5:12:23)

where the J’s are Bessel functions of the first kind. This implies sidebands at v + m V, m ¼ 1,
2, 3, . . . . For b
 1 the Bessel functions become increasingly small with increasing order:
J0(b) � 1, J1(b) � b/2, J2(b) � b2/8, . . . and, retaining only terms up to first order in b,
we obtain (5.12.20). †
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5.13 FREQUENCY STABILIZATION

The frequency at which a single-mode laser oscillates will fluctuate due to mirror
vibrations and other sources of “noise.” In applications requiring high-precision
measurements, it is important that a laser oscillate at a well-defined and highly stable
frequency. We have already mentioned how the Lamb dip can be used for frequency
stabilization (Section 5.8).

Frequency stabilization, or frequency “locking,” involves concepts such as error sig-
nals and feedback that are part of control theory. An example is provided by a thermostat
that measures the temperature in a room and uses the “error signal,” the difference
between the measured temperature and the desired temperature, to turn a furnace on
or off. In the case of Lamb-dip laser frequency stabilization, the error signal is the differ-
ence between the measured laser intensity and the intensity at the center of the Doppler
line, which is a measure of the difference between the actual oscillation frequency and
the frequency at which we want the laser to oscillate (Section 5.8).

There is another, widely used and very effective frequency stabilization method that
makes use of a Fabry-Pérot etalon rather than an absorption resonance to produce an
error signal. An advantage of the Fabry-Pérot is that it offers a wide range of possible
resonance frequencies [recall Eq. (5.10.5)] to choose from, whereas Lamb-dip stabiliz-
ation requires a saturable molecular transition close to the laser frequency. This wide
range of possible “locking frequencies” is especially useful for the stabilization of tun-
able lasers.

When light from a laser is incident on a Fabry-Pérot etalon, the transmitted (or
reflected) intensity can provide the error signal needed to stabilize the laser frequency.
For instance, if the intensity reflected by the Fabry-Pérot is zero, the laser frequencymust
be a resonance frequency of the cavity. A deviation of the laser frequency from this
cavity resonance will result in some reflected intensity that can serve as the error
signal for a feedback loop that locks the laser frequency to the cavity resonance. An
attractive feature of this approach is that the frequency locking is not affected by intensity
fluctuations of the laser: as long as the reflected intensity is zero the laser frequency is
locked to the cavity resonance.

Note, however, that the variation of the reflected (and transmitted) intensity is sym-
metric about a cavity resonance (cf. Fig. 5.23). This means that a nonzero reflected inten-
sity (error signal) cannot tell us whether the laser frequency should be increased or
decreased in order to bring it back to the locking frequency. The essence of the
“Pound–Drever–Hall” frequency stabilization method is to get around this problem
by producing an error signal that depends on the sign of the deviation of the laser fre-
quency from the cavity resonance frequency. Such an error signal, which is obtained
by modulating (or “dithering”) the laser output to generate sideband frequencies, pro-
vides information as to whether the laser frequency is above or below the frequency
we wish to lock it to.

Suppose that a Pockels cell is used to phase-modulate the laser radiation so
that the electric field incident on the Fabry-Pérot is given approximately by
[Eq. (5.12.21)]

E(t) ¼ E0 e
�ivt � 1

2be
�i(v�V)t þ 1

2be
�i(vþV)t


 �
: (5:13:1)
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The amplitude reflection coefficient of the Fabry-Pérot is defined by Eq. (5.A.12):

R(v) ;
AR

Ain
¼ e2ivnd=c � 1

1� Re2ivnd=c
ffiffiffi
R
p

, (5:13:2)

and the reflected field is therefore

ER(t) ¼E0R(v)e�ivt � 1
2bE0R(v�V)e�i(v�V)t þ 1

2bE0

�R(vþV)e�i(vþV)t:
(5:13:3)

Let us assume for simplicity that the sidebands are sufficiently far from a cavity
resonance that they are perfectly reflected, that is, for the sidebands, R ¼ 1 and
R(v+V) ffi �1. Then

ER(t) ffi E0R(v)e�ivt þ 1
2bE0e

�i(v�V)t � 1
2bE0e

�i(vþV)t: (5:13:4)

The reflected intensity, (ce0/2)jER(t)j2, is then

IR(t) ffi 1
2ce0E

2
0 jR(v)j2 þ 1

2b
2 � 1

2b
2 cos 2Vt þ 2b Im[R(v)] sin Vt

h i
: (5:13:5)

Since the (time-averaged) carrier and sideband intensities of the field incident on the
Fabry-Pérot are Ic ¼ (ce0=2)E2

0 and Is ¼ (ce0=2)b2E2
0=4, respectively, we can write

the reflected intensity as

IR(t) ffi jR(v)j2Ic þ 2Is � 2Is cos 2Vt þ 4
ffiffiffiffiffiffiffi
IcIs
p

Im[R(v)] sinVt, (5:13:6)

and similarly, in our simplified model, for the reflected power:

(Pwr)R(t) ffi jR(v)j2(Pwr)c þ 2(Pwr)s � 2(Pwr)s cos 2Vt

þ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Pwr)c(Pwr)s

p
Im[R(v)] sinVt: (5:13:7)

It is the last term in the reflected power that is of interest in Pound–Drever–Hall stabi-
lization. Consider Im[R(v)] when v is close to a resonance of the etalon:

v ¼ m
pc

d

� �
þ dv, (5:13:8)

where we use Eq. (5.10.5) with n ¼ 1 and assume that jdvj 
 pc=d. Then,

Im[R(v)] ¼ Im
(e2pime2idvd=c � 1)

ffiffiffi
R
p

1� Re2pime2idvd=c

� 
¼ Im

(e2idvd=c � 1)
ffiffiffi
R
p

1� Re2idvd=c

� 

ffi Im
2idvd=c
1� R

� 
¼ 2d=c

1� R
dv (5:13:9)

for R ffi 1, that is, for a high-finesse cavity (see the Appendix). Since it is proportional to
dv, Im[R(v)] contains the information needed, for instance, for a servomechanism to
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piezoelectrically adjust the spacing of the laser mirrors so as to increase (if dv , 0) or
decrease (if dv . 0) the laser frequency to correct for the deviation dv from the locking
frequency. In terms of the frequency deviation dn ¼ dv/2p and the cavity bandwidth
dnc [Eq. (5.9.22)] we have Im[R(v)] ffi dn=dnc and, therefore,

(Pwr)R(t) ffi jR(v)j2(Pwr)c þ 2(Pwr)s � 2(Pwr)s cos 2Vt

þ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Pwr)c(Pwr)s

p dn

dnc
sinVt: (5:13:10)

Figure 5.20 is a simplified schematic diagram for Pound–Drever–Hall frequency
stabilization. The field from the laser passes through a Faraday isolator and is modulated
by a Pockels cell driven by a radio-frequency (rf) “local oscillator.” The resulting carrier
and sideband waves are incident on a Fabry-Pérot cavity, and a polarizing beam splitter
as described earlier (Fig. 5.17) directs the reflected field onto a photodetector. The output
of the photodetector is combined with a portion of the rf modulation signal in a “mixer,”
a nonlinear device whose output is the product of two inputs. The part of the mixer
output that is of interest comes from the product of the local oscillator field and the
last term in (5.13.10); this part has a dc component arising from the product
sinVt sinVt ¼ ( 12 )(1� cosVt). The remaining terms in (5.13.10) lead to sinusoidal
components at frequencies V and 3V in the output of the mixer. A low-pass filter
picks out the dc component, which provides the error signal (voltage) for the “servo”
amplifier that controls the laser frequency. Ideally, the error signal is then just

1s ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Pwr)c(Pwr)s

p dn

dnc
: (5:13:11)

In obtaining (5.13.10) we have assumed thatR(v+V) ffi �1 and retained only the
first-order dependence on the frequency deviation dn. It is straightforward to go beyond
these approximations and obtain

Csin(v) ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Pwr)c(Pwr)s

p
Im[R�(v)R(v�V)�R(v)R�(vþV)] (5:13:12)
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Figure 5.20 Simplified schematic for Pound–Drever–Hall frequency stabilization.
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for the coefficient multiplying sinVt in (Pwr)R(t). This is plotted for R ¼ 0.99 andV ¼
0.15(c/2d ) in Fig. 5.21.We also plot the (normalized) intensity transmitted by the cavity
as a function of the frequency deviation from a cavity resonance. Figure 5.21c shows
experimental results obtained in the frequency stabilization of a dye laser (n ¼ 5.8 �
1014 Hz) using a modulation frequency of 15MHz and a cavity bandwidth dnc ¼ 3
MHz. Frequency stability of better than 100 Hz, or a relative frequency stability better
than 1.7 � 10213, was obtained.

One of the practical complications is the inevitable phase delay between the two
inputs to the mixer, so that the inputs are not simply two (in-phase) sine waves, as we
have assumed. A “phase shifter” is used to introduce an adjustable phase shift between
the rf and reflected signals such that, for laser frequencies near a resonance of the Fabry-
Pérot, an error signal like that shown in Fig. 5.21 is obtained; then the inputs to the mixer
are in phase.

Another advantage of Pound–Drever–Hall stabilization is that the Fabry-Pérot reson-
ance, unlike a saturable atomic absorption resonance, is linear, so that an increase in laser
power does not broaden the resonance.
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Figure 5.21 (a) Csin(v)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Pwr)c(Pwr)s
p

[Eq. (5.13.12)] for R ¼ 0.99 and V ¼ 0.15(c/2d ). The
frequency deviation dn is in units of the free spectral range Dn ¼ c/2d, of the Fabry-Pérot. (b) The

normalized intensity transmitted by the Fabry-Pérot for b ¼ ffiffiffiffiffiffiffiffi
1=3

p
. (c) Experimental results for

the transmitted intensity (upper curve) and the error signal (lower curve). [From R. W. P. Drever,
J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Applied Physics B
31, 97 (1983).]
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As discussed below, the degree of frequency stability that is possiblewith the Pound–
Drever–Hall method increases with increasing cavity finesse. Using Fabry-Pérot etalons
with finesse exceeding 25,000, it has been demonstrated that two lasers can be locked to
adjacent longitudinal modes of a single etalon with a relative frequency stability of better
than 1 Hz. Diode laser linewidths �10 Hz have been realized using etalons with finesse
greater than 105.

† The method of laser frequency stabilization we have described is conceptually similar to a
microwave stabilization method invented in the 1940s by R. V. Pound. Our description is
obviously a greatly simplified one, as it is beyond our scope to delve into any details about the
servo amplifier, the mixer, the phase shifter, or the low-pass filter, descriptions of which can
best be found in the electronic engineering literature.

We have noted that the intensity of the field reflected off the Fabry-Pérot etalons varies sym-
metrically about a cavity resonance. In an older frequency stabilization technique the laser is
locked to one side of a cavity resonance, so that a change in the reflected intensity provides infor-
mation about the sign of the laser frequency fluctuation. The disadvantage of this “side-locking”
technique, compared with Pound–Drever–Hall, is that a change in the reflected intensity can
arise not only from a fluctuation in the laser frequency but also from a fluctuation in the laser
intensity. Improving frequency stability by side locking, therefore, requires that the laser intensity
be separately stabilized.

Another approach, which can be used to lock the laser frequency to the center of a
cavity or atomic resonance, is to dither the laser frequency slowly compared to the linewidth of
the resonance. In the case of a cavity resonance this means that V is small compared to dnc
and that

R�(v)R(v�V)�R(v)R�(vþV) ffi �V d

dv
jR(v)j2: (5:13:13)

Thus, Csin(v) [Eq. (5.13.12)] vanishes. However, the reflected power has a part that varies as
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Pwr)c(Pwr)s
p

cosVt times the expression (5.13.13), the latter being antisymmetric in the devi-
ation of the laser frequency from a cavity resonance. The phase shifter and mixer can, therefore,
produce the error signal needed to lock the laser frequency to the peak of the resonance. A dis-
advantage of slow dithering is that the available servo bandwidth is limited by the (slow) modu-
lation frequency. The Pound–Drever–Hall method, however, can be shown to allow for much
larger modulation frequencies and servo bandwidths.

The cavity linewidth is related to the rate at which light escapes the cavity, or in other words to
the inverse of the “storage time” of light in the cavity (cf. Section 5.9). If the laser frequency
changes rapidly enough, the light inside the cavity may not be able to “readjust” fast enough
to respond to these changes. The error signal, however, does respond to these rapid changes,
so that in effect the laser is being locked to an average of the frequency changes over the storage
time of the cavity. †

Single-frequency laser oscillation can also be obtained by injection locking with a
“seed laser.” In this technique the output of a single-mode, low-noise, usually low-
power laser is injected through a resonator mirror of a “slave laser” having nearly the
same oscillation frequency. Together with locking electronics controlling the length
of the slave laser resonator, this acts to force the slave laser to oscillate at the seed
laser frequency with much less noise than would be the case if it ran freely. Injection
locking is used to reduce the noise of a high-power (slave) laser.
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5.14 LASER AT THRESHOLD

We have mostly ignored the threshold regime except to identify it as the point beyond
which useful laser output is obtained. We will now consider the threshold of laser oscil-
lation more carefully. For this purpose we use the model of a three-level laser. In steady-
state oscillation the population inversion for a three-level laser is given by the formula
(4.12.2). When P� G21 we have

N2 �N1 � N2 � PNT

Pþ 2s (n)Fn
¼ NT

1þ �q=qsat
, (5:14:1)

where qsat is defined by Eq. (4.12.7) and �q is the intracavity steady-state photon number,
and once again we suppress the subscript n, with the understanding that we are consider-
ing a single field of frequency n.

Near threshold, spontaneous emission may not be negligible compared with stimu-
lated emission, contrary to what we have assumed in writing the photon rate Eq.
(4.4.7). Therefore, let us amend (4.4.7) to include a term giving the growth of q due
to spontaneous emission. For this purpose we use again the fact that the rate of spon-
taneous emission into a single field mode is just the rate of stimulated emission with
one incident photon; recall Section 3.7. Thus, we may simply replace q by q þ 1 in
the first term on the right side of (4.4.7):

dq

dt
¼ cs (n)

l

L
N2(qþ 1)� l

L
cgtq: (5:14:2)

The steady-state solution of this equation is obtained by setting the right-hand side to
zero, which gives

�q ¼ s (n)N2

gt � s (n)N2
: (5:14:3)

Now

cgt ¼ cs (n) DNt, (5:14:4)

and if we define two convenient dimensionless parameters

x ¼ N2

DNt
and y ¼ NT

DNt
, (5:14:5)

we may write (5.14.3) in the simplified form

�q ¼ x

1� x
, (5:14:6)

and we may similarly write (5.14.1) as

x ¼ NT=DNt

1þ �q=qsat
¼ y

1þ �q=qsat
: (5:14:7)
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Equations (5.14.6) and (5.14.7) may be solved simultaneously for �q. Some simple alge-
bra yields the quadratic equation

�q2 þ qsat(1� y)�q� qsaty ¼ 0, (5:14:8)

which has the solution

�q

qsat
¼ 1

2( y� 1)þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( y� 1)2 þ 4y

qsat

s
: (5:14:9)

To obtain a nonnegative value for the cavity photon number �q we have taken in (5.14.9)
the positive-definite root of (5.14.8).

Equation (5.14.1) shows that, for an ideal three-level laser,N2 � NT when �q! 0.
That is, NT is equal to the small-signal population inversion. It follows that y is equal
to the small-signal gain divided by the threshold gain:

y ¼ g0
gt
: (5:14:10)

If y , 1, the device is below the threshold for laser oscillation; if y . 1, it is above
threshold. Far above threshold (y� 1) we have from (5.14.9) the result

�q � qsat
g0
gt
� 1

� �
, (5:14:11)

which may be used to obtain our previous expression (5.2.9) for the laser output
intensity.

To study the threshold region y � 1, we need an estimate of the number qsat appearing
in Eq. (5.14.9) for the cavity photon number; qsat is defined by (4.12.7). Assuming again
that P� G21, we have

qsat � 2p
e0m

e2

� � 1
f

� �
dn0(PV), (5:14:12)

where f is the oscillator strength of the laser transition. In many lasers PV is roughly on
the order of 103 m3 s21. Taking f � 1 and dn0 � 10 GHz, therefore, we have the reason-
able estimate qsat � 1010 for the saturation photon number. We will therefore study the
properties of (5.14.9) near the threshold region y � 1 by defining qsat ¼ 1010 as a reason-
able value for typical lasers.

Exactly at threshold the cavity photon number is given by (5.14.9) with y ¼ 1:

(�q)threshold ¼ 1
2q

sat
ffiffiffiffiffiffiffiffiffiffiffiffi
4=qsat

p
¼

ffiffiffiffiffiffiffi
qsat

p
¼ 105: (5:14:13)

This is, to be sure, a small number of photons compared with what (5.14.11) predicts
well above threshold. However, it is much larger than the average photon number per
mode of frequency n of a thermal field,

(q)thermal ¼ ehn=kT � 1
� ��1

, (5:14:14)
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for any realistic value of temperature. For n corresponding to the He–Ne 632.8-nm line,
for example,

(q)thermal � 0:023 (5:14:15)

for the solar temperature T � 6000K. The conclusion is that a laser exactly at threshold
channels many more photons into the “lasing” mode than it would if it were an ordinary
thermal source. We will see that the same thing happens even fairly far below threshold.

It is interesting to consider the rate of change of �q with y in the vicinity of threshold.
From (5.14.9) we calculate

d�qn
dy
¼ 1

2q
sat 1þ y� 1þ 2=qsatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

( y� 1)2 þ 4y=qsat
p

 !
, (5:14:16)

so that exactly at threshold we have

d�q

dy

� �
threshold

� 1
2q

sat ¼ 1
2 � 1010: (5:14:17)

Thus, the curve of �q vs. y has an extremely large, positive slope at y ¼ 1. This is evident
in Fig. 5.22, which plots �q vs. y from Eq. (5.14.9) for qsat ¼ 1010.We conclude that there
is an extremely rapid rise in the cavity photon number at the point where the medium is
pumped just above threshold. We note also that �q is much larger than the typical “ther-
mal” value given in Eq. (5.14.15) even for y ¼ 0.1.

The sudden transition at threshold that occurs in a laser is so abrupt that it is not
usually observed unless an experiment is designed specifically for its observation. An
even more profound transition occurs at threshold in the photon-statistical properties
of the laser output radiation, as discussed in Section 13.14.
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Figure 5.22 The remarkable jump in the cavity photon number at threshold.
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APPENDIX: THE FABRY-PÉROT ETALON

Consider again the case of a monochromatic planewave incident normally upon a Fabry-
Pérot etalon (Fig. 5.13). With the first interface (n0 ! n) between the two media we
associate power reflection and transmission coefficients r and t, respectively. We simi-
larly denote by r 0 and t 0 the reflection and transmission coefficients for the second inter-
face (n! n0). The coefficients r, r 0, t, and t 0 are given in terms of n and n0 by the Fresnel
formulas.

If Ain is the (complex) amplitude of the incident wave, then

A0 ¼
ffiffi
r
p

Aine
ip ¼ � ffiffi

r
p

Ain (5:A:1)

is the amplitude of the wave reflected from the first interface. The phase shift of p intro-
duced in (5.A.1) is again a consequence of our assumption that n . n0. (The reflected
intensity is r times the incident intensity and is independent of whether n . n0 or n , n0.)

The etalon can also produce a reflected wave as a result of transmission at the first
interface, reflection at the second interface, and finally transmission through the first
interface. The amplitude of the reflected wave is

ffiffiffiffiffiffiffiffi
tr 0t0
p

Ain, and it also has a phase shift

2p
l

(2dn) ¼ 4pnnd

c
¼ F (5:A:2)

with respect to the incident wave. Because n . n0, there are no p phase shifts associated
with reflections off the inner faces of the etalon. Therefore,

A1 ¼
ffiffiffiffiffiffiffiffi
r0tt0
p

eiF
� �

Ain: (5:A:3)

A contribution to the total reflected wave also arises from transmission across the first
interface, two round-trip passes through the etalon as a result of three reflections, and
finally transmission across the first interface. For this contribution we have

A2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr0r0r0t0
p

e2iFAin: (5:A:4)

Continuing in this manner, it is easy to see that the total reflected field due to multiple
reflections inside the etalon has an amplitude

AR ¼ A0 þ A1 þ A2 þ A3 þ � � �

¼ � ffiffi
r
p þ

ffiffiffiffi
r0
p ffiffiffiffi

tt0
p

eiF 1þ
ffiffiffiffiffiffiffi
r0r0
p

eiF þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r0r0r0r0
p

e2iF þ � � �
� �h i

Ain: (5:A:5)

From the Fresnel formulas (5.12.8a) and (5.12.9a) it follows that, for normal
incidence,

r ¼ n� n0

nþ n0

� �2

¼ r0: (5:A:6)

It is convenient to define

R ¼ r ¼ r0 and T ¼
ffiffiffiffi
tt0
p

, (5:A:7)
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and it follows from energy conservation (and the Fresnel formulas) that

Rþ T ¼ 1: (5:A:8)

Then we may write (5.A.5) as

AR

Ain
¼ �

ffiffiffi
R
p

1� TeiF 1þ ReiF þ R2e2iF þ � � �� �
 �
: (5:A:9)

The infinite series can be summed easily:

1þ xþ x2 þ x3 þ � � � ¼ 1
1� x

(jxj < 1), (5:A:10)

and so we have

1þ ReiF þ R2r2iF þ � � � ¼ 1
1� ReiF

(5:A:11)

in (5.A.9). Thus,

AR

Ain
¼ �

ffiffiffi
R
p

1� TeiF

1� Reif

� �
¼ �

ffiffiffi
R
p 1� (Rþ T)eiF

1� ReiF
¼ � 1� eiF

1� ReiF
ffiffiffi
R
p

, (5:A:12)

where the last step follows from (5.A.8). The fraction of the incident intensity reflected
by the etalon is therefore given by the Airy formula:

IR
Iin
¼ AR

Ain

����
����
2

¼ 1� eiF

1� ReiF

����
����
2

R ¼ 4R sin2(F=2)

(1� R)2 þ 4R sin2(F=2)
: (5:A:13)

Similarly, the fraction of the transmitted intensity is

IT
Iin
¼ 1� IR

Iin
¼ (1� R)2

(1� R)2 þ 4R sin2(F=2)
: (5:A:14)

It may be shown that for nonnormal incidence we simply replace (5.A.2) by

F ¼ 4pnnd

c
cos u: (5:A:15)

From (5.A.13) and (5.A.14) it follows that the Fabry-Pérot etalon is perfectly transmit-
ting for n and u such that

F

2
¼ mp, m ¼ 1, 2, 3, . . . : (5:A:16)

This is precisely equivalent to the condition (5.10.6) obtained by considering only a
single reflection inside the etalon.
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The multiple-reflection analysis leading to (5.A.11) and (5.A.14) allows us to inves-
tigate the bandpass characteristics of the Fabry-Pérot etalon. That is, we can determine
how the transmission through the etalon falls off as the frequency n is displaced from a
resonance frequency (5.10.6). In Fig. 5.23 we plot the transmission function (5.A.14)
versus F for several values of the parameter

F ¼ 4R

(1� R)2
: (5:A:17)

In terms of this parameter the transmitted fraction is

IR
Iin
¼ 1

1þ F sin2(F=2)
: (5:A:18)

For small values of F there is considerable transmission of all frequencies. For large
values of F (R ! 1), however, only a narrow band of frequencies centered at each
resonance frequency (5.10.6) is transmitted. In spectroscopic applications this results
in a trade-off between the “throughput,” or amount of intensity transmitted, and the
“resolution,” or narrowness of the bandwidths of transmitted frequencies. Figure 5.24
shows how an intracavity Fabry-Pérot etalon can be used to realize single-mode
oscillation in a laser.

The resonance frequency spacing (5.10.7) is called the free spectral range of the
Fabry-Pérot etalon. The ratio of the free spectral range to the half-width of the frequency
band centered on a resonance frequency may be shown to be

F ¼ p

2

ffiffiffiffi
F
p
¼ p

ffiffiffi
R
p

1� R
: (5:A:19)

F is called the finesse of the Fabry-Pérot etalon. The greater the finesse, the sharper
the bands of transmitted frequencies relative to their separation. F is typically around
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Figure 5.23 Transmission function of the Fabry-Pérot etalon for three values of F.
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30–100, but values �105 can be achieved under special circumstances (see
Problem 5.10).

PROBLEMS

5.1. A cavity for a 632.8-nm He–Ne laser is 50 cm long with reflection coefficient
r1 ¼ 1.0 for onemirror and r2 ¼ 0.98 for the other. Losses other than output coup-
ling are very small and may be ignored. The output power of the laser is measured
to be about 10 mW on a single mode.
(a) What is the cavity photon number and what is the photon output rate?
(b) It has been written that “if the light from a thousand suns were to shine in the

sky, that would be the glory of the Mighty One.” Assume that the sun is an
ideal blackbody radiator at T ¼ 6000K. Estimate the flux of photons in a fre-
quency band of width dn � 10MHz centered at 632.8 nm that can be obtain
from 1000 suns. How does this compare to the photon flux that can be
obtained from He–Ne or other lasers?

5.2. Show that the output coupling that maximizes the output intensity (5.2.11) is
given by (5.3.1), and determine the output maximum.

5.3. A high-power CO2 laser has a small-signal gain g0(n0) � 0.005 cm21 at line
center. The laser transition is homogeneously broadened with a Lorentzian line-
width (HWHM) dn0 �1 GHz. The gain medium fills nearly the entire 50 cm
between the cavity mirrors. One of the mirrors is nominally perfectly reflecting,
while the output mirror is characterized by a scattering–absorption coefficient
s ¼ 2%.
(a) Determine the output mirror transmission coefficient t that will produce the

greatest amount of output power from this laser.
(b) The saturation intensity Isat for this laser is estimated to be about 100 kW/cm2.

What is the output intensity if the cavity is designed to have the maximal
output power?

(c) Estimate the intracavity intensity. Why might such a laser be designed to have
water-cooled mirrors?

Reflection of 
non-resonant 
frequencies 

d 

q

Gain cell 

Figure 5.24 An intracavity Fabry-Pérot etalon can be used to filter out all cavity mode frequencies
except those satisfying the condition (5.A.16) for transmission without reflection. If the “free spectral
range” c/2nd cos u is large compared with thewidth of the gain profile, only a single longitudinal mode
can lase.
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5.4. Using numerical values given in Section 4.10, estimate the quantum efficiencies
of the ruby and Nd :YAG lasers.

5.5. Assuming s ¼ 0.04, plot Eq. (5.2.11) for the output intensity as a function of the
output coupling t for the three cases g0l ¼ 0.1, 1.0, 30.0. Compare these results to
those based on Eq. (5.5.18).

5.6. Should the Lamb dip occur with any inhomogeneously broadened gain medium,
or only the specific case of Doppler broadening?

5.7. Do you think that most lasers have a cavity bandwidth much larger or smaller than
the linewidth of the gain profile? Is any implicit assumption about this made in our
discussion related to Fig. 5.12?

5.8. Derive Eq. (5.10.6) for the resonance frequencies of a Fabry-Pérot etalon for an
arbitrary angle of incidence.

5.9. (a) Show that the light propagating from the quarter-wave plate to the polarizing
beam splitter in Fig. 5.17 is polarized orthogonally to the light propagating
from the polarizing beam splitter to the quarter-wave plate. (Note: It is import-
ant for this and various other applications to bear in mind that circular polar-
ization changes upon reflection from a mirror: right-hand circularly polarized
light becomes left-handed circularly polarized and vice versa. The sense in
which the electric field vector rotates is preserved in the reflection, but the
propagation direction is reversed.)

(b) Consider the arrangement shown in Fig. 5.25. Show that, with proper align-
ment of the quarter-wave plate, this arrangment can be used as an optical
isolator that minimizes backreflection.

5.10. Let a wave of amplitude Ain and wavelength l be normally incident from a
medium of refractive index n1 onto a layer of index n2 and thickness d followed
by a medium of index n3 (Fig. 5.26).
(a) Show that the amplitude reflection and transmission coefficients for the ni!

nj interface are

Rij ¼ ni � nj
ni þ nj

, T ij ¼ 2ni
ni þ nj

, (1)

regardless of the polarization of the incident field.

Vertical
polarizer

QWP Reflector

Figure 5.25 An optical isolator for reducing backreflection.
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(b) Show that Eqs. (1) are consistent with energy conservation. (Recall that the
Poynting vector for a plane wave in a medium of refractive index n has mag-
nitude 1

2 ne0cE
2
0, where E0 is the electric field amplitude.)

(c) Show that the reflected wave amplitude AR is given by

AR

Ain
¼ R12 þ T12T21R23eiF

1�R21R23eiF
, (2)

where F ¼ 4pdn2/l.
(d) Suppose that the layer in Fig. 5.26 has an optical path length of a quarter of

a wavelength, that is, n2d ¼ l/4 and therefore F ¼ p. Show that
AR ¼ 0 if n2 ¼ ffiffiffiffiffiffiffiffiffi

n1n3
p

. In this case the layer makes a perfect antireflection
coating.

(e) Consider a quarter-wave layer of MgF2 (n2 ¼ 1.38) deposited on crown glass
(n3 ¼ 1.52) in air. Show that the power reflection coefficients with and with-
out the MgF2 layer are 1 and 4%, respectively. (Multiple layers can be used to
nearly eliminate any reflected field.)

(f) Suppose theMgF2 layer is replaced by a quarter-wave layer of ZnS (n2 ¼ 2.3).
What is the power reflection coefficient in this case? (Multilayered dielectrics
can have reflectivities greater than 0.99999.)

5.11. The constant P in Eq. (5.12.10) is usually written as rn30, where r is the “linear
electro-optic coefficient.” For KDP r ¼ 10.6 pm/V (1 pm ¼ 1 picometer ¼
10212 m) and n0 ¼ 1.51 for l � 600 nm. What is the half-wave voltage of a
Pockels cell that uses KDP as the electro-optic medium?

n1

Ain

d

n2 n3

Figure 5.26 Plane wave of amplitude Ain incident normally on a layered dielectric. The layer
of refractive index n2 can be chosen so as to reduce or enhance the reflectivity that would be obtained
without it.
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6 MULTIMODE AND PULSED LASING

6.1 INTRODUCTION

Thus far we have restricted our study of the laser to the case of continuous-wave,
single-mode operation. In this chapter we will consider time-dependent, transient
effects, including relaxation oscillations and Q switching. We will also extend our
single-mode theory to the case in which several or many cavity modes can oscillate
simultaneously. This allows us, in particular, to understand mode locking, a way to
obtain ultrashort pulses of light.

6.2 RATE EQUATIONS FOR INTENSITIES AND POPULATIONS

In the preceding two chapters we found it convenient and instructive to describe the
strength of the cavity field either in terms of intensity In or photon number qn. In the pre-
sent chapter it will be convenient to use the intensity description.Wewill therefore begin
with a brief review of the appropriate equations coupling the intensity and the laser level
population densities N2 and N1.

In general, the cavity intensity will vary both in time and space. We will continue in
this chapter to make the plane-wave approximation in which the intensity is assumed to
be uniform in any plane perpendicular to the cavity axis. Furthermore we showed in
Section 5.5 that, for the most common situation in which the mirror reflectivities are
large (say, .50%), the cavity intensity is approximately uniform along the cavity
axis if we ignore the rapidly varying sin2 kz interference term. So it is useful again to
make the uniform-field approximation, but now to include the time dependence of the
cavity intensity. First, we recall Eq. (4.4.8):

dIn
dt
¼ cl

L
g(n)In � 1

2l
(1� r1r2)In

� 
¼ cl

L
[g(n)� gt]In: (6:2:1)

For simplicity, wewill assume that the gain cell fills the entire space between the mirrors.
Then l ¼ L and

dIn
dt
¼ c[g(n)� gt]In: (6:2:2)
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Recall that In ¼ I(þ)n þ I(�)n is the sum of the two traveling-wave intensities; in the case of
high mirror reflectivities, the two are approximately equal.

In terms of the cavity intensity we can write the population rate equations [cf. (4.5.2)
with G1 ¼ G2 ¼ 0 and A ! G21]:

dN2

dt
¼ � g(n)In

hn
� G21N2 þ K2, (6:2:3a)

dN1

dt
¼ g(n)In

hn
þ G21N2 þ K1, (6:2:3b)

where the rates G21, K2, and K1 are, again, level decay and pumping rates. Since N2

and N1 are populations per unit volume, the pumping rates have units of (volume)21

(time)21. Equations (6.2.2) and (6.2.3) are coupled rate equations for In, N2, and N1.
The coupling is through the gain coefficient

g(n) ¼ l2A

8p
(N2 � N1)S(n) ¼ s(n)(N2 � N1), (6:2:4)

where we assume for simplicity that g2/g1 ¼ 1.
The population rate equations (6.2.3) are easily modified to suit a particular laser

medium. We have already described such modifications in the case of the stylized
three- and four-level models. Further modifications are described in Chapter 10,
where we consider specific population inversion mechanisms. Since we will be describ-
ing in this chapter some rather general phenomena that transcend specific inversion
schemes, it will be adequate to use the simple rate equations (6.2.3) for the laser level
population densities.

For many purposes the rate equations (6.2.2) and (6.2.3) may be simplified somewhat.
One simplifying assumption is thatN1
 N2, that is, that the lower laser level population
is negligible compared to the upper laser level population. This would be the case in a
four-level laser, where the lower level decays very rapidly compared to the stimulated
emission (absorption) rate. Then g(n) ¼ s (n)N2, and (6.2.2) and (6.2.3a) become

dIn
dt
¼ cs (n)N2In � cgtIn, (6:2:5a)

dN2

dt
¼ �s (n)

hn
N2In � G21N2 þ K2: (6:2:5b)

6.3 RELAXATION OSCILLATIONS

The coupled equations (6.2.5) for In and N2 are simple in appearance, but they have no
known general solution. However, it is easy to find the steady-state solutions, which we
denote�In and �N2. These are obtained simply by replacing the left sides of (6.2.5) by zero
and solving the resulting algebraic equations, with the result

In ¼ hn
K2

gt
� G21

s (n)

� �
and N2 ¼ gt

s (n)
: (6:3:1)

230 MULTIMODE AND PULSED LASING



These solutions may also be written in a different form to show explicitly how �N2

saturates with increasing �In (Problem 6.1).
It is possible to solve these equations approximately if the laser is operating very near

to steady state. In this case we write

In ¼ In þ 1, (6:3:2a)

N2 ¼ N2 þ h, (6:3:2b)

and assume

j1j 
 In, (6:3:3a)

jhj 
 N2: (6:3:3b)

This approximation allows the equations (6.2.5) to be linearized and solved, as follows.
Using (6.3.2) in (6.2.5a), we have

d

dt
(In þ 1) ¼ cs (N2 þ h)(In þ 1)� cgt(In þ 1), (6:3:4)

which is the same (since dIn=dt ¼ 0) as

d1

dt
¼ cs (N2 þ h)(In þ 1)� cgt(In þ 1)

¼ cs (N2In þ N21þ hIn þ h1)� cgt(In þ 1): (6:3:5)

Now In and N2 are such as to make the right sides of (6.2.5) vanish. In particular,

csN2In � cgtIn ¼ 0: (6:3:6)

Using this relation in (6.3.5), we obtain the much simpler equation

d1

dt
¼ cshIn þ csh1: (6:3:7)

This is still nonlinear (because of the term h1), but now the nonlinearity is very small
because it involves the product of the small quantities h and 1. Near enough to steady
state [recall (6.3.3)], such second-order small terms can be dropped altogether without
significant error. Thus, we obtain the following linear equation for the time dependence
of the departure of the cavity intensity from its steady-state value:

d1

dt
¼ (cs�In)h, (6:3:8)

where the factor in parentheses is constant in time. The same procedure can be applied
to (6.2.5b). Again the product h1 is very small and can be dropped, and again the defi-
nitions of �In and �N2 can be used to cancel some terms. The result is

dh

dt
¼ � gt

hn
1� sK2

gt
h: (6:3:9)
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Equations (6.3.8) and (6.3.9) are still coupled to each other, but they are now linear
and easily solved. We use (6.3.8) to replace h in (6.3.9) by (cs�In)�1 d1=dt to get

d21

dt2
þ g

d1

dt
þ v2

01 ¼ 0, (6:3:10)

where we define

g ¼ sK2

gt
(6:3:11)

and

v2
0 ¼

csgt
hn

�In: (6:3:12)

The solution to (6.3.10) is easily found to be

1(t) ¼ Ae�gt=2 cos(vt þ f), (6:3:13)

where A and f are constants and the frequency of oscillation is

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
0 � g 2=4

q
: (6:3:14)

For definiteness we assume v0 . g/2, making v real. Thus, near to the steady state, the
cavity intensity oscillates about the steady-state value �In, and gradually approaches �In at
the (exponential) rate g/2:

In ¼ In þ Ae�gt=2 cos(vt þ f): (6:3:15)

This is called a relaxation oscillation. Similar behavior is observed in a wide variety of
nonlinear systems.

Although the relaxation–oscillation solution (6.3.13) is valid only if j1j 
 In [recall
(6.3.3)], the nature of the solution is of general importance. The critical feature of the
solution is that g is positive. This guarantees that the steady-state solution �In is a
stable solution. That is, if some outside agent slightly disturbs the laser while it is
running in steady state, the effect of the disturbance decays to zero, thus returning the
laser to steady state again. If g were negative, a small disturbance would grow, and the
steady state would therefore be unstable and of little practical significance.

We may write the period Tr and lifetime tr of the relaxation oscillations as
(Problem 6.1)

Tr ¼ 2p
v0
¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(c=t21)(g0 � gt)
p (6:3:16)

and

tr ¼ 1
g
¼ gt

g0
t21, (6:3:17)

where g0 is the small-signal gain and t21 ¼ G�121 is the lifetime of the upper laser level.
From (6.3.17) and (6.3.11) we see that the duration of the relaxation oscillations
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decreases with increasing pumping rate K2 of the gain medium. Likewise the period Tr
of the relaxation oscillations should decrease with increased g0. These predicted trends
are consistent with many experimental observations.

It is possible to observe relaxation oscillations in the output intensity of a laser after it
is turned on and approaches a steady-state operation. Perturbations in the pumping power
can also cause relaxation oscillations to appear spontaneously. In some cases, especially
in solid-state lasers, the relaxation time tr may be relatively large, making relaxation
oscillations readily apparent on an oscilloscope trace of the laser output intensity.

As an example, consider a ruby laser with mirror reflectivities r1 � 1.0, r2 � 0.94,
and a ruby rod of length l ¼ 5.0 cm. For such a laser gt � (1=2l)(1� r2) ¼
0:006 cm�1, so that gt � 1.8 � 108 s21. For ruby the upper-level lifetime t21 � 2 �
1023 s. Assuming a pumping level such that g0/gt ¼ 2.0, we compute from (6.3.16)
and (6.3.17) the period and lifetime of relaxation oscillations:

Tr � 21 ms, (6:3:18)

tr � 2 ms: (6:3:19)

Relaxation–oscillation periods are often in the microsecond range, as in this example.
The damping time tr is particularly large in ruby because of its unusually long upper-
level lifetime t21. Relaxation oscillations are therefore particularly pronounced in
ruby. The output of a continuously pumped ruby laser typically consists of a series of
irregular spikes, and this spiking behavior is usually attributed to relaxation oscillations
being continuously excited by various mechanical and thermal perturbations.

6.4 Q SWITCHING

Q switching is away of obtaining short, powerful pulses of laser radiation.Q refers to the
quality factor of the laser resonator, as discussed in Section 5.9; recall that a high-Q
cavity is onewith low loss, whereas a lossy cavity will have a lowQ. The termQ switch-
ing therefore refers to an abrupt change in the cavity loss. Specifically, it is a sudden
switching from a low value to a high value, that is, a sudden lowering of the cavity
loss. In this section we will describe how Q switching works, and in the following
section how it is achieved in actual lasers.

Suppose we pump a laser medium inside a very lossy cavity. Because the loss is so
large, laser action is precluded even if the upper-level population N2 is pumped to a very
high value. No field builds up by stimulated emission in the gain cell, and, if pumping is
very strong, the gain can grow to a large, small-signal value without any laser oscillation
to deplete or saturate it. Suddenly we lower the loss to a value permitting laser oscil-
lation. We now have a small-signal gain much larger than the threshold gain for
oscillation.

What happens in this situation, of course, is that there is a rapid growth of intensity
inside the cavity. The intensity builds up quickly to a large value, resulting in a large
stimulated emission rate and therefore a rapid extraction of energy from the gain cell.
The result of the Q switching is therefore a short, intense pulse of laser radiation.
Pulses as short as 1028–1027 s are routinely obtained by Q switching.
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This qualitative explanation of Q switching may be substantiated by solving the rate
equations (6.2.5). For this purpose it is convenient to define the dimensionless quantities

x ¼ In
chnNt

and y ¼ N2

Nt
, (6:4:1)

where Nt is the threshold population inversion density. The threshold gain is gt ¼
s (n)Nt. y is the ratio of the population inversion to the threshold inversion under our
assumption N1 
 N2; equivalently, it is the ratio of gain g to threshold gain gt. x is
easily seen to be the ratio of the cavity photon density to the threshold population inver-
sion density (Problem 6.2).

In terms of x, y, and the dimensionless time variable

t ¼ cgtt, (6:4:2)

equation (6.2.5a) for the cavity intensity takes the form (Problem 6.2)

dx

dt
¼ ( y� 1)x: (6:4:3a)

We will assume that the duration of the Q-switched pulse is short enough that pumping
and spontaneous decay ofN2 during this interval is negligible, and only stimulated decay
due to the intense pulse occurs. This assumption allows us to ignore the second and third
terms on the right-hand side of the rate equation (6.2.5b) and to write the simpler
equation (Problem 6.2)

dy

dt
¼ �xy: (6:4:3b)

The validity of this assumption can always be checked after a solution of Eqs. (6.4.3) has
been obtained.

The result of a numerical integration of Eq. (6.4.3) is shown in Fig. 6.1. The pumping
level prior to Q switching is assumed to be such that y(0) ¼ 2. We observe that the

3.0
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y

y

x
x

t

1.0
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Figure 6.1 Solution of Eq. (6.4.3) for y(0) ¼ 2 and x(0) � 0.
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normalized intensity x grows until the population inversion drops below threshold, at
which point the intensity begins to decrease.

As a specific example, consider the case of a 694.3-nm ruby laser in which s � 2.7 �
10220 cm2. Suppose one of the mirrors is highly reflecting (r1 � 1.0), the other has a
reflectivity r � 0.90, and the ruby rod has a length l ¼ 5 cm. Then

gt � 1
2l
(1� r) ¼ 0:01 cm�1 (6:4:4)

and cgt � 3 � 108 s21. From (6.4.2), therefore,

t ¼ 3� 108 t (t measured in seconds): (6:4:5)

The Q-switched pulse of Fig. 6.1 has a width of about t ¼ 4, corresponding to an actual
pulse duration of

tp ¼ (3� 108)�1(4) ¼ 13 ns: (6:4:6)

The variable x in Fig. 6.1 has a peak value of about 0.3, corresponding to a peak intensity
of [Eq. (6.4.1)]

Ipeak ¼ (chn)Nt(0:3) ¼ c2h

l

� �
gt
s

� �
(0:3) � 109 W=cm2, (6:4:7)

as the reader may easily verify. This is a very large amount of power—much larger than
would be obtainable if the same laser were operated as a continuous-wave device
(Problem 6.3). For a beam cross-sectional area of 0.1 cm2 the total energy in the
Q-switched pulse is

Energy � (Ipeak)(tp)(0:1 cm
2) � 1 J: (6:4:8)

† Equations (6.4.3) imply that, if x(0) ¼ 0, then x and y remain fixed at their initial values.
Physically, this is incorrect and occurs only because in writing (6.4.3) we left out the effect of
spontaneous emission. Spontaneous emission has the effect of giving x a small but nonzero initial
value, allowing it to grow from this initial value. In other words, spontaneous emission provides
the first few “seed” photons needed to initiate the growth of laser intensity by stimulated
emission.

In obtaining the numerical results shown in Fig. 6.1 a fourth-order Runge–Kutta integration
algorithm was used, with a step size Dt ¼ 0.01. An initial value of 1024 was assumed for x(0).
The numerical results for the pulse shape, duration, and peak value are insensitive to the (small)
initial value assumed for x. This is because x grows to values large compared to its initial value.
Then the number of cavity photons becomes so large that spontaneous emission is negligible
compared to stimulated emission.

The value of t at which the pulse intensity reaches its peak, however, does depend upon the
choice of x(0). If this aspect of the problem is of concern, therefore, one should include properly
the effect of spontaneous emission in the rate equations (6.4.3) as well as various details of the Q
switching.

The reader may wish to experiment with Eqs. (6.4.3) or various other differential equations
that appear in this book and in the laser research literature. We include at the end of the book
(Section 16.A) a FORTRAN listing of the Runge–Kutta algorithm used to obtain the results
in Fig. 6.1. †
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6.5 METHODS OF Q SWITCHING

There are various ways toQ-switch a laser. Themost popular ones allow the gain to build
up to a large value and then switch the cavity Q factor within a time interval that is short
compared to the photon lifetime (cgt)

21 before the onset of laser oscillation. We will
discuss three common methods of Q switching.

Rotating Mirrors

One way to Q-switch is to have one of the cavity mirrors rotating about an axis perpen-
dicular to the cavity axis (Fig. 6.2). The loss is then very large except during the brief
period when the mirrors are nearly parallel. A typical angular velocity of the rotating
mirror is about 10,000 revolutions per minute (rpm).

A similar mechanical method of Q switching involves a rotating chopper wheel. In
this method, however, the Q switching is effected relatively slowly, even for a wheel
velocity of 10,000 rpm. This is because lasing can begin before the shutter fully exposes
the gain cell to the cavity mirrors.

Electro-optical Switches

The most common methods of Q switching employ electro-optical or acousto-optical
switches. Electro-optical (Kerr or Pockels) shutters control the cavity Q by means of an
applied voltage, as indicated in Fig. 6.3. The voltage and orientation of the Kerr cell are
such that the (linearly polarized) light passing through the polarizer is converted to cir-
cularly polarized light. After reflection off the cavity mirror this circularly polarized light
is converted by the Kerr cell to light linearly polarized orthogonally to the polarizer axis.
The presence of the Kerr cell thus prevents feedback, and the cavity is in effect a very

Gain cell

Figure 6.2 A laser cavity with a rotating mirror for Q switching.

Gain cell Kerr cell

Polarizer

Orthogonal
linear

polarizations

Circular
polarization

Figure 6.3 Q switching with a Kerr cell. With the Kerr cell on the cavity loss is large but is suddenly
lowered when the Kerr cell is switched off.
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lossy one. If the voltage across the Kerr cell is switched off, however, the cell is no longer
birefringent, and a laser pulse is produced with the sudden increase in the cavity Q.

Saturable Absorbers

Another way of Q switching is to place in the laser cavity a “shutter” consisting of a cell
of absorbing material whose absorption coefficient can be saturated (or “bleached”) by
the laser radiation. Saturation can occur in both absorbing and amplifying media. The
absorption (or gain) coefficient decreases with increasing intensity of resonant radiation,
becoming nearly zero when the intensity is much larger than a characteristic saturation
intensity Isatn of the medium.

When the gain medium is first pumped, the gain threshold is very high. The cavity
loss is too large because of the absorbing cell to allow laser oscillation. The medium
can therefore be pumped to a high gain without generating significant light intensity.
Once the gain is high enough to overcome the loss, however, the cavity intensity
grows rapidly. This in turn rapidly saturates the absorption cell, and the effective
cavity loss drops abruptly. The whole process leads to an output pulse in a manner simi-
lar to that with a mechanical Q switch (Problem 6.4).

The use of a saturable absorber for Q switching is often called passive Q switching,
in contrast to the active Q switching achieved mechanically or electro-optically as
described above.

The passive Q switch is obviously simpler in terms of the necessary auxiliary equip-
ment than the two active Q switches we have described. It enjoys an additional advan-
tage: A passive Q switch will often give an output pulse concentrated mostly in a single
mode. The reason for this is that it takes a finite time for the saturable absorber to become
highly saturated and thus to raise the cavity Q. In the meantime the cavity intensity orig-
inating from spontaneous emission noise builds up on different modes, and it grows to a
greater degree on those modes with the lowest loss per pass. Since a photon can typically
make several thousand round trips between the cavity mirrors before the absorber satu-
rates, even small differences in the losses of different modes become significant. The
result is that only the lowest-loss mode (or modes) appear in the Q-switched pulse.

In the activeQ switches, the switch to highQ is much more rapid, typically occurring
during only several tens of photon round trips in the cavity. Small differences in mode
losses per pass may then not be sufficient to discriminate among different modes. The
output frequency spectrum of a Q-switched ruby laser has long been known to be narro-
wer if a passive Q switch is used instead of a rotating mirror or a Kerr (or Pockels) cell.

6.6 MULTIMODE LASER OSCILLATION

In Section 5.10 we noted that a laser with a homogeneously broadened gain medium
tends to oscillate on a single longitudinal mode if the effect of spatial hole burning is
small. This expectation is borne out in collision-broadened gas lasers, where atomic
motion tends to smear out the effect of spatial hole burning. A similar effect can
occur in solid-state lasers in which there is a diffusion of excitation among the atoms.
In general, however, oscillation will occur on many longitudinal modes, especially
when the gain medium is pumped far above threshold, allowing many modes under
the gain curve to meet the threshold condition.
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Single-longitudinal-mode oscillation is generally precluded by spectral hole burning
in inhomogeneously broadened lasers, unless the laser cavity is very short (Fig. 5.11) or
the pumping rate permits only one mode to reach threshold (Fig. 6.4). He–Ne lasers, for
example, usually oscillate on several longitudinal modes in the absence of any mode
selection mechanism (e.g., an etalon). Figure 6.5 shows the output spectrum of a typical,
low-pressure 632.8-nm He–Ne laser having a mirror separation L ¼ 1m. Figure 6.5a is
the result obtained at a relatively low pumping level. Only one longitudinal mode is
above threshold. As the pumping level is raised by increasing the discharge current,
however, several modes under the 1700-MHz Doppler profile can oscillate
(Fig. 6.5b), and their frequency spacing is near c/2L ¼ 150MHz, as expected.

A rigorous theory of laser oscillationmust therefore describe the case in which several
or many modes oscillate simultaneously. In this case we cannot formulate the theory in
terms of a single cavity photon number or intensity. Instead we must specify the photon
number or intensity for each mode. The analysis is especially complicated by spectral
hole burning in the case of inhomogeneous broadening.

The rate equations (4.5.2), or their simplified version (6.2.5), describe the rate of
change of the total number of atoms per unit volume in a particular atomic level.
They do not take account of the fact that different atoms may have different line-
center frequencies and therefore different stimulated emission cross sections s (n) for
radiation of frequency n. That is, there is no account of inhomogeneous line broadening.
If there is inhomogeneous broadening, we must write separate rate equations for differ-
ent spectral packets of atoms (Section 4.14). Different spectral packets will then saturate
to different degrees (spectral hole burning), and the complications can be enormous
in the multimode case. A proper description of this case would, for our purposes, be
inordinately lengthy.

In spite of these complexities, there are situations where the gain of a multimode,
inhomogeneously broadened laser saturates homogeneously in the sense that every

c /2L Frequency

Lasing mode

Gain

Loss

Figure 6.4 A case in which several modes lie under the gain curve, but only one can lase.

150 MHz 

(a) (b)

Figure 6.5 Typical output spectra of a 1-m-long He–Ne laser for (a) low and (b) high pumping
(discharge current) levels.
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spectral packet saturates in the same manner. In this case a saturation formula such as
(4.12.3) is applicable, and the total output power on all modes is well described by
the Rigrod-type analysis discussed in the preceding chapter. One situation in which
this is realized approximately is when the longitudinal mode spacing c/2L is small com-
pared to the homogeneous linewidth dn0, that is, when there are many longitudinal
modes lying within the frequency interval dn0. Evidence for the validity of this approxi-
mation may be found in the results of experiments with a low-pressure 3.51-mmHe–Xe
laser, which is highly inhomogeneously (Doppler) broadened.1 The cavity mirrors
were separated by over 10 m in order to permit the oscillation of a large number of
longitudinal modes. The total output power was described quite well by the Rigrod
theory for a homogeneously broadened laser (Section 5.5).

There are other effects tending to “homogenize” the gain saturation. In a gas laser, for
instance, collisions will change the z component of an atom’s velocity and tend to “fill
in” a spectral hole. In other words, collisions act to preserve the Maxwell–Boltzmann
velocity distribution and, therefore, the Doppler gain profile. Collisions thus act in oppo-
sition to the spectral hole-burning effect of the field. At high intensity levels the effective
homogeneous linewidth is also increased due to power broadening (Section 4.12).

6.7 PHASE-LOCKED OSCILLATORS

In a Q-switched laser the light pulse must make several passes through the gain medium
after the cavity Q is switched. Feedback is necessary in order to build up a large field
amplitude by stimulated emission. For some applications it is desirable to have pulses
of light even shorter than can be achieved by Q switching. Such powerful, ultrashort
pulses of light can be obtained by the technique called mode locking.

Whereas Q switching may involve either a single mode or many modes, mode lock-
ing is a fundamentally multimode phenomenon. Specifically, mode locking involves the
“locking” together of the phases of many cavity longitudinal modes. The purpose of
this section is to consider a simple analog of a mode-locked laser. We will consider the
problem of adding the displacements of N harmonic oscillators with equally spaced
frequencies. That is, we consider the sum of

xn(t) ¼ x0 sin(vnt þ f0), (6:7:1)

where

vn ¼ v0 þ nD, n ¼ �N � 1
2

, � N � 1
2
þ 1, � N � 1

2
þ 2, . . . ,

N � 1
2

: (6:7:2)

In other words, the amplitudes x0 and phases f0 of the oscillators are identical, and their
frequencies vn are equally spaced by D and centered at v0, as shown in Fig. 6.6. The
sum of the displacements is

X(t) ¼
X
n

xn(t) ¼ �
X(N�1)=2

�(N�1)=2
x0 sin(vnt þ f0): (6:7:3)

1L. W. Casperson, IEEE Journal of Quantum Electronics QE-9, 250 (1973).

6.7 PHASE-LOCKED OSCILLATORS 239



Since sin x is the imaginary part of eix, we may write this as

X(t) ¼ x0Im
X
n

ei(v0tþf0þnDt)
 !

¼ x0Im ei(v0tþf0)
X
n

einDt
 !

: (6:7:4)

The general identity

X(N�1)=2
�(N�1)=2

einy ¼ sin (Ny=2)
sin (y=2)

(6:7:5)

proved below allows us to write (6.7.4) as

X(t) ¼ x0Im ei(v0tþf0)
sin(NDt=2)
sin(Dt=2)

� 
¼ x0 sin(v0t þ f0)

sin(NDt=2)
sin(Dt=2)

� 

¼ AN(t)x0 sin(v0t þ f0): (6:7:6)

The function AN(t) is plotted in Fig. 6.7 for N ¼ 3 and N ¼ 7. In general AN(t) has
equal maxima

AN(t)max ¼ N (6:7:7)

– –(N –1)Δ1
2

+ –(N –1)Δ1
2–Δ +Δ0

w0

Figure 6.6 A collection of N frequencies running from v0 � 1
2 (N � 1)D to v0 þ 1

2 (N � 1)D as in
Eq. (6.7.2).
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Figure 6.7 The function AN (t) ¼ sin 1
2NDt
� �

=sin 1
2Dt
� �

vs. Dt/p.
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at values of t given by

tm ¼ m
2p
D

� �
; mT , m ¼ 0,+1,+2, . . . : (6:7:8)

As N increases, the maxima of AN (t) become larger. They also become more sharply
peaked. A measure of their width is the time interval tN indicated in Fig. 6.7 for N ¼ 7:

tN ¼ 2p
ND
¼ T

N
: (6:7:9)

We have thus shown that the addition ofN oscillators of equal amplitudes and phases,
and equally spaced frequencies (6.7.2), gives maximum total oscillation amplitudes
equal to N times the amplitude of a single oscillator. These maximum amplitudes
occur at intervals of time T [Eq. (6.7.8)]. For large N we have, loosely speaking, a
series of large-amplitude “spikes.” The smaller the frequency spacing D between the
individual oscillators, the larger the time interval T ¼ 2p/D between spikes, and conver-
sely. The temporal duration of each spike is tN ¼ T/N, so the spikes get sharper as N is
increased.

We have assumed for simplicity that each oscillator has the same phase f0 [Eq.
(6.7.1)]. A more general kind of phase locking occurs when the phase differences of
the oscillators are constant but not necessarily zero:

fn ¼ f0 þ na, (6:7:10a)

or

fnþ1 � fn ¼ a: (6:7:10b)

In this case the sum of the oscillator displacements (6.7.3) is replaced by

X(t) ¼
X
n

x0 sin(vnt þ fn) ¼ x0Im ei(v0tþf0)
X(N�1)=2

�(N�1)=2
ein(Dtþa)

0
@

1
A, (6:7:11)

and this may be evaluated to give the total displacement

X(t) ¼ x0 sin(v0t þ f0)
sinN(Dt þ a)=2)
sin(Dt þ a=2)

� 
, (6:7:12)

having basically the same properties as (6.7.6) obtained with a ¼ 0. (See also
Problem 6.5.)

† We prove (6.7.5) as follows. Let the sum be denoted SN. For convenience we will first
evaluate

SNþ1 ¼
XþN=2

n¼�N=2
einy: (6:7:13)
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The first step is to shift the summation label by introducing

m ¼ nþ N

2
, (6:7:14)

so that

SNþ1 ¼
XN
m¼0

ei(m�N=2)y ¼ e�iNy=2
XN
m¼0

eimy ¼ e�iNy=2
XN
m¼0

(eiy)m: (6:7:15)

The second step is to make use of the identity

XN
m¼0

xm ¼ 1� xNþ1

1� x
: (6:7:16)

Then we can write

SNþ1 ¼ e�iNy=2
1� ei(Nþ1)y

1� eiy

¼ e�iNy=2
ei(Nþ1)y=2

eiy=2
e�i(Nþ1)y=2 � ei(Nþ1)y=2

e�iy=2 � eiy=2
¼ sin(N þ 1)y=2

sin y=2
, (6:7:17)

and so we have proved that

SN ¼ sin Ny=2
sin y=2

, (6:7:18)

as claimed in (6.7.5). †

6.8 MODE LOCKING

What we have in the example of the preceding section is a simple model of a
mode-locked laser. The individual oscillators in the model play the role of individual
longitudinal-mode fields, while their frequency spacing D represents the mode (angular)
frequency separation 2p(c/2L) ¼ pc/L. The assumption of equal oscillator phase
differences a (“phase locking”) in the model corresponds to the locking together of
the phases of the different cavity modes.

Our oscillator model suggests that, if we can somehow manage to lock together the
phases ofN longitudinal modes of a laser, then the output light of the laser will consist of
a train of pulses separated in time by T ¼ 2p/D ¼ 2L/c. The temporal duration of each
pulse in the train will be tN ¼ T/N ¼ 2L/cN. The larger the number N of phase-locked
modes, the greater the amplitude, and the shorter the duration, of each individual pulse in
the train. As we will see, this is indeed the essence of the mode-locking technique for
obtaining very short, powerful laser pulses.
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The number of longitudinal modes that can simultaneously lase is determined by the
gain linewidth (FWHM) Dng and the frequency separation c/2L between modes
(cf. Fig. 6.8). Under sufficiently strong pumping of the gain medium we expect that
approximately

M ¼ Dng
c=2L

¼ 2L
c
Dng (6:8:1)

longitudinal modes can oscillate simultaneously. The shortest pulse length we expect to
achieve by mode locking is therefore

tmin ¼ tM ¼ 2L
cM
¼ 1

Dng
: (6:8:2)

That is, the shortest pulse duration we can achieve by mode locking is (approximately)
the reciprocal of the gain linewidth.As an example, consider the 632.8-nmHe–Ne laser
with a gain linewidth Dng ¼ dnD ¼ 1700MHz. For such a laser the shortest pulses
obtainable by mode locking are of duration

1
dnD
¼ 1

1700� 106
s�1 ¼ 1 ns: (6:8:3)

In other words, for this laser, mode locking is not much of an improvement over Q
switching for the production of short pulses. This is often true of gas lasers. Their
gain linewidths are so narrow that very short (say, picosecond, 10212 s duration) pulses
cannot be obtained by mode locking.

On the other hand, consider a 693.4-nm ruby laser with Dng � 1011 s21. For this
laser mode-locked pulses of 10211 s may be obtained.

Liquid dye lasers typically have broad gain profiles, with Dng � 1012 s21 or more.
With such lasers mode-locked pulses in the picosecond range are routinely obtained.

A basic understanding of mode-locked laser oscillation may be reached by extending
only slightly our analysis of phase-locked oscillators. We associate with the mth longi-
tudinal mode an electric field

E(z, t) ¼ 1̂mEm(z) sin(vmt þ fm) ¼ 1̂mEm sin kmz sin(vmt þ fm), (6:8:4)

where

km ¼ m
p

L
, m ¼ 1, 2, 3, . . . , (6:8:5a)

L
p c

L
p c

L
–

p c
L

+
p c

L
Mp c

– –(N  –  1)1
2

– –(N  –  1)1
2

Figure 6.8 The distribution of N cavity mode frequencies as given by Eq. (6.8.7b). The situation is
exactly the same as in Fig. 6.7 for the case of N phase-locked oscillators.
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and

vm ¼ kmc ¼ m
pc

L
, m ¼ 1, 2, 3, . . . : (6:8:5b)

For simplicity let us assume that the mode fields all have the same magnitude (E0) and
polarization, so that we can do our calculations with scalar quantities. Furthermore let us
consider, without much loss of generality, the simplest example of phase locking, in
which all fm ¼ 0. Then the total electric field in the cavity is

E(z, t) ¼
X
m

Em(z, t) ¼ E0

X
m

sin kmz sinvmt, (6:8:6)

where the summation is over all oscillating modes.
For a cavity 1 m long, pc/L � 9 � 108 Hz. For near-optical frequencies, of

course, the lasing frequencies vm will be much larger; at a wavelength of 600 nm,
v ¼ 2pc/l ¼ 3 � 1015 Hz. The integer m in (6.8.5) will therefore typically be in the
millions. So let us take m ! M þ n and write equations (6.8.5) as

km ¼ (M þ n)p
L

, (6:8:7a)

vm ¼ (M þ n)pc
L

, (6:8:7b)

where M is a very large positive integer (M � 106) and n runs from � 1
2 (N � 1) to

þ 1
2 (N � 1), corresponding to a total of N (
M) modes centered at the frequency

Mpc/L (Fig. 6.8). Then (6.8.6) becomes

E(z, t) ¼ E0

X(N�1)=2
�(N�1)=2

sin
(M þ n)pz

L
sin

(M þ n)pct
L

¼ 1
2
E0

X
n

cos
(M þ n)p (z� ct)

L
� cos

(M þ n)p (zþ ct)
L

� 
(6:8:8)

for the total electric field in the laser cavity.
Now we proceed as in the preceding section. The sum

X(N�1)=2
�(N�1)=2

cos
(M þ n)p (z� ct)

L
¼ Re

X(N�1)=2
�(N�1)=2

ei(Mþn)p(z�ct)=L

¼ Re eiMp (z�ct)=L sin[pN(z� ct)=2L]
sin[p(z� ct)=2L]

� �

¼ cos
Mp(z� ct)

L

� 
sin[pN(z� ct)=2L]
sin[p (z� ct)=2L]

, (6:8:9)
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where we have again used the identity (6.7.5). Similarly

X
n

cos
(M þ n)p (zþ ct)

L
¼ cos

Mp (zþ ct)
L

sin[pN(zþ ct)=2L]
sin[p (zþ ct)=2L]

� �
: (6:8:10)

From (6.8.8), then,

E(z, t) ¼ E0

2
cos k0(z� ct)

sin[pN(z� ct)=2L]
sin[p(z� ct)=2L]

� cos k0(zþ ct)
sin[pN(zþ ct)=2L]
sin[p(zþ ct)=2L]

� �
,

(6:8:11)

where k0 ¼ pM/L.
The functions

A(+)
N (z, t) ¼ sin[pN(z+ ct)=2L]

sin[p(z+ ct)=2L]
(6:8:12)

appearing in (6.8.11) have basically the same form—and effect—as the function AN(t)
appearing in Eq. (6.7.6) for the phase-locked oscillator model. In particular, A(+)

N (z, t)
has maxima occurring at

z+ ct ¼ m(2L), m ¼ 0,+1,+2, . . . : (6:8:13)

If we put our attention on a fixed value of z inside the cavity, for instance, there are pulses
of peak amplitude NE0=2 appearing at time intervals of 2L/c, each pulse having a dur-
ation T/N (Fig. 6.9). If we fix our attention on the spatial distribution of E(z, t) at a fixed
time t, we find pulses of amplitudeNE0=2with spatial separation 2L, each pulse having a
spatial extent of 2L/N (Fig. 6.10).

—Ne0 2L 

— 
2L 
N 

z

1 
2 

Figure 6.10 A mode-locked pulse train as a function of coordinate z, observed at a fixed instant
of time.

—Ne0 — 
2L 
c 

— 
2L 
cN 

t 

1 
2 

Figure 6.9 A mode-locked pulse train as a function of time, observed at a fixed position z.
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In other words, the field (6.8.11) represents two trains of pulses, one moving in the
positive z direction and the other in the negative z direction. In the usual situation in
which output is obtained through one of the cavity mirrors, the laser radiation appears
as a single train of pulses of temporal separation and duration 2L/c and 2L/cN, respect-
ively. All this confirms our conclusions deduced from the phase-locked oscillator model.

The fact that the pulses of a mode-locked train are separated in time by the round-trip
cavity transit time 2L/c suggests a “bouncing-ball” picture of a mode-locked laser: We
can regard the mode locking as generating a pulse of duration 2L/cN, and this pulse
keeps bouncing back and forth between the cavity mirrors. Focusing our attention on
a particular plane of constant z in the resonator, we observe a train of identical pulses
moving in either direction.

In most lasers the phases fn of the different modes will undergo random and uncor-
related variations in time. In this case the total intensity is the sum of the individual mode
intensities. In mode-locked lasers, however, the mode phases are correlated and the total
intensity is not simply the sum of the individual mode intensities. In fact, the individual
pulses in the mode-locked train have an intensity N times larger than the sum of the indi-
vidual mode intensities. The average power, however, is essentially unaltered by mode
locking the laser (Problem 6.6).

† Before discussing how mode locking can be accomplished, it is worth noting that “phase
locking” or “synchronization” phenomena occur in many nonlinear oscillatory systems besides
lasers, and indeed these phenomena have been known for a very long time. C. Huygens
(1629–1695), for instance, observed that two pendulum clocks hung a few feet apart on a thin
wall tend to have their periods synchronized as a result of their small coupling via the vibrations
of thewall. Near the end of the 19th century, Lord Rayleigh found that two organ pipes of slightly
different resonance frequencies will vibrate at the same frequency when they are sufficiently close
together. The contractive pulsations of the heart’s muscle cells become phase-locked during the
development of the fetus. Fibrillation of the heart occurs when they get out of phase for some
reason and results in death unless the heart can be shocked back into the normal condition of
cell synchronization. There are other biological examples of phase locking, but detailed
theoretical analyses are obviously extremely difficult or impossible for such complex systems.
Modern applications of synchronization principles are made in high-precision motors and control
systems. †

6.9 AMPLITUDE-MODULATED MODE LOCKING

The process by which phase or mode locking is forced upon a laser is fundamentally a
nonlinear one, and a rigorous analysis of it is complicated. We will therefore rely largely
on semiquantitative explanations.

Consider again the scalar electric field

Em(z, t) ¼ Em sin kmz sin(vmt þ fm) (6:9:1)

associated with a longitudinal mode. Suppose that the amplitude Em is not constant but
rather is modulated periodically in time according to the formula

Em ¼ E0(1þ 1 cosVt), (6:9:2)
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where V is the modulation frequency and E0 and 1 are constants. Thus, we have an
amplitude-modulated field:

Em(z, t) ¼ E0(1þ 1 cosVt) sin (vmt þ fm) sin kmz: (6:9:3)

Since

cos Vt sin(vmt þ fm) ¼ 1
2 sin(vmt þ fm þVt)þ 1

2 sin(vmt þ fm �Vt), (6:9:4)

we can write the field (6.9.3) as a sum of harmonically varying parts:

Em(z, t) ¼ E0 sin(vmt þ fm)þ
1

2
sin[(vm þV)t þ fm]

n
þ 1

2
sin[(vm �V)þ fm]

o
sin kmz: (6:9:5)

The frequency spectrum of the field (6.9.5) is shown in Fig. 6.11. The amplitude
modulation of the field (6.9.1) of frequency vm has generated sidebands of frequency
vm+V. These sidebands are displaced from the carrier frequency vm by precisely
the modulation frequency V. Sideband generation is a well-known consequence of
amplitude modulation.

In a laser the mode amplitudes Em are determined by the condition that the gain equals
the loss. If the loss (or gain) is periodically modulated at a frequency V, we expect the
fields Em(z, t) associated with the various modes to be amplitude modulated (AM) with
this frequency. In other words, we expect sidebands to be generated about each mode
frequency vm, as in (6.9.5). In particular, if the modulation frequency V is equal to
the mode frequency spacing

D ¼ vmþ1 � vm ¼ pc

L
, (6:9:6)

wm – Ω wm + Ωwm

Figure 6.11 Frequency spectrum of the amplitude-modulated field (6.9.5). The sidebands atvm +V
have amplitudes 1/2 times as large as the carrier amplitude at vm. In this case 1/2 , 1.
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the sidebands associated with each mode match exactly the frequencies of the two
adjacent modes (Fig. 6.12). In this case each mode becomes strongly coupled to its
nearest-neighbor modes, and it turns out that there is a tendency for the modes to lock
together in phase. Loss or gain modulation at the mode separation frequency D is there-
fore one way of mode locking. Borrowing terminology from radio engineering, we call
this AM mode locking.

The dimensionless factor 1 appearing in (6.9.2) is called the modulation index. It is
usually small, but it must be large enough to couple the different modes sufficiently
strongly. This is analogous to the synchronization phenomenon observed in the 17th
century by Huygens with pendulum clocks. Their frequencies were locked together
when the clocks were mounted just a meter or so apart, but larger separations weakened
their coupling and destroyed the locking effect. If 1 is too large, on the other hand, the
locking effect is also weakened. This is analogous to the distortion arising in AM radio
when the carrier wave is “overmodulated,” that is, when 1 . 1.

A heuristic way to understand why AM mode locking occurs in lasers is first to
suppose that lasing can occur only in brief intervals when the periodically modulated
loss is at a minimum. These minima occur in time intervals of T ¼ 2p/D ¼ 2L/c if
the modulation frequency V ¼ D. Between these times of minimum loss the loss is
too large for laser oscillation. Thus, we can have laser oscillation only if it is possible
to generate a train of short pulses separated in time by T. This is possible if the modes
lock together and act in unison, for then we generate a mode-locked train of pulses
separated by time T. Thus, mode locking has been described as a kind of “survival of
the fittest” phenomenon.

6.10 FREQUENCY-MODULATED MODE LOCKING

Wewill now consider the case where the phase of the field (6.9.1) is periodically modu-
lated rather than the amplitude:

Em(z, t) ¼ Em sin kmz sin(vmt þ fm þ d cos Vt): (6:10:1)

The dimensionless constant d gives the amplitude of the modulation of frequency V.
As in the case of amplitude modulation, this phase modulation gives rise to sideband
frequencies about the carrier frequency vm. As we will now see, however, phase modu-
lation produces a whole series of sidebands.

ωm – 2 ωm – 1

Δ

ωm ωm + 1 ωm + 2

AM sidebands of mode m

Figure 6.12 Longitudinal modes amplitude-modulated at the frequency D equal to their spacing.
For clarity the AM sidebands are indicated as dashed lines slightly displaced from the mode
frequencies vm.
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The time-dependent part of (6.10.1) may be written as

sin(vmt þ fm þ d cosVt) ¼ sin(vmt þ fm) cos(d cosVt)

þ cos(vmt þ fm) sin(d cosVt) (6:10:2)

Now we make use of two mathematical identities:

cos(x cos u) ¼ J0(x)þ 2
X1
k¼1

(�1)kJ2k(x) cos(2ku), (6:10:3a)

sin (x cos u) ¼ 2
X1
k¼0

(�1)kJ2kþ1(x) cos[(2k þ 1)u], (6:10:3b)

where Jn(x) is the Bessel function of the first kind of order n. The first few lowest-order
Bessel functions are plotted in Fig. 6.13. These plots are all we will need to know about
them. The functions (6.10.3) appear in (6.10.2) with x ¼ d and u ¼ Vt. Thus

sin(vmtþfmþd cosVt)¼ sin(vmtþfm) J0(d)þ2
X1
k¼1

(�1)kJ2k(d)cos(2kVt)

" #

þ2cos(vmtþfm)
X1
k¼0

(�1)kJ2kþ1(d)cos[(2kþ1)Vt]

¼ sin(vmtþfm)[J0(d)�2J2(d)cos 2Vt

þ2J4(d)cos 4Vt�2J6(d)cos 6Vtþ���]
þ2 cos(vmtþfm)[J1(d)cosVt�J3(d)cos 3Vt

þJ5(d)cos 5Vt����]: (6:10:4)
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Figure 6.13 The first few lowest-order Bessel functions of the first kind, Jn(d).
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Using the identities sin x cos y¼ 1
2[sin(xþy)þsin(x�y)] and cos x cos y¼ 1

2[cos(xþy)þ
cos(x�y)], therefore, we have

sin(vmt þfmþd cosVt) ¼ J0(d)sin(vmt þfm)

þJ1(d) cos[(vmþV)tþfm]þ cos[(vm�V)tþfm]f g
�J2(d) sin[(vmþ 2V)tþfm]þ sin[(vm�2V)tþfm]f g
�J3(d) cos[(vmþ 3V)tþfm]þ cos[(vm�3V)tþfm]f g
þJ4(d) sin[(vmþ 4V)tþfm]þ sin[(vm�4V)tþfm]f g
þJ5(d) cos[(vmþ 5V)tþfm]þ cos[(vm�5V)tþfm]f g
���� (6:10:5)

after a simple rearrangement of terms in (6.10.4). Whereas amplitude modulation
produces one sideband on either side of the carrier frequency vm, phase modulation
in general produces a whole series of pairs of sidebands. If the “modulation index”
d is somewhat less than unity, however, we observe from (6.10.5) and Fig. 6.13 that
the first pair of sidebands at vm+V is strongest. As the strength of the modulation
increases, that is, as d increases, more sideband pairs become important. Figure 6.14
shows the frequency spectrum of the function (6.10.5) for d ¼ 1 and d ¼ 5.

Again borrowing the terminology of radio engineering, we refer to this type of modu-
lation as frequency modulation (FM). As in the AM case, frequency modulation at the
mode separation frequency V ¼ D ¼ pc/L causes the sidebands associated with each
mode to be in resonance with the carrier frequencies of other modes. This results in a
strong coupling of these modes and a tendency for them to lock together and produce
a mode-locked train of pulses. This is called FM mode locking.

† Information cannot be transmitted with a purely monochromatic wave. The basic idea of
radio communication is to modulate a monochromatic (carrier) wave in some way (AM or
FM), transmit it, then demodulate it at a receiver to recover the information or message contained
in the original modulation. Because radiation from extraneous sources such as lightning, electric

Carrier 
frequency wm 

Modulation 
frequency 

Ω 

Modulation 
frequency 

Ω 

d  = 5d = 1

(a) (b)

Carrier 
frequency wm 

Figure 6.14 Frequency spectrum of the function (6.10.5) for the modulation index (a) d ¼ 1 and
(b) d ¼ 5.
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power generators, and car ignition systems can “modulate” the amplitude but not the frequency of
a radio transmission, FM is much less susceptible than AM to the interference (“static”) such
sources produce at the receiver. The much larger bandwidth of FM radio compared to AM
gives it much greater fidelity. Each FM station is allowed a certain bandwidth (200 kHz in the
United States, 100 kHz in Europe) that is more than enough to cover the full musical range of
the human ear.

In radio communication, in contrast to our discussion, it is customary to distinguish between
phase modulation and frequency modulation. A phase-modulated wave has the form

A(t) ¼ A0 sin[vmt þ fM(t)]: (6:10:6)

The modulation, or “message,” is defined by fM(t). A frequency-modulated wave has the form

A(t) ¼ A0 sin vmt þ
ðt
0
FM(t0) dt0

� 
, (6:10:7)

where now the “message” FM(t) appears in the instantaneous frequency defined by

vi(t) ;
d

dt
vmt þ

ðt
0
FM(t0) dt0

� 
¼ vm þFM(t): (6:10:8)

Obviously, the forms (6.10.6) and (6.10.7) are special cases of each other. The difference between
the two in communications relates to how the demodulation is performed to recover the trans-
mitted message. The demodulation of a frequency-modulated wave involves electronics that
produces a voltage proportional to the instantaneous frequency, whereas a demodulator of a
phase-modulated wave produces a voltage proportional to the instantaneous phase. Our discus-
sion of FM mode locking does not require consideration of any demodulation, and therefore it
is not necessary for our purposes to distinguish between phase modulation and frequency
modulation. †

6.11 METHODS OF MODE LOCKING

Lasers can be mode locked in a variety of ways. We will focus our attention on three
common and illustrative techniques.

Acoustic Loss Modulation

This method is based on the diffraction of light by soundwaves, that is, on Brillouin scat-
tering. A sound wave is basically a wave of density variation—and therefore refractive
index variation—in a material medium. As discussed in the Appendix to this chapter, a
sound wave can therefore act as a “diffraction grating” for light. A sound wave of wave-
length lS diffracts light of wavelength l with diffraction angle u (Fig. 6.18) satisfying
[Eq. (6.A.3)]

sin u ¼ l

2nlS
, (6:11:1)

where n is the refractive index of the medium.
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A standing sound wave in a medium may be represented by a refractive index
variation of the form

Dn(x, t) ¼ a sin(vSt þ u) sin kSx: (6:11:2)

The periodic spatial modulation sin kSx of the refractive index gives rise to diffraction at
the angle u given by (6.11.1) with lS ¼ 2p/kS. The temporal oscillation at frequencyvS

means that the diffraction is most effective at times t such that sin(vSt þ u) ¼+1, for at
these times the “diffraction grating” represented by sin kSx has its largest amplitude
(+a). Thus, the diffracting strength of the standing acoustic wave varies harmonically
in time with frequency 2vS.

We can now understand how the diffraction of light by sound can be used to period-
ically modulate the cavity loss in a laser, and thereby to achieve AM mode locking. If a
block of material having a standing acoustic wave is inside the cavity, the diffractive loss
associated with it will oscillate with frequency 2vS. If 2vS¼ D ¼ pc/L, the cavity loss
is modulated at the mode frequency separation, as desired for mode locking. Since audi-
ble sound waves have frequencies roughly from 20 Hz to 2 � 104 Hz, while the mode
separations in a laser are typically much larger, it is clear that ultrasonic acoustic modu-
lation is required for mode locking. This may be done by driving a block of quartz with a
piezoelectric crystal.

Electro-optical Phase Modulation

This method is based on the electro-optical effect. Consider a linearly polarized
monochromatic wave propagating in the z direction in a medium with refractive index n:

E(z, t) ¼ x̂E0 cos(vt � kz) ¼ x̂E0 cosv t � n

c
z

� �
: (6:11:3)

Supposewe have a Pockels-type electro-optical medium in which the refractive index for
light polarized in the x direction is linearly proportional to an applied electric field Ea:

n ¼ n0 þ bEa: (6:11:4)

Therefore, the electric field (6.11.3) in such an electro-optical medium in which an
external field Ea is applied is

E(z, t) ¼ x̂E0 vt � n0v

c
z� bv

c
Eaz

� �
¼ x̂E0 cos v t � n0

c
z

� �
� f

h i
, (6:11:5)

where

f ¼ bv

c
Eaz: (6:11:6)

After a distance l of propagation in the medium, the field has the phase

f ¼ bv

c
V , (6:11:7)
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where V ¼ Eal is the potential difference due to the field Ea. Thus, if an electro-optical
cell is inserted in a laser cavity, the laser can be FMmode locked by varying the applied
voltage V sinusoidally at the mode separation frequency D.

In general, a linearly polarized electric field entering an electro-optical medium can
be decomposed into two orthogonally polarized components, each of which has a differ-
ent refractive index. The two orthogonal polarization directions are determined by the
orientation of the cell and the applied field Ea. In deriving (6.11.7), we have assumed
that the incident field is linearly polarized along one of these directions. In the general
case the field will have components in both directions, and in a Pockels cell the two
components will have different values of b. This results in a phase difference between
the two field components. If the cell produces a total phase change of 908, for example,
the incident linearly polarized field will be converted to a circularly polarized field, as in
the case illustrated in Fig. 6.3 for a Kerr cell. That is, a cell containing an electro-optical
material can act as a quarter-wave plate. The advantage of using electro-optical media
rather than naturally birefringent materials, of course, is the switching and control capa-
bilities one has through the adjustment of the bias voltage.

Saturable Absorbers

As in the case of Q switching, a “passive” AM mode locking may be achieved through
the use of a saturable absorber. Assume for simplicity that the absorption coefficient a
of the absorption cell saturates according to the formula

a ¼ a0
1þ I=Isat

(6:11:8)

for a homogeneously broadened line. It is also convenient (but not necessary) to assume
that the saturation intensity Isat of the absorption line is very large compared to the laser
intensity I. Then (6.11.8) is approximated by

a � a0 � a0I

Isat
: (6:11:9)

Suppose first that there are two oscillating cavity modes, so that the total cavity
electric field is

E(z, t) ¼ E1 sin k1z sin(v1t þ f1)þ E2 sin k2z sin(v2t þ f2), (6:11:10)

and the cavity intensity is

I(z, t) ¼ ce0E
2(z, t) ¼ ce0[E2

1 sin
2 k1z sin

2(v1t þ f1)þ E2
2 sin

2 k2z sin
2(v2t þ f2)

þ 2E1E2 sin k1z sin k2z sin(v1t þ f1) sin(v2t þ f2)]:

(6:11:11)

Now the last term can be rewritten using the identity

2 sin(v1t þ f1) sin(v2t þ f2) ¼ cos[(v1 � v2)t þ f1 � f2]

� cos[(v1 þ v2)t þ f1 þ f2]: (6:11:12)
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The frequencies v1, v2, and v1 þ v2 are very large compared to the mode separation
frequencyv1 2 v2 ¼ D. If we average the intensity (6.11.11) over a few optical periods,
therefore, we obtain

I(z, t)¼ce0
2

E2
1 sin

2 k1zþE2
2 sin

2 k2zþ2E1E2 sink1z sink2zcos(Dtþf1�f2)

 �

:

(6:11:13)

The intensity I has a time dependence that is simply a sinusoidal oscillation at the
mode beat frequency D. The absorption coefficient (6.11.9) averaged over a few optical
periods will therefore have this same time dependence. In other words, if a saturable
absorber described by (6.11.8) is placed inside the laser cavity, it results in a cavity
loss modulated at the mode separation frequency, and therefore acts to mode-lock the
laser. The argument may be extended to the case of N cavity modes, and we conclude
that mode-locked operation may be achieved by placing a cell containing a saturable
absorber inside the cavity.

This technique is commonly used in mode-locked solid-state and dye lasers, which,
as discussed in Section 6.8, are especially attractive in this regard.

† Although both Q switching and mode locking may be accomplished by inserting a cell
containing a saturable absorber into the laser cavity, there are somewhat different requirements
for the absorber in the two cases.

In the case of mode locking the absorber should respond very quickly to any changes in the
cavity intensity. This was implied in our discussion above, where it was assumed that the satur-
ation behavior of the absorber is fixed according to (6.11.8); there are no transient terms showing
how a changes from a0(1 þ I1/I

sat)21 to a0 (1 þ I2/I
sat)21 as I changes from I1 to I2. Rather, it

was assumed that a reacts instantaneously to variations in I, or at least with a response time shorter
than 2L/c. This requires the absorber to have a short relaxation time, whereas a longer one would
be tolerable for Q switching.

Similarly, it is desirable for Q switching that the saturation intensity of the absorber be
considerably smaller than that of the laser gain medium. This ensures a large, unsaturated gain

Time

In
te

ns
ity

2L—
c

Figure 6.15 Output intensity vs. time of a Q-switched, mode-locked laser. The dashed curve is the
envelope of the mode-locked pulse train. Each contributing mode viewed individually has the time
dependence of the Q-switched envelope, but because the modes are locked the total output is in the
form of a group of pulses separated in time by 2L/c.
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after the loss associated with the absorption cell is fully saturated, and allows the giant pulse to
build up. In the case of mode locking, however, a relatively large absorber saturation intensity
can still give rise to the required modulation. Our assumption I 
 Isat in (6.11.9) was made for
convenience, not necessity.

Thus, it is possible toQ-switch a laser with one absorption cell and mode-lock it with another.
Frequently, however, both effects are present with a saturable absorber, and a Q-switched laser
will show signs of mode locking. The output of such a Q-switched, mode-locked laser is indi-
cated in Fig. 6.15. †

In Section 11.13 we discuss Kerr lens mode locking, which is currently used to
generate femtosecond laser pulses.

6.12 AMPLIFICATION OF SHORT PULSES

In many applications it is necessary to amplify laser radiation by passing it through a
medium with a population inversion on a resonant transition. The amplifier is often
made of the same material, and pumped in the same way, as the gain cell of the laser.
The most important difference between the laser and the amplifier is simply that the
amplifier does not have a resonator with mirrors for feedback. Radiation incident on the
amplifier undergoes amplification by stimulated emission and emerges at the other end
with greater energy. A series of amplifiers may be employed in tandem, and mirrors may
be used to allow the beam to make several passes through a single amplifier. In this
section we will consider a pulse of radiation making a single pass through an amplifier.

We will assume that the duration of the laser pulse is short compared to any pumping
or relaxation times, so that the changes in level populations in the amplifier are due
mainly to stimulated emission and absorption. The rate equations for the level popu-
lation densities of the amplifying transition are then simply

@N2

@t
¼ � s

hn
(N2 � N1)I, (6:12:1a)

@N1

@t
¼ s

hn
(N2 � N1)I, (6:12:1b)

since pumping and relaxation processes do not affect N2 and N1 significantly during the
pulse; this condition for a “short” pulse typically requires pulse lengths shorter than
about a nanosecond. Equations (6.12.1) may be combined to form a single equation
for the population difference N ; N2 2 N1:

@N

@t
¼ � 2s

hn
NI: (6:12:2)

We also write the (plane-wave) equation for the variation in space and time of the
intensity:

@I

@z
þ 1

c

@I

@t
¼ sNI: (6:12:3)
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Let us integrate both sides of (6.12.3) over time:

ð1
�1

@I

@z
þ 1

c

@I

@t

� �
dt ¼

ð1
�1

sNI dt: (6:12:4)

Here t ¼21 and t ¼þ1 denote times long before and after the pulse has “turned on”
at z, so that I(z, t ¼21) ¼ I(z, t ¼þ1) ¼ 0. Thus,

ð1
�1

@I

@t
dt ¼ I(z, t ¼ þ1)� I(z, t ¼ �1) ¼ 0 (6:12:5)

and so (6.12.4) becomes

df

dz
¼ s

ð1
�1

N(z, t)I(z, t) dt, (6:12:6)

where

f(z) ¼
ð1
�1

I(z, t) dt (6:12:7)

is called the fluence and is a measure of the total energy content of the pulse. Note that
the fluence has units of energy per unit area and should not be confused with the photon
fluxF (number of photons per unit area and time) that was introduced in Chapter 4 and
used extensively in Chapter 5.

Equation (6.12.6) may be simplified by solving (6.12.2) for N(z, t):

N(z, t) ¼ N(z,�1) exp � 2s
hn

ðt
�1

I(z, t0) dt0
� 

, (6:12:8)

where N(z, 21) is the population inversion at z before the pulse has arrived. Thus,
we find

df

dz
¼ sN(z,�1)

ð1
�1

I(z, t) exp � 2s
hn

ðt
�1

I(z, t0) dt0
� 

dt

¼ �sN(z,�1)
ð1
�1

hn

2s
@

@t
exp � 2s

hn

ðt
�1

I(z, t0) dt0
� � �

dt

¼ � hn

2
N(z,�1) exp � 2s

hn

ð1
�1

I(z, t) dt

� 
�1

� �
: (6:12:9)

Then (6.12.7) allows us to write

df

dz
¼ hn

2
N(z,�1) 1� exp � 2sf(z)

hn

� �� 

¼ hn

2
N(z,�1) 1� exp �f(z)

fsat

� �� 
, (6:12:10)

256 MULTIMODE AND PULSED LASING



where we define the saturation fluence

fsat ;
hn

2s
: (6:12:11)

This is just the photon energy divided by twice the stimulated emission cross section.
The differential equation (6.12.10) may be written in terms of the ratio u (z) ¼

f(z)/fsat:

du

dz
¼ g0(1� e�u), (6:12:12)

where we have used the fact that the small-signal gain coefficient g0(z, 21) ¼
sN(z,21). In many cases of interest the spatial variations of g0 are small, and we
can take g0 to be a constant in the differential equation (6.12.12) for the fluence.
Then this equation has the solution

u(z) ¼ ln[1þ eg0z(eu(0) � 1)], (6:12:13)

or

fout ¼ fsat lnf1þ G0[ exp(fin=fsat)� 1]g, (6:12:14)

where fout ; f(L) is the output fluence of an amplifier of length L with small-signal
gain factor G0 ¼ eg0L, given the input fluence fin ¼ f(0) to the amplifier. We can
also write (6.12.14) in terms of the total gain G; fout/fin:

G ¼ fout

fin
¼ X�1 ln [1þ G0(e

X � 1)], X ;
fin

fsat
: (6:12:15)

It is important to note that this solution for the output fluence is independent of the shape
of the pulse as a function of time. As long as the pulse is confined, to a good approxi-
mation, to a finite duration, and this duration is short compared to any pumping and
relaxation times, Eq. (6.12.15) gives us the output fluence as a function of the small-
signal gain, length, and saturation fluence of the amplifier. In Fig. 6.16 we plot G as a
function of X, assuming a small-signal gain factor G0 ¼ 5000.

If X ¼ fin=fsat
1, then (6.12.15) becomes

G � X�1 ln(1þ G0X): (6:12:16)

If furthermore G0X
1, then ln(1 þ G0X ) � G0X and we have

G � G0 ¼ eg0L (6:12:17)

for the small-signal total gain. If eX ¼ exp(fin=fsat)� 1, on the other hand, then

G � X�1 ln (G0e
X) ¼ X�1 ln [ exp(g0Lþ X)] ¼ X�1 (g0Lþ X)

¼ 1þ g0L

X
, (6:12:18a)
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or

fout � fin þ (g0fsat)L: (6:12:18b)

This result identifies g0fsat as the largest energy per unit volume that can be extracted
from the amplifier when fin is large compared to fsat. This is analogous to the result
(5.3.9) for a cw laser, where g0I

sat is the largest possible rate of energy extraction per
unit volume. Using the fact that g0 ¼ sN and fsat ¼ hn/2s, we can write (6.12.18) in
the form

fout � fin þ
Nhn

2
L: (6:12:19)

This says that the largest extractable energy density corresponds to taking half a photon,
on average, from each excited atom of the amplifier. The reason for the factor 12 is simply
that in the limit of largefin/fsat under consideration, the amplifier is well saturated, with
the upper- and lower-level populations having equal probabilities.

This theory of short-pulse amplification is referred to as the Frantz–Nodvik model2

and is useful in the design and interpretation of short-pulse amplification experiments.
More generally for short pulses it is necessary to allow for coherent propagation effects
(Chapter 9) that are not included in the Franz–Nodvik model.

6.13 AMPLIFIED SPONTANEOUS EMISSION

The theory of pulse propagation presented in the preceding section is used frequently in
the analysis of laser amplifiers. However, for high-gain systems this theory ignores an
important phenomenon: The amplifier can amplify not only the input field from a
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Figure 6.16 Gain G(X ) [Eq. (6.12.15)] for G0 ¼ 5000.

2L. M. Frantz and J. S. Nodvik, Journal of Applied Physics 24, 2346 (1963).
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laser oscillator (or another amplifier), but also the spontaneous radiation emitted by the
excited molecules of the amplifier itself. It is easy to see that spontaneously emitted pho-
tons at one end of an amplifier, which happen to be directed along the amplifier axis, or
close to that direction, can stimulate the emission of more photons and lead to substantial
output radiation at the other end of the amplifier. This radiation, which appears regard-
less of whether there is any input radiation, is called amplified spontaneous emission.

It is clear that amplified spontaneous emission (ASE) will have at least some proper-
ties resembling laser radiation. In particular, it will be narrowband in frequency and it
will also be highly directional, simply because the amplifier is long and thin. For
these reasons high-gain systems emitting ASE are often referred to as “mirrorless
lasers.” Such mirrorless lasing, also called “superradiance,” is well known in the 3.39
mm He–Ne laser, and in high-gain excimer, dye, and semiconductor laser media.

For a simple estimate of ASE, let us consider the steady-state equation for the propa-
gation of intensity in an amplifying medium characterized by a spatially uniform gain
coefficient g:

dI

dz
¼ gI: (6:13:1)

If I(0) ¼ 0, this equation predicts that I(z) ¼ 0 for all z. In other words, this equation does
not account for ASE. To include the possibility of ASE we add to (6.13.1) the effect of
spontaneous emission:

dI

dz
¼ gI þ (A21N2hn)

V

4p

� �
: (6:13:2)

The added term is the contribution to dI/dz from spontaneous emission of photons of
energy hn by N2 excited molecules per unit volume with spontaneous emission rate
A21. Since spontaneous emission may be assumed here to be (statistically) isotropic,
we have included a factor V/4p, where V is an appropriate solid angle; this factor
accounts for the fact that only a fraction V/4p of spontaneously emitted photons are
emitted in directions for which amplification can occur. In the simplest approximation
V is taken to be A/L2, where A is the cross-sectional area of the amplifier and L is
its length.

In the small-signal regime in which g and N2 are independent of I, we have the
following solution of Eq. (6.13.2):

I(z) ¼ A21hnV

4p

� �
N2

g0

� �
(eg0z � 1) ¼ A21hnV

4p

� �
N2

g0

� �
[G(z)� 1], (6:13:3)

where g0 is the small-signal gain at frequency n, and we define the gain factor G(z) ¼
exp(g0z). For simplicity we will ignore the possibility of level degeneracies and write
g0 ¼ s (N2 2 N1), where s is the stimulated emission cross section at frequency n.
For a homogeneously broadened transition having a Lorentzian lineshape of full
width at half-maximum Dn we have

s ¼ l2A21

8p

� �
2

p Dn

� �
¼ l4A21

4p2c Dl
, (6:13:4)
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where Dl ¼ (c/n2) Dn is the width in the emission wavelength l ¼ c/n. In this case
(6.13.3) becomes

I(z) ¼ phn3V

c2

� �
Dn

N2

N2 � N1
[G(z)� 1]

¼ phc2V

l5

� �
Dl

N2

N2 � N1
[G(z)� 1] (6:13:5)

for the growth of ASE intensity in the amplifier.

† Amplified spontaneous emission is sometimes described from the perspective of an “effec-
tive noise input.” This approach is based on (6.13.1) rather than (6.13.2). It begins by noting that,
since Eq. (6.13.1) gives I(z) ¼ 0 for all z if I(0) ¼ 0, some effective input I(0) ¼ Ieff = 0 is
necessary in order to obtain a nonvanishing I(z). An expression for Ieff is obtained by recalling
that in a cavity of dimensions large compared to a wavelength there are (8pn2/c3) Dn modes
of the field per unit volume in the frequency interval [n, n þ Dn] (Section 3.12). And according
to the quantum theory of radiation, each of these modes has a zero-point energy 1

2 hn. There is
therefore a zero-point field energy per unit volume

r0(n) ¼
8pn2

c3

� �
1
2
hn Dn ¼ 4phn3

c3

� �
cDl

l2
(6:13:6)

in the wavelength interval [l, l þ Dl]. Clearly we should take Dl to be on the order of the
spectral width of the laser transition. For our purposes we replace Dl in (6.13.6) by p Dl,
where Dl is the transition linewidth (FWHM). Then the “quantum noise” intensity at the laser
transition wavelength l is given by

Ieff ¼ cr0(n)V
4p

¼ phc2V

l5

� �
Dl, (6:13:7)

where we have inserted the factor V/4p to account for the fact that only those modes within the
solid angle V appropriate to the amplifier can act as effective noise sources. Thus, from (6.13.1),

I(z) ¼ Ieffe
g0z ¼ phc2V

l5

� �
Dleg0z, (6:13:8)

which reproduces (6.13.5) whenG� 1 and there is complete inversion (N1 ¼ 0). The concept of
effective noise input can also be used for arbitrary population inversion and gain, but this requires
a more rigorous analysis employing the quantum theory of radiation and detection. †

In most cases of practical interest the solid angle V is very small. For a cylindrical
gain volume of cross-sectional diameter D the divergence angle due to diffraction is u
� l/D (Section 7.11), and so V � l2/S, S ¼ p D2/4 being the cross-sectional area.
Then

I(z) � phn3

c2
l2

S
Dn

N2

N2 � N1
[G(z)� 1] ¼ p

hn

S
Dn

N2

N2 � N1
[G(z)� 1]: (6:13:9)
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Assuming the ASE is unpolarized, we obtain the “noise” power (Pwr)N due to ASE at a
single polarization by multiplying (6.13.9) by 1

2 and by the area S:

( Pwr)N �
N2

N2 � N1
hn Dn(G� 1) ¼ nsphn Dn(G� 1), (6:13:10)

where

nsp ;
N2

N2 � N1
(6:13:11)

is called the spontaneous emission factor; (Pwr)N is usually defined as

(Pwr)N ¼ nsphnB(G� 1), (6:13:12)

where B is the amplifier bandwidth, or more generally the bandwidth of a detector that
responds to a limited range of frequencies within the amplifier bandwidth Dn.

† Since the so-called noise per mode formula (6.13.12) is a fundamental equation that appears
in various contexts, it is appropriate to present a more rigorous derivation. Consider a polarized
field propagating in the z direction. Such a field of frequency n defines a single mode, and the rate
of spontaneous emission into such a mode is given by Eq. (3.7.8):

Rspon(n) ¼ A21c2

8pn2
c

V
S(n), (6:13:13)

where S(n) is the gain lineshape function, A21 is the rate of spontaneous emission into allmodes,
and V is the mode volume. Now consider modes with a given polarization and propagation direc-
tion and having a continuous distribution of frequencies within a bandwidth B. If B is small rela-
tive to n and the gain bandwidth defined by S(n), the change in the spontaneous emission power
over a small distance Dz due to atoms radiating spontaneously into the frequency bandwidth B is
approximately

DPwr ¼ hnN2VRsponN (B) Dz: (6:13:14)

N (B) is the number of longitudinal modes per unit length within the frequency range B. As
discussed in Section 3.7, N (B) ¼ Dk=2p ¼ B=c. Then, for Dz ! 0,

dPwr
dz
¼ hnN2VRspon

B

c
¼ hnN2

A21l
2

8p
S(n)B: (6:13:15)

The spontaneously emitted radiation is amplified as it propagates in the medium with (small-
signal) gain coefficient g0, and therefore the ASE noise power propagates according to the
equation

d(Pwr)N
dz

¼ g0(Pwr)N þ hnN2
A21l

2

8p
S(n)B; (6:13:16)

the solution of this equation with (Pwr)N (0) ¼ 0 is

(Pwr)N(z) ¼ hn
N2

N2 � N1
B[eg0z � 1] ¼ nsphnB[G(z)� 1], (6:13:17)

where we have used the formula g0(n) ¼ (l2A21/8p)(N2 2 N1)S(n). †
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The expression for (Pwr)N also applies to an absorbing medium when we replace
G ¼ exp(g0z) by exp (2az), where a is the absorption coefficient:

(Pwr)N ¼ nsphnB(e
�az � 1) ¼ N2

N1 � N2
hnB(1� e�az): (6:13:18)

In thermal equilibrium at temperature T, N2/N1 ¼ exp(2hn/kBT) and

(Pwr)N ¼
hn

ehn=kBT � 1
B(1� e�az): (6:13:19)

Thus, an absorber also generates spontaneous emission noise. In the case of large loss
(e2az ! 0) it acts as a blackbody, and (Pwr)N is just the power within a bandwidth B
of traveling-wave thermal radiation. When e2az! 0 and kBT � hn Eq. (6.13.19) gives

(Pwr)N ¼ kBTB, (6:13:20)

a formula well known in radio engineering.
Amplified spontaneous emission radiation can have spatial coherence comparable

to true laser radiation, but it generally lacks the same degree of temporal coherence.
(See Chapter 13 for a discussion of spatial and temporal coherence.) The latter property
is understandable from the fact that ASE is basically amplified “noise.” Equation
(6.13.17) implies that the spectrum of ASE is narrower than the gain bandwidth:
exp[g(n)z] 2 1 has a narrower distribution in frequency than g(n). The bandwidth of
ASE is typically a few times smaller than the gain bandwidth.

Amplified spontaneous emission can limit the amplification of an input signal if it
becomes strong enough to saturate the gain, or if the input signal power is small com-
pared to the “effective noise input” for ASE. While our derivation of (6.13.12) does
not account for saturation, it allows us to obtain a simple estimate of the importance
of ASE “noise per mode” in high-gain amplifiers (Section 11.14).

† Because it accounts in an approximate way for ASE into a solid angleV, Eq. (6.13.3) can be
used to estimate ASE intensity when there is no restriction on the number of transverse field
modes. Comparison of (6.13.16) and (6.13.2) shows that the latter does not account for the line-
shape function S(n) that determines the contribution of spontaneous emission to the intensity at
frequency n. The approximation (6.13.3) can therefore be expected to overestimate the total ASE
intensity. To obtain a better approximation we replace the second term on the right-hand side of
(6.13.2) by A21N2hn(V/4p)S(n) dn, as in (6.13.16), and then integrate over z and n to obtain the
total noise intensity:

I(z) ¼ A21hn0
V

4p
N2

ð1
�1

S(n)
g0(n)

eg0(n)z � 1

 �

dn: (6:13:21)

We have replaced hn by hn0 and extended the lower limit of integration from 0 to 21; both
approximations introduce negligible error because the integrand is sharply peaked at n ¼ n0,
which is much greater than the width of the gain lineshape function S(n). For definiteness we
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will assume a Lorentzian form for the latter:

g0(n) ¼ l2A21

8p
(N2 � N1)

dn0=p

(n� n0)2 þ dn20
¼ l2A21

8p
(N2 � N1)

1
pdn0

dn20
(n� n0)2 þ dn20

¼ s (n0)(N2 � N1)
dn20

(n� n0)2 þ dn20
, (6:13:22)

and therefore S(n)/g0(n) ¼ [s (n0)(N2 2 N1)pdn0]
21. Next we introduce the new variable x ¼

(n 2 n0)/dn0 in (6.13.21):

I(z) ¼ A21hn0
V

4p
nsp

1=p
s (n0)

ð1
�1

e g0(n0)z=(x
2þ1) � 1

h i
dx: (6:13:23)

The integral can be approximated using the “method of steepest descents.” We write

eg0(n0)z=(x
2þ1) � 1 ¼ eF(x), F(x) ¼ ln eg0(n0)z=(x

2þ1) � 1
h i

, (6:13:24)

and expand F(x) in a Taylor series about the point x ¼ 0 where it has its maximum value:
F(x) ¼ F(0)þ 1

2F
00(0)x2 þ � � � ¼ F(0)� Kx2 þ � � �, where F 0(0) ¼ 0 and K . 0 since F(0) is a

maximum. Keeping only the first two nonvanishing terms in the Taylor series, we obtainð1
�1

eg0(n0)z=(x
2þ1) � 1

h i
dx ffi eF(0)

ð1
�1

e�Kx
2
dx ¼ eF(0)

ffiffiffiffi
p

K

r
: (6:13:25)

From the definition of F(x), it follows that F(0) ¼ exp[g0(n0)z] 2 1 ¼ G 2 1, K ¼ G ln G/
(G 2 1), and therefore ð1

�1
eg0(n0)z=(x

2þ1) � 1
h i

dx ffi ffiffiffiffi
p
p (G� 1)3=2

(G lnG)1=2
(6:13:26)

and

I(z) ffi A21hn0
V

4p
nsp

1
s (n0)

(G� 1)3=2

(pG lnG)1=2
(6:13:27)

Finally, to put this result into another form that appears often in the research literature, we use the
formula Isatn0

¼ hn0G21=s (n0) [Eq. (4.12.11)] for the line-center saturation intensity of a laser
described by the four-level model to write (6.13.27) as

I(z) ffi A21

G21

V

4p
nspI

sat
n0

(G� 1)3=2

(pG lnG)1=2
: (6:13:28)

This can be compared to the expression (6.13.3), which can be written similarly as

I(z) ffi A21

G21

V

4p
nspI

sat
n0
(G� 1): (6:13:29)

As expected, this approximation predicts a somewhat larger ASE intensity than (6.13.28) in cases
of practical interest. It should also be noted that (6.13.28) depends on the assumption of a
Lorentzian lineshape; different lineshapes will lead to modifications of (6.13.28) by numerical
factors �2.3 †
3O. Svelto, S. Taccheo, and C. Svelto, Optics Communications 149, 277 (1998).

6.13 AMPLIFIED SPONTANEOUS EMISSION 263



6.14 ULTRASHORT LIGHT PULSES

With mode-locked lasers it is possible to produce ultrashort, extremely intense pulses of
radiation. Mode-locked lasers using saturable absorbers are used to produce, rather rou-
tinely, picosecond pulses with peak powers in some cases exceeding 1011W (100GW).
In Chapter 11 we will discuss techniques for producing even shorter and more powerful
light pulses; here we make some qualitative remarks about ultrashort pulses and ways to
generate them.

There are many scientific and technological applications of these ultrashort light
pulses. For instance, they can be used to study extremely fast (femtosecond time
scale) photoprocesses in molecules and semiconductors (Section 14.7). Especially
promising applications may be possible in biological systems, where it has already
been determined that certain fundamental chemical reactions occur on picosecond
time scales. Intense laser pulses have also been of interest in connection with laser iso-
tope separation and controlled thermonuclear fusion, and it seems safe to say that newer
applications will continue to be developed. Not surprisingly, therefore, an entire field of
research has grown up around the generation of ultrashort light pulses.

One way to generate ultrashort pulses is with a colliding-pulse laser. This is a mode-
locked, three-mirror ring laser with two countercirculating pulse trains (Fig. 6.17).
Pulses in each direction pass through a very thin (about 10 mm) jet of a saturable absorb-
ing dye. The absorption coefficient of the absorber is smallest when the intensity is
largest. Therefore, the cavity loss is least when the countercirculating pulses collide
and overlap within the thin dye jet. The thinness of the absorber forces the pulses to over-
lap within a very short distance and thus over a very short time interval (t � 10 mm/
c � 3 � 10214 s).

Another technique involves chirping, by which an ultrashort pulse from a laser can be
further compressed. A chirped pulse is one in which the carrier frequency v has a small
time dependence, typically a linear time dependence of the form v ¼ v0 þ bt. A pulse
can be deliberately chirped by passing it through a medium with a nonlinear refractive
index, that is, a medium in which the refractive index depends upon the electric field.
The chirping results in a spectral broadening of the pulse, that is, it extends the range
of frequency components contained in the pulse. A chirped pulse can be compressed
by passing it through a dispersive (i.e., frequency-dependent) delay line. If the higher
frequency components of the pulse travel more slowly than the lower frequency com-
ponents, the delay line is designed to make them catch up with the lower frequencies

Saturable
absorber

Gain
cell

(a) (b)

Figure 6.17 (a) A colliding-pulse ring laser with countercirculating pulses. (b) The lowest-loss con-
dition is for the colliding pulses to synchronize and overlap inside the thin saturable absorber.
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on the leading temporal edge of the pulse. By broadening the spectral width of the pulse
by chirping, therefore, it is possible to narrow it in time. Optical pulses shorter than 10 fs
(1 femtosecond ¼ 10215 s) have been achieved by compressing in this way ultrashort
pulses from a colliding-pulse dye laser. The most common way of generating such
short pulses uses Kerr lens mode locking of Ti : sapphire lasers (Section 11.13).

APPENDIX: DIFFRACTION OF LIGHT BY SOUND

The diffraction of light by sound waves can be understood by analogy with the diffrac-
tion of X rays by crystals. The atoms of a crystal are spaced in a regular pattern, and con-
sequently they scatter radiation cooperatively, with well-defined phase relations between
the fields scattered by different atoms. This results in scattering only in certain well-
defined directions, and the process is usually called “diffraction” instead of “scattering.”
Figure 6.18 shows a wave incident upon a stack of crystal planes separated by a distance
d. The allowed diffraction angles are determined by the condition of constructive inter-
ference of the fields “reflected” from different planes. As shown in the figure, these
diffraction angles satisfy the Bragg diffraction formula

2d sin u ¼ ml, m ¼ 1, 2, 3, . . . , (6:A:1)

where l is the wavelength of radiation and d is the separation distance between adjacent
crystal planes.

† Since d is on the order of 1 Å in actual crystals, only wavelengths in the X-ray region can
satisfy (6.A.1) and the requirement jsin uj 	 1. The measurement of X-ray diffraction angles
thus provides information about crystal structure. Indeed the use of crystals as “diffraction
gratings” for X rays has been one of the most important techniques of modern science for probing
the structure of matter (e.g., in the discovery of the double-helix structure of DNA). This tech-
nique was originally suggested by Max von Laue. The idea arose in connection with the question
whether X rayswere particles or waves. L. Brillouin predicted the diffraction of radiation by sound
waves in 1922, and it was first observed 10 years later by P. W. Debye and F. W. Sears. †

I 

I ′
O ′

A 

B 

C 
d 

O 

q 

q q 

q 

AB = d sin q
BC = d sin q

Figure 6.18 Diffraction of a plane wave by a stack of crystal planes. Constructive interference of
the two waves IO and I0O0 occurs when their path difference AB þ BC is equal to an integral multiple
m of the wavelength l. This gives the Bragg diffraction formula 2d sin u ¼ ml for the allowed diffrac-
tion angles u. A more complete analysis shows that these angles give the only directions in which scat-
tering occurs.
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The refractive-index variation associated with a sound wave of wavelength lS has a
spatial dependence of the form

Dn(x) ¼ a sin kSx, (6:A:2)

where kS ¼ 2p/lS and a depends on material constants of the medium and the intensity
of the sound wave. Equation (6.A.2) arises from the fact that a sound wave is basically a
wave of density variation. Figure 6.19 shows an intuitive way of understanding the dif-
fraction of light by a sound wave. We regard the planes of constant x where (6.A.2) is a
maximum as “crystal” planes that, because of their regular spacing lS, will diffract light
only in certain well-defined directions. Indeed it turns out that the diffraction angles are
given by the Bragg formula (6.A.1) with d ¼ lS and m ¼ 1:

2lS sin u ¼ l

n
: (6:A:3)

We have included the effect of the refractive index n of the medium.
The important difference between (6.A.1) and (6.A.3) is that there are no higher-

order diffraction angles corresponding to m. 1 in (6.A.3). This difference arises
from the fact that the “diffraction grating” associated with the sound wave indicated
in Fig. 6.19 is really a spatially continuous one, not a discrete set of crystal planes
with nothing in between.

Equation (6.A.3) gives only the diffraction angle. It does not tell us the strength with
which the sound wave diffracts light, that is, the fraction of light intensity diffracted after
a given distance of propagation. This is determined by a and the wavelength of the light.

PROBLEMS

6.1. (a) Write the steady-state solutions of Eq. (6.2.5) in such a way as to show the
saturation of �N2 with increasing �In.

(b) Verify Eq. (6.3.16) and (6.3.17) for the period and lifetime of relaxation
oscillations.

Incident light 

Sound wave 

Diffracted light 

“Crystal” planes 

lS

Figure 6.19 Intuitive picture of diffraction of light by sound as diffraction from a fictitious set of
“crystal” planes defined by the intensity maxima of the sound waves.
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6.2. (a) Show that the quantity x defined in Eq. (6.4.1) is the cavity photon number
density divided by the threshold population inversion density.

(b) Show that Eqs. (6.2.5) may be written as (6.4.3) when the change of variables
(6.4.1)–(6.4.2) is made and pumping and relaxation of N2 is ignored.

6.3. (a) Why is it that so much more power can be obtained from a Q-switched laser
than in ordinary continuous-wave operation?

(b) Suppose a Q-switched laser using a rotating mirror or a saturable absorber is
pumped continuously. How do you expect the laser to behave?

6.4. Set up the equations for x and y [Eqs. (6.4.1)] in the case where Q switching is
done with a saturable absorber with absorption coefficient a ¼ a0(1þ I=Isatn )�1.
Solve these equations numerically using, for example, the Runge–Kutta algor-
ithm of Section 16.A. You will have to assume values of the small-signal absorp-
tion coefficient a0 and the saturation intensity Isatn of the absorber. Determine how
x and y depend on the choice of a0 and Isatn .

6.5. (a) Suppose we have N oscillators whose frequencies are given by (6.7.2) and
whose phases fn are fixed but not “locked” according to (6.7.10). Discuss
the properties of the sum X(t) of the oscillator displacements in this case.
Can the maximum value of X(t) be as large as in the phase-locked case?

(b) Suppose that the phases fn are randomly chosen from an ensemble and are
completely uncorrelated, so that kei(fm�fn)l ¼ dmn, where k . . . l indicates an
ensemble average. Compute kX(t)l and kX2(t)l.

6.6. (a) Show that each pulse of a mode-locked pulse train has an intensity N times
larger than the sum of the intensities of the individual modes constituting it.

(b) Show that the average intensity of a mode-locked pulse train is equal to the
sum of the intensities of the individual modes constituting it.

6.7. Make a plot of the time-dependent factor in the curly brackets in Eq. (6.9.5),
choosing fm ¼ 0, V ¼ vm/10, and (a) 1 ¼ 1

2, (b) 1 ¼ 1, and (c) 1 ¼ 5.

6.8. Consider the 632.8-nm He–Ne laser.

(a) Estimate the shortest pulse that can be obtained by mode-locking such a laser.
(b) What is the duration of each pulse of the mode-locked train if the gain tube has

length l ¼ 10 cm and the mirror separation L ¼ 40 cm?
(c) What is the separation between the mode-locked pulses in part (b)?
(d) Why do liquid dye and solid-state lasers produce much shorter mode-locked

pulses than typical gas lasers?

6.9. (a) Estimate the average power, in watts, expended by a normal human adult.
Assume that a “normal human adult” consumes 2500 dietitian’s calories
(2500 � 4185 J) per day, and that his output energy just balances his input
energy.

(b) Estimate the intensity at a distance of 1 m from a 60-W light bulb.
(c) Estimate the average electrical power used to operate a typical house in your

area.

PROBLEMS 267



6.10. It is possible to effectively “switch off” the output mirror of a laser. What is the
advantage of cavity dumping in this way? Can you think of a way to do this?

6.11. Our discussion of amplified spontaneous emission in Section 6.13 assumes that
the amplifier is continuously pumped. Discuss the modifications necessary to
treat the case in which all the atoms of the amplifier are excited at t ¼ 0 and
emit spontaneously thereafter without any pumping.
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7 LASER RESONATORS AND
GAUSSIAN BEAMS

7.1 INTRODUCTION

Until now we have supposed a laser resonator to consist of two highly reflecting, flat,
parallel mirrors separated by some distance L. The only important property of such a
resonator for our purposes thus far is that it has “longitudinal modes” separated in
frequency by c/2L. We have not concerned ourselves with how the field inside the reso-
nator varies in directions transverse to the line joining the centers of the mirrors. In fact,
we have assumed the field to be uniform in any plane perpendicular to this so-called
optical axis. In this chapter we will consider laser resonators more realistically. We
will consider some of the important characteristics of actual laser resonators, beginning
with a rather simple approach based on geometrical optics, and gradually working our
way up to a description based on Maxwell’s equations.

Most of our treatment of laser resonators will assume that the laser medium is passive.
That is, the electromagnetic modes of the laser resonator will be assumed to be the same
as the modes of an empty resonator having no gain medium. This is a good approxi-
mation if the gain coefficient and refractive index of the medium are fairly uniform
throughout the medium. This is obviously a useful approximation because it allows
us to consider laser resonators independently of the laser medium. Fortunately, it is
often an accurate approximation. It is not, however, applicable to fiber lasers, where
the gain and index are tightly confined near the fiber axis. However, even in the case
of fibers the fields can often be approximated by Gaussian beams, which we treat in
detail in this chapter. Modes of optical fibers are discussed in the following chapter.

Figure 7.1a shows a light ray normal to the mirrors of a resonator with flat, parallel
mirrors. The ray keeps retracing its path on successive reflections from the mirrors. If
the mirrors are not perfectly parallel, however, the ray will eventually escape from the
resonator, as indicated in Fig. 7.1b. The misaligned resonator of Fig. 7.1b requires
greater gain for laser oscillation than the resonator of Fig. 7.1a. We might find, for
instance, that a laser with flat mirrors turns off (i.e., laser action ceases) at the slightest
misalignment of the mirrors. Obviously, this is undesirable if we wish to construct a
practical and durable laser. Figure 7.2 shows a much more commonly used type of
laser resonator, consisting of mirrors with spherical surfaces. This is the type of resonator
used in most gas lasers, for instance. In Section 7.3 we will see why.

Laser Physics. By Peter W. Milonni and Joseph H. Eberly
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7.2 THE RAY MATRIX

In geometrical optics light propagation is described in terms of rays. Wemay define a ray
at each point on a wave as an arrow drawn normal to the wavefront (Fig. 7.3). We will
assume that the direction of a ray is the direction of energy flow. There is no physical sig-
nificance to the “length” of a ray; a ray merely represents a direction of propagation at a
given point. When we adopt this ray picture, we are ignoring the polarization of the light
waves. Our ray picture is a crude but useful representation of the actual physical situation.

In this section we will develop a convenient formalism for ray propagation. This
formalism will turn out to be useful for the description of Gaussian laser beams,
which are discussed in Section 7.5.

In situations of practical interest we are dealing with light waves travelingmore or less
in a single direction, which wewill call the z direction. The rays we envision point almost
parallel to the z axis. At any point on the wave we imagine a ray having a lateral displa-
cement r(z), measured from the z axis, and a slope (Fig. 7.4)

r0(z) ¼ dr

dz
: (7:2:1)

(a) (b)

Figure 7.1 A laser resonator with flat, parallel mirrors. A light ray parallel to the optical axis remains
inside the resonator if the mirrors are perfectly parallel (a). Otherwise it eventually escapes (b).

R1

L

R2

Figure 7.2 A laser resonator with mirrors that are spherical surfaces with radii of curvature R1 and R2.

Figure 7.3 Rays drawn on a wave represent the direction of propagation.
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Because of our assumption of nearly unidirectional propagation along z, the slope r 0(z)
of a ray will be very small, so that (Fig. 7.4)

r0(z) ¼ tan u � sin u � u: (7:2:2)

Such rays are called paraxial rays. We will assume, as is implicit in our definition of the
ray displacement r and slope r0, that we have cylindrical symmetry about the z axis. The
slope of a ray is taken to be positive or negative depending on whether the displacement r
is increasing or decreasing in the direction of propagation.

We would like to relate the displacement and slope of a ray at a point z to the
displacement and slope at a point z0. Consider, for example, the simple case of
vacuum propagation from z1 to z2. In vacuum there is nothing to change the direction
of a ray, so we have (Fig. 7.5)

r(z2) ¼ r(z1)þ r0(z1)(z2 � z1), (7:2:3)

and

r0(z2) ¼ r0(z1): (7:2:4)

In matrix notation we may write Eqs. (7.2.3) and (7.2.4) as

r(z2)
r0(z2)

� 
¼ 1 z2 � z1

0 1

� 
r(z1)
r0(z1)

� 
: (7:2:5)

A ray is completely characterized by the 2 � 1 matrix, or column vector,

r
r0

� 
, (7:2:6)

r (z) 

z

dr
dz

≅ = r 'θ 
θ 

Figure 7.4 A ray is characterized by its displacement r and slope r0 measured from some z axis.

r (z1) r (z2) 

r ′(z2) = r ′(z1)

r (z2) = r (z1) + (z2 – z1)r ′(z1)

z1 z2 z 

Figure 7.5 The transformation of a ray as a result of free propagation over a distance z2 2 z1.
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and Eq. (7.2.5) relates the final ray

rf
r0f

� 
¼ r(z2)

r0(z2)

� 
, (7:2:7)

to the initial ray

ri
r0i

� 
¼ r(z1)

r0(z1)

� 
: (7:2:8)

Thus, according to Eq. (7.2.5), the vacuum propagation of a ray through a distance
d ¼ z2 2 z1 is described by the matrix equation

rf
r0f

� 
¼ 1 d

0 1

� 
ri
r0i

� 
: (7:2:9)

Given the initial ray with displacement ri and slope r0i, this equation tells us how that
ray is modified by propagation through a distance d.

Consider next the more interesting example of the transformation of a (paraxial) ray
by a thin lens of focal length f (Fig. 7.6). Immediately to the right of the lens the ray’s
lateral displacement rf is the same as the initial displacement ri immediately to the left:

rf ¼ ri: (7:2:10)

The slope of the ray, however, is changed by the lens. From the thin lens equation relat-
ing the object and image distances with the focal length of the lens, we obtain (Fig. 7.6)

r0f ¼ �
ri
di
¼ ri

do
� ri

f
¼ r0i �

ri
f
: (7:2:11)

In matrix notation Eqs. (7.2.10) and (7.2.11) take the form

rf
r0f

� 
¼ 1 0
�1=f 1

� 
ri
r0i

� 
: (7:2:12)

One more example will be of interest to us, namely the case of a spherical mirror with
radius of curvature R. The displacement of the ray is the same immediately before and
after reflection from the mirror, that is, rf ¼ ri. The slope of the ray after reflection,

1 + = 
do di

1 1 
f

r ′i  > 0 r ′f < 0

do

ri 

di 

Figure 7.6 Ray transformation by a thin lens.
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however, is (Fig. 7.7)

r0f ¼ r0i �
2ri
R

: (7:2:13)

In matrix notation, therefore, the ray transformation by the spherical mirror is given by
the equation

rf
r0f

� 
¼ 1 0
�2=R 1

� 
ri
r0i

� 
: (7:2:14)

There is a sign convention for r0, namely r0 . 0 if r is increasing with propagation,
r 0 , 0 otherwise. With this in mind, our sign convention for the radius of curvature R
of a spherical mirror is easily checked: R is positive for a concave mirror (Fig. 7.7) and
negative for a convex mirror. Similarly, the focal length f of a lens is positive for a
converging lens (Fig. 7.6) and negative for a diverging lens. These statements may be
verified by making sketches like those in Figs. 7.6 and 7.7. Thus, Eqs. (7.2.12)
and (7.2.14) apply also to diverging lenses and convex mirrors, respectively, provided
f and R are taken to be negative in those cases.

We have considered thus far the transformation of a ray by three different “optical
elements”—empty space of length d, a thin lens of focal length f, and a spherical
mirror of radius of curvature R. In general, an optical element will transform a ray
according to the matrix equation

rf
r0f

� 
¼ A B

C D

� 
ri
r0i

� 
: (7:2:15)

The 2 � 2 matrix on the right-hand side of this equation is called the ray matrix, or
ABCD matrix, for the optical element. Equations (7.2.9), (7.2.12), and (7.2.14) give
the ray matrices for a straight section of length d, a thin lens of focal length f, and a
spherical mirror of radius of curvature R, respectively.

rf  = ri 
r i′ = a, r f ′ = –g

a b 

q
q 

g 
R 

ri 

(Normal) 

b = a + q, g  = a + 2q

∴ a + g  = 2b ≅ 2ri /R 

r f ′ = –g  = a – 2b = r i′ –
2ri 

R 

Figure 7.7 Paraxial ray transformation by a spherical mirror surface with radius of curvature R. The
relation between r0f and r0i is obtained by applying the trigonometric theorem that an exterior angle of a
triangle equals the sum of the two opposite interior angles, and the approximation b � 2ri/R that holds
for paraxial rays.
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Let us consider the effect on a ray of an open path section of length d followed by a
thin lens of focal length f. If a ray has displacement ri and slope r0i initially, then after the
open section of propagation it has displacement r and slope r0 given by Eq. (7.2.9):

r
r0

� 
¼ 1 d

0 1

� 
ri
r0i

� 
: (7:2:16)

This gives the “initial” ray displacement and slope immediately before passage through
the lens. The “final” ray displacement and slope are therefore given by Eq. (7.2.12):

rf
r0f

" #
¼ 1 0

�1=f 1

� 
r

r0

� 
¼ 1 0

�1=f 1

� 
1 d

0 1

� 
ri
r0i

� 

¼ 1 d

�1=f 1� d=f

� 
ri
r0i

� 
: (7:2:17)

The matrix

1 d
�1=f 1� d=f

� 
¼ 1 0
�1=f 1

� 
1 d
0 1

� 
(7:2:18)

is therefore the ray matrix for the combined optical system consisting of an open section
of length d followed by a thin lens of focal length f. It is the product of the ray matrices
for an open section and a lens. It follows that if we have any number of optical elements
in some sequence, then the ray matrix for the system comprising all these elements is the
matrix product of the ray matrices of the individual elements. Since the matrix product
M1M2 is in general not the same as M2M1, the order of the matrices in the product is
important. Thus, the system ray matrix is the ray matrix of the first optical element
encountered, multiplied on the left by the ray matrix of the second optical element,
multiplied on the left by the ray matrix of the third element, and so forth. The reader
may easily show, for instance, that the ray matrix for the system consisting of an open
section followed by a thin lens is different from the ray matrix for a thin lens followed
by an open section (Problem 7.1). This means, of course, that the effects of the two
systems on a ray are different.

7.3 RESONATOR STABILITY

One of the simplest but most important questions concerning a laser resonator is whether
it is stable. To see what this means, consider an arbitrary (paraxial) ray bouncing back
and forth between the mirrors of a resonator. If the ray remains within the resonator, the
resonator is said to be stable. If, however, the ray escapes from the resonator after a
number of reflections, the resonator is unstable. Figure 7.1b, for example, shows that
a misaligned flat-mirror resonator is unstable. In general, a stability criterion for a
laser resonator can be expressed in terms of the radii of curvature of the mirrors and
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the distance separating the mirrors. We will now derive this stability criterion with the
aid of the ABCD matrix.

Consider the resonator sketched in Fig. 7.2, consisting of mirrors of radii of curvature
R1 and R2, separated by a distance L. As drawn, the mirrors are concave. Our analysis,
however, will apply also to the case of convexmirrors if we recall that a convexmirror by
convention has a negative radius of curvature. We note also that a flat mirror may be
regarded as a spherical mirror surface with an infinite radius of curvature.

Imagine a ray starting at the left mirror of Fig. 7.2. After a round trip through the reso-
nator, this ray will have been transformed by a straight section of length L, a spherical
mirror of radius of curvature R2, another straight section of length L, and finally a spheri-
cal mirror of radius of curvature R1. The raymatrix describing the ray transformation by a
round trip through the resonator is

A B

C D

� 
¼

1 0

� 2
R1

1

2
4

3
5 1 L

0 1

�  1 0

� 2
R2

1

2
4

3
5 1 L

0 1

� 

¼
1� 2L

R2
2L� 2L2

R2

4L
R1R2

� 2
R1
� 2
R2

1� 2L
R2
� 4L

R1
þ 4L2

R1R2

2
664

3
775: (7:3:1)

After N round trips through the resonator, therefore, the initial ray with displacement ri
and slope r0i is transformed to the ray with displacement rN and slope r0N given by

rN
r0N

� 
¼ A B

C D

� N
ri
r0i

� 
, (7:3:2)

where the ray (ABCD) matrix is defined by (7.3.1). This ray matrix has determinant1

AD� BC ¼ 1: (7:3:3)

Using this fact, and defining an angle u by

cos u ¼ 1
2(Aþ D), (7:3:4)

it may be shown (see below) that

A B
C D

� N
¼ 1

sin u
A sinNu� sin (N � 1)u B sinNu

C sinNu D sinNu� sin (N � 1)u

� 
: (7:3:5)

1The simplest way to check this is to note that the ray matrix (7.3.1) is a product of four matrices, each having
determinant equal to one. Since the determinant of the product of matrices is equal to the product of the deter-
minants, (7.3.3) follows.
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† The result (7.3.5) for a 2 � 2 matrix satisfying (7.3.3) is sometimes called “Sylvester’s
theorem.” It may be proved by induction: It obviously holds for the case N ¼ 1, and so we try
to show that if it holds for a single given (but arbitrary) N, it must hold also for N þ 1. If we
can show this, Sylvester’s theorem is proved.

Thus, let us assume that (7.3.5) holds, so that

A B

C D

� Nþ1
¼ A B

C D

� 
A B

C D

� N

¼ 1
sinu

A B

C D

� 
A sinNu�sin(N�1)u B sinNu

C sinNu D sinNu�sin(N�1)u

� 

¼ 1
sinu

(A2þBC)sinNu�A sin(N�1)u B(AþD)sinNu�B sin(N�1)u

C(AþD)sinNu�C sin(N�1)u (BCþD2)sinNu�D sin(N�1)u

� 
:

(7:3:6)

Using (7.3.3) and (7.3.4), we see that the (1, 1) element of this matrix is

(A2 þ BC) sin Nu � A sin (N � 1)u ¼ (A2 þ AD � 1) sin Nu � A sin (N � 1)u

¼ A(Aþ D) sin Nu � sin Nu � A sin (N � 1)u

¼ 2A sin Nu cos u � sin Nu � A sin (N � 1)u

¼ 2A 1
2 sin (N þ 1)u þ 1

2 sin (N � 1)u

 �
� sin Nu � A sin (N � 1)u

¼ A sin (N þ 1)u � sin Nu: (7:3:7)

The remaining three matrix elements of (7.3.6) may be evaluated similarly. We obtain

A B
C D

� Nþ1
¼ 1

sin u
A sin (N þ 1)u � sin Nu B sin (N þ 1)u

C sin (N þ 1)u D sin (N þ 1)u � sin Nu

� 
: (7:3:8)

But this is just Eq. (7.3.5) with N replaced by N þ 1. Thus, (7.3.5) is true for N ¼ 1, and we have
just shown that if it is true for any N, then it must be true also for N þ 1. This proves Sylvester’s
theorem. †

It now follows from Eq. (7.3.2) that

rN
r0N

� 
¼ 1

sin u
A sin Nu� sin (N � 1)u B sin Nu

C sin Nu D sin Nu� sin (N � 1)u

� 
ri
r0i

� 
, (7:3:9)

where, from (7.3.4) and (7.3.1),

cos u ¼ 1
2

1� 2L
R2
þ 1� 2L

R2
� 4L

R1
þ 4L2

R1R2

� �
¼ 1� 2L

R1
� 2L

R2
þ 2L2

R1R2
: (7:3:10)

Equation (7.3.9) gives the ray displacement and slope after N round trips through
the resonator.We observe that rN (and r0N) stays finite as long as u is real. If u is a complex
number, however, then sin Nu ¼ (eiNu 2 e2iNu)/2i can be very large for large N, and in
fact diverges as N! 1. In other words, if u is not purely real, rN itself will diverge, that
is, the ray will escape from the confines of the resonator. Thus, the condition for
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resonator stability is for u to be real, which means that jcos uj 	 1, or, from (7.3.10),

�1 	 1� 2L
R1
� 2L

R2
þ 2L2

R1R2
	 1,

0 	 1� L

R1
� L

R2
þ L2

R1R2
	 1:

(7:3:11)

This stability condition is usually written in the laser literature as

0 	 g1g2 	 1, (7:3:12)

where

g1 ¼ 1� L

R1
, (7:3:13a)

Plane-parallel resonator
R1 = R2 = ∞
g1g2 = 1

Spherical resonator (concentric)
R1 = R2 = L/2
g1g2 = 1

Hemispherical resonator
R1 = ∞, R2 = L
g1g2 = 0

Confocal resonator
R1 = R2 = L
g1g2 = 0

Hemiconfocal resonator
R1 = ∞, R2 = 2L

g1g2 = ½

Figure 7.8 Examples of stable resonators.
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and

g2 ¼ 1� L

R2
: (7:3:13b)

These are called the g parameters of the resonator. If the g parameters are such
that (7.3.12) is satisfied, the resonator is stable. If g1g2 , 0 or g1g2 . 1, however, the
resonator is unstable.

The ray-matrix approach allows us to check immediately whether a given resonator is
stable, without having to perform a ray trace such as that shown in Fig. 7.1b. Whether a
given resonator is stable or unstable depends only on the radii of curvature of the mirrors
and the distance separating them. Figures 7.8 and 7.9 show examples of stable and
unstable resonators, respectively. The reader may easily check in each case whether
the resonator is stable or unstable (Problem 7.2).

Our stability analysis has assumed perfect mirror reflectivities. In reality, of course,
some energy will be taken from the intraresonator laser field because of imperfect
mirror reflectivities. We have already noted (Chapter 4) that transmissive output coup-
ling through one (or both) of the mirrors is one such loss mechanism. In addition to such
loss mechanisms as output coupling, scattering, or absorption, a laser with an unstable
resonator will have a large loss associated with the escape of radiation past the mirrors,
as indicated by ray tracing as in Figs. 7.1b and 7.9. Because of this additional loss
factor, unstable resonators typically require media with higher gain to sustain laser
oscillation. This is not to say that unstable resonators should always be avoided. On
the contrary, unstable resonators offer several advantages for certain high-power

R1 = R2 = L /3
g1g2 = 4

R1 = L /2, R2 = –L
g1g2 = –2

R1 = R2 = –L
g1g2 = 4 

R1 = –L, R2 = ∞
g1g2 = 2

Figure 7.9 Examples of unstable resonators.
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lasers (Section 7.14). In more familiar devices such as commercial He–Ne lasers, how-
ever, stable resonators are usually employed.

The plane-parallel resonator of Fig. 7.1 is not used for practical lasers because
it becomes unstable with only slight misalignment of the mirrors. The resonators of
most lasers have at least one spherical mirror surface. The hemispherical resonator
of Fig. 7.8, for instance, is perhaps the most commonly used design for He–Ne lasers.

7.4 THE PARAXIAL WAVE EQUATION

Many important properties of laser resonators are consequences of the wave nature of
light. A complete understanding of laser resonators, therefore, demands a treatment
based on Maxwell’s equations rather than geometrical rays. In this section we will
examine an approximate solution of the Maxwell wave equation that is very important
for laser resonators.

Let us first recall the wave equation (see Chapter 8) for the electric field in vacuum:

r2E(r, t)� 1
c2

@2

@t2
E(r, t) ¼ 0: (7:4:1)

We have written the scalar wave equation instead of the full vector equation. Our treat-
ment will, therefore, account for diffraction and interference of the radiation inside a
resonator, but not for polarization effects. A fully vectorial treatment of laser resonators
is complicated, but fortunately the scalar theory is quite adequate for our purposes. We
will be interested in solutions of (7.4.1) of the form

E(r, t) ¼ E(r)e�ivt, (7:4:2)

that is, monochromatic fields. When this expression is used in the wave equation (7.4.1),
we obtain the Helmholtz equation for E(r):

r2E(r)þ k2E(r) ¼ 0, (7:4:3)

where

k2 ¼ v2

c2
: (7:4:4)

A solution of the Helmholtz equation for E(r) will provide a monochromatic solution
(7.4.2) of the wave equation.

One solution of (7.4.3) is

E(r) ¼ E0e
ik�r, (7:4:5)

where E0 is a constant and k is a vector whose squared magnitude is given by (7.4.4).
Such a plane-wave solution has the same value for all points in any plane normal to
k. If we take k to point in the z direction, for instance, the solution (7.4.5) has the
same value (E0eikz) in any plane defined by a constant value of z. Another solution of
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(7.4.3), valid for all r = 0, is (Problem 7.3)

E(r) ¼ A

r
eikr, (7:4:6)

where A is an arbitrary number. This solution has a constant value on any sphere
centered at the origin and is therefore called a spherical wave. This is the form of solution
we would associate with a point source at the origin, with the intensity of the wave
(square of jEj) decreasing with distance r according to the inverse square law.

Consider the plane z ¼ R (Fig. 7.10). In this plane

r ¼ (x2 þ y2 þ R2)1=2 ¼ R 1þ x2 þ y2

R2

� �1=2
: (7:4:7)

If we restrict ourselves to a small “patch” of observation about the point (x ¼ 0, y ¼ 0,
z ¼ R), so that x2 þ y2 is small compared to R2, then

1þ x2 þ y2

R2

� �1=2
¼ 1þ x2 þ y2

2R2
þ � � � , (7:4:8)

according to the binomial expansion. Thus, we use the approximation

kr � kRþ k(x2 þ y2)
2R

: (7:4:9)

The field of the spherical-wave solution (7.4.6) on the plane z ¼ R in the vicinity of
(x ¼ 0, y ¼ 0) is therefore

E(r) ¼ A

R
eikReik(x

2þy2)=2R, (7:4:10)

at points for which (7.4.8) is satisfied. Note that we have simply replaced r by R for
the approximate evaluation of the factor A/r in (7.4.6). In the factor eikr, however, we
have retained in (7.4.10) both terms on the right-hand side of (7.4.9). This is

(0, 0, 0)

x2 + y2 + R2r = 

z 
R 

r 

(0, 0, R)

(x, y, R)

Figure 7.10 Geometry for Eq. (7.4.7).
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necessary because, although (x2 þ y2)/2R may be very small compared to R, it need
not be very small compared to a wavelength (l ¼ 2p/k), and so the second term in
(7.4.9) cannot be neglected in eikr. In order for (7.4.10) to be a good approximation,
the next term in the binomial expansion of r must be very small compared to a wave-
length. This condition is (Problem 7.3)

a2

lR

 R

a

� �2
, (7:4:11)

where

a2 ¼ x2 þ y2: (7:4:12)

The field (7.4.10) is an accurate approximation to the spherical wave (7.4.6) when
(7.4.8) or (7.4.11) is satisfied, that is, when we consider a small enough radius a of
observation about the point (0, 0, R) in the plane z ¼ R. This approximation is used
frequently in physical optics.

Now a laser beam propagates as a nearly unidirectional wave with some finite cross-
sectional area. Plane and spherical waves are obviously not beams. A spherical wave is
not unidirectional, and a plane wave has an infinite cross-sectional area. We therefore
seek solutions of (7.4.3) that look more like beams. To this end we try a solution of
the form

E(r) ¼ E0(r)eikz, (7:4:13)

which differs from the plane wave (7.4.5) by the fact that its amplitude is not a constant.
In writing (7.4.13) we are seeking a solution that has nearly the unidirectionality of a
planewave, without having an infinite beam cross section.We assume that the variations
of E0(r) and @E0(r)=@z within a distance of the order of a wavelength in the z direction
are negligible, that is,

l
@E0

@z

����
����
 jE0j, l

@2E0

@z2

����
����
 @E0

@z

����
����, (7:4:14)

or, since k ¼ 2p/l,

@E0

@z

����
����
 kjE0j, @2E0

@z2

����
����
 k

@E0

@z

����
����: (7:4:15)

Thus, we are assuming that E(r) varies approximately as eikz over distances z on the order
of several wavelengths.

The field (7.4.13) must satisfy the Helmholtz equation:

@2

@x2
þ @2

@y2
þ @2

@z2

� �
E0(r)eikz þ k2E0(r)eikz ¼ 0: (7:4:16)
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Now

@2

@z2
E0(r)eikz ¼ @2E0

@z2
þ 2ik

@E0

@z
� k2E0

� �
eikz � 2ik

@E0

@z
� k2E0

� �
eikz, (7:4:17)

in the approximation (7.4.15), and thus from (7.4.16) we have

@2

@x2
þ @2

@y2
þ 2ik

@

@z

� �
E0(r) � 0: (7:4:18)

We therefore seek solutions to this equation, that is, fields of the form (7.4.13) satisfying
(7.4.15). The equation

r2
TE0 þ 2ik

@E0

@z
¼ 0, (7:4:19)

is called the paraxial wave equation. Here the transverse Laplacian is

r2
T ¼

@2

@x2
þ @2

@y2
: (7:4:20)

We will now consider important solutions of this partial differential equation.

7.5 GAUSSIAN BEAMS

The intensity of a “beamlike” wave propagating in the z direction is negligible at
points sufficiently far from the z axis. A Gaussian beam intensity profile, for example,
has the form

I(x, y, z) � jE0j2e�2(x2þy2)=w2
, (7:5:1)

in a plane normal to the direction (z) of propagation. At a lateral distance w from the
z axis, the intensity is a factor e22 (¼0.135) smaller than its value on axis. If the
beam were projected onto a screen we would see a spot of radius �w, and so w is
called the spot size of the Gaussian beam.

Laser beams are frequently observed to have an intensity profile like (7.5.1).With this
in mind, we try to construct a solution of (7.4.19) having the form

E0(r) ¼ Aeik(x
2þy2)=2q(z)eip(z), (7:5:2)

where A is a constant and q(z) and p(z) are to be determined. Note that if

1
q
¼ 2i

kw2
¼ il

pw2
, (7:5:3)

then (7.5.2) gives the Gaussian intensity profile (7.5.1). In assuming a solution of the
form (7.5.2), in which q depends upon z, we are allowing for the possibility that the
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spot size of a Gaussian beam can vary with distance of propagation, which is in fact
known to occur in laser beams.

For the function (7.5.2) we have

@E0

@z
¼ iA

dp

dz
� k

2
(x2 þ y2)

1
q2

dq

dz

� 
eik(x

2þy2)=2q(z)eip(z), (7:5:4)

and

r2
TE0 ¼ A

2ik
q
� k2

q2
(x2 þ y2)

� 
eik(x

2þy2)=2q(z)eip(z), (7:5:5)

so that

r2
TE0þ 2ik

@E0

@z
¼ A

k2

q2
(x2þ y2)

dq

dz
� 1

� �
�2k

dp

dz
� i

q

� �� 
eik(x

2þy2)=2q(z)eip(z): (7:5:6)

Therefore, the form (7.5.2) is indeed a solution to Eq. (7.4.19) if p(z) and q(z) satisfy

dq

dz
¼ 1, (7:5:7)

and

dp

dz
¼ i

q
: (7:5:8)

These equations have the solutions

q(z)¼ q0þ z, (7:5:9)

and

p(z)¼ i ln
q0þ z

q0
, (7:5:10)

where q0 ¼ q(0) and we assume p(0) ¼ 0.
Since q may be complex, we write

1
q(z)
¼ 1

R(z)
þ il

pw2(z)
, (7:5:11)

with R and w real. This way of writing 1/q is suggested by (7.5.3), to which (7.5.11)
reduces when R ! 1, that is, when q is purely imaginary. With 1/q written this
way, we have

eik(x
2þy2)=2q(z) ¼ eik(x

2þy2)=2R(z)e�(x
2þy2)=w2(z): (7:5:12)
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Using (7.5.10) and (7.5.11), we also have

eip(z) ¼ exp �ln q0 þ z

q0

� �
¼ q0

q0 þ z
¼ 1

1þ z=q0
¼ 1

1þ z=R0 þ ilz=pw2
0

, (7:5:13)

where R0 and w0 denote the values of R and w at z ¼ 0.
If R0 andw0 are known, Eqs. (7.5.9) and (7.5.11) give R(z) andw(z) for all values of z.

Since the designation z ¼ 0 is arbitrary, let us choose the plane z ¼ 0 to be that for which
R0 is infinitely large, that is,

R0 ¼ 1, (7:5:14)

and

1
q0
¼ il

pw2
0

: (7:5:15)

It then follows from (7.5.9) that

1
q(z)
¼ 1

q0 þ z
¼ 1=q0

1þ z(1=q0)
¼ il=pw2

0

1þ izl=pw2
0

¼ il=pw2
0 þ (1=z)(lz=pw2

0)
2

1þ (lz=pw2
0)

2

¼ 1
R(z)
þ il

pw2(z)
: (7:5:16)

Equating separately the real and imaginary parts, we have

R(z) ¼ zþ z20
z
, (7:5:17)

w(z) ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=z20

q
, (7:5:18)

where we have defined z0 by

z0 ¼ pw2
0

l
: (7:5:19)

This new parameter is known as the Rayleigh range, and is discussed below. The alterna-
tive term confocal parameter (exactly twice the Rayleigh range) is also used to charac-
terize Gaussian beams.

Finally, let us note that (7.5.14) allows us to write (7.5.13) as

eip(z) ¼ 1
1þ iz=z0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=z20

p e�if(z), (7:5:20)

where

f(z) ¼ tan�1
z

z0

� �
: (7:5:21)
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With this result and Eq. (7.5.12), we can rewrite our solution (7.5.2) in terms of R(z),
w(z), and z0 satisfying (7.5.17)–(7.5.19). Then the complete paraxial wave solution
takes the form

E(r) ¼ Aeikze�if(z)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=z20

p eik(x
2þy2)=2R(z)e�(x

2þy2)=w2(z), (7:5:22)

with A a constant. Thus we obtain the full expression (7.4.13) for a “beamlike” solution
to the wave equation, or at least one that is valid within the approximation (7.4.15). The
solution (7.5.22) has the Gaussian intensity profile (7.5.1) in any plane z ¼ constant.
The spot sizew(z) has a minimum valuew0 in some plane z ¼ 0 and grows with distance
from this plane according to the formula (7.5.18). This behavior is sketched in Fig. 7.11.
Note that we do not have an expression for the minimum spot size w0. The solution
(7.5.22) is characterized, except for the trivial constant A, by w0 and the wavelength
l. For obvious reasons (Fig. 7.11) the plane z ¼ 0 is called the beam waist.

The distance z0 defined by (7.5.19) is such that

w(z0) ¼ w0

ffiffiffi
2
p

: (7:5:23)

The Rayleigh range z0 is thus a measure of the length of the waist region, where the spot
size is smallest. The smaller the spot size w0 at the beam waist, the smaller the Rayleigh
range, and thus the greater the rate of growth with z of the spot size from the waist. This
result is similar to what happens when a plane wave is diffracted by a circular aperture in
an opaque screen. The smaller the aperture diameterD, the greater the diffraction. In fact
the far-field divergence angle of the diffracted beam (Fig. 7.12) may be defined by

u ¼ 1:22
l

D
: (7:5:24)

This result is derived in Section 7.11. We may define the divergence angle of our
Gaussian beam similarly, as (Fig. 7.11)

u � w(z)
z
� w0

z0
¼ l

pw0
(z� z0): (7:5:25)

2 ÷ 

(x, y)

Intensity 

z = 0 

w0 
w0 

z0 

w (z)

(x, y)

Intensity 

w (z) = w0
p w  0 

2

l 1 + z 
2/z 0

2, z0 = 

Beam waist 

q = l 
p w0

q 

÷ 

Figure 7.11 Variation of spot size w(z) of a Gaussian beam.
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Thus, the divergence angle of a Gaussian beam is of the same order as that associated
with the diffraction of a plane wave by an aperture of diameter D � w0 located at the
beam waist.

The intensity of the field (7.5.22) averaged over an optical period is (Problem 7.3)

I(x, y, z) ¼ ce0
2
jE(x, y, z)j2 ¼ (ce0=2)jAj2

1þ z2=z20
e�2(x

2þy2)=w2(z): (7:5:26)

The rate at which energy crosses any plane defined by a constant value of z is therefore

ð1
�1

ð1
�1

dx dy I(x, y, z) ¼ (ce0=2)jAj2
1þ z2=z20

ð1
�1

ð1
�1

dx dy e�2(x
2þy2)=w2(z)

¼ ce0
4
jAj2(pw2

0): (7:5:27)

The fact that this expression is independent of z is, of course, consistent with the
conservation of energy. For z � z0 the beam intensity (7.5.26) has an inverse-square
dependence on the distance z from the waist:

I(x, y, z) � I0
z2
z20e
�2(x2þy2)=w2(z) (z� z0), (7:5:28)

where

I0 ¼ ce0
2
jAj2: (7:5:29)

The spot size at large distances from the beam waist is

w(z) � w0z

z0
¼ lz

pw0
(z� z0), (7:5:30)

and is seen to grow linearly with distance z from the beam waist.

r ≅ 1.22lz
D

q ≅ 1.22l
D

D

z

rq

Figure 7.12 Diffraction of a monochromatic plane wave of wavelength l by a circular aperture of
diameter D. The diffraction intensity pattern in the far field consists of a central bright spot of radius
r surrounded by faint concentric rings. The rings are not truly equally spaced, and the intensities
shown for the rings (side lobes in the left sketch) are exaggerated. See Fig. 7.29.
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It is also interesting to consider the electric field at large distances from the beam
waist:

E(r) � Az0
z

ei(kz�p=2)eik(x
2þy2)=2R(z)e�(x

2þy2)=w2(z), (7:5:31)

for z � z0. In this limit Eq. (7.5.17) gives

R(z) � z (z� z0), (7:5:32)

so that

E(r) � �iAz0 1
z
eikzeik(x

2þy2)=2z
� 

e�(x
2þy2)=w2(z): (7:5:33)

The factor in brackets has exactly the form (7.4.10) of a spherical wave with its center of
curvature located at the beam waist (z ¼ 0) (Fig. 7.13). The field (7.5.33) in fact has
exactly the form of a spherical wave for points close enough to the beam axis that

e�(x
2þy2)=w2(z) � 1: (7:5:34)

The beamlike fields of the type (7.5.22) are sometimes calledGaussian spherical waves.
The properties of the Gaussian beam field (7.5.22) are collected in Table 7.1. These

properties are illustrated in Figs. 7.11 and 7.13. Note that to the left of the beamwaist the
radius of curvature is negative, corresponding to concave surfaces of constant phase in
the direction of propagation (Fig. 7.13). The field (7.5.22), except for the “strength” A, is
completely specified by thewavelength l and the spot sizew0 at the beamwaist. Given l
andw0, we can determine the spot size and radius of curvature everywhere. Amonochro-
matic Gaussian beam is therefore fully characterized by three parameters: w0, the
location of its waist, and the field amplitude.

Actually, there is one restriction on w0, namely w0 must be large compared to the
wavelength l. This restriction is found by requiring the field (7.5.22) to satisfy
(7.4.15), which was assumed in the derivation of the paraxial wave equation (7.4.19).
In other words, our solution (7.5.22) must be consistent with the approximations used
in obtaining it. This restriction implies that the beam divergence angle (7.5.25) must
be small, that is, that our Gaussian beams are paraxial.

R < 0

Beam waist (R = ∞)

R > 0

Figure 7.13 Variation of the radius of curvature of a Gaussian beam. At large distances from the
beam waist the surfaces of constant phase are spheres centered on the waist.
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7.6 THE ABCD LAW FOR GAUSSIAN BEAMS

We have found that a Gaussian beam remains a Gaussian beam as it propagates in
vacuum. The beam spot size and radius of curvature change with propagation, but the
basic Gaussian spherical wave form (7.5.22) is always maintained. Equations (7.5.17)
and (7.5.18) for R(z) and w(z) follow from the simple propagation law (7.5.9) for the
q parameter of a Gaussian beam. This propagation law describes the effect on a
Gaussian beam of propagation in empty space, that is, propagation through an “optical
element” consisting of a straight section of empty space of length z. If the q parameter
has the value qi in the plane z ¼ zi, then its value in the plane z ¼ zf is

qf ¼ qi þ d, (7:6:1)

where d ¼ zf 2 zi. This result, which follows trivially from (7.5.7), is the generalization
of (7.5.9) to the case in which zi is not necessarily zero. We will now consider the effect
on a Gaussian beam of other optical elements, such as lenses and spherical mirrors.

Let us consider first the effect of a thin lens of local length f on a Gaussian beam.
Suppose the radius of curvature and spot size immediately before the lens are R1 and
w1, respectively. Immediately to the right of the lens the spot size should also be w1

since the lens is not expected to alter the transverse intensity distribution of the beam.
The beam curvature, however, will be changed by the lens. We can determine the
beam curvature immediately to the right of the lens using the thin-lens equation
(Fig. 7.14). The spherical wavefront immediately to the left of the lens has the same
phase distribution as it would have if there were a point source on the lens axis at a dis-
tance d0 ¼ R1 to the left of the lens. Such a point object will focus to a point image at a
distance di to the right of the lens. The phase distribution of the beam immediately to the
right of the lens should therefore correspond to a spherical wave of radius of curvature R2

converging to a point at di (Fig. 7.14). In our sign convention, a spherical wavefront pro-
pagating in the positive z direction has a positive curvature if it is convex when viewed
from z ¼ 1, and negative curvature if it is concave. This is consistent with our conven-
tion that concave spherical mirrors have positive curvature and convex mirrors have
negative curvature. If a plane wave is incident on a concave mirror, for example, the
reflected wave will have a negative radius of curvature, consistent with Eq. (7.2.14)

TABLE 7.1 Gaussian Beam Solutions of the Paraxial
Wave Equation

E(r) ¼ E(r)e�ivt (electric field)

E(r) ¼ A
w0

w(z)
ei[kz�tan

�1 (z=z0)]eik(x
2þy2)=2R(z)e�(x

2þy2)=w2(z)

I(r) ¼ ce0
2
jAj2e�2(x2þy2)=w2(z) (intensity)

w(z) ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

z20

s
(spot size)

R(z) ¼ zþ z20
z

(radius of curvature)

z0 ¼ pw2
0=l (Rayleigh range)

u ¼ l=pw0 (divergence angle)
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with R . 0. Thus, R1 is positive and R2 negative for the case in Fig. 7.14, or d0 ¼ R1,
di ¼ 2R2, with d0 and di both positive for the converging lens shown. The thin-lens
equation, that is,

1
d0
þ 1
di
¼ 1

f
, (7:6:2)

then gives

1
R2
¼ 1

R1
� 1

f
, (7:6:3)

which is the desired relation between the radii of curvature of the spherical wavefront
immediately before and after transformation by the lens. Equation (7.6.3) shows that
R2 must be positive if 0 , R1 , f. In this case the lens is too weak to focus the spherical
wave to a point behind the lens. Equation (7.6.3) also applies to the case of a diverging
lens, for which f , 0.

Using (7.6.3), we may relate the final q parameter qf of a Gaussian spherical wave,
just after passage through the lens, to the initial value qi just before the lens. From the
definitions

1
qi
¼ 1

R1
þ il

pw2
1

, (7:6:4)

and

1
qf
¼ 1

R2
þ il

pw2
2

, (7:6:5)

we have, since w1 ¼ w2,

1
qf
¼ 1

qi
� 1

f
, (7:6:6)

or

qf ¼ 1
1=qi � 1=f

¼ qi
�qi=f þ 1

: (7:6:7)

R1 > 0

d0 = R1, d i = –R2, + =1
d0

R2 < 0

1
d i

1
f

Figure 7.14 The transformation of a diverging spherical wavefront of curvature R1 to a converging
spherical wavefront of curvature R2 by a thin lens of focal length f.
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Thus, whereas (7.6.1) gives the transformation of the q parameter of a Gaussian beam
arising from free propagation through a distance d, (7.6.7) is the transformation effected
by a thin lens of focal length f.

By similar reasoning, we can determine the transformation of the q parameter effected
by a straight section of propagation of length d, followed by a lens of focal length f.
The q transformation due to this “optical system” is found to be

qf ¼ qi þ d

�qi=f þ 1� d=f
: (7:6:8)

In each of these three examples, the q parameter of a Gaussian beam is transformed
according to an equation of the form

qf ¼ Aqi þ B

Cqi þ D
: (7:6:9)

The coefficients A, B,C, andD in the three cases (7.6.1), (7.6.7), and (7.6.8) may be read
off from the matrices

A B

C D

� 
¼ 1 d

0 1

� 
, (7:6:10)

A B

C D

� 
¼ 1 0

�1=f 1

� 
, (7:6:11)

and

A B
C D

� 
¼ 1 d
�1=f 1� d=f

� 
: (7:6:12)

Now we recall from Section 7.2 that (7.6.10) is just the ray matrix associated with a
straight section of propagation of length d [Eq. (7.2.9)]. Similarly (7.6.11) is the ray
matrix for a thin lens of focal length f [Eq. (7.2.11)]. And finally (7.6.12) is precisely
the ray matrix for a straight section of length d followed by a thin lens of focal length
f [Eq. (7.2.17)], i.e., it is the matrix (7.6.10) multiplied from the left by the matrix
(7.6.11).

These results are special cases of the ABCD law for Gaussian beams: The transform-
ation of a Gaussian beam by an optical system may be obtained from Eq. (7.6.9), where
the coefficients A, B, C, and D are given by the ray matrix of the optical system.

The advantage of the ABCD law is that it allows us to evaluate the transformation of a
Gaussian beam using the ray matrix of geometrical optics. The transformation by an
optical system of the Gaussian beam (7.5.22), which is a solution of the paraxial
wave equation, may be inferred from the way the system transforms geometrical, para-
xial rays. If we know the ray matrix for the optical system, we can predict how it modifies
the q parameter, and therefore the spot size and radius of curvature, of a Gaussian beam.
This remarkable property of Gaussian beams proves very useful in tracing the behavior
of a (Gaussian) laser beam through various optical systems of lenses and mirrors.

As an example of the application of the ABCD law, consider the arrangement shown
in Fig. 7.15. A Gaussian beam is incident upon a lens located at thewaist of the Gaussian
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beam, where R ¼1 and the q parameter is

qi ¼ � ipw2
0

l
, (7:6:13)

withw0 again the spot size at thewaist. The beam passes through the lens, and wewish to
determine the distance d behind the lens at which the transmitted beam has its waist.
First, we calculate the ray matrix for the optical system consisting of a thin lens of
focal length f followed by a straight section of propagation of length d:

A B
C D

� 
¼ 1 d

0 1

� 
1 0
�1=f 1

� 
¼ 1� d=f d

�1=f 1

� 
: (7:6:14)

The q parameter of the Gaussian beam is transformed by this optical system to

qf ¼ 1
R(d)
þ il

pw2(d)

� �1
¼ �(ipw2

0=l)(1� d=f )þ d

(ipw2
0=lf )þ 1

, (7:6:15)

where we have used the ABCD law (7.6.9) with the ray matrix (7.6.14) and the initial q
parameter (7.6.13). By equating the real and imaginary parts of both sides of (7.6.15),
we obtain after some straightforward algebra the expressions

R(d) ¼ (d=z0)2 þ (1� d=f )2

d=z20 � (1=f )(1� d=f )
, (7:6:16)

and

w2(d) ¼ w2
0 1� d

f

� �2
þw2

0
d

z0

� �2
, (7:6:17)

for the radius of curvature R(d ) and the spot size w(d ) of the beam at any distance d
behind the lens. Here z0 is the Rayleigh range of the beam incident upon the lens.

The waist of the transmitted beam occurs at the distance d behind the lens that mini-
mizes w0, or equivalently the distance d for which R(d ) ¼1. From (7.6.16), therefore,

Figure 7.15 A Gaussian beam incident on a lens at its waist is focused to a new waist.
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we see that d must satisfy the equation

d

z20
� 1

f
1� d

f

� �
¼ 0, (7:6:18)

so that

d ¼ f

1þ f 2=z20
, (7:6:19)

is the distance behind the lens where the new waist is located. Using this value of d in
Eq. (7.6.17), we obtain the spot size w00 at the new waist:

w00 ¼
lf

pw0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2=z20

p ffi lf

pw0
(z� z0): (7:6:20)

Equation (7.6.20) is an important result, for it indicates that a Gaussian beam can be
focused to a very small spot. This property of Gaussian laser beams is important in
many applications in which it is necessary to focus radiation onto a small area.

In the following section we will see how to compute the spot size of a laser beam
emerging from a given resonator. For a He–Ne laser the spot size w0 at the waist is
typically on the order of 1 mm. From (7.6.20) with l ¼ 632.8 nm, therefore, we
obtain (for f 
 z0)

w00 � 2� 10�4f : (7:6:21)

For lens focal lengths f on the order of centimeters, therefore, we see that the new spot
size at the (new) waist is considerably smaller than the unfocused value, w0 � 1 mm.

7.7 GAUSSIAN BEAM MODES

The mirrors of a laser force radiation to pass through the gain cell repeatedly, thereby
enhancing its amplification by stimulated emission. The time taken by light to traverse
the distance L (measured in centimeters) between the mirrors is

T ¼ L

c
� 1

3
� 10�10L s: (7:7:1)

If we measure the transverse intensity profile of the radiation from a laser, we normally
find a steady profile that does not change in a time corresponding to successive reflec-
tions off the mirrors. Such a steady spatial pattern of intensity implies a steady spatial
pattern of the field inside the resonator too. This is called a mode of the resonator.

To bring out more clearly the idea of a resonator mode, consider a plane normal to the
optical axis of the resonator (Fig. 7.16). Radiation passing through this plane from the left
will propagate to the mirror on the right, be reflected, and then pass through the plane from
the right. After reflection from the mirror on the left, it propagates back to our imaginary
plane, thus completing a round trip through the resonator. The key point is that, if the
field is a mode of the resonator, it must have exactly the same value on the imaginary
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plane after a round trip as before. And this must be true regardless of where the plane is
chosen inside the resonator.

If the Gaussian field of Table 7.1 is to be a mode of a resonator, then evidently its q
parameter must not change in a round trip through the resonator. This condition may be
examined using the ABCD law (7.6.9) for Gaussian beams. The condition for a Gaussian
beam mode of a resonator is thus

q(z) ¼ Aq(z)þ B

Cq(z)þ D
, (7:7:2)

where A, B, C, andD are the elements of the ray matrix for the optical system defined by
a round trip through the resonator; these matrix elements will generally depend upon z.
To have a Gaussian beam mode, Eq. (7.7.2) must hold for all values of z between the
mirrors.

The condition (7.7.2) for a Gaussian beam mode is general. It can be applied to more
complicated resonators than we are considering. For instance, it can be used for the case
in which a lens is placed between the mirrors. For our purposes, however, the algebra is
simpler if we follow a more intuitive approach. In this approach we consider the propa-
gation of the field from one mirror to the other, as sketched in Fig. 7.17.

If a Gaussian beam is to be a mode of a resonator with spherical mirrors, its radius
of curvature at each mirror must be equal in magnitude to that of the mirror. If this
were not true, the mirror would change the magnitude of the beam radius upon reflec-
tion, and we would therefore not have a mode of the resonator. This physically reason-
able result may be proved formally using the ABCD law for Gaussian beams (Problem
7.4). The radius of curvature of the Gaussian beam at the left-hand mirror of Fig. 7.17 is

Imaginary plane

Figure 7.16 Laser resonator with imaginary plane drawn through the optical axis.

R2R1

Figure 7.17 A Gaussian beam with radii of curvature at the mirrors equal in magnitude to those of
the mirrors. Amode of the resonator is formed by the right-going Gaussian beam and the reflected, left-
going beam.
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[recall Eq. (7.5.17)]

R(z1) ¼ z1 þ z20
z1
, (7:7:3)

where z0 is the Rayleigh range of the beam and z1 gives the location of the mirror as
measured from the beam waist. The beam at z1 in Fig. 7.17 is a converging Gaussian
spherical wave, and therefore has a negative radius of curvature according to our sign
convention. On the other hand, the (concave) mirror at z1 has a positive radius of curva-
ture, R1. Therefore

R(z1) ¼ z1 þ z20
z1
¼ �R1, (7:7:4)

if the radius of curvature of the Gaussian beam is to have the same magnitude as that of
the mirror. Similarly,

R(z2) ¼ z2 þ z20
z2
¼ R2, (7:7:5)

where R2 is the radius of curvature of the right-hand mirror of Fig. 7.17. The Gaussian
beam in this case is diverging and thus has a positive radius of curvature, equal in
magnitude and sign to that of the (concave) mirror drawn. It is easily checked that
(7.7.4) and (7.7.5) apply regardless of whether the mirrors are concave or convex.

If the mirror separation is L, then we may also write the equation

z2 � z1 ¼ L: (7:7:6)

Equations (7.7.4)–(7.7.6) are three equations for the three “unknowns” z1, z2, and z20.
Their solution gives us z1, z2, and z20 in terms of the mirror radii (R1 and R2) and
mirror separation L. After straightforward algebra we obtain

z1 ¼ �L(R2 � L)
R1 þ R2 � 2L

, (7:7:7)

z2 ¼ L(R1 � L)
R1 þ R2 � 2L

, (7:7:8)

z20 ¼
L(R1 � L)(R2 � L)(R1 þ R2 � L)

(R1 þ R2 � 2L)2
: (7:7:9)

In Section 7.4, where we discussed Gaussian beams as solutions of the paraxial wave
equation in free space, the location of the beamwaist was arbitrary. There was nothing to
tell us its location. Equation (7.7.7) [or (7.7.8)], however, locates the beam waist of a
Gaussian beam mode with respect to a mirror of the resonator. Similarly, the spot size
w0 at the waist was essentially a free parameter in Section 7.4, whereas (7.7.9) allows
us to express w0 explicitly in terms of the wavelength, the mirror radii of curvature,
and their separation. Specifically, we obtain from (7.5.19) and (7.7.9) the minimum
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beam spot size

w0 ¼ (l=p)1=2[L(R1 � L)(R2 � L)(R1 þ R2 � L)]1=4

(R1 þ R2 � 2L)1=2
: (7:7:10)

In Table 7.2 we express z1, z2, and w0 in terms of the resonator g parameters (7.3.13).
From these expressions we obtain the beam spot sizes at the mirrors using (7.5.18):

w1 ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z21

z20

s
, (7:7:11a)

and

w2 ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z22

z20

s
, (7:7:11b)

TABLE 7.2 Properties of Lowest-Order Gaussian
Modes (TEM00) of Stable Resonators

Definitions and Conventions

gi ¼ 1� L

Ri

Ri . 0 for concave mirrors, Ri , 0 for convex mirrors.

Location of Mirrors with Respect to Beam Waist

z1 ¼ �Lg2(1� g1)
g1 þ g2 � 2g1g2

, z2 ¼ z1 þ L

Spot Sizes at Mirrors

w1 ¼ lL

p

� �1=2 g2
g1(1� g1g2)

� 1=4

w2 ¼ lL

p

� �1=2 g1
g2(1� g1g2)

� 1=4

w0 ¼ lL

p

� �1=2 g1g2(1� g1g2)

(g1 þ g2 � 2g1g2)2

� 1=4
¼ spot size at beam waist

Resonance Frequencies

nm ¼ c

2L
mþ 1

p
cos�1

ffiffiffiffiffiffiffiffiffi
g1g2
p� �
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which are given in terms of g1 and g2 in Table 7.2. The spot size for z1 , z, z2 may also
be obtained from the propagation law (7.5.18). Similarly, the beam radius of curvature
for any z may be determined using (7.5.17).

The results listed in Table 7.2 follow from the requirement that the radii of curvature
of the Gaussian beam at the mirrors coincide in magnitudewith those of the mirrors. The
field reflected from the right-hand mirror of Fig. 7.17 is also a Gaussian beam whose
radii of curvature at the mirrors match (in magnitude) those of the mirrors. The standing
wave formed by the left- and right-going Gaussian beams thus form a mode of the reso-
nator: They are not changed on successive reflections, and consequently the standing-
wave pattern stays fixed.

The phase of our Gaussian-mode field along the optical axis (r ¼ 0) of the resonator
is (Table 7.1)

u(z) ¼ kz� tan�1
z

z0

� �
: (7:7:12)

(It is convenient to consider the phase change along the optical axis because there the
mirror surfaces are separated by exactly L.) The condition for a mode is that the field
does not change in a round trip through the resonator. This means that the phase
change of the field in a round trip should be an integral multiple of 2p, or that the
one-way phase change is an integral multiple of p:

u(z2)�u(z1)¼ k(z2� z1)� tan�1
z2
z0
� tan�1

z1
z0

� 
¼mp, m¼ 0, 1, 2, . . . : (7:7:13)

This expression gives the allowed values of k, and therefore the resonance frequen-
cies n ¼ kc/2p. Using Eqs. (7.7.6)–(7.7.8), we find after some algebra (Problem
7.5) the allowed mode frequencies

nm¼ c

2L
mþ 1

p
cos�1

ffiffiffiffiffiffiffiffiffi
g1g2
p� �

, (7:7:14)

where the sign of the square root is understood to be the same as the sign of g1
(equal to the sign of g2 for a stable resonator).

A resonator with plane-parallel mirrors has g1g2 ¼ 1, and so (7.7.14) gives back the
result found earlier for this case [recall (5.9.1)]:

nm ¼ m
c

2L
: (7:7:15)

In the case of spherical but nearly flat mirrors we obtain (Problem 7.5)

nm � c

2L
qþ 1

p

L

R1
þ L

R2

� �1=2" #
, L
 R1, R2: (7:7:16)
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In all cases for which our Gaussian mode applies we have the frequency spacing

Dn ¼ nm � nm�1 ¼ c

2L
, (7:7:17)

between different modes, exactly as for plane-parallel resonator mirrors.
We note from Table 7.2 that all the properties of our Gaussian modes—the radius of

curvature and spot size as a function of z inside the resonator, the location of the beam
waist in terms of the mirror locations, and the allowed mode frequencies—follow from
the resonator g parameters, the wavelength l, and the mirror separation L. Actually, the
mode with the properties listed in Table 7.2 is a special type of zero-order Gaussian
mode. We will understand this when we consider high-order Gaussian modes in the fol-
lowing section. We must first, however, add three caveats.

First, we note from Table 7.2 that w4
0 is negative if

g1g2(1� g1g2) 	 0: (7:7:18)

When this occurs we do not have a beamlike solution with a finite cross section.
Thus, our Gaussian mode can only be valid for values of g1g2 not satisfying (7.7.18),
that is, for

0 	 g1g2 	 1: (7:7:19)

This is precisely the condition (7.3.12) for resonator stability. Therefore,Gaussian beam
modes apply only to stable resonators. In fact our analysis also generally breaks down
if either g1g2 ¼ 1 or g1g2 ¼ 0, for then the spot size becomes infinite on at least one of
the mirrors (Table 7.2). The cases g1g2 ¼ 0 and g1g2 ¼ 1 are the boundaries between
stability and instability, the region of marginal stability.

The second restriction on the validity of our Gaussian beam modes is that the
mirrors must be large enough to intercept the beam without any spillover. Otherwise
the beam is not simply reflected at a mirror, and a more complicated, diffraction analysis
is required. The transverse dimensions of the mirrors when viewed along the optical axis
may be characterized by some effective radius a if the x and y dimensions are not too
disparate. In the case of identical, flat, circular mirrors, a will be just the mirror
radius. For the mirror to reflect a Gaussian beam without appreciable spillover, we
require that

a� w1, w2, (7:7:20)

where the spot sizes w1 and w2 at the mirrors are given in Table 7.2. These expressions
for w1 and w2 are of the form

w1 ¼ lL

p

� �1=2
F1(g1, g2), (7:7:21a)

w2 ¼ lL

p

� �1=2
F2(g1, g2), (7:7:21b)
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where F1(g1, g2) and F2(g1, g2) are typically of order unity. Thus (7.7.20) requires in
this case a� (lL=p)1=2, or

NF ¼ a2

lL
� 1, (7:7:22)

where NF is called the Fresnel number of the resonator.
Condition (7.7.22) is normally not difficult to meet. Consider, for example, a He–Ne

laser wavelength of 632.8 nm and a mirror separation L of 50 cm. Condition (7.7.22) in
this example becomes

a� 0:56 mm, (7:7:23)

which will obviously be satisfied for reasonably designed mirrors. For a 10.6-mm CO2

laser with the same mirror separation we require

a� 2:3 mm, (7:7:24)

which again is a reasonable condition.
The third restriction on the validity of the Gaussian mode analysis is that

NF 
 L

a

� �2
, (7:7:25)

must be satisfied. This condition may be understood from essentially the same condition
(7.4.11) for the accurate approximation of the spherical wave (7.4.6) by (7.4.10). In the
present context (7.7.25) ensures that the Gaussian beam field (7.5.22) has approximately
spherical wavefronts that match the spherical mirror surfaces. Condition (7.7.25) is well
satisfied in most practical resonators.

7.8 HERMITE–GAUSSIAN AND LAGUERRE–GAUSSIAN BEAMS

The Gaussian beam of Table 7.1 results from the solution (7.5.22) of the paraxial wave
equation (7.4.19). However, this is not the only solution. In this section we will
consider a more general type of Gaussian beam solution of the paraxial wave
equation. The Gaussian beam of Table 7.1 will emerge as a special case of this more
general solution.

We arrived at the solution (7.5.22) of the paraxial wave equation by guessing a sol-
ution of the form (7.5.2). In attempting to obtain other solutions, we will proceed in a
similar fashion, assuming a solution of the form

E0(r) ¼ Ag
x

w(z)

� 
h

y

w(z)

� 
eiP(z)eik(x

2þy2)=2q(z): (7:8:1)

298 LASER RESONATORS AND GAUSSIAN BEAMS



We assume w(z) and q(z) are the same as before, i.e., that the spot size and radius of
curvature of our more general Gaussian beam are given in Table 7.1. In fact if

P(z) ¼ p(z),

and

g
x

w(z)

� 
¼ h

y

w(z)

� 
¼ 1,

then the trial solution (7.8.1) reduces exactly to (7.5.2). The fact that g and h are func-
tions of [x/w(z)] and [ y/w(z)], respectively, means that the intensity pattern associated
with (7.8.1) will scale according to the spot size w(z). This intensity pattern will be a
function of [x/w(z)] and [ y/w(z)], as is the intensity pattern given in Table 7.1. Our
task is to find g, h, and P such that (7.8.1) satisfies the paraxial wave equation.

Using our trial solution (7.8.1) in the paraxial wave equation (7.4.19), we obtain
differential equations for g, h, and P. Since the algebra is straightforward but rather
tedious, we will omit the details of the derivation and give only the main steps. First,
we use the fact that g and h are functions of the independent variables

j ¼ x

w(z)
and h ¼ y

w(z)
, (7:8:2)

respectively, to write

@g

@x
¼ dg

dj

@j

@x
¼ 1

w(z)
dg

dj
, (7:8:3a)

@2g

@x2
¼ 1

w2(z)
d2g

dj2
, (7:8:3b)

@g

@z
¼ dg

dj

@j

@z
¼ � x

w2(z)
dw

dz

dg

dj
, (7:8:3c)

with analogous results for the partial derivatives of h. We then use these results, together
with Eqs. (7.5.11), (7.5.17), and (7.5.18), in the paraxial wave equation (7.4.19).
We obtain

1
g(j)

d2g

dj2
� 4j

dg

dj

� �
þ 1
h(h)

d2h

dh2
� 4h

dh

dh

� �
þ 2ik

q(z)
� 2k

dP

dz

� �
w2(z) ¼ 0, (7:8:4)

after division by g(j)h(h). The functions g(j), h(h), and P(z) must satisfy this equation
in order for (7.8.1) to satisfy the paraxial wave equation.

Now the first term on the left-hand side of (7.8.4) is a function only of the independent
variable j, the second term is a function only of the independent variable h, and the third
term is a function only of the independent variable z. Thus, equation (7.8.4) cannot hold
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for all values of the independent variables j, h, and z unless each of these terms is
separately constant. Therefore, we write

1
g(j)

d2g

dj2
� 4j

dg

dj

� �
¼ �a1, (7:8:5)

1
h(h)

d2h

dh2
� 4h

dh

dh

� �
¼ �a2, (7:8:6)

and

2ik
q(z)
� 2k

dP

dz

� 
w2(z) ¼ a1 þ a2, (7:8:7)

where a1 and a2 are constants. Thus, we have reduced the problem of solving the partial
differential equation (7.4.19) in three independent variables to the problem of solving
the three ordinary differential equations (7.8.5)–(7.8.7). This is an example of the
method of “separation of variables.”

It is convenient to write (7.8.5) in a slightly different form by defining the new
variable

u ¼
ffiffiffi
2
p

j: (7:8:8)

Since

dg

dj
¼ dg

du

du

dj
¼

ffiffiffi
2
p dg

du
, (7:8:9a)

and

d2g

dj2
¼ 2

d2g

du2
, (7:8:9b)

we have

d2g

du2
� 2u

dg

du
þ a1

2
g ¼ 0: (7:8:10)

The reason we have chosen to write (7.8.5) in this form is that Eq. (7.8.10) arises
in many different problems. It appears, for example, in the quantum mechanics of the
harmonic oscillator. A solution of (7.8.10) stays finite as u ! 1 only if the constant
a1 satisfies

a1
2
¼ 2m, m ¼ 0, 1, 2, . . . : (7:8:11)

300 LASER RESONATORS AND GAUSSIAN BEAMS



The allowed (finite) solutions of (7.8.10) are the Hermite polynomials, the first few of
which are

H0(u) ¼ 1,

H1(u) ¼ 2u,

H2(u) ¼ 4u2 � 2,

H3(u) ¼ 8u3 � 12u,

H4(u) ¼ 16u4 � 48u2 þ 12:

The allowed solutions for the function g in our trial solution (7.8.1) are thus

g
x

w(z)

� 
¼ Hm

ffiffiffi
2
p x

w(z)

� 
, m ¼ 0, 1, 2, . . . : (7:8:12)

In a similar fashion we obtain the allowed solutions

h
y

w(z)

� 
¼ Hn

ffiffiffi
2
p y

w(z)

� 
, n ¼ 0, 1, 2, . . . , (7:8:13)

for the function h.
It remains to determine P(z). Using Eqs. (7.5.11), (7.5.17), and (7.5.18), we obtain

from (7.8.7) the differential equation

dP

dz
¼ iz

z2 þ z20
� z0(mþ nþ 1)

z2 þ z20
, (7:8:14)

which may be integrated to give

P(z) ¼ i ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

z20

s
� (mþ nþ 1)f(z), (7:8:15)

or

eiP(z) ¼ e�i(mþnþ1)f(z)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=z20

p ¼ w0

w(z)
e�i(mþnþ1)f(z), (7:8:16)

where f(z) ¼ tan21(z/z0), as in (7.5.21). Collecting the results (7.8.12), (7.8.13),
and (7.8.16), we have a solution (7.8.1) to the paraxial wave equation. The electric
field is thus

Emn(x, y, z) ¼ Aw0

w(z)
Hm

ffiffiffi
2
p x

w(z)

� 
Hn

ffiffiffi
2
p y

w(z)

� 
ei[kz�(mþnþ1) tan

�1 z=z0]

� eik(x
2þy2)=2R(z)e�(x

2þy2)=w2(z):
(7:8:17)

Note that whenm ¼ n ¼ 0 we recover the solution (7.5.22), so our previous Gaussian
beam solution is therefore the “lowest-order” or “zero-order” case of (7.8.17). Another
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important point is that R(z) and w(z) are independent of m and n; all higher-order
Gaussian beams are characterized by the same functions R(z) and w(z) as the lowest-
order one. Furthermore, all higher-order Gaussian beams satisfy the same ABCD law
as the lowest-order one: a Gaussian beam of order (m, n) remains a Gaussian beam of
the same order after propagation in free space or transformation by a thin lens or a spheri-
cal mirror, but its q parameter is changed according to the ABCD law.

Because they have the same w(z) and R(z) as the lowest-order beam, the higher-order
Gaussian beams also form modes of stable resonators satisfying (7.7.20). All the prop-
erties of Table 7.2 apply as well to such higher-order modes, except for the resonance
frequencies. Following exactly the same approach that led to (7.7.14), we obtain for a
Gaussian mode of order (m, n) the allowed mode frequencies

nqmn ¼ c

2L
qþ 1

p
(mþ nþ 1) cos�1

ffiffiffiffiffiffiffiffiffi
g1g2
p� 

, (7:8:18)

with q a positive integer or zero, and with the sign convention of (7.7.14).
Gaussian modes characterized by different values of m and n are said to be different

transverse modes because their intensity patterns transverse to the optical axis are differ-
ent. Modes associated with different values of q are said to be different longitudinal
modes. Thus, a given transverse mode (m, n) may be associated with different longitudi-
nal modes (q), and vice versa. A Gaussian mode is specified by the three integers (q, m,
n), that is, by its longitudinal and transverse mode character. The transverse character of
a Gaussian mode is conventionally designated TEMmn, meaning “transverse electro-
magnetic of order (m, n).”

There is awealth of experimental evidence to corroborate our Gaussianmode analysis
for stable resonators satisfying conditions (7.7.20) and (7.7.25). One way to record the
intensity pattern of a laser beam is illustrated in Fig. 7.18, while Fig. 7.19 shows a
“power-in-the-bucket” method of measuring the spot size of a lowest order (TEM00)
Gaussian beam. A direct recording of the intensity pattern is usually made with a

Laser 
Lens Rotating mirror

Oscilloscope 
Photometer

Figure 7.18 One way of recording the intensity pattern of a laser beam. The lens is used to expand
the laser beam, which normally has a very small diameter (�1 mm). The mirror rotates at an angular
velocity of a few revolutions per second.
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charge-coupled device (CCD) camera, which measures the intensity distribution over a
two-dimensional array of pixels, each of which is typically of width �15–40mm. CCD
cameras are useful for pulsed lasers, and they allow three-dimensional contour plots as
well as two-dimensional distributions to be displayed. CCD cameras are easily saturated,
and so the beam must usually be attenuated before entering the camera. The attenuation
can introduce beam distortions, but otherwise the principal limiting factor on the accu-
racy of the beam intensity measurement is the pixel size.

A high-resolution measurement of an intensity profile can be made by scanning a
pinhole across the beam and electronically correlating the measured intensity with the
position of the pinhole to produce a display of the intensity distribution on a computer
screen. Beam profiling instruments of various types are commercially available.

Figure 7.20 shows actual intensity patterns recorded with a He–Ne laser operating at
632.8 nm. The reader may easily show that these intensity patterns may be associated
with the various low-order transverse Gaussian modes indicated (Problem 7.7). It
should be noted that the intensity patterns tend to be larger for the higher-order
modes. For such modes condition (7.7.20) may not hold as well as for lower-order
modes. Consequently, the higher-order modes tend to suffer greater loss due to diffrac-
tive spillover at the mirrors.

In general, a laser is able to oscillate simultaneously on a number of transverse (and
longitudinal) modes. To achieve oscillation on a single transverse mode, as in the inten-
sity patterns of Fig. 7.20, it is necessary to have some sort of mode discrimination. That
is, it is necessary to have high losses for all transverse modes except one. A laser in
which the gain is concentrated near the optical axis, for instance, will tend to oscillate
on lower-order modes. In many applications a TEM00 Gaussian mode is desired. To dis-
criminate against the higher-order modes in this case, a circular aperture may be inserted
into the resonator to produce high losses on all but the lowest-order mode. The Hermite–
Gaussian modes we have found have rectangular symmetry and thus would appear to be
inapplicable in the case of mirrors with a circular cross section. In practice, however,
slight mirror misalignments or other “perturbations” will result in rectangularly sym-
metric rather than circularly symmetric modes. One such perturbation is the use of
Brewster-angle windows. In this case our scalar electric field may be assumed to be
the field component having the favored linear polarization. The directions of the electric
field vectors for our Gaussian modes in this case are shown in Fig. 7.21.

A different type of solution to the paraxial wave equation (7.4.19) is obtained by
expressing the latter in terms of cylindrical coordinates (r, f, z),

@2

@r2
þ 1

r

@

@r
þ 1
r2

@2

@f2 þ 2ik
@

@z

� �
E(r, f, z) ¼ 0, (7:8:19)

Laser Iris diaphragm Photometer

Figure 7.19 Determining the spot size of a TEM00 Gaussian beam. The power is first measured with
the iris diaphragm fully open. The iris aperture is then reduced until the measured power is 86.5% of the
initial value. Then the aperture radius is equal to the spot size. (See Problem 7.6.)
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and assuming solutions with azimuthal variation exp(i‘f), with ‘ ¼ 0,+1,+2, . . . in
order to have E(r, fþ 2p, z) ¼ E(r, f, z). It is straightforward to show that these
solutions have the form

Ep‘(r, f, z) ¼ A
w0

w(z)
ei‘f

r
ffiffiffi
2
p

w(z)

� j‘j
Lj‘jp

2r2

w2(z)

� �
e�r

2=w2(z)eikr
2=2R(z)e�i[(2pþ‘þ1) tan

�1 (z=z0)]:

(7:8:20)

Here p ¼ 0, 1, 2, . . . , w0, w(z) and R(z) have exactly the same form as in the case of
Hermite–Gaussian modes, and the functions L‘p are associated Laguerre polynomials,

Figure 7.20 Mode patterns obtained with a He–Ne laser. [H. Kogelnik and W. W. Rigrod,
Proceedings of the IRE (Correspondence) 50, 220 (1962). # IEEE]
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the lowest-order ones defined by

L‘0(x) ¼ 1,

L‘1(x) ¼ (‘þ 1)� x,

L‘2(x) ¼
(‘þ 1)(‘þ 2)

2!
� (‘þ 2)xþ x2

2!
:

Note that the lowest-order (p ¼ ‘ ¼ 0) Laguerre–Gaussian beam is identical to the
lowest-order (m ¼ n ¼ 0) Hermite–Gaussian beam, which is just the familiar
Gaussian beam (Section 7.5).

The mode E01(r, f, z) has an intensity profile proportional to

jE01(r, f, z)j2 ¼ jAj2 2w
2
0r

2

w4(z)
e�2r

2=w2(z): (7:8:21)

The intensity vanishes on axis (r ¼ 0) and grows to a maximum at r ¼ w(z)/2
before diminishing rapidly as r increases further, and so E01(r, f, z) is often called
a “doughnut” mode. Expressing this mode in rectangular coordinates (x ¼ r cosf,

TEM00 TEM10 TEM20

TEM01 TEM11 TEM21

TEM02 TEM12 TEM22

Figure 7.21 Variation of linear polarization across some low-order Gaussian mode patterns.
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y ¼ r sin f) as

E01(x, y, z) ¼ A
w0

ffiffiffi
2
p

w2(z)
e�r

2=w2(z)(xþ iy)eikr
2=2R(z)e�2i tan

�1 (z=z0), (7:8:22)

it is seen that it is just a superposition of the (m ¼ 1, n ¼ 0) Hermite–Gaussian mode
with i times the (m ¼ 0, n ¼ 1) Hermite–Gaussian mode. In fact any Laguerre–
Gaussian mode can be expressed as a linear combination of Hermite–Gaussian
modes and vice versa; both types of modes form a complete set.

But Laguerre–Gaussian beams with ‘ = 0 have a property that Hermite–Gaussian
modes do not: they have nonvanishing orbital angular momentum. The Laguerre–
Gaussian mode described by the electric field Ep‘(r, f, z) has an orbital angular momen-
tum about the z axis that amounts to ‘h� per photon.2 Such a beam incident on an
absorbing dielectric particle can therefore cause the particle to rotate. This consequence
of the conservation of angular momentum has been demonstrated with optical tweezers
(Section 14.5). It has also been demonstrated that Laguerre–Gaussian beams can be
used to produce vortices in a Bose-Einstein condensate (Section 14.6). Because of
their orbital angular momentum, Laguerre–Gaussian modes are often called OAM
(orbital angular momentum) states. For reasons of symmetry mentioned earlier in con-
nection with Hermite–Gaussian modes, Laguerre–Gaussian beams are not ordinarily
produced by lasers, although it has been possible to generate such modes in lasers
with very accurately aligned mirrors.3

7.9 RESONATORS FOR HE–NE LASERS

Many factors are involved in the design of laser resonators, including, of course, the
intended applications of the laser. Such things as mechanical stability and thermal
expansion coefficients of Brewster windows and mirrors must also be considered. A
detailed technical discussion of resonator construction is inappropriate here. Instead,
we will briefly apply some of the results obtained in the preceding sections to the
design of resonators for commercially available He–Ne lasers.

He–Ne lasers usually have hemispherical resonators (Fig. 7.8). This type of resonator
has low sensitivity to mirror misalignments and is easily adjusted. Unlike the confocal
resonator, for example, it is not difficult to obtain TEM00 oscillation with a hemispheri-
cal resonator. This mode is desirable for applications such as alignment and holography.
Higher-order Gaussian modes do not offer the same low beam divergence or the same
ability to be focused down to a tiny spot.

For the hemispherical resonator we have g1 ¼ 1, g2 ¼ 0, and g1g2 ¼ 0. It is therefore
on the border between stability and instability, as indicated by the fact that the spot size

2This may be understood from a quantum-mechanical perspective, in that Ep‘(r, f, z) is an eigenfunction of
the orbital angular momentum operator Lz ¼ ih� d/df. The orbital angular momentum is distinct from the
spin or intrinsic angular momentum of light, which is determined by the polarization and has a maximum
magnitude per photon of h�.
3For further reading on the orbital angular momentum of light see, for instance, the special issue on “Atoms
and the Orbital Angular Momentum of Light,” Journal of Optics B: Quantum and Semiclassical Optics 4
(April 2002).
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w2 in Table 7.2 is infinite, whereas w1 vanishes. Actual “hemispherical” resonators are
used with the mirror separation L slightly less than the radius of curvature R2, so that
g2 . 0 and g1 g2 . 0 (Fig. 7.22). The resonator is then stable.

Taking R1 ¼1 (flat mirror), R2 ¼ R, and

L ¼ R� DL, R� DL . 0, (7:9:1)

we can use the results of Table 7.2 to obtain approximate expressions for the spot sizes
in terms of L and DL. At the flat mirror we have the spot size (Problem 7.8)

w1 � l2LDL

p2

� �1=4
, (7:9:2)

and at the spherical mirror

w2 � l2L3

p2 DL

� �1=4
: (7:9:3)

Thus, the Gaussian mode spot size is much larger at the spherical mirror than at the flat
mirror, as indicated in Fig. 7.22. In fact, it follows from Table 7.2 that the beam waist
occurs at the flat mirror.

The spot sizes of Gaussian beam modes are usually very small. This is inefficient
in the sense that the laser beam intersects only a small fraction of the total volume
of the gain medium. Equation (7.9.3) indicates that w2 can be made large by making
DL smaller. By using a micrometer adjustment screw to vary DL, w2 can be made to
cover a significant portion of the output coupling mirror of Fig. 7.22. In this way
the size of the output beam can be varied while the laser is on (Problem 7.8). In prac-
tice, however, the spot sizes of commercial He–Ne lasers are not adjustable. In
fact, many such lasers are of the “hard-seal” type in which the mirror spacing is
permanently fixed.

Many commercial gas lasers have collimating mirrors at the output port. Figure 7.23
illustrates a design of such a mirror. The surface with radius of curvature R1 is highly
reflecting, while the bulk of the “mirror” consists of quartz or glass of refractive index
n. Curvatures R1 and R2 and refractive index n are chosen in such a way that the
output beam is collimated, that is, there is a new waist near the out-coupling mirror
(Problem 7.9). On the outer surface with radius of curvature R2 in Fig. 7.23 is an anti-
reflective coating to minimize the power in any secondary beam. (For a small additional

L = R – ΔL

R1 = ∞ R2 = R

Figure 7.22 Quasi-hemispherical resonator used in many commercial lasers.

7.9 RESONATORS FOR HE–NE LASERS 307



cost, one manufacturer of He–Ne lasers has guaranteed that the secondary beam will be
no brighter than 1/500 of the primary beam.)

Equation (7.5.25) shows that the larger the spot size at the waist of a Gaussian beam,
the smaller the beam divergence angle. In many applications it is important to minimize
the spot size over large distances of propagation. This can be accomplished by mounting
a “beam expander” to the output port of the laser. A beam expander is basically a
telescope in reverse. Figure 7.24 shows the basic principle of operation of Galilean
and Keplerian beam-expanding telescopes. A typical commercially available beam
expander magnifies the beam waist by a factor of 10. Figure 7.25 shows the spot size
as a function of distance for a He–Ne laser (l ¼ 632.8 nm) with and without such a
beam expander. Figure 7.26 shows a way of measuring the divergence angle of the
beam (see Problem 7.11).

Galilean 

(a) (b)

Keplerian 

Figure 7.24 Beam expanders of the (a) Galilean and (b) Keplerian type.
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Figure 7.25 Spot size as a function of distance for a He–Ne laser beam with and without a beam
collimator. (Adapted from an old Hughes Aircraft Company catalog.)
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Figure 7.23 (a) Design of collimating mirror and (b) formation of a secondary beam.
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The reader interested in the construction details of laser resonators is advised to con-
sult the websites and brochures provided by various manufacturers. These often include
useful summaries of the properties of Gaussian beam modes. This chapter should pro-
vide the reader with sufficient background to read these publications as well as the
research literature on resonators.

7.10 DIFFRACTION

We define diffraction, in broad terms, as the bending of light around some obstacle. As
such, diffraction is a distinctly wavelike phenomenon, inexplicable from the viewpoint
of geometrical rays of light. Some appreciation of diffraction is necessary for a more
complete understanding of laser resonators.

Let us start by mentioning Huygens’ principle. Huygens’ principle says that we can
imagine every point on a wavefront to be a point source for a spherical wave (Fig. 7.27).
This way of thinking about waves allows us to make accurate estimates about how

Laser 

Beam splitter 

q = w/f 

2w 

f

Figure 7.26 Setup for measuring the divergence angle u of a Gaussian beam.

A
B

C

D

S ′S

Figure 7.27 Huygens’ principle says we can imagine each point (such as A, B,C,D) on awavefront S
to be a source of spherical waves. The superposition of all these spherical waves gives the wavefront
(S0) elsewhere in space.
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they propagate, either in free space or in a medium or around obstacles. The first thing
we will do is to express Huygens’ principle in quantitative terms, so that we will be
able not only to understand why diffraction occurs but also to calculate diffraction
patterns for different obstacles. As in our discussion of Gaussian beams, we will confine
ourselves to a scalar-wave approach, ignoring for simplicity the polarization of
electromagnetic fields.

Consider the situation indicated in Fig. 7.28. We have a monochromatic wave propa-
gating in the z direction, and we are given the field values E(x, y, 0) in the xy plane. We
want to know what the field is on some observation plane a distance z away. In other
words, what is E(x, y, z), given E(x, y, 0)? Huygens’ principle tells us how to calculate
the field on the observation plane: We do it by regarding every point in the plane (x, y,
z ¼ 0) as a point source of spherical waves of the type (7.4.6). Every point (x0, y0, 0)
in the “source plane” acts as a source for a spherical wave that contributes to the point
(x, y, z) on the observation plane a field

DE(x, y, z) ¼ � i

l

eikr

r
E(x0, y0, 0) Da0, (7:10:1)

where

r ¼ [(x� x0)2 þ (y� y0)2 þ z2]1=2, (7:10:2)

k ¼ 2p/l, andDa0 is a tiny element of area surrounding the point (x0, y0, 0) on the source
plane, where the field has the value E(x0, y0, 0). We will not attempt to explain the origin
of the factor2i/l in (7.10.1); it arises in a slightly more mathematical version of
Huygens’ principle. The factor i will not be very important to us anyway because it
will not affect the calculation of measurable intensities. The appearance of the wave-
length l in (7.10.1) ensures that the two sides of the equation are dimensionally
consistent.

Following exactly the same approach as that leading from (7.4.6) to (7.4.10), we
replace the Huygens spherical wave (7.10.1) by

DE(x, y, z) � � i

lz
eikzeik[(x�x

0)2þ(y�y0)2]=2zE(x0, y0, 0)Da0: (7:10:3)

The theory of diffraction based on the approximation (7.10.3) is called the Fresnel
approximation, or simply Fresnel diffraction. Finally, we calculate the complete field
at the point (x, y, z) on the observation plane by integrating over all the point sources

(x ′, y ′, 0) (x, y, z)
z

Figure 7.28 Given the field distribution of a monochromatic wave in the plane z ¼ 0, what is the field
in a plane z . 0? We can answer this question using Huygens’ principle.
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on the source plane, that is, by summing up the contributions from all the Huygens
spherical waves:

E(x, y, z) � � ieikz

lz

ð ð
E(x0, y0, 0)eik[(x�x0)2þ(y�y0)2]=2zdx0 dy0: (7:10:4)

The exponential in the integrand of (7.10.4) can be rewritten

eik(x
2þy2)=2zeik(x

02þy02)=2ze�ik(xx
0þyy0)=z: (7:10:5)

The first factor on the right is independent of the integration variables x0, y0 and may be
pulled outside the integral in (7.10.4). The important special case of Fraunhofer diffrac-
tion occurs if the inequality

z� k(x02 þ y02), (7:10:6)

holds for all points (x0, y0) on the source plane aperture. In this case,

eik(x
02þy02)=2z � 1, (7:10:7)

and

E(x, y, z) � � ieikz

lz
eik(x

2þy2)=2z
ð ð

E(x0, y0, 0)e�ik(xx0þyy0)=z dx0 dy0: (7:10:8)

This can be called the Fraunhofer diffraction integral and is basically just the two-
dimensional Fourier transform of E(x0, y0, 0).

† The Fresnel approximation retains only the first two terms of the expansion

kr ¼ k[(x� x0)2 þ ( y� y0)2 þ z2]1=2

¼ kzþ k

2z
[(x� x0)2 þ ( y� y0)2]� k

8z3
[(x� x0)2 þ ( y� y0)2]2 þ � � � , (7:10:9)

in eikr. As such it is a valid approximation if the third term is small, that is, if

z3 � p

4l
[(x� x0)2 þ ( y� y0)2]2max (Fresnel approximation), (7:10:10)

where [. . .]max denotes the largest value of interest of the quantity in brackets. The Fraunhofer
approximation, on the other hand, assumes that

z� p

l
[x02 þ y02]max (Fraunhofer approximation), (7:10:11)

which is less often satisfied in the sense that larger values of z are required than in the Fresnel
approximation. An example of (7.10.11) will be given in the following section. †
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7.11 DIFFRACTION BY AN APERTURE

In this section we will use the Fraunhofer diffraction formula to treat the diffraction of
light by an aperture. This example is useful for a qualitative understanding of other
diffraction problems, as we will see. The Fraunhofer diffraction formula is very import-
ant, and it is generally much easier to work with than the Fresnel formula (i.e., the inte-
grals are easier to work out). In the following sections we will relate the Fresnel
diffraction formula (7.10.4) to the paraxial wave equation, Gaussian beams, and more
general types of laser resonators.

We will consider a circular aperture of diameter D ¼ 2a, upon which is incident a
uniformmonochromatic plane wave. We have already indicated in Fig. 7.12 the solution
of this diffraction problem, and now we will derive the solution using the Fraunhofer
diffraction formula (7.10.8).

Since we are considering a uniform plane wave incident upon the aperture, we have
E(x0, y0, 0) ¼ E0 everywhere on the aperture and E(x0, y0, 0) ¼ 0 everywhere on the
opaque screen. That is, the aperture is uniformly illuminated with a field of amplitude
E0, whereas the screen is perfectly absorbing and as such is not a source of any
Huygens wavelets. The integral in (7.10.8), therefore, becomes an integral over the
x0y0 coordinates of the aperture alone:

ð ð
E(x0, y0, 0)e�ik(xx0þyy0)=z dx0 dy0 ¼ E0

ð ð
e�ik(xx

0þyy0)=z dx0 dy0: (7:11:1)

Because the aperture is circular, it is convenient to use circular coordinates for both the
source and observation planes:

x ¼ r cos u, y ¼ r sin u, (7:11:2a)

x0 ¼ r0 cos u0, y0 ¼ r0 sin u0, (7:11:2b)

xx0 þ yy0 ¼ rr0( cos u cos u0 þ sin u sin u0) ¼ rr0( cos u0 � u), (7:11:2c)

dx0 dy0 ¼ r0 dr0 du0: (7:11:2d)

In terms of these coordinates we haveð ð
aperture

e�ik(xx
0þyy0)=z dx0 dy0 ¼

ða
0
r0 dr0

ð2p
0

e�ikrr
0 cos (u0�u)=z du0

¼ 2p
ða
0
J0

krr0

z

� �
r0 dr0, (7:11:3)

where we have written the integral over u0 as a zeroth-order Bessel function of the first
kind, J0. This integral representation of J0 is a standard one that may be found in integral
tables. Furthermore ða

0
J0

krr0

z

� �
r0 dr0 ¼ a2

2
2J1(kar=z)
kar=z

, (7:11:4)
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where J1 is the first-order Bessel function of the first kind, a graph of which is given in
Fig. 6.13. In Fig. 7.29 we plot the function 2J1(x)/x appearing in Eq. (7.11.4).

Using these results in (7.10.8), we have

E(r, z) ¼ (�ieikzeikr2=2z)pa
2

lz

2J1(kar=z)
(kar=z)

, (7:11:5)

for the field at the observation plane. Note that E is independent of u, compatiblewith the
circular symmetry in our example. The intensity distribution over the observation plane
is determined by jEj2 and is therefore independent of the first factor in (7.11.5), since it
has unit modulus. Thus, after writing 2p/l for k everywhere, we obtain the intensity
distribution corresponding to (7.11.5):

I(r, z) ¼ I0
pa2

lz

� �2
[2J1(2par=lz)]2

(2par=lz)2
, (7:11:6)

where I0 is the intensity of the incident (uniform) plane wave. This is the Fraunhofer
diffraction pattern for a circular aperture. Its general properties may be inferred from
Fig. 7.29.

For a given distance z of the observation plane from the plane containing the aperture,
the intensity has its maximum at r ¼ 0, that is, “on axis,” where the intensity is

I(0, z) ¼ pa2

lz

� �2
I0: (7:11:7)

We may write (7.11.6) as

I(r, z) ¼ I(0, z)
[2J1(2par=lz)]2

(2par=lz)2
: (7:11:8)

2J1(x) 
x

1.0 1.0 

0
–2p 2p

0 –2p 2p x x 

2J1(x) 2 

x

Figure 7.29 The functions 2J1(x)/x and [2J1(x)/x]
2.
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The factor multiplying I(0, z) determines the variation of intensity with r in the obser-
vation plane. The intensity distribution (7.11.8) is called the Airy pattern, after the
British astronomer G. B. Airy,4 who derived it in 1835.

Away from r ¼ 0 in the observation plane the intensity decreases, reaching zero at the
value of r satisfying J1(2par/lz) ¼ 0. Since J1(x) ¼ 0 at x ¼ 1.22p (Fig. 7.29), there is
a zero in the Airy pattern at

r0 ffi 1:22
lz

D
: (7:11:9)

As indicated in Fig. 7.12, this radius of the central bright spot, or Airy disk, increases
linearly with z. We may define the divergence angle

u ¼ tan�1
r0
z
� r0

z
¼ 1:22

l

D
, (7:11:10)

which is Eq. (7.5.24). The small-angle approximation in (7.11.10) is made because we
are considering apertures large compared to a wavelength, that is, l/D is small.

As we increase r beyond r0, the intensity rises above zero again, but it is much smaller
than in the central bright region. There is a pattern of successively dimmer concentric
rings, as indicated in Fig. 7.12. The intensity in the observation plane does not cut
off sharply at any radius r, and the light spreads out beyond the geometrical size of
the aperture. Of course, this is just what we mean by “diffraction.”

Another feature of the Airy pattern is that the radius r0 of the central bright spot
is directly proportional to the wavelength and inversely proportional to the diameter
of the aperture. This feature is characteristic of the diffraction of light by apertures of
arbitrary shapes: The larger the wavelength and the smaller the aperture, the more
pronounced will be the diffractive “spreading” of the field.

† To check condition (7.10.11) for the validity of the Fraunhofer approximation, consider the
following example. Let l ¼ 632.8 nm and a ¼ 1 cm. In this case (x 02 þ y 02)max ¼ a2 and
(7.10.11) gives the condition z� 496 m for the validity of the Fraunhofer approximation. [The
reader may easily convince himself that the condition (7.10.10) for the validity of the Fresnel
approximation can be satisfied with much smaller values of z.] This makes Fraunhofer diffraction
seemof doubtful relevance in the laboratory.However, it turns out that the use of lenses restores the
relevance of Fraunhofer diffraction even for small values of z (Problem 7.12). Indeed, a whole
branch of optics called Fourier optics is based essentially on this property of lenses.5

It may be shown, for instance, that the image of a point source in the focal plane of a circular
lens is not a point, as predicated by geometrical ray optics, but an Airy pattern. Thus, the image of
a star formed in a telescope is an Airy pattern. IfD is the diameter of the lens, and f its focal length,
this Airy pattern is given by (7.11.8) with a ¼ D/2 and z ¼ f. The diameter of the Airy disk is

d0 ¼ 2r0 ¼ 2:44
fl

D
: (7:11:11)

4Airy is believed to be the first person (in 1827) to correct astigmatism in the eye (his own) by using cylind-
rical eyeglass lenses.
5See, for example, J. W. Goodman, Introduction to Fourier Optics, 2nd ed. McGraw-Hill, New York, 1996.
Fourier optics is so named because it deals extensively with Fourier transforms such as, for instance, Eq.
(7.10.8).
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The fact that the image of a point is an Airy pattern rather than a point is essential to the
understanding of resolution limits of optical instruments such as the human eye. If two distant
objects subtend a very small angle, it is hard to distinguish (or “resolve”) them if their diffraction
patterns in the focal plane of a lens overlap. A useful measure of resolution is provided by the
Rayleigh criterion: We say that two points are “just resolved” if the central maximum of the
Airy pattern of the image of one coincides with the first zero in the Airy pattern of the other
(Fig. 7.30). If the point sources were brought closer together, wewould say (somewhat arbitrarily)
that they were no longer resolvable. Thus, two point sources are just resolved if their angular
separation (Du) is equal to the angular radius of the Airy disk of the image of either source
(Fig. 7.30):

(Du)min ¼
r0
f
¼ 1:22

l

D
: (7:11:12)

As an example, consider the human eye. Assuming a lens aperture (i.e., pupil) diameter D ¼
2.5 mm, and a mean optical wavelength l ¼ 550 nm, we have a resolution limit of

(Du)min ¼ 2:7� 10�4 rad: (7:11:13)

If we are to distinguish the headlights of a car as two separate sources, their angular separation
subtended at the eye must, according to the Rayleigh criterion, be no smaller than (Du)min,
that is,

h

d
� (Du)min, (7:11:14)

where h is the distance between the headlights and d is the distance from the observer to the car.
Thus, the two headlights are resolvable if the car is not farther than a distance dmax ¼ h/(Du)min

away. Taking h ¼ 1.2 m, this distance is

dmax ¼ 1:2 m
2:7� 10�4

¼ 4:4 km: (7:11:15)

If the car is farther away, the headlights will be blurred together and not resolvable. (Actually,
we are ignoring the refractive index of the vitreous humor, and the fact that the pupil diameter
of the dark-adapted eye is dilated.)

O
Dq 

Dq 1.22lf/D 

f 
O ′

Figure 7.30 According to the Rayleigh criterion, two points O and O0 are just resolved in the focal
plane of a lens when the first minimum of the image of one coincides with the central maximum of the
image of the other.
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Equation (7.11.11) for the diameter of the Airy disk associated with a point source is
frequently written as

d0 ¼ 2:44lf#, (7:11:16)

where the dimensionless number f # ¼ f/D is called the f number. The intensity of light in the
focal plane of the lens may be shown to be inversely proportional to the square of the
f number; this is probably intuitively reasonable to anyone who has ever tried to burn things
using sunlight and a magnifying glass.

The “stops” marked on manual-focus cameras reflect this dependence of focal-plane intensity
(or, optically speaking, “illumination”) on f number. Sequences of numbers such as 2, 2.8, 4, 5.6,
8, 11, 16, 22 on the diaphragm (aperture) setting for the camera lens are f numbers such that the
square of each f # is approximately twice the square of the preceding one. A shift from one f# to
the next one requires that the exposure time be doubled in order to get the same film exposure
(“exposure” equals illumination times exposure time). An f/2.8 setting with an exposure time
of 1/250 s, for instance, will give the same exposure as an f/4 setting with a 1/125 s exposure
time. The minimum f # of a given lens is obtained with the diaphragmwide open. The smaller this
minimum f #, the “faster” the lens is said to be (and usually the more expensive).

Telescopes are also characterized by their f #, in this case defined as the effective focal length
divided by the diameter of the primary mirror or lens. Whereas photographers change the f #
by changing the diaphragm setting, astronomers usually do it by changing the focal length.

The field radiated, reflected, or transmitted by a two-dimensional object can be written as a
Fourier integral with “spatial frequencies” kx, ky, kz such that k2 ¼ k2x þ k2y þ k2z ¼ n2v2=c2,
where n is the refractive index at wavelength l. Information about the smallest spatial variations
on the object is contained in the largest spatial frequencies kx and ky. It might be argued that the
largest value of k2x þ k2y is given by (k2x þ k2y )max ¼ k2, and therefore that resolution of spatial
structure on an object is limited to scales

D � 2p
k
¼ 2pc

nv
¼ l

n
, (7:11:17)

and larger. Indeed it is often said that the resolution possible with a lens, for example, is limited
by the wavelength. Note, however, that in writing (7.11.17) we implicitly assumed that
k2z � 0, implying that (k2x þ k2y )max ¼ k2. This assumption ignores so-called evanescent waves

for which k2z ¼ n2v2=c2 � k2x � k2y 	 0; evanescent waves decay with distance z from an
object as

exp(�jkzjz) ¼ exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y � n2v2=c2

q
z

� �
: (7:11:18)

They are present whenever the field in some plane z ¼ 0 has spatial frequency components kx, ky
such that k2x þ k2y . n2v2=c2. In total internal reflection at a glass–air interface, for example,

k2x þ k2y , n2gv
2=c2 on the glass side, whereas k2x þ k2y . n2av

2=c2 on the air side. (ng and na
are, respectively, the refractive indices of glass and air.) The evanescent wave on the air side

decreases with distance z as exp(2az), where a ¼ (4pna=l)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n2g=n

2
a) sin

2 ui � 1
q

and ui is the

angle of incidence. Evanescent waves are therefore necessary in general to characterize comple-
tely the field. Since they decay exponentially with distance, they can usually be ignored
as a practical matter, in which case (7.11.17) provides a valid practical limit to resolution. But
this is not a fundamental limit, and in fact techniques have been developed to “capture” the
evanescent field components and thereby to resolve spatial variations on an object on a scale
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smaller than the wavelength of the light from the object.6 The fact that subwavelength resolution
is possible can be proved more generally based on the analytic properties of the Fourier-integral
representation of the object field.5 †

7.12 DIFFRACTION THEORY OF RESONATORS

The Fresnel diffraction formula (7.10.4) is intimately related to our theory of Gaussian
beams based on the paraxial wave equation. If E0(x, y, z) satisfies (7.4.19), and is
specified in the plane (x, y, z ¼ 0), then

E0(x, y, z) ¼ � i

lz

ð ð
E0(x

0, y0, 0)eik[(x�x
0)2þ(y�y0)2]=2z dx0 dy0, (7:12:1)

and therefore [recall Eq. (7.4.13)]

E(x, y, z) ¼ � ieikz

lz

ð ð
E(x0, y0, 0)eik[(x�x0)2þ(y�y0)2]=2z dx0 dy0, (7:12:2)

which is precisely (7.10.4). In other words, the Fresnel diffraction formula (7.10.4) is the
solution of the paraxial wave equation when the field is specified in a plane (x, y, z ¼ 0)
transverse to the propagation direction.

† We will not take the time to derive (7.12.1) from (7.4.19). For the reader familiar with such
things, we note that the function

K(x, y; x0, y0; z) ¼ � ieikz

lz
eik[(x�x

0)2þ(y�y0)2]=2z, (7:12:3)

is a Green function, or propagator, of the paraxial wave equation.
Our Gaussian beam solutions of the paraxial wave equation therefore satisfy (7.12.2). This is

most easily seen in the Fraunhofer limit (7.10.8). In this case E(x, y, z) and E(x0, y0, 0) are related
by a Fourier transform, and since the Fourier transform of a Gaussian function is again a Gaussian
function, it follows that a Gaussian beam remains a Gaussian beam as it propagates. †

Suppose we have a laser resonator and we know the field E0(x, y, 0) on the mirror at
z ¼ 0. Then from (7.12.1) we know that the field at the mirror at z ¼ L is7

E0(x, y, L) ¼ � i

lL

ð ð
E0(x

0, y0, 0)eik[(x�x
0)2þ(y�y0)2]=2L dx0 dy0

¼
ð ð

K(x, y; x0, y0)E0(x
0, y0, 0) dx0 dy0: (7:12:4)

6See, for example, J. B. Pendry, Physical Review Letters 85, 3966 (2000) for a discussion of the possibility of
realizing a “perfect lens” with metamaterials in which the refractive index is negative.
7The implicit assumption of planar mirrors here is of no real consequence. The plane z ¼ 0 could be any
plane between the mirrors, and the condition for a resonator mode [Eq. (7.12.7)] is that the field spatial pattern
is reproduced in a round trip that begins and ends on this plane.
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Similarly, we can use (7.12.4) in (7.12.1) to obtain the field on the first mirror after one
round trip through the resonator:

~E0(x, y, 0) ¼
ð ð

K(x, y; x0, y0)E0(x
0, y0, L) dx0 dy0

¼
ð ð

K(x, y; x0, y0) dx0 dy0
ð ð

K(x0, y0; x00, y00)E0(x
00, y00, 0) dx00 dy00

¼
ð ð ð ð

K(x, y; x0, y0)K(x0, y0; x00, y00) dx0 dy0
� 

E0(x
00, y00, 0) dx00 dy00

¼
ð ð

~K(x, y; x00, y00)E0(x
00, y00, 0) dx00 dy00, (7:12:5)

where

~K(x, y; x00, y00) ¼
ð ð

K(x, y; x0, y0)K(x0, y0; x00, y00) dx0 dy0: (7:12:6)

Continuing in this manner, we obtain the field at each mirror after any arbitrary
number of round trips (or “bounces”) through the resonator. Now according to our dis-
cussion in Section 7.7, a mode of the resonator is defined as a field distribution that does
not change on successive bounces inside the resonator. Because we are dealing with the
modes of an empty resonator with no gain medium, the mode amplitudes will decrease
on successive bounces due to diffraction at the mirrors, but the field distribution, or
spatial pattern, will not. That is, a mode of the field is such that ~E0(x, y, 0) is simply
E0(x, y, 0) times some (complex) number:

~E0(x, y) ¼ gE0(x, y), (7:12:7a)

or

gE0(x, y) ¼
ð ð

~K(x, y; x0, y0)E0(x
0, y0) dx0 dy0, (7:12:7b)

where for simplicity we drop the explicit reference to the z dependence.
Since diffractive losses at the mirrors can only diminish the total field energy inside

the resonator, we must have jgj , 1. In an actual “loaded” laser resonator, stimulated
emission in the gain medium will compensate for this diffractive loss and all other
losses. Equation (7.12.7) is simply a condition that the empty-cavity field distribution
must satisfy if steady-state mode patterns are to exist.

For resonators with Gaussian beam modes, the integral equation (7.12.7) does not
give any new results. However, the formulation of the mode problem based on
(7.12.7) is useful when the spot sizes w1, w2 given in Table 7.2 are comparable to or
larger than the mirror radii. As discussed in Section 7.7, our Gaussian beammode analy-
sis in this case is inapplicable. From Table 7.2 it is seen that this happens when g1g2 is
close to 0 or 1, or is such that the stability condition (7.7.19) is violated.

When the Gaussian beam mode analysis breaks down, the resonator modes may be
found by solving (7.12.7) numerically. This is usually done according to the method
developed by Fox and Li in 1961: One starts by assuming some field E0(x, y) on a
mirror, usually just E0(x, y) ¼ constant. The field is then “propagated” to the other
mirror by doing the integral (7.12.4) numerically. The field obtained on the second
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mirror is then propagated back to the first mirror by another numerical computation
based on (7.12.4). This procedure is then iterated until the field on the mirrors is
unchanged (within some prescribed numerical error) on successive iterations, except
for a constant factor g. The field so obtained is then a solution of (7.12.7), that is, it is
a mode of the resonator. In practice, this method will yield straightforwardly only one
mode, that of lowest round-trip loss, but certain numerical “tricks” can be employed
to obtain higher-loss modes.

Figures 7.31 and 7.32 are reproduced from the original Fox–Li study. For the
example shown, about 300 iterations were necessary for the iterative procedure to con-
verge on a mode of the resonator.
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Figure 7.31 Field amplitude distribution computed by Fox and Li for a resonator with flat rectangu-
lar mirrors. The parameters are such that the Fresnel number a2/bl ¼ 6.25. The iteration process was
begun assuming a uniform plane-wave field on one of the mirrors. [From A. G. Fox and T. Li, Bell
System Technical Journal 40, 453 (1961).]
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Figure 7.32 Dependence on iteration number of the amplitude at a fixed point on a mirror, as
computed by Fox and Li for the case of Fig. 7.31.
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† Equation (7.12.7) may be written in the operator form

ĜE0 ¼ gE0, (7:12:8)

where Ĝ is the operator corresponding to a round trip through the resonator, that is, Ĝ is defined by
its effect on functions f (x, y):

Ĝf (x, y) ;
ð ð

~K(x, y; x0, y0)f (x0, y0) dx0 dy0: (7:12:9)

According to (7.12.8), the modes of a resonator are the eigenfunctions of the operator Ĝ for the
resonator. The number g is the eigenvalue corresponding to the eigenfunction E0(x, y). This
sounds a bit like the mathematics of quantum mechanics. Here, however, Ĝ is generally not a
Hermitian operator; for instance, the eigenvalues g are complex, whereas the eigenvalues of a
Hermitian operator are always real. †

7.13 BEAM QUALITY

Most applications of lasers are based at least in part on the collimation and focusing prop-
erties of laser beams. In the ideal case a laser beam is diffraction limited, that is, its diver-
gence is completely determined by diffraction, as we have assumed in our discussion of
Gaussian beams. In reality the output from a laser may not be a TEM00 Gaussian beam.
Imperfections such as mirror misalignments will cause part of the output to belong to
higher-order modes, or cause random phase variations across the output wavefront,
resulting in “off-axis” radiation and a beam divergence greater than that associated
solely with the diffraction of the TEM00 mode. This could result in a significant increase
in the spot size of the focused beam and a decrease in the focused intensity.

The diffraction-limited divergence angle of the idealized lowest-order Gaussian beam
is given by Eq. (7.5.25):

u ¼ l

pw0
: (7:13:1)

Based on this equation, it is common to write the divergence angle of a laser beam as

uM ¼ M2l

pw0
, (7:13:2)

which definesM2, a commonly used “times diffraction limit” measure of beam quality.
The spot size of the beam after focusing with a lens of focal length f is

w0M ¼ fuM ¼ M2lf

pw0
, (7:13:3)

as compared to (7.6.20). M2 is one of the specifications typically provided by laser
manufacturers. For a typical He–Ne laser operating on the TEM00 mode, M2 , 1.1,
whereas for high-power multimode lasers M2 might be �10 or even larger. Formula
(7.13.3) is the basis for the measurement of M2.
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Another frequently used measure of beam quality is the Strehl ratio, which is defined
as the ratio of the peak intensity in the focal plane to the diffraction-limited peak inten-
sity. The Strehl ratio so defined is 1/M2.

We have assumed that the beam divergence can be characterized by a single M, but
more generally it is necessary to specify values ofM along each of two orthogonal direc-
tions in the plane perpendicular to the propagation direction.

Beam quality can be improved (“beam cleanup”) using the spatial filter sketched in
Fig. 7.33. The first lens focuses the laser output onto the pinhole, which has a diameter
slightly larger than the diameter of the focused beam. Off-axis rays are focused at points
away from the focal spot of the main beam, and therefore do not pass through the
pinhole. The light from the pinhole then passes through the second lens, resulting in a
well-collimated, “high-quality” beam. Note that beam cleanup by spatial filtering can
be done simultaneously with beam expansion (see Fig. 7.24).

7.14 UNSTABLE RESONATORS FOR HIGH-POWER LASERS

Our emphasis on stable laser resonators should not be taken to imply that unstable reso-
nators have no practical applications. On the contrary, unstable resonators enjoy certain
advantages, and they are essential to the design of some important high-power lasers.

Stable resonators have some drawbacks if one wants to build a high-power device.
A major disadvantage is that the modes of stable resonators tend to be concentrated
in very thin, needlelike regions within the resonator. Therefore, they do not overlap a
very large portion of the gain medium, and this obviously presents a problem if
high-power extraction from the medium is desired. A Gaussian beam mode of a stable
resonator, for instance, has a spot size on the order of (lL/p)1/2 [see Eq. (7.7.21)].
For a CO2 laser with l ¼ 10.6 mm and L ¼ 1 m,

lL

p

� �1=2
¼ 1:8 mm, (7:14:1)

a typical sort of beam “size” for Gaussian beam modes of stable resonators.
Unstable resonators, however, typically have much larger mode volumes and can

therefore make better use of the available gain region. Figure 7.34 shows an important
practical example of an unstable resonator, the so-called positive-branch (because
g1g2 . 1) confocal resonator. As indicated, the intracavity field fills a large portion
of the cavity and can be made larger simply by using larger mirrors. The “magnification”
m is a function only of the g parameters of the mirrors.

Laser

Figure 7.33 Beam cleanup by spatial filtering.
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Iterative computations of the Fox–Li type reveal that the modes of unstable resona-
tors like that shown in Fig. 7.34 are distinctly non-Gaussian. To a first approximation the
lowest-loss mode has a nearly uniform intensity profile on the mirrors. The output beam
for the resonator shown in Fig. 7.34 is a collimated annular (doughnut-shaped) beam in
the near field close to the resonator. In the far field this output beam has a central bright
spot on axis. In the limit of large magnification this far field approaches an Airy pattern,
with most of the intensity concentrated in the central bright spot.

Unstable resonators offer other advantages in addition to their large mode volumes.
For instance, they tend to yield higher output powers when operating on the lowest-loss
transverse mode rather than on several (or many) modes. This property is not generally
shared by stable-resonator lasers, and it is an important advantage in many applications.
In addition, unstable-resonator lasers use all-reflective optics. That is, the output does
not pass through any mirrors but simply spills around the mirror edges. At high
power levels, where mirror damage is an important consideration, the mirrors can
often be water cooled without much difficulty. Obviously, the problem of mirror
damage and thermal distortion is not so easily surmountable in stable laser resonators
employing transmissive output coupling.

The theory of unstable-resonator lasers does not differ in any fundamental way
from that of stable-resonator lasers. For this reason, and because stable resonators are
more common, we will not consider in any detail the mode characteristics of unstable
resonators.

7.15 BESSEL BEAMS

In discussing Gaussian beams in Section 7.5 we introduced both the paraxial factoriz-
ation (7.4.13),

E(r) ¼ E0(r)eikz, (7:15:1)

and several approximations [recall Eqs. (7.4.14) and (7.4.15) based on the presumed
slow variation of the plane-wave envelope E0]. These are natural steps to takewhen deal-
ing with beams that spread very little. Surprisingly, they do not lead to a description of
the beams that spread the least of all. There is a set of ideally nonspreading beams that are
described by Bessel functions rather than by Hermite–Gaussian or Laguerre–Gaussian
functions.

a 
ma

Figure 7.34 A positive-branch (g1g2 . 1) confocal unstable resonator. The near-field output is a
collimated, annular beam.
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In contrast to the “weak” paraxial factorization (7.4.13), there is also a “strong”
factorization.8 It is introduced by requiring the envelope function E0 to be completely
independent of z. That is, in place of (7.15.1) we write

E(r) ¼ E0(x, y)e
ibz, (7:15:2)

wherewe have indicated explicitly the absence of z dependence in the envelope function.
In this case, in place of (7.4.19) we find the equation

[r2
T þ b2]E0(x, y) ¼ 0, (7:15:3)

where r2
T is the transverse Laplacian defined in (7.4.20). It is easy to check that Eq.

(7.15.3), which is the Helmholtz equation in two dimensions rather than three, is an
exact consequence of the strong paraxial factorization (7.15.2). There are no leftover
terms required to be negligible, as there were in the transition from (7.4.16) to
(7.4.18). The solution to the two-dimensional Helmholtz equation was known to be
given in terms of Bessel functions at least 50 years before the time of Helmholtz. The
solutions are most conveniently expressed in cylindrical coordinates r and f:

x ¼ r cosf and y ¼ r sinf: (7:15:4)

The solution that is finite at the origin is given by

E0 �! Em(x, y) ¼ AJm(ar)e
imf, (7:15:5)

where A is a constant and Jm(x) is themth Bessel function, the same functions introduced
in our discussion of FM mode locking in Section 6.10 and shown in Fig. 6.13. In order
for (7.15.5) to satisfy the two-dimensional Helmholtz equation, and for (7.15.2) to
satisfy the full three-dimensional Helmholtz equation (7.4.3), it is only necessary that
a and b be connected by the frequency of the light:

a2 þ b2 ¼ v

c

� �2
: (7:15:6)

It is clear from (7.15.5) that only the lowest-order solution, the one with m ¼ 0, is
cylindrically symmetric (independent of f). This is analogous to the situation found
earlier with Hermite–Gaussian modes in Section 7.8. Inspection of Fig. 6.13 shows
that the lowest-order mode also gives the most intense beam near the axis (near r ¼ 0).

The most remarkable feature of the Bessel mode solutions described here is that they
are, in the ideal case, completely nondiffracting. To show precisely what this statement
means, let us compute the intensity of radiation associated with the general Bessel
solution (7.15.5). The physical electric field is the real part of E(r)e�ivt, which in this
case is given by

Em(r, t) ¼ AJm(ar) cos(vt � kzþ mf): (7:15:7)

8J. Durnin, Journal of the Optical Society of America A 4, 651 (1987).
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The cycle-averaged power flow of the mth Bessel beam mode is then easily seen to be
given by

Im(r, t) ¼ ce0
2

A2J2m(ar), (7:15:8)

and this function has the surprising property that it is completely independent of z.
That is, at every value of z (every distance of propagation) the intensity of an ideal

Bessel beam has exactly the same x, y dependence. By contrast, Gaussian beams are
characterized by their waist function w(z), which grows from a minimum value w0 in
the course of propagation, and it is the growth of the beam waist that determines a
Gaussian beam’s far field (recall Fig. 7.11). By contrast, Bessel beams are characterized
by the same transverse distribution of intensity (the same “waist”) at every value of z and
so do not diverge at all. In this sense they can be said to constitute perfectly nondiffract-
ing beams.

Onemay recall that the intensity distribution of light propagated through a circular aper-
ture, graphed in Fig. 7.29, is expressed in (7.11.6) in terms of the Bessel function J1. The
argument of the Bessel function in that application, however, depends explicitly on z and
so is quite different from that derived here for a Bessel beam. This comparison of (7.11.6)
and (7.15.5) shows that nonspreading Bessel beams will not be created by transmitting a
plane wave through a circular aperture. That raises the question how Bessel beams can be
realized in practice. One might think that any practical realization would involve apertures
that would inevitably prevent the development of the strong paraxial character expressed in
(7.15.2), and thus lead back to a Gaussian beam. However, this is not the case, and the
remarkable properties of Bessel beams can actually be realized over substantial regions
of space.

To explain one method for creating a Bessel beam in practice, we will concentrate
on the most important case, the cylindrically symmetric lowest-order Bessel beam.
The zero-order Bessel function J0(ar) can be represented by an integral:

J0(ar) ¼ 1
2p

ð2p
0

eia(x cosfþy sinf) df: (7:15:9)

The full x, y, z dependence of the solution is then obtained by combining (7.15.2) with
(7.15.5) for m ¼ 0, and using the integral expression for J0 to get

E0(r) ¼ A

2p

ð2p
0

ei[a(x cosfþy sinf)þbz] df: (7:15:10)

This can be rewritten and interpreted directly in physical terms by defining a “wave
vector” q whose components are given by

q ¼ (a cosf, a sinf, b): (7:15:11)

Then we have

E0(r) ¼ A

2p

ð2p
0

eiq�r df: (7:15:12)
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The advantage of this form is that it can be interpreted physically. It says that a zero-order
Bessel mode consists of all possible plane waves with wave vectors q whose length is
restricted by a2 þ b2 ¼ (v/c)2, whose polar angle of inclination to the z axis is fixed

at the value tan u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q
=qz ¼ a=b, and whose azimuthal anglesf are completely

unrestricted. In other words, these are all wave vectors of length q ¼ v/c lying on the
surface of a cone with opening angle u, as shown in Fig. 7.35.

This mathematical description suggests a method of creating a Bessel beam in prac-
tice. A very narrow annular aperture normal to the z axis can be illuminated from one
side. If the aperture slit is narrow enough, it acts as a circular line source of light. A
lens placed with the aperture in its focal plane will then transmit a cone of light just
as (7.15.12) requires. In the space beyond the lens the optical field will be given by
J0(ar). Of course, the inevitably finite size of the circular aperture and of the lens
will tend to destroy some of the ideal features of the Bessel beam. In particular, as
Fig. 7.36 shows, the cone of light will be only finitely wide and its elements will not
overlap on the z axis beyond a certain point.

We denote by Zmax the point on the z axis where the geometrical rays shown in the
figure no longer overlap. It is found by simple geometrical arguments to be given by

Zmax ¼ r

tan u
, (7:15:13)

where tan u ¼ a/b and r is the radius of the lens. However, the Bessel solution is more
than just a geometrical ray property of the light field, and experiments reported in 1987

q 

f q

Figure 7.35 The cone of wave vectors making up the Bessel beam defined by (7.15.11) and
(7.15.12).

Plane

Wave

Input

r
Bessel beam

Zmax

q

Figure 7.36 Cross section of an arrangement for creating the Bessel beam (7.15.10). Illumination of
a narrow annular slit from the left by a plane wave creates a circle of coherent point sources. These give
rise to the required cone of rays on the right side of the lens. Here Zmax ¼ r/tan u ¼ rb/a. [From
J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Physical Review Letters 58, 1499 (1987).]
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showed that the nondiffracting nature of the Bessel mode persists even beyond the
point z ¼ Zmax, although the intensity is much diminished.

As an example of some of the striking differences between Bessel and Gaussian
beams, let us consider the propagation of a very narrow Bessel beam of wavelength
l ¼ 500 nm in a region empty of lenses or other media or boundaries. Suppose that
at z ¼ 0 the aperture (lens diameter in Fig. 7.36) has area pr2 ¼ (5 mm)2 and that the
central Bessel spot is rather small with areapa2 ¼ (50mm)2. It can easily be determined
geometrically that (Zmax)

2 ¼ (pr2/l)(pa2/l), or Zmax ¼ pra/l, which in this example
means Zmax � 0.5 m. For comparison, a Gaussian beam with its waist in the aperture
plane and as small as the central Bessel spot [namely, a beam area of (50 mm)2] will
have a Rayleigh range [recall Eq. (7.5.19)] given by z0 � 1 cm, much smaller than
Zmax. This illustration is designed to be “favorable” for a Bessel beam, to show that it
can propagate without spreading and with significant intensity much farther than a
Gaussian beam with an equally small central spot. However, the Gaussian beam
would not have to have its waist in the aperture plane, as we assumed here. With a suffi-
ciently large lens at z ¼ 0, we could arrange for the Gaussian waist (focal spot) to occur
at any distance down the z axis. Even then, wherever the (50-mm)2 Gaussian focal spot is
placed, it will have a depth of field of only �1 cm. The significant difference between
Bessel and Gaussian beams is therefore the much greater depth of field of the Bessel
beam’s “focal region.”

Bessel mode beams are of course not ideal in every respect, and the lack of beam
divergence is achieved at some cost, both theoretically and practically. In principle,
the Bessel solution is valid only in infinite transverse x–y space. This is true also
of the Gaussian beam solution. However, the Gaussian beam solution falls to zero so
rapidly with increasing x and y (away from the z axis) that a Gaussian beam does not
“notice” that infinite x–y space is actually not available to it in any real laboratory.
This is less true of the Bessel beam, which falls to zero in the transverse directions
rather slowly:

Im(ar) ¼ ce0
2

A2J2m(ar) �
1
ar

cos2(arþ d), (7:15:14)

for large values of x and y. An important consequence of the cosine-squared character
of (7.15.14) is that the energy of a Bessel beam is contained in concentric rings of
width given by ar ¼ p, and the intensity is approximately equal in each ring:

ð
one ring

Im(ar)r dr df � 2p
a

ð
cos2(arþ d) dr ¼ p

a2
, (7:15:15)

where the transverse integration is carried out over one period of Jm. Thus, we see that
an ideal Bessel mode beam must carry an infinite amount of energy in its transverse
skirt. This is also true (obviously) of plane waves, but is in strong contrast to a
Gaussian beam, for which only a very small fraction of energy will be in the skirt outside
the central beam spot.

Finally, we should mention that Eq. (7.15.14) explains the apparent conflict between
the existence of nondiffracting beams and the familiar Fourier principle (or, in quantum
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theory, the Heisenberg uncertainty principle), which requires

Dk? Dr . (2p)2, (7:15:16)

where Dk? is the dispersion of the transverse component of the beam wave vector (h�k?
is the transverse photon momentum in quantum theory) and Dr is the transverse
dispersion in the beam wave solution. As it happens, because of the slow falloff of
the intensity of the Bessel beam’s skirt, as given in (7.15.14), the dispersion Dr
actually diverges. Because Dr is infinite, Dk? can be zero (no diffraction at all) without
violating (7.15.16).

PROBLEMS

7.1. (a) Prove that the ray matrix for the optical system consisting of a straight section
followed by a thin lens is different from that for a thin lens followed by a
straight section.

(b) Verify Eq. (7.3.3).
(c) Using ray matrix multiplication, show that two thin lenses of focal lengths f1

and f2 placed in contact are equivalent to a single thin lens of focal length

f ¼ f1f2
f1 þ f2

or
1
f
¼ 1

f1
þ 1

f2
:

7.2. Show that the resonators sketched in Figs. 7.8 and 7.9 are stable and unstable,
respectively.

7.3. (a) Prove that the spherical wave (7.4.6) satisfies the Helmholtz equation (7.4.3).
(b) Verify condition (7.4.11) for the validity of (7.4.10).
(c) Verify Eq. (7.5.26) for the intensity of a Gaussian beam.
(d) Show that the intensity (7.5.26) of a Gaussian beammay bewritten in the form

I(r, z) ¼ 2P
pw2(z)

e�2r
2=w2(z),

where P is the total beam power:

P ¼ 2p
ð1
0
I(r, z)r dr:

7.4. Show that the magnitude of the radius of curvature of a Gaussian beam is changed
upon reflection from a spherical mirror, unless (a) the mirror has infinite radius of
curvature (flat mirror), or (b) the radius of curvature of the mirror equals that of the
Gaussian beam.

7.5. Verify Eqs. (7.7.14) and (7.7.16) for the resonance frequencies of TEM00

Gaussian modes of resonators with nearly flat mirrors.
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7.6. Consider the arrangement sketched in Fig. 7.19 for the measurement of the spot
size of a TEM00 Gaussian beam. Show that the aperture passes about 86.5% of the
total beam power when its radius equals the spot size.

7.7. (a) Show that the intensity patterns of Fig. 7.20 may be associated with the trans-
verse Gaussian modes indicated.

(b) Show that the low-order, linearly polarized Gaussian modes have the polariz-
ation patterns indicated in Fig. 7.21.

7.8. (a) Derive expressions (7.9.2) and (7.9.3) for the Gaussian mode spot sizes on the
mirror of a quasi-hemispherical resonator.

(b) A 632.8-nm He–Ne laser with a mirror separation of 50 cm has a micrometer
adjustment to vary the separation between a flat mirror and an output mirror of
radius of curvature R ¼ 50 cm. If spot sizes between 1 and 2 mm are desired
for the output beam, over what range must the mirror separation vary? Over
what range will the spot size at the flat mirror vary?

7.9. Consider the optical element sketched in Fig. 7.23. Take the refractive indices
inside and outside the element to be n and 1.0, respectively.
(a) Show that the ray matrices associated with the first and second spherical inter-

faces are

1 0
n� 1
nR1

1
n

" #
and

1 0
1� n

R2
n

" #
,

respectively.
(b) Determine the ray matrix for the optical element in terms of n, R1, R2, and the

thickness x.
(c) A particular He–Ne laser (Spectra-Physics Model 124) employed a collimat-

ing mirror with R1 ¼ 2 m, R2 ¼ 64 cm, and x ¼ 4 mm. Thewaist of the output
beam occurred at a distance of 28 cm from the collimating mirror. Determine
the refractive index n.

7.10. Figure 7.25 plots the output beam spot size vs. distance for a 632.8-nm He–Ne
laser, both with and without a beam collimator with a magnification of 10.
Derive the equations satisfied by these two performance curves.

7.11. Figure 7.26 shows a possible experimental setup for measuring the divergence
angle u of a Gaussian beam. Show that

u ¼ w

f
,

wherew is the beam spot size in the focal plane of the lens of focal length f. Does it
matter where we intercept the beam from the laser?

7.12. In the paraxial approximation a thin lens converts an incident wavewith a constant
phase in the (x, y) plane to a converging spherical wave with phase exp[2ik(x2þ
y2)/2f ], where f (.0) is the focal length [cf. Fig. 7.14 with R1 ¼1 and R2 ¼ f ].
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Show that, for the purpose of calculating the intensity in the focal plane (z ¼ f ),
the effect of the lens is to replace the Fresnel diffraction formula (7.10.4) by the
Fraunhofer formula (7.10.8). (Note: Departures from paraxiality are responsible
for aberrations that reduce image quality.) Show more generally that the lens law,

1
d0
þ 1
di
¼ 1

f
,

is satisfied, where d0 and di are defined in Fig. 7.14.

7.13. A company that builds pulsed Nd : glass lasers used in making razor blades and in
other laser welding applications provides a focus spot estimator. A “multiplier
value,” such that the focal length in millimeters times the multiplier value gives
the focus spot size in microns, is given for each of a set of beam diameters. For
a 350-W laser the multiplier values for beam diameters of 10, 15, and 20 mm
are 1.5, 1.0, and 0.75, respectively. For a 550-W laser the corresponding multi-
plier values are 3.5, 2.3, and 1.75.
(a) Explain how these multiplier values might have been calculated.
(b) Does the beam quality increase or decrease with laser power?

7.14. A laser is to be used to make cuts in steel. You are asked to choose between two
10.6-mm CO2 lasers, one with an output power of 300 W and a beam quality
characterized by M2 ¼ 1.2 and the other with an output of 400 W and M2 ¼ 2.
Both lasers have a beam size of 10 mm before focusing. Which is the better
choice in terms of maximizing the focused intensity?
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8 PROPAGATION OF LASER RADIATION

8.1 INTRODUCTION

It is important for a wide variety of applications to have a basic understanding of how
laser radiation propagates in various media under various conditions depending on
the laser wavelength, intensity, pulse duration, and other factors. In our treatment of
propagation thus far we have made some simplifying assumptions, such as the plane-
wave approximation, to describe how the radiation intensity propagates in an absorbing
or amplifying medium, or we have gone beyond the plane-wave approximation but
restricted ourselves to idealized monochromatic fields. We have also largely ignored
the possibility of spatial variations of the refractive index.

The utility of these simplifications should not be underestimated. The (monochro-
matic) Gaussian beams discussed in the preceding chapter, for instance, do in fact pro-
vide an accurate description of the output of many lasers. However, it is also true that
there are important features of the propagation of laser radiation that are not amenable
to treatments based on plane waves, monochromaticity, or a constant refractive index.
We will now consider the propagation of both monochromatic and nonmonochromatic
laser beams in media other than vacuum or the absorbing or amplifying media con-
sidered thus far. We begin, in the following section, by deriving the wave equation
(8.2.13), which is the basis for the analysis of nearly every propagation problem of
interest and was the starting point for our derivation of the paraxial wave equation for
monochromatic fields in Chapter 7.

The most important examples of nonmonochromatic radiation are laser pulses
produced, for instance, by Q switching or mode locking. In this chapter we introduce
some basic concepts of laser pulse propagation, such as group velocity and group
velocity dispersion, and we describe methods for mitigating the deleterious effects of
group velocity dispersion. These concepts are especially important in the theory of ultra-
short pulse generation and in fiber-optic communication systems (Section 15.6). We
treat the propagation of radiation in optical fibers as an important example of propagation
in the case of a spatially varying refractive index. We then discuss two aspects of
electromagnetic wave propagation—Rayleigh scattering and birefringence—that are
important not only for applications but also for an understanding of many natural optical
phenomena. This is followed by a discussion of some of the concepts involved in the
propagation of laser radiation in Earth’s turbulent atmosphere, where the refractive
index undergoes random fluctuations.
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We restrict ourselves in this chapter to media characterized by a linear refractive
index, that is, a refractive index that is independent of the strength of the field; the propa-
gation is then described by linear partial differential equations [e.g., Eq. (8.2.20)].
Nonlinear propagation effects are considered in Chapter 10.

8.2 THE WAVE EQUATION FOR THE ELECTRIC FIELD

Our treatment of absorption and gain in Chapter 3 was based on the rate at which
an atom in an electric field gains or loses energy. Equations such as (3.12.5) were
derived on the basis of energy conservation rather than the fundamental Maxwell
equations for the electromagnetic field. Similarly, our derivation of the paraxial
wave equation in Chapter 7 proceeded not from Maxwell’s equations but rather
from a consequence of these equations, namely the wave equation (7.4.1) for the
electric field in vacuum. We will now describe in much more detail the propagation
of light, and in particular the highly directional (and mostly paraxial) light from a
laser, starting from Maxwell’s equations. We presume that the reader has some
familiarity with Maxwell’s equations and understands that they are the basis for
the most fundamental description of electric and magnetic fields and therefore of
light.1 For a dielectric medium with no free electric charges or currents,
Maxwell’s equations are

r�D ¼ 0, (8:2:1)

r�B ¼ 0, (8:2:2)

r�����E ¼ � @B
@t

, (8:2:3)

r�����H ¼ @D
@t

: (8:2:4)

The electric displacement D is defined by

D ¼ e0Eþ P, (8:2:5)

where P is the polarization density, that is, the electric dipole moment per unit
volume, and the “permittivity of free space,” e0, is given by 1/4pe0 ¼
8.98755�109 N-m2/C2. The magnetic intensity vector H is defined by

B ¼ m0(HþM), (8:2:6)

where M is the magnetic dipole moment per unit volume and m0 ¼ 4p � 1027

N/A2 is the permeability of free space.

1This is true even in the quantum theory of light in which the electric and magnetic fields are quantum mech-
anical operators satisfying Maxwell’s equations.
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The magnetic susceptibility xm of a medium is defined by writing M ¼ xmH, in
which case (8.2.6) is usually written as B ¼ mH, where m ¼ m0(1 þ xm) is the magnetic
permeability of the medium. In the case of a time-varying electromagnetic field m is
a function of the field frequency, but at or near optical frequencies this dependence is
negligible and in fact for practical purposes we can take m ¼ m0, that is, B ¼ m0H.
Then, applying the curl operation to both sides of (8.2.3), we obtain

r� (r�����E) ¼ �r� @B
@t
¼ �m0

@

@t
(r�H) ¼ �m0

@2D
@t2

: (8:2:7)

Now we use the general identity

r� (r�����E) ¼ r(r�E)�r2E (8:2:8)

of vector calculus to write (8.2.7) as

r(r�E)�r2E ¼ �m0
@2D
@t2

: (8:2:9)

Finally, we use the definition (8.2.5) of D and rearrange terms:

r2E�r(r�E)� 1
c2
@2E
@t2
¼ 1

e0c2
@2P
@t2

: (8:2:10)

Here we have used the fact that

e0m0 ¼
1
c2

, (8:2:11)

where c ¼ 2.99792458�108 m/s is the velocity of light in vacuum.
Equation (8.2.10) is a partial differential equation with independent variables x, y, z,

and t. It tells us how the electric field E(x, y, z, t) depends on the electric dipole moment
density P of the medium. We will be particularly interested in transverse fields (also
called solenoidal or radiation fields), which satisfy (see below)

r�E ¼ 0: (8:2:12)

Transverse fields therefore satisfy the wave equation

r2E� 1
c2
@2E
@t2
¼ 1

e0c2
@2P
@t2

: (8:2:13)

This is the fundamental electromagnetic field equation for most purposes.2 In the
absence of any medium the right-hand side is zero and we have the “homogeneous”
wave equation

r2E� 1
c2
@2E
@t2
¼ 0, (8:2:14)

which was the basis for our derivation of the paraxial wave equation in Section 7.4.

2As noted in Section 3.2 (see also Problem 3.2), light interacts with matter primarily through its electric field,
the effect of the magnetic field being very small. For this reason we always write propagation equations for
the electric field.
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To make use of (8.2.13) we must specify the polarization P. This cannot be done
within the framework of Maxwell’s equations alone, for P is a property of the material
medium in which the field E propagates; we need to know how an electric dipole
moment density P is produced in the medium.

Let us for simplicity consider here a single component of the electric field and polar-
ization vectors, and replace (8.2.13) by the scalar wave equation,

r2E � 1
c2
@2E

@t2
¼ 1

e0c2
@2P

@t2
: (8:2:15)

Let us furthermore consider a monochromatic field of frequency n ¼ v/2p, and write

E(r, t) ¼ E(r,v)e�ivt, (8:2:16a)

and similarly

P(r, t) ¼ P(r,v)e�ivt: (8:2:16b)

In this case (8.2.13) reduces to

r2E(r,v)þ v2

c2
E(r,v) ¼ � v2

e0c2
P(r,v): (8:2:17)

If the medium consists of N particles per unit volume, each of which has a dipole
moment p, the polarization density is Np. We assume that the medium has no polariz-
ation in the absence of a field, so that the only dipole moments p in the medium are
induced by the field, that is, the electric field causes charge displacements that result
in an induced dipole moment

p(r, v) ¼ a(v)E(r, v) (8:2:18)

in an atom at r. The polarizability a(v), which we have already introduced in Section
3.14, depends not only on v but also on the transition frequencies and oscillator
strengths of the atoms of the medium. In terms of the atom density and the polarizability,
Eq. (8.2.17) becomes

r2E(r, v)þ v2

c2
E(r, v) ¼ � v2

e0c2
Na(v)E(r, v), (8:2:19)

or

r2E(r, v)þ n2(v)
v2

c2
E(r, v) ¼ 0, (8:2:20)

where

n2(v) ¼ 1þ 1
e0

Na(v): (8:2:21)

Equation (8.2.20) implies that when a field of frequency v propagates in a medium,
the velocity of light—which in the absence of any medium has the same value, c, for all
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frequencies—is c/n(v). In other words, n(v) is the refractive index. More precisely,
c/n(v) is the phase velocity of light of frequency v in a medium of refractive index
n(v). To see this, consider a monochromatic plane wave propagating in the z direction:

E(z, t) ¼ E0e
�i(vt�kz), (8:2:22)

or

E(r, v) ¼ E0e
ikz: (8:2:23)

In this case (8.2.20) implies k2 ¼ n2(v)v2/c2, or k ¼+n(v)v/c, and

E(z, t) ¼ E0e
�iv[t+n(v)z=c], (8:2:24)

which shows that c/n(v) is indeed the phase velocity of light of frequency v. Explicit
formulas for the refractive index in terms of transition wavelengths and oscillator
strengths have been given in Section 3.14.

Note that, for a field of frequency v,

D(r, v) ¼ e0E(r, v)þ P(r, v) ¼ e0E(r, v)þ Na(v)E(r, v)

¼ 1(v)E(r, v), (8:2:25)

where 1(v) is the permittivity of the medium. We have assumed that p (and therefore D)
is linearly proportional to E, that 1(v) is a scalar, i.e., that D points in the same direction
as E, and that 1(v) does not depend on r. In this caser .D(r, v) ¼ 0 ¼ 1(v)r .E(r, v)
in a charge-neutral medium. Then, since r . E(r, v) ¼ 0 for every frequency v, the
transversality condition (8.2.12) for E(r, t) must be satisfied. As discussed in Section
8.8, E and D do not always point in the same direction.

† The fact that the velocity c appearing in thewave equation (8.2.13) is numerically equal to the
speed of light in vacuum led Maxwell to conclude that light is an electromagnetic phenomenon,
or, in his words, “the luminiferous ether and the electromagnetic medium are one.” The first con-
clusive experimental corroboration of Maxwell’s theory was provided by Hertz in 1887, 8 years
after Maxwell’s death. Hertz observed that sparks between metal spheres produced sparks across
a second pair of spheres and showed that the “disturbance” (radiation) transmitted between the
two pairs of spheres could be reflected, focused, and refracted. He produced oscillatory sparking
at 3�107 cycles per second with an induction coil and, by determining the nodes of a standing-
wave pattern, inferred a wavelength of 9.6 m and, therefore, a propagation velocity of about
3�108 m/s for the electromagnetic disturbance.

The first evidence for a finite velocity of light was obtained by Olaf Roemer (1676) from his
observations of the eclipses of Jupiter’s moon Io. Jupiter’s moons orbit the planet in nearly the
same plane in which Jupiter and Earth orbit the sun and, as seen from Earth, they are periodically
eclipsed by Jupiter. Roemer observed that successive eclipses occurred more frequently when
Earth was moving toward Jupiter than when it was moving away—a consequence of what we
would today call the Doppler effect—and attributed the difference to a finite velocity of light.3

In 1725 Bradley deduced from the aberration of starlight, that is, the changes in the apparent pos-
ition of a star due to the motion of Earth, that c � 3�108 m/s.

3A detailed discussion of Roemer’s work is given by J. H. Shea, American Journal of Physics 66, 561 (1998).
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Fizeau (1849) made the first terrestrial determination of c using a rotating toothed wheel such
that light passing through a gap between the “teeth” and reflected off a mirror 8.6 km away
could either pass through a gap or be blocked by the rotating wheel. From the gap spacing and
the angular velocity of the wheel, Fizeau obtained c ¼ 3.15�108 m/s. Using a rotating mirror
instead of a wheel, Foucault obtained c ¼ 2.986�108 m/s. In a long series of experiments
Michelson used a rotating mirror to obtain, in 1935, c ¼ (2.99774+1.1)�108 m/s. Actually
these experiments measure the group velocity of light, which under the conditions of the exper-
iments is very nearly equal to c, the velocity of light in vacuum (Section 8.3).

Similarmeasurements of c can bemade using a laser and a rotatingmirroror bysweeping a laser
beam across a small hole in an opaque screen to produce a “pulse” incident on a beam splitter near
the hole. Part of the pulse reflected off the beam splitter is incident on a photodiode that triggers an
oscilloscope, and the other part travels some distance before being reflected onto a second photo-
diode that produces a second pulse profile on the oscilloscope. Comparison of the two pulse traces
yields, from the sweep speed of the oscilloscope, the propagation time of the second pulse and
therefore its velocity. The accuracy of such “direct” measurements of c is limited by the accuracy
(�1%) with which the propagation time can be inferred from the oscilloscope trace.

Because of its fundamental significance, dozens of careful measurements of c have been car-
ried out since Michelson’s experiments. The most accurate measurements by far have employed
frequency-stabilized lasers (Section 5.13) and the relation c ¼ ln, where l and n are the wave-
length and frequency, respectively. Whereas optical wavelengths can be measured very accu-
rately, the measurement of optical frequencies (�1014–1015 Hz) is much more challenging.
Optical frequencies have been measured using techniques for frequency multiplication of
nearly monochromatic millimeter waves produced by klystrons (frequencies �70 GHz) and sub-
sequent measurement of a beat frequency between the frequency-multiplied radiation and the fre-
quency-stabilized laser. In this way laser frequencies have been measured to an accuracy of a few
parts in 10210 or better, resulting in determinations of c with uncertainties ,1 m/s, an improve-
ment by a factor �100 over previous (prelaser) measurements.4 The redefinition of the meter by
the International Committee on Weights and Measurements in 1983 resulted in the value c ¼
299792458 m/s for the velocity of light in vacuum. †

8.3 GROUP VELOCITY

The phase velocity c/n(v) characterizes an idealized monochromatic wave, which has
no beginning or end and obviously cannot be realized. Any electromagnetic wave of
finite duration has a distribution of frequencies, and consequently when it propagates
in a dielectric medium it has a distribution of phase velocities. But pulses often propa-
gate with a well-defined velocity, called the group velocity, which we now discuss.

The derivation of the formula for the group velocity is somewhat complicated, and so
we begin with a trivial “derivation” that leads to the correct result. We consider a field
that is the superposition of two plane waves with the same polarization and amplitude
but differing slightly in frequency v and “wave number” k ¼ nv/c. The sum of the
two waves is proportional to

E(z, t) ¼ cos [(vþ Dv)t � (k þ Dk)z]þ cos [(v� Dv)t � (k � Dk)z]

¼ 2 cos(vt � kz) cosDv t � Dk

Dv
z

� �
: (8:3:1)

4Even more accurate measurements of optical frequencies are discussed in Section 14.7.
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The factor cos(vt2 kz) is a “carrier” wave with phase velocity vp ¼ v/k ¼ c/n(v). The
second cosine factor gives the wave modulation, or “envelope.” If Dv and Dk are small
in magnitude compared to v and k, the envelope is slowly varying in space and time
compared to the carrier and propagates with the velocity Dv/Dk, the velocity of
points z such that t 2 (Dk/Dv)z is constant. From this we might guess that if we add
waves with a small and continuous spread in frequencies and wave numbers around v
and k, wewill obtain similarly a carrier wavewith phase velocity c/n(v) and an envelope
that propagates with the velocity

vg ¼ dv

dk
: (8:3:2)

This is the correct formula for the group velocity. Writing k ¼ n(v)v/c, we have 1/vg ¼
dk/dv ¼ [n(v) þ v dn/dv]/c, or

vg ¼ c

nþ v dn

dv

: (8:3:3)

The group velocity is commonly written as c/ng, where the group index

ng; nþ v dn

dv
: (8:3:4)

We will now derive this formula in a manner that is not only more rigorous but that
also allows us to understand better the physical significance of group velocity. It will
suffice to make the plane-wave approximation for the electric field propagating in the
z direction, writing it as a continuous superposition of plane waves with different fre-
quencies and guided by the monochromatic solution given in Eq. (8.2.24):

E(z, t) ¼
ð1
�1

dv0~E(v0)e�i[v
0t�k(v0)z], (8:3:5)

where again k(v0) ¼ n(v0)v0/c. We assume that the field oscillates primarily at a carrier
frequency, which we denote by v, and write v0 ¼ v þ D in (8.3.5), so that we can write
this equation equivalently as

E(z, t) ¼
ð1
�1

dD ~E(vþ D)e�i(vþD)teik(vþD)z

¼ e�i[vt�k(v)z]
ð1
�1

dD ~E(vþ D)e�iDtei[k(vþD)�k(v)]z

; E(z, t)e�i[vt�k(v)z]: (8:3:6)

The Taylor series expansion of k(v þ D) gives

k(vþ D)� k(v) ¼ D
dk

dv

� �
v

þ 1
2
D2 d2k

dv2

� �
v

þ 1
6
D3 d3k

dv3

� �
v

þ � � � , (8:3:7)
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so that differentiation of E(z, t) with respect to z results in

@E
@z
¼ i

ð1
�1

dD ~E(vþ D) D
dk

dv

� �
v

þ 1
2
D2 d2k

dv2

� �
v

þ 1
6
D3 d3k

dv3

� �
v

þ � � �
� 

� e�iDtei[k(vþD)�k(v)]z: (8:3:8)

Noting that

@E
@t
¼ �i

ð1
�1

dDD~E(vþ D)e�iDtei[k(vþD)�k(v)]z,

@2E
@t2
¼ �

ð1
�1

dDD2~E(vþ D)e�iDtei[k(vþD)�k(v)]z,

@3E
@t3
¼ i

ð1
�1

dDD3~E(vþ D)e�iDtei[k(vþD)�k(v)]z,

(8:3:9)

we can write (8.3.8) as

@E
@z
¼ � dk

dv

� �
v

@E
@t
� i

2
d2k

dv2

� �
v

@2E
@t2
þ 1
6

d3k

dv3

� �
v

@3E
@t3
þ � � � ,

or

@E
@z
þ 1
vg

@E
@t
þ i

2
d2k

dv2

� �
v

@2E
@t2
� 1
6

d3k

dv3

� �
v

@3E
@t3
þ � � � ¼ 0, (8:3:10)

which is sometimes written as

@E
@z
þ 1
vg

@E
@t
þ i

2
b
@2E
@t2
� 1
6
b3

@3E
@t3
þ � � � ¼ 0, (8:3:11)

where, for n � 3,

bn ;
dnk

dvn

� �
v

: (8:3:12)

This equation for the envelope function E(z, t) determines the evolution of the field
E(z, t) ¼ E(z, t) exp (�i[vt � k(v)z]).

So far there are no approximations. If we now recall the assumption that E(z, t) oscillates
primarily at frequency v, which was used to motivate the Taylor series expansion in
Eq. (8.3.7), then it is clear that E(z, t) must be slowly varying in time compared to
exp(2ivt). Another way to say this is that ~E(vþ D) in Eq. (8.3.6) is negligible unless
jDj 
 v, so that terms of higher powers in D in (8.3.8) must be small. Whether the term
that goes as Dn is small enough to be neglected depends, of course, on the value of the
coefficient (dnk/dvn)v multiplying it. It is often the case that the dispersion of the
medium, that is, the dependence of k ¼ n(v)v/c on v, is such that the terms with n � 2
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are very small compared to (1=vg)@E=@t. Then (8.3.10) can be replaced by

@E
@z
þ 1
vg

@E
@t
¼ 0: (8:3:13)

The approximation that E(z, t) not only varies slowly in t compared to exp(2ivt)
but also slowly in z compared to exp[ik(v)z]), similar to the approximation made in
Section 7.4 [recall Eqs. (7.4.14) and (7.4.15)], is called the slowly varying envelope
approximation. The replacement of (8.3.10) by (8.3.13) is an additional approximation,
based on the assumption that the dispersion of the medium and the variation of E with t
are sufficiently small that we can ignore all the terms in (8.3.10) involving second and
higher derivatives of E with respect to t.

Equation (8.3.13) has solutions of the form5

E(z, t) ¼ F t � z

vg

� �
¼ F(t) t ¼ t � z

vg

� �
, (8:3:14)

implying distortionless propagation at the velocity vg of the field envelope. For example,
if the field envelope at z ¼ 0 corresponds to a Gaussian pulse of light,

E(0, t) ¼ E0e
�t2=2t 2p , (8:3:15)

it retains the same Gaussian form at all propagation distances z:

E(z, t) ¼ E0e
�(t�z=vg)2=2t 2p : (8:3:16)

Note that the time tp characterizes the pulse duration at all points z, that is, the pulse not
only remains Gaussian, it also maintains the same Gaussian width (and the same peak
amplitude, E0).

† The phase velocity, c/n(v), exceeds the speed of light in vacuum when n(v), 1. This
occurs, for instance, in a plasma when the field frequency v is greater than the plasma frequency
(Section 3.14). A phase velocity greater than c is not in conflict with the theory of special rela-
tivity, which requires that the velocity of a signal not exceed c. A signal in this sense represents
information; phase velocity is simply the velocity of points of constant phase of amonochromatic
wave, which cannot carry information because it is simply a sinusoidal oscillation of the field for
all times. To encode information on a wave we must turn it on and off, for example, and such a
wave form cannot be monochromatic.

The formula (8.3.3) indicates that the group velocity of a pulse can exceed cwhen (dn/dv)v is
negative, as occurs, for instance, in the case of anomalous dispersion (Section 3.15). Again there
is no conflict with special relativity because group velocity, like phase velocity, is not the velocity
with which a signal, or information, is transmitted. The reasons for this are rather subtle in the
case of group velocity, and here we will only touch on the basic idea.

If we have a field like the Gaussian (8.3.16), which is smoothly varying and has no
beginning or end, we can determine the field at a time t þ Dt at any point z from the field at

5To see this, note that, with E(z, t) of the form (8.3.14), @E=@z ¼ [dF=dt][@t=@z] ¼ �(1=vg) dF=dt and
@E=@t ¼ [dF=dt][@t=@t] ¼ dF=dt, so that (8.3.13) is satisfied. Note also that the function F(t) is arbitrary;
for example, F(t) ¼ exp (�t 2=t 2

p ) and F(t)¼ t 2 are both solutions of (8.3.13). What determines the actual
form of F(t)?
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time t by a Taylor expansion:

E(z, t þ Dt) ¼ E(z, t)þ @E
@t

� �
Dt þ 1

2
@2E
@t2

� �
(Dt)2 þ � � � : (8:3:17)

Therefore, the field at a given time is fully predictable from the field at earlier times and so does
not provide any information not already contained in the field at earlier times. While E may pro-
pagate with a group velocity greater than c, no new information is being propagated with a vel-
ocity greater than c. New information is only transmitted when the field varies in such away that it
is not a simple “analytic continuation” like (8.3.17) of its value at an earlier time. In other words,
new information is associated with a discontinuity in the field or one of its derivatives, such that a
Taylor expansion is inapplicable. It is such a point of discontinuity that represents information
that, according to special relativity, cannot propagate with a velocity exceeding c.

Group velocities exceeding c have in fact been measured in various experiments. In one type
of experiment the repetition frequency vg/2L of pulses in a resonant absorber has been found to
exceed the value c/2L characteristic of a mode-locked laser of length L (see Problem 15.4).

Equation (8.3.3) suggests that the group velocity of a pulse can even be infinite or negative if
dn/dv is negative and sufficiently large in magnitude. An infinite group velocity occurs when the
peak of a pulse like (8.3.16) at the end of the medium occurs at the same time as the peak of the
pulse at the entrance to the medium. A negative group velocity means that the peak of the exiting
pulse occurs before the pulse at the entrance to the medium reaches its peak. Infinite and negative
group velocities have also been observed experimentally.

According to Eq. (8.3.3) the group velocity can be very small compared to c if dn/dv is large
and positive. It has been demonstrated experimentally that pulses of light can propagate with
group velocities on the order of a few meters per second or less; in fact it has been shown that
the group velocity can be controlled to such an extent that a pulse of light can be brought to a
complete stop and then regenerated. Such effects are considered in Section 9.10.

While group velocities that are very large or very small are fascinating, they occur under cir-
cumstances that are sufficiently unusual that they have not yet appeared in practical applications,
and therefore we will not consider them further here. †

8.4 GROUP VELOCITY DISPERSION

Distortionless pulse propagation at the group velocity vg is often—but not always—an
excellent approximation to what is observed. Deviations from this idealization are due to
the terms neglected in going from Eq. (8.3.10) to the approximation (8.3.13).

Corrections to the approximation (8.3.13) involve second and higher derivatives of
E with respect to time. In other words, corrections to (8.3.13) should be most significant
when E varies rapidly in time, as occurs in the case of very short pulses. Consider the
first correction to (8.3.13) obtained by including the term proportional to @2E=@t2
in (8.3.10):

@E
@z
þ 1
vg

@E
@t
þ i

2
b
@2E
@t2
¼ 0, (8:4:1)

where we recall

b ¼ d2k

dv2
¼ d

dv

1
vg

� �
¼ 1

c
2
dn

dv
þ v

d2n

dv2

� �
: (8:4:2)
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b, which is evaluated at the carrier frequency v, is a measure of group velocity
dispersion (GVD), that is, the variation of the group velocity with frequency. In terms
of the wavelength l ¼ 2p c/v,

b ¼ l3

2pc2
d2n

dl2
: (8:4:3)

If there is no group velocity dispersion (b ¼ 0), a pulse will propagate at the group
velocity vg without any change in its temporal shape; for example, the Gaussian pulse
(8.3.16) will retain exactly its Gaussian form.6 To solve Eq. (8.4.1) with b=0 it is
convenient to introduce the new independent variables

h ¼ z and t ¼ t � z=vg,

in terms of which

@E
@z
¼ @E

@h

@h

@z
þ @E

@t

@t

@z
¼ @E

@h
� 1
vg

@E
@t

,

@E
@t
¼ @E

@h

@h

@t
þ @E

@t

@t

@t
¼ 0þ @E

@t
,

@2E
@t2
¼ @2E

@t2
,

and (8.4.1) becomes

@E
@h
þ i

2
b
@2E
@t2
¼ 0 (t ¼ t � z=vg): (8:4:4)

This equation describes the propagation of the field envelope E in a reference frame
moving with the group velocity vg. It has the same form as the paraxial wave equation
(7.4.18) for a monochromatic field when in that equation we ignore variations
along the y direction:

@E
@h
� i

2k
@2E
@x2
¼ 0: (8:4:5)

That is, Eq. (8.4.4) is identical to (8.4.5) when we replace t by x and b by 21/k.7

Equation (8.4.5) describes the propagation of a monochromatic wave of wavelength
l ¼ 2p/k when we account for variations along only one direction (x) tranverse to the
direction (z) of propagation. If the wave has a transverse spread Dx � a at z ¼ 0,
Eq. (8.4.5) tells us that after a propagation distance z the transverse diffractive
spread will be Dx � z/ka. By analogy, therefore, Eq. (8.4.4) implies that a plane-wave

6We are assuming there is no absorption or amplification that might change the pulse shape.
7These equations have the same form as the Schrödinger equation ih�@c/@t¼ �(h� 2/2m)@2c=@x2 for a free
particle of mass m. See Problem 8.4.
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pulse of duration tp will, after propagating a distance L, have a duration

Dt � L

(1=jbj)tp ¼
Ljbj
tp

: (8:4:6)

In other words, GVD should cause a pulse to spread in time, the spread relative to the
initial pulse duration tp being

Dt

tp
� L
jbj
t 2p

, (8:4:7)

which will be small if the propagation distance L is small compared to

LGVD ;
t 2p
jbj : (8:4:8)

LGVD decreases—pulse distortion due to group velocity dispersion increases—as the
pulse duration decreases or as jbj increases. For propagation distances small compared
to LGVD, we can expect a pulse to propagate without much change in its shape.

As this argument suggests, the analogy between the propagation of a plane-wave
pulse with group velocity dispersion [Eq. (8.4.4)] and the paraxial propagation of a
monochromatic wave [Eq. (8.4.5)] is very useful. In the case of paraxial wave propa-
gation, Gaussian beams play a special role: An initially Gaussian beam remains
Gaussian upon propagation in free space (Section 7.6). Likewise, laser pulses with
Gaussian temporal profiles play a special role in the theory of pulse propagation in
dispersive media. By analogy with (7.5.2), let us assume a solution of Eq. (8.4.4) of
the form

E(z, t) ¼ Ae�it
2=2bq(z)eip(z), (8:4:9)

where A is a constant and the functions q(z) and p(z) are solutions of the equations

dq

dz
¼ 1,

dp

dz
¼ i

2q
(8:4:10)

that follow upon substitution of (8.4.9) in (8.4.4). Thus

q(z) ¼ zþ q(0) ¼ zþ q0,

p(z) ¼ i

2
ln 1þ z

q0

� �
,

(8:4:11)

where we have taken p(0) ¼ 0; therefore

E(z, t) ¼ Ae�(1=2) ln (1þz=q0)e�it
2=2b(zþq0) ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z=q0
p e�it

2=2b(zþq0): (8:4:12)
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For a Gaussian pulse at z ¼ 0,

E(0, t) ¼ Ae�t
2=2t 2p ¼ Ae�it

2=2bq0 , (8:4:13)

implying q0 ¼ it 2
p =b. After some straightforward algebra we obtain

E(z, t) ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ibz=t 2p

q e�t
2=2t 2p (z)e�iQ(z,t) (8:4:14)

and

jE(z, t)j2 ¼ tp
tp(z)

jAj2e�t 2=t 2p (z), (8:4:15)

where

tp(z) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 2p þ (bz=tp)2

q
¼ tp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2=L2GVD

q
, (8:4:16)

Q(z, t) ¼ bzt 2

2t 2p t
2
p (z)

: (8:4:17)

Therefore, a Gaussian pulse of duration tp at z ¼ 0 remains Gaussian as it propagates in a
medium with GVD parameter b, but it spreads in time according to (8.4.16). It also
acquires a phase Q(z, t) that varies with both z and t. For a propagation distance z
large enough that jbjz�t 2p

tp(z)
tp
ffi jbjz

t 2p
, (8:4:18)

which is equivalent to (8.4.6), and

Q(z, t) ffi t 2

2bz
: (8:4:19)

Comparing Eq. (8.4.16) and (7.5.18), we see that tp and LGVD for a plane-wave pulse
with a Gaussian temporal shape correspond, respectively, to w0 and z0 for a monochro-
matic beam with a Gaussian transverse spatial profile.

The temporal broadening of a pulse due to GVD occurs simply because different
frequency components of the pulse propagate with different velocities:

Dt ¼ D
z

vg

� �����
���� ffi z

d

dv

1
vg

� �����
����Dv ¼ jbjzDv � tp(z) (8:4:20)

for tp(z)�tp, whereDv characterizes the spectral width of the pulse.We can also obtain
this result from (8.4.18) by writing tp ¼ 1/Dv:

tp(z) ¼ jbjz
tp
¼ jbjzDv: (8:4:21)
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Using Dv ¼ 2(2pc/l2)Dl to relate the spread Dl in wavelength to the spread Dv in
frequency, we have

tp(z) ¼ jDjzDl, (8:4:22)

where the dispersion parameter D is defined by

D ¼ � 2pc

l2
b ¼ � l

c

d2n

dl2
: (8:4:23)

b is conventionally expressed in ps2/km (picoseconds2/kilometer) and D in ps/
(km-nm) (Problem 8.5); b (and D) can be positive or negative. Since

b ¼ d

dv

� �
1
vg

� �
¼ � 1

v2g

 !
dvg
dv

, (8:4:24)

a positive b means that group velocity decreases with increasing frequency, while a
negative b means that group velocity increases with increasing frequency.

† From Eq. (8.4.4) it can be shown that (Problem 8.6)

E(z, t) ¼ i

2pjbjz
� �1=2ð1

�1
dt 0 E(0, t 0)e�i(t�t 0)2=2bz, (8:4:25)

which gives the field at any z and t in terms of the temporal profile [E(0, t)] of the field at the input
plane z ¼ 0. If jbj�t 02=z for all t 0 for which E(0, t 0) is nonnegligible, we can approximate
(8.4.25) by

E(z, t) ¼ i

2pjbjz
� �1=2

e�it
2=2bz

ð1
�1

dt 0 E(0, t 0)eitt 0=bz, (8:4:26)

Equations (8.4.25) and (8.4.26) are analogous to formulas (7.10.4) and (7.10.8) for Fresnel and
Fraunhofer diffraction, respectively.

From (8.4.26),

jE(z, t)j2 ¼ 1
2pjbjz

ð1
�1

dt 0 E(0, t 0)eiV0t
0

����
����
2

, (8:4:27)

where the frequencyV0 ¼ t/bz. In other words, if the propagation distance z is large enough that
the “Fraunhofer limit” jbj �t 02=z is realized, the measured intensity of a pulse (/jE(z, t)j2) is
directly proportional to

S(0, V0) ¼ 1
2p

ð1
�1

dt E(0, t)eiV0t

����
����
2

: (8:4:28)

This is the basis for one method for measuring b and the dispersion parameter D of an optical
fiber: S(0, V0), and the intensity profile of a pulse after it propagates in a fiber of sufficient
length, can be used to infer the values of b and D.

There are other interesting consequences of the analogy between the paraxial propagation of a
monochromatic wave and the propagation of a plane-wave pulse in a dispersive medium. For
example, two pulses separated in time will spread and overlap after propagating a sufficiently
large distance in a medium with group velocity dispersion, and the temporal profile of the
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intensity of the total field will have the same form as the two-slit Young interference pattern for a
monochromatic field. This has been observed in the propagation of pulses in fibers. †
Any material medium can in principle exhibit group velocity dispersion. As already

noted, and as can be seen directly from Eqs. (8.4.4) and (8.4.16), GVD is most signifi-
cant for short pulses. Consider, for example, the propagation in a sapphire rod of a pulse
with a wavelength of 800 nm, for which b ffi 58 ps2/km ¼ 58 fs2/mm. From (8.4.16),

tp(z) ¼ tp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (5:8� 10�5z)2=t 4

p

q
, (8:4:29)

where tp(z) and tp are to be expressed in picoseconds and z in millimeters. For an initial
pulse duration of 1 ps there is practically no change in the pulse duration after propa-
gation in a 20-mm rod. A 10-fs pulse incident on the same rod, however, is stretched
to 116 fs after propagation through the rod. This example illustrates why compensation
for group velocity dispersion has been the most crucial part of the technology for the
generation of pulses as short as �50 fs or less (Section 11.13).

Reducing the effects of group velocity dispersion has also been very important in
fiber-optical communications because of the long propagation paths involved. The
GVD pulse spreading can cause two pulses to overlap as they propagate in a fiber,
thus blurring their separate identities and the information they are meant to convey.
For standard fibers used in telecommunications, b ffi 20 ps2/km at 1.55mm. For an
initial 10-ps pulse the pulse duration after a propagation distance of 15 km is, according
to Eq. (8.4.16), about 32 ps. If each pulse represents 1 bit of information, the maximum
transmission rate before there is significant pulse overlap is roughly 1/32 ps � 30 Gb/s,
about three times slower than could be achieved without GVD.

Various methods have been developed to reduce or eliminate the effect of group vel-
ocity dispersion by passing pulses through an optical element that acts to shorten them.
To understand such methods, it is useful first to briefly review some basic concepts from
the theory of Fourier transforms.

We define the Fourier transform ~E(z, V) of E(z, t) by writing

E(z, t) ¼
ð1
�1

dV ~E(z, V)e�iVt (8:4:30)

or the inverse relation

~E(z, V) ¼ 1
2p

ð1
�1

dt E(z, t)eiVt: (8:4:31)

The spectrum of E(z, t) may be defined by [cf. (8.4.28)]

S(z, V) ¼ j~E(z, V)j2, (8:4:32)

and it follows that8 ð1
�1

dV S(z, V) ¼ 1
2p

ð1
�1

dtjE(z, t)j2: (8:4:33)

8Readers familiar with the Dirac delta function d(x) will recognize that (8.4.33) and the equivalence of
(8.4.30) and (8.4.31) follow from the property

1
2p

Ð1
�1 du eixu ¼ d(x):
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† The spectrum of the electric field is easily related to the spectrum of the pulse envelope. The
electric field is

E(z, t) ¼ E(z, t)e�ivteik(v)z ¼ e�ivteik(v)z
ð1
�1

dV ~E(z, V)e�iVteiVz=vg

¼ eik(v)z
ð1
�1

dV ~E(z, V)e�i(Vþv)teiVz=vg ¼ eik(v)z
ð1
�1

dv0 ~E(z, v0 � v)e�iv
0tei(v

0�v)z=vg

¼ eiv(1=vp�1=vg)z
ð1
�1

dv0 ~E(z, v0 � v)e�iv
0(t�z=vg), (8:4:34)

where we have used the expression vp ¼ v/k(v) ¼ c/n(v) for the phase velocity. Thus, we can
identify

~E(z, v0) ¼ ~E(z, v0 � v)eiv(1=vp�1=vg)zeiv
0z=vg (8:4:35)

as the Fourier transform of the electric field and

j~E(z, v0)j2 ¼ j~E(z, v0 � v)j2 (8:4:36)

as its spectrum. If j~E(z, v0)j2 is described by a bell-shaped curve that has its peak at the carrier
frequency v, then the spectrum j~E(z, V)j2 of the pulse envelope has the same bell shape and
has its peak at V ¼ 0. †

Equation (8.4.4) implies that

@E
@z
þ i

2
b
@2E
@t2
¼
ð1
�1

dV
@~E
@z
� i

2
bV2~E

 !
e�iVt ¼ 0, (8:4:37)

or @~E=@z ¼ (ibV2=2)~E and therefore

~E(z, V) ¼ ~E(z0, V)eibV
2(z�z0)=2, (8:4:38)

where ~E(z0, V) is the Fourier transform of the pulse envelope E(z0, t) at some
input plane defined by z0. In the case of an initial Gaussian pulse E(z0, t) ¼
A exp (�t 2=2t 2p ), for example,

~E(z0, V) ¼ A

2p

ð1
�1

dt e�t
2=2t 2p eiVt ¼ A

p

ð1
0
dt e�t

2=2t 2p cosVt

¼ Atpffiffiffiffiffiffi
2p
p e�V

2t 2p =2: (8:4:39)

More generally, from (8.4.31) and (8.4.38),

~E(z, V) ¼ Atpffiffiffiffiffiffi
2p
p e�V

2t 2p =2eibV
2(z�z0)=2 (8:4:40)

for an initially Gaussian pulse. It can be verified that (8.4.30) and (8.4.40) with z0 ¼ 0
reproduce Eq. (8.4.15).
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Note that, for any pulse shape,ð1
�1

dtjE(z, t)j2 ¼
ð1
�1

dtjE(z0, t)j2, (8:4:41)

which means that the total energy of the pulse is unchanged by propagation in a medium
whose only effect on propagation is dispersion. This result follows from (8.4.38) in the
case of group velocity dispersion, but it holds no matter what the nature of the dis-
persion, so long as field attenuation or amplification are negligible.

Consider now the propagation of a pulse in a medium of length L1 with b ¼ b1 and
vg ¼ vg1, followed by propagation in a medium of length L2 with b ¼ b2 and vg ¼ vg2.
The field at the end of the first medium follows from (8.4.30) and (8.4.38):

E(L1, t) ¼
ð1
�1

dV ~E(0, V)eib1V
2L1=2e�iVteiVL1=vg1 ;

ð1
�1

dV ~E(L1, V)e�iVt, (8:4:42)

where for simplicity we have defined the input plane of the first medium by setting
z0 ¼ 0. The field after propagation through the second medium is similarly

E(L1 þ L2, t) ¼
ð1
�1

dV ~E(L1, V)eib2V
2L2=2e�iVteiVL2=vg2

¼
ð1
�1

dV ~E(0, V)ei[b2L2þb1L1]V
2=2e�iV[t�L1=vg1�L2=vg2]: (8:4:43)

If the second medium is such that

b2L2 ¼ �b1L1, (8:4:44)

therefore,

E(L1 þ L2, t) ¼
ð1
�1

dV ~E(0, V)e�iV[t�L1=vg1�L2=vg2], (8:4:45)

or, according to (8.4.30),

E(L1 þ L2, t) ¼ E 0, t � L1
vg1
� L2
vg2

� �
: (8:4:46)

For a Gaussian pulse A exp (�t2=2t 2p ) incident on the first medium, for example,

E(L1 þ L2, t) ¼ Ae�(t�td)
2=2t 2p , (8:4:47)

where td ¼ L1/vg1 þ L2/vg2 is the group delay time for propagation through both
media. Thus, if (8.4.44) is satisfied, the incident pulse retains its temporal shape
and there is no pulse spreading. Such compensation for group velocity dispersion
is realized when the second medium has opposite GVD from the first medium (b2/
b1,0) and its length is chosen in accord with (8.4.44).

Most materials are positively dispersive (b . 0) in the visible and near-infrared. To
compensate for group velocity dispersion in a positively dispersive medium, we require
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a medium with negative dispersion (b , 0). Negative dispersion means that the group
velocity increases with increasing frequency, or in other words that the “red” com-
ponents of a pulse have smaller group velocities than the “blue” components and there-
fore propagate from one point to another with larger delay times. Negative dispersion
needed to compensate for group velocity dispersion is often realized not with negatively
dispersive materials as such but with optical elements such as prisms or gratings in
which the red components are delayed with respect to the blue components. In glass,
for example, the red components of a pulse travel faster than the blue components
and therefore undergo less refraction, but the angular dispersion (i.e., the “bending”
of different frequencies by different amounts) of a glass prism is such that negative dis-
persion can in effect be obtained by delaying the red components with respect to the
blue. Figure 8.1 shows a two-prism arrangement commonly employed for this purpose.
The red components are delayed with respect to the blue components by having them
traverse more glass (i.e., more optical path length ¼ distance �refractive index).
Writing (8.4.24) as b ¼ L21 d(L/vg)/dv ¼ L21 dtd/dv, where td is the group delay
time for a propagation distance L, suggests that negative dispersion can in effect be
obtained by introducing delay times that decrease with increasing frequency, and this
is what is accomplished by the two-prism arrangement shown.

A rather involved Fourier analysis shows in fact that this arrangement produces a
phase shift with a contribution that is quadratic in frequency and negative and depends,
among other things, on the separation of the prisms; according to the preceding analysis,
this is exactly what is required for compensation of group velocity dispersion. Moving
the prisms farther apart (increasing L in Fig. 8.1) increases the optical path difference
between the red and blue frequency components and therefore increases the negative
dispersion. The negative dispersion is also increased by increasing the distance d. The
degree of negative dispersion can therefore be “tuned” by changing the positions of
the prisms. A mirror placed after the second prism results in a double pass through
the prism pair and a phase-shifted pulse propagating in the direction opposite to that
of the pulse incident on the first prism. Alternatively, a second pair of prisms can be
used to produce a phase-shifted pulse propagating in the same direction as the input
pulse and aligned with it [cf. Fig. 8.3].

Group velocity dispersion compensation is also commonly achieved with a pair of
diffraction gratings (Fig. 8.2). Here again angular dispersion results in time delays
that increase with decreasing frequency, resulting in a contribution to the phase shift
that is negative and varies quadratically with frequency. The degree of negative dis-
persion can be controlled by changing the positions of the gratings. As with the use
of prisms, a mirror can be used to produce a phase-shifted pulse propagating in the

L

d

Figure 8.1 Two-prism arrangement for introducing delay times that increase with decreasing
frequency as a result of angular dispersion.
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direction opposite to the incoming pulse, or a second pair of gratings can be used to
produce a phase-shifted pulse propagating in the same direction and aligned with the
incoming pulse. Compensation for group velocity dispersion with prisms or gratings
can be accomplished inside or outside a laser resonator.

† Gratings have two advantages over prisms for GVD compensation: They typically produce a
larger degree of negative dispersion, and material dispersion, which causes a positive dispersion
(b . 0), plays no role because the pulses do not pass through anymaterial. On the other hand they
have greater “insertion loss” than (Brewster-angled) prisms and when used in resonators are con-
sequently most advantageous for high-gain lasers, particularly fiber lasers.

We have ignored third and higher derivatives with respect to time in the partial differential
equation (8.3.11), as group velocity and group velocity dispersion are associated with first
and second derivatives, respectively, with respect to time [Eq. (8.4.1)]. In the case of very
short pulses, say tp , 10 fs, third-order effects depending on d3k/dv3 ¼ z21d3f/dv3 must
also be accounted for. Prism and grating pulse compressors introduce third-order phase
shifts of opposite sign, and when used in tandem can produce a range of both second-
and third-order phase shifts. As early as 1987 the design shown in Fig. 8.3 was employed
to compress 50-fs pulses from a colliding-pulse dye laser and an amplifier to 6 fs. The grating
and prism separations shown in the figure were ‘g ¼ 0:5 cm and ‘p ¼ 71 cm, respectively.
Before compression, the pulses were passed through an optical fiber that caused spectral
broadening due to self-phase modulation (Section 10.4). It was estimated based on theoretical
considerations that a pulse emerging from the fiber had a second-order phase shift with d2ff/
dv2 � 700 fs2 and that for the grating and prism pairs d2fg/dv

2 �21820 fs2 and d2fp/
dv2 �21528 fs2, respectively, at the 620-nm carrier wavelength.9 For material dispersion

lg
lp

Figure 8.3 Arrangement of four diffraction gratings and four prisms to compensate for both second-
and third-order dispersion. [After R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, Optics
Letters 12, 483 (1987)].

Grating

Grating

Figure 8.2 Two-grating arrangement for compensation of group velocity dispersion.

9Approximate formulas for fg(v) and fp(v) are given by C. H. Brito Cruz, P. C. Becker, R. L. Fork, and
C. V. Shank, Optics Letters 13, 123 (1988).
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due mainly to lenses in the system it was estimated that d2fm/dv
2 � 2900 fs2, so that d2fg/

dv2 þ d2fp/dv
2 þ d2fm/dv

2 �2d2ff/dv
2. The third-order contributions were estimated to

be d3fg/dv
3 � 1560 fs3, d3fp/dv

3 � 2 3055 fs3, and d3fm/dv
3 � 1620 fs3, and the sum of

these third-order contributions was therefore small and consistent with experimental
observations.

As noted earlier, any material medium can be a source of GVD as well as higher-order dis-
persion. In a laser, for example, GVD can result not only from propagation in the gain
medium but also from a saturable absorber in the case of passive mode locking, or from
prisms and other intracavity components that may be present, or even from the frequency depen-
dence of the mirror reflectivities. The latter can be a major source of GVD.

In fact any optical element for which transmission or reflection are frequency dependent—a
prism, a grating, a mirror, an interferometer, etc.—can be a source of GVD: an incident field
of frequency v results in a transmitted or reflected field of the form A(v)exp(2i[vt 2 f(v)]),
where A(v) and f(v) are real. For an incident pulse there is a group delay due to df/dv and
a second-order dispersion due to d2f/dv2 upon reflection or transmission. If parameters such
as a mirror spacing can be chosen such that the second-order dispersion is negative, the optical
element can be used for GVD compensation.

The prism and grating compensators of Figs. 8.1 and 8.2 are very useful in practice
because they produce relatively large negative dispersion with little change in pulse
energy. Also very useful in practice are chirped Bragg mirrors. One type of Bragg
mirror consists of alternating layers of two materials with different refractive indices,
each layer having an optical thickness d. The optical path difference in a Fresnel reflection
off each layer is 2d, and successive layers have amplitude reflection coefficients of

B

B

R

R

Figure 8.4 Chirped Bragg mirror in which red frequency components (R) of an incident field are
reflected with a greater time delay than blue components (B).
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opposite sign. There is, therefore, constructive interference of reflected waves when a field
incident normally to the layers, for example, has a wavelength l ¼ 4d. In other words,
Bragg mirrors are designed to strongly reflect only certain wavelengths. Their reflectivity
depends on the number of layers and the difference in the two refractive indices, the latter
being the primary determinant of the reflectivity bandwidth. Strongly wavelength-depen-
dent reflectivity is also obtained when there is a continuous (smooth) periodic variation
of the refractive index, as in fiber Bragg gratings (Section 11.14). In a “chirped” Bragg
mirror the refractive index is not periodic but varies such that the condition for strong
reflectivity is satisfied at different penetration distances for different wavelengths.
Figure 8.4 indicates how lower frequency components of a pulse incident on a chirped
Bragg mirror can suffer greater time delays for reflection as a result of the greater pen-
etration depths required for strong reflectivity. †

8.5 CHIRPING

In addition to the temporal spreading of a pulse, GVD results in a time-dependent fre-
quency. This is easily understood: If b. 0, for example, the higher-frequency
Fourier components of a pulse travel with a smaller velocity than the lower-frequency
components (dvg/dv , 0) and therefore arrive at z later. The frequency at z therefore
increases with time. By analogy with the sounds made by birds, such a time-dependent
frequency is called a chirp (Section 6.14). In this section we will discuss chirping and
related matters in a bit more detail.

The expression for the electric field given by Eqs. (8.3.6), (8.4.14), and (8.4.19) is

E(z, t) ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffi
1� ig
p e�i[vt�k(v)z]e�t

2=2t 2p (z)e�igt
2=2t 2p (z), (8:5:1)

where we have defined the dimensionless parameter

g ¼ bz

t 2
p

: (8:5:2)

The phase of the electric field is time dependent; we can define an “instantaneous
frequency”

vinst(t) ¼ @

@t
vt þ gt 2

2t 2p (z)

" #
¼ vþ gt

t 2p (z)
¼ vþ g (t � z=vg)

t 2p (z)
: (8:5:3)

In this case there is a linear dependence of the instantaneous frequency on time, that is, a
linear chirp.

From the discussion of GVD compensation in the preceding section, it should be
clear that a negative chirp (g , 0—the instantaneous frequency decreases with time)
can result in the temporal compression of a pulse. Consider the propagation in a
GVD medium of a Gaussian pulse incident at z ¼ 0 with a negative linear chirp:

E(0, t) ¼ Ae�t
2=2t 2p eiact 2=2t 2p , (8:5:4)
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where ac . 0 specifies the magnitude of the chirp. The Fourier transform of this pulse
envelope is

~E(0, V) ¼ A

2p

ð1
�1

dt e�t
2=2t 2p eiact 2=2t 2p eiVt

¼ Atpffiffiffiffiffiffi
2p
p 1

(1þ a2
c)

1=4
e(i=2) tan

�1 ace�(1=2)V
2t 2p =(1þa2

c )e�(i=2)acV
2t 2p =(1þa2

c ): (8:5:5)

The propagation of such a chirped pulse by a distance z in a medium characterized by a
group velocity vg and a GVD dispersion parameter b results in the field [recall (8.4.38)]

E(z, t) ¼
ð1
�1

dV ~E(0, V)eibV
2z=2e�iVt

¼ Atpffiffiffiffiffiffi
2p
p 1

(1þ a2
c)

1=4
e(i=2) tan

�1 ac

�
ð1
�1

dV ei[bz�act
2
p =(1þa2

c )]V
2=2e�(1=2)V

2t 2p =(1þa2
c )e�iVt, (8:5:6)

with t ¼ t 2z/vg. The evaluation of the integral yields a rather complicated expression;
to simplify matters we write explicitly only the quantity proportional to the pulse
intensity:

jE(z, t)j2 ¼ jAj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

c

F

r
e�(1þa

2
c )t

2=Ft 2p , (8:5:7)

in which we define

F ¼ 1þ ac � bz

t 2p
(1þ a2

c)

" #2
: (8:5:8)

Equation (8.5.7) implies the pulse duration

tp(z) ¼ tpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

c

p ffiffiffiffi
F
p
¼ tpffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
c

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ac � bz

t 2p
(1þ a2

c)

" #2vuut , (8:5:9)

which reduces to (8.4.16) when there is no chirp (ac ¼ 0).
This expression shows that a pulse propagating in a dispersive medium can be tem-

porally compressed if it has an initial, negative linear chirp. At a propagation distance zs
such that

ac � bzs
t 2p

(1þ a2
c)

" #2

 1, (8:5:10)
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for example, the pulse duration is reduced from its initial value tp to

tp(zs) ¼ tpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

c

p : (8:5:11)

It is easily shown from (8.5.9) that this is the shortest pulse duration achievable in the
case of a chirped Gaussian pulse with initial duration tp, and that it occurs at the propa-
gation distance

zs ¼ ac

1þ a2
c

t 2p
b
: (8:5:12)

Beyond this distance the pulse duration increases and is given approximately by (8.4.16)
when z� zs.

This compression of a chirped pulse can be understood from the mathematical
correspondence between the plane-wave propagation of a pulse in a dispersive
medium and the paraxial propagation of a monochromatic wave. In particular, a
negative chirp plays the role in this correspondence to a thin lens: A lens of
focal length f imposes a spatial phase factor exp[2ik(x2 þ y2)/2f ] on an incident
monochromatic wave (Problem 7.12), and the chirping of a pulse introduces a tem-
poral phase factor of the same form [Eq. (8.5.4)]. Thus, the temporal compression
of a pulse by negative chirping is analogous to the transverse spatial compression
(focusing) produced by a lens, and the subsequent increase in the pulse duration
with propagation distance as described by (8.5.9) is analogous to the diffractive
spreading of a beam that propagates past the distance at which its spot size is
smallest [cf. Fig. 7.15].

We saw in the preceding section how chirping produced by prisms, gratings, and
other optical elements can be used to compress pulses and in particular to compen-
sate for the group velocity dispersion in a medium through which a pulse has pro-
pagated and incurred a phase distortion that causes it to broaden in time. Equation
(8.5.9) shows that chirping a pulse before it enters a dispersive medium—by pas-
sing it through some dispersive optical element, for example—can also shorten
its duration. It is not surprising that pulse chirping is one of the most widely
used techniques in applications requiring ultrashort laser pulses (Section 14.7). In
the remainder of this section we will focus on a few other basic concepts relevant
to the description of chirped optical pulses.

The spectrum of the chirped pulse (8.5.4) is

S(0, V) ¼ j~E(0, V)j2 ¼ jAj2t 2
p

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

c

p e�V
2t 2p =(1þa2

c ): (8:5:13)

The FWHM spectral width DV of the pulse at z is defined by S(z,+DV/2) ¼ S(z, 0)/2,
that is,

DV ¼
ffiffiffiffiffiffiffiffiffiffiffi
4 ln 2
p

tp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

c

q
, (8:5:14)
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which is larger by the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

c

p
than the spectral width of an unchirped (ac ¼ 0)

Gaussian pulse. Using

jE(0, t)j2 ¼ jAj2e�t2=t 2p , (8:5:15)

we can define similarly a FWHM pulse width:

Dt ¼ tp
ffiffiffiffiffiffiffiffiffiffiffi
4 ln 2
p

, (8:5:16)

and the time–bandwidth product with the spectral and temporal widths defined in this
way for a Gaussian pulse is10

DV Dt ¼ 4 ln 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

c

q
: (8:5:17)

This is larger than the time–bandwidth product 4 ln 2 of an unchirped Gaussian pulse.
Chirping increases the time–bandwidth product by broadening the pulse spectrumwhile
preserving the pulse width. As is clear from (8.5.4), it does not change the pulse energy.

After a chirped pulse propagates in a medium with GVD, it has a spectrum that can
be read off from (8.5.6):

S(z, V) ¼ jAj2t 2p
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

c

p e�V
2t 2p =(1þa2

c ): (8:5:18)

The spectrum is seen to be independent of z and therefore unchanged by propagation,
as must be the case for propagation in any linearly dispersive medium without attenu-
ation or amplification; the pulse energy is likewise unchanged. The (FWHM) spectral
width is

DV ¼
ffiffiffiffiffiffiffiffiffiffiffi
4 ln 2
p

tp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

c

q
, (8:5:19)

and the pulse width implied by (8.5.7) is

Dt ¼ tp
ffiffiffiffiffiffiffiffiffiffiffi
4 ln 2
p ffiffiffiffi

F
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

c

p (8:5:20)

after a propagation distance z. Thus,

DVDt ¼ 4 ln 2
ffiffiffiffi
F
p
¼ 4 ln 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ac � bz

t2p
(1þ a2

c)

" #2vuut : (8:5:21)

The pulse is spectrally broadened, and its width Dt varies as it propagates and can be
larger or smaller than the width (8.5.16) of an initial (unchirped) pulse. At z ¼ zs,
tp

ffiffiffiffiffiffiffiffiffiffiffi
4 ln 2
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

c

p
tp

ffiffiffiffiffiffiffiffiffiffiffi
4 ln 2
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

c

p
and the time–bandwidth product is identical

10The time–bandwidth product is often defined as DnDt ¼ (2 ln 2=p)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

c

p
, where Dn ¼ DV/2p is the

spectral width expressed in terms of the circular frequency n rather than the angular frequency V.
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to that of an unchirped Gaussian pulse in the absence of GVD:

DVDt ¼ 4 ln 2: (8:5:22)

DV Dt ¼ 4 ln 2 is the smallest time–bandwidth product for a Gaussian pulse. A pulse
with the smallest width Dt for a given spectral width DV is said to be transform limited
(or bandwidth limited). Thus, a chirped pulse that has propagated a distance zs in a
medium with GVD is transform limited, whereas at z ¼ 0—where it has the same
spectral width—it is not. Ultrashort pulses obtained by chirped compression are usually
transform limited or nearly so.

The spectrum j~E(V)j2 cannot in general be uniquely related to jE(t)j2 because there is
no phase information in either of these quantitites. As in the example of a chirped Gaussian
pulse, a pulse with ~E(V) ¼ j~E(V)j exp [iQ(V)] will not be transform-limited if the phase
Q is a nonlinear function of V. The time–bandwidth product in any case satisfies

DVDt � K, (8:5:23)

where the constant K depends on the pulse shape and is 4 ln 2 in the case of a Gaussian
pulse.11 The pulse width Dt ¼ K/DV for a transform-limited pulse. It should be
noted, however, that K also depends on how we choose to define the spectral and
temporal widths. We have chosen to define these as full widths at half maxima, but
obviously we are free to choose other definitions. For example, the rms pulse width is
defined by

Dtrms ¼
Ð1
�1dt t

2jE(z, t)j2Ð1
�1dtjE(z, t)j2

" #1=2
, (8:5:24)

and the rms spectral width DVrms is defined similarly.

† Instantaneous frequencies of a pulse are in general distinct from the frequency components of
its spectrum: vinst(t) can have valuesV such that S(z,V) ¼ 0, and conversely S(z,V) can be non-
zero at frequenciesV not appearing at any time in vinst(t). In other words, instantaneous frequen-
cies and frequencies for which S(z, V) = 0 are in general physically distinct properties of a
pulse. The frequencies appearing in S(z,V) are those inferred, for example,when an interferometer
is used to analyze the spectral content of light. Instantaneous frequencies, on the other hand, better
describe measurements of the time-dependent phase difference of two interfering pulses.12

Pulse compression by chirping has long been employed in pulsed radar systems, where shorter
pulses obviously allow greater range resolution. Lord Rayleigh wrote that a flight of stairs at his
estate in Terling returned “an echo of the clap of the hands as a note resembling the chirp of a
sparrow,” and chirped handclap echoes can also be heard near corrugated walls acting as
diffraction gratings for sound waves.13 †

8.6 PROPAGATION MODES IN FIBERS

The theory of the guided propagation of light in optical fibers is straightforward concep-
tually but somewhat complicated in its algebraic details, which wewill largely skip over;

11Pulse shaping and measurement are discussed in Section 11.13.
12For examples and a discussion see L. Mandel, American Journal of Physics 42, 840 (1974).
13F. S. Crawford, Jr., American Journal of Physics 38, 378 (1970).

8.6 PROPAGATION MODES IN FIBERS 355



the interested reader will not find it difficult to fill in at least some of the steps, or to find
comprehensive discussions and references in more specialized books.14

Optical fibers guide light by total internal reflection, which was briefly reviewed in
Section 2.9. Figure 8.5 is an enlarged view of a segment of an optical fiber; the core
diameter may be as small as a few microns, as explained below. The critical angle for
total internal reflection is [Eq. (2.9.4)]

uc ¼ sin�1
n2
n1

� �
, (8:6:1)

where n2 and n1 are the refractive indices of the cladding and the core, respectively
(Fig. 8.5). Total internal reflection occurs for angles of incidence u � uc. This implies
a maximum “acceptance angle” for which light injected into the fiber will undergo
total internal reflection. Applying Snell’s law to the dielectric interface at the entrance
to the fiber in Fig. 8.5, we have

n sinf ¼ n1 sina ¼ n1 sin
p

2
� u

� �
¼ n1 cos u ¼ n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 u

p
: (8:6:2)

For u ¼ uc,

n sinf ¼ n1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n22

n21

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � n22

q
; NA, (8:6:3)

where the number NA is called the numerical aperture of the fiber. According to these
equations the angle

fmax ¼ sin�1
NA
n

� �
(8:6:4)

is the maximum acceptance angle at which there is total internal reflection. For a fiber in
air (n ffi 1) with a core refractive index n1 ¼ 1.53 and a cladding index n2 ¼ 1.50, NA ¼
0.3 and the maximum acceptance angle isfmax ffi 188. As in this example, the difference
between n1 and n2 is typically only a few percent, and so one conventionally introduces
the small parameter D ¼ (n1 2 n2)/n1, in terms of which

NA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1D(n1 þ n2)

p
ffi n1

ffiffiffiffiffiffi
2D
p

: (8:6:5)

n a q n1 Core
glass

Cladding
glassf

n2

n2

Figure 8.5 An optical fiber, viewed along a direction perpendicular to the fiber axis.

14See, for instance, G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed., Wiley, New York, 2002,
and references therein.
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The numerical aperture is obviously a measure of the amount of light that can be
taken in and guided by the fiber. However, fibers with large numerical apertures have
disadvantages for communication purposes because they admit a large number of propa-
gation modes and therefore suffer from an effect known as intermodal dispersion. We
discussed in the preceding section thematerial dispersion associated with the frequency
dependence of the refractive index, but in fibers there is also a pulse-broadening effect
associated with different angles of incidence u in Fig. 8.5. Since different angles are
associated with different modes of propagation, this dispersive effect is called intermo-
dal. To estimate the pulse broadening due to intermodal dispersion, consider the propa-
gation paths for two pulses, one propagating along the core axis and the other having an
angle of incidence u at the core–cladding interface (Fig. 8.5). For a fiber length L the
off-axis pulse has a total propagation length L/cos a, whereas the propagation length
for the on-axis pulse is simply L. These different propagation paths imply a difference
DT in the propagation times for pulses with group velocity vg to reach the end of the
fiber. For the lowest-order modes of a fiber it is found that vg ffi c/n1, the phase velocity
in the core. Thus,

DT ffi L
(1= cosa)� 1

c=n1
ffi n1a2L

2c
, (8:6:6)

where the angle a is assumed to be very small. For the maximum acceptance angle
defined by (8.6.4), it follows from (8.6.2) that n1 sin a ¼ NA, or a ¼ NA/n1 in the
small-angle approximation. Then (8.6.6) becomes

DT ffi (NA)2

2n1c
L (8:6:7)

for these two modes. A multimode pulse will therefore undergo a temporal broadening.
Intermodal dispersion is reduced when the fiber is of the graded-index type rather

than the step-index type illustrated in Fig. 8.5. In a graded-index fiber the refractive
index does not have a sharp, steplike decrease from n1 to n2. Instead the index decreases
more smoothly from the center of the fiber. An index distribution that is frequently used
in practice is described by the formula

n2 ¼ n2c(1� a22r
2), (8:6:8)

where nc is the refractive index at the center, r is the distance from the center, and a22 is a
constant. The advantage of a graded-index fiber is a consequence of the following result,
which we will not take the time to derive: The temporal spread DT for a graded-index
fiber is proportional to (NA)4 rather than to (NA)2 as in the step-index case. Thus, a
small numerical aperture implies smaller intermodal disperion in a graded-index fiber
than in a step-index fiber. It is easy to understand physically why this is so. In the
graded-index case the light rays along the axis of the fiber travel a shorter path than
off-axis rays but have a smaller phase velocity because of the larger index on-axis
[Eq. (8.6.8)]. The graded index therefore reduces the difference in propagation times
of different modes.

Intermodal dispersion is completely absent in a single-mode fiber. We now consider
in more detail the propagation modes of an optical fiber.
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For laser resonators we defined a mode as a field distribution that does not change in
form upon back-and-forth propagation in the resonator. In the case of an optical fiber,
similarly, we define a mode as a field distribution that retains its form during propagation
in the fiber. Thus,we require that the electric field satisfy theHelmholtz equation (8.2.20),
with the refractive index having the spatial distribution appropriate to the fiber under
consideration. In addition to satisfying (8.2.20), the field must, of course, satisfy the
appropriate boundary conditions. We will consider a step-index fiber with n ¼ n1 for
r 	 a and n ¼ n2 for r . a (Fig. 8.6).

The fiber geometry obviously suggests the use of cylindrical coordinates (r, f, z), in
terms of which Eq. (8.2.20) takes the form

@2E
@r2
þ 1

r

@E
@r
þ 1
r2

@2E
@f2 þ

@2E
@z2
þ n2

v2

c2
E ¼ 0: (8:6:9)

Since a rotation by 2p about the fiber axis cannot affect the field, a solution of (8.6.9)
must not change when 2p is added to f. Thus, E must vary with f as exp(imf), where
m ¼ 0,+1,+2, . . . . We seek solutions describing propagation along the z axis, and
therefore write15

E(r, f, z) ¼ F(r)eimfeibz, (8:6:10)

where the propagation constant b is at this point unspecified. Such a field retains its
form except for a phase factor [exp(ibz)], and therefore defines a mode of the fiber.
Using this form in (8.6.9), we obtain for the radial function F(r) the ordinary differential
equation

d2F

dr2
þ 1

r

dF

dr
þ n2

v2

c2
� b2 � m2

r2

� �
F ¼ 0: (8:6:11)

Thus, in the core region,

d2F

dr2
þ 1

r

dF

dr
þ k2 � m2

r2

� �
F ¼ 0 (r 	 a), (8:6:12)

n = n1

n = n2

a

Figure 8.6 Cross-sectional view of a step-index fiber.

15We are employing here the method of separation of variables, as discussed in Section 7.8.
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where

k2 ¼ n21
v2

c2
� b2 ; n21k

2
0 � b2: (8:6:13)

Equation (8.6.12) has the form of the Bessel differential equation. The solutions that
remain finite as r ! 0 are the Bessel functions Jm(kr) of the first kind, which we
have already used in the preceding chapter (Sections 7.11 and 7.15):

F(r) ¼ AJm(kr) (r 	 a), (8:6:14)

where A is a constant.
In the cladding region we write

d2F

dr2
þ 1

r

dF

dr
� g 2 þ m2

r2

� �
F ¼ 0 (r . a), (8:6:15)

where

g 2 ¼ b2 � n22
v2

c2
; b2 � n22k

2
0: (8:6:16)

We assume that g2 is positive, that is, that g is real, in order to have solutions for r . a
that go to 0 as r ! 1. These solutions are of the form

F(r) ¼ BKm(gr) (r . a), (8:6:17)

where Km is a modified Bessel function of the second kind. Plots of Jm(x) and Km(x) are
readily found in various handbooks or on the Web. For our purposes at this point we
need only know that Jm(kr) is finite at r ¼ 0 and that Km(gr)! 0 as r ! 1, which
are necessary conditions if the solutions (8.6.15) and (8.6.17) are to be applicable in
the core and cladding regions, respectively.

Unlike our approach in Chapter 7 to obtain the modes of laser resonators, we
have not invoked here the paraxial approximation. In fact, the solutions given by
(8.6.10) and (8.6.14) for the field in the core are of the same form as the (nonpar-
axial) Bessel beam modes of Section 7.15, except that here the propagation is in a
medium with refractive index n1 rather than free space, and the propagation constant
b is fixed by the fact that the tangential components of the field must be continuous
at the core–cladding interface. In the case of a fiber the paraxial approximation may
not be a good one because the field is guided by total internal reflection and,
depending on the difference n12n2, the angles that rays make with respect to the
fiber axis are not necessarily small.

The Helmholtz equation (8.2.20) applies to a single component of the electric field
envelope E, and also to a single component of the slowly varying magnetic field envel-
ope H. Given Ez and Hz, for instance, we can obtain Ex, Ey, Hx, and Hy from the
Maxwell equations

r�����E ¼ ivm0H, (8:6:18)

r�����H ¼ �iv1E ¼ �ivn2e0E, (8:6:19)
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for a field that varies with time as exp(2ivt) and with z as exp(ibz). Consider, for
example, the component Hx of H. From (8.6.18),

ivm0Hx ¼ @Ez

@y
� @Ey

@z
¼ @Ez

@y
� ibEy (8:6:20)

and, from (8.6.19),

Ey ¼ i

vn2e0
� @Hz

@x
þ @Hx

@z

� �
: (8:6:21)

Using (8.6.21) in (8.6.20), and e0m0 ¼ 1/c2, we obtain for the core region (n2 ¼ n21)

Hx ¼ � i

k2
vn21e0

@Ez

@y
� b

@Hz

@x

� �
: (8:6:22)

In the same fashion we obtain, in both the core and cladding regions, Ex, Ey, and Hx, Hy

in terms of Ez and Hz. Of course, we can express this as well in terms of cylindrical
components of the slowly varying envelope functions: We can express Er, Ef, Hr,
and Hf in terms of Ez and Hz satisfying

Ez(r, f, z) ¼ AJm(kr)e
imfeibz, (8:6:23a)

Hz(r, f, z) ¼ BJm(kr)e
imfeibz, (8:6:23b)

for r 	 a and

Ez(r, f, z) ¼ CKm(gr)e
imfeibz, (8:6:23c)

Hz(r, f, z) ¼ DKm(gr)e
imfeibz, (8:6:23d)

for r. a.
Maxwell’s equations require that the tangential components of E and H be continu-

ous at the core–cladding interface at r ¼ a. That is, Ez, Ef, Hz, andHf must be continu-
ous at r ¼ a. Requiring this continuity leads to four homogeneous linear algebraic
equations for the constants A, B, C, and D appearing in Eqs. (8.6.23), i.e., equations
of the form a1jA þ a2jB þ a3jC þ a4jD ¼ 0, j ¼ 1, 2, 3, 4. In order for these equations
to have nonvanishing solutions for A, B, C, and D, the determinant of the coefficient
matrix (aij), i, j ¼ 1, 2, 3, 4, must vanish. This requirement takes the form of a compli-
cated equation involving Jm(ka), J 0m(ka), Km(ga), and K0m(ga), where the primes denote
derivatives. This “characteristic equation,” which must be solved numerically, deter-
mines the propagation constant b for given values of v, a, n1, and n2, that is, for a
given frequency v and for a given core radius a and core and cladding refractive indices
n1 and n2, respectively.

For given values of v, a, and n1, n2, the values of b determined by the numerical
solution of the characteristic equation will depend on the integer m. For each m there
is in general more than one solution for b; these different solutions can be denoted
bmj, j ¼ 1, 2, 3, . . . , and each bmj defines a mode of the fiber. That is, a mode is defined
by the pair of integersm and j that specify the spatial dependence of the electric andmag-
netic fields. The electric and magnetic fields for each mode are defined by Eqs. (8.6.23)
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and the equations relating the other field components to Ez andHz, with k and g depen-
ding on bmj [Eq. (8.6.13) and (8.6.16)].

We are interested in guided modes in which the electric and magnetic fields fall off
with radial distance from the fiber. Consider the fields (8.6.23) for gr�1. In this limit

Km(gr) � p

2gr

� �1=2
1� 4m2 � 1

8gr

� �
e�gr, (8:6:24)

and the electric and magnetic fields (8.6.23) for a mode characterized by this radial
dependence decay exponentially with distance from the fiber if g is real (g 2 . 0). If
g is purely imaginary (g2 , 0), however, the mode is not “guided”; the exponential
decay of (8.6.24) is replaced by exp(2ijgjr) ¼ cosjgjr 2 i sinjgjr for g ¼ ijgj.
Therefore, g 2 ¼ 0 defines the “cut-off” between guided and unguided modes: g 2 . 0
implies a guided mode, whereas g 2 , 0 implies an unguided mode.

From (8.6.13) and (8.6.16) we see that g2 ¼ 0 implies that k ¼ k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � n22

p
. The

dimensionless “V parameter,”

V ¼ k0a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � n22

q
¼ v

c
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � n22

q
¼ va

c
NA, (8:6:25)

determines the number of modes: fibers with large V parameters have many modes as
determined by numerical solutions of the characteristic equation. The number of
modes is found to be approximately V2/2 for V � 1. But if V is made small enough,
it is found that only the fundamental mode with m ¼ 0 is guided by the fiber. Such
single-mode fibers are of special interest for communication systems, and we will there-
fore devote the following section to them.

8.7 SINGLE-MODE FIBERS

In the preceding section we noted that the requirement that Ez, Ef, Hz, and Hf be
continuous at the core–cladding interface leads to a complicated characteristic equation
involving Jm(ka), J0m(ka), Km(ga), and K0m(ga). Numerical solutions of this equation
determine the guided modes of the fiber for real values of the parameter g defined by
(8.6.16). Analysis of the characteristic equation shows that when V, Vc, where Vc is
defined as the smallest value of V satisfying J0(V ) ¼ 0, the fiber supports only the
single mode with m ¼ 0; there are no other guided modes for V, Vc.

The smallest “zero” of J0(x), that is, the smallest x such that J0(x) ¼ 0, is
approximately 2.405. Thus, a step-index fiber will support only a single mode when
Vc , 2.405, or in other words when

v

c
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � n22

q
¼ 2pa

l
NA , 2:405: (8:7:1)

For l ¼ 2pc/v ¼ 1.3mm, n1 ¼ 1.450, and n2 ¼ 1.443, this single-mode condition is
satisfied if the core radius a, 3.5mm. These values are in the range characteristic of
the single-mode fibers used in communication systems (Section 15.6). Obviously, the
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single-mode condition can be satisfied if the wavelength is large enough or if the core
diameter and the numerical aperture are small enough.

In order to realize the single-mode condition (8.7.1) for wavelengths of interest and
for core diameters that are not unreasonably small, the numerical aperture
NA¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � n22

p
must be small. Fibers typically have values of D ¼ (n1 2 n2)/n1�

0.01 and, as noted in the preceding section, the guided modes in this case are approxi-
mately paraxial, with z components of the field small compared to the transverse (x and
y) components. That is, the guided modes are approximately transverse, and a linearly
polarized mode has an electric field component of the form

Ex(r, f, z) ¼ Ex(r, z) ¼ E0
J0(kr)
J0(ka)

eibz (r 	 a)

¼ E0
K0(gr)
K0(ga)

eibz (r . a), (8:7:2)

where E0 is a constant specifying the amplitude of the field at r ¼ a. The function J0(x)
peaks at x ¼ 0 (J0(0) ¼ 1) and its falloff to 0 at x ¼ 2.405. . . follows roughly a bell-
shaped curve, while the variation of K0(x) for large values of x is given by (8.6.24).
The field (8.7.2) for a single-mode fiber is therefore often approximated by a
Gaussian function:

Ex(r, z) � E0e
�r2=w2

eibz, (8:7:3)

where the spot size w depends on the V parameter of the fiber and is ffia for V ffi 2.14

Thus, the single guided modes of fibers of interest for optical communication systems
are approximately paraxial, transverse, and Gaussian, with a spot size on the order
of the core diameter.

† The calculation and characterization of the modes of an optical fiber are obviously rather
complicated, and it is beyond our scope to delve much further into the subject. A few more
general remarks, however, are appropriate.

The astute reader will have noticed that we have in effect assumed an infinite cladding region.
The justification for this assumption is the exponential decay of the electric and magnetic fields of
the guided modes outside the core [Eq. (8.6.24)]. Optical fibers are in fact designed so that the
fields are negligibly small at the outer surface of the cladding. If this were not the case, light
would be lost due to scattering from surface irregularities on the outer surface of the fiber.

As already noted, the core and cladding refractive indices in optical fibers typically differ by
only a few percent. The critical angle for total internal reflection is therefore relatively large,
making the guided modes approximately paraxial and the z components of the electric and mag-
netic fields small in magnitude compared to the transverse components. Each (m, j) mode is then
approximately transverse and we can associate with it two “degenerate” orthogonal linear polar-
izations having the same (r, f, z) dependence. If the fiber cross section were perfectly circular, a
linearly polarized field would maintain its polarization, but in reality there are always slight
imperfections in the core diameter, for instance, that cause the fiber to be birefringent in the
sense that the mode index b/k0 is different for the two orthogonally polarized modes. A
“single-mode” fiber will have two mode indices, �nx and �ny, and this causes the two orthogonal
polarizations to exchange power. In practice, the injection of a linearly polarized field into the
fiber results in an output field whose polarization is unpredictable as a consequence of random
fluctuations of the birefringence. In polarization preserving fibers a relatively large and determi-
nistic birefringence is introduced to overcome the random birefringence. †
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The major breakthroughs that led to the widespread use of optical fibers in communi-
cation systems were the development of fibers with low attenuation and of compact
(diode) lasers for efficiently coupling light into fibers (Section 15.6). In the early
1970s fibers were developed at Corning Glass Works with attenuations
A � 20 dB=km at wavelengths around 1 mm, compared to attenuations �1000 dB/
km characteristic of the fibers manufactured earlier. The fused silica currently used to
make optical fibers absorbs in the ultraviolet as a consequence of electronic resonances
of the SiO2 molecules and in the infrared as a consequence of molecular vibrations. The
ultraviolet and infrared absorption together produce a broad absorption spectrum with
A , 0:03 dB=km in the wavelength range 1.3–1.6mm used in fiber-optic communi-
cations, and with an absorption minimum at 1.55mm. Water vapor and, to a lesser
extent, metallic impurities, are the dominant sources of absorption losses in silica
fibers, and these losses, together with the loss due to Rayleigh scattering from local den-
sity fluctuations, exceed the “intrinsic” absorption loss of pure silica. All the sources of
power loss in currently manufactured telecommunication fibers combine to produce an
attenuation minimum of about 0.2 dB/km at 1.55mm.

† In fiber optics the attenuation is commonly expressed in decibels per kilometer (dB/km). If
(Pwr)in and (Pwr)out are the input and output powers, the attenuation in decibels is defined by
[recall the definition (4.3.20)]

A ¼ 10 log10
(Pwr)in
(Pwr)out

: (8:7:4)

A 3-dB attenuation means that the output power is half the input power. In terms of an attenuation
coefficient a0 per unit length, (Pwr)in/(Pwr)out ¼ exp(a0L), where L is the length of the fiber. a0
and A are related by A (dB) ¼ 10 log10 exp (a0L), or

ea0L ¼ (100:434)a0L ¼ 10A(dB)=10 (8:7:5)

and therefore a0 ¼ (0:23=L)A (dB) and

a0 (cm
�1) ¼ 2:3� 10�6A (dB=km): (8:7:6)

Decibel units are sometimes convenient simply because of the fact that the logarithm of a product
of two numbers is equal to the sum of the two logarithms. For example, when a fiber with an
attenuation (gain) of 10 dB is followed by a fiber with an attenuation (gain) of 20 dB, the overall
attenuation (gain) is 30 dB.

The remarkable transmission capabilities of glass telecom fibers can be appreciated by
a comparison with ordinary window glass, which has an optical attenuation coefficient a0 �
0.05 cm21, about 100,000 times that of a fiber with A ¼ 0:2 dB/km. The small attenuation of
transatlantic fiber cable allows repeaters (amplifiers) to be placed �70 km apart.

The bending flexibility of fibers compared to the brittleness of bulk glass is mainly a
consequence of their small surface areas. Fracture in glass and many other materials arises
from voids that act to concentrate the effect of an applied stress. In glass, the voids are associated
with tiny surface cracks that can grow under an applied stress and lead to fracture. The theory
suggesting that the brittleness of glass is a surface effect, and therefore should be reduced
when the surface area is decreased, was developed in the early 1920s by A. A. Griffith, who
showed that “hot-drawing” glass into fibers dramatically increased its strength.

Fibers for guiding light had been proposed and tested in the 1920s and 1930s, but the fibers at
the time were unclad and inefficient transmitters of light. The development of fiber bundles for
“fiberscopes,” the precursors of modern endoscopes, spurred renewed interest in optical fibers in
the 1950s; these are also of interest for generating high powers (albeit with generally poor
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beam quality) by combining the outputs of single-fiber lasers (Section 11.14). Their invention
was spurred by the need in many applications to guide light around obstacles without the
usual methods based on lenses and mirrors. In the first publication on fiber bundles [Nature
173, 39 (1954)], and on the use of a lower-index sheath around a single fiber, A. C. S. van
Heel wrote that:

Consideration of the construction of the eye of some insects suggested another approach. If a bundle
or sheaf of thin transparent fibres is cut off perpendicularly at both ends and an optical image is formed
on one end, it will be seen at the other end, as the light entering one fibre can only leave this at the other
end, provided leakage of light from one fibre to another of the bundle is prevented. Moreover, the
cylindrical wall of each fibre must reflect the light as nearly completely as possible, because of the
numerous reflexions occurring when the fibres are thin compared to their length. Preliminary exper-
iments . . . have shown that coating the fibres with silver or any other metal yields an unsatisfactory
transmission. A much better result was obtained when the fibres were coated with a layer of lower
refractive index, which ensured total reflexion. This coating was isolated from the neighboring
fibres by a thin coat of black paint. In this way, flexible ‘image rods’ have been obtained with satis-
factory transmission, a very good contrast in the end image, and with the possibility of using forms
bent in any direction (up to at least 3608). †

Light can escape a bent fiber: Rays incident on the core–cladding interface with an
angle of incidence greater than the critical angle for total internal reflection can have an
angle of incidence smaller than the critical angle when they encounter a bend. Bending
loss in a fiber is characterized by an attenuation coefficient aB such that after a propa-
gation distance ‘ the light inside the fiber diminishes in power by the factor
exp(�aB‘); the fraction 1� exp(�aB‘) of the power at ‘ ¼ 0 is radiated out of the
fiber. Approximate calculations yield the result that aB for a fiber mode depends on
the radius of curvature R of a bend primarily through an exponential factor
exp(22g3R/3b2); exp(2R/Rc), where b is the propagation constant for the mode
and g is defined by (8.5.16). Bending radii much smaller than Rcwill result in significant
loss of power in the fiber due to radiation from the fiber. Small values of Rc make the
fiber less susceptible to bending loss; Rc is a function of the core and cladding radii
and refractive indices that is not in general amenable to a simple analytical form
(Problem 8.7). It increases with decreasing numerical aperture and with mode order,
that is, higher-order modes have greater loss for a given bending radius than the
lowest-order mode. Experiments generally support the predictions of the theory,
although data analyses must also account for losses associated with the tensile strength
and other characteristics of a particular fiber. Rough rules of thumb are that bending radii
greater than about 10 times the fiber diameter result in acceptably small radiation loss
and that fibers with numerical apertures smaller than 0.06 are too sensitive to bending
to be practical. In addition to “macrobending” loss, there can also be significant
“microbending” loss due to small, random bending radii along the fiber.

We have already mentioned intermodal dispersion, which can cause different pulses
in a fiber to overlap and thereby limit the rate at which information in the form of “0” and
“1” pulses can be transmitted. While single-mode fibers do not suffer from intermodal
dispersion, there are nevertheless other types of dispersion that can limit their infor-
mation transmission rate. One of these, of course, is group velocity dispersion.
Another is polarization-mode dispersion arising from the fact that two orthogonal polar-
ization components can have different group velocities as a consequence of the random
birefringence effect described above. In Section 15.6 we will discuss further the effects
of dispersion in fiber-optic communications.
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8.8 BIREFRINGENCE

In Section 5.12 we discussed applications of birefringent materials in which the refrac-
tive index is different for different linear polarizations of the field. Like Rayleigh scat-
tering, birefringence is a ubiquitous phenomenon of interest beyond the physics and
applications of lasers. However, like Rayleigh scattering, it is sufficiently important in
various laser applications to warrant more than the phenomenological discussion of
Section 5.12. We will now discuss birefringence in more detail, starting from the
wave equation (8.2.10) for the electric field.

Writing the Cartesian components E i and Pi of E and P as in (8.2.16) for a field of
frequency v, Eq. (8.2.10) becomes

r2Ei � @

@xi

X3
j¼1

@Ej

@xj
þ v2

c2
Ei ¼ � v2

e0c2
Pi, (8:8:1)

where xi is the ith Cartesian component of r, e.g., x1 ¼ x, x2 ¼ y, and x3 ¼ z. Now in
general P does not point in the same direction as E. In other words, the medium can
in general be anisotropic. For instance, we could have

Px ¼ e0(xxxEx þ xxyEy þ xxzEz) (8:8:2)

and likewise for the y and z components of P. The coefficients xxx, xxy, and xxz are com-
ponents of the electric susceptibility tensor. As discussed in Section 5.12, the fact that
these components can be different can be understood physically in terms of a restoring
force that can be different for different directions in which an electron in the material is
displaced from its equilibrium position. In the notation employed in (8.8.1), we can write

Pi ¼ e0
X3
j¼1

xij(v)Ej: (8:8:3)

Then (8.8.1) takes the form

r2Ei þ v2

e0c2
X3
j¼1

eij(v)Ej � @

@xi

X3
j¼1

@Ej

@xj
¼ 0: (8:8:4)

Here the 3�3 matrix

eij(v) ¼ e0[dij þ xij(v)] (8:8:5)

is the dielectric tensor and we employ the “Kronecker delta” dij, defined to be 1 if i ¼ j
and 0 if i = j. Lest there be any confusion about the notation, we write Eq. (8.8.4) expli-
citly for the component Ex of the electric field amplitude:

@2

@x2
þ @2

@y2
þ @2

@z2

� �
Ex þ v2

e0c2
exxEx þ exyEy þ exzEz

� �� @

@x

@Ex

@x
þ @Ey

@y
þ @Ez

@z

� �
¼ 0,

(8:8:6)

where exx ¼ e0(1 þ xxx), exy ¼ e0xxy, and exz ¼ e0xxz.
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Similar equations can, of course, be written in any Cartesian coordinate system
(X, Y, Z ), where X, Y, and Z are each a linear combination of whatever Cartesian co-
ordinates x, y, and z were used in writing (8.8.6). In particular, it is convenient to
write these equations in the particular coordinate system (X, Y, Z ) in which the matrix
e ij is diagonal:

eij(v) ¼ eii(v)dij, (8:8:7)

for example, eXY ¼ eXZ ¼ 0. The coordinate system in which e ij is diagonal defines the
principal dielectric axes of the material. In this coordinate system we have, for example,

@2

@X2
þ @2

@Y2
þ @2

@Z2

� �
EX þ v2

e0c2
eXXEX � @

@X

@EX

@X
þ @EY

@Y
þ @EZ

@Z

� �
¼ 0: (8:8:8)

The condition r .D ¼ 0 for a charge-neutral medium implies

@DX

@X
þ @DY

@Y
þ @DZ

@Z
¼ eXX

@EX

@X
þ eYY

@EY

@Y
þ eZZ

@EZ

@Z
¼ 0: (8:8:9)

Wewill restrict ourselves to the important case of uniaxial birefringent crystals in which
two of the three e’s along the principal dielectric axes, say eXX and eYY, are equal; the
Z axis then defines the optic axis of the crystal (Section 5.12), and we will see how
the polarization and direction of propagation with respect to this axis determine the
refractive index.16 With (8.8.9) and the definitions

n2o(v) ¼
eXX(v)
e0

¼ eYY (v)
e0

and n2e(v) ¼
eZZ(v)
e0

, (8:8:10)

Eq. (8.8.8) becomes

@2

@X2
þ @2

@Y2
þ @2

@Z2

� �
EX þ v2

c2
n2o(v)EX � 1� n2e(v)

n2o(v)

� 
@2EZ

@X@Z
¼ 0, (8:8:11)

and similarly

@2

@X2
þ @2

@Y2
þ @2

@Z2

� �
EY þ v2

c2
n2o(v)EY � 1� n2e(v)

n2o(v)

� 
@2EZ

@Y@Z
¼ 0 (8:8:12)

and

@2

@X2
þ @2

@Y2
þ @2

@Z2

� �
EZ þ v2

c2
n2e(v)EZ � 1� n2e(v)

n2o(v)

� 
@2EZ

@Z2
¼ 0: (8:8:13)

Equations (8.8.11)–(8.8.13) are expressed in terms of the coordinates (X, Y, Z) along
the principal dielectric axes of the crystal. Of more direct interest, of course, are the wave

16An anisotropic crystal may have two optic axes, in which case it is called biaxial.
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equations expressed in terms of the “laboratory” coordinates (x, y, z). These equations
may be derived from (8.8.11)–(8.8.13) as follows:

The (x, y, z) coordinates of a point in the crystal may bewritten as linear combinations
of its (X, Y, Z ) coordinates. From the angles u and f shown in Fig. 8.7 it can be seen that

x
y
z

0
@

1
A ¼ �cosf sinf 0

�cos u sinf �cos u cosf sin u
sin u sinf sin u cosf cos u

0
@

1
A X

Y
Z

0
@

1
A: (8:8:14)

Thus,

@

@X
¼ @x

@X

@

@x
þ @y

@X

@

@y
þ @z

@X

@

@z

¼ �cosf @

@x
� sinf cos u

@

@y
þ sinf sin u

@

@z
(8:8:15)

and likewise

@

@Y
¼ sinf

@

@x
� cosf cos u

@

@y
þ cosf sin u

@

@z
(8:8:16)

and

@

@Z
¼ sin u

@

@y
þ cos u

@

@z
: (8:8:17)

Using these relations we can rewrite Eqs. (8.8.11)–(8.8.13) in terms of the labo-
ratory coordinates (x, y, z). Consider first a wave polarized along the X direction
(EY ¼ EZ ¼ 0). The Laplacian operator has the same form in different Cartesian

Z 

X

Y 

q

f

x y 

z 

Figure 8.7 Principal dielectric axes (X, Y, Z ) and “laboratory” axes (x, y, z). z ¼ direction of propa-
gation, Z ¼ optic axis.
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coordinate systems, that is, @2/@X2 þ @2/@Y2 þ @2/@Z2 ¼ @2/@x2 þ @2/@y2 þ @2/
@z2, as may be shown straightforwardly using Eqs. (8.8.15)–(8.8.17). Therefore
(8.8.11) has the form

@2

@x2
þ @2

@y2
þ @2

@z2

� �
EX þ v2

c2
n2o(v)EX ¼ 0 (8:8:18)

in the (x, y, z) coordinate system. Similarly, for a wave polarized along the Y direction
(EX ¼ EZ ¼ 0),

@2

@x2
þ @2

@y2
þ @2

@z2

� �
EY þ v2

c2
n2o(v)EY ¼ 0: (8:8:19)

We see therefore that no(v) is the index of refraction for waves with polarization perpen-
dicular to the optic axis of the crystal. Waves with polarization perpendicular to the optic
axis are called ordinary waves.

For a field polarized parallel to the optic axis (EX ¼ EY ¼ 0), it follows from
Eqs. (8.8.13) and (8.8.15)–(8.8.17) that

@2

@x2
þ @2

@y2
þ @2

@z2

� �
EZ þ v2

c2
n2e(v)EZ

� 1� n2e(v)
n2o(v)

� 
sin2 u

@2

@y2
þ cos2 u

@2

@z2
þ sin 2u

@2

@y@z

� �
EZ ¼ 0: (8:8:20)

In particular, for a plane wave propagating in the z direction, EZ ¼ EZ(z) and therefore

@2EZ

@z2
þ v2

c2
n2e(v)EZ � 1� n2e(v)

n2o(v)

� 
cos2 u

@2EZ

@z2
¼ 0, (8:8:21)

or

@2EZ

@z2
þ v2

c2
n2e(v, u)EZ ¼ 0, (8:8:22)

where n2e(v, u) is defined by the equation

1
n2e(v,u)

¼ cos2 u
n2o(v)

þ sin2 u
n2e(v)

: (8:8:23)

It follows from (8.8.22) that ne(v, u) is the index of refraction for waves polarized
parallel to the optic axis and propagating in a direction z making an angle uwith respect
to the optic axis. Waves with polarization parallel to the optic axis are called extra-
ordinary waves. Equation (8.8.23) shows that ne(v) is the refractive index for an extra-
ordinary wave propagating in a direction perpendicular to the optic axis (u ¼p/2, sin
u ¼ 1, cos u ¼ 0). Extraordinary waves propagate with a refractive index ne(v, u) that
depends on their direction of propagation with respect to the optic axis, whereas ordinary
waves propagate with a refractive index no(v) regardless of their direction of propa-
gation. The refractive index for any wave propagating in a direction parallel to the
optic axis will be no(v), as can be seen from (8.8.23) with u ¼ 0. no(v) and ne(v) are
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called the principal refractive indices of the crystal and are generally temperature-
as well as wavelength-dependent.

In Section 5.12 we assumed that the optic axis—which is actually a direction in the
crystal rather than a single axis—was parallel to the crystal surface onto which a field is
normally incident. Equation (8.8.23) gives the refractive index for extraordinary waves
when the field is not necessarily propagating orthogonally to the optic axis, i.e., when u
may be different from p/2.

Figure 8.8 illustrates what is “ordinary” and “extraordinary” about the two types of
wave that can propagate in a uniaxial crystal. Figure 8.8a shows a normally incident
field that is linearly polarized in a direction perpendicular to the plane of incidence
formed by the optic axis and the propagation direction. In this case the field simply pro-
pagates through the crystal in the expected or “ordinary” way, i.e., according to Snell’s
law. In Fig. 8.8b, however, the field is linearly polarized parallel to the plane of inci-
dence. In this case something “extraordinary” happens: The wave is deflected at the
boundaries and the rays emergent at the exit face are displaced with respect to the inci-
dent rays. Note that there is a displacement even though the field is normally incident on
the crystal surface; no such displacement would be expected from Snell’s law.

This displacement means that if a birefringent crystal such as Iceland spar (calcite,
CaCO3) is laid over a small dot on a piece of paper, we will see a double image of
the spot. This phenomenon of double refraction (sometimes called anomalous refrac-
tion) was noted over 400 years ago by European sailors visiting Iceland.

If unpolarized light is incident on a doubly refracting crystal, it is separated into ordi-
nary and extraordinary ways that are linearly polarized orthogonally to each other. This
splitting of a light beam into two orthogonally polarized beams in calcite was observed
by Arago and Fresnel early in the nineteenth century. Since their polarizations are
orthogonal, the two beams do not interfere. This led Thomas Young (1817), and later
Fresnel, to propose that light waves are transverse, for the absence of interference
could not be explained if light waves are longitudinal, like sound waves in air.

Separation of the two orthogonally polarized waves resulting from double refraction
can be used to construct polarizers such as the Nicol prism. The more familiar polarizers
used in sunglasses, for example, are based on the fact that in certain crystals the
molecules are aligned in such a way that light polarized in one direction is transmitted,
whereas the light polarized in the perpendicular direction is strongly absorbed. Such
materials are said to be dichroic. (Some such materials appear colored in white light
because the effect is wavelength dependent, whence the term dichroic.) The most
common types of polarizer are Polaroid filters, invented around 1926 by Edwin Land.

Optic axis 

(a) (b)

Optic axis 

Figure 8.8 (a) Ordinary and (b) extraordinary waves in a uniaxial birefringent crystal.
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One type of Polaroid filter consists of a plastic sheet in which are embedded needlelike
crystals of dichroic herapathite (quinine sulfate periodide). The most common Polaroid
is made by dipping a plastic (whose long molecules have been aligned by stretching) in
iodine, which makes the plastic dichroic.

† The dichroic property of herapathite was known long before Land, but the crystals were very
fragile and difficult to grow in sizes large enough to be useful. The essence of Land’s idea was to
embed the tiny crystals in a plastic that was stretched while soft to align them. Land wrote as fol-
lows about the discovery of herapathite:17 “In the literature are a few pertinent high spots in the
development of polarizers, particularly thework ofWilliam Bird Herapath, a physician in Bristol,
England, whose pupil, a Mr. Phelps, had found that when he dropped iodine into the urine of a
dog that had been fed quinine, little scintillating green crystals formed in the reaction fluid. Phelps
went to his teacher, and Herapath then did something which I think was curious under the circum-
stances; he looked at the crystals under a microscope and noticed that in some places they were
light where they were overlapped and in some places they were dark. He was shrewd enough to
recognize that here was a remarkable phenomenon, a new polarizing material.” †

It is often appropriate to replace Eq. (8.8.18)–(8.8.20) by their paraxial approxi-
mations. For an ordinary wave propagating in the z direction we write

EX(x, y, z) ¼ E(o)
0 (x, y, z)eino(v)vz=c, (8:8:24)

and likewise for EY (x, y, z), and we assume that E(o)
0 is slowly varying in z compared to

exp[ino(v)vz/c]. Then (8.8.18) is replaced by the paraxial wave equation (Section 7.4)
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@x2
þ @2

@x2

� �
E(o)
0 þ 2ino(v)

v

c

@E(o)
0

@z
¼ 0: (8:8:25)

The paraxial approximation for extraordinary waves is a bit more complicated. In this
case we write

EZ(x, y, z) ¼ E(e)
0 (x, y, z)eine(v,u)vz=c (8:8:26)

for an extraordinary wave propagating in the direction z making an angle u with respect
to the optic axis. Then Eq. (8.8.20) is replaced by
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0
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þ [1� r(v) sin2 u]

@2E(e)
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@y2
� ir(v)ne(v, u)
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c

@E(e)
0

@y
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v

c
[1� r(v) cos2 u]

@E(e)
0

@z
¼ 0, (8:8:27)

17E. H. Land, Journal of the Optical Society of America 41, 957 (1951). Land is also recognized among other
things for his contributions to reconnaissance, three-dimensional movies, the theory of color vision, and for
his invention of the Polaroid camera (1947), which was stimulated by his daughter’s asking why it took so
long to develop photographs from a family vacation in Santa Fe, New Mexico. The student might wish to
consider what Land once said to an interviewer: “My whole life has been spent trying to teach people
that intense concentration for hour after hour can bring out in people resources they didn’t know they had.”
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where we have defined

r(v) ¼ 1� n2e(v)
n2o(v)

(8:8:28)

and used the paraxial approximation in which @2E(e)
0 =@z

2 is negligible compared to the
last term on the left-hand side of (8.8.27), and in which we take
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0 eine(v,u)vz=c
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ffi ine(v, u)
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@E(e)
0

@y
eine(v,u)vz=c: (8:8:29)

Using an identity that follows from (8.8.23):

ne(v, u)[1� r(v) cos2 u] ¼ ne(v)[1� r(v) cos2 u]1=2 (8:8:30)

and the definition

r(u) ¼ �
1
2 r(v) sin 2u

1� r(v) cos2 u
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ne(v, u)
@ne(v, u)

@u
, (8:8:31)

we write (8.8.27) as
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(8:8:32)

The factors [1 2 r(v) sin2 u] and [1 2 r(v) cos2 u] are typically �1; the propagation
equation (8.8.32) for extraordinary waves then differs from Eq. (8.8.25) for ordinary
waves mainly because of the term r(u)@E(e)

0 =@y. To appreciate the physical significance
of this term, let us ignore diffraction, which is accounted for by the first two terms on the
left-hand side of (8.8.32) (Problem 8.9). Then we have the propagation equation

@E(e)
0

@z
þ r(u)

@E(e)
0

@y
¼ 0: (8:8:33)

Solutions of this equation are of the form

E(e)
0 ( y, z) ¼ E(e)

0 (y� r (u )z), (8:8:34)

which implies that, after a distance z of propagation, the field is displaced by r(u)z along
the y direction. In otherwords, as z increases, the field “walks off” the z direction by r(u)z,
corresponding to thewalk-off angle tan21 r(u). This is the physical significance of r(u):
it is the tangent of the walk-off angle between ordinary and extraordinary waves in the
“sensitive direction” y along which the extraordinary wave is polarized (Fig. 8.7).
Thus, r(u) provides a quantitative measure of the walk-off illustrated in Fig. 8.8b.
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8.9 RAYLEIGH SCATTERING

A laser beam will generally be attenuated as it propagates. This occurs because of
absorption, as discussed in Chapter 1, or because of scattering of radiation out of the
beam. Rayleigh scattering—the scattering of light by particles small compared to a
wavelength—is important for the understanding of many natural optical phenomena
and must often be considered in applications involving the propagation of laser radi-
ation. Among the propagation effects discussed so far, it is the first to repay attention
to the particulate nature of media, i.e., to differences between the individual, nominally
identical, constituents of any medium.

To understand Rayleigh scattering we begin with the electric field scattered by a
particle considered as a dipole x̂p(t) oscillating under the influence of an incident
field. In the radiation zone the scattered field is

E(r, t) ¼ 1
4pe0

½(x̂ � r̂)r̂� x̂ 1
c2r

d2

dt2
p(t � r=c), (8:9:1)

where x̂ is the unit vector in the direction of the electric field inducing the dipole
moment and r̂ is the unit vector pointing from the dipole to the point of observation
(r ¼ r r̂). The attentuation coefficient aR associated with this scattering can be derived
as follows.

The relation

p(t) ¼ a(v)E0 cosvt (8:9:2)

gives the dipole moment that is induced in a particle with polarizability a(v) in an
electric field x̂E0 cos vt. We have already presented formula (3.3.3) for the power
radiated in all directions by such a dipole moment p(t):

Pwr ¼ 1
4pe0

� �
2
3c3

(�v2a(v)E0 cosvt)
2: (8:9:3)

We can relate the electric field to the corresponding intensity I in a medium with refrac-
tive index n(v) �1 by the formula I ¼ ce0E2

0 cos
2vt, and can write this as

Pwr ¼ 1
4pe0

� �
2v4

3c3
a2(v)
ce0

I;sR(v)I: (8:9:4)

Here the cross section for Rayleigh scattering is given by

sR(v) ¼ 8pv4

3
a(v)
4pe0c2

� �2
: (8:9:5)

The Rayleigh attentuation coefficient aR(v) ¼ NsR(v) is then obtained for a dilute
medium of N such particles per unit volume, via the formula n2(v)21 ¼ Na(v)/e0:

aR(v) ¼ NsR(v) ¼ v

c

� �4 [n2(v)� 1]2

6pN
: (8:9:6)
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The attenuation is due to the fact that a dipole induced by an incident wave radiates its
own electromagnetic field, causing a spatial redistribution of the field of the incident
wave. In other words, radiation is scattered out of the incident wave, causing its intensity
to diminish with distance z as exp(2aRz): I(z) ¼ I(0)exp(2aRz).

The v4 (or 1/l4) dependence of aR means that the amount of scattering increases
sharply with increasing frequency. (The refractive index n generally varies much
more slowly with v than v4.) Rayleigh used this dependence to explain why the sky
is blue and the sunset red. When we look at the sky away from the sun on a sunny
day, we see light that has been scattered by air molecules exposed to sunlight. This scat-
tered light is predominantly blue because the high-frequency components of the visible
solar radiation are scattered more strongly than the low-frequency components. The
sunset, however, is reddish because the sunlight has traveled a sufficient distance
through Earth’s atmosphere that much of the high-frequency components have been
scattered away.

Consider the Rayleigh scattering of visible radiation by molecules in Earth’s atmos-
phere. Taking l ¼ 600 nm, and n ffi 1.0003 for the refractive index of air at optical fre-
quencies, we find from (8.9.6) that a�1R � 4:4� 10�21 Nm, where N is the number of
molecules per cubic meter. Assuming an ideal gas at standard temperature and pressure,
we calculateN � 2.69�1025 and therefore a21

R � 118 km for the distance in which 600-
nm radiation is attenuated by a factor e21 � 37%. Rayleigh compared such calculations
with astronomers’ estimates for the transmission of stellar radiation through Earth’s
atmosphere. He drew the important conclusion that the scattering of light by molecules
alone, without suspended particles (dust), is strong enough to cause the blue sky, which
he poetically called the “heavenly azure.” This explanation of the blue sky suggests, in
fact, that the sky should be violet since violet light should be scatteredmore strongly than
blue. One reason the sky appears blue rather than violet is that the eye is more sensitive to
blue. Furthermore the solar spectrum is not uniform but has somewhat less radiation at
the shorter visible wavelengths.

There is an interesting conceptual inconsistency here between our derivation of aR
and the exact solution of Maxwell’s equations for the electric field propagating in a con-
tinuous, uniformmedium of dipoles characterized by a real index of refraction n(v). The
exact solution for such a field in (8.2.24) shows no evidence of either scattered light or of
attenuation. This is correct. There is no attenuation when a light beam passes through
such an idealized collection of dipoles.

One can see that our derivation here amounts to assigning the same scattered power to
every dipole in the medium. i.e., aR(v) is obtained by an addition of intensities whereas,
according to first principles, addition of fields not intensities is correct. An important
characteristic of atmospheric light propagation resolves this apparent contradiction.
The exact (non-scattering) solution of Maxwell’s equations is based on the assumption
that the density N describes a uniform continuum. The addition of intensities in the case
of Rayleigh scattering is correctly a consequence of density fluctuations that must be
accounted for.

† The important role of density fluctuations in Rayleigh scattering is indicated by the following
argument that takes account of different positions for different particles. The electric dipole
moment induced in a particle at ri by an incident field E0 cos(vt2k0 . r) is

pi(t) ¼ a(v)E0e
�ivteik0� ri , (8:9:7)
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where as usual it is implicit that we should take the real part of the right-hand side. The
electric field from this dipole at a point r in the “radiation zone,” i.e., the part of the electric
field that varies with distance jr 2 rij from the dipole as 1/jr2 rij, is proportional to
[cf. (8.9.1) and (8.9.2)]

€p(t � jr� rij=c) ¼ �v2a(v)E0e
�iv(t�jr�rij)eik0� ri , (8:9:8)

where again k0 ¼ v/c. Now

k0jr� rij ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{r2 � 2r � ri þ r2i

q
} ffi k0r � k0r̂ � ri (8:9:9)

for large distances from the dipole (r � ri), and therefore

€p(t�jr� rij=c)ffi�v2a(v)E0e
�iv(t�r=c)eik0�ri e�ik0 r̂�ri

¼�v2a(v)E0e
�iv(t�r=c)eiK�ri , (8:9:10)

where K ¼ k0 � k0r̂ is the difference between the k vectors of the incident (k0) and scattered
(k0r̂) plane waves. For N dipoles at positions r1, r2, . . . , rN , the total scattered field at large
distances from the dipoles is proportional to18

�v2a(v)E0e
�iv(t�r=c)XN

i¼1
eiK� ri ¼ �v2a(v)E0e

�iv(t�r=c)XN
i¼1

eiFi

¼ �v2a(v)E0e
�iv(t�r=c)F(K), (8:9:11)

where we have defined the phase Fi ¼ K . ri and the “structure factor”

F(K) ¼
XN
i¼1

eiFi : (8:9:12)

If the scatterers have a continuous and uniform distribution, then F(K) ¼ 0 except for the
forward scattering direction for which K ¼ 0; this follows from the fact that, if K=0, there
will for every Fi be a Fj such that exp(iFj) ¼ 2exp(iFi). In other words, if the scatterers are
densely and uniformly distributed, there is no side scattering.

The scattered power contains the factor

jF(K)j2 ¼
XN
i¼1

eiFi

�����
�����
2

¼ N þ
XN
i=j

XN
j¼1

ei(Fi�Fj), (8:9:13)

which for a medium with a randomly fluctuating density of dipoles must be treated by averaging
over dipole positions. The average of the second term on the right-hand side vanishes if the
particle positions are uncorrelated, as in an ideal gas and approximately the case in a gas of
weakly interacting particles, and the result is proportional to the number N of scatterers, just
as if individual scattered intensities (powers) had been added, as we did in the first place. As
we derived in (8.9.6), the Rayleigh attenuation coefficient is proportional to N.

A rigorous treatment of the role of density fluctuations in light scattering is a significant
problem of statistical physics, first solved by both Smoluchowski and Einstein in the early
1900s. †
18This assumes that multiple scattering is negligible, i.e., that the field from any dipole is not scattered by any
other dipole. This is a good approximation at the low densities of interest for Rayleigh scattering in the
atmosphere.
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A less obvious characteristic of skylight is that it is polarized. This effect, which
was discovered in 1811 by Arago, is easily observed with polarized sunglasses. The
extent of polarization appears to be strongest from directions near 908 to the direction
of the sun from the observer. It is known that bees are sensitive to the polarization of
light and use it for navigation. Human eyes, of course, are not directly sensitive to
polarization.

To understand the polarization of light by Rayleigh scattering, consider again the
electric field (8.9.1) in the radiation zone of an oscillating dipole. If we observe the
scattered field at right angles to the plane defined by the directions of polarization and
propagation, we see from (8.9.1) that it will be polarized in the x direction, since

(x̂� r̂)r̂� x̂ ¼ (x̂� ŷ)ŷ� x̂ ¼ �x̂ (8:9:14)

when r̂ ¼ ŷ (Fig. 8.9). If instead the incident field inducing the field is polarized in the y
direction, there is no scattered field in the y direction since

(ŷ� r̂)r̂� ŷ ¼ (ŷ� ŷ)ŷ� ŷ ¼ 0: (8:9:15)

The direction of the dipole moment induced by an unpolarized wave propagating in
the z direction (Fig. 8.9) will be rapidly varying in the xy plane. (Recall the discussion in
Section 5.12.) Equations (8.9.14) and (8.9.15) show that the dipole radiates in the y
direction only when its oscillation has a nonzero component in the x direction
(Fig. 8.9), and in that case the radiation is polarized in the x direction. Rayleigh scattering
thus produces polarized light. This explains the polarization of skylight produced by
scattering of the (unpolarized) light from the sun.

The theory of light scattering becomes much more complicated when the particle
dimensions are not negligible compared to thewavelength. In this case the light scattered
at 908 is not completely polarized. And as the particle size increases, the scattering cross
section becomes less sensitive to the wavelength; the radiation scattered from white
light becomes “whiter” as the particle size increases. This explains why cirrus clouds,
consisting of water droplets suspended in air, are white.

Incident field 
polarized 
along x 

Incident field
polarized
along y

Induced dipole 
oscillates 
along x 

Induced dipole 
oscillates 
along y 

Scattered field in
y direction is
polarized along x

No scattered field
in y direction

z 

x 

z 

x 

yy (a) (b)

Figure 8.9 An incident field propagating in the z direction with polarization (a) along x, in which
case the field scattered in the y direction is also polarized along x, and (b) along y, in which case
there is no scattering in the y direction.
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† All these features of light scattering may be observed beautifully in a simple experiment that
the reader can perform with readily available materials (Fig. 8.10). A few spoonfuls of photo-
graphic fixing powder (sodium thiosulfate) are dissolved in a small tank of water. The addition
of about 100 mL of dilute sulfuric acid causes small grains of sulfur to precipitate out of solution
after a few minutes. In the initial stages of the precipitation these grains are very small and the
scattered light has a faintly bluish hue (the “blue sky”). The scattered light viewed at 908
(Fig. 8.10) is observed with a pair of polarized sunglasses to be strongly polarized. The light
transmitted through the tank has a yellowish and eventually a strongly reddish hue (the
“sunset”). After several more minutes the scattered light is not blue but white (“clouds”), and
it is no longer strongly polarized. At this stage we are observing light scattered from sulfur
grains that have grown to a size comparable to or larger than optical wavelengths.

Such an experiment was performed by John Tyndall in 1869. Rayleigh (1881) found that the
“hypo” (sodium thiosulfate) solution demonstrates the scattering effects especially well.

It should be borne in mind, of course, that the notion of “color” is a subjective one, and that
there is not a strictly one-to-one correspondence between wavelength and color: Different com-
binations of wavelengths can produce the same perceived color while certain colors, such as
brown, are not associated with any single wavelength. The theory of color vision has attracted
the attention of many physicists, including Newton, Young, Helmholtz, Maxwell, Rayleigh,
and Land.19 Even now, however, color vision is not completely understood. Although it
would be inappropriate for us to explore the subject here, it may be worthwhile to mention
that in dim light we see nearly in “black and white” (Section 12.7). This explains, for example,
why we do not see the brilliant colors of the Crab nebula that are apparent in photographs taken
with long exposure times. Another example is the night sky itself. It looks black instead of blue
because of its low intensity; a long-exposure photograph shows it to be “really” blue. †

White
screen

Scattering
at 90°

Slide projector

Dilute acid solution of
sodium thiosulfate

Figure 8.10 Experiment demonstrating the effect of particle size in light scattering. In the initial
stage of precipitation the sulfur particles suspended in sodium thiosulfate solution are small compared
to an optical wavelength. The tank takes on a blue color, the light scattered at 908 is strongly polarized,
and on the white screen one observes the “red sunset.” After a few minutes the particles have grown
larger than a wavelength of visible light. Then the tank has a cloudy appearance and the light scattered
at 908 is no longer strongly polarized.

19See E. H. Land, “Experiments in Color Vision,” Scientific American 200, May 1959, p. 84.
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8.10 ATMOSPHERIC TURBULENCE

A laser beam propagating in air undergoes scattering, absorption, and diffractive spread-
ing. But there is another aspect of propagation in air that we have not yet considered:
atmospheric turbulence causes the refractive index to fluctuate randomly. These fluctu-
ations are responsible for the twinkling of starlight and for the limited resolution of
ground-based telescopes. They can also cause a laser beam to spread more than
would be expected from diffraction in vacuum, and to “wander” and “scintillate.” To
describe these effects we must have a theory for the statistics of the refractive index
fluctuations.

A useful measure of these fluctuations is the refractive index structure function,

Dn(r1, r2) ¼ h[n(r1)� n(r2)]2i ¼ h[~n(r1)� ~n(r2)]2i, (8:10:1)

where k..l denotes an averaging over the fluctuations, r1 and r2 are two points in
space, and

~n(r) ¼ n(r)� hn(r)i (8:10:2)

is the deviation of n(r) from its average value. Another important quantity is the
covariance:

Bn(r1, r2) ¼ h~n(r1)~n(r2)i ¼ hn(r1)n(r2)i � hn(r1)ihn(r2)i: (8:10:3)

We note for later use that

Dn(r1, r2) ¼ Bn(r1, r1)þ Bn(r2, r2)� 2Bn(r1, r2): (8:10:4)

The refractive index for air is given approximately by the Cauchy formula
[Eq. (3.14.9)]

n(l)� 1 ¼ 7:76� 10�5 þ 0:584

l2

� �
P

T
, (8:10:5)

where l is the wavelength (in nanometers) and P and T are the pressure (in millibars)
and the temperature (in kelvins), respectively. Fluctuations in pressure and temperature
cause the refractive index to fluctuate. For our purposes we may assume that pressure
fluctuations are quickly washed out by sound (pressure) waves, whereas temperature
fluctuations are equilibrated by conduction and persist much longer. The refractive
index fluctuations are therefore due mainly to temperature fluctuations; from (8.10.5),

~n(r1) ¼ Dn ffi �7:9� 10�5P
DT

T2
¼ � 7:9� 10�5

P

T2

� 
~T (8:10:6)

8.10 ATMOSPHERIC TURBULENCE 377



for l ¼ 550 nm.With this expression we can relate the refractive index structure function
Dn(r1, r2) to the temperature structure function DT (r1, r2) ¼ h[~T(r1)� ~T(r2)]2i:

Dn(r1, r2) ¼ 7:9� 10�5
P

T

� 2
DT (r1, r2): (8:10:7)

One goal of the theory of atmospheric turbulence is to derive formulas for structure
functions such as DT (r1, r2).

Atmospheric turbulence refers to the irregular, apparently random fluctuations in
space and time of the speed and direction of air currents. It is responsible for the shimmer-
ing appearance of distant objects down a road on a hot day and for the diffusion of smoke,
water vapor, and aerosols. Turbulence in liquids is observed, for example, in the form
of swirls or “eddies” around rocks in the otherwise steady flow of a stream. Such
swirls are also observed in winds (e.g., the swirling motion of small pieces of paper on
the ground) or in sketches by Leonardo da Vinci, who was among the first to study
turbulence and who named it. Blood flow in arteries is an example of turbulent flow.
The turbulence experienced on airplanes depends upon the size of the dominant
eddies; eddies smaller than the size of the plane make for a choppy ride, while larger
eddies produce sudden upward and downward jolts, or climbing and dropping in the
case of the largest eddies.

Turbulence requires a source of energy. In the case of atmospheric turbulence this
source of energy is solar radiation. Temperature inhomogeneities result from the differ-
ent degrees of solar heating of different portions of Earth’s surface. The scale of the
inhomogeneities is reduced by wind and convection, and on a sufficiently small
“outer scale” L0 the atmosphere under “fully developed turbulence” may be regarded
on average as a mixture of eddies of all scale sizes. Larger eddies break up into smaller
eddies until an “inner scale” ‘0 is reached at which eddies are stable against further
breakup. This occurs when the rate of kinetic energy transfer to smaller eddies equals
the energy dissipation rate due to viscosity and heating. Earth’s atmosphere is typically
a good example of such fully developed turbulence. In the troposphere ‘0 � 1–10 mm,
the smallest values occurring near ground, while L0 � 1–100 m, the smallest values
again occurring near ground. These numbers vary considerably with atmospheric con-
ditions, terrain, altitude, and other factors.

Turbulence is much too complicated to formulate in a rigorous, “first-principles” way,
and in fact it is not very well understood. The theory relies in part on phenomenology
and scaling arguments, and one must generally invoke various simplifying assumptions,
which may apply only approximately to the “real world,” in order to make progress.
One such assumption is that the turbulence is homogeneous, so thatDT (r1, r2) depends
only on the difference r12r2. Another assumption is that the turbulence is isotropic,
meaning that DT does not depend on the direction of r12r2. The assumptions of homo-
geneous and isotropic turbulence imply thatDT (r1�r2) depends only on r ¼ jr1 � r2j :
DT (r1, r2) ¼ DT (r).

The most widely applied theory of turbulence is based on the work of the Russian
mathematician A. N. Kolmogorov in the 1940s. The most important result of the
theory for our purposes is that the temperature structure function DT (r) scales as r

2/3

for ‘0 , r , L0:

DT (r) ¼ C2
Tr

2=3 (‘0 , r , L0), (8:10:8)
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and, therefore, according to (8.10.7), so does the refractive index structure function:

Dn(r) ¼ 7:9� 10�5
P

T

� 2
C2
Tr

2=3 ¼ C2
nr

2=3 (‘0 , r , L0), (8:10:9)

where C2
n is called the refractive index structure constant.

† The theory of atmospheric turbulence is repletewith powers of 23 ,
5
3 ,

11
3 , . . . originating in scaling

arguments. Consider, for example, the scaling of velocity v with scale length ‘. The rate of change
of kinetic energy per unit mass per unit time is proportional to v2=(‘=v). Kinetic energy transfer to
smaller and smaller scales continues until this rate equals the energy dissipation rate 1: v3=‘/ 1, or
v2 / ‘2=3. In fact, according to the Kolmogorov theory, the velocity structure function
Dv(r) ¼ C2

v r
2=3 for ‘0 , r , L0. †

Kolmogorov obtained a “power spectral density” Fn(K) that gives an average dis-
tribution of eddy dimensions Lx, Ly, and Lz, where Lx ¼ 2p/Kx, Ly ¼ 2p/Ky, and
Lz ¼ 2p=Kz: Fn(K) ¼ 0:033C2

nK
�11=3 for ‘0 ! 0 and L0!1. For our purposes

Fn(K) may be defined as the Fourier transform of the refractive index covariance (8.10.3):

Bn(r) ¼
ð
Fn(K)e�iK�rd3K: (8:10:10)

Various modifications of this formula have been proposed for finite values of ‘0 and L0,
the most commonly used one being the von Karman form,

Fn(K) ¼ 0:033C2
ne
�(K‘0)2

[K2 þ 1=L20]
11=6

: (8:10:11)

Atmospheric turbulence may be thought of in terms of eddies having a continuous distri-
bution of sizes determined by Fn(K). Our considerations presume that the wavelength l
of light propagating in the turbulent atmosphere is much smaller than the inner scale ‘0
of turbulence. This makes the results inapplicable to propagation through clouds, which
are said to be examples of “turbid” media.

Experimental tests of the theory of atmospheric turbulence leading to the expression
(8.10.9) for the refractive index structure function are complicated by the variablity of
atmospheric conditions, but the theory is fairly well supported by experiment. The temp-
erature structure constant C2

T has been measured by attaching thermometers to tiny
balloons; such measurements, together with the relation between C2

T and C2
n given by

(8.10.9), allow the numerical value of C2
n to be inferred. It depends on atmospheric con-

ditions and altitude as well as the time of year and the time of day. Near ground level
C2
n � 10�17 m�2=3 when atmospheric turbulence is weak, whereas C2

n � 10�13 m�2=3

under conditions of strong turbulence. Measurements indicate that C2
n is typically smallest

an hour or so before sunrise, a preferred time for hot air balloon launches, and after sunset,
and largest around noon on clear days. It decreases rapidly with altitude, and at about 3 km
it is typically about 1000 times smaller than it is near ground level.

8.11 THE COHERENCE DIAMETER

To include the effect on propagation of a refractive index that fluctuates randomly in time
is a very complicated problem. The difficulty of the subject is compounded by the
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variety of assumptions and approximations in the literature. Our principal goal in this
section is to introduce the coherence diameter, one of the most important concepts in
the theory of optical propagation in the turbulent atmosphere. To this end we will sim-
plify the theory as much as seems possible without losing sight of the basic physics.

Wewill begin by considering the simpler situation in which the refractive index varies
in space but not in time; even this is difficult to treat in general. There are, of course,
special cases, such as a lens or an optical fiber, where the effects of spatial variations
of the refractive index are well understood and obviously beneficial. But arbitrary and
uncontrolled variations of the refractive index are generally detrimental because,
among other things, they limit the focusing and imaging capabilities of optical systems.

Consider the propagation in a medium with refractive index n(x, y, z) of a monochro-
matic wave with complex electric field amplitude E(x, y, 0) in a plane z ¼ 0. For simpli-
city we consider a single polarization component and relate the field at z . 0 to the field
at z ¼ 0 by the Fraunhofer formula (7.10.8):

E(x, y, z) ¼ � ieikz

lz
eik(x

2þy2)=2z
ð ð

E(x0, y0, 0)e�ik(xx0þyy0)=z dx0 dy0, (8:11:1)

where k ¼ 2p/l and the integration is over an aperture centered at x ¼ y ¼ 0 in the
plane z ¼ 0. This equation describes propagation from z ¼ 0 in vacuum, whereas
we are interested in propagation in a medium with refractive index n(x, y, z). To
make the general problem tractable, various approximations must be invoked, one
of the simplest of which is to replace (8.11.1) by

E(x, y, z) ¼ �i 1
lz

eik(x
2þy2)=2z

ð ð
E(x0, y0, 0)e�ik(xx0þyy0)=zeif(x0,y0,z) dx0 dy0 (8:11:2)

for n = 1, where

f(x0, y0, z) ¼ k

ðz
0
n(x0, y0, z0) dz0: (8:11:3)

In this “phase screen approximation” each point (x0, y0) on thewave in the plane z ¼ 0 is
simplymultiplied by the phase factor exp[if(x0, y0, z)]. Since the direction of ray propa-
gation is normal to surfaces of constant phase, this approximation ignores the bending
of rays and diffraction effects associated with it. Obviously, this approximation will be
a poor one if the variations of E(x0, y0, 0) are sufficiently great and if z is sufficiently
large; conditions for the accuracy of the phase screen approximation can be derived,
but we will just assume here that z is sufficiently small that (8.11.2) is accurate
enough for our purposes. In numerical computations one can model the propagation
using a sequence of phase screens, each for a propagation distance small enough
that (8.11.2) is accurate. For simplicity we consider only a single phase screen. We
also resort to a more compact notation, replacing (8.11.2) and (8.11.3) by

E(R, z) ¼ �i 1
lz

eikR
2=2z
ð
E(R0, 0)e�ikR �R0=zeif(R0,z) d2R0 (8:11:4)

and

f(R0, z) ¼ k

ðz
0
n(R0, z) dz0: (8:11:5)
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Suppose the field has its maximum intensity at R ¼ 0 in the plane z ¼ constant. This
maximum intensity is proportional to

jE(0, z)j2 ¼ 1

l2z2

ð
E(R0, 0)eif(R0,z) d2R0

����
����
2

: (8:11:6)

If the phase is sufficiently small that we can accurately replace exp(if) by 1 þ if 2
f2/2, then

jE(0, z)j2 ffi 1

l2z2

ð
E(R0, 0) 1þ if(R0, z)� 1

2
f2(R0, z)

� 
d2R0

����
����
2

ffi 1

l2z2

ð ð
E(R0, 0)E�(R00, 0) 1� 1

2
[f(R0, z)�f(R00, z)]2

� �
d2R0 d2R00,

(8:11:7)

and if we take E(R, 0) ¼ const:; C over the aperture in the plane z ¼ 0, as in the case
of an incident plane wave, then

jE(0, z)j2 ffi jCj
2

l2z2

ð
1þ if(R0, z)� 1

2
f2(R0, z)

� 
d2R0

����
����
2

ffi jCj
2S2

l2z2
[1� (f2 �f

2
)] ¼ jCj

2S2

l2z2
[1� (Df)2rms], (8:11:8)

where S is the aperture area in the plane z ¼ 0, and we define the average of f over
the aperture as

f ¼ 1
S

ð
f(R0, z) d2R0 (8:11:9)

and likewise the average of the square of f over the aperture as

f2 ¼ 1
S

ð
f2(R0, z) d2R0: (8:11:10)

The Strehl ratio is the ratio of the peak intensity defined by (8.11.6) to the peak inten-
sity in the “diffraction-limited” case in which there are no phase variations (Section
7.13). It is a simple and convenient measure of the departure from the ideal situation
in which only diffraction acts to limit the peak intensity. In our example, and with our
small-phase approximation, the Strehl ratio (SR) is simply20

SR ffi 1� (Df)2rms ¼ 1� 2p
l

� �2
(DF)2rms, (8:11:11)

where F(x0, y0, z) ¼ (l=2p)f(x0, y0, z) ¼ Ð z0 n(x0, y0, z0) dz0 is the optical path length.
Thus, a (DF)rms of only l/10 produces a Strehl ratio of 0.6. That is, root-mean-
square variations of the optical path length on the order of only a tenth of a wavelength

20A more widely used form of the Strehl ratio is exp[�(Df)2rms], which reduces to (8.11.11) when
(Df)2rms
1.
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cause the peak intensity to drop to 60% of the diffraction-limited peak intensity—
relatively small phase variations significantly reduce the peak intensity. The diminution
of peak intensity implies, from energy conservation, that the beam is spread out by the
phase variations. Since the Fraunhofer formula we have used describes the field in the
focal plane of a lens (Problem 7.12) as well as the free-space propagation to the far
field, it is clear that the spreading out of intensity due to refractive index variations
can result in image blurring. In this sense the Strehl ratio is a useful, quantitative measure
of image resolution.

In the case of the atmosphere, the random fluctuations in time of the refractive index
will likewise be detrimental to imaging with a telescope or to the focusing of a laser
beam to a small spot. If the refractive index undergoes rapid fluctuations, so will the
phase f, and the observed peak intensity will be proportional to the average,
hjE(0, z)j2i, over the phase fluctuations. In the approximation that the phase is small
we have, from (8.11.7),

hjE(0, z)j2i ¼ 1

l2z2

ð ð
E(R0, 0)E�(R00, 0) 1� 1

2
h[f(R0, z)� f(R00, z)]2i

� �
d2R0 d2R00:

(8:11:12)

The phase structure function Ds(r0, r00)¼ h[f(R0, z)�f(R00, z)]2i ¼ h[f(r0)�f(r00)]2i,
like the refractive index structure function, is generally assumed to depend only on
the difference jr0 2 r00j. Using this assumption, we define

Ds(jR0 � R00j) ¼ h[f(R0, z)� f(R00, z)]2i (8:11:13)

and write (8.11.12) as

hjE(0, z)j2i ¼ 1

l2z2

ð ð
E(R0, 0)E�(R00, 0) 1� 1

2
Ds(jR0 � R00j)

� 
d2R0 d2R00: (8:11:14)

Another generally assumed property of the phase fluctuations is that they are gov-
erned by Gaussian statistics, that is, that the probability distribution of the phase is
Gaussian. With this assumption it can be shown (Problem 8.15) that (8.11.14) is an
approximation, for small phase fluctuations, to the more general expression

hjE(0, z)j2i ¼ 1

l2z2

ð ð
E(R0, 0)E�(R00, 0)e�(1=2)Ds(jR0�R00j) d2R0 d2R00: (8:11:15)

Defining K ¼ (R0 2 R00)/lz, we can write this equivalently as21

hjE(0, z)j2i ¼
ð ð

E(Rþ lzK, 0)E�(R, 0)e�(1=2)Ds(lzK) d2R d2K: (8:11:16)

21The introduction here of spatial frequencies (Kx,Ky) leads to expressions such as (8.11.26) that are identical
to those obtained from a much more general approach based on the optical transfer function (OTF) of an
optical imaging system. For the theory and application of the OTF to atmospheric turbulence and other
optical problems requiring a statistical description see, for example, J. W. Goodman, Statistical Optics,
Wiley, New York, 2000. See also the remarks near the end of this section.
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† The justification for the assumption of Gaussian statistics comes from the central limit the-
orem, which, loosely speaking, says that the probability distribution for the sum of a large
number of independent random variables with arbitrary probability distributions is Gaussian.
Equation (8.11.3) expresses the phasef(x0, y0, z) as the sum of a large number of random variables
that, because they are associated with different parts of the medium, may be presumed to be
approximately independent.

The refractive index in the atmosphere fluctuates randomly in time, whereas the probability
distributions and the averages k. . .l we work with refer to an ensemble of possible values of
the refractive index (or phase). Implicit in our discussion is the assumption of ergodicity
which, again speaking loosely, means that the average over the ensemble of possible values of
a fluctuating quantity x(t) is equivalent to an average over time of that quantity. A necessary
but not sufficient condition for ergodicity of a “random process” x(t) is stationarity in the
sense that the ensemble averages kx(t)l and kx(t)x(t þ t)l do not depend on t, or in other words
these averages are independent of the origin of time. For the Gaussian random processes of inter-
est here, this “wide-sense” stationarity is often, but not always, sufficient to guarantee ergodicity,
which also requires that correlations of the random process decay rapidly enough in time.22

Another implicit assumption in our discussion is that the “exposure time” is long enough that
the phase varies in time over a substantial portion of its ensemble of possible values. Since, as
discussed below, the relevant time scale for atmospheric fluctuations is typically on the order
of a millisecond, it is generally assumed that exposure times much greater than about 10 ms
are “long” in this sense. Such exposure times are usually realized when photographs are taken
of faint astronomical objects, for example. In the case of a short exposure time, in which case
the atmospheric fluctuations are approximately “frozen,” such a photograph is typically a
speckled interference pattern, whereas a long exposure time washes out the speckles. †

Our considerations thus far reveal the importance of the phase structure function:
Subject to our assumptions and approximations,Ds(r) fully characterizes the phase fluc-
tuations. We will now show how Ds(r) can be related to the refractive index structure
function Dn(r), the form of which was discussed in Section 8.10.

From (8.10.2), (8.11.5), and (8.11.13) it follows that

Ds(jR0 � R00j) ¼ k2
ðz
0
[~n(R0, z0)� ~n(R00, z0)] dz0

� �2* +
, (8:11:17)

or, since this depends only on the distance r between the points (R0, z0) and (R00, z0),

Ds(r) ¼ k2
ðz
0

ðz
0
2Bn(z

0 � z00)� 2Bn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z0 � z00)2 þ r2

q� �� 
dz0 dz00, (8:11:18)

where r is the radial variable along the direction perpendicular to the direction (z) of
propagation and Bn is the refractive index covariance defined by (8.10.3) and having
the properties

Bn(z
0 � z00) ¼ h~n(r, z0)~n(r, z00)i ¼ h~n(0, z0)~n(0, z00)i,

Bn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z0 � z00)2 þ r2

q� �
¼ h~n(r, z0)~n(0, z00)i ¼ h~n(r, z00)~n(0, z0)i:

(8:11:19)

22For further discussion of stationary and ergodic random processes see, for instance, L.Mandel and E.Wolf,
Optical Coherence and Quantum Optics, Cambridge University Press, New York, 1995, Chapter 2.
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The identity

2Bn(z
0 � z00)� 2Bn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z0 � z00)2 þ r2

q� �
¼ 2Bn(0)� 2Bn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z0 � z00)2 þ r2

q� �� 

� [2Bn(0)� 2Bn(z
0 � z00)] (8:11:20)

and the relation (8.10.4) imply that

2Bn(z
0�z00)�2Bn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z0�z00)2þr2

q� �
¼Dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z0�z00)2þr2

q� �
�Dn(z

0�z00), (8:11:21)

which allows us to rewrite Eq. (8.11.18) in terms of the refractive index structure function:

Ds(r)¼k2
ðz
0

ðz
0
Dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z0�z00)2þr2

q� �
�Dn(z

0�z00)
� 

dz0dz00: (8:11:22)

Next we use the formula (8.10.9) for the refractive index structure function to evaluate
the integral (8.11.22). We omit the details and just state the result:

Ds(r)¼k2C2
nzr

5=3
ð1
�1

[(x2þ1)1=3�x2=3]dx¼ 2:91k2C2
nzr

5=3: (8:11:23)

The coherence diameter r0 is defined by writing

Ds(r) ¼ 6:88
r

r0

� �5=3
: (8:11:24)

The reason for the factor 6.88 will become clear shortly. r0 is given explicitly by the
formula

r0 ¼ 6:88
2:91(4p 2)

� 3=5 l2

C2
nz

� �3=5
¼ 0:185

l2

C2
nz

� �3=5
, (8:11:25)

and its physical significance is brought out by the following considerations.
With the phase structure function (8.11.24), Eq. (8.11.16) for the “on-axis” peak

intensity becomes

hjE(0, z)j2i ¼
ð ð

E(Rþ lzK, 0)E�(R, 0)e�3:44(lzK=r0)5=3 d2Rd2K: (8:11:26)

Suppose the field E(R, 0) in the plane z ¼ 0 is a constant C over a circular aperture of
diameter D centered at R ¼ 0. Then the integral over R is just the overlap area of two
circles of diameter D with centers separated by lzK, and can be evaluated using
simple geometrical considerations:

ð
E(Rþ lzK, 0)E�(R, 0) d2R ¼ jCj2D

2

2
cos�1

lzK

D

� �
� lzK

D

� �
1�

ffiffiffiffiffiffiffiffiffi
lzK

D

r !" #

(8:11:27)
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for lzK/D 	 1 and 0 otherwise. Therefore, since
Ð
(. . .) d2K ¼ 2p

Ð
(. . .)K dK when

the integrand (. . .) depends only on the magnitude K of K, Eq. (8.11.26) becomes

hjE(0, z)j2i ¼ jCj2pD2
ðD=lz
0

cos�1
lzK

D

� �
� lzK

D

� �
1�

ffiffiffiffiffiffiffiffiffi
lzK

D

r !" #

� e�3:44(lzK=r0)
5=3
K dK

¼pjCj2 D4

l2z2

ð1
0
cos�1 u� u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
ph i

e�3:44(Du=r0)
5=3
u du, (8:11:28)

where we have introduced the dimensionless integration variable u ¼ lzK/D.
Equation (8.11.28) gives the peak intensity and, like the Strehl ratio, serves as a

measure of the achievable “resolution” at z. We define a dimensionless resolution R
by dividing hjE(0, z)j2i by (pD2/4)(jCj2/lz):23

R ¼ 4D2

lz

ð1
0
cos�1 u� u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
ph i

e�3:44(Du=r0)
5=3
u du: (8:11:29)

The resolution so defined increases with the aperture diameter D, simply because a
larger illuminated aperture results in a larger peak intensity in the observation plane.
The maximum value of R is realized for D!1:

Rmax ¼ p

4
r0
lz

� �2
, (8:11:30)

as shown below. Thus,

R
Rmax

¼ 16
p

D

r0

� �2ð1
0
cos�1 u� u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
ph i

e�3:44(Du=r0)
5=3
u du: (8:11:31)

† Let x ¼ au5/3, a ¼ 3.44(D/r0)
5/3. Then

R ¼ 4D2

lz
a�6=5

3
5

ða
0

cos�1
x

a

� �3=5
� x

a

� �3=5 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

a

� �6=5r" #
x1=5e�x dx: (8:11:32)

As D ! 1, a ! 1 and the integral becomes
Ð1
0 cos�1 (0)x1=5e�x dx ¼ (p=2)(0:918). Thus,

Rmax ¼ lim
D!1R ¼ 4D2

lz

1
3:44

� �6=5 r0
D

� �2 3
5
p

2
(0:918) ¼ p

4
r20
lz

: (8:11:33)

The simple multiplier p/4 results from the choice of the factor 6.88 (¼ 2�3.44) used in
the definition (8.11.25) of r0. †
23The normalization used to defineR has no particular significance and is done in accordance with the defi-
nition ofR employed in the first paper in which the coherence diameter r0 associated with atmospheric tur-
bulence was introduced: D. L. Fried, Journal of the Optical Society of America 56, 1372 (1966). Equations
(8.11.29) and (8.11.31) are Eqs. (5.11) and (5.15), respectively, of Fried’s paper.
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In Fig. 8.11 R=Rmax is plotted vs. D/r0. For small values of D/r0 the resolution
increases rapidly with increasing aperture diameter D, but as D/r0 is made larger, the
resolution slowly approaches its maximum value given by (8.11.30): increasing D
much beyond r0 does not significantly improve resolution. In other words, an imaging
system with an aperture size much larger than r0 will not have significantly greater
resolution than a system with aperture size r0.

Consider the example of a laser beam with wavelength l and initial diameter �D.
If it propagates a large distance z in vacuum the peak intensity at z will be proportional
to D2, and the spot size will be proportional to lz/D (Chapter 7). If it propagates in
the atmosphere with coherence diameter r0 
 D, however, the peak intensity will be
proportional to r20 [Eq. (8.11.30)], and the spot size will be proportional to lz/r0, that
is, the peak intensity is smaller and the spot size larger than when the beam propagates
the same distance in vacuum.

Our analysis based on the Fraunhofer formula also applies to the case of a lens or
focusing mirror of diameter D. A large telescope with primary mirror diameter
D� r0, for example, will have no better resolution than a diffraction-limited telescope
of diameter r0. As discussed below, r0 � 20 cm under excellent atmospheric seeing con-
ditions (weak turbulence). Thus, a large ground-based telescope, in spite of its greater
light-gathering ability, will have no greater resolution than a good 8-inch telescope.

Another measure of resolution or imaging quality is the angular resolution or seeing
angle u, smaller values of u implying better seeing conditions. For a small diffraction-lim-
ited telescope of diameter D, u � l/D. (Recall from Section 7.11 that, according to the
Rayleigh criterion, two points are “just resolved” by a lens of diameterD if their angular
separation is 1.22l/D.) For a large telescope whose resolution is limited by atmospheric
turbulence, however, the seeing angle is u � l/r0. Ground-based telescopes at the best
sites (i.e., the mountain-top sites where C2

n is small and atmospheric turbulence is least
detrimental) have a seeing angle u � (550 nm)/(10 cm) �1 arcsec in the visible under
good seeing conditions (r0 � 10 cm).24 For the 2.4-m Hubble space telescope, by
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Figure 8.11 The normalized resolution R=Rmax [Eq. (8.11.31)] vs. D/r0.

241 degree ¼ 60 arcminutes ¼ 3600 arcseconds, 1 arcsec ¼ (1/3600) degree ¼ 4.85�1026 radian. The
moon subtends an angle of about 12 degree as seen from Earth, while the width of a thumb at a distance of
3 miles subtends an angle of about 1arcsec.
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contrast, u � (550 nm)/(2.4 m) ¼ 0.05arcsec. If the effects of atmospheric turbulence
could be eliminated, a 10-m ground-based telescope could ideally have an angular resol-
ution u � (550 nm)/(10 m) ¼ 0.01 arcsec in the visible. Techniques for compensating
for the effects of atmospheric turbulence are discussed in Section 14.2.

Since r0 varies with wavelength approximately as l6/5, the effects of turbulence are
greater at smaller wavelengths. In particular, the seeing angle (l/r0) due to turbulence
varies as l21/5, implying that seeing is better at larger wavelengths for a given level of
turbulence (C2

n). The l21/5 dependence of seeing has been verified experimentally,25

as have various other scaling relations predicted by theKolmogorov theoryof turbulence.
As discussed at the end of the preceding section, C2

n varies considerably, and in par-
ticular it decreases rapidly with altitude, so a more appropriate definition than (8.11.25)
of r0 is

r0 ¼ 0:185
l2Ð L

0 C2
n(z) dz

" #3=5
, (8:11:34)

where the integration is over the propagation path of total length L. The integral of C2
n

from a mountain-top observatory upward is such that r0 � 20 cm when the seeing is
excellent, whereas r0 � 5 cm under poor seeing conditions. In the case of a horizontal
line of sight along which C2

n is assumed to have the constant value 10215 m22/3 near
ground, r0 is calculated from (8.11.25) to be 5 cm for l ¼ 550 nm and z ¼ 2.7 km.

From (8.11.24) and the definition of the phase structure functionDs(r), it is clear that
r0 is the distance over which the phase fluctuations are well correlated. At any given time
the transverse phase profile of a wave can be imagined to be divided into patches of size
r0, which depends on C2

n , the wavelength, and the distance of propagation through tur-
bulence. These patches move about because of local air motion. Awavefront coherence
time tc is defined as r0/V, where V is a mean wind velocity (typically �10 m/s). Typical
values of tc are in the 1–10 ms range. Adaptive-optical systems that improve the image
resolution of telescopes by correcting for turbulence-induced phase distortions must,
therefore, have response times shorter than about a millisecond, or bandwidths greater
than about 1 kHz (Section 14.2).

† The derivation of Eqs. (8.11.23)–(8.11.25) is based on the phase screen approximation
(8.11.2). However, these equations can be shown by a more lengthy analysis to be accurate
when the bending of rays and diffraction effects are properly accounted for, and when amplitude
fluctuations arising from the refractive index fluctuations are also taken into account; in other
words, their accuracy is not restricted to short propagation paths. The analysis shows that Ds(r)
as given by (8.11.23) and (8.11.24) is actually the sum of phase and amplitude structure functions.

We have also assumed that the incident field at z ¼ 0 is uniform over a circular aperture. In the
case of noncircular apertures, or fields that are not uniform over an aperture, Eq. (8.11.27) must be
modified accordingly.

In order to bring out some of the important features of propagation through turbulence, and to
introduce the coherence diameter r0, we have restricted our considerations to the on-axis (R ¼ 0)
intensity. More generally we can define the Fourier transform

t (K) ¼
ð
hjE(R, z)j2ie2piK�R d2R, (8:11:35)

25R. W. Boyd, Journal of the Optical Society of America 68, 877 (1978).
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in terms of which hjE(R, z)j2i is given by the inverse Fourier transform

hjE(R, z)j2i ¼
ð
t (K)e�2piK�R d2K: (8:11:36)

If E(R, 0) ¼ A(R) exp if(R), and if we treat phase fluctuations as described in this section, then it
can be shown straightforwardly, using the Fraunhofer formula to express E(R, z) in terms of
E(R, 0), that

t (K) ¼
ð
A(Rþ lzK, 0)A�(R, 0)d2R

� 
e�(1=2)Ds(lzK) ; t0(K)e�(1=2)Ds(lzK): (8:11:37)

Knowing t(K), therefore, we can use (8.11.36) to calculate the intensity over the entire obser-
vation plane at z, not just the on-axis intensity which is proportional to hjE(0, z)j2i
¼ Ð t (K)d2K. t(K) is closely related to the optical transfer function (OTF), or more precisely
the average OTF defined in this context as

H(K) ¼
Ð hjE(R, z)j2ie2piK�R d2RÐ hjE(R, z)j2i d2R : (8:11:38)

As discussed following Eq. (8.11.16), we have assumed a long “exposure time” in which
averages are taken over times long compared to the characteristic atmospheric coherence time.
Now a general phase aberration can be expressed as a sum of components giving rise to different
effects. (This is done formally in terms of so-called Zernike polynomials.) One component, called
tilt, produces lateral displacements of a laser beam or an image in the focal plane of a lens. In the
long exposure limit, these displacements are averaged out and contribute to the observed beam
spreading or image blurring. In the case of short exposure times, however, tilt results in only a
beam deflection or “wander” and not a beam spreading or image blurring. The calculation of
the short-exposure OTF, therefore, requires removal of the tilt component before averaging,
with the result that the structure function (8.11.24) in the two limiting cases z
 D2=l and
z� D2=l is replaced by

Ds(r) ¼ 6:88
r

r0

� �5=3
1� a

r

D

� �1=3� 
, (8:11:39)

where a ¼ 1 for z
 D2=l and a ¼ 1
2 for z� D2=l. The definition of the coherence diameter

r0 remains the same in the short-exposure case, and calculations show that R=Rmax

is essentially the same as for long exposure times for D=r0 , 1
2 and D/r0 . 100, while

significantly higher resolutions are obtained in the short-exposure case for intermediate values
of D/r0. †

8.12 BEAM WANDER AND SPREAD

We have discussed atmospheric turbulence in terms of the fluctuations of the real refrac-
tive index. A field propagating in such a medium does not lose energy. Of course,
depending on the wavelength, there may well be absorption and loss of field energy aris-
ing from the imaginary part of the refractive index; CO2 laser radiation, for example, will
be absorbed by CO2molecules in the atmosphere. Therewill also be Rayleigh scattering.
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Because absorption and Rayleigh scattering result mainly in attenuation of a propagating
beam, we will ignore them and concentrate on the effects of refractive turbulence.

The discussion in Section 8.10 suggests that we can describe the turbulent atmos-
phere in terms of eddies or “cells” (Fig. 8.12) having a statistical distribution of diam-
eters and refractive indices. Each eddy can be thought of as a weak lens that is moved
erratically about with local wind currents. Eddies of different sizes compared to the
diameter of a laser beam will have different effects on the beam, as we now discuss.

One effect of turbulence on a laser beam is beamwander, or the randommotion of the
beam spot over a receiver. This effect of refractive index fluctuations is well known to
astronomers as the image dancing or “jitter” in a telescope. Beam wander results from
turbulent eddies larger than the beam diameter, as shown in Fig. 8.13. These large
eddies cause the beam centroid to deflect without much change in the beam diameter,
and the random motions of the eddies result in beam wander.

We can obtain results of more rigorous analyses for the mean-square lateral beam dis-
placement using the following crude argument, which assumes that geometrical optics is
adequate. Consider a point on a surface of constant phase of a laser beam of initial diam-
eter D that has propagated a distance z through turbulence. We define an angle a that
represents the direction of ray propagation, as in Fig. 8.14. If we ignore the possibility
that a ray can bend when it traverses the distance z, then a ray at angle a corresponds
to a transverse phase change Df ¼ (k sin a)D ffi kDa for small a, or a root-mean-
square (rms) lateral displacement ka2lz2 ffi z2k(Df)2l/k2D2. Now, if we take Df to be
the phase change f(D, z)2 f(0, z) over the full diameter D, we will overestimate the
rms lateral beam displacement kr2l; good agreement with more detailed calculations
is obtained if we take h(Df)2i � ( 13 )h[f(D, z)� f(0, z)]2i, or

hr2i � 1
3

z2

k2D2
h[f(D, z)� f(0, z)]2i ¼ 1

3
z2

k2D2
Ds(D) ¼ 1

3
6:88
k2D2

z2
D

r0

� �5=3
, (8:12:1)

Incident
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Transmitted
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Turbulence

Figure 8.12 A turbulent medium viewed in terms of cells of different sizes and refractive indices.

Laser beam Turbulence Beam wander

Figure 8.13 Deflection of a laser beam by turbulent eddies large compared to the beam diameter.
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where we have used Eq. (8.11.24) for the phase structure function. Using the definition
(8.11.25) for r0, we have, for a horizontal propagation path over which C2

n may be
assumed to be constant,

hr2i � C2
nD
�1=3z3: (8:12:2)

Except for numerical factors of order unity, this is the result obtained by more rigorous
analyses.26 Likewise it applies, with z ¼ f, to the beam spot jitter in the image plane
when a beam is incident on a lens of focal length f before passing through turbulence.
In the case of a Gaussian beam, we can use (8.12.2) withD ¼ 2w0, wherew0 is the initial
spot size, to estimate the beam wander. Note that, according to (8.12.2), beam wander is
(approximately) independent of wavelength.

It is instructive to consider the rms wander of a beam relative to the diameter of the
same beam that has propagated the same distance in vacuum. In the near field the beam
in vacuum retains approximately its initial diameter D, and the ratio of the rms beam
wander to this diameter is

ffiffiffiffiffiffiffiffiffihr2ip
D
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
nD
�1=3z3

p
D

¼
ffiffiffiffiffiffi
C2
n

q
D�7=6z3=2, (8:12:3)

whereas in the far field the beam diameter D(z) in vacuum is �lz/D and

ffiffiffiffiffiffiffiffiffihr2ip
D(z)

�
ffiffiffiffiffiffiffiffi
C2
nz

p
D5=6

l
: (8:12:4)

D D 

a z 

Figure 8.14 At a given point on a surface of constant phase, a is the angle between the normal to the
surface and the direction z of beam propagation. According to geometrical optics, a gives the direction
of ray propagation.

26See, for instance, the review by R. L. Fante, Proceedings of the IEEE 63, 1669 (1975). Equations (8.12.2)
and (8.12.5) are consistent with Eqs. (40) and (37), respectively, of that article. An introduction to various
aspects of the propagation of laser radiation in the atmosphere is given by H. Weichel, Laser Beam
Propagation in the Atmosphere (SPIE, Bellingham, WA, 1990). See also L. C. Andrews and R. L.
Phillips, Laser Beam Propagation through Random Media, second edition (SPIE, Bellingham, WA,
2005). As these reviews make clear, atmospheric turbulence is an extremely complicated phenomenon,
with many poorly understood features. Caution must be exercised in applying propagation formulas
beyond their range of validity.
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For C2
n ¼ 10�15 m�2=3, l ¼ 550 nm, andD ¼ 2 mm,

ffiffiffiffiffiffiffiffiffihr2ip
=D(z),1 when z , 10 km.

This illustrates the point that in many situations the beam wander is relatively small.
Even if it is small, however, beam wander can cause a beam to miss a small target or
not to stay on target for a sufficiently long time. The simplest solution for beam
wander, of course, is to have a sufficiently large receiver or target.

The motion of the large eddies that cause beam deflection results in the beam spot
being continuously deflected in the observation plane, the time scale of the jitter
being D/V, where V characterizes the flow velocity of the eddies transverse to the
direction of propagation. A photograph taken with an exposure time shorter than this
time scale would show a single deflected beam spot, and a sequence of such photographs
would show that the spot dances randomly about. The spot is also broadened com-
pared to the diffraction-limited spot size, as discussed below. But a single photograph
with a long exposure time would smear out the deflected spots and show a single spot
that has spread compared to a spot observed with a short exposure time. In other
words, “short-term” beam wander described by (8.12.2) contributes to the “long-
term” beam spread.

But there is an additional contribution to the beam spread that does not depend on the
exposure time and in particular is responsible for the broadening of a deflected spot seen
with a short exposure time. Like beam wander, this contribution to beam spread is well
known to astronomers—it causes the spread in the telescope image of a star. In the case
of laser beam propagation, it arises from eddies that are small compared to the beam
diameter (Fig. 8.15). These smaller eddies introduce phase fluctuations that result in
the peak intensity being smaller than its diffraction-limited value and the intensity dis-
tribution being broadened. They act in effect as weak lenses with different refractive
indices, and their net effect is to limit the lateral distance over which the phase fluctu-
ations on the transmitted wave arewell correlated. The characteristic correlation diameter
depends on the strength of the turbulence (C2

n), the wavelength, and the distance of
propagation through turbulence. We have already defined and calculated such a diam-
eter, namely the coherence diameter r0 [Eq. (8.11.25)]. If r0 is smaller than the beam
diameter D, the transverse phase fluctuations are correlated over areas (pr20=4) smaller
than the beam area (pD2/4), and consequently we expect that the far-field beam diam-
eter is determined not by D but by r0. In other words, the far-field peak intensity should
be proportional to r20 rather than D2 and the divergence angle should be �l/r0 rather
than �l/D. The beam spread after a propagation distance z should be �lz/r0. These

Laser beam Turbulence Beam spread

Figure 8.15 Spreading of a laser beam caused by turbulence cells small compared to the beam
diameter.
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expectations are borne out by the calculation leading to (8.11.31) and the discussion
following it.

Detailed calculations for beam spread in various cases of interest where the beam at
z ¼ 0 is not uniform over a circular aperture of diameter D are in accord with the
calculation leading to (8.11.31). In the case of a focused Gaussian beam having its
waist at z ¼ 0 with initial spot size w0, for example, the beam spread is calculated to be

hr2Li �
l2z2

2p2

1
r20
þ 1
w2
0

� �
þ w2

0

2
1� z

f

� �2
(8:12:5)

where f is the focal length.
ffiffiffiffiffiffiffiffiffi
hr2Li

p
is calculated as the distance from the z axis where the

average intensity is reduced by a factor e21 ffi 0.37 from its on-axis value. The approxi-

mation (8.12.5) is valid for propagation distances z
 l2=[4p 2C2
n‘

5=3
0 ], which is the

limit of greatest practical interest. For l ¼ 550 nm, C2
n ¼ 10�15 m�2=3, and the turbu-

lence inner scale ‘0 ¼ 2mm, for example, (8.12.5) is valid for propagation distances
z
 240 km. Equation (8.12.5) provides an estimate for the long-exposure beam
spread including the contribution from beam wander.

In the focal plane z ¼ f, or in the case of far-field propagation, (8.12.5) gives a “beam
diameter”

2
ffiffiffiffiffiffiffiffiffi
hr2Li

q
�

ffiffiffi
2
p

p

lz

r0
� 1

2
lz

r0
(8:12:6)

for w0 � r0, which is consistent with the discussion following Eq. (8.11.31).
Our description of beamwander and spread is somewhat oversimplified. In particular,

the motion of the turbulent eddies or “weak lenses” across a beam can lead, as a conse-
quence of interference among different parts of the beam, to regions of high intensity, or
“hot spots,” interspersed with regions of low intensity in the observation plane. The pat-
tern of hot spots changes on a time scale dictated by the motion of the eddies, and is
typically on the order of milliseconds. This beam breakup, which is typically observed
under conditions of strong turbulence, results in multiple spots even in the case of short
exposure times; a long exposure time blurs these multiple spots into a single patch, andffiffiffiffiffiffiffiffiffi
hr2Li

p
in this case gives approximately the mean radius of this patch.

8.13 INTENSITY SCINTILLATIONS

The best known example of intensity fluctuations, or scintillations, is the “twinkling” of
starlight. In this section we will consider the intensity probability distribution associated
with the scintillation of a laser beam (or the light from a star) propagating through the
turbulent atmosphere. In Section 13.14 we will discuss photon counting experiments
that confirm this “log-normal distribution” for starlight as well as for laser radiation
that has propagated in the atmosphere.

Consider the intensity I received at a point in the plane z ¼ constant. The field reaches
this point after propagating a distance z through turbulence. We imagine the propagation
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path through turbulence to be divided into a large number N of sections of length Dz,
where z ¼ N Dz is the total propagation distance. Because of the random deflections
caused by the refractive index fluctuations, the intensity I at the observation point fluc-
tuates, and so does the field incident on any point on each of our imaginary sections
along the propagation path. Suppose that after propagating through the jth section the
intensity along the propagation path to the observation point on the detector changes
by a factor Tj. If I0 is the intensity at z ¼ 0, then the intensity after the propagation
distance z is

I ¼ I0 � T1T2 . . . TN (8:13:1)

at the observation point. Since the logarithm of a product is the sum of the logarithms,

ln
I

I0

� 
¼
XN
j¼1

lnTj ; x and I ¼ I0e
x: (8:13:2)

It is easy to include the effect of Rayleigh scattering and absorption in the factors Tj,
but we will not do so. The Tj’s therefore account here only for the fluctuations in
the intensity at points along the propagation path to the detector; the total power in
the field is conserved, but the intensity at individual points in a plane of constant z
fluctuates.

Because of turbulence the Tj fluctuate randomly, and wewill take them to be indepen-
dent random variables, that is, we assume that the effects of the different sections on the
intensity are uncorrelated. This is the crucial assumption in our heuristic derivation; with
this assumption, x is the sum of a large number of independent random variables ln Tj
and, therefore, according to the central limit theorem, has a Gaussian probability
distribution:

P(x) ¼ 1

sx

ffiffiffiffiffiffi
2p
p e�[x�hxi]

2=2s 2
x , (8:13:3)

where kxl is the average value of x, and s 2
x ¼ h[x� hxi] 2i is the variance; neither kxl

nor s2 are specified in our model.
To find the probability distribution of the intensity I, we use the fact that P(x) dx ¼

P(I ) dI, that is, the probability of finding x in the interval [x, x þ dx] is the same as the
probability P(I ) dI of finding the corresponding intensity I ¼ I(x) in the interval [I, I þ
dI]. Thus, P(I ) ¼ P(x) dx/dI ¼ (I0/I )P(x), or

P(I) ¼ I0
sI

ffiffiffiffiffiffi
2p
p e�(x�hxi)

2=2s 2
[x ¼ ln (I=I0)]: (8:13:4)

Now

hexi ¼
ð1
�1
P(x)ex dx ¼ 1

s
ffiffiffiffiffiffi
2p
p

ð1
�1
e�(x�hxi)

2=2s 2
ex dx ¼ ehxiþs

2=2, (8:13:5)
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that is,

hxi ¼ lnhexi � s 2

2
¼ ln

hIi
I0

� �
� s 2

2
: (8:13:6)

Using this result in (8.13.4), we have

P(I) ¼ I0
sI

ffiffiffiffiffiffi
2p
p e�[ ln (I=I0)�ln (hIi=I0)þs

2=2]2=2s 2 ¼ I0
sI

ffiffiffiffiffiffi
2p
p e�[ ln (I=hIi)þs

2=2]2=2s 2
, (8:13:7)

where s2 is the variance of x. To relate it to the variance of Iwe note that hI2i ¼ I20he2xi
and that he2xi ¼ e2hxiþ2s

2
, which is derived in the same manner as (8.13.5). Then, using

(8.13.6), we obtain the “normalized” intensity variance

s 2
I ;
hI 2i � hIi2
hIi2 ¼ I20

hIi2 he
2xi � 1 ¼ I20

hIi2 e
2 ln (hIi=I0)þs2 � 1 ¼ es

2 � 1: (8:13:8)

Note that kIl is the mean intensity at the detector, which in general would include the
effects of Rayleigh scattering or absorption in the propagation to z. We have ignored
these effects, but in fact they do not change the log-normal distribution, even though
they obviously play a role in determining what the mean intensity at the detector is.
This mean intensity, together with sI, fully characterizes the distribution (8.13.7).

The actual theory of intensity scintillations is much more complicated than our heur-
istic model and, subject to the assumption that the turbulence is sufficiently weak, leads
to an intensity probability distribution of the form (8.13.7) with s 2 related to s 2

I by
Eq. (8.13.8) and

s 2 ¼ 1:23C2
nk

7=6z11=6 (8:13:9)

for plane waves and a horizontal propagation path of length z. A more complicated
expression for s 2 can be derived for the case of a Gaussian beam, for instance. In prac-
tice C2

n is not known without additional measurements, and measured values of kIl and
sI can be used to obtain a fit to the distribution (8.13.7).

The probability distribution (8.13.7) is called the log-normal distribution. Figure 8.16
is a plot of P(I ) for C2

n ¼ 10�15 m�2=3, l ¼ 550 nm, and z ¼ 2 km, in which case
(8.13.9) and (8.13.8) give s 2

I ¼ 0:27 and s 2 ¼ 0.24. Obviously, P(I ) is not symmetric
about P(kIl) but is skewed toward values of I less than kIl. We can define a fade prob-
ability as the probability that I will be found to be less than its mean value:

Pfade ;
ðhIi
0
P(I) dI: (8:13:10)

For the distribution P(I ) of Fig. 8.16 it is found that Pfade ¼ 0.59. Similarly, we can
define a surge probability Psurge ¼ 12 Pfade ¼ 0.41 for the example of Fig. 8.16.

As in our treatment of beam wander, our model for intensity scintillations deals with
time averages and does not address the time scale of the fluctuations, which are typically
in the 1–10 ms range. It should also be noted that the results of this section apply under
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conditions of weak turbulence, which in the research literature is conventionally defined
by s 2 , 0.3. It is important to note, however, that the results of weak turbulence theory
are often found both theoretically and experimentally to be fairly accurate also for strong
turbulence (s 2 . 0.3).

An effect that is not explained by weak turbulence theory is “saturation of scintil-
lations”: the measured variance of the intensity can saturate and even decrease with
increasing propagation distance (typically .1 km for horizontal propagation paths
near ground). This effect is attributed to multiple scattering, that is, the rescattering of
light that has already been scattered or deflected by refractive index fluctuations.

Scintillations can be reduced by aperture averaging. Our model leading to the log-
normal distribution for P(I ) applies for a pointlike detector, or in practice to a detector,
like the human eye, with a small aperture. More generally we must take into account the
fact that the intensity, and therefore the variance of the intensity, varies across the detec-
tor. If the detector aperture is large enough, we are effectively averaging over intensity
fluctuations that are statistically independent, so that the fluctuations in the measured
power are smoothed out. In practice, aperture smoothing is often accounted for by
modifying (8.13.8) to read

s 2
I ¼ A(es

2�1), (8:13:11)

where A is a function of D2/lz that decreases with increasing detector aperture
diameter D.

8.14 REMARKS

The wave equation (8.2.10) is the basis for our understanding of an enormous variety of
optical phenomena. We have restricted ourselves in this chapter to the case of linear
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10.50

1.2

1

0.8

0.6

0.4

0.2

P
(x

)

0

Figure 8.16 The log-normal distribution P(I ) [Eq. (8.13.7)] vs. I/kIl for s2 ¼ 0.24.
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media in which the polarization density P at each field frequency is simply proportional
to the electric field at that frequency, that is, to media characterized by a refractive index n
that can vary with frequency or with position, or can undergo random fluctuations, but is
independent of the electric (or magnetic) field. The theory of Gaussian beams and dif-
fraction in Chapter 7 was based on the simplest case, n ffi 1.

The generation and application of pulses of laser radiation require consideration of
the variation of the refractive index with frequency. We have introduced two concepts
associated with the frequency dependence of the refractive index, namely group velocity
and group velocity dispersion, both of which are particularly important for the under-
standing of ultrashort pulse generation and for fiber-optic communication systems
(Section 15.6). Group velocity dispersion can cause laser pulses to broaden in time
and can limit the rate at which information can be transmitted by fibers; we have
described in this chapter how chirping can be used to avert such broadening. We have
discussed the guiding of light by optical fibers as an example of the application of
the wave equation to the case where n varies spatially. Group velocity and group
velocity dispersion can be understood within the plane-wave approximation to the
wave equation, neglecting any spatial variations of n, while essential features of the
propagation modes of fibers can be understood without dealing with frequency
variations of n.

How laser radiation propagates depends on the wavelength, beam diameter, and dur-
ation as well the characteristics of the propagation medium and involves consideration of
diffraction, absorption or amplification, scattering, pulse distortion and spreading, and
birefringence, among other things. While all these effects are described at once by the
wave equation (8.2.10), we have generally discussed each of them separately, based
on assumptions and approximations that render other effects negligible. We have not
always spelled out in detail the specific assumptions or approximations made; the
reader may find it interesting to think about what approximations toMaxwell’s equations
and the wave equation are being made in our analyses of different propagation effects
throughout this book.

It should be evident that the propagation of laser radiation and, of course, electro-
magnetic radiation in general, is too broad a subject to treat in full detail in a few chap-
ters—or even a few books! Propagation in the turbulent atmosphere, for example, is
itself a subject about which books and many research papers continue to be written.
In our discussion we ignored attenuation due to Rayleigh scattering or absorption in
order to focus attention on concepts such as the refractive index structure function
and the coherence diameter that characterize the turbulent medium. In a given appli-
cation it might well be necessary, depending on the wavelength and the propagation
distance, to take attenuation into account. For intense pulses of radiation it might
also be necessary to account for the ionization of the air by the laser, or for Raman
scattering, self-focusing, and other nonlinear effects, in addition to temporal distor-
tions of the pulse. But the example of propagation in the turbulent atmosphere illus-
trates how useful it can be to isolate and study a single effect at a time. In Section
14.2, for instance, we will see how the concept of a coherence diameter, which derives
from considerations of turbulence alone, is used to design adaptive optical systems
that correct for image degradation due to atmospheric turbulence and in particular
to improve the resolution of telescopes; this is true even though attenuation and
other propagation effects come into play when the light from an astronomical
object propagates through Earth’s atmosphere.
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PROBLEMS

8.1. Is it surprising that Gaussian beams do not satisfy the conditionr�E ¼ 0? Show
in what sense the non-transverse character is “small.”

8.2. (a) The absorption coefficient a(n), defined such that the intensity of a beam of
radiation in a medium attenuates with distance z of propagation as
exp[2a(n)z], is often expressed in terms of the real and imaginary parts
(eR and eI) of the electric permittivity e. Show that

a(n) ¼ 2pn

c

eI=e0ffiffiffiffiffiffiffiffiffiffiffi
eR=e0

p
if eI is sufficiently small compared to eR, which is very often the case.

(b) Figure 8.17 shows kR ¼ eR/e0 and kI ¼ eI/e0 at microwave frequencies for
water at various temperatures. Estimate the “penetration depth” 1/a(n) at
2.45 GHz, the operating frequency of most microwave ovens. Why are micro-
wave ovens not made to operate at the frequency at which eI is largest for
water? [See C. F. Bohren, American Journal of Physics 65, 12 (1997).]

8.3. The relation vpvg ¼ c2 between the phase velocity vp and the group velocity vg
appears in the theory of the propagation of electromagnetic waves in waveguides.
Does this relation apply for propagation in a dispersive medium? What depen-
dence of the refractive index on frequency is implied by this relation?
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Figure 8.17 (a) kR ¼ eR/e0 and (b) kI ¼ eI/e0 at microwave frequencies for water at 293K. After
M. Vollmer, Physics Education 39, 74 (2004).
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8.4. The Schrödinger equation for a particle of mass m in a potential V(x, y) in two
dimensions is

ih� @c

@t
¼ � h�2

2m
@2

@x2
þ @2

@y2

� �
cþ Vc:

(a) What assumptions and substitutions make Eq. (8.4.4) for a plane-wave pulse
identical to this Schrödinger equation?

(b) Let E(r, v) ¼ E0(r, v)eivz=c in the Helmholtz equation (8.2.20) and assume
that E0 is slowly varying in z compared to eivz/c. Show that

@2

@x2
þ @2

@y2

� �
E0 þ 2i

v

c

@E0

@z
þ v2

c2
(n2 � 1)E0 ¼ 0

in the “slowly varying envelope approximation.” Is this equation valid if the
refractive index n depends on x, y, and z? What substitutions make this
equation identical to the Schrödinger equation above? What form of n puts
it into the form of the Schrödinger equation for a two-dimensional harmonic
oscillator?

8.5. An optical fiber has a dispersion parameter D ¼ 16 ps/(km-nm) at a wavelength
of 1.55mm. Assuming an input pulse at this wavelength and with a duration tp ¼
100 ps, estimate the propagation distance in the fiber for which the pulse duration
doubles. What is LGVD in this example?

8.6. Derive Eq. (8.4.25).

8.7. Consider a step-index fiber with core radius a and a bending radius R, as shown in
Fig. 8.18. A ray associated with a low-order mode of the fiber propagates along the
fiber axis when there is no bending, but due to the bending makes an angle of inci-
dence u at the core–cladding interface. If u , uc, where uc is the critical angle for
total internal reflection, then, according to geometrical optics, the mode will be
unguided. Show that this condition for the loss of guiding due to bending may
be expressed approximately as R , a/D, where D is defined by (8.6.5).

R

R + a

n2

n1

2a
n2q

Ray along fiber axis

Figure 8.18 Ray associated with a low-order mode of a fiber with core radius a and bending radius R.
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8.8. The uniaxial crystal KDP (potassium disodium phosphate) has refractive indices
no ¼ 1.512 and ne ¼ 1.470 at awavelength of 546 nm. (When ne,no, as for KDP,
the material is said to be negative uniaxial; when ne.no, it is called positive uni-
axial.) Two 546-nm beams, one polarized as an ordinary wave and the other as an
extraordinary wave, propagate in the same direction, at an angle of 608 with
respect to the optic axis of a KDP crystal.

(a) What is the refractive index of the extraordinary wave?
(b) Calculate the walk-off between the two beams after a propagation distance

of 1 cm. Would the result change if the crystal were positive uniaxial?

8.9. For an extraordinary wave having an initial beam diameter D and propagating a
distance L, what conditions must be met in order that we can ignore diffraction
and describe the propagation by Eq. (8.8.33)?

8.10. Referring to Fig. 8.5, we can write the propagation constant b for an optical fiber
as k0n1 sin u. Show that the condition g2 . 0 for a guided mode is equivalent to
the condition u . uc for total internal reflection. (Actually, this argument is
strictly correct for a slab waveguide but not for a rounded optical fiber.)

8.11. An optical fiber is to be manufactured such as to allow a single propagation mode
at a wavelength of 1.55mm. The refractive indices of the core and cladding are
1.50 and 1.49, respectively. What is the maximum allowable core radius?

8.12. A typical He–Ne laser operating at 632.8 nm contains about five times as much
He as Ne, with a total pressure of about 1 Torr. Assuming that the length of the
gain tube is about 50 cm, estimate the fraction of laser radiation intensity lost
due to Rayleigh scattering in passing a billion times through the gain tube.
(Note: For Ne at standard temperature and pressure the constants A1 and B1 in
the Cauchy formula (3.14.9) are A1 ¼ 6.66�1025 and B1 ¼ 2.4�10215 m2,
respectively.) This illustrates the fact that Rayleigh scattering is usually very
weak in gas laser media.

8.13. Liquid water has �1000 more molecules per unit volume than air. It is observed,
however, that the attenuation coefficient due to Rayleigh scattering for light is
only about 200 times greater for water than for air. Why is the attenuation
coefficient due to Rayleigh scattering not more like 1000 times greater for
water than for air?

8.14. (a) What is the magnitude of the refractive index fluctuation corresponding to a
temperature fluctuation of 1K in the atmosphere at standard temperature
and pressure (P ¼ 760 Torr ¼ 1013.2 mbar, T ¼ 293K)?

(b) What is the coherence diameter r0 for 1.06mm laser radiation propagating a
distance of 1 km parallel to the ground? Assume a refractive index structure
constant C2

n ¼ 10�17 m�2=3.

8.15. (a) Using Eq. (8.11.4) and the assumptions leading to (8.11.14), show that

hjE(0, z)j2i ¼ 1

l2z2

ð ð
E�(R00, 0)E(R0, 0)hei[f(R0,z)�f(R00,z)]i d2R0 d2R00:
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(b) Iff(R, z) has a Gaussian probability distribution with zero mean, then so does
c ; f(R0, z) 2 f(R00, z). Show therefore that

heici ¼ e�hc
2i=2 ¼ e�(1=2)Ds(jR0�R00j),

which then implies (8.11.15).

8.16. (a) A 10.6-mm Gaussian laser beam with an initial spot size w0 ¼ 3 mm propa-
gates 1 km in air from its waist to a receiver. Assuming that the air is charac-
terized by a C2

n of 10215 m22/3, what is the diameter of the receiving
aperture required to receive essentially all of the laser power?

(b) Estimate the degree of attenuation due to Rayleigh scattering as the beam pro-
pagates to the receiver.

(c) Estimate the normalized intensity variance (kI2l 2 kIl2)/kIl2 at a point on the
receiver.
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9 COHERENCE IN ATOM-FIELD
INTERACTIONS

9.1 INTRODUCTION

In Chapter 3 we briefly discussed the influence of the relaxation rate denoted b, associ-
ated with generalized “frictional” effects of various kinds. Their lifetime 1/b fell into the
range of times t � 1=b� 1=v, where t indicated a generic time of interest. Throughout
that chapter and implicitly in all later discussions until now, this allowed the neglect of
terms whose temporal variation was sensitive to “friction” via the exponential damping
factor e2bt. However, in optical physics there are many interesting and important
phenomena associated with short pulses that have durations on the order of 1/b or
even much shorter, for which bt � 1 cannot be assumed. These phenomena are not
damped by the “frictional” influences in the way we have considered. Consequently,
they exhibit a type of “coherence” that has been missing from our discussions in the
preceding chapters. We will now begin to examine the consequences of short-pulse
interactions, and at the same time develop a clear picture of the meaning of the term
coherence in interaction physics.

As a first-stage bonus of a more general treatment of the interaction of laser light
with matter we will be able to explain how the loss of coherence is, somewhat counter-
intuitively, in fact necessary for the validity of the laser rate equations that were semi-
intuitively presented in prior chapters. Additional consequences of coherence include
such unusual effects as periodic population oscillations, atoms behaving as psuedo-
spins and, in a highly absorptive medium, lossless transparency that is transient and
“self-induced” by a laser pulse travelling through it.

A fundamental approach to any discussion of optical radiation must be based on
Maxwell’s equations for the field and on the time-dependent Schrödinger equation for
the atoms of the propagation medium. In this chapter the time-dependent Schrödinger
equation is used to obtain the “density matrix” equations for the atoms. The rate
equations used in the preceding chapters to treat the effects of light on atoms and mol-
ecules will be shown to be approximations to these density matrix equations, which are
the basis for the explanation of coherent and nonlinear propagation effects.

As discussed later, in Chapter 13, the coherence of a radiation field can refer either to
its temporal or spatial characteristics. In this chapter we will assume that the field inci-
dent on the propagation medium is fully coherent, which for our purposes means simply
that the amplitude and phase of the electric field have no random temporal or spatial
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fluctuations. Such a field exhibits interference effects that cannot be understood in terms
of field intensity alone, and requires reference to the electric field.

Just as the radiation must, in general, be characterized by the electric field rather than
intensity, the atoms of the propagation medium must, in general, be characterized in
terms of probability amplitudes for different states rather than the probabilities them-
selves. Conditions under which this applies are considered in this chapter. Under
these conditions the propagation medium is said to have “atomic coherence,” and the
propagation of light in the medium is said to be coherent in the sense that it is correctly
described by equations for the electric field and the density matrix, but not by rate
equations for the field intensity and the atomic-level populations.

9.2 TIME-DEPENDENT SCHRÖDINGER EQUATION

Recall that the probability amplitudes an(t) were introduced in Section 3.A by writing
the time-dependent wave function for an atomic electron as

c(x, t) ¼
X
n

an(t)fn(x), (9:2:1)

where the fn(x) are the (time-independent) wave functions defined by Eq. (3.A.2). In
terms of the probability amplitudes an(t) the time-dependent Schrödinger equation,
ih� @c=@t ¼ Hc, takes the form

ih� dam
dt
¼ Emam(t)þ

X
n

Vmnan(t): (9:2:2)

We used this equation in the Appendix to Chapter 3 to explain why the classical electron
oscillator model so often provides an accurate description of the response of atoms to
light. The “orbitals”fn(x) form a complete set in terms of which c(x, t) can be expanded
as in (9.2.1). From the orthogonality and normalization properties (3.A.5) and (3.A.6),
respectively, of these functions, and the normalizationð

all space
c�(x, t)c(x, t) d3x ¼ 1, (9:2:3)

it follows from (9.2.1) that

ð X
m

amfm

 !� X
n

anfn

 !
d3x ¼

X
m

a�man
ð
f�mfn d

3x

¼
X
n

janj2 ¼ 1: (9:2:4)

jan(t)j2 is the probability at time t that the atomic electron is in its nth allowed orbital.
There is a significant shift in viewpoint between (9.2.3) and (9.2.4), even though they

both express the same normalization. Recall that jc(x, t)j2 d3x is the electron probability
assigned to the differential volume element d3x. There is no reference to orbitals in this
assignment, and indeed many or all of the orbitals may make a contribution to the
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probability within d3x. On the other hand, janj2 plays the opposite role. It is the prob-
ability that the electron is in the nth orbital, without any reference to the spatial location
of the electron in that orbital. In laser physics information about orbital number for an
atomic electron is usually much more useful than information about its spatial location,
because often only a few orbitals have significant occupation probabilities. For this
reason the form (9.2.2) of the time-dependent Schrödinger equation is usually much
more useful than the (equivalent) partial differential equation ih� @c=@t ¼ Hc.

† Let us write out the equations for the probability amplitudes an in (9.2.2) in order:

ih� _a1 ¼ E1a1 þ V11a1 þ V12a2 þ V13a3 þ � � �
ih� _a2 ¼ E2a2 þ V21a1 þ V22a2 þ V23a3 þ � � �
ih� _a3 ¼ E3a3 þ V31a1 þ V32a2 þ V33a3 þ � � �

�
�
� (9:2:5)

They can also be written as a single matrix equation:

ih�c ¼ Hc, (9:2:6)

where

c ¼

a1
a2
a3
�
�
�

2
6666664

3
7777775

(9:2:7)

and

H ¼

E1 þ V11 V12 V13 . . .
V21 E2 þ V22 V23 . . .
V31 V32 E3 þ V33 . . .
� � � � � �
� � � � � �
� � � � � �

2
6666664

3
7777775
: (9:2:8)

This matrix form of the Schrödinger equation is the origin of the term “matrix element” for Vnm.
In this form H is called the Hamiltonian matrix and c the state vector. Werner Heisenberg’s
original approach to quantummechanics (1925) was through such matrices. Physical observables
were represented by Hermitian matrices with matrix elements satisfying the relation V�nm ¼ Vmn.
It was not immediately appreciated that Heisenberg’s “matrix mechanics” is equivalent to
Schrödinger’s “wave mechanics.” †

9.3 TWO-STATE ATOMS IN SINUSOIDAL FIELDS

According to Bohr’s description of quantum jumps, an atom can increase its energy by
jumping from an orbit with energy E to one with higher energy E0 if a photon of
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frequency v ¼ (E0 � E)=h� is simultaneously absorbed. The reverse process is associ-
ated with the emission of a photon of frequency v.

We associate photons of frequency v with an electromagnetic wave of the same
frequency. According to our analysis in Section 3.2, an external electromagnetic field
interacts with an electron via the time-dependent potential

V(x, R, t) ¼ �ex �E(R, t) (9:3:1)

in the dipole approximation, where x is the electron-nuclear distance and R is the center
of atomic mass. We consider now a monochromatic plane wave for E:

E(R, t) ¼ 1
21̂E0e

i(k�R�vt) þ c:c: �! 1
21̂E0e

�ivt þ c:c:, (9:3:2)

where the unit vector 1̂ defines the field polarization, c.c. means complex conjugate, and
for convenience R has been put at the origin. Note that the polarization vector 1̂ can be
complex, as in the case of circular polarization; recall Problem 3.4.

The implication of Bohr’s rule for quantum jumps is that only pairs of energy levels in
the atom that are separated by DE ¼ h�v are affected by radiation present at frequency v.
Wewill therefore begin our study by restricting our attention to just two of the electronic
energy levels. These are shown in Fig. 9.1 and designated 1 and 2, with energies E1 and
E2, such that DE ¼ E2 � E1 ¼ h�v.

For such a two-state system the expression (9.2.1) is simply

c(x, t) ¼ a1(t)f1(x)þ a2(t)f2(x), (9:3:3)

and the corresponding Schrödinger equation (9.2.2) reduces to

ih� _a1(t) ¼ E1a1(t)þ V11a1(t)þ V12a2(t), (9:3:4a)

ih� _a2(t) ¼ E2a2(t)þ V21a1(t)þ V22a2(t): (9:3:4b)

Level 1 may be the ground level but need not be. In most cases of interest the parity
selection rule (see Problem 9.1) requires the diagonal matrix elements V11 and V22 of

w0w

D
E2

E1

Figure 9.1 Energy levels of a hypothetical “two-state atom.” The “detuning” D ¼ v0 � v is the
difference between (E2 � E1)=h� and v. Radiation of angular frequency v is nearly resonant with
the E1 ! E2 transition when D
 v0 � v.
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the atom–field interaction to be zero. Then

ih� _a1(t) ¼ E1a1(t)þ V12a2(t), (9:3:5a)

ih� _a2(t) ¼ E2a2(t)þ V21a1(t): (9:3:5b)

Equations (9.3.5) give the time variation of the probability amplitudes a1 and a2 for
the two-state system. If the two-state model is a reasonable approximation, we can
assume that the atom has negligible probability of being in any state other than f1

and f2. In other words, the probability that the atom will be found in one or the other
of these two states is unity at any time:

ja1(t)j2 þ ja2(t)j2 ¼ 1: (9:3:6)

This is the two-state version of (9.2.4).
Equations (9.3.5) show how the 1-2 and 2-1 matrix elements of V are involved in

changes in the amplitudes a1(t) and a2(t). From (9.3.1) and (9.3.2) we can express
these matrix elements more explicitly as

V12(t) ¼ �ex12� 12(1̂E0e
�ivt þ c:c:), (9:3:7a)

V21(t) ¼ �ex21� 12(1̂E0e
�ivt þ c:c:), (9:3:7b)

where x12 is the 1-2 matrix element of x defined by

x12 ;
ð
f�1(x) xf2(x) d

3x (9:3:8)

and x21(¼ x�12) is defined by switching the subscripts 1 and 2. Note that x12 is generally a
complex-valued vector because the f’s may be complex. The numerical value of x12
depends on the wave functions f1 and f2, so the size of the matrix elements V12 and
V21 must be expected to vary from atom to atom. As a typical magnitude (associated
with an optical transition to or from an atomic ground state), one can expect j x12 j to
differ from the Bohr radius a0 � 0.05 nm by less than a factor of 10.

With V12(t) and V21(t) given by Eqs. (9.3.7) we can insert them in (9.3.5). It is con-
venient to adopt several conventions at the same time. We will work with frequencies
instead of energies, so we divide through by h� and define

v0 ¼ E2 � E1

h� , (9:3:9)

x21 ¼ e(x21 � 1̂)E0

h� , (9:3:10)

x12 ¼ e(x12 � 1̂)E0

h� : (9:3:11)

Also, we now set the arbitrary zero of energy at E1, so E2 ! E2 � E1 ¼ h�v0. Then,
Eqs. (9.3.5) become

i _a1(t) ¼ �1
2(x12e

�ivt þ x�21e
ivt)a2, (9:3:12a)

i _a2(t) ¼ v0a2(t)� 1
2(x21e

�ivt þ x�12e
ivt)a1: (9:3:12b)
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In the absence of any radiation field (x12 ¼ x21 ¼ 0) we find a1(t) ¼ a1(0) from
(9.3.12a) and a2(t) ¼ a2(0) exp (2iv0t) from (9.3.12b). In the presence of a nearly
resonant field (9.3.2) oscillating at frequency v � v0, we adopt similar trial solutions:

a1(t) ¼ c1(t), (9:3:13a)

a2(t) ¼ c2(t)e
�ivt, (9:3:13b)

and find these equations for c1(t) and c2(t):

i_c1(t) ¼ �1
2(x12e

�2ivt þ x�21)c2, (9:3:14a)

i_c2(t) ¼ (v0 � v)c2 � 1
2(x21 þ x�12e

2ivt)c1: (9:3:14b)

Equations (9.3.14) are more useful because of their isolation of the exp(+2ivt)
terms. For optical frequencies v, these terms oscillate so rapidly compared to every
other time variation in the equations that they can be assumed to average to zero over
any realistic time interval. In this way it is argued that they can simply be discarded.
This is known as the rotating-wave approximation (abbreviated RWA in the literature
on optical resonance phenomena). An essential ingredient is the near-resonance assump-
tion v � v0, or D ¼ v0 � v
v0, v, in magnitude. It leads to these elementary work-
ing equations:

i_c1(t) ¼ �1
2x
�c2, (9:3:15a)

i_c2(t) ¼ Dc2 � 1
2xc1, (9:3:15b)

where we have dropped the subscript 21 from x21 and have introduced D to stand for the
atom–field frequency offset, or detuning, as already shown in Fig. 9.1:

x ¼ x21 ¼ (ex21� 1̂)E0

h� , (9:3:16)

D ¼ v0 � v: (9:3:17)

Evidently x is the field–atom interaction energy in frequency units. It is known as the
Rabi frequency, as discussed below.

If 1̂E0 is a constant vector, x can be taken to be a purely real number. This can be
arranged by the right choice of phases of the wave functions f1 and f2 (see Problem
9.2). Unless the context indicates otherwise, we will assume this has been done.

The great advantage of Eqs. (9.3.15) is their relative simplicity. The smallness of the
coefficients D and x (compared to v and v0) shows that the c’s are “slow” variables
(compared to the a’s). They contain the essential physics once the rapid oscillations
associated with the frequencies v and v0 are removed by the RWA. The solutions for
the c’s are easily found (see Problem 9.3):

c1(t) ¼ cos
Vt

2
þ i

D

V
sin

Vt

2

� �
e�iDt=2, (9:3:18a)

c2(t) ¼ i
x

V
sin

Vt

2

� �
e�iDt=2: (9:3:18b)
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We have assumed the atom to be in state 1 initially: c1(0) ¼ 1, c2(0) ¼ 0, and we have
introduced the generalized Rabi frequency

V ¼ (x 2 þ D2)1=2, (9:3:19)

which reduces to the ordinary Rabi frequency x at exact resonance (D ¼ 0). For this
reason x is sometimes called the resonance Rabi frequency.

The corresponding probabilities P1(t) ¼ ja1(t)j2 and P2(t) ¼ ja2(t)j2 are

P1(t) ¼ 1
2

1þ D

V

� �2" #
þ 1
2

x

V

� �2
cos Vt, (9:3:20a)

P2(t) ¼ 1
2

x

V

� �2
[1� cosVt]: (9:3:20b)

The justification for definingV and x exactly as we have and calling them (instead of
V/2 or 2V) “the” Rabi frequencies is evident in Fig. 9.2, whereP2(t) is plotted. It is clear
thatV is precisely the frequency at which probability oscillates between levels 1 and 2. It
is easy to check that P1(t) þ P2(t) ¼ 1 for all t, so P1(t) simply oscillates at the same fre-
quency with the opposite phase from P2(t). It is also easy to see that, for a field detuning
D large compared to x, P2(t) ffi 0 and P1(t) ffi 1, that is, the probability is close to 1 that
the atom stays in the lower state.

The “Rabi oscillations” shown in Fig. 9.2 depend explicitly on the electric field
strength E0 and cannot be described by population rate equations such as (3.7.11) in
which only the field intensity appears. Rabi oscillations are a direct consequence of
the time-dependent Schrödinger equation, whereas, as already noted, the population
rate equations provide an approximate—but often very accurate—description of the

1.0 

0.5 P
2(

t)

0 
0 2p 4p Ωt 

Δ = 0 

1 
Ω 

Ω 

2 

Figure 9.2 Plot of the upper-state probability P2(t) given by Eq. (9.3.20b). Note that larger detuning
D corresponds to higher frequency of Rabi oscillations but lower amplitude.
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response of a medium to an applied field. This is explained in Section 9.6. Of course we
can use Eq. (9.3.16) to relate the Rabi frequency to the intensity (see Problem 9.4):

x2 ¼ e2jx21� 1̂j2
h�2

E2
0 ¼

2e2jx21� 1̂j2
e0h�2c

I: (9:3:21)

9.4 DENSITY MATRIX AND COLLISIONAL RELAXATION

The identification of the expectation value kxl of the electron coordinate in the two-state
model of an atom allows us to put the classical electron oscillator in its correct perspec-
tive, as discussed in Chapter 3. The fact that kxl is determined by a�1a2 and a1a�2 [recall
Eq. (3.A.16)] suggests, correctly, that these combinations might be more useful than
either a1 or a2 alone in our development of a general quantum theory of absorption
and emission.

We will pursue this approach by obtaining the equations of motion for these combi-
nation variables, except that we will focus on the related but simpler quantities c1 and c2
defined in (9.3.13). First, we adopt a conventional notation and use the Greek letter r
(rho) to define

r12 ; c1c
�
2, (9:4:1a)

r21 ; c2c
�
1, (9:4:1b)

r11 ; c1c
�
1 ¼ jc1j2, (9:4:1c)

r22 ; c2c
�
2 ¼ jc2j2: (9:4:1d)

The r’s are elements of the so-called density matrix of the atom, as we explain briefly at
the end of this section. However, independent of this terminology, it is clear that r11 and
r22 are just new ways to write the levels’ occupation probabilities. The physical mean-
ings of r12 and r21 are related to the electron displacement [cf. Eq. (3.A.16)], so we can
think of r21 as the complex amplitude of the electron’s displacement x.

By using Eq. (9.3.15) repeatedly, we can easily derive the following equations for the
r’s (Problem 9.5):

_r12 ¼ iDr12 þ i
x�

2
(r22 � r11), (9:4:2a)

_r21 ¼ �iDr21 � i
x

2
(r22 � r11), (9:4:2b)

_r11 ¼ �
i

2
(xr12 � x�r21), (9:4:2c)

_r22 ¼
i

2
(xr12 � x�r21): (9:4:2d)

The solutions of these equations can be constructed from the solutions for c1(t) and c2(t)
given in (9.3.18).
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However, the equations themselves are not yet in their most useful form. This is
because they do not reflect the existence of relaxation, arising from quasi-random pro-
cesses such as collisions. The same statistical principles employed to treat collisions
in Chapter 3 will be used again here. There will be one added complication compared
to the classical case, originating with the population variables r22 and r11, which have
no classical counterparts.

First, we will concentrate on the electron’s complex displacement variable r21 and on
one type of collision, namely purely elastic collisions, which do not affect the popu-
lations r11 and r22. If the radiation field present is steady, then x ¼ constant. We require
the solution for r21(t) that vanishes at an earlier time t1, which (as in Chapter 3) we
associate with the atom’s most recent collision. We assume that collisions are frequent,
so that t 2 t1 is short enough to neglect changes in r22 2 r11. The required solution is

r21(t)t1 ¼ �
x(r22 � r11)

2D
(1� e�iD(t�t1)): (9:4:3)

This can be checked by substitution in (9.4.2b), remembering to hold x and r22 2 r11
constant. Next we average this solution over all possible earlier times t1 at which a
collision might have occurred, using the expression [recall (3.8.7)]

df (t; t1) ¼ gce
�gc(t�t1) dt1 (9:4:4)

for the probability that a collision occurs in the time dt1, gc being the collision rate. The
result for this average is

r21(t) ¼ �
gc
2D

x(r22 � r11)
ðt
�1

e�gc(t�t1)(1� e�iD(t�t1)) dt1

¼ �x

2
(r22 � r11)

1
D� igc

: (9:4:5)

This same result, obtained by a collision average, can also be reached by a simple
modification of the original equation of motion. It can be checked (Problem 9.6) that
collisions are already included if we rewrite Eqs. (9.4.2a) and (9.4.2b) for r21 and r12
as follows:

_r12 ¼ �(gc � iD)r12 þ i
x�

2
(r22 � r11), (9:4:6a)

_r21 ¼ �(gc þ iD)r21 � i
x

2
(r22 � r11): (9:4:6b)

As in the classical electron oscillator model, we cannot apply these equations any longer
to an individual atom. Instead they represent an “average” atom in the sense of the
collision average in (9.4.5). For notational convenience we have omitted the overbar
indicating the collision average.

Note that Eqs. (9.4.6) can be read as if the average atom’s r12 and r21 variables
undergo change for two reasons. That is, we can interpret (9.4.6b) as the result of
adding two independent rates of change:

_r21 ¼ ( _r21)elastic collisions þ ( _r21)Schr: equation, (9:4:7)
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where

( _r21)elastic collisions ¼ �gcr21 (9:4:8a)

and

( _r21)Schr: equation ¼ �iDr21 � i
x

2
(r22 � r11): (9:4:8b)

Such an interpretation will be helpful in dealing with the effect of collisions on the level
populations r22 and r11, for which there are no classical analogs.

The elastic collision rate gc appearing in (9.4.6) is often referred to as the atomic
dipole’s “decoherence” (or dephasing) rate, as discussed for the classical electron oscil-
lator model in Section 3.2, following Eq. (3.8.12); in the quantum mechanical descrip-
tion, elastic collisions are responsible for a damping of the average electron displacement
(or atomic dipole moment). However, inelastic collisions, in which an electron can
change its energy level, can also occur.

To account for inelastic collisions, we simply assert that their effect is to knock popu-
lations out of levels 1 and 2 into other unspecified levels of the atom at the fixed rates G1

and G2. At the same time we can include the effect of spontaneous photon emission as a
special type of “collision” that transfers population between the two specified levels,
from 2 to 1. Following Einstein’s notation we will denote the spontaneous emission
rate by A21. Then we write, in analogy to (9.4.7),

_r22 ¼ ( _r22)collisions þ ( _r22)spont: emission þ ( _r22)Schr: equation, (9:4:9)

where

( _r22)collisions ¼ �G2r22, (9:4:10a)

( _r22)spont: emission ¼ �A21r22, (9:4:10b)

( _r22)Schr: equation ¼
i

2
(xr12 � x�r21): (9:4:10c)

In a similar vein we write the separate contributions to _r11:

( _r11)collisions ¼ �G1r11, (9:4:11a)

( _r11)spont: emission ¼ þA21r22, (9:4:11b)

( _r11)Schr: equation ¼ �
i

2
(xr12 � x�r21): (9:4:11c)

Note that the contribution from spontaneous emission to _r11 is positive, and just equal to
the negative contribution to _r22, on the assumption that the atom makes a jump from
level 2 to level 1 while emitting a photon spontaneously.
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As a result of these contributions from collisions and spontaneous emission, we
obtain the following equations for the level populations:

_r11 ¼ �G1r11 þ A21r22 �
i

2
(xr12 � x�r21), (9:4:12a)

_r22 ¼ �(G2 þ A21)r22 þ
i

2
(xr12 � x�r21): (9:4:12b)

Again, for notational convenience, we do not include overbars indicating collision
averages. However, because of the collisions, these equations apply only in an average
sense to the atoms under consideration.

Finally, we must return to the elastic-collision-averaged r12 and r21 equations. What
is the effect of inelastic collisions on them? A simple answer is based on the obvious
relation jr12j ¼ (r11r22)

1/2, which holds as a direct consequence of the definitions
(9.4.1). This relation says that the effect of collisions on themagnitude of r12, as distinct
from the effect on its phase, is directly related to the effect on the level populations in a
specific way. That is, if inelastic collisions alone cause r11 and r22 to decay, i.e.,

r11(t)jcollisions ¼ r11(0)e
�G1t, (9:4:13a)

r22(t)jcollisions ¼ r22(0)e
�G2t, (9:4:13b)

which are the solutions to (9.4.10a) and (9.4.11a), then inelastic collisions alone cause
jr12(t)j to decay as

jr12(t)j ¼ [r11(t)r22(t)]
1=2 ¼ r11(0)r22(0) exp [�(G1 þ G2)t]f g1=2

¼ jr12(0)j exp �
G1 þ G2

2
t

� �
: (9:4:14)

In words, the effect on r12 of inelastic collisions alone is to add an extra decay rate to the
elastic collision decay rate gc. This added rate is just (G1 þ G2)/2, one-half the sum of
the population decay rates for r11 and r22.

Thus, we write our final equations for r12 and r21 averaged over both elastic and
inelastic collisions (and including spontaneous emission) in the form

_r12 ¼ �(b� iD)r12 þ i
x�

2
(r22 � r11), (9:4:15a)

_r21 ¼ �(bþ iD)r21 � i
x

2
(r22 � r11), (9:4:15b)

where b is the total relaxation rate:

b ¼ gc þ 1
2(G1 þ G2 þ A21): (9:4:16)

Only the gc term in b refers to elastic (“soft” or “dephasing”) collisions, but it is often
dominant. It is usually likely that an atom suffers many distant soft dephasing collisions
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for every close collision that is hard enough to cause population changes. Thus, to a good
approximation in many cases,

b ffi gc � 1
2(G1 þ G2 þ A21): (9:4:17)

To a surprising degree, laser action of the usual kind depends very strongly on this
inequality. We will require (9.4.17) in the following section.

The effects of collisional dephasing relaxation can be illustrated in detail by integrat-
ing the coupled equations for the r’s (see Problem 9.7). In Fig. 9.3 we show the solutions
for a wide range of parameters. We have chosen a special case that is free of compli-
cations. We take G1 ¼ G2 ¼ 0 (no transfer of probability to levels other than 1 and 2),
and we take D ¼ 0 (exact resonance). Since G1 ¼ G2 ¼ 0, we have dr11/dt þ dr22/
dt ¼ 0. Thus, r11 þ r22 ¼ 1 (conservation of probability), and it is enough to determine
either r11 or r22. Actually, it is most convenient to deal with the inversion r22 2 r11
since it enters Eqs. (9.4.15) naturally. Furthermore, Eqs. (9.4.15) show that at exact res-
onance r21 þ r12 is coupled only to itself (for real x) and plays no role in the dynamics,
sowe can pay attention solely to the difference, r12 2 r21, which in any event is the vari-
able that couples directly to r11 and r22, as Eqs. (9.4.12) make clear.
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Figure 9.3 Numerical solutions of the v, w equations (9.4.19) for a range of collisional damping
rates. Note scale changes. Times is in units of A�121 .
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Thus, we can focus on the two real variables:

v ¼ i(r21 � r12), (9:4:18a)

w ¼ r22 � r11, (9:4:18b)

which obey the equations (at resonance, and in the absence of the G1 and G2 collisions
and for real x)

_v ¼ �bvþ xw, (9:4:19a)

_w ¼ �A21(1þ w)� xv: (9:4:19b)

These equations follow directly from (9.4.12) and (9.4.15) and the definitions (9.4.18).
They are discussed further in the following section. Of course, from (9.4.16) and the
absence of G1 and G2, we have b ¼ gc þ A21/2.

The solutions shown in Fig. 9.3 are chosen to illustrate the influence of elastic col-
lisions. As the elastic collision rate gc increases from zero, the damping parameter b
also increases and the oscillatory (“coherent”) response of the atom to the applied radi-
ation changes to nonoscillatory (“incoherent”) relaxation. Note the changes in the scale
needed in the figure to make evident the different types of response.

† The notation used for the r’s suggests that they are the elements of a 2 � 2 matrix:

r ¼ r11 r12
r21 r22

� 
: (9:4:20)

This is indeed the case, and quantum statistical mechanics is devoted in large part to the study of
such matrices. They were introduced into quantum theory independently by L. D. Landau and J.
von Neumann before 1930. For historical reasons r is called the density matrix of the system, and
in this case r is the density matrix of a two-state atom.

The density matrix is a generalization of a related 2 � 2 matrix:

c1c�1 c1c�2
c2c�1 c2c�2

� 
, (9:4:21)

and the two are occasionally confused. Note that they are not the same matrix, despite the original
definition in (9.4.1): r11 ¼ c1c�1, r12 ¼ c1c�2, and so on. This is because the r’s are now understood
to refer to collision averages of c1c�1, etc. Thus, Eqs. (9.4.12) and (9.4.15) for the elements of the
density matrix cannot be obtained from simpler equations for c1 and c2 separately. [The reader is
challenged to try to construct equations for c1 and c2 that can be used to obtain (9.4.12) and
(9.4.15).] This is the most important sense in which the cc� combinations are more physical
than c’s and c�’s alone.

The existence of the matrix (9.4.20) establishes a definite meaning to the terms “diagonal” and
“off-diagonal.” Obviously, r11 and r22 are the elements on the diagonal, and r12 and r21 are the
off-diagonal elements associated with “atomic coherence” effects such as Rabi oscillations. This
terminology is frequently applied to the damping rates. Referring to Eqs. (9.4.12) we see that G1

and G2 þ A21 can be called the diagonal damping rates, and from Eqs. (9.4.15) we see that b is the
off-diagonal damping rate. A fundamental relation, obtained from (9.4.16), is illustrated by the
inequality

b � 1
2(G1 þ G2 þ A21): (9:4:22)
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As we have seen, because the off-diagonal elements r12 and r21 have a complex phase as well as
a magnitude, they are susceptible to purely phase-destructive as well as population-changing
relaxation. †

9.5 OPTICAL BLOCH EQUATIONS

Equations (9.4.19) were derived under the assumptions that D ¼ G1 ¼ G2 ¼ 0 and x ¼
x�. In the more general case in which D is arbitrary, we can write the density matrix
equations in the form (Problem 9.8)

du

dt
¼ �bu� Dv, (9:5:1a)

dv

dt
¼ �bvþ Duþ xw, (9:5:1b)

dw

dt
¼ �A21(wþ 1)� xv: (9:5:1c)

These equations follow from (9.4.12), (9.4.15), (9.4.18), and the notation

u ¼ r21 þ r12 (9:5:2)

for the sum of the off-diagonal elements of the density matrix.
Equations (9.5.1) are easily modified to allow for collisional processes that transfer

population from the upper state to the lower state at the rate G21; such processes have
the same effect on the density matrix elements as the rate A21 at which population is
transferred from the upper state to the lower state when a photon is emitted spon-
taneously. Thus, to include the rate G21 in the density matrix Eqs. (9.5.1) we need only
replace A21 by the total rate A21 þ G21 at which population is transferred from the upper
state to the lower state by spontaneous emission and collisions. The resulting equations
are conventionally written as

du

dt
¼ � 1

T 02
u� Dv, (9:5:3a)

dv

dt
¼ � 1

T 02
vþ Duþ xw, (9:5:3b)

dw

dt
¼ � 1

T1
(w� w0)� xv, (9:5:3c)

where

1
T1

; A21 þ G21, (9:5:4a)

1
T 02

; gc þ
1
2
(A21 þ G21) ¼ gc þ

1
2T1

: (9:5:4b)
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We have written w0 in Eq. (9.5.3c) instead of the 21 appearing in (9.5.1c); w0 is the
steady-state value of the population difference when x ¼ 0 (no applied field) and is
normally taken to be equal to 21 (atom in the lower state). In thermal equilibrium at
temperature T, for example, the probability that the two-state atom is in the lower
state is

P1 ¼ e�E1=kBT

e�E1=kBT þ e�E2=kBT
¼ 1

1þ e�(E2�E1)=kBT
¼ 1

1þ e��hv0=kBT
, (9:5:5)

where kB in this equation is Boltzmann’s constant. For optical frequencies and room
temperature h�v0 � 100kBT , so P1 ffi 1, and w0 ffi �1. But w0 can more generally
differ significantly from 21; in a medium with a population inversion, for example,
w0 . 0.

Because they have the same form as a set of equations used by F. Bloch and others in
the 1940s to describe magnetic resonance phenomena, these equations for an atom in a
field that is near resonance with a particular transition are called the optical Bloch
equations. The density matrix equations for magnetic resonance and for optical reson-
ance have the same form because they both describe two-state systems: the “spin-up”
and “spin-down” states of a spin-12 system in the former case and the two states of an
atomic transition in the latter.

When the time over which the field applied to the two-state system is short compared
to T1 and T 02, we can ignore the damping terms in the equations for u, v, andw describing
the response to the field and replace (9.5.3) by

du

dt
¼ �Dv, (9:5:6a)

dv

dt
¼ Duþ xw, (9:5:6b)

dw

dt
¼ �xv: (9:5:6c)

In optical resonance theory these equations have a useful geometrical interpretation in
terms of a “Bloch vector” (or “pseudospin vector”) S, which is analogous to the spin
vector in magnetic resonance theory. In this geometrical interpretation, which was
first proposed by R. P. Feynman, F. L. Vernon, Jr., and R. W. Hellwarth in 1957, we
define

S ¼ 1̂uþ 2̂vþ 3̂w, (9:5:7)

where the unit vectors 1̂, 2̂, 3̂ (analogous to x̂, ŷ, and ẑ) are mutually orthogonal in a
fictitious three-dimensional space. We also define a “torque” vector or “axis” vector Q:

Q ¼ �1̂xþ 3̂D: (9:5:8)

Then it can be shown by considering each component separately that the vector equation

dS
dt
¼ Q� S (9:5:9)
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is exactly equivalent to the three Eqs. (9.5.6). For example, the 2̂ (analogous to ŷ)
component of (9.5.9) is

dv

dt
¼ (Q�S)2 ¼ Q3S1 � Q1S3 ¼ Duþ xw, (9:5:10)

which is the same as (9.5.6b).
The role ofQ as a torque or axis vector follows from the vector form of (9.5.9). Since

Q � S is perpendicular to S (by the definition of the cross product), the effect of Q is
only to rotate S about the direction of Q. It cannot lengthen or shorten S. It is easy to
confirm that the magnitude S2 ¼ S . S is constant:

dS2

dt
¼ 2S � dSdt ¼ 2S� (Q� S) ¼ 0: (9:5:11)

† The constant magnitude of S has a physical meaning. From (9.5.7) and the definitions of u, v,
and w,

S2 ¼ u2 þ v2 þ w2 ¼ (r21 þ r12)
2 � (r21 � r12)

2 þ (r22 � r11)
2

¼ 4r21r12 þ r222 � 2r22r11 þ r211: (9:5:12)

This expression can be reduced further by using the original definitions of the r’s in (9.4.1): r12 ¼
c1c�2, and so forth. We find

S2 ¼ 4c2c
�
1c1c

�
2 þ (c2c

�
2)

2 � 2c2c
�
2c1c

�
1 þ (c1c

�
1)

2 ¼ (c2c
�
2 þ c1c

�
1)

2 ¼ 12 ¼ 1: (9:5:13)

The unit length of the Bloch vector S is thus seen to be equivalent (in the absence of collisions and
spontaneous emission) to the conservation of probability in the two-state atom. †

Whenever S2 ¼ 1, the tip of the Bloch vector lies on the surface of a unit sphere. Only
the angles of the vector change with time. In effect, we have now shown that the time
evolution of the two-state density matrix (with elements r21, etc.) is equivalent to
changes in the orientation of S, as sketched in Fig. 9.4.

Let us consider the orientation of the Bloch vector in the fictitious 1̂-2̂-3̂ space. First,
we note from (9.4.18b) that increasing or decreasing the degrees of inversion r22 2 r11
corresponds to moving up or down the “vertical” 3̂ axis. When the Bloch vector points
straight up and w ¼ 1, then obviously r22 ¼ 1 and r11 ¼ 0, and the atomic population is
entirely in the upper level. Thus, the north pole of the unit sphere (“Bloch sphere”) cor-
responds to a fully inverted atom. By the same reasoning, at the south pole w ¼ 21 and
the atom is in its lower energy level.

The rotation angles of the Bloch vector also have direct physical interpretations. At
resonance (D ¼ 0) the dynamical evolution consists entirely of rotation about the 1̂
axis, since we have

Q �! �1̂x (on resonance): (9:5:14)
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Then we can characterize the Bloch vector by a single parameter, namelyQ, the rotation
angle about the 1̂ axis:

v ¼ � sinQ, (9:5:15a)

w ¼ � cosQ, (9:5:15b)

where Q is measured from the south pole since that is the normal initial state, corre-
sponding to the atom in its lower energy level (Fig. 9.5).

Substitution of (9.5.15) into (9.5.6c) gives an equation for Q:

dQ

dt
¼ x, (9:5:16)

which leads to the obvious solution

Q ¼ xt (9:5:17)

3̂ 

2

2 

^ 

p p 

3̂ 

2̂ 

Figure 9.5 Effect of p/2 and p pulses on the Bloch vector for an on-resonance atom.

3̂

2̂

1̂

S

Figure 9.4 Bloch vector and its trajectory on the Bloch sphere.
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and

v ¼ �sinxt, (9:5:18a)

w ¼ �cosxt: (9:5:18b)

Agreement with the solutions found earlier in Eqs. (9.3.20) is worth checking in the
same limit D ¼ 0. For example, since r11 þ r22 ¼ 1, we can write

r11 ¼
1� w

2
, (9:5:19a)

r22 ¼
1þ w

2
, (9:5:19b)

and combine this with (9.5.18b) to obtain

r11 ¼ 1
2 (1þ cosxt), (9:5:20a)

r22 ¼ 1
2 (1� cosxt), (9:5:20b)

which are the same as (9.3.20a) and (9.3.20b) on resonance.
If the Rabi frequency x is real but not constant in time, solutions (9.5.15) are the same,

but Q is then given by

Q(t) ¼
ðt
0
x(t0) dt0, (9:5:21)

where

x(t) ¼ e(x21� 1̂)E0(t)
h� ;

mE0(t)
h� : (9:5:22)

In this way the Bloch vector formalism connects a property of the atoms, namely the
Bloch vector rotation angle on resonance, directly with a property of the incident radi-
ation field, namely the time integral of the field amplitude.

The integral (9.5.21) is called the area of the pulse. This name derives from the fact
that an integral can be viewed as an area, as in Fig. 9.6. The solutions (9.5.15) make it
clear that pulses with areas equal to certain multiples of p are special. For example, in
Fig. 9.5 a p pulse turns Q through 1808 about the 1̂ axis, and thus inverts the atomic
population from the lower level to the upper level. Much more surprising is the effect
of a 2p pulse. It rotates the resonant Bloch vector through 3608 and thus returns the

χ(t )

area 

t 

Figure 9.6 Area of a laser pulse according to (9.5.21).
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atom exactly to its initial state. The same is true of 4p, 6p, . . . pulses. There is therefore a
set of pulses that have no net effect on the resonant atomswhen propagating in an absorb-
ing medium at resonance. Area is a pulse parameter completely overlooked by “conven-
tional” optical spectroscopy based on rate equations for the upper- and lower-state
populations, but one with fundamental significance.

If E0 is allowed to be time dependent, we gain the ability to treat the interaction of
atoms with light pulses as well as with steady light beams. At the same time twoworking
assumptions must be modified. First, the argument employed to justify the rotating-wave
approximation in going from (9.3.14) to (9.3.15) fails if x itself contributes rapid tem-
poral variation. Thus, we must assume that E0(t) is a slowly varying function in a sense
made precise in (9.6.2) below. Second, if not just the amplitude but the phase of E0

changes in time we can no longer assume that an adjustment of the wave function
phase will make x(t) real. In order to recognize this important shift in assumptions we
now change our symbol for the electric field’s complex amplitude: E0(t)! E(t), and
the Rabi frequency on resonance becomes

x(t) ¼ mE(t)
h� : (9:5:23)

For complex x(t) the Bloch equations take a slightly more general form that the reader
may easily verify:

d

dt
(u� iv) ¼ �(bþ iD)(u� iv)� ixw, (9:5:24a)

dw

dt
¼ � 1

T1
(1þ w)þ i

2
[x(uþ iv)� x�(u� iv)]: (9:5:24b)

† Equations (9.5.6) and (9.5.9) are no more than Schrödinger’s equation written in another con-
venient form. Bloch’s name should actually be associated with these equations only after relax-
ation processes are taken into account in a particular way. As already noted, the Bloch equations,
including relaxation, were originally written in the context of spin resonance. In that case the
Bloch vector S is actually the magnetic spin vector. Relaxation processes for spin commonly
include phase-interrupting collisions of the kind we have considered in Section 9.4, but not
inelastic decay to other levels such as we have associated with the rates G1 and G2.

The notation T1 and T 02 for the diagonal and off-diagonal relaxation times was used in the orig-
inal magnetic resonance context to designate the “longitudinal” and “transverse” lifetimes of the
spin. The terms longitudinal and transverse refer to polar and equatorial directions on the Bloch
sphere, directions in magnetic resonance experiments either along, or transverse to, the static
magnetic field (conventionally the z axis). In view of (9.5.4) one has the frequently quoted
inequality

T 02 	 2T1 (9:5:25)

between the transverse and longitudinal lifetimes. †

As discussed in Section 9.4, the “coherent” response of an atom to a resonant field is
most pronounced when the transverse (off-diagonal) relaxation rate is small. When b is
sufficiently large, the density matrix elements do not undergo Rabi oscillations at a fre-
quency depending on the electric field strength, but simply relax “incoherently” to their
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steady-state values in the case of a constant-amplitude field (Fig. 9.3). This is discussed
in more detail in the next section, where it is shown that, when the off-diagonal relax-
ation of the density matrix elements is sufficiently rapid, the atom responds to the
field exactly as described by the rate equations for the upper and lower state populations.
In this incoherent or rate-equation limit the response to the field depends on the field
intensity I(t) rather than the electric field amplitude E(t); in particular, in the case of
an applied pulse, the response is independent of the pulse area.

9.6 MAXWELL–BLOCH EQUATIONS

The optical Bloch equations describe a wide variety of coherent atom–field interactions.
Here we are interested specifically in developing a formalism able to deal with situations
not encountered in our discussions of propagation in Chapters 7 and 8. These are coher-
ent propagation effects described by the coupling of the optical Bloch equations to
Maxwell’s equations in which the field is strong enough to stimulate substantial popu-
lation exchange between levels 1 and 2.Wewill use the approximation in which the field
is taken to be a plane wave propagating in the z direction:

E(r, t) ¼ 1̂E(z, t)e�iv(t�z=c), (9:6:1)

where E(z, t) is the unknown complex amplitude to be determined and, as usual, the
physical electric field is understood to be the real part of this expression. The distinction
between the envelopes E(z, t) in Eqs. (8.3.6) and (9.6.1) will be clarified later in this sec-
tion. A natural assumption implied by the form (9.6.1) is that the amplitude E(z, t) varies
slowly compared to the carrier wave e2iv(t2z/c). This justifies inequalities such as

@E
@z

����
����
 v

c
jEj, @2E

@z2

����
����
 v

c

@E
@z

����
����, @E

@t

����
����
 vjEj: (9:6:2)

In physical terms these inequalities state that E(z, t) represents a smooth enough envel-
ope in both space and time. We have already employed slowly varying envelope
approximations in Sections 7.4, 8.3, and 8.8, for instance. In the vast majority of
cases of practical interest these approximations are excellent since they would be vio-
lated only if E(z, t) represented a pulse shorter than a few optical periods (�10215 s)
in time or a few wavelengths (� 1 mm) in space.

In the plane-wave and slowly varying envelope approximations for E(r, t) we have,
for the left-hand side of the wave equation (8.2.13),

r2E� 1
c2
@2E
@t2
¼ @2E

@z2
þ 2i

v

c

@E
@z
� v2

c2
E � 1

c2
@2E
@t2
� 2iv

@E
@t
� v2E

� �� 
1̂e�iv(t�z=c)

ffi 2i
v

c

@E
@z
þ 1

c

@E
@t

� �
1̂e�iv(t�z=c): (9:6:3)

On the right-hand side of (8.2.13) we require the polarization P, the electric dipole
moment per unit volume of the medium, which for our purposes here consists of
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two-state atoms, each having a transition frequency v0 � v. Each atom is assumed to
have an electric dipole moment expectation value p given by the electron charge e
times the expectation value kxl [recall Eq. (3.A.16)]:

p ¼ ekxl ¼ e a�1a2x12 þ a�2a1x21
� � ¼ e c�1c2x12e

�ivt þ c�2c1x
�
12e

ivt
� �

, (9:6:4)

where we have used (9.3.13). In deriving the equations for c1 and c2 in Section 9.2 we
ignored any spatial variations of the field, which of course cannot be donewhen wewant
to describe how the field propagates. To account for the spatial variations of a plane-
wave field acting on an atom with coordinate z along the direction of propagation, we
simply replace e2ivt by e2iv(t2z/c) in (9.6.4). Thus, for an atom at z,

p(z, t) ¼ r21(z, t)ex12e
�iv(t�z=c) þ r�21(z, t)ex

�
12e

iv(t�z=c): (9:6:5)

Note that the rij, like E, are assumed in their definitions to be slowly varying compared to
e+iv(t2z/c); this assumption is seen to be consistent with Eqs. (9.4.2).

If there is a uniform distribution of N atoms per unit volume, the polarization P is

P(z, t) ¼ 2Nex12r21(z, t)e
�iv(t�z=c), (9:6:6)

where, as in (9.6.1), the real part of the right-hand side is the (real) physical polarization
Np(z, t). Since r21(z, t) varies much more slowly in time than e2ivt,

@2P
@t2
ffi �2Nv2ex12r21(z, t)e

�iv(t�z=c) (9:6:7)

and therefore, from (8.2.13) and (9.6.3),

2i
v

c

@E
@z
þ 1

c

@E
@t

� �
1̂e�iv(t�z=c) ffi � 1

e0c2
2Nv2ex12r21e

�iv(t�z=c): (9:6:8)

The approximate equation for the propagation of the electric field is then

@E
@z
þ 1

c

@E
@t
¼ iv

e0c
Nm�r21, (9:6:9)

wherewe have taken the dot product of both sides of (9.6.8) with 1̂�(1̂� 1̂� ¼ 1) and used
the abbreviation [Eq. (9.5.22)]

m� ¼ e(x12� 1̂�) (9:6:10)

for the projection of the transition dipole moment on the direction of the field
polarization.
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Using the relations (9.4.18) and (9.5.2), we can write (9.6.9) as

@E
@z
þ 1

c

@E
@t
¼ iv

2e0c
Nm�(u� iv): (9:6:11)

The variables u and v on the right-hand side of this equation satisfy the Bloch equations
(9.5.24), with d/dt in those equations replaced by @=@t because u, v, andw are now func-
tions of z as well as t:

@

@t
(u� iv) ¼ �(bþ iD)(u� iv)� ixw, (9:6:12a)

@w

@t
¼ � 1

T1
(1þ w)þ i

2
[x(uþ iv)� x�(u� iv)], (9:6:12b)

with x ¼ mE=h� . The coupled Eqs. (9.6.11) and (9.6.12) are called the Maxwell–Bloch
equations.1 In this form they describe the coupling between the field and a collection
of two-state atoms, each of which has a transition frequency v0 that differs from the
field carrier frequency v by an amount characterized by the detuning D ¼ v0 2 v.
The generalization to the case of inhomogeneous broadening, where there is a distri-
bution of detunings, is straightforward and is considered in Section 9.8.

Note that Eq. (9.6.11) assumes that the field is coupled only to the two-state atoms in
our model of resonant pulse propagation. Any significant absorption or scattering pro-
cesses due to other matter in the medium will require a modification of (9.6.11). For
example, we could account for an absorption coefficient ab due to “background”
atoms in the medium by adding the term abE to the left-hand side of (9.6.11).

With these equations we have a self-consistent formulation of the propagation of a
field in a resonant medium described as a collection of two-state atoms. That is, the
coupled Maxwell–Bloch equations allow the atoms and the field to influence each
other mutually and at a fundamental level (Fig. 9.7). We already saw in Chapter 1 an
example of such a mutual interaction (recall Fig. 1.13), but there the theory was comple-
tely empirical. We now reexamine some earlier results, including those of Chapter 1,
from our present, more satisfactory perspective.

u v w E

Figure 9.7 The mutual interactions embodied in the Maxwell–Bloch equations. The coupling is
much more intricate than in the conventional rate-equation theory illustrated in Fig. 1.13.

1Because of the approximations made in deriving these equations—in particular the slowly varying envelope
approximation that reduces the wave equation for the electric field to the first-order partial differential
equation (9.6.11)—these equations are sometimes called the reduced Maxwell–Bloch equations.
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Rate-Equation Approximation

The formal solution of Eq. (9.6.12a) is

u(t)� iv(t) ¼ [u(0)� iv(0)]e�(bþiD)t � i

ðt
0
x(t0)w(t0)e(bþiD)(t

0�t) dt0: (9:6:13)

If the atom is initially (at t ¼ 0) in the lower or upper state, then u(0) ¼ v(0) ¼ 0 and the
first term on the right vanishes. We can also ignore this term for times t � b�1. In either
case we write

u(t)� iv(t) ¼ �i
ðt
0
x(t0)w(t0)e(bþiD)(t

0�t) dt0: (9:6:14)

In many cases of practical interest, and in most lasers, the off-diagonal damping rate b is
so large that x and w are nearly constant over time intervals �1/b. Then

u(t)� iv(t) ¼ 2r21 ffi �ix(t)w(t)
ðt
0
e(bþiD)(t

0�t) dt0 ¼ �ix(t)w(t)
bþ iD

[1� e�(bþiD)t]

¼ �ix(t)w(t)
bþ iD

(9:6:15)

for times t � b�1. In this approximation u and v track the variations in time of w(t); an
example of this “adiabatic following” is seen in Fig. 9.3. For this approximation to be
valid x(t) and w(t) must vary slowly compared to e2bt, and w(t) in particular can be
expected to be slowly varying in this sense when the inequality (9.4.17) is satisfied.
When these conditions are fulfilled, the off-diagonal density matrix elements can be
completely eliminated, and the so-called rate equations are obtained for the diagonal
elements r11 and r22 alone, as follows.

Using the approximation (9.6.15) for r21(t) and r12(t) ¼ r�21(t) in the population
equations (9.4.12),2 we obtain

@r11
@t
¼ �G1r11 þ A21r22 þ

jxj2b=2
D2 þ b2

(r22 � r11), (9:6:16a)

@r22
@t
¼ �(G2 þ A21)r22 �

jxj2b=2
D2 þ b2

(r22 � r11): (9:6:16b)

Now all references to the off-diagonal variables r21 and r12 have been eliminated, and
the two populations (or population probabilities) r11 and r22 are coupled only to each
other.

2Of course, we can also use (9.6.15) in Eq. (9.6.12b) for w. Equations (9.4.12) are more general than
(9.6.12b), however, because they allow for collisional processes that transfer population into states other
than the states 1 and 2 of the resonant transition.
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Equations (9.6.16) apply to a single atom in the average sense mentioned already. By
multiplying both sides by N, the density of resonant (two-state) atoms, and defining the
population densities N1 ¼ Nr11 and N2 ¼ Nr22, we obtain

@N1

@t
¼ �G1N1 þ A21N2 þ jxj

2b=2

D2 þ b2
(N2 � N1), (9:6:17a)

@N2

@t
¼ �(G2 þ A21)N2 � jxj

2b=2

D2 þ b2
(N2 � N1): (9:6:17b)

When the right-hand sides are expressed in terms of the intensity I ¼ (ce0=2)jEj2, these
equations are seen to have the same form as the population rate equations (4.5.1). Note
that, in order for w ¼ (N2 2 N1)/N to be slowly varying compared to b, as we have
assumed, the stimulated emission rate 1

2jxj2b=(D2 þ b2) should be small compared to
b. ForD ¼ 0, this requires that the Rabi frequency should be small compared to b, a con-
dition that is almost always satisfied in lasers.

Similarly the “adiabatic approximation” (9.6.15), when applied to (9.6.9), gives

@E
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þ 1

c

@E
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e0c
Nm�

�ix=2
bþ iD

� �
(r22 � r11) ¼

vjmj2
2e0h�c

1
bþ iD

E(N2 � N1) (9:6:18)

and therefore

E� @E
@z
þ 1

c
E� @E

@t
¼ vjmj2

2e0h�c
1

bþ iD
jEj2(N2 � N1): (9:6:19)

Adding the complex conjugates to both sides of this equation, and using E�@E=@zþ
E @E�=@z ¼ @jEj2=@z and likewise for the derivatives with respect to t, we have

@jEj2
@z
þ 1

c

@jEj2
@t
¼ vjmj2

2e0h�c
2b

D2 þ b2
jEj2(N2 � N1), (9:6:20)

or, in terms of the intensity,

@I

@z
þ 1

c

@I

@t
¼ vjmj2

e0h�c
b

D2 þ b2
I(N2 � N1) ¼ gI, (9:6:21)

which has the same form as Eq. (3.12.5) [or (4.4.1a)] for the propagation of the intensity
of a plane wave.

For pulses of duration much shorter than the relaxation times 1/G1, 1/G2, and 1/A21,
we can approximate the rate equations (9.6.17) by Eqs. (6.12.1). Then the coupled Eqs.
(9.6.17) and (9.6.21) have the same form as the coupled atom–field Eqs. (6.12.2) and
(6.12.3) used in Section 6.12 to describe the amplification of short pulses in a gain
medium.
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We have shown that when the off-diagonal density matrix elements relax quickly
compared to the temporal variations of the population difference or the electric field
amplitude, the Maxwell–Bloch equations may be approximated by rate equations that
do not involve off-diagonal density matrix elements. These rate equations for popu-
lations and intensity have the same form as the rate equations we have used in earlier
chapters to describe light amplification and laser oscillation, and are valid approxi-
mations for most laser media.

The inequality (9.4.17) is necessary for the validity of the rate equation approxi-
mation. In more physical terms, this condition requires that the homogeneous linewidth
of the transition be much larger than the sum of the population decay rates. Similarly the
condition that the field is not too strong means that the Rabi frequency should be small
compared to the homogeneous linewidth. Even if these conditions are satisfied, how-
ever, we still require for the validity of the rate-equation approximation that the field
amplitude E varies slowly on the time scale of the inverse homogeneous linewidth.
This last condition can be violated, for instance, in the case of very short pulses of
light, which, as discussed in Section 9.9, can propagate in ways that find no explanation
in terms of coupled rate equations for populations and intensities.

† Equations (9.6.17) and (9.6.21) involve jmj2 ¼ e2jx12� 1̂j2. For various practical reasons—
unpolarized radiation, rotational or collisional disorientation, etc.—it is often the orientational
average of this quantity that is relevant. It is not difficult to calculate the required average and
show that (Problem 9.9)

e2kjx12� 1̂j2lorientation ¼ kjmj2lorientation ¼
1
3
e2jx12j2 ¼ pe0h� c3

v3
0

A21, (9:6:22)

where in the last equality we have used formula (3.A.26) for the spontaneous emission rate A21.
Thus,

kjxj2lorientation ¼
1

h� 2 kjmj2lorientationjEj2 ¼
pe0c3

h�v3
0

A21jEj2 ¼ 2pc2

h�v3
0

A21I ¼ 1
h�v0

l20
2p

A21I, (9:6:23)

where l0 (¼ c/n0 ¼ 2pc/v0) is the transition wavelength. Therefore,

kjxj2lorientationb=2
D2 þ b2

¼ 1
h�v0

l20
2p

b=2

D2 þ b2
A21I ffi 1

hn

l2A21

8p
L(n), (9:6:24)

where we have used (3.4.23) and (3.4.26) for the Lorentzian lineshape function L(n) and have
approximated n0 and l0 by the field frequency n and wavelength l, respectively.

More generally L(n) is replaced by whatever lineshape function S(n) is appropriate, and
(9.6.24) is seen to be just s (n)/hn, where s (n) is the cross section for stimulated emission
[Eqs. (3.7.4) and (3.7.5b)]. Thus, the orientationally averaged field-dependent term in
Eqs. (9.6.17) is the familiar [Eq. (3.7.5b)]

s (n)
hn

I(N2 � N1):

Similarly, the orientational average of the right-hand side of (9.6.21) is

s (n)(N2 � N1)I ¼ g(n)I, (9:6:25)

where g(n) is the gain coefficient.
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Equations (9.6.17) and (9.6.21), in other words, become exactly the same population
and photon rate equations employed earlier when we replace jmj2 by its orientational average.
As discussed in Section 14.3, this orientational averaging is very often—but certainly not
always—appropriate. †

Refractive Index

The absorption coefficient

a(n) ¼ �g(n) ¼ vjmj2
e0h�c

b

D2 þ b2
(N1 � N2) n ¼ v

2p

� �
(9:6:26)

appearing in (9.6.21) can be seen from our derivation of the rate equations to be an
approximate measure of how the field intensity changes with propagation in a resonant
medium. The characterization of the medium by a refractive index also follows from this
rate-equation approximation to the Maxwell–Bloch equations. To see this, write
(9.6.18) as

@E
@z
þ 1

c

@E
@t
¼ �1

2a(v)E þ iXE, (9:6:27)

where

X ¼ i
vjmj2
2e0h�c

D

D2 þ b2
(N1 � N2): (9:6:28)

The physical significance of X is most easily seen by assuming a monochromatic field; if
we write the complex field amplitude for the field in this case as

E(z) ¼ E0e
�a(n)z=2ei[n(v)�1]vz=c, (9:6:29)

we obtain from (9.6.27) the relation

n(v)� 1 ¼ c

v
X ¼ jmj

2

2e0h�
D

D2 þ b2
(N1 � N2) ¼ D

b

c

2v
a(n) ¼ 2p (n0 � n)

2pdn0

c

4pn
a(n)

¼ l0
4p

n0 � n

dn0
a(n) (9:6:30)

when we approximate the field wavelength l by the transition wavelength l0. n(v) is the
refractive index at frequency v, as is seen from the expression [Eq. (9.6.1)]

E(z) ¼ E(z)e�iv(t�z=c) ¼ E0e
�a(n)z=2e�iv(t�n(v)z=c) (9:6:31)

for the assumed monochromatic plane wave, and indeed expression (9.6.30) merely
reproduces our earlier result (3.15.9) for the refractive index associated with a resonant
transition.

† For another example of how known results follow as approximations to the Maxwell–Bloch
equations, let us consider a field that is sufficiently far from resonance that the atoms of the
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medium remain, with high probability, in their lower states. Then w(t) ffi �1, or N1 � N2 ffi
N1 ffi N, the density of resonant atoms, and (9.6.14) can be approximated by

u(t)� iv(t) ¼ i

ðt
0
x(t0)e(bþiD)(t

0�t) dt0, (9:6:32)

or, after successive integrations by parts,

u(t)� iv(t) ¼ i

bþ iD
x(t)� i

(bþ iD)2
@x

@t
þ i

(bþ iD)3
@2x

@t2
þ � � � (9:6:33)

for times t � b�1. Consistent with our assumption that the field is far from resonance, let us
replace b þ iD by iD, which is equivalent to ignoring absorption:

u(t)� iv(t) ffi 1
D
x(t)þ i

D2

@x

@t
� 1

D3

@2x

@t2
(9:6:34)

if jDj is sufficiently large that third- and higher-order derivatives of x with respect to t can be
neglected. With these approximations (9.6.11) takes the form

@E
@z
þ 1

c

@E
@t
¼ iNvjmj2

2e0h� c
1
D
E þ i

D2

@E
@t
� 1

D3

@2E
@t2

� 
: (9:6:35)

Under our assumption of large detuning from resonance (D2 � b2), Nvjmj2=2e0h� cD is just
(v/c)[n(v)21] [recall (9.6.30)]. Thus, we can replace (9.6.35) by

@E
@z
þ 1

c
1þ Nvjmj2

2e0h�D2

" #
@E
@t
¼ i

v

c
[n(v)� 1]E � i

Nvjmj2
2e0h� cD3

@2E
@t2

: (9:6:36)

Now n(v)� 1 ffi Njmj2=2e0h�D implies

dn

dv
¼ � dn

dD
¼ Njmj2

2e0h�D2 , (9:6:37)

so that the term in brackets on the left-hand side of (9.6.36) is 1 þ vdn/dv, which is approxi-
mately d(nv)/dv for n ffi 1.3 Then, since c[d(nv)/dv]21 is the group velocity vg [Eq. (8.3.3)],
we write (9.6.36) as

@E
@z
þ 1
vg

@E
@t
¼ i

v

c
[n(v)� 1]E � i

Nvjmj2
2e0h� cD3

@2E
@t2

: (9:6:38)

In similar fashion, using again the approximation n(v)� 1 ¼ Njmj2=2e0h�D, we obtain, after
some elementary algebra,

2
dn

dv
þ v

d2n

dv2
¼ Nv0jmj2

e0h�D3 ffi
Nvjmj2
e0h�D3 ¼ c

d2k

dv2
, (9:6:39)

3The approximation n ffi 1 is consistent with our assumption that D2 � b2. Of course, D2 � b2 does not
always imply that n ffi 1. If n is much different from 1, however, other effects, such as Lorentz–Lorenz
local field corrections, must be taken into account. Our treatment here is most directly applicable to gaseous
media.
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where k ¼ n(v)v/c; d2k/dv2 characterizes the group velocity dispersion [recall Eq. (8.4.2)]. We
can therefore express (9.6.38) in the form

@E0

@z
þ 1
vg

@E0

@t
þ i

2
d2k

dv2

@2E0

@t2
¼ 0, (9:6:40)

where we have removed a phase factor by defining E0(z, t) ¼ E(z, t)ei[n(v)�1]vz=c. Equation
(9.6.40) is identical to the Eq. (8.4.1) obtained in Chapter 8 by a different approach. †

9.7 SEMICLASSICAL LASER THEORY

Our derivation of the Maxwell–Bloch equations was based on the so-called semiclassi-
cal theory of the interaction of light with matter. The semiclassical theory ignores the
quantum mechanical nature of the electromagnetic field while using the full regalia of
the Schrödinger equation to determine the behavior of the matter. The result is a
theory that is ultimately inconsistent because quantum fluctuations associated with
the electromagnetic field do affect atomic behavior, but the theory does not recognize
such effects except in isolated instances. For example, semiclassical theory cannot
account for all aspects of spontaneous emission (see Chapter 12), and in particular it
cannot account for the fundamental limit to the laser linewidth. Except for our derivation
of the fundamental laser linewidth in Section 5.11, and an occasional, usually unnecess-
ary reference to photons, our entire presentation has been based on semiclassical theory.

The justification for the semiclassical theory is in fact extremely strong in a wide
domain. This domain embraces almost all of radiation theory where the numbers of pho-
tons are much larger than unity. In most laser modes the number of photons is practically
unbounded, and effects due to field quantization are insignificant so long as attention
remains on stimulated processes. On the other hand, it is quite possible to use laser
fields to probe the subtle correlations and fluctuations inherent in quantum theory, but
in order to do so an observation must be undertaken of a quantity that is sensitive to
single-photon differences. Some such observations are discussed in Chapters 12 and
13. They are rarely directly important for an understanding of laser operation.

The Maxwell–Bloch equations provide the basis for the most rigorous semiclassical
theory of laser operation. In this theory the atomic dipoles, which are determined by off-
diagonal density matrix elements, serve as sources of radiation, and this radiation in turn
drives these dipoles into oscillation and causes them to radiate. The self-consistent sol-
ution of the coupled atom–field equations determines the laser power and frequency.

To simplify the discussion, and to focus on the self-consistent solution of the
Maxwell–Bloch equations, we will assume a laser cavity consisting of two plane, par-
allel, and nearly perfectly reflecting mirrors. The electric field corresponding to the mth
mode of the cavity then has the form

Em(z, t) ¼ 1̂mEm(t) sin kmze
�ivt, (9:7:1)

where km ¼ mp/L and L is the cavity length. The intracavity field can be written as a
superposition of all possible cavity modes: E(z, t) ¼Pm Em(z, t). Note that the com-
plex mode amplitude Em(t) does not depend on z, since sin kmz is assumed to fully
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express the z dependence of the mth mode. The frequency v of laser oscillation is not
known a priori, but can be expected to be close to one of the cavity mode frequenciesvm.

It is convenient to express the polarization’s z dependence in terms of cavity mode
functions as well. That is, we write P(z, t) ¼Pm Pm(z, t), where [recall (9.6.6)]

Pm(z, t) ¼ 2Nex12r
(m)
21 (z, t) sin kmze

�ivt: (9:7:2)

Then from the wave equation (8.2.13) we obtain, in the slowly varying envelope
approximation,

X
m

@

@t
� i(v� vm)

� 
Em(t) sin kmz ¼

X
m

iv

e0
Nm�r(m)21 (z, t) sin kmz, (9:7:3)

where we have defined vm ¼ kmc ¼ mpc/L and made the approximation v2 � k2mc
2 ¼

(vþ kmc)(v� kmc) ffi 2v(v� vm). Equation (9.7.3) implies that different cavity
modes are coupled through the z dependence of r(m)21 . In many lasers this coupling is
not very important, and for this reason we will replace r(m)21 (z, t) by its cavity-average
value and then simply cancel the two sin kmz factors in (9.7.3). For notational conven-
ience we also drop the superscripts (m) to obtain the single-mode, approximate Maxwell
equation

dE
dt
� i(v� vm)E ¼ iv

e0
Nm�r21(t): (9:7:4)

We have not accounted for the imperfect cavity mirror reflectivities and other effects
that attenuate the intracavity field. To account for such effects we add a term 1

2bEm to the
left-hand side of (9.7.4):

dE
dt
þ 1
2
bE � i(v� vm)E ¼ iv

e0
Nm�r21(t): (9:7:5)

In the case of an empty cavity, the right-hand side vanishes and we can assume that v ¼
vm. In that case (9.7.5) implies that the field amplitude decays exponentially as e2bt/2,
that is, the field intensity decays as e2bt. In other words, b is the rate at which the field
intensity decreases in the absence of any medium inside the laser cavity.

To bring out the essential features of semiclassical laser theory based on the
Maxwell–Bloch equations, we will treat only steady-state laser operation here, and
use the adiabatic approximation (9.6.15) for r21:

r21 ¼
�ix=2
bþ iD

(r22 � r11), (9:7:6)

where again x ¼ mE=h� . Equation (9.7.5) becomes

dE
dt
þ 1
2
bE � i(v� vm)E ¼ iv

e0
Nm�

�ix=2
bþ iD

(r22 � r11)

¼ jmj
2v

2e0h�
b� iD

D2 þ b2
E(N2 � N1), (9:7:7)
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or

dE
dt
¼ 1

2
[�bþ 2i(v� vm)þ c(g� id)]E, (9:7:8)

where

g ¼ jmj
2v

e0ch�
b

D2 þ b2
(N2 � N1) (9:7:9)

is the gain coefficient and we define

d ¼ D

b
g ¼ v0 � v

b
g: (9:7:10)

Equation (9.7.8) may be regarded as the fundamental equation of semiclassical laser
theory for the laser field. It is coupled to equations for the medium through the depen-
dence of g and d on N2 2 N1.

Most of the essential aspects of laser behavior are associated with steady-state or cw
(continuous wave) operation. In steady state the terms on the right-hand side of (9.7.8)
must cancel: 22i(v 2 vm) þ b ¼ c(g 2 id), or

g ¼ b

c
, (9:7:11)

vm � v ¼ cg

2b
(v� v0): (9:7:12)

Equation (9.7.11) is just the gain clamping condition (Section 5.2) for steady-state laser
operation. Writing (9.7.12) as [recall (9.6.30)]

vm � v ¼ v[n(v)� 1], (9:7:13)

we see that it is exactly the Eq. (5.9.2) determining the laser oscillation frequency v
when, as assumed here, the gain medium fills the entire laser cavity.

There is, of course, much more to semiclassical laser theory than the derivation of the
steady-state conditions for the gain and the laser oscillation frequency. Themost obvious
extension of the theory presented in this section is to includemultimode lasing andmode
coupling effects. This extension is straightforward but cumbersome, especially for inho-
mogeneously broadened gain media and when hole burning effects are included.
Detailed discussions of the semiclassical theory of these effects can be found in the
research literature and in books. Our treatment of them based on rate equations in
Chapters 4–6 is quite adequate for most practical purposes, and consequently we will
not discuss here the more general semiclassical theory of the laser. The principal mess-
age of this section is simply that the coupled Maxwell–Bloch equations contain the
basic elements of the most rigorous semiclassical theory of the laser.

† As already mentioned, and as discussed further in the following section, the Maxwell–Bloch
equations describe various effects that are not accounted for by coupled rate equations for atomic
populations and field intensities. We will consider briefly here, in the context of our simplified
semiclassical theory of a single-mode laser with a homogeneously broadened gain medium, a
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rather dramatic example of the difference between Maxwell–Bloch equations and the rate
equations for populations and intensities.

To simplify things we will assume that the transition frequency v0 coincides with a cavity
mode frequency vm. Then, according to (5.9.6), we can take v ¼ vm ¼ v0 and therefore D ¼
d ¼ 0. Equation (9.5.3a) then implies that u(t) ¼ 0 if u(0) ¼ 0, which will be the case if the
atoms are in either the upper state or the lower state of the lasing transition at time t ¼ 0. Then
the Maxwell–Bloch equations (9.5.3) and (9.7.5) take the simpler form:

dv

dt
¼ � 1

T 02
vþ xw, (9:7:14a)

dw

dt
¼ � 1

T1
(w� w0)� xv, (9:7:14b)

dE
dt
¼ �1

2
bE þ v

2e0
Nm�v: (9:7:14c)

For our purposes it is useful to define the new independent variable t0 ¼ t/T 02, the new dependent
variables x ¼

ffiffiffiffiffiffiffi
BL
p

E=Es, y ¼
ffiffiffiffiffiffiffi
BL
p

v=vs, and z ¼ (w0 2 w)/ws, where vs, ws, and Es are the
steady-state solutions of Eqs. (9.7.14) for E, v, and w (Problem 9.10), and the new parameters
B ¼ T20/T1, L ¼ w0/ws 2 1, r ¼ w0/ws, and s ¼ 1

2bT
0
2. With these definitions Eqs. (9.7.14)

can be written as

dx

dt0
¼ �s (x� y), (9:7:15a)

dy

dt0
¼ �y� xzþ rx, (9:7:15b)

dz

dt0
¼ xy� Bz: (9:7:15c)

In this form these are exactly the equations introduced by E. N. Lorenz in 1963 and are now
well known in chaos theory as the Lorenz model. For certain values of the parameters s, r, and B,
solutions of the Lorenz model equations exhibit “very sensitive dependence on initial con-
ditions,” the hallmark of deterministic chaos—the effectively random evolution of a system
defined by a perfectly deterministic set of equations such as (9.7.15). Lorenz offered the now-
famous butterfly metaphor for deterministic chaos, which we can paraphrase as follows:
Suppose we have a set of equations that we use to make weather forecasts, and that all the initial
conditions required to solve these equations (atmospheric pressure, temperature, . . .) are known.
We feed all the required data into a computer program that solves our equations, but neglect to
account for the fluttering of a butterfly somewhere in Bermuda. If our system of equations is chao-
tic, the tiny change in initial conditions caused by the butterfly will make detailed long-term
weather prediction impossible; whatever the butterfly does might eventually affect, unpredicta-
bly, the weather in Beijing!

The (nonzero) steady-state solutions are unstable (Problem 9.10) when the two conditions

s . Bþ 1, (9:7:16a)

and

r .
s (sþ Bþ 3)
s� B� 1

(9:7:16b)
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are satisfied, in which case x, y, and z can evolve chaotically in time. For the single-mode laser
model these conditions for chaos become

b .
2
T 02
þ 2
T1

, (9:7:17a)

w0

ws
.

b 1
2bT

0
2 þ T 02=T1 þ 3

� �
b� 2=T1 � 2=T 02

: (9:7:17b)

The first condition requires that the homogeneous linewidth (1=T 02) of the lasing transition is
smaller than the cavity bandwidth (b) and, as noted in Section 5.9, this “bad-cavity condition”
is not satisfied in typical lasers. The second condition requires that the laser be pumped well
above threshold, and in fact (9.7.17b) may be shown to require that it be pumped at least nine
times above threshold (Problem 9.10), a condition that, again, is not realized in most lasers.
But lasers have in fact been observed to exhibit unstable and chaotic behavior, and by varying
a parameter such as the cavity loss, various routes to chaos typical of chaotic systems have
been observed in lasers having either homogeneously or inhomogeneously broadened gain
media. Since such behavior is deleterious in most applications, and can usually be avoided or con-
trolled, we will not pursue further here the subject of chaotic lasers, except to note the following:
If we make the rate-equation approximation in Eqs. (9.7.14) by replacing v by its quasi-steady
value T 02xw, the resulting two (rate) equations coupling w and E cannot exhibit chaos for any
values of the (time-independent) parameters b, T 02, etc. appearing in these equations. In other
words, the Maxwell–Bloch equations in this example allow the possibility of chaos, whereas
the rate equations predict only nonchaotic, stable laser oscillation. †

9.8 RESONANT PULSE PROPAGATION

In Section 8.3 we considered the propagation of an optical pulse in a dispersive medium
that does not significantly absorb (or amplify) the pulse, and in Section 6.12 we
described the amplification of a pulse in an inverted medium whose population relax-
ation times are much longer than the pulse duration. These analyses represent approxi-
mations to the more general Maxwell–Bloch equations, which allow not only for
absorption or amplification but also for pulse durations much shorter than both popu-
lation and dipole (“off-diagonal”) relaxation times. For such “ultrashort” pulses we
can neglect atomic relaxation processes over times on the order of the pulse duration
and replace the optical Bloch equations (9.6.12) by

@

@t
(u� iv) ¼ �iD(u� iv)� ixw, (9:8:1a)

@w

@t
¼ i

2
[x(uþ iv)� x�(u� iv)]: (9:8:1b)

In general, both the amplitude and phase of the electric field envelope function E(z, t)
will vary with z and t. In order to focus on a few of the more interesting predictions of the
Maxwell–Bloch equations, we will assume here that there is no temporal phase modu-
lation of the field, in which case we can write

m

h� E(z, t) ¼ A(z, t)eif(z), (9:8:2)
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where A(z, t) and f(z) are real. Using this form of the field in Eq. (9.6.11), we obtain

@A

@z
þ 1

c

@A

@t
þ iA

df

dz
¼ iNvjmj2

2e0ch� (u� iv)e�if ;
iNvjmj2
2e0ch� (U � iV), (9:8:3)

where U and V are taken to be real. Similarly, from (9.8.1) we obtain

@U

@t
¼ �DV , (9:8:4a)

@V

@t
¼ DU þ Aw, (9:8:4b)

@w

@t
¼ �AV : (9:8:4c)

For an atom exactly on resonance (D ¼ 0) and in the lower state before the arrival of the
pulse, the solutions of these equations are U(z, t; D ¼ 0) ¼ 0 and [cf. Eqs. (9.5.15)]

V(z, t; D ¼ 0) ¼ �sinQ(z, t), (9:8:5a)

w(z, t; D ¼ 0) ¼ �cosQ(z, t), (9:8:5b)

where the pulse area

Q(z, t) ¼
ðt
�1

A(z, t0) dt0 (9:8:6)

has the same form as (9.5.21) but with two differences: (1) Q(z, t) is now z dependent,
and (2) the “initial” time t ¼ 21 refers here to a time long before the arrival at z of the
pulse.

A solution of the optical Bloch equations forD=0 is obtained straightforwardly if we
assume, following McCall and Hahn,4 that

V(z, t; D) ¼ F(D)V(z, t; D ¼ 0) ¼ �F(D) sinQ(z, t), (9:8:7)

where F(D), to be determined, characterizes the response of off-resonant atoms. With
this assumption

@

@t
w(z, t; D) ¼ �A(z, t)V(z, t; D) ¼ � @Q(z, t)

@t
F(D)V(z, t; D ¼ 0)

¼ @Q(z, t)
@t

sinQ(z, t)F(D), (9:8:8)

4S. L. McCall and E. L. Hahn, Physical Review 183, 457 (1969).
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which we can easily integrate:

w(z, t; D) ¼ �1þ F(D)
ðt
�1

@Q(z, t0)
@t0

sinQ(z, t0) dt0

¼ �1þ F(D)� F(D) cosQ(z, t), (9:8:9)

where we have again assumed that each atom is in the lower state (w ¼ 21) before the
arrival of the pulse.

We obtain an equation for Q(z, t) as follows. From (9.8.4a) and (9.8.7),

D
@U

@t
¼ D2F(D) sinQ, (9:8:10)

while from (9.8.4b) we obtain, after some straightforward algebra,

@2Q

@t2
[1� F(D)] ¼ D

@U

@t
: (9:8:11)

Equating these two expressions for D @U/@t yields the equation for Q(z, t):

@2Q

@t2
¼ D2F(D)

1� F(D)
sinQ: (9:8:12)

Now since Q is independent of D, this equation can only hold if the factor multiplying
sinQ is independent of D. For reasons that will soon be clear, we denote this factor
by 1=t 2

p , i.e.,

F(D) ¼ 1

1þ D2t 2p
, (9:8:13)

and rewrite (9.8.12) as

@2Q

@t2
� 1
t2p

sinQ ¼ 0: (9:8:14)

The solution of this equation satisfying the initial conditions A ¼ @A/@t ¼ 0 at
t ¼+1—that is, the condition that the field consists of a single pulse that vanishes
at t ¼+1—is easily verified to be

Q(z, t) ¼ 4 tan�1 e(t�t0)=tp
h i

, (9:8:15)

where t0 depends on z but not t. Therefore

A ¼ @Q

@t
¼ 2

tp
sech

t � t0
tp

� �
, (9:8:16)
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or, from (9.8.2),

jE(z, t)j ¼ 2h�
jmjtp sech

t � t0
tp

� �
: (9:8:17)

This hyperbolic secant solution for the electric field strength is shown in Fig. 9.8,
where it is seen that the time tp can be identified with the pulse duration. It is rather
remarkable that this form for the electric field strength of a pulse propagating in a
medium taken to consist of initially unexcited two-state atoms is determined solely by
the optical Bloch equations: We have not used the field equation (9.6.11) or any other
aspect of Maxwell’s equations in deducing the expression (9.8.17) for the electric
field strength. Solutions for U, V, and w follow likewise from the Bloch equations
and the assumption (9.8.7):

U ¼ 2Dtp
1þ D2t 2p

sech
t � t0
tp

� �
, (9:8:18a)

V ¼ 2

1þ D2t2p
sech

t � t0
tp

� �
tanh

t � t0
tp

� �
, (9:8:18b)

w ¼ �1þ 2

1þ D2t2p
sech2

t � t0
tp

� �
: (9:8:18c)

These solutions satisfy the “conservation of probability” condition U2 þ V2 þ w2 ¼ 1.
The solution (9.8.18c) for the population inversion is shown in Fig. 9.8. Note that an
atom at z is in the lower state (w ¼ 21) before and after the arrival of the pulse at z,
but that its population inversion is �1þ 2=(1þ D2t 2

p ) at t ¼ t0, at which time the
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Figure 9.8 The electric field (9.8.17), divided by the amplitude 2h� =jmjtp, as a function of time in
units of tp. Also shown (dashed curve) is the population inversion w(z, t; D ¼ 0) for an atom exactly
at resonance.
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pulse at z has its greatest amplitude. In particular, an on-resonance atom is in the upper
state (w ¼ 1) at t ¼ t0.

As noted following Eqs. (9.6.12), the field equation (9.6.11), or similarly (9.8.3),
assumes that the field sources are two-state atoms with the single detuning D. More gen-
erally, as in a Doppler-broadened gas, for example, there is a distribution of detunings
characterized by a lineshape functionG(D),

Ð1
�1 G(D) dD ¼ 1, and (9.8.3) is replaced by

the more general form

@A

@z
þ 1

c

@A

@t
þ iA

df

dz
¼ iNvjmj2

2e0ch�
ð1
�1

G(D)[U(z, t; D)� iV(z, t; D)] dD: (9:8:19)

It is shown below that the total pulse area

u(z) ¼ Q(z, 1) ¼
ð1
�1

A(z, t) dt (9:8:20)

obeys the equation

du

dz
¼ � a

2
sin u, (9:8:21)

with a the absorption coefficient for light with frequency v equal to the Bohr transition
frequency v0. We can adduce some important consequences of this equation without
even writing its solution. First, it is obvious that pulses with u equal to an integral mul-
tiple ofpwill not change in area as they propagate, since du/dz ¼ 0. Second, by writing
u ¼ np þ 1 in Eq. (9.8.21), where n is a positive or negative integer and j1j 
 1, we
conclude that pulses with u equal to odd integral multiples of p are unstable, whereas
pulses with u equal to even integral multiples of p are stable (Problem 9.14). The
total pulse area u approaches an even integral multiple of p after a distance of propa-
gation z large compared to the absorption length a21. If 0 , u , p initially, the
pulse area will diminish to 0 with propagation, whereas if u . p initially it will tend,
according to (9.8.21), to an even integral multiple of p. Note that the solution
(9.8.16) deduced from the Bloch equations alone corresponds to an area

u ¼ 2
tp

ð1
�1

sech
t � t0
tp

� �
dt ¼ 2p: (9:8:22)

Pulses with initial areas between p and 3p will reshape upon propagation into such 2p
hyperbolic secant pulses, whereas solutions of the Maxwell–Bloch equations for an
absorbing medium indicate that a single pulse with initial area greater than 4p will
split into distinct 2p pulses having different amplitudes, durations, and group velocities.

These consequences of the Maxwell–Bloch equations for “ultrashort” pulse propa-
gation in a resonant medium have been deduced under various approximations, for
example, the medium is modeled as an idealized collection of two-state atoms, the
field propagates as a plane wave, and the atom–field interaction is treated in the rotat-
ing-wave approximation. Nevertheless, as discussed in the following section, these pre-
dictions of the Maxwell–Bloch equations have in fact been confirmed in the laboratory.
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† To prove the area theorem4 (9.8.21), we first take the real part of each side of (9.8.19) and
integrate from t ¼ 21 to a time T long after a pulse has passed the point z:

@

@z
Q(z, T) ¼ Nvjmj2

2e0ch�
ð1
�1

dDG(D)
ðT
1
V(z, t; D) dt

¼ �Nvjmj2
2e0ch�

ð1
�1

dD
G(D)
D

ðT
�1

@U(z, t; D)
@t

dt

¼ �Nvjmj2
2e0ch�

ð1
�1

dD
G(D)
D

U(z, T ; D): (9:8:23)

Let T0 , T be some other time after which a pulse has passed the point z. Since from time T0 to
time T an atom at z is not affected by any field, we can solve Eqs. (9.8.4a) and (9.8.4b) with A ¼ 0:

U(z, T ; D) ¼ U(z, T0; D) cosD(T � T0)� V(z, T0; D) sinD(T � T0) (9:8:24)

and therefore

@Q(z, T)
@z

¼ �Nvjmj2
2e0ch�

ð1
�1

dD
G(D)
D

U(z, T0; D) cosD(T � T0)

�

�
ð1
�1

dD
G(D)
D

V(z, T0; D) sinD(T � T0)


: (9:8:25)

The first integral in brackets oscillates rapidly for large T2 T0 and can be assumed to average
to zero, except possibly near D ¼ 0. But Eqs. (9.8.4) imply that U is an odd function of D, and
therefore that [G(D)/D]U(z, T0; D) remains finite as D ! 0. We can therefore assume that the
integral makes no contribution.

On the other hand, V(z, T0; D) is inferred from (9.8.4) to be an even function of D. The
dominant contribution to the second integral is therefore

V(z, T0; 0)G(0)
ð1
�1

dD
sinD(T � T0)

D
¼ pG(0)V(z, T0; 0): (9:8:26)

Then, taking T ! 1 in (9.8.25), we have

du

dz
¼ � Nvjmj2

2e0ch� pG(0)

" #
sin u, (9:8:27)

where we have used (9.8.5a) for an absorbing medium [w(z,+1) ¼ 21] as well as u(z) ¼
Q(z, 1). The factor in brackets is exactly half the absorption coefficient [l2A21/8p]NS(n0),
given by (3.12.8) for the case assumed here of nondegenerate energy levels, when we identify
G(0) with the lineshape function S(v) evaluated at v ¼ v0.

The proof of the area theorem assumes that there is a distributionG(D) of detunings, or in other
words that the medium is inhomogeneously broadened, and that every atom of the medium is in
the lower state when the field acting on it vanishes. In the case of an amplifier with every atom
excited when there is no field, the area theorem takes the same form but with 2a/2 in (9.8.21)
replaced by a/2. For an amplifier the stable pulse areas are odd integral muliples of p. †
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9.9 SELF-INDUCED TRANSPARENCY

One of the most remarkable phenomena predicted by the Maxwell–Bloch equations is
the absorptionless propagation of short light pulses in a resonant medium consisting,
initially, of entirely unexcited, effectively two-state atoms. Such a medium would, of
course, be expected on the basis of the rate equations for the atomic level populations
and the field intensity to be strongly absorbant.

This effect—self-induced transparency—was first observed experimentally by
S. L. McCall and E. L. Hahn after they discovered it in numerical solutions of the
Maxwell–Bloch equations.4 What they found was that, after a few absorption lengths,
a short pulse not only propagated with constant area 2p but also that it did so without
a change in its shape: E(z, t) ¼ E(t � z=vg), where vg is the (constant) group velocity.
The original McCall–Hahn experiments with pulses from a Q-switched ruby laser
and a ruby absorber were quickly followed by observations of self-induced transparency
(SIT) in Doppler-broadened gases.

It is easy to see that the Maxwell–Bloch equations admit solutions of this form for
a short pulse, that is, a pulse of duration short compared to the relaxation times T1
and T 02 of the atoms. As in Section 8.4 we introduce the new independent variable
t ¼ t2 z/vg and assume, based on the known properties of the McCall–Hahn sol-
utions, that U, V, w, and A are functions of t rather than of z and t separately. Then,
since @/@t ¼ d/dt, solutions of Eqs. (9.8.4) have the form (9.8.18) when we again
make the assumption (9.8.7):

U ¼ 2Dtp
1þ D2t 2

p

sech
t

tp
, (9:9:1a)

V ¼ 2

1þ D2t 2
p

sech
t

tp
tanh

t

tp
, (9:9:1b)

w ¼ �1þ 2

1þ D2t 2p
sech2

t

tp

� �
: (9:9:1c)

Likewise A(z, t) has the hyperbolic secant form (9.8.16):

A(z, t) ¼ 2
tp

sech
t

tp
: (9:9:2)

Since @A/@z þ (1/c)@A/@t ¼ (1/c 2 1/vg) dA/dt, Eq. (9.8.19) implies that

1
c
� 1
vg

� �
dA

dt
¼ Nvjmj2

2e0ch�
ð1
�1

G(D)V(t; D) dD: (9:9:3)

Therefore, from (9.9.1b) and (9.9.2) and (d/dt)sech(t/tp) ¼ 2(1/tp)sech(t/tp)
tanh(t/tp), we have the following equation for the group velocity:

1
vg
¼ 1

c
þ Nvjmj2

2e0ch�
ð1
�1

G(D) dD

D2 þ 1=t2p
: (9:9:4)
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These solutions for SIT have an interesting physical interpretation. According to
Eq. (9.9.2), an atom at z experiences a field that starts from 0 and builds to a peak ampli-
tude of 2h� =jmjtp. During the time it takes for the field to reach this peak amplitude,
the probability that the atom is in the upper state of the resonant transition goes from
0 to 1

2 (wþ 1) ¼ [1þ D2t 2
p ]
�1 according to (9.9.1c); in particular, an atom with D ¼

0 reaches the upper state when the pulse amplitude is greatest. Then the pulse amplitude
and the probability that the atom is excited both decrease to zero. These features are evi-
dent in Fig. 9.8. The hyperbolic secant pulse has just the right form that allows it to pro-
pagate without changing its shape and without losing energy to the absorbing medium;
any pulse reshaping occurs over a few absorption lengths, as the pulse area approaches
the stable value required by the area theorem. The pulse “induces” its transparency
through its nonlinear interaction with the atoms, giving energy to the atoms during
the first “half” of the pulse and taking it back during the second “half” (Fig. 9.8).

This continual transfer of energy from its leading part to its trailing part suggests that
the SIT pulse propagates with a group velocity smaller than c. That this is the case is clear
from (9.9.4) and the fact that G(D) � 0. This expression for the group velocity can be
simplified when the distribution of atomic frequencies is broad compared to the width
Dvp �1/tp of the pulse spectrum. In this case the integral in (9.9.4) can be approxi-
mated by replacing G(D) in the integrand by G(0):

1
vg
ffi 1

c
þ Nvjmj2

2e0ch� G(0)
ð1
�1

dD

D2 þ 1=t 2p
¼ Nvjmj2

2e0ch� G(0)ptp, (9:9:5)

or

c

vg
ffi 1þ 1

2
actp, (9:9:6)

where again a is the on-resonance absorption coefficient. Thus, if the spatial length ctp
of the SIT pulse is much greater than the absorption length 1/a of the medium, the group
velocity can be much less than c.

The phase velocity is determined byf(z) [Eq. (9.8.2)]. The imaginary part of (9.8.19)
gives an equation for df/dz which, for SIT [A ¼ A(t) and U ¼ U(t ; D)] must be inde-
pendent of z: f(z) ¼ a0þa1z with a0 some constant phase and

a1 ¼ Nvjmj2
2e0ch�

ð1
�1

DG(D) dD

D2 þ 1=t 2p
: (9:9:7)

Then Eqs. (9.6.1), (9.8.2), and (9.9.2) give

E(z, t) ¼ 1̂E(t)eif(z)e�ivteivz=c ¼ 1̂
�h

m

2
tp

sech
t

tp

� 
e�ivtei(a0þa1z)eivz=c

¼ 1̂
2h�
mtp

sech
t

tp

� 
eia0e�ivteiv(1þca1)z=c, (9:9:8)
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which identifies 1þca1 as the refractive index:

n(v) ¼ 1þ Nvjmj2
2e0h�

ð1
�1

DG(D) dD

D2 þ 1=t 2p
: (9:9:9)

When G(D) is the Doppler lineshape function, this expression is easily shown to reduce
to (3.15.10) with the homogeneous linewidth dn0 in that equation replaced by 1/2ptp. In
other words, 1/2ptp plays the role here of an effective homogeneous linewidth. Our
short-pulse assumption, tp 
 T 02, is equivalent to the assumption that the homogeneous
linewidth is negligible compared to 1/2ptp, which may be taken to define the spectral
width of the SIT pulse. The inhomogeneous linewidth, on the other hand, can be large
compared to the spectral width of the pulse, as assumed in writing (9.9.6).

Note that the SIT pulse duration tp is not fixed by the McCall–Hahn solutions of the
Maxwell–Bloch equations. The particular value that tp assumes is determined by the
input pulse and the pulse reshaping that occurs as the pulse area approaches 2p. In
other words, the duration of a pulse will vary as it evolves into a 2p SIT pulse
(Problem 9.16).

There is a more obvious type of “induced transparency” than SIT, namely that associ-
ated with the saturation of an absorber by sufficiently intense pulses: The leading edge of
the pulse can saturate an absorbing transition, so that the lower and upper state probabil-
ities are nearly equal and absorption and amplification (stimulated emission) become
about equally likely for the rest of the pulse. This effect, unlike SIT, is incoherent in
that it can be described by population rate equations and does not require any off-diag-
onal coherence of the density matrix. A major difference between SIT and incoherent
saturation is the much larger pulse delay, or small group velocity, that is typical of
SIT pulses. Group velocities �c/1000, consistent with the prediction (9.9.6), have
been measured in SIT experiments.

† SIT pulses are examples of “solitary waves,” waves that are localized in space and in time and
that propagate without a change in shape. But they are also examples of very special solitary
waves called solitons. What distinguishes solitons from other solitary waves is that two “collid-
ing” solitons emerge essentially unchanged, somewhat like the elastic collision of two particles;
the term “soliton” reflects this particle-like property. Solitons occur only in nonlinear systems and
are often regarded qualitatively in terms of a balancing between effects that cause awave to spread
or disperse and effects that cause it to focus or collapse. The fact that two solitons can collide
“elastically” is remarkable in that one would ordinarily expect them to be greatly distorted due
to their nonlinear interaction, when in fact the only remnant of the collision is a phase shift of
each soliton.

The name soliton was introduced in the 1960s, but the first observation of such a wave was
made by John Scott Russell in 1834. Russell observed a water wave traveling “without change
of form or diminution of speed” on a canal after a barge drawn along a narrow channel by two
horses came to a sudden stop. He “followed it on horseback and overtook it still rolling on at a
rate of some eight or nine miles an hour, preserving its original figure some thirty feet long
and a foot to a foot and a half in height.”

Self-induced transparency is but one example of how solitary waves and solitons can appear in
the nonlinear propagation of laser radiation. Applications of solitons in optical communications
are discussed briefly in Chapter 15. (See also Section 10.4). †
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9.10 ELECTROMAGNETICALLY INDUCED TRANSPARENCY

A coherent atom-field interaction such as SIT usually, but not always, requires short
pulses of radiation. Another “induced transparency” effect occurs when there are two
applied fields, each near resonance with an atomic transition, and the atoms can be
regarded as three-state systems. In the case indicated by the energy-level diagram of
Fig. 9.9, a “coupling” field of frequency vc can lead to the electromagnetically induced
transparency (EIT) of the probe field of frequency vp. Neither the probe nor the coup-
ling field in EIT is short compared to typical atomic relaxation times. Another interesting
feature of EIT is that the group velocity of the probe field can be just a few meters per
second—or even zero! In this section we briefly discuss EIT not only to provide another
example of a coherent propagation effect but also to show how density matrix equations
are derived when more than two atomic states must be accounted for. In other words, we
will show how to generalize the optical Bloch equations for a case where more than two
atomic states play a significant role.

In terms of the probability amplitudes a1, a2, and a3 for the three states of Fig. 9.9, the
time-dependent Schrödinger equation takes the form [Eqs. (9.2.5)]

ih� _a1 ¼ E1a1 þ V13a3, (9:10:1a)

ih� _a2 ¼ E2a2 þ V23a3, (9:10:1b)

ih� _a3 ¼ E3a3 þ V31a1 þ V32a2: (9:10:1c)

Here Vij ¼2exij . E(t) vanishes for ij ¼ 12 or 21 due to our assumption that the 1$ 2
transition is not allowed, and we assume again that the diagonal matrix elements vanish:
Vii ¼ 0. Taking E1 as the zero of energy, and defining v ji ¼ (Ej � Ei)=h� , we rewrite
(9.10.1) as

_a1 ¼ � i

h� V13a3, (9:10:2a)

_a2 ¼ �iv21a2 � i

h� V23a3, (9:10:2b)

_a3 ¼ �iv31a3 � i

h� V31a1 � i

h� V32a2: (9:10:2c)

3

wpwc

2

1

Figure 9.9 Three-state model in which transitions are allowed between states 1 and 3 and between
states 2 and 3 but not between states 1 and 2. In the presence of a coupling field of frequency
vc � (E3 � E2)=h� , a probe field of frequency vp � (E3 � E1)=h� can propagate without absorption.
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The electric field E(t) is the sum of the coupling and probe fields:

E(t) ¼ 1
21̂cEce

�ivct þ 1
21̂pEpe

�ivpt þ c:c: (9:10:3)

For simplicity we do not explicitly indicate the spatial dependence of the fields.
Based on the assumptions that vc � v32 and vp � v31, we can make an approxi-

mation similar to the rotating-wave approximation made in Section 9.2 for a two-state
atom. Consider, for example, Eq. (9.10.2c) for a3(t). The dominant contributions
from the second and third terms on the right-hand side will come from terms oscillating
approximately as e�iv31t, which is how a3(t) oscillates in the absence of any coupling and
probe fields. It is similarly the part of the second term on the right-hand side of (9.10.2b)
that oscillates approximately as e�iv21t (v21 � vp2vc) that will most strongly determine
the time evolution of a2(t), while the most significant contribution to the evolution of
a1(t) comes from the part of the right-hand side of (9.10.2a) that oscillates very
slowly. Thus, retaining only these resonant contributions to the time evolution of a1,
a2, and a3, we approximate Eqs. (9.10.2) by

_a1 ¼ ix (p)�
31 eivpta3, (9:10:4a)

_a2 ¼ �iv21a2 þ ix (c)�
32 eivcta3, (9:10:4b)

_a3 ¼ �iv31a3 þ ix (p)
31 e

�ivpta1 þ ix (c)
32 e
�ivcta2, (9:10:4c)

where we define

x(p)ij ¼
exij� 1̂pEp

2h� , (9:10:5a)

x(c)ij ¼
exij� 1̂cEc

2h� : (9:10:5b)

Following again the approach used in the case of the two-state atom, we introduce
new, slowly varying probability amplitudes c1, c2, and c3 by writing [cf. (9.3.13)]

a1 ¼ c1(t), (9:10:6a)

a2 ¼ c2(t)e
�i(vp�vc)t, (9:10:6b)

a3 ¼ c3(t)e
�ivpt, (9:10:6c)

in terms of which Eqs. (9.10.4) become

_c1 ¼ ix (p)�
31 c3, (9:10:7a)

_c2 ¼ �iDc2 þ ix (c)�
32 c3, (9:10:7b)

_c3 ¼ �iDc3 þ ix(p)31 c1 þ ix (c)
32 c2, (9:10:7c)

with a detuning D now defined as the difference between the 1$ 3 transition frequency
and the probe frequency vp:

D ¼ v31 � vp: (9:10:8)
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We have assumed for simplicity thatvc ¼ v32, and in writing (9.10.7b) we have used the
relation v21 2 (vp 2 vc) ¼ v21 2 vp þ v32 ¼ 2(vp 2 v31) ¼ 2D.

It is now straightforward to derive the equations for the density matrix elements
rij ¼ cic�j defined as in (9.4.1). If the probe field is sufficiently weak, we can assume
that the probability amplitudes c2 and c3 for the two excited states in Fig. 9.9 are small
and that jc1(t)j2 ffi 1. Then we obtain in particular the following approximate equations
for the density matrix elements r12 and r13 (Problem 9.18):

_r12 ¼ iDr12 � ix(c)32r13, (9:10:9a)

_r13 ¼ iDr13 � ix(p)�31 � ix(c)�32 r12: (9:10:9b)

Under our assumption of weak excitation we do not require equations for any of the other
density matrix elements, since we already know their (approximate) values: r11(t) ¼ 1,
r23(t) ¼ r32(t) ¼ r22(t) ¼ r33(t) ¼ 0. Damping due to collisions and spontaneous emis-
sion is assumed to be described by relaxation rates g12 and g13, and we account for this
damping by replacing (9.10.9) by

_r12 ¼ i(Dþ ig12)r12 � ix (c)
32 r13, (9:10:10a)

_r13 ¼ i(Dþ ig13)r13 � ix (p)�
31 � ix (c)�

32 r12: (9:10:10b)

The steady-state solutions of Eqs. (9.10.10), i.e., the solutions for times t � g�112 , g
�1
13 ,

are obtained by setting the derivatives equal to zero on the left-hand sides. For r13 we
obtain the steady-state solution

r13 ¼
x (p)�
31 (Dþ ig12)

(Dþ ig12)(Dþ ig13)� jx(c)32 j2
: (9:10:11)

The steady-state electric dipole moment at the probe field frequency is therefore
[cf. Eq. (9.6.5)]

p ¼ ex13r31e
�ivpt þ c:c: ¼ ex13x

(p)
31 (D� ig12)

(D� ig12)(D� ig13)� jx(c)32 j2
e�ivpt þ c:c:, (9:10:12)

which we can write as

p ¼ 1
2a(vp)1̂pEpe

�ivpt þ c:c:, (9:10:13)

where a(vp) is the (complex) polarizability at the probe frequency. Using the definitions
x (p)
31 ¼ ex31� 1̂pEp=2h� [Eq. (9.10.5b)], m13 ¼ ex13� 1̂�p [Eq. (9.6.10)], and the relation

1̂�p� 1̂p ¼ 1, we deduce from (9.10.12) that

a(vp) ¼ jm13j2
h�

D� ig12
(D� ig12)(D� ig13)� jx(c)32 j2

: (9:10:14)
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We define the complex refractive index n(vp) by the familiar formula n2(vp) ¼
1þNa(vp)/e0, where N is the number density of atoms, and assume that the medium
is sufficiently dilute that we can write

n(vp) ¼ 1þ N

2e0
a(vp) ¼ nR(vp)þ inI(vp), (9:10:15)

where nR and nI are the real and imaginary parts of n.
Plane-wave propagation in the z direction implies the spatial dependence

ein(vp)vpz=c ¼ e�vpnI (vp)z=ceivpnR(vp)z=c (9:10:16)

for a plane-wave probe field. In other words, the (power) attenuation coefficient and the
(real) refractive index at the probe frequency are, respectively,

a(vp) ¼ vp

ce0
NaI(vp)

¼ N

e0

vp

c

jm13j2
h�

g12(g12g13 þ jx(c)32 j2)þ D2g13

[D2 � g12g13 � jx(c)32 j2]2 þ D2(g12 þ g13)
2

(9:10:17)

and

nR(vp) ¼ 1þ N

2e0
aR(vp)

¼ 1þ N

2e0

jm13j2
h�

D(D2 þ g212 � jx(c)32 j2)
[D2 � g12g13 � jx(c)32 j2]2 þ D2(g12 þ g13)

2
: (9:10:18)

If D ¼ 0, i.e., if the probe frequency is tuned exactly to the 1$ 3 transition, n(vp) ¼ 1
and

a(v31) ¼ Nvpjm13j2
e0h�c

g12

g12g13 þ jx(c)32 j2
, (9:10:19)

which for zero coupling field (x(c)32 ¼ 0) reduces to the familiar line-center absorption
coefficient due to the resonant, homogeneously broadened 1$ 3 transition. When
x(c)32 = 0, however, a(v31) can be very small if jx(c)32 j2 � g12g13. In other words, a suffi-
ciently intense coupling field can “induce transparency” at the probe frequency.

The dephasing rate g12 of the nonallowed transition 1$ 2 can be very small
compared to the dephasing rate g13 of the (allowed) transition 1$ 3. In Fig. 9.10 we
plot a(vp) vs.D for x(c)32 ¼ 0 and x(c)32 ¼ 3g13, assuming g12 ¼ 0.02g13. For large enough
values of the Rabi frequency jx(c)32 j the absorption spectrum of the probe field has two
peaks separated by jx(c)32 j and is nearly zero, as in Fig. 9.10b, at the resonance frequency
vp ¼ v31.

EIT arises from the coupling of r13, which determines the dipole moment at the probe
frequency [Eqs. (9.10.12) and (9.10.13)], to the off-diagonal density matrix element r12;
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this coupling is described by Eqs. (9.10.10). EIT can therefore be attributed to the 1$ 2
atomic coherence, that is, to the fact that r12 is not zero. In a different but equivalent
formulation it can also be interpreted as a quantum interference effect in which prob-
ability amplitudes interfere destructively to give a net absorption probability of zero.
For the realization of EIT it is generally necessary that the decoherence rate g12 be
very small, and consequently EIT has been observed primarily in dilute gases.5 For
stationary atoms g12 can be made as small as a few Hz. The larger values in gases are
a consequence of so-called transit-time broadening (Section 9.11) arising from the
fact that the atoms are in the field for a finite period of time; g12 in this case can then
be reduced by adding a noble buffer gas.

Let us now consider the refractive index given by Eq. (9.10.18). For jx (c)
32 j2 � D2,

g 2
12, g12g13, jDjg13,

n(vp) ffi 1� N

2e0h�
jm13j2
jx(c)32 j2

D (9:10:20)

and the group velocity vg ¼ c/[n þ v dn/dv] at the probe frequency is (Problem 9.19)

vg(vp) ¼ cjx(c)32 j2
jx(c)32 j2 þ Nvpjm13j2=2e0h�

, (9:10:21)

which is approximately c 2h�e0jx(c)32 j2=Nvpjm13j2
h i

forNvpjm13j2=2h�e0jx(c)32 j2 � 1. From

this formula we conclude that the group velocity in EIT can be extremely small—on the
order of a few meters per second—compared to c (Problem 9.19).

Such group velocities were first reported in 1999. It has also been observed that EIT
pulses can propagate with very little distortion, implying that the distance LGVD defined
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Figure 9.10 a(vp) (in units of Nvpjm13j2=e0ch� g13 ) vs. D/g13 as given by Eq. (9.10.17) for

g12/g13 ¼ 0.02 and (a) x(c)32 ¼ 0, (b) jx(c)32 j ¼ 3g13.

5A review of experimental and theoretical aspects of EIT is given by S. E. Harris, Physics Today (July, 1997),
pp. 36–42.
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by Eq. (8.4.8) is larger than the propagation length. Thus, an initial Gaussian pulse

E0(z ¼ 0, t) ¼ Ae�t
2=2t 2p (A ¼ constant) (9:10:22)

will propagate approximately as

E0(z, t) ¼ Ae�(t�z=vg)
2=2t 2p (9:10:23)

in the EIT medium, compared to the field

E0(z, t) ¼ Ae�(t�z=c)
2=2tp2 (9:10:24)

that would propagate in the absence of the EIT medium. Comparison of (9.10.23) and
(9.10.24) shows that the EIT pulse, while retaining its temporal duration as it propagates,
undergoes a spatial compression by the factor c/vg, which, as we have seen, can be very
large (Problem 9.19).

† Equation (9.10.21) implies that the group velocity can be made very small but not zero since
there is no EIT when there is no coupling field. However, if jx(c)32 j2 is made to vary slowly in time,
and if the propagation length of the probe field is not too large, then Eq. (9.10.21) remains appli-
cable and implies a time-dependent group velocity that vanishes when jx(c)32 (t)j2 ¼ 0. In other
words, by varying the coupling field the probe pulse can be brought to a complete stop (vg ¼
0). In fact an initial probe pulse can be stopped and then fully recovered, with the same amplitude
and phase as the original pulse, by appropriately varying the coupling field. The EIT medium can
thus serve as a “memory” for the amplitude and phase information of the probe pulse; this infor-
mation can be stored over times shorter than the decoherence time g�112 , which can be on the order
of a millisecond or longer, depending on the nature of the dephasing collisions in the EIT
medium.6 †

9.11 TRANSIT-TIME BROADENING AND THE RAMSEY EFFECT

Coherent effects such as Rabi oscillations, self-induced transparency, and electromagne-
tically induced transparency require that an atomic transition have a long dephasing time
and therefore a small homogeneous linewidth. This is usually achieved in impurity-
doped crystals at very low-temperatures or by using dilute gases to reduce collisional
broadening, together with pulse durations much shorter than radiative lifetimes. But
even without collisions and spontaneous emission, the response of an atom to a short
pulse exhibits a spectral width just because the atom–field interaction occurs over a
finite time t. We noted following Eq. (9.9.9), for example, that the inverse of the pulse
duration in SIT can act as an effective homogeneous linewidth. Arguments based on the
energy–time uncertainty relation (or Fourier transform theory) suggest that a spectral
width �1/t can be associated with an atom–field interaction time t. We can verify
this using Eqs. (9.3.15) for the probability amplitudes of the upper and lower states of

6For a review of “abnormal” group velocities see, for instance, P. W. Milonni, Fast Light, Slow Light, and
Left-Handed Light, Institute of Physics, Bristol, UK, 2005.
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a transition. If the Rabi frequency x is constant in time and real, the excited-state
probability jc2(t)j2 at time t is given by Eq. (9.3.20b), which for x2 
 D2 simplifies to

P2(t) ffi x 2 sin
2 1
2Dt

D2 ¼ 1
4
x 2t2

sin2 1
2Dt

1
2Dt
� �2 (9:11:1)

for atom–field interaction times t that are short compared to any decoherence time. The
function sin2 x/x2 is plotted in Fig. 10.3. In the present context it implies that the exci-
tation probability P2(t) drops to about 40% of its peak value, which occurs at D ¼ 0,
when the field frequency v is such that jDjt ¼ p, or v ¼ v0 + p/t. We therefore
define a nominal resonance width Dn ¼ (2p)(2p/t) ¼ 1/t.

This effect of a finite atom–field interaction time is important in the case of atomic
beams, where collisions are negligible and the transitions probed by an applied field
typically have radiative lifetimes much longer than the time an atom spends in the
field. An atomwith velocity v interacts with the field for a time a/v, where a is the spatial
extent of the field. For an atomic beam obtained from a vapor near room temperature,
v � 5 � 104 cm/s and Dn � v/a � 0.5 MHz if we assume a laser beam of width
a ¼1 mm. This example indicates that transit-time broadening is usually small, but it
can nevertheless be the largest contributor to the resonance width of an atomic beam.
In this example it exceeds radiative broadening if the radiative lifetime is larger than
the transit time a/v ¼ 2 ms.

† The connection between our derivation of the transit-time spectral width and that based
on Fourier transform theory may be seen from the formal solution of Eq. (9.3.15b) with c1 ffi 1
and a time-dependent Rabi frequency x(t) ¼ (ex12� 1̂=h�)E0(t):

c2(t) ¼ i

2

ðt
�1

dt0x(t0)eiD(t
0�t) ¼ i

2
ex12� 1̂

h�
� �ðt

�1
dt E0(t

0)eiD(t
0�t): (9:11:2)

It is assumed that c2 is zero at t ¼ 21, i.e., at times before the field is applied. For a field that is
zero except for times between 0 and t, during which it has a constant amplitude E0,

c2(t) ¼ i

2
ex12� 1̂

h�
� �

E0

ðt
0
dt0eiD(t

0�t) ¼ i

2
ex12� 1̂

h�
� �

E0e
�iDt=2 sin

1
2Dt

1
2D

, (9:11:3)

or

P2(t) ¼ jc2(t)j2 ¼ 1
4
x2t2

sin2 1
2Dt

(12Dt)
2 , (9:11:4)

which, of course, is the same as (9.11.1), obtained now from the squared modulus of the Fourier
transform of E0(t):

ð1
�1
dt0 E0(t

0)eiDt
0

����
����
2

¼ E2
0

ðt
0
dt0 eiDt

0
����

����
2

: (9:11:5)

We can easily generalize to the more realistic case of, say, a monochromatic field with a
Gaussian spatial profile. If the field along the direction x in which an atom moves varies as
exp(2x2/w2), the atom experiences a time-dependent field E0 exp(2v2t2/w2) whose Fourier
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transform has squared modulus

E0

ð1
�1

dt eiDte�v
2t2=w2

����
����
2

¼ E2
0
pw2

v2
e�D

2w2=2v2 : (9:11:6)

This implies a resonance with a maximum at D ¼ 0 (v ¼ v0) and a FWHM width Dn ¼
(2v=pw)

ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

, consistent with the width Dn � v/a for the case of a field with constant ampli-
tude over the distance a traversed by the atom. †

In some applications, most notably in atomic frequency standards and clocks (Section
14.3), transit-time broadening must be kept as small as possible. It is obviously reduced
if atoms are made to move very slowly across a field with a large beam diameter. The
large mass of the cesium atom (133 amu) helps in achieving small velocities in atomic
beam clocks. Atomic “fountains” employing laser cooling of atoms lead to further
improvements (Section 14.4). But it is also necessary to minimize line-broadening
effects arising from spatial inhomogeneities of fields through which the atoms move.
Since atoms typically traverse a distance �0.5 m in atomic clocks, the field inducing
a “clock transition” would have to be largely free of gradients over this distance.
Sufficient field uniformity is extremely difficult to realize over such a large distance,
and in practice a different approach is followed in which atoms interact with two separate
fields. In this approach, the advantages of which are discussed below, an atom is irra-
diated over a time t with a resonant field, left free of any oscillatory field for a time T,
and then irradiated again for a time t with a field essentially identical to the first field.
In the application to atomic beams, atoms move through a field for a time t, drift
freely for a time T, and then traverse a second field for a time t.

To understand this method of separated oscillatory fieldswe again consider solutions
of the time-dependent Schrödinger equation in the form (9.3.15). For a field with a dur-
ation t and a constant Rabi frequency x, the general solution of Eqs. (9.3.15) is

c1(t) ¼ e�iDt=2 cos 1
2 Vtþ iD

V
sin 1

2 Vt

� �� 
c1(0)

þ e�iDt=2
ix�

V
sin 1

2 Vt

� 
c2(0), (9:11:7a)

c2(t) ¼ e�iDt=2
ix

V
sin 1

2 Vt

� 
c1(0)

þ e�iDt=2 cos 1
2 Vt� iD

V
sin 1

2 Vt

� �� 
c2(0): (9:11:7b)

We have allowed for x to be complex in order to account for any phase difference

between the two “separated” fields, and have defined V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj2 þ D2

q
. During the

time interval from t to t þ T, there is no field (x ¼ 0), and we can obtain c1(t þ T )
and c2(t þ T ) by using (9.11.7) with x ¼ 0 and replacing t by T and c1(0) and c2(0)
by c1(t) and c2(t), respectively:

c1(tþ T) ¼ e�iDT=2 cos 1
2 DT þ i sin 1

2 DT
� �

c1(t) ¼ c1(t), (9:11:8a)

c2(tþ T) ¼ e�iDT=2 cos 1
2 DT � i sin 1

2 DT
� �

c2(t) ¼ e�iDTc2(t): (9:11:8b)
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We can obtain the probability amplitudes c1(t þ T þ t) and c2(t þ T þ t) after the
second field of duration t by using (9.11.7) with c1(0) and c2(0) replaced by c1(t þ
T ) and c2(t þ T ), respectively. We assume that x ¼ jxje�if1 for the first field (applied
between t ¼ 0 and t ¼ t) and x ¼ jxje�if2 for the second field (applied between t ¼ t þ
T and t ¼ t þ T þ t). The amplitudes c1(2t þ T ) and c2(2t þ T ) after the second field
are obtained straightforwardly: the upper state probability P2(2t þ T ) ¼ jc2(2t þ T )j2
for jxj2 � D2 and c1(0) ¼ 1, c2(0) ¼ 0 is7

P2(2tþ T) ¼ sin2 jxjt cos2 1
2(DT þ f1 � f2)

¼ 2 sin2 1
2jxjt cos2 1

2jxjt 1þ cos [(v0 � v)T þ f1 � f2]f g: (9:11:9)

In the opposite limit jxj2 
 D2 we obtain

P2(2tþ T) ¼ 4
jxj2
D2 sin2 1

2Dt cos
2 1
2(D(T þ t)þ f1 � f2) (9:11:10)

and c1(0) ¼ 1, c2(0) ¼ 0. This generalizes (9.11.1) to the case of two fields separated by
a “dark period” T.

The factor cos2 1
2(DT þ f1 � f2) appears in both (9.11.9) and (9.11.10) and is the

essential feature of the method of separated oscillatory fields (see Problem 9.20). The
oscillation period of this factor can be made very small just by making T longer.
Stretching T in the case of an atomic beam is much easier than making t longer since
it only involves increasing the length over which the atoms drift “in the dark” in the
space between the two oscillatory fields. From (9.11.10), for example, we see that the
transit-broadened lineshape is the same as in (9.11.1), except that it is sharply modulated
with a period 2p/T. This is shown in Fig. 9.11. The rapid modulations are known as
Ramsey fringes. Note that the central peak within the modulated envelope in
Fig. 9.11 is much narrower than the envelope, with width approximately 2p/T rather
than the 2p/t implied by (9.11.1).

The phase differencef1 2 f2 between the two fields has interesting consequences. If
f1 2 f2 ¼ p, for instance, P2(2t þ T ) is zero at the resonance frequency v ¼ v0. If
f1 2 f2 ¼ p/2, the resonance curve describing the variation of P2(2t þ T ) with D
has a “dispersion” form (cf. Fig. 3.22). Such effects of this phase difference have
been employed in experimental studies of resonance curves.7

The narrow widths of Ramsey fringes have inspired some highly sensitive spectro-
scopic techniques (“Ramsey spectroscopy”). But the most important and widespread
application of the method of separated oscillatory fields has been in the area of
atomic clocks and frequency standards (Section 14.3), where it circumvents the problem,
noted earlier, of realizing fields that are sufficiently homogeneous over the distances tra-
versed by the atomic beams; this is discussed further below. The Ramsey method has
other advantages, one being that the average over transit times of atoms in the beam
results in a resonance curve that is about 40% narrower than that obtained with a
single field irradiating the atoms over the same average transit time.7

7The second equality in (9.11.9) puts P2(2tþT ) in the form of Eq. (9) of N. F. Ramsey, Applied PhysicsB60,
85 (1995), towhich the reader is referred for further background and discussion by the inventor of the method
of separated oscillatory fields.
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The method of separated oscillatory fields, as we have described it, is difficult to
apply in the case of optical transitions. At optical frequencies the atoms pass through
many wavelengths as they traverse a distance �1 cm through each of the two separated
fields,8 and the velocity-dependent phase shifts they experience act towash out the factor
cos2 1

2(DT þ f1 � f2) when it is averaged over atomic velocities. In the case of the
microwave fields used in atomic clocks, by contrast, the phase shifts are small compared
to the wavelength, so that these Doppler phase shifts are absent. Various techniques
involving multiple separated fields and nonlinear effects have been developed to
extend the method of separated fields to the optical domain.

† To see why the method of separated fields overcomes the problem of field inhomogeneities,
let us assume that the only inhomogeneities are those due to a static magnetic field that an atom
traverses for a time T between the two oscillatory fields; this is in fact the situation of interest in
atomic clocks. The static magnetic field induces Zeeman shifts in the energy levels of the two
states of the atomic transition of interest, and because of its motion through this field an atom
experiences a time-dependent frequency shift. Thus, we replace D in (9.3.15b) by D þ f (t),
where f (t) accounts for the frequency shift due to the inhomogeneous magnetic field. In the
“dark” region free of any oscillatory field (x ¼ 0) we therefore write _c2 ¼ �i[Dþ f (t)]c2(t),
or, for t , t , t þ T,

c2(t) ¼ c2(t) exp �iD(t � t)� i

ðt
t

dt0 f (t0)
� 

¼ e�iD(t�t), (9:11:11)

where

D ¼ Dþ 1
t � t

ðt
t

dt0 f (t0) (9:11:12)
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Figure 9.11 The normalized resonance curve (9.11.10) showing Ramsey fringes. In this example
f1 ¼ f2 and T ¼ 8t, which means that the time an atom spends in the dark region between fields is
8 times longer than the time t it spends in each of the fields.

8The Ramsey method in atomic beam clocks is implemented with a U-shaped cavity, as shown in Fig. 14.13.
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is the average detuning of the oscillatory field from the atomic resonance frequency. Equation
(9.11.11) generalizes (9.11.8b) to the present case in which the atom experiences time-dependent
frequency shifts due to an inhomogeneous, static magnetic field in the dark region. Expressions
(9.11.9) and (9.11.10) in this case are unchanged except for the replacement ofD byD. This repla-
cement implies a possible displacement of the resonance peak (if D = D), but no broadening of
the resonance curve due to the magnetic field inhomogeneities. This is in contrast to the line
broadening that results when an atom moves through an inhomogeneous static magnetic field
and an oscillatory field, and explains the advantage of using separated oscillatory fields.

Norman F. Ramsey was awarded the Nobel Prize in Physics in 1989 for his “invention [in
1949] of the separated oscillatory fields method and its use in the hydrogen maser and other
atomic clocks.” He has given an interesting account of how he arrived at the idea while he was
working on an atomic beam apparatus and worried that he “was probably not going to succeed
in making my field uniform enough”:9

The idea [of the separated oscillatory fields method] got stimulated by my giving a course in optics
where there is a device known as the Michelson Stellar interferometer, which one of my professors at
Cambridge University described in a rather dramatic fashion by saying, “If you had a telescope and
were looking at a star that is very bright, so you don’t have to worry about light gathering and if you
didn’t have quite enough resolution to tell whether it is a singular or double star. If you take a can of
black paint and paint over the middle of the telescope, get twice the resolution. You could then tell
whether it was single or double.” I was actually giving this somewhat rather dramatic discussion
of it to my class, and it suddenly occurred to me that although I was happy to get twice the resolution,
I wasn’t very much concerned about that. But it occurred to me that if you paint over the middle of the
telescope with a can of black paint, it must not depend very much on the quality of the glass under-
neath the paint. Maybe I could do something analogous that wouldn’t depend upon the quality of the
magnetic field, if I put radio frequency fields only at the ends. I wasn’t clear what the application
would be, but it started me thinking in that direction. It’s miscellaneous things that make you think
in a new direction. †

The Ramsey effect is a consequence of atomic coherence, as our explanation of
it based on probability amplitudes rather than populations makes clear. It can be inter-
preted in various ways (Problem 9.20), all invoking this coherence in oneway or another.

9.12 SUMMARY

The main message of this chapter is that it is sometimes inadequate to describe matter
interacting with light solely in terms of energy-level occupation probabilities and field
intensity. A more general description must be based on density matrices that account
not only for energy-level probabilities but also for probability amplitudes. And laser
radiation, not surprisingly, must in general be described in terms of an electric field
rather than just an intensity.

Starting from the time-dependent Schrödinger equation for an atom in a monochro-
matic field, we obtained differential equations for the evolution in time of the probability
amplitudes for different atomic states. For the important case in which only two atomic
states have significant occupation probabilities we replaced these equations by those for
a “two-state atom” and discussed the Rabi oscillations of the diagonal and off-diagonal

9From Norman Ramsey, Electrical Engineer, an oral history conducted in 1995 by Andrew Goldstein, IEEE
History Center, Rutgers University, New Brunswick, NJ.
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density-matrix elements for an atom in a resonant field. We then modified these
equations to account for collisions and other effects and obtained the optical Bloch
equations and, for the propagation of a resonant light pulse in a medium consisting of
two-state atoms, the Maxwell–Bloch equations. Aside from effects that require a fully
quantum electrodynamical treatment of the field—which seldom need to be considered
in applications—these equations provide the framework for the most rigorous approach
to laser theory, laser–matter interactions, and the propagation of laser radiation. We
found that the Maxwell–Bloch equations reduce to the familiar rate equations for
atomic-level populations and field intensity under certain approximations, and that
they predict phenomena, such as self-induced transparency, that cannot be explained
by the rate equations. We showed how these equations can be generalized to cases in
which it is necessary to account for more than two atomic states and for more than a
single monochromatic field by considering a “three-state model” and the phenomenon
of electromagnetically induced transparency. Finally, we considered transit-time broad-
ening and the Ramsey effect, a consequence of atomic coherence that is especially
important in the physics of atomic and molecular beams.

PROBLEMS

9.1. (a) Show that x11 ¼ 0 [see Eq. (9.3.8)]. To obtain this result you must assume
that jf1(x)j2 is an even function of x. More precisely, f1(x) must have a defi-
nite parity, i.e., f1(2x) is identically the same as either f1(x) (even parity) or
2f1(x) (odd parity).

(b) Show that x12 as defined in Eq. (9.3.8) must vanish if the wave functionsf1(x)
and f2(x) have the same definite parity.

9.2. Every solution of the Schrödinger equation (3.A.2) remains a solution when mul-
tiplied by a constant K, and it remains normalized according to (3.A.6) if K is a
pure phasor: K ¼ eig. In this sense every f(x) has an arbitrary constant phase
that can be adjusted for convenience. Assume that an initial phase choice for
the wave functions f1(x) and f2(x) leads to the complex matrix element x12 ¼
a2 ib (where a and b are real).
(a) Replace f1 by Kf1. Find the value of K that makes x12 real.
(b) What is the new, purely real value of x12?

9.3. (a) Find the second-order differential equation satisfied by the probability ampli-
tudes c1 and c2 by differentiation and substitution between Eqs. (9.3.15).

(b) Write the general solution for c2(t) in terms of sin(Vt/2) and cos(Vt/2), and
fix the coefficients to fit the initial condition c1(0) ¼ 0, c2(0) ¼ 1.

(c) The initial condition specified in (b) is opposite to the one used to obtain the
solutions (9.3.18) in the text. Comment on the differences (if any) between
(9.3.18) and the solutions obtained in (b).

9.4. (a) For dipole matrix elements with the magnitude ea0, list the Rabi frequencies
that are obtainedwith these intensities (i) I ¼ 1 mW/cm2, (ii) I ¼ 100W/cm2,
(iii) I ¼ 1 MW/cm2. (b) Find the intensity for which the Rabi frequency is
large enough to invalidate the rotating wave approximation.

9.5. Derive Eqs. (9.4.2a)–(9.4.2d) from Eqs. (9.3.15).
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9.6. Solve Eq. (9.4.6b) by assuming that x and r22 2 r11 are constant. Show that the
result approaches (9.4.5) in the limit t � 1=gc.

9.7. Find the steady-state values of r21 and r22 predicted by Eqs. (9.4.12) and (9.4.15).
Note that the true steady-state values must be zero, due to “leakage” from levels
1 and 2 into other atomic levels via the collision rates G1 and G2. Assume that this
leakage occurs very slowly, and thus put G1 ¼ G2 ¼ 0. Assume r11 þ r22 ¼ 1
initially, and note that r11 þ r22 is a constant [add Eqs. (9.4.12) to check].

9.8. Derive Eqs. (9.5.1).

9.9. Let x21 and 1̂ be complex vectors, and let 1̂ be a unit vector in the complex sense:
1̂� 1̂� ¼ 1. Designate x21 ¼ p þ iq and 1̂ ¼ aþ ib, where p, q, a, and b are
purely real vectors.
(a) Show that a2 þ b2 ¼ 1.
(b) Write jx21� 1̂j2 in terms of p, q, a, and b.
(c) Compute the average of (p �a)2 over all relative p2a angles. Note that the

spherical average of cos2 u is not 12.

(d) Extrapolate from (c), using (b) as well, to evaluate the average of jr12 � 1̂j2.
9.10. (a) Find the steady-state solutions vs, ws, and Es of Eqs. (9.7.14).

(b) Write v ¼ vsþ11, w ¼ ws þ 12, and E ¼ Es þ 13 in Eqs. (9.7.14) and find the
differential equations satisfied by 11, 12, and 13. Assuming that 11, 12, and 13
are small perturbations of the steady-state solutions of the Lorenz model,
retain only terms up to first order in these perturbations and write the resulting
linear differential equations satisfied by them. Show that these differential
equations have solutions that grow exponentially in time when conditions
(9.7.17) are met, that is, that the steady-state solutions of the Lorenz model
are unstable under these conditions.

(c) Solve the Lorenz model equations numerically for parameters s, B, and r
satisfying (9.7.17). Consider two slightly different initial conditions and com-
pute the “distance” d(t) ¼ [(x1 2 x2)

2 þ ( y1 2 y2)
2 þ (z1 2 z2)

2]1/2 between
the two “trajectories” x1(t), y1(t), z1(t) and x2(t), y2(t), z2(t) in the xyz “phase
space.” This is a simple measure of sensitivity to initial conditions. Do you
think that d(t) can be made arbitrarily small for arbitrarily long times t for
any two arbitrarily close initial conditions by using a sufficiently accurate
algorithm for the numerical solution of the Lorenz-model equations? [A
quantitative measure of sensitivity to initial conditions is provided by the
number l ; limt!1 (1=t) log d(t) computed for two initially close trajec-
tories. l is the largest Lyapunov exponent of the dynamical system [e.g., the
Lorenz model equations (9.7.14)], and if l . 0, the system is said to exhibit
very sensitive dependence on initial conditions, or chaos.]

9.11. Show that the Maxwell–Bloch Equations (9.6.11) and (9.6.12) imply that

e0c
@

@z
þ 1

c

@

@t

� �
jEj2 þ Nh�v @w

@t
¼ �Nh�v 1

T1
(wþ 1):

Determine the physical dimension of the terms and give a physical interpretation
of this equation.
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9.12. (a) Solve Eqs. (16.B.1) numerically for a Gaussian pulse having a duration much
shorter than the relaxation time 1/A21 of the amplifying medium, assuming
that the length L of the medium is 10 times the inverse of the small-signal
gain coefficient g0. Verify that the pulse fluence at the end of the medium
satisfies the formula (6.12.14).

(b) Now take the pulse duration to be 5 times the medium relaxation time.
Compare the output pulse fluence in this case with that obtained in part (a).

9.13. Write a computer program to solve the Maxwell–Bloch equations (9.6.11) and
(9.6.12) numerically for a Gaussian pulse incident on an absorbing medium
with b ¼ 2/T1. Assume that the length of the medium is 5 times the inverse of
the small-signal absorption coefficient, that the detuning D ¼ b, and that the
peak intensity of the incident pulse is equal to the saturation intensity of the
medium.

(a) Compare the time variation at the end of the medium of the intensity and the
Bloch variables u, v, and w for incident pulse durations equal to 1/10b, 1/b,
and 10/b.

(b) Compare the propagation velocity of the peak of the pulse with the group
velocity for each of the three cases in part (a).

(c) Repeat part (b) for D ¼ 2b.
(d) Repeat parts (a)–(c) for the case of an amplifying medium.

9.14. (a) Show that the steady-state solutions u ¼ np given by the area theorem
[Eq. (9.8.21)] are stable if n is an even integer but unstable if n is an odd
integer.

(b) Do you think that it is possible to realize 0p pulses? Draw the envelope of one.
(c) Is self-induced transparency possible in a homogeneously broadened

absorber?
(d) The SIT hyperbolic secant pulse is “exponentially small” at any point z at

times t ! 21, that is, at times much earlier than the arrival of the pulse at
z. However, it is never identically zero. Do you think that the hyperbolic
secant pulse is therefore unphysical? Can you identify what approximation
in the derivation of the hyperbolic secant solution is responsible for this?

9.15. In connection with optical solitons one asks how intense is the field. If T 02 � 1 ns
and the pulse duration is tp � 1 ps, to satisfy tp 
 T 02, then what peak intensity is
required to make a 2p pulse in a resonant medium with jmj ’ ea0=10?

9.16. Consider a short pulse propagating in an absorber with initial area slightly less
than 3p. To appreciate how the amplitude and duration of the pulse can change
as it evolves into a 2p pulse, make the simplifying assumption of a “square
pulse” with amplitude and duration E3p and t3p initially and E2p and t2p after
the pulse area becomes 2p. In this approximation E3pt3p ¼ 3p and E2pt2p ¼ 2p.

(a) Using the result of Problem 9.11, and assuming that we can effectively take
T1 ! 1, show that E2

3pt3p ¼ E2
2pt2p in the square-pulse approximation.

(b) Show that, as the area approaches 2p, the pulse increases in amplitude and
decreases in duration.
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9.17. Using the square-pulse model of Problem 9.16, obtain approximate expressions,
in terms of tp, T1, and the Doppler width dnD of a Doppler-broadened gas, for the
intensities necessary for self-induced transparency and for incoherent saturation.
Provide some numerical estimates for the required intensities for the two types of
“induced transparency.”

9.18. Derive the approximate density matrix Eqs. (9.10.9).

9.19. (a) Derive Eq. (9.10.21) for the group velocity at the probe frequency in electro-
magnetically induced transparency.

(b) Estimate this group velocity for a probe field at the sodium D2 line frequency
(l ¼ 589 nm), an atomic density N ¼ 3 � 1012 cm23, and a coupling field
intensity of 12 mW/cm2. Assume jm23j2=jm13j2 � 1. [See L. V. Hau et al.,
Nature 297, 594 (1999).]

9.20. The two interaction events of the Ramsey effect are often interpreted as two slits in
a Young two-slit experiment. Try to explain why this makes sense. To begin your
explanation, derive or look up the formula for the light intensity transmitted to the
screen of a two-slit experiment, allowing for each of the slits to have a finite width.
You should be able to make use of the fact that the slit spacing and width par-
ameters have a correspondence with the T and t parameters in the Ramsey effect.
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10 INTRODUCTION TO NONLINEAR
OPTICS

Because lasers can produce such high intensities, the propagation of laser radiation often
exhibits nonlinear features, such as saturated absorption, that are not normally observed
in the propagation of light from conventional sources. The variation of the intracavity
field in a laser, where the gain coefficient varies nonlinearly with the intracavity inten-
sity, is itself a consequence of nonlinear propagation. Self-induced transparency is
another example of nonlinear (and coherent) propagation.

When nonlinear optics was originally explored as a new field made possible by
lasers, it consisted of phenomena in which the polarization P and therefore the refractive
index can be expressed as a low-order polynomial in the electric field. This typically
happens when the field is sufficiently intense that its interaction with the medium is non-
linear, but sufficiently far from any resonances that the medium does not exhibit any sig-
nificant saturation. Whether the study of coherent nonlinear effects such as self-induced
transparency, which cannot be described by expressing P as a low-order polynomial in
E, should be considered as part of nonlinear optics is obviously just a question of seman-
tics. We now turn our attention mainly to some “low-order” nonlinear optical effects in
which we can characterize the polarization using only the first few terms of a power
series in the electric field.

10.1 MODEL FOR NONLINEAR POLARIZATION

To see how such a power series can arise, let us consider again a two-state atom in a
monochromatic field. To simplify matters we will take x12 ¼ x�21 ¼ mE0=h� , where
m ¼ ex12. From Eqs. (9.3.12) it follows identically that

d2p

dt2
þ v2

0p ¼ �
2m2v0

h� E0w(t) cosvt, (10:1:1a)

dw

dt
¼ 2E0

h�v0

dp

dt
cosvt, (10:1:1b)
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where p ¼ m(a�1a2 þ a1a�2) is the electric dipole moment expectation value [cf. (9.6.4)]
and w(t) ¼ ja2j2 2 ja1j2 is again the population difference between the upper and lower
states of our two-state atom. [Recall also Eq. (3.A.20) and our discussion of the classical
electron oscillator model.] Herewe are employing the two-state model not as an approxi-
mation to an atom in the case where the applied field is near a resonance and other states
of the atom have negligible population, but only as amodel for how the atom–field inter-
action can give rise to a nonlinear polarization.

To this end we proceed in a perturbative fashion, denoting by p(n)(t) and w(n)(t) the
approximations to p and w valid up to the nth power in the electric field amplitude E0.
If E0 ¼ 0 the atom remains in the lower state, so that p(0)(t) ¼ 0 andw(0)(t) ¼ 21; p(1)(t)
is the solution of the differential equation

d2p(1)

dt2
þ v2

0p
(1) ¼ � 2m2v0

h� E0w
(0)(t) cosvt ¼ 2m2v0

h� E0 cosvt: (10:1:2)

Ignoring the homogeneous solution of this equation in order to concentrate on the
response to the applied field (and recognizing that the homogeneous solution damps
to zero when we include relaxation), we have

p(1)(t) ¼ 2m2v0E0=h�
v2
0 � v2

cosvt: (10:1:3)

Since p(0)(t) ¼ 0, it is clear from (10.1.1b) that w(1)(t) ¼ 0. The next approximation to
w(t) is w(2)(t), which satisfies

dw(2)

dt
¼ 2E0

h�v0

dp(1)

dt
cosvt ¼ � 2E0

h�
2m2E0=h�
v2
0 � v2

� �
v sinvt cosvt

¼ � 2m2vE2
0=h
� 2

v2
0 � v2

" #
sin 2vt, (10:1:4)

and therefore

w(2)(t) ¼ w(0)(t)þ 2m2vE2
0=h
�2

v2
0 � v2

" #
1
2v

(cos 2vt � 1)

¼ � 1þ m2E2
0=h
�2

v2
0 � v2

" #
þ m2E2

0=h
�2

v2
0 � v2

" #
cos 2vt: (10:1:5)

Then for the next-order approximation to p(t) we have

d2p(3)

dt2
þ v2

0p
(3) ¼� 2m2v0

h� E0w
(2)(t) cosvt

¼ 2m2v0E0

h� 1þ m2E2
0=2h�

2

v2
0 � v2

" #
cosvt

� m2v0E0

h�
m2E2

0=h
�2

v2
0 � v2

cos 3vt, (10:1:6)
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where we have used the identity cosvt cos 2vt ¼ 1
2 [ cosvt þ cos 3vt]. The solution

of (10.1.6) is

p(3)(t) ¼ 2m2v0E0=h�
v2
0 � v2

1þ m2E2
0=2h�

2

v2
0 � v2

" #
cosvt

� m4v0=h�3
(v2

0 � v2)(v2
0 � 9v2)

E3
0 cos 3vt: (10:1:7)

Then the nonlinear polarization at the third-harmonic frequency 3v in the case of
N atoms per unit volume is

P(NL)(3v) ¼ �N m4v0

h� 3

1

(v2
0 � v2)(v2

0 � 9v2)
E3(v) [E(v) ; E0], (10:1:8)

while the second term in brackets multiplying cos vt in (10.1.7) gives rise to a nonlinear
polarization at the applied field frequency v. We have obtained this result by a pertur-
bative solution, without the rotating-wave approximation, of Eqs. (10.1.1) for a two-
state atom in a monochromatic field. We have not included damping terms as in the
optical Bloch equations; doing so would add transition linewidths to the denominator
in (10.1.8). These are needed whenever there is any possibility of a resonance enhance-
ment of a nonlinear polarization, as occurs, for instance, for v � v0 or v � v0/3 in our
two-state model.

A similar perturbative solution including all states of an atom leads likewise to an
expression for the polarization as a power series expansion in the applied electric
field, or in other words to expressions for the nonlinear susceptibilities. We now
consider some general properties of nonlinear susceptibilities for different media.

10.2 NONLINEAR SUSCEPTIBILITIES

Let us first recall that the ith component of the linear polarizability has the general form
[Eq. (8.8.3)]

P(L)
i (v) ¼ e0

X3
j¼1

xij(v)Ej(v) Pi ¼ 1
2[Pi(v)e

�ivt þ c:c:], Ej ¼ 1
2[Ej(v)e

�ivt þ c:c:]
� �

,

(10:2:1)

where xij(v) is the ijmatrix element of the linear susceptibility tensor (Section 8.8). The
total polarization at a frequency v is the sum of the linear polarization and the nonlinear
polarization at frequency v; the latter can result from electric fields at different frequen-
cies, as in the third-harmonic nonlinear polarization given by Eq. (10.1.8) in the two-
state model. For the lowest order nonlinear polarization at a frequency v3 we write

P(NL)
i (v3) ¼ e0

X3
j¼1

X3
k¼1

xijk(�v3, v1, v2)Ej(v1)Ek(v2), (10:2:2)
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where xijk(2v3, v1, v2) is the nonlinear susceptibility tensor that characterizes the
“mixing” of fields at v1 and v2 to produce a polarization at frequency v3 ¼ v1 þ v2.
We allow for the fact that electric fields in two different directions ( j and k) can generate
a polarization in yet another direction (i) in an anisotropic medium. To conformwith one
of several different notational conventions in nonlinear optics, we have introduced a
minus sign in front of v3 in the definition of the nonlinear susceptibility; with this
choice the sum of the three arguments of xijk(2v3, v1, v2) vanishes. We will also
employ the definition

Ei(�v) ; E�i (v): (10:2:3)

Finally, it is convenient to abbreviate (10.2.2) as

P(NL)
i (v3) ¼ e0xijk(�v3, v1, v2)Ej(v1)Ek(v2), (10:2:4)

where it is understood that we must sum over the repeated indices (they appear twice) j
and k on the right. This convention of summing over repeated indices is called the
Einstein summation convention; it allows us to dispense with the summation symbols
Sj and Sk. Using (10.2.3) we can similarly write, for instance,

P(NL)
i (v2) ¼ e0xijk(�v2,�v1, v3)Ej(�v1)Ek(v3): (10:2:5)

The xijkmay be taken to be purely real in lossless media, i.e., when v1, v2, andv3 are
far from any absorption resonances. In this case xijk satisfies overall permutation
symmetry, which simply means that subscripts and frequencies together may be freely
permuted:

xijk(�v1, v2, v3) ¼ x jik(v2,�v1, v3) ¼ xkji(v3, v2,�v1), (10:2:6)

where xjik(v2, 2v1, v3), for instance, is defined by

P(NL)
j (�v2) ; P�j (v2) ¼ e0x jik(v2,�v1, v3)Ei(�v1)Ek(v3): (10:2:7)

Comparing this with

P(NL)
i (v1) ¼ e0xijk(�v1, v2, v3)Ej(v2)Ek(v3) (10:2:8)

and (10.2.6), we see that, loosely speaking, permutation symmetry means that, in a
“three-wave mixing” process involving fields of frequencyv1,v2, andv3, the nonlinear
susceptibility for the process is the same regardless of which field is being generated and
which fields are doing the generating. Equation (10.2.7), for example, describes the
generation of v2 by the mixing of v1 and v3, whereas (10.2.8) describes the generation
of v1 by the mixing of v2 and v3. From (10.2.6) it follows that the nonlinear suscepti-
bilities for these two processes are the same.
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Another symmetry property is known to hold approximately in lossless media.
Namely, the subscripts i, j, and k may be freely permuted:

xijk ¼ x jik ¼ xkji ¼ xikj: (10:2:9)

This is called Kleinman’s symmetry conjecture. Combined with overall permutation
symmetry, it states basically that xijk(2v1, v2, v3) is insensitive to the values of v1,
v2, and v3.

The nonlinear susceptibility tensor allows us to describe various effects within the
same framework. For instance, xijk(0, 2v, v) describes the generation of a static (dc)
polarization due to a field at v:

P(NL)
i (0) ¼ e0xijk(0,�v, v)E�j (v)Ek(v): (10:2:10)

This gives rise to a static electric field inside the medium. Thus, an optical field incident
on the material produces a (dc) voltage; this is called optical rectification. Similarly,
xijk (2v, v, 0) describes the generation of a polarization at v due to the mixing of a
field at v with a static field (v ¼ 0):

P(NL)
i (v) ¼ e0xijk(�v, v, 0)Ej(v)Ek(0) ¼ e0Aij(v)Ej(v), (10:2:11)

where Aij(v) ; xijk(�v, v, 0)Ek(0). Comparing with (10.2.1), we see that Aij(v) acts in
effect as a contribution to the linear susceptibility tensor at frequency v. This contri-
bution is linearly proportional to the strength of the applied static field and is responsible
for the linear electro-optic effect, or Pockels effect, described in Section 6.5.

Quantum theory provides expressions for both linear and nonlinear susceptibilities.
Consider, for example, the nonlinear susceptibility xijk(22v, v, v) for second-harmonic
generation, the “degenerate” case (v1 ¼ v2, v3 ¼ 2v) of three-wave mixing (Section
10.5). Suppose for simplicity that the pump field at v is linearly polarized along the x
direction andwe are interested in the polarization 2v in the x direction. Then the nonlinear
susceptibility of interest is x111(22v, v, v), and a perturbative solution for the density
matrix gives

x111(�2v,v,v)¼
N

e0h�2
X
m,n

mgnmnmmmg
1

(v�vng)(2v�vmg)
� 1
(vþvng)(2vþvnm)

�

þ 1
(vþvng)(2vþvmg)

� 1
(v�vmg)(2vþvnm)


, (10:2:12)

where N is the number of molecules per unit volume and the subscript g refers to the
ground state. In writing this formula, it is assumed that all the atoms or molecules
remain in their ground states. vnm¼ (En�Em)=h� is the transition frequency between
states n and m, and mnm ¼ exnm is the x component of the transition electric dipole
moment between states n and m.

This formula predicts a “resonance enhancement” when v � vmg or v � vmg/2 for
some transition g! m of the molecule. Near such a “one-photon” or “two-photon” res-
onance we must include the effect of a transition linewidth, which has not been done in
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writing (10.2.12). If the field at such a resonance frequency is a sufficiently short pulse, it
may be necessary to account for off-diagonal coherence of the resonant transition, using
optical Bloch equations in the case of a one-photon resonance or their generalizations in
the case of multiphoton resonances. Or, if the field at such a resonance frequency has a
duration long compared to the off-diagonal coherence time of the resonant transition
and is sufficiently intense, it may be necessary to account for saturation of the transition.
In practical applications involvingnonlinearoptical effects suchas second-harmonic gen-
eration or parametric amplification, the resonances occur only for frequencies in the ultra-
violet, and linewidths, coherent effects, and saturationmaybe safely ignored. Such effects
are well described in terms of low-order expansions of the polarization in powers of the
electric field, or in other words by nonlinear susceptibilities such as (10.2.12).

Let us recall a selection rule for “allowed” (electric dipole) transitions between states
m and n of definite (odd or even) parity: For mmn to be nonzero the states m and n must
have different parity (Problem 9.1). Then, referring to formula (10.2.12), if mgn= 0, the
states g and nmust have different parity; if mnm = 0, then n and m have different parity,
which means therefore that m and g must have the same parity. But then mmg must be
zero, and so the right-hand side of (10.2.12) must vanish. In fact it follows that the non-
linear susceptibility xijk(2v3, v1, v2) vanishes whenever the medium has states of defi-
nite parity. In other words, three-wave mixing processes can occur only when the
quantum states of a medium do not have definite parity.

Materials in which the quantum states have definite parity are said to be “centrosym-
metric,” or to have inversion symmetry. It might be thought that all materials are centro-
symmetric. However, the wave functions of molecules at the lattice sites of a crystal, for
instance, are modified by neighboring molecules and as a consequence can lose their
parity. Then the preceding argument based on definite parity does not apply, and
three-wave mixing can occur. In fact three-wave mixing processes can also occur near
the surface of a centrosymmetric material, where the inversion symmetry associated
with the bulk of the material is broken. It is also worth noting that three-wave mixing
can occur in materials that are not birefringent.

In the case of a single atom, a reversal of the direction of an applied electric field
results in a reversal in the direction of the induced electric dipole moment. In a noncen-
trosymmetric material, however, a reversal in the direction of the electric fields does not
result in a reversal in the direction of the induced dipole moment density. That is, chan-
ging the signs of Ej and Ek in (10.2.5) does not change the sign ofP(NL)

i ; if it did, (10.2.5)
would imply that P(NL)

i (v3) ¼ �P(NL)
i (v3), or P(NL)

i (v3) ¼ 0, as in the case of a centro-
symmetric material.

It should be noted that the relations between nonlinear susceptibility, nonlinear polar-
ization, and electric fields require some additional consideration in the case of degener-
ate and higher-order wave-mixing processes. Consider the example of second-harmonic
generation (Section 10.5) in which an applied field at frequency v produces a nonlinear
polarization and therefore a field at the second-harmonic frequency 2v, and assume for
simplicity that the electric fields and nonlinear polarization have one and the same
Cartesian component. For this three-wave process it is the square of the electric field
at the fundamental frequency v that determines the nonlinear polarization:

h
1
2E(v)e

�ivt þ 1
2E(�v)eivt

i2
¼ 1

4E
2(v)e�2ivt þ 1

2E(v)E(�v)þ 1
4E

2(�v)e2ivt, (10:2:13)
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and the nonlinear polarization at the second-harmonic frequency is

P(2v) ¼ 1
2P

(L)e�2ivt þ 1
2P

(NL)(2v)e�2ivt þ c:c: (10:2:14)

The nonlinear susceptibility x (22v, v, v) is defined by relating the coefficients
of e22ivt in (10.2.13) and (10.2.14) as follows:

1
2P

(NL)(2v) ¼ e0x (�2v, v, v)14E2(v), (10:2:15)

or

P(NL)(2v) ¼ 1
2e0x (�2v, v, v)E2(v), (10:2:16)

which differs from the definition (10.2.4) that applies for the nondegenerate (v1 = v2)
case. In that case the square of the total electric field acting to produce the field at v3 ish

1
2E(v1)e

�iv1t þ 1
2E(v2)e

�iv2t þ c:c:
i2
¼ 1

2E(v1)E(v2)e
�i(v1þv2)t þ � � � , (10:2:17)

and the polarization at v3 ¼ v1 þ v2 is given by (10.2.14) with 2v replaced by v3. We
define e0x(2v3, v1, v2) analogously to e0x(22v, v, v) above, as the ratio between
1
2P

(NL)(v3) and the factor multiplying e�iv3t in (10.2.17):

1
2P

(NL)(v3) ¼ e0x (�v3, v1, v2) 12 E(v1)E(v2), (10:2:18)

which is equivalent to (10.2.4).
We have considered only the lowest-order optical nonlinearity, a quadratic dependence

of the polarization on the electric field associated with three-wavemixing processes. There
is also four-wavemixing in which three electric fieldswith frequenciesv1,v2, andv3 gen-
erate a fourth field at a frequency v4 ¼ v1 þ v2 þ v3. Unlike three-wave mixing, four-
wave mixing can occur in centrosymmetric media. The degenerate case v1 ¼ v2 ¼
v3 ¼ v and v4 ¼ 3v is called third-harmonic generation, or frequency tripling. Four-
wave mixing processes are characterized by a nonlinear susceptibility x(2v4, v1, v2,
v3) such that the nonlinear polarization at frequency v4 is proportional to
x (�v4, v1, v2, v3)E(v1)E(v2)E(v3).

An expression analogous to (10.2.12) may be derived for x (23v, v, v, v), for
instance:

x (�3v, v, v, v) ¼ N

e0h�3
X
‘,m,n

mg‘m‘mmmnmngA‘mn, (10:2:19a)

A‘mn ¼ 1
(v‘g� 3v)(vmg� 2v)(vng�v)

þ 1
(v‘gþv)(vmgþ 2v)(vngþ 3v)

þ 1
(v‘gþv)(vmgþ 2v)(vng�v)

þ 1
(v‘gþv)(vmg� 2v)(vng�v)

: (10:2:19b)
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As in (10.2.12), it is assumed that the electric fields are all linearly polarized in the same
direction and that the molecules remain in their ground states gwith probabilityffi 1. The
expression for the nonlinear polarization in this degenerate case is obtained from the
same kind of considerations leading to (10.2.16):

P(NL)(3v)¼ 1
4e0x (�3v, v, v, v)E3(v): (10:2:20)

Compare this with (10.2.19) when it is specialized to a two-state atom (Problem 10.1):

x (�3v, v, v, v)¼�N 4m4v0

e0h�3
1

(v2
0�v2)(v2

0� 9v2)
: (10:2:21)

Together with (10.2.20), this implies the nonlinear polarization (10.1.8). The term
multiplying cosvt and proportional to E3

0 in (10.1.7) is similarly related to the nonlinear
susceptibility x(2v,v,v,2v) in the two-state model. Because the energy eigenstates of
an isolated atom have definite parity, the nonlinear polarization involves an odd number
of factors of the electric field. Similar calculations, without the assumption of definite-
parity states, lead to a nonlinear polarization involving an even number of factors of the
electric field, as in three-wave mixing.

10.3 SELF-FOCUSING

Consider a monochromatic field E ¼ E(v)e�ivt in a centrosymmetric, isotropic medium.
It follows from the discussion in the preceding section that the lowest-order nonlinear
polarization at the field frequency is

PNL(v) ¼ 3
4e0x (�v, v, v,�v)E(v)E(v)E(�v) ¼ 3

4e0x(�v, v, v,�v)E(v)jE(v)j2,
(10:3:1)

which, to simplify the notation, we write as

PNL(v) ¼ e0x3(v)E(v)jE(v)j2: (10:3:2)

The linear polarization at the field frequency is

PL(v) ¼ e0x(v)E(v) ; e0x1(v)E(v), (10:3:3)

and so the polarization up to third order in the electric field strength is

P(v) ¼ PL(v)þ PNL(v) ¼ e0x1(v)E(v)þ e0x3(v)jE(v)j2E(v), (10:3:4)

and Eq. (8.2.17) for the complex electric field amplitude becomes

r2E þ v2

c2
E ¼ �x1

v2

c2
E � x3

v2

c2
jEj2E ; �xv

2

c2
E (10:3:5)
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if the field intensity is not so large as to require that we include contributions to the polar-
ization higher than third order in the electric field.

The fact that P depends on jEj2 means that the refractive index depends on jEj2:

n2 ¼ 1þ x ¼ 1þ x1 þ x3jEj2 ; n20 þ x3jEj2: (10:3:6)

Therefore

n ¼ n0 1þ x3
n20
jEj2

� �1=2

ffi n0 þ x3
2n0
jEj2 ; n0 þ n2

2
jEj2, (10:3:7)

where n0(v) is the usual, linear refractive index of the material. The factor 12 is introduced
in defining n2 in order to conformwith a notational convention (among several) in which
n is expressed as

n ¼ n0 þ n2E
2, E ¼ 1

2[E(v)e
�ivt þ c:c:]: (10:3:8)

Since the average of E2 over an optical period is just jEj2=2, (10.3.7) and (10.3.8) are
effectively equivalent. More generally we can write

n ¼ n0 þ n2E
2 þ n4E

4 þ � � � , (10:3:9)

but the “Kerr nonlinearity” (10.3.8) suffices for our purposes, and indeed it is very
often an excellent approximation. It is commonly written in terms of the time-averaged
intensity I:

n ¼ n0 þ n2I I ¼ n0 þ n2I
ce0n0
2
jEj2, (10:3:10)

where n2I, equal to n2/ce0n0 in our notation, has dimensions cm2/W. When the field
frequency is far below resonance frequencies of electronic transitions, n2I is positive,
which is generally the case at optical frequencies.

One consequence of (10.3.10) is immediately obvious. If n2 . 0, the refractive index
is largest where the intensity is largest. A Gaussian laser beam, for example, experiences
the largest refractive index at the center of the beam, and the index monotonically
decreases away from the beam axis (Fig. 10.1). In effect, then, the medium acts as a
(positive) lens tending to focus the beam to a small spot size. Since the beam
itself induces the nonlinear polarization and therefore the focusing, this effect is
called self-focusing.

0 r r 0 

n0 

n(r) 
|e (r)|2

Figure 10.1 Self-focusing. AGaussian beam in a mediumwith refractive index n ¼ n0þ (n2=2)jEj2,
n2 . 0, leads to a refractive-index variation as shown. This index acts to focus the beam.
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To attain a more quantitative understanding of self-focusing, we consider the non-
linear wave equation

r2
TE0 þ 2ik

@E0

@z
þ k2n2

n0
jE0j2E0 ¼ 0 (10:3:11)

that follows from (10.3.5)–(10.3.7) when we define

E(x, y, z) ¼ E0(x, y, z)e
ikz, k ¼ n0v=c, (10:3:12)

and make the familiar approximation that the variation with respect to z of E0 is slow
compared to that of eikz. The term r2

TE0 accounts for diffraction; without it (10.3.11)
describes only plane-wave propagation and cannot account for the decrease in beam
diameter due to self-focusing. If the beam cross section is characterized by some
radius a0, then

r2
TE0 � a�20 E0: (10:3:13)

We expect that self-focusing can competewith diffraction if the last term on the left-hand
side of (10.3.11) is comparable in magnitude to the first, that is, if

k2n2
n0
jE0j2E0 � a�20 E0 (10:3:14)

or

a20jE0j2 � n0
k2n2

: (10:3:15)

Since the beam intensity I ¼ (n0ce0=2)jE0j2, we expect, based on (10.3.15), that a criti-
cal beam power on the order of

(Pwr)cr � (pa20)I ¼
pn0ce0

2
a20jE0j2 ¼ pn0ce0

2
n0
k2n2

¼ ce0l
2

8pn2
¼ l2

8pn0n2I
(10:3:16)

is required for self-focusing to overcome the diffractive spreading of the beam. This
result for (Pwr)cr is in reasonably good agreement with results obtained by numerical
integration of the nonlinear partial differential equation (10.3.11).

Consider as an example the liquid CS2, which has a rather large n2 value around 3.2 �
10214 cm2/W and a linear refractive index n0 ffi 1:6 at a wavelength of 600 nm.1 We
estimate from (10.3.16) a critical power (Pwr)cr � 3 kW. This shows that self-focusing
can occur even at relatively modest beam powers in strongly nonlinear materials. For
fused silica, by contrast, n0 ffi 1:5, n2 ffi 3:2� 10�16 cm2=W, and (Pwr)cr � 0.3 MW,
while for air, n0 ffi 1, n2 ffi 5:0� 10�19 cm2=W, and (Pwr)cr � 300MW.

1R. W. Boyd, Nonlinear Optics, 3rd ed., Academic Press, San Diego, 2008, p. 212.
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Note that it is the beam power that must exceed a certain threshold for self-focusing,
not the beam intensity. Thus, if a beam of a certain power Pwr , (Pwr)cr is focused with
a lens to create a very large intensity, self-focusing will not occur, simply because the
reduction in beam diameter increases the diffractive spreading that must be overcome
to realize net focusing. When self-focusing does occur, it is typical for the beam to
break up into several focal spots or “filaments.” Filamentation is also observed when
there are small-scale transverse intensity ripples on a beam. The ripples produce
small-scale transverse refractive-index variations, or effectively an index “diffraction
grating” n2II(x, y), that enhances filamentation.

In many instances self-focusing does not profoundly alter a particular phenomenon of
interest, but it does significantly modify the predictions of theoretical analyses that
ignore it. For example, self-focusing in liquids can reduce the incident laser intensity
required for stimulated Raman scattering by a factor �100. The large power densities
resulting from self-focusing can also cause optical breakdown and material damage at
lower incident intensities than might otherwise be expected. Self-focusing therefore
sets limitations on the design of various high-power laser systems.

† We now outline an approximate approach to the solution of (10.3.11) that supports the
estimate (10.3.16) for the critical power for self-focusing and also provides an estimate of
the focal length. We begin by writing

E0(r) ¼ A(r)eikS(r), (10:3:17)

where A and S are real functions of r. This approach is used frequently in classical optics; the
function S(r) is called the eikonal, after the Greek word for “image.” Using (10.3.17) in
(10.3.11), we obtain

@A2

@z
þrT � (A2rTS) ¼ 0, (10:3:18a)

2
@S

@z
þ (rTS)

2 ¼ r
2
TA

k2A
þ n2A2

n0
: (10:3:18b)

Assume for A a Gaussian beam form:

A(r) ¼ A0w0

w(z)
e�r

2=w2(z): (10:3:19)

Using this assumption in (10.3.18a), and the replacements rT ! r̂@=@r, r2
T ! @2=@r2þ

(1=r)@=@r in the case of cylindrical symmetry, we obtain for S the equation

@2S

@r2
þ 1

r
1� 4r2

w2

� �
@S

@r
þ 2
w

2r2

w2
� 1

� �
dw

dz
¼ 0: (10:3:20)

It is easily checked that this equation has a solution of the form

S ¼ r2

2w
dw

dz
: (10:3:21)

[Actually we can add to (10.3.21) any function of z and still satisfy (10.3.20), but (10.3.21) is
adequate for our purposes here.] Next we use (10.3.21), together with (10.3.19), in (10.3.18b),
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and the result is the following equation for w(z):

r2
d2w

dz2
¼ 2

k2w

2r2

w2
� 1

� �
þ n2A2

0w
2
0

n0w
e�2r

2=w2
: (10:3:22)

This equation reveals a flaw in the presumption (10.3.19) that a Gaussian wave form is main-
tained during propagation in the nonlinear medium: w is supposed to depend only on z, but
(10.3.22) implies it varies also with r. It turns out that the “aberrationless approximation”
(10.3.19) is valid only near the z axis. Based on this consideration, we write

e�2r
2=w2 � 1� 2r2

w2
(10:3:23)

in (10.3.22), and then equate coefficients of r2 on the two sides of the resulting equation. This
gives the following equation for w:

d2w

dz2
¼ 4=k2 � 2n2A2

0w
2
0=n0

w3
, (10:3:24)

which is consistent with the assumption that w is independent of r. Assuming w ¼ w0 and
dw/dz ¼ 0 at r ¼ 0, we have the following solution to (10.3.20):

w(z) ¼ w0 1� P0

Pcr
� 1

� �
z2

z20

� 1=2
, (10:3:25)

where

(Pwr)0 ¼ 1
4pn0ce0w

2
0A

2
0 (10:3:26)

is the beam power,

(Pwr)cr ¼
ce0l

2

8pn2
, (10:3:27)

and

z0 ¼ kw2
0

2
¼ n0pw2

0

l
: (10:3:28)

From (10.3.25) we see that, for (Pwr)0 
 (Pwr)cr,

w(z) � w0 1þ z2

z20

� �1=2

, (10:3:29)

which corresponds to the growth in spot size of a Gaussian beam, as in Chapter 7. The
critical power (10.3.27) agrees with our rough estimate (10.3.16). For a beam power
(Pwr)0 ¼ (Pwr)cr we see that w(z) ¼ w0, so that diffraction and self-focusing cancel each
other and the beam neither spreads nor focuses as it propagates. This is called self-trapping.
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At a focusing distance

zf ; z0
(Pwr)0
(Pwr)cr

� 1

� �1=2

(10:3:30)

the beam spot size vanishes, w(z) ¼ 0. Of course this cannot occur, for it corresponds to infinite
intensity. In practice, various other nonlinear effects, which are left out of our analysis here, come
into play to prevent the avalanching of self-focusing. These include, for instance, optical break-
down and stimulated Raman and Brillouin scattering. The distance zf is nevertheless a useful
gauge of the distance required for substantial self-focusing. †

A nonlinear refractive index can occur simply because of saturation. Equations
(3.15.9) and (4.11.5), for example, imply that the contribution of an absorption line to
the refractive index is

n(n) ffi 1� l0
4p

n� n0
dn0

a0(n0)

1þ [(n� n0)=dn0]2

þ l0
4p

n� n0
dn0

a0(n0)
In=Isatn0

1þ [(n� n0)=dn0]2
(10:3:31)

to first order in the intensity. Of course, the complete refractive index is obtained
by including the “background” contribution, but it is clear from (10.3.31) that
the index will be of the form (10.3.10) with n2I . 0 for frequencies on the “blue”
side (n . n0) of the absorption resonance. In other words, saturation of anomalous
dispersion can give rise to self-focusing—or self-defocusing if n , n0.

10.4 SELF-PHASE MODULATION

The nonlinear refractive index (10.3.7) has another important consequence. To describe
it we consider Eq. (10.3.11) in the plane-wave approximation (r2

TE ! 0) but
include temporal variations in order to treat the propagation of a pulsed electric
field E(z, t) ¼ E(z, t) exp[�ivt � k(v)z]:

@E
@z
þ 1

c

@E
@t
¼ � 1

2ik
k2n2
n0

� �
jEj2E: (10:4:1)

By writing c instead of the group velocity vg, and neglecting any higher-order deriva-
tives of E(z, t) with respect to time, we are making the simplifying assumption that
the only significant dispersive effect of the medium arises from the nonlinear part of
its refractive index. In terms of the (time-averaged) intensity I and the nonlinear index
n2I, Eq. (10.4.1) is

@E
@z
þ 1

c

@E
@t
� i

v

c
n2I IE ¼ 0, (10:4:2)
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or, in terms of h ¼ z and t ¼ t 2 z/c [cf. (8.4.4)],

@E
@h
� i

v

c
n2I IE0 ¼ 0: (10:4:3)

For our purposes here an approximation to the physics described by (10.4.3) will
suffice. We will assume that the intensity incident on the medium at z ¼ 0 is
Gaussian in time and retains its form for sufficiently small propagation distances in
the medium:

I(h, t) ffi I(0, t) ¼ I0e
�t 2=t 2p : (10:4:4)

Wewill assume furthermore that n2II(0, t) is negligible except near the peak value of the
pulse intensity and approximate (10.4.3) by

@E
@h
� iv

c
n2I I0 1� t 2

t 2p

 !
E ffi 0: (10:4:5)

Then

E(h, t) ffi E0(0, t)e
iu(h)e�if(h,t), (10:4:6)

where u(h) ¼ vn2II0h/c and

f(h, t) ¼ vn2I I0t 2h

ct 2
p

: (10:4:7)

The instantaneous frequency at z of the pulse is

vinst(t) ¼ @

@t
[vtþ f(h, t)] ¼ vþ 2(vz=c)(n2I I0)(t � z=c)

t 2p
, (10:4:8)

which corresponds to a linear chirp as in (8.5.3). In other words, a nonlinear refractive
index n ¼ n0 þ n2II causes chirping. Because this temporal modulation of the phase
depends on the intensity of the pulse itself, it is called self-phase modulation
(or sometimes “self-chirping”), and it is frequently employed to chirp a pulse in order
to subsequently compress it by means of gratings or prisms as discussed in Section 8.4.

Our greatly simplified analysis of self-phase modulation does not by any means
capture all the effects that are possible when a pulse propagates in a material. More
realistic analyses—often based on numerical methods such as those described in the
Appendices—proceed from nonlinear partial differential equations that are more
complicated than (10.4.3). If, for example, we allow for transverse spatial variations
of a pulse in the paraxial approximation, and for group velocity dispersion, the appro-
priate equation for E(x, y, z, t) is (Problem 10.2)

1
2ik
r2

TE þ
@E
@h
þ i

2
b
@2E
@t2
� iv

2c
n2jEj2E ¼ 0, (10:4:9)
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where h ¼ z, t ¼ t – z/vg, and b ¼ (d/dv)(1/vg). Analyses of this equation predict
temporal solitons such that the effects of group velocity dispersion and self-phase
modulation cancel each other, and spatial solitons in which self-focusing cancels the
effect of diffraction. Both types of soliton have been observed.

The dimensionless B parameter (or “B integral”),

B ¼ 2p
l

ð
n2I I dz, (10:4:10)

is often used as a measure of the strength of nonlinear effects due to n2I. Field intensities,
propagation distances, and values of n2I such that B�.1 are generally found to result in
significant nonlinear effects, including self-focusing and self-phase modulation.

10.5 SECOND-HARMONIC GENERATION

As we have seen in the example of self-focusing, it is straightforward to obtain a wave
equation for the electric field produced by a nonlinear polarization. We will now do this
for second-harmonic generation. In this example a field of frequency v is incident on a
(noncentrosymmetric) medium and produces a nonlinear polarization at the frequency
2v, which in turn acts as the source of a field at 2v.

We start with the scalar wave equation (8.2.15) for a single component E of the
electric field:

r2E � 1
c2
@2E

@t2
¼ m0

@2P

@t2
: (10:5:1)

For simplicity, we will make the plane-wave and monochromatic approximations and
write the second-harmonic field as

E ¼ 1
2

h
E2v(z)e

�i(2vt�k2vz) þ E�2v(z)ei(2vt�k2vz)
i
, (10:5:2)

where k2v ¼ n(2v)(2v/c), n(2v) being the refractive index of the medium for radiation
of frequency 2v. Assuming E2v(z) to be slowly varying in z compared to exp(ik2vz), we
make the familiar approximation

r2E ¼ d2E

dz2
� 1

2
2ik2v

dE2v

dz
� k22vE2v

� �
e�i(2vt�k2vz) þ c:c:, (10:5:3)

which, together with

1
c2
@2E

@t2
¼ � 2v2

c2
[E2ve

�i(2vt�k2vz) þ c:c:], (10:5:4)

gives the left-hand side of (10.5.1):

r2E � 1
c2
@2E

@t2
� ik2v

dE2v

dz
� 1

2 k22v �
4v2

c2

� �
E2v

� 
e�i(2vt�k2vz) þ c:c: (10:5:5)

for the second-harmonic field (10.5.2).
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The right-hand side of (10.5.1) has both linear and nonlinear contributions at
frequency 2v:

P ¼ 1
2

h
P(L)

2ve
�i(2vt�k2vz) þ P(NL)

2v e�2i(vt�kvz) þ c:c:
i
, (10:5:6)

so that

m0
@2P

@t2
¼ �2m0v

2
h
P(L)

2ve
�i(2vt�k2vz) þ P(NL)

2v e�2i(vt�kvz) þ c:c:
i
: (10:5:7)

Combining this with (10.5.5) and (10.5.1), we obtain

ik2v
dE2v

dz
� 1
2

k22v �
4v2

c2

� �
E2v

� 
e�i(2vt�k2vz) ¼�2m0v

2P(L)
2ve
�i(2vt�k2vz)

�2m0v
2P(NL)

2v e�2i(vt�kvz): (10:5:8)

Now P(L)
2v ¼ e0x(2v)E2v and

k22v ¼ (2v)2e2vm0 ¼
4v2

c2

� �
n2(2v) ¼ 4v2

c2
[1þ x(2v)], (10:5:9)

where x(2v) is the linear susceptibility for frequency 2v, taken to be real because we are
assuming that absorption and other loss processes are negligible. The use of these
relations in (10.5.8) results in the equation

ik2v
dE2v

dz
e�i(2vt�k2vz) ¼ �2m0v

2P(NL)
2v e�2i(vt�kvz), (10:5:10)

or

dE2v

dz
¼ iv

ffiffiffiffiffiffiffi
m0

e2v

r
P(NL)

2v ei(2kv�k2v)z (10:5:11)

relating the second-harmonic field to the nonlinear polarization. Finally, it is convenient
to define a quantity �d by writing [(10.2.16)]2

P(NL)(2v) ¼ 1
2e0x(�2v, v, v)E2(v) ; dE2

v(z): (10:5:12)

Then (10.5.11) becomes

dE2v

dz
¼ iv

ffiffiffiffiffiffiffi
m0

e2v

r
�dE2

v(z)e
iDkz, (10:5:13)

2Sometimes �d is defined by writing P(NL)(2v) ¼ e0�dE2
v; then �d is typically expressed in pm/V (picometers

per volt). This definition is employed, for instance, in F. Zernike and J. E. Midwinter, Applied Nonlinear
Optics, Wiley, New York, 1973. Our definition follows that of A. Yariv, Quantum Electronics, 2nd ed.,
Wiley, New York, 1975. Further discussion of properties of the nonlinear susceptibility, and tabulations
of �d for various crystals, may be found in these books.
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where

Dk ¼ 2kv � k2v ¼ 2v
c
[n(v)� n(2v)]: (10:5:14)

To solve (10.5.13) for the second-harmonic field amplitude E2v(z), we must know
Ev(z). In the simplest situation there is little attenuation of the fundamental (frequency
v) wave, and we make the approximation that Ev is a constant:

Ev(z) � Ev(0): (10:5:15)

In this approximation

E2v(z) � iv

ffiffiffiffiffiffiffi
m0

e2v

r
�dE2

v(0)
ðz
0
eiDkz

0
dz0 ¼ iv

ffiffiffiffiffiffiffi
m0

e2v

r
�dE2

v(0)
1

iDk
[eiDkz � 1]

� �
: (10:5:16)

Using

1
iDk

[eiDkz � 1] ¼ eiDkz=2

iDk
eiDkz=2 � e�iDkz=2
h i

¼ zeiDkz=2
sin 1

2Dk z
1
2Dk z

 !
, (10:5:17)

wewrite the solution (10.5.16) for the second-harmonic field, in the approximation of an
unattenuated fundamental wave, as

E2v(z) � iv

ffiffiffiffiffiffiffi
m0

e2v

r
�dE2

v(0)ze
iDkz=2 sin 1

2Dk z
1
2Dk z

 !
: (10:5:18)

The first observation in the 1960s of various nonlinear optical effects followed
quickly after the first successful laser operation; second-harmonic generation was
reported in 1961. Light from a ruby laser (l ¼ 694.3 nm) incident on a quartz crystal
caused ultraviolet light at half the wavelength of the laser radiation to be generated
(Fig. 10.2). Frequency doublers, acting like this quartz crystal, are now widely used.

Suppose the nonlinear crystal indicated in Fig. 10.2 has length L. The second-
harmonic electric field at the exit face of the crystal is then given by (10.5.18) with

Laser
Nonlinear

crystal
w

2w
2w

Photocell

w

UV
Transmitting

filter

Figure 10.2 Schematic experimental arrangement for detection of second-harmonic generation.
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z ¼ L, and so

jE2v(L)j2 ¼ m0v
2�d

2

e2v
jEv(0)j4L2

sin 1
2Dk L

1
2Dk L

 !2
: (10:5:19)

The (time-averaged) intensities of the fields at v and 2v are

Iv ¼ 1
2

ffiffiffiffiffiffi
ev
m0

r
jEvj2, I2v ¼ 1

2

ffiffiffiffiffiffiffi
e2v
m0

r
jE2vj2: (10:5:20)

It follows from (10.5.19) that

I2v(L) ¼ 2m3=2
0

ev
ffiffiffiffiffiffiffi
e2v
p v2�d

2
I2v(0)L

2 sin 1
2Dk L

1
2Dk L

 !2

¼ 2
m0

e0

� �3=2 v2�d
2

n2(v)n(2v)
I2v(0)L

2 sin 1
2Dk L

1
2Dk L

 !2
: (10:5:21)

From this we have the power conversion efficiency eSHG for second-harmonic gener-
ation:

eSHG ¼ I2v(L)
Iv(0)

¼ 2
m0

e0

� �3=2 v2�d
2

n2(v)n(2v)
Iv(0)L

2 sin 1
2Dk L

1
2Dk L

 !2
: (10:5:22)

If it happens that n(v) ¼ n(2v), then Dk ¼ 0 [Eq. (10.5.14)] and therefore

sin 1
2Dk L

1
2Dk L

 !2
�! lim

x!0

sin2 x
x2
¼ 1 (10:5:23)

and

eSHG ¼ 2
m0

e0

� �3=2v2�d
2

n3
Iv(0)L

2, (10:5:24)

where n ¼ n(v) ¼ n(2v).
As an example, consider second-harmonic generation of 347.1-nm radiation in a

quartz crystal irradiated by a Q-switched ruby laser. For quartz �d � 4� 10�24 (mks
units), and n � 1.5. Assuming Iv � 108W/cm2 and L ¼ 1 cm, we compute from
(10.5.24) the power conversion efficiency (Problem 10.3)

eSHG � 37%: (10:5:25)
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This rough estimate is misleading in two respects. First, the second-harmonic gener-
ation of 347.1-nm radiation occurs at the expense of the ruby laser radiation. That is, the
laser radiation is converted to second-harmonic radiation, and for a conversion effi-
ciency as large as (10.5.25) the approximation of no conversion of the fundamental
wave is a poor one. Indeed, by taking L large enough in (10.5.24), we would predict
eSHG . 100%, in violation of energy conservation. In other words, the formula
(10.5.24) applies only if eSHG is small; otherwise we have to go beyond the approxi-
mation (10.5.15) and include the depletion of the pump radiation as it is converted to
the second harmonic. In such a more accurate analysis there are two equations of the
type (10.5.13) coupling Ev(z) and E2v(z) (Section 10.7).

But there is a more serious shortcoming of the computation leading to (10.5.25),
namely, the assumption that Dk ¼ 0. For quartz we have n(694 nm) � 1.54 and
n(347 nm) � 1.57. Then, from (10.5.14) (Problem 10.3),

Dk � 5:4� 105 m�1 (10:5:26)

and

Dk L � 5:4� 103 (10:5:27)

for L ¼ 1 cm. Therefore, the last factor in (10.5.22) is

sin2 1
2Dk L

(12Dk L)
2 �

sin2 2700

(2700)2
� 10�7: (10:5:28)

The conversion efficiency (10.5.25) obtained using (10.5.23) is replaced by

eSHG � (37%)(10�7) � 4 � 10�8, (10:5:29)

a far cry from (10.5.25)! The principle at work here is phase matching, or mismatching
in this case. Phase matching is extremely important in nonlinear optics, and we devote
the next section to it.

10.6 PHASE MATCHING

The dimensionless number DkL in (10.5.27), for example, determines the phase mis-
matching factor exp(2ikvL 2 ik2vL) between the fundamental and second-harmonic
waves over the distance z ¼ L. It comes from a difference in the indices of refraction
for these two frequencies. Our rough estimate of the power conversion efficiency
eSHG for ruby laser radiation in quartz indicates that a phase mismatch can be a strongly
negative effect in harmonic generation. Indeed, our estimate of eSHG is consistent with
the very weak second-harmonic signals observed in early experimental studies of
second-harmonic generation. Efficient second-harmonic generation requires the pump
and second-harmonic fields to somehow be phase matched.
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The reason for the phase difference Dk L between the pump and second-harmonic
fields is simple: the second-harmonic field propagates with the phase velocity c/
n(2v), whereas (10.5.6) shows that its nonlinear polarization source has phase velocity
c/n(v). Because of this difference, the two fields get out of step with each other. Since
the medium will only allow the second-harmonic field to have phase velocity c/n(2v),
there is a reduction in second-harmonic generation determined by n(2v) 2 n(v), and
this reduction is expressed quantitatively by the factor (sin2 1

2Dk L)=(
1
2Dk L)

2.
The function sin2 x/x2 is plotted in Fig. 10.3. At x ¼ p/2 this function drops to about

40% of its peak value at x ¼ 0; we define a distance Lc, called the coherence length,
3 by

1
2jDkjLc ¼ p=2, or

Lc ¼ p

Dk

��� ���: (10:6:1)

Lc is the distance over which there is significant generation of the second harmonic. If
there is perfect phase matching, Lc is effectively infinite, and eSHG increases as the
square of the length L of the crystal, as indicated in Eq. (10.5.24), until the depletion
of the pump field becomes important. When phase matching is not realized, however,
only the coherence length Lc determines the conversion efficiency—increasing L
beyond Lc does no good. Without some method of phase matching the pump and
second-harmonic fields, the coherence length is usually small, typically on the order
of 10mm. Figure 10.4 shows experimental data verifying the variation of eSHG with
Dk L according to the function sin2 (12Dk L)=(

1
2Dk L)

2.
There are various techniques for phase matching the pump and second-harmonic

fields, i.e., for making jDkj as small as possible. One common method employs the bire-
fringence of uniaxial crystals used for second-harmonic generation. We will focus on
this method, which is sometimes called “angle phase matching” for reasons that will
become clear.

1.0
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G
 (

L) L C = p
Δk

4p–
Δk

2p–
Δk

0
L

2p
Δk

4p
Δk

Figure 10.3 The function G(L) ¼ sin2 aL/(aL)2, where a ¼ Dk/2. The phase-matching coherence
length Lc is indicated.

3There should be no confusion between this coherence length and the coherence length introduced in
Chapter 13.

476 INTRODUCTION TO NONLINEAR OPTICS



As discussed in Sections 5.12 and 8.8, a birefringent, or doubly refracting material
is one in which the refractive index depends upon the direction of polarization of a
light wave. Only two types of wave can propagate in a uniaxial birefringent crystal:
(a) “ordinary” waves plane polarized perpendicular to the plane formed by the optic
axis and the direction of propagation and (b) “extraordinary” waves polarized parallel
to this plane. The crystal has different refractive indices for ordinary and extraordinary
waves.

The refractive index for ordinary waves is denoted no. The refractive index ne of an
extraordinary wave depends upon its angle of propagation u relative to the optic axis.
Recall Eq. (8.8.23):

1
n2e(v, u)

¼ cos2u
n2o(v)

þ sin2u
n2e(v)

, (10:6:2)

where ne(v) ¼ ne(v, u ¼ p/2). This angular dependence of the extraordinary index is
the key to angle phase matching.

Consider a positive uniaxial crystal, that is, a birefringent crystal for which ne(v) .
no(v). (Recall Problem 8.8.) For such a crystal we can phase-match the pump and
second-harmonic waves by letting the pump wave of frequency v be an extraordinary
wave propagating at an angle up to the optic axis, while the second-harmonic wave of
frequency 2v is an ordinary wave propagating in this direction. Phase matching is
achieved if up is chosen such that

no(2v) ¼ ne(v, up), (10:6:3)

or

1
n2o(2v)

¼ 1
n2e(v, up)

¼ cos2up
n2o(v)

þ sin2up
n2e(v)

: (10:6:4)
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Figure 10.4 Variation of second-harmonic power with c ¼ 1
2Dk L, as measured for 1.15-mm pump

radiation in the crystal KDP. [From A. Ashkin, G. D. Boyd, and J. M. Dziedzic, Physical Review
Letters 11, 14 (1963).]
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The solution of this equation for sin2up is

sin2up ¼ no(v)�2 � no(2v)�2

no(v)�2 � ne(v)�2
: (10:6:5)

Assuming the crystal to be normally dispersive [i.e., no(2v) . no(v) and therefore
no(v)

22 2 no(2v)
22 . 0], we see that ne(v) . no(v) is necessary in order to satisfy

the requirement that sin2up . 0, and furthermore

no(v)
�2 � no(2v)

�2 < no(v)
�2 � ne(v)

�2, (10:6:6)

or

ne(v) . no(2v) (positive uniaxial crystal) (10:6:7)

is necessary for sin2up , 1. In other words, this method of phase matching can be used
in a positive uniaxial crystal when (10.6.7) is satisfied, since no(2v) . no(v) and
(10.6.7) together imply ne(v) . no(v), as required above. Problem 10.4 concerns the
possibility of angle phase-matched second-harmonic generation when 694.3-nm ruby
laser radiation is incident on a quartz crystal.

In practice, the pump wave is sent into the crystal as an extraordinary wave at the
angle up to the optic axis. Then the second-harmonic wave is automatically generated
as an ordinary wave propagating in the direction up because this is the only direction
and polarization for which there is phase matching and substantial second-harmonic
generation.

For a negative uniaxial crystal [ne(v) , no(v)] the situation is reversed: The angle
between the pump and second-harmonic waves is (Problem 10.5)

sin2up ¼ no(v)�2 � no(2v)�2

ne(2v)�2 � no(2v)�2
, (10:6:8)

and phase matching can be achieved if

ne(2v) , no(v) (negative uniaxial crystal): (10:6:9)

Consider the example of second-harmonic generation when 694.3-nm radiation is
incident on the negative uniaxial crystal KDP (potassium dihydrogen phosphate,
KH2PO4). For this crystal no(v) ¼ 1.505, no(2v) ¼ 1.534, ne(v) ¼ 1.465, and
n2(2v) ¼ 1.487. Thus (10.6.9) is satisfied and angle phase matching is achieved with
the incident laser beam linearly polarized as an ordinary wave incident at the angle up
given by (10.6.8):

sin2up ¼ 0:606, up ¼ 518: (10:6:10)

Phase-matched second-harmonic generation can also be realized using two incident
fields of frequency v, one polarized as an ordinary wave and the other as an
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extraordinary wave. When the two incident fields have the same polarization, the phase
matching is said to be type I phase matching; when one is ordinary and the other extra-
ordinary, the phase matching is said to be type II.

As we have seen, very high pump-to-second-harmonic conversion efficiencies can be
predicted under phase-matched conditions. Under such conditions pump depletion
accompanying harmonic generation must be included in a detailed analysis.

† Equation (10.5.24) indicates that the power conversion efficiency for second-harmonic gen-
eration is proportional to the pump intensity. High conversion efficiencies in most instances
require the high peak intensities available only from pulsed lasers. However, it is desirable for
some purposes to generate a cw second-harmonic field. One way to do this is by intracavity
second-harmonic generation, that is, by inserting a nonlinear crystal inside the cavity of a cw
laser (Fig. 10.5). The basic advantage of this technique is that it exposes the crystal to a cw
pump field of much greater intensity than can be obtained outside the laser in ordinary (extracav-
ity) second-harmonic generation. We recall from Chapter 5 that the output intensity of a laser is
typically only a small fraction of the intracavity intensity.

In Fig. 10.5 the output mirror of the laser is replaced by one that is perfectly reflecting at the
laser frequency v, but perfectly transmitting at the second-harmonic frequency 2v. The principal
loss mechanism for the intracavity laser field is then its conversion to the second harmonic inside
the nonlinear crystal. The optic axis of the crystal is oriented at the appropriate phase-matching
angle up.

Suppose that the power conversion efficiency for second-harmonic generation inside the crys-
tal can be made equal to the optimal output coupling for the laser without the intracavity crystal.
With the crystal in place the loss—due now to second-harmonic generation—is still optimal for
the laser. In this case we still extract the maximum possible power from the laser, but now this
power is at the second-harmonic frequency.

In practice, however, other effects conspire to reduce the second-harmonic output power. The
insertion of the nonlinear crystal in the laser represents an additional loss mechanism because of
scattering, and so crystals of high optical quality are needed to keep this loss small. Furthermore
the crystal may be slightly absorbing at v and 2v, thus raising its temperature. The refractive indices
no and ne of the crystal often vary appreciably with temperature, so that even a small temperature rise
might seriously reduce the phase matching. Commercial cw intracavity doubling systems, such as a
Nd–YAG laser with an insertable lithium iodate (LiIO3) crystal, can nevertheless have conversion
efficiencies of 10% or more. †

Another common way of phase matching is based on “periodically poled” structures
in which the orientation of a crystal axis is varied periodically in such a way that the sign
of the coefficient �d changes periodically with position. The essence of this quasi-phase-
matching in the case of second-harmonic generation, for example, can be understood
from the Eq. (10.5.13) describing the generation of the second-harmonic field.
Suppose we make the approximation (10.5.16) of no pump depletion and assume for

Gain
medium

Nonlinear
crystal

2w 2w

w

rw = r2w = 1 rw = 1, r2w = 0

Figure 10.5 Intracavity second-harmonic generation.

10.6 PHASE MATCHING 479



definiteness that Dk. 0, so that the coherence length Lc ¼ p/Dk. The second-harmonic
field at z ¼ 2Lc, for instance, is found from (10.5.13) to be

E2v(2Lc) ¼ iv

ffiffiffiffiffiffiffi
m0

e2v

r
�dE2

v(0)
ð2Lc
0
dzeipz=Lc ¼ v

p

ffiffiffiffiffiffiffi
m0

e2v

r
�dE2

v(0)Lc(e
2pi�1)

¼ 0, (10:6:11)

whereas at z ¼ Lc,

E2v(Lc) ¼ iv

ffiffiffiffiffiffiffi
m0

e2v

r
�dE2

v(0)
ðLc
0
dzeipz=Lc ¼ v

p

ffiffiffiffiffiffiffi
m0

e2v

r
�dE2

v(0)Lc(e
ip � 1)

¼ � 2v
p

ffiffiffiffiffiffiffi
m0

e2v

r
�dE2

v(0)Lc: (10:6:12)

We noted earlier that, without phase matching (Dk=0), increasing the crystal length
beyond Lc does not increase the second-harmonic conversion efficiency; (10.6.11)
and (10.6.12) show in particular that E2v(z) decreases from a finite value at z ¼ Lc to
zero at z ¼ 2Lc. But suppose now that the nonlinear coefficient changes from �d for
0 	 z 	 Lc to a different value �d0 for Lc, z 	 2Lc. In this case (10.5.13) in the approxi-
mation of no pump depletion gives

E2v(2Lc) ¼ � 2v
p

ffiffiffiffiffiffiffi
m0

e2v

r
(�d � �d0)E2

v(0)Lc, (10:6:13)

and, if �d0 ¼ ��d, E2v(2Lc) ¼ 2E2v(Lc). If the sign of �d is periodically switched in this
manner the second-harmonic field increases monotonicallywith z; the period for switch-
ing the sign of �d for this quasi-phase-matching is twice the coherence length Lc.

Periodically poled lithium niobate (PPLN) has been found to be very useful for quasi-
phase-matching. LiNO3 is ferroelectric: each unit cell of the crystal has a small electric
dipole moment, and an applied electric field can change the orientation of these dipole
moments. A very strong field (�22 kV/mm) applied for a few milliseconds can invert
the dipole moments, and if such fields are applied in equally spaced sections along some
(z) direction they result in a periodically “poled” material in which the electric dipole
moment and therefore the sign of the nonlinear coefficient varies periodically. The required
electric fields are produced by applying appropriate voltages to a periodic electrode struc-
ture. As noted earlier, coherence lengths are usually very small, and therefore the spatial
periodicity in PPLN is small. For frequency doubling of 1.06-mm radiation, for example,
the poling period required for quasi-phase-matched generation of 0.53mmradiation is only
about 6.6 mm at room temperature.

10.7 THREE-WAVE MIXING

In the more general case of three-wave mixing we can derive coupled wave equations for
the complex amplitudes E1, E2, and E3 of thewaves atv1,v2, andv3, respectively. Since
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the derivation is straightforward we simply write these equations:

dE1

dz
¼ iv1

ffiffiffiffiffiffi
m0

e1

r
�dE�2 E3e

�iDkz, (10:7:1a)

dE2

dz
¼ iv2

ffiffiffiffiffiffi
m0

e2

r
�dE�1 E3e

�iDkz, (10:7:1b)

dE3

dz
¼ iv3

ffiffiffiffiffiffi
m0

e3

r
�dE1 E2e

iDkz, (10:7:1c)

with v3 ¼ v1 þ v2 and

Dk ¼ k1 þ k2 � k3 kj ¼ n(vj)
vj

c

h i
, (10:7:2)

ej ¼ e0n
2(vj) ¼ e0n

2
j : (10:7:3)

Equations (10.7.1) couple the three wave amplitudes E1, E2, and E3. That is, they
describe the coupling, or mixing, of three waves. Nonlinear optical processes described
by equations like (10.7.1) are thus examples of three-wave mixing, second-harmonic
generation being a special example. Note that �d ¼ 1

2 e0x (�v1,�v2,v3) in (10.7.1a),
�d ¼ 1

2 e0x (�v2,�v1,v3) in (10.7.1b), and �d ¼ 1
2 e0x (�v3,v1,v2) in (10.7.1c); in writing

Eqs. (10.7.1) we have used the assumption, discussed in Section 10.2, that the nonlinear
susceptibilities are independent of the frequencies v1, v2, and v3.

Difference-frequency generation, in which two waves mix to produce radiation at
their difference frequency, is also described by the coupled wave equations (10.7.1).
For instance, according to (10.7.1b) we can use pump radiation atv3 and signal radiation
at v1 to generate an idler field at v2. Or we can mix a field at v2 with the pump at v3 to
generate a field atv1; in this case the field atv2 is called the signal and that atv1 the idler.
What is conventionally called the idler or the signal wave depends on the initial
conditions.

From (10.7.1) it follows that (Problem 10.6)

1
v1

d

dz

ffiffiffiffiffiffi
e1
m0

r
jE1j2

� �
¼ 1

v2

d

dz

ffiffiffiffiffiffi
e2
m0

r
jE2j2

� �
¼ � 1

v3

d

dz

ffiffiffiffiffiffi
e3
m0

r
jE3j2

� �
: (10:7:4a)

In other words, for any three-wave mixing process with v3 ¼ v1þv2 we have [recall
(10.5.20)]

1
v1

(rate of change of energy at v1)¼ 1
v2

(rate of change of energy at v2)

¼� 1
v3

(rate of change of energy at v3): (10:7:4b)
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Such equations are called Manley–Rowe relations, and they have a remarkably simple
interpretation in terms of photons: Each of the equal terms in these equations represents
the rate of change of the number of photons at the corresponding frequency, so that the
creation of a photon at v3 in sum-frequency generation, for instance, is accompanied by
the annihilation of a photon at v1 and a photon at v2.

The coupledwave equations for second-harmonic generation are found similarly to be

dEv
dz
¼ iv

ffiffiffiffiffiffi
m0

ev

r
�dE�v E2ve

iDkz, (10:7:5a)

dE2v

dz
¼ iv

ffiffiffiffiffiffiffi
m0

e2v

r
�dE2

v e
�iDkz, (10:7:5b)

where Dk is defined by (10.5.14). When we neglect pump depletion in second-harmonic
generation, we are simply ignoring (10.7.5a) and replacing Ev by a constant value in
(10.7.5b). The analysis reduces in this case to that following (10.5.15).

Second-harmonic generation is, of course, just the degenerate case of sum-frequency
generation withv1 ¼ v2 ¼ v andv3 ¼2v. Note, however, that (10.7.5) does not follow
from (10.7.1) by simply letting v1 ¼ v2 ¼ v, E1 ¼ E2 ¼ Ev, and E3 ¼ E2v in the latter.
In particular, (10.7.5b) differs from (10.7.1c), when these (improper) substitutions are
made, by a factor 1

2. This difference has already been discussed in Section 10.2. It can
also be appreciated from a different point of view: from (10.7.5) we obtain the
Manley–Rowe relation

1
v

d

dz

ffiffiffiffiffiffi
ev
m0

r
jEvj2

� �
¼ �2 1

2v
d

dz

ffiffiffiffiffiffiffi
e2v
m0

r
jE2vj2

� �
: (10:7:6)

We can interpret this as saying that two photons from the field at v are annihilated to
produce one photon at 2v in second-harmonic generation. This correct interpretation,
however, does not follow from the Manley–Rowe relation (10.7.4) with v1 ¼ v2 ¼
v, v3 ¼ 2v.

10.8 PARAMETRIC AMPLIFICATION AND OSCILLATION

Consider the implication of the Manley–Rowe relation (10.7.4) for difference-fre-
quency generation of light at v3 2 v1 ¼ v2. In this process waves of frequency v3

(the pump) and v1 (the signal) mix to produce a wave at the idler frequency v2.
According to (10.7.4), the decrease in power at v3 is accompanied by an increase in
power at both v1 and v2. This amplification of light at v1 and v2 in the presence of
light at v3 is called parametric amplification. In the “degenerate” case in which v1 ¼
v2 ¼ v3/2, the process is essentially just the inverse of second-harmonic oscillation:
Instead of generating the second-harmonic frequency 2v at the expense of a pump
field at the fundamental frequency v, the frequency v is generated at the expense of a
pump field at frequency 2v.

482 INTRODUCTION TO NONLINEAR OPTICS



Parametric amplification is described by the coupled wave equations (10.7.1). Let
us assume that the pump wave at v3 is approximately undepleted, so that
E3(0) E3(0); this is a good approximation under the common circumstance that the rela-
tive power converted to v1 and v2 is small. Then (10.7.1a) and (10.7.1b) give

dE1

dz
¼ i v1

ffiffiffiffiffiffi
m0

e1

r
�dE3(0)

� 
E�2(z) ¼ i

ffiffiffiffiffiffi
v1

v2

r
b1E�2(z), (10:8:1a)

dE�2
dz
¼ �i v2

ffiffiffiffiffiffi
m0

e2

r
�dE�3(0)

� 
E1(z) ¼ �i

ffiffiffiffiffiffi
v2

v1

r
b�2E1(z), (10:8:1b)

where

bi ¼ v1v2
m0

ei

� �� 1=2
�dE3(0), i ¼ 1, 2: (10:8:2)

In writing (10.8.1) we have assumed perfect phase matching, Dk ¼ 0, for simplicity;
(10.8.1b) is obtained from the complex conjugate of (10.7.1b). We now differentiate
(10.8.1a) and use (10.8.1b):

d2E1

dz2
¼ i

ffiffiffiffiffiffi
v1

v2

r
b1

dE�2
dz
¼ i

ffiffiffiffiffiffi
v1

v2

r
b1 �i

ffiffiffiffiffiffi
v2

v1

r
b�2E1

� �
¼ K2E1, (10:8:3a)

where

K ¼ v1v2

n1n2

m0

e0

� �1=2
�djE3(0)j: (10:8:3b)

Similarly we obtain

d2E2

dz2
¼ K2E2: (10:8:4)

The uncoupled equations (10.8.3) and (10.8.4) may be solved in terms of the fields
E1(0) and E2(0) at the input face z ¼ 0 of the nonlinear medium:

E1(z) ¼ E1(0) coshKzþ i

ffiffiffiffiffiffi
v1

v2

r
E�2(0) sinhKz, (10:8:5a)

E2(z) ¼ E2(0) coshKzþ i

ffiffiffiffiffiffi
v2

v1

r
E�1(0) sinhKz, (10:8:5b)

and we recall that

cosh x ¼ 1
2(e

x þ e�x), sinh x ¼ 1
2(e

x � e�x): (10:8:5c)

If we imagine injecting into the nonlinear medium a pump wave at v3 and a signal
wave at v1, then E2(0) ¼ 0, i.e., there is no idler wave at the input face of the
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medium. In this case the solutions (10.8.5) imply

jE1(z)j2 ¼ jE1(0)j2 cosh2 Kz, (10:8:6a)

jE2(z)j2 ¼ v2

v1
jE1(0)j2 sinh2 Kz: (10:8:6b)

In the limit Kz
 1 these solutions reduce to

jE1(z)j2 � jE1(0)j2(1þ K2z2), (10:8:7a)

jE2(z)j2 � v2

v1
jE1(0)j2K2z2: (10:8:7b)

Let us consider a numerical example to see what to expect for Kz. For the crystal
LiNbO3 (lithium niobate), we assume �d � 4� 10�23 (mks units) and n1 � n2 � n3 �
1.5 when the pump is an Nd–YAG laser (l ¼ 1.06mm) and the signal and idler are
each at half the pump frequency. We compute (Problem 10.6)

K � 2� 10�4
ffiffiffiffiffiffiffiffiffi
I3(0)

p
cm�1, (10:8:8)

where I3(0) is the pump intensity in units ofW/cm2. If, for example, I3(0) ¼ 1MW/cm2

and z ¼ 1 cm, Kz � 0.2. This example suggests that the limiting forms (10.8.7) will be
applicable in many circumstances.

Thus far we have assumed perfect phase matching. Without phase matching, and
assuming again that E3(z) � E3(0) and Kz
 1 and also that b1 � b2, we obtain

jE1(z)j2 � jE1(0)j2 1þ (Kz)2
sin2 1

2Dk z
1
2Dk z
� �2

 !
, (10:8:9a)

jE2(z)j2 � v2

v1
(Kz)2jE1(0)j2

sin2 1
2Dk z

1
2Dk z
� �2 , (10:8:9b)

where Dk is defined by (10.7.2). For D k ! 0, these results reduce, as they should, to
Eqs. (10.8.7), obtained under the assumption of perfect phase matching. The effect of

phase matching is thus to introduce a factor sin2 1
2Dk z

� �
= 1

2Dk z
� �2

, just as in second-
harmonic generation. Now, however, Dk is given by (10.7.2) rather than (10.5.14).
When v1 ¼ v2 ¼ v3/2, as in second-harmonic generation or degenerate parametric
amplification, the two expressions for Dk are identical.

The problem of phase matching in parametric amplification is basically the same as in
second-harmonic generation. For instance, we can have angle phase matching in para-
metric amplification in a negative uniaxial crystal by propagating the pump as an ordin-
ary wave and the signal and idler as extraordinary waves.

† Parametric amplification is a general phenomenon. A mechanical example of degenerate
parametric amplification is provided by the playground swing. A swinger pumps the swing by
raising and lowering her center of gravity as she tucks her legs in or extends them. The swing
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is optimally pumped when the pumping frequency is twice the swing oscillation frequency. By
parametric amplification, energy is being fed from the pump at frequency 2v to the swing oscil-
lation at v.

The parametric resonance principle was well known to 19th-century physicists. Lord
Rayleigh, for instance, noted several examples, including a pendulum whose point of support
vibrates vertically at twice the natural pendulum frequency. Such parametric resonance phenom-
ena are often described by an equation of the type

€xþ v2(t)x ¼ 0, (10:8:10)

where the frequency v(t) varies in time according to the formula

v2(t) ¼ v2
0(1þ 1 cosv 0t), (10:8:11)

with 1 small compared to 1. Parametric amplification occurs for v 0 ¼ 2v0, as may be shown
either by perturbation theory or by a numerical solution of the differential equation (10.8.10).
Similar equations are encountered in electronic parametric processes when a circuit parameter
(e.g., capacitance) is made to vary sinusoidally. †

Suppose the signal and idler waves in parametric amplification are propagating back
and forth within a resonator containing the nonlinear medium. Because of this feedback,
parametric oscillation is possible by balancing the amplification against transmission
loss and whatever other attenuation processes are at work. Figure 10.6 illustrates the
design of an optical parametric oscillator (OPO). The laser oscillator puts out a beam
at frequency v3, which is focused onto a nonlinear crystal. The crystal is contained in
a cavity with mirrors that are transparent to radiation of frequency v3, but one of the mir-
rors allows a small fraction of light at v1 and v2 incident upon it to be transmitted as the
output of the parametric oscillator. The waves at v1 and v2 bounce back and forth inside
this cavity, undergoing parametric amplification in the crystal. A variation of the crystal
orientation and therefore the phase-matching angle will result in a change in the frequen-
ciesv1 andv2 at which parametric oscillation occurs. In this way the output wavelengths
of parametric oscillators can be continuously varied or “tuned” over a fairly large range to
obtain some particular wavelength.

Parametric oscillation is similar to laser oscillation. In a medium with population
inversion and gain over some range of frequencies, there is amplification of an injected
signal. If the signal is continually fed back into the gain medium by using a resonator
supporting modes within the gain bandwidth, sustained laser oscillation is possible
when the small-signal gain exceeds the loss. In the parametric oscillator, however, no
population inversion is needed: The signal and idler are amplified at the expense of
the energy in the pump wave rather than energy stored in the form of molecular
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Figure 10.6 Schematic layout of a parametric oscillator with pump frequency v3 ¼ v1 þ v2.

10.8 PARAMETRIC AMPLIFICATION AND OSCILLATION 485



excitation in the nonlinear medium; the medium serves only to mix the pump, signal, and
idler waves. Nevertheless, as in the laser, there is a threshold condition for oscillation.
This threshold condition for parametric oscillation is for the pump intensity to exceed
a certain level (Problem 10.7).

In parametric amplificationwe require, in addition to the pumpwave, either the signal or
idler (or both) to have some initial energy. This is evident, for instance, in (10.8.5). Where
does the initial signal or idler energy come from in a parametric oscillator such as that
sketched in Fig. 10.6? This is quite analogous to asking where the “initial photon”
comes from in a laser oscillator, and the answer is the same: The initial radiation triggering
the parametric oscillation comes from spontaneous emission. This is not “ordinary” spon-
taneous emission, however, in which a molecule drops from an excited energy level to a
lower one with the emission of a photon. Rather, it is parametric fluorescence, in which
a nonlinear crystal exposed to radiation of frequency v3 can emit two photons at v1 and
v2, such that v1þv2 ¼ v3. The crystal has, loosely speaking, acted to split the incident
photon into two outgoing photons; this is discussed further in the following section.
Parametric amplification is basically just a stimulated emission of the two photons in the
presence of a signal photon.

† Simultaneous parametric oscillation at v1 and v2 requires that both frequencies be resonant
frequencies of the OPO cavity:

v1 ¼ m1
pc

n(v1)L
and v2 ¼ m2

pc

n(v2)L
, (10:8:12)

wherem1 and m2 are integers and L is the mirror separation of the cavity containing the nonlinear
crystal. In general, however, it is impossible to satisfy both these conditions as well as the phase-
matching condition n(v1)v1 þ n(v2)v2 ¼ n(v3)v3 with v3 ¼ v1 þ v2. Furthermore other
effects that are difficult to control will cause v1 and v2 to drift randomly. Temperature variations,
for instance, will change the refractive indices, while mechanical vibrations cause L to vary.
Slight frequency variations in the pump laser will also cause variations in v1 and v2. For
these reasons it is often preferable to operate an OPO so that only one of the two frequencies
v1 and v2 can oscillate; this can be done by introducing a frequency-selective element, such
as a material that absorbs at one of the frequencies but not the other. Then the OPO is said to
be singly resonant rather than doubly resonant. Most commercial OPOs are singly resonant
and pumped by pulsed lasers; because of their relative complexity and the need to have a
pump laser and temperature control, OPOs have not been widely used commercially.
However, their tunability and the fact that they can access wavelengths that might not be available
from lasers has made them increasingly important in lidar applications. †

10.9 TWO-PHOTON DOWNCONVERSION

Parametric fluorescence in which a pump wave at v3 incident on a nonlinear crystal
results in the spontaneous generation of signal and idler photons at v1 and v2 may be
called spontaneous two-photon downconversion, or simply two-photon downconver-
sion. The downconversion efficiency is often so small that the signal and idler are
well described as single-photon fields. The two downconverted photons are correlated
not only in frequency (v1 þ v2 ¼ v3) and wave vector (k1 þ k2 ¼ k3 in the case of
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perfect phase matching) but also, when angle phase matching is employed, in polariz-
ation. As we shall see, these correlations have interesting consequences.

Figure 10.7 shows a typical arrangement for realizing two-photon downconversion.
A pump wave is polarized as an extraordinary wave incident on a nonlinear crystal with
its wave vector k3 perpendicular to the optic axis, which is oriented such that there is
phase matching with the signal and idler waves polarized as ordinary waves. Then the
frequencies and wave vectors satisfy v3 ¼ v1 þ v2 and k3 ¼ k1 þ k2. Squaring both
sides of the latter equation, we have k23 ¼ k21 þ k22 þ 2k1 � k2, or

n2e(v3)v
2
3 ¼ n2o(v1)v

2
1 þ n2o(v2)v

2
2 þ 2no(v1)no(v2)v1v2 cos u, (10:9:1)

where u is the angle between k1 and k2. The downconverted radiation for a given pair of
frequenciesv1 andv2 satisfying these equations is emitted in a conewith opening angle u.
In the setup of Fig. 10.7 one can use filters to select a certain pair of downconverted fre-
quenciesv1 andv2, or two apertures separated by some angle u to determine a particular
pair of frequencies passing through the apertures. In the case of apertures the two
“unknowns” v1 and v2 are determined by v3, the refractive indices ne(v3), no(v1),
no(v2), the angle u, and Eqs. (10.9.1) and v3 ¼ v1 þ v2.

Of course the finite diameter of the apertures results in a small range of angles Du
about u, which contributes to deviationsDv1 andDv2 of the downconverted frequencies
fromv1 andv2, respectively. Assuming the pump frequencyv3 is fixed, we haveDv3 ¼
Dv1 þ Dv2 ¼ 0, or Dv2 ¼ 2Dv1. Then, from (10.9.1) (Problem 10.8),

Dv1 ¼ no(v1)no(v2)v1v2Du sinu
n2o(v1)v1 � n2o(v2)v2 þ no(v1)no(v2)(v2 � v1) cos u

(10:9:2)

is the deviation from v1 due to a deviation Du in the angle u for which there is phase
matching for the downconversion of photons of frequency v1 and v2.

† In an experiment employing the negative uniaxial crystal LiIO3, for example, the pump (v3)
wave from a single-mode argon–ion laser had awavelength of 351.1 nmwhile the signal (v1) and
idler (v2) photons had wavelengths of 632.8 nm and 788.7 nm, respectively.4 Based on empirical
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Figure 10.7 Two-photon downconversion in which the pump field with frequency v3 and wave
vector k3 is polarized as an extraordinary wave incident at 908 to the optic axis of a negative uniaxial
crystal. The single-photon downconverted fields are polarized as ordinary waves and the angle between
their wave vectors (k1 and k2) is u.

4T. J. Herzog, J. G. Rarity, H. Weinfurter, and A. Zeilinger, Physical Review Letters 72, 629 (1994).
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formulas for the refractive indices of various crystals of interest for nonlinear optics,5 we deduce
the refractive indices ne(v3) ¼ 1.7197, no(v1) ¼ 1.8810, and no(v2) ¼ 1.8657 for LiIO3 and cal-
culate u ¼ 47.28. In the experiment there were two 0.8-mm-diameter apertures, 90 cm apart, in
the path of both the signal and idler fields. There was therefore an effective spread
Du � 1

2(0:08 cm)=(90 cm) � 4:45 � 10�4 rad in u and, from (10.9.2) and the values above for
the wavelengths, refractive indices, and phase-matching angle, a width (Problem 10.8)

Dv1 � 1013 s�1 (10:9:3)

in the downconverted frequency v1. This corresponds to a “coherence length” (recall the defi-
nition given in Chapter 1) 2pc/Dv1 � 190 mm for the signal and idler fields, in approximate
accord with the 260 mm measured in the experiments. †

As already noted, the frequencies of the downconverted photons are correlated: If one
of the downconverted photons has a frequencyv1, the other must have a frequencyv2 ¼
v32v1. The downconverted photons are similarly correlated in their wave vectors.
In Fig. 10.8 we show an example of how these two-photon correlations can be put to
use.6 One of two downconverted photons is incident on an object consisting of a two-
dimensional transmission pattern, while its k-correlated partner is incident on a photo-
detector array that serves as an imaging detector. A photon passing through the object
can be registered by a detector, while its partner can be registered somewhere on the
photodetector array. Electronic circuitry is used to determine when the correlated
photon pairs are counted in coincidence, and therefore when the output from the photo-
detector array should be recorded. If, for instance, there is complete absorption over
some section of the object, a photon at the corresponding element on the photodetector
array will never be counted in coincidence with its partner photon, and the complete
absence of any coincidence signal in this case provides the information that the corre-
sponding element on the object is dark. A high rate of photon-counting coincidences

Pump

Crystal

Photodetector
array

Detector
Object to be

imaged

Coincidence
circuitry

Figure 10.8 One photon of a downconverted pair is incident on some object to be imaged, while its
correlated partner is incident on a photodetector array. Coincidence counting of photons passing
through the object and their correlated partners at the photodetector array provides a “ghost” image
of the object, i.e., an image formed by light that has not passed through the object.

5D. Eimerl, S. Velsko, L. Davis, and F.Wang, Progress in Crystal Growth and Characterization of Materials
20, 59 (1990).
6T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, Physical Review A52, R3429 (1995).
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for some other element on the photodetector array, on the other hand, implies that the
corresponding element at the object is bright. In this way a two-dimensional “ghost”
image of the object is recorded as a pattern of bright and dark pixels.

Coincidence imaging can also be performed with laser pulses that are angularly cor-
related in a “classical” way simply by the use of rotating mirrors and beam splitters, for
instance. However, as discussed below, two-photon downconversion can result in dis-
tinctly quantum mechanical correlations that cannot be realized with laser light. It has
been demonstrated that these correlations can be used to realize better image resolution
than is possible by classical optical techniques.7

The photon pairs in two-photon downconversion are also correlated in time in that
they are created essentially simultaneously. An interesting consequence of this simulta-
neity and the single-photon nature of the downconverted fields is revealed by the exper-
iment indicated in Fig. 10.9, which shows the two photons directed to opposite sides of a
lossless beam splitter. After propagation by equal distances and reflection or trans-
mission at the beam splitter the photons can be counted by photodetectors D1 and D2,
and a determination is made of the probability of counting photons at both D1

and D2. The remarkable result (see below) is that, for a 50/50 beam splitter, this coinci-
dence probability is zero: either both photons are counted at D1 or both photons are
counted at D2.

This result is found when the paths traversed by the downconverted fields are of equal
length, or when the path difference is small compared to the coherence length of the
signal and idler fields. If the path difference is much larger than the coherence length,
photon coincidences at D1 and D2 occur with probability 1

2 while there is also a prob-
ability of 1

2 that two photons arrive at one or the other of the two detectors. In other
words, the coincidence probability vanishes at zero path difference and approaches 1

2
for large path differences. The Hong-Ou-Mandel interferometer of Fig. 10.9 can there-
fore be used to determine single-photon propagation times with extremely high
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Figure 10.9 Photons generated by two-photon downconversion are directed by mirrors M1 and M2

to opposite sides of a lossless beam splitter BS, followed by reflection or transmission from which
they can be counted at detectors D1 and D2.

7R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, Physical Review Letters 92, 033601(2004).
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resolution.8 Experiments have demonstrated temporal resolution of a few femto-
seconds—about a million times shorter than that of conventional photon detection
systems.

† The zero coincidence result can be explained by invoking a few results from a more
advanced, fully quantum theoretical analysis. Photons can be detected at D1 and D2

(Fig. 10.9) in two ways: (i) both photons are reflected by BS or (ii) both photons are transmitted
by BS. In stating these possibilities, we are acknowledging that we cannot split a photon and have
it be partially reflected and partially transmitted; a photon is completely transmitted or completely
reflected by the beam splitter BS.

Now according to quantum theory the probability amplitude for process (i) isR2, whereR is
the field (amplitude) reflection coefficient; we assume that the reflection coefficient is the same
for both the signal and idler fields. Similarly, the probability amplitude for process (ii) is T 2,
where T is the amplitude transmission coefficient. The total probability amplitude for having
photons arrive at both D1 and D2 is then R2 þ T 2, and the total probability P12 for having pho-
tons arrive at both D1 and D2 is the absolute square of the total probability amplitude:

P12 ¼ jR2 þ T 2j2: (10:9:4)

Now wewriteR ¼ jRjeifR and T ¼ jT jeifT and use the result, which is valid in classical as well
as quantum optics, that cos(fR 2 fT) ¼ 0, that is, that there is a p/2 phase shift in the reflected
field compared to the transmitted field in the case of a lossless beam splitter (Problem 10.9). Then

P12 ¼ jRj2e2ifR þ jT j2e2ifT
�� ��2¼ jRj2e2i(fR�fT ) þ jT j2�� ��2¼ jRj2eip þ jT j2�� ��2

¼ jRj2 � jT j2�� ��2, (10:9:5)

since eip ¼ 21, and therefore P12 ¼ 0 for a 50/50 beam splitter (jRj2 ¼ jT j2).
The reader who has studied advanced quantum theory will recognize that what we have done

here is to add probability amplitudes for the two indistinguishable processes (i) and (ii); it is a
general feature of quantum theory that the total probability amplitude for a process that can
occur in different but indistinguishable ways is the sum of the probability amplitudes for the
different ways. The processes (i) and (ii) here are indistinguishable so long as the path difference
for the two photons is small compared to the coherence time of the signal and idler fields. When
this is not the case, (i) and (ii) can no longer be regarded as indistinguishable, and it is found in a
more general calculation that P12 = 0.

The distinctly quantum feature of our derivation of (10.9.4) is the assumption that a single
photon cannot be “split” by a beam splitter. If instead of a single photon we have a pulse of
light from a laser or a thermal source, what happens, of course, is that the pulse is partly transmitted
and partly reflected by a beam splitter. If we think of the pulse as consisting of a huge number of
photons, we conclude that each photon has some probability of being completely transmitted or
completely reflected, and the net effect is that a fraction jT j2 of the total number of photons is
transmitted while a fraction 1� jT j2 ¼ jRj2 is reflected. The observed net effect of the beam
splitter on the pulse is then exactly what is expected from classical optics, and we do not see
any quantum (photon) features. Such considerations are the subject of Chapter 12. †

8C. K. Hong, Z. Y. Ou, and L. Mandel, Physical Review Letters 59, 2044 (1987); A. M. Steinberg, P. G.
Kwiat, and R. Y. Chiao, Physical Review Letters 68, 2421 (1992).
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We have already made note of the polarization correlations of the downconverted pho-
tons. In the example of Fig. 10.7 the downconverted photons have the same horizontal
linear polarization (H ), perpendicular to the optic axis, while the pump has vertical
linear polarization (V ), parallel to the optic axis. The polarization state of the downcon-
verted photons is written as jHl1jHl2, where a single-particle state is denoted j. . .l accord-
ing to the “Dirac notation” used in quantum theory. Thus, j l1 is a state for photon 1 and H
designates horizontal polarization, jHl2 is the state in which photon 2 has horizontal polar-
ization, and the two-photon “product” state jHl1jHl2 is that for which both photons have
horizontal polarization. The notation may seem strange to readers who have not encoun-
tered it before, but the physics it represents is simple: downconversion in our example
results in polarization states that are correlated in that the two photons have the same polar-
ization H. jHl1jHl2 is simply a conventional way of denoting the polarization state of the
two photons together. We could write similar expressions for the frequency and wave-
vector correlations of the photons, but for simplicity we will consider only polarization.
We will use the example of polarization to show that there is a far more interesting type
of correlation than that described by the product state jHl1jHl2, and that this type of corre-
lation can be realized in two-photon downconversion.

Suppose that a second crystal is placed just to the right of the crystal of Fig. 10.7, and
that it is identical to the first crystal but has its optic axis oriented horizontally, perpen-
dicular to the optic axis of the first crystal.9 A vertically polarized pump photon can be
downconverted into two H photons in the first crystal, but it will not downconvert in the
second crystal, where there is no phase matching for a vertically polarized pump.
Similarly, a horizontally polarized pump photon will pass through the first crystal with-
out downconversion but can downconvert into two V photons in the second crystal. Now
suppose that a pump photon linearly polarized at 458 to the optic axes is incident on this
two-crystal system. In this case there are two equally likely possibilities: two H photons
are produced in the first crystal or two V photons in the second.

The two-photon polarization correlation now is of a different character than that
described by a product state jHl1jHl2 or jVl1jVl2. In this case photon 1 is equally
likely to be H or V polarized. If it is found to be H polarized, then photon 2 must be
H polarized. If it is found to be V polarized, photon 2 must also be V polarized.
Similarly, if the polarization of photon 2 is measured and found to be H(V ), then the
polarization of photon 1 must be H(V ). In other words, a measurement of the polariz-
ation of one photon allows us to predict with certainty the polarization of its partner.
The two-photon polarization state according to quantum theory is a linear combination
of the two product states jHl1jHl2 and jVl1jVl2, a so-called entangled state such as10

1ffiffiffi
2
p (jHl1jHl2 þ jVl1jVl2): (10:9:6)

Entangled quantum states of multiparticle systems exhibit some of the most profound
differences between classical and quantum physics, and they are nearly always invoked
in studies of the conceptual foundations of quantum theory. The polarization-entangled

9P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Physical ReviewA60, R773 (1999).
10The 1=

ffiffiffi
2
p

is a normalization factor that is of no concern for our purposes. More generally a two-photon
entangled state has the form (1=

ffiffiffi
2
p

)(jHl1jHl2 þ eifjVl1jVl2). In the two-crystal experiment the (real)
phase f depends on crystal thickness and other factors.
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states produced in two-photon downconversion have been particularly important in
experimental research in this area.

10.10 DISCUSSION

In this brief introduction to nonlinear optics we have restricted ourselves to examples of
three- and four-wave mixing processes. Three-wave mixing in a medium with a non-
linear susceptibility x (2v3, v2, v1) involves the mixing of waves of frequency v1

and v2 to generate a wave of frequency v3 ¼ v1 þ v2. Examples of three-wave
mixing include second-harmonic generation, optical rectification, parametic amplifica-
tion and oscillation, and two-photon downconversion. Four-wave mixing in a medium
with a nonlinear susceptibility x(2v4, v3, v2, v1) involves the mixing of waves of
frequencyv1, v2, and v3 to generate a wave of frequency v4 ¼ v1 þ v2 þ v3. We con-
sidered only two examples of four-wave mixing, namely self-focusing and self-phase
modulation arising from the nonlinear susceptibility x (2v, v, v,2v).

It should be clear that there is awide variety of three- and four-wavemixing processes as
well asmanyother nonlinearoptical processes described by higher-order nonlinear suscep-
tibilities.Third-harmonic generation, for example, is a four-wavemixingprocess described
by a nonlinear susceptibility x(23v, v, v, v): A sufficiently intense field of frequency v
produces a nonlinear polarization and therefore a field at frequency 3v. It can be described
by coupledwave equations similar to thosewe used in our discussions of second-harmonic
generation and three-wave mixing. As in those examples, there is a phase-matching con-
dition for third-harmonic generation, namely n(3v) ¼ n(v) in the simplest case of colinear
fundamental and third-harmonic fields. Because it is a four-wavemixingprocess, third-har-
monic generation is not restricted, like second-harmonic generation generally is, to noncen-
trosymmetric crystals and can occur in essentially any medium. Second- and third-
harmonic generation are widely used as sources of radiation at frequencies for which
lasers are not readily available.

We have also restricted ourselves to phenomena associated with the real parts of non-
linear susceptibilities. Recall that the imaginary part of the linear susceptibility gives rise
to absorption—a molecular transition is accompanied by the absorption of a photon.
Similarly, imaginary parts of nonlinear susceptibilities imply multiphoton absorption,
such as two-photon absorption in which a molecular transition is accompanied by the
absorption of two photons. Whereas the one-photon absorption process due to the
imaginary part of the linear susceptibility is described in simplest terms by the equation
dI/dz ¼ 2a1I, where I is the field intensity and a1 is the absorption coefficient, the effect
of n-photon absorption on the intensity is described by dI/dz ¼ 2anI

n, where an is the
n-photon absorption coefficient. In the case of two-photon absorption, for example,

dI

dz
¼ �a2I2, (10:10:1)

with the solution

I(z) ¼ I(0)
1þ a2zI(0)

, (10:10:2)
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which contrasts with the exponential (Beer law) attenuation of intensity in the case of a
one-photon absorption process. As in the case of one-photon processes, spontaneous
and stimulated multiphoton processes are also possible. For example, experiments
have demonstrated lasing based on two-photon stimulated emission. It is also possible
to have coherent multiphoton effects analogous to the Rabi oscillations in one-photon
atom–field interactions (Chapter 9).

In addition to multiphoton absorption processes involving bound electron states,
there are multiphoton ionization transitions in which one or more electrons are freed
from an atom or molecule. Multiphoton ionization will occur in any atom or molecule
when the laser radiation is sufficiently intense. Thus, any transparent medium under suf-
ficiently intense irradiation will suffer optical breakdown, the formation of a (typically)
high-temperature plasma due to ionization of the medium.11 Usually, there is a visible
spark, which can be quite large. The plasma can be highly opaque, resulting in a block-
age of the laser beam. In pure air at standard temperature and pressure, for example, the
threshold intensity for optical breakdown (BD) by laser radiation of wavelength l is

IBD � 3�1011
l2

W=cm2, (10:10:3)

for laser pulses longer than about 1ms. For much shorter pulses the threshold condition
for breakdown involves the pulse fluence (the time integral of the pulse intensity).

Optical breakdown is an avalanche process in which electrons already present in the
medium take up energy from the field and so become able to produce more electrons by
ionizing molecules with which they collide. Avalanche ionization and breakdown occur
if, among other things, the rate of free-electron production exceeds the rate of loss due
to attachment, recombination, and diffusion of the electrons out of the interaction
region (e.g., the focal volume of laser radiation). The avalanche process requires
some primary electrons to be present initially. Multiphoton ionization is believed to
be important in creating the primary electrons, and therefore setting the stage for ava-
lanche ionization and breakdown. The presence of particulate matter (aerosols) such
as dust results in a lowering of the threshold intensity for optical breakdown of gases.
Dirty air, for instance, can have breakdown threshold intensities several orders of mag-
nitude smaller than that given by (10.10.3).

The extremely high intensities possible with laser pulses can lead to propagation
effects in which different nonlinear processes play important roles and cannot be treated
independently. For example, a laser pulse in air can undergo self-focusing while also
producing a plasma. This can result in the propagation of a “self-channeling” pulse
that retains a steady radial shape over a distance several times the Rayleigh range.
The theory of such effects generally requires numerical solutions of coupled, nonlinear
partial differential equations, using techniques such as those described in Section 16.C.

The interaction of intense laser pulses with matter cannot generally be understood in a
perturbative fashion based on nonlinear susceptibilities and power series in the electric
field strength, as we have done for second-harmonic generation, for instance. This is true
not only for pulses propagating in a macroscopic medium, but also for the effect of an

11This is distinct from thermal breakdown, which arises from absorption of laser radiation and a consequent
heating of the medium. In a gas the temperature rise can lead to collisional ionization and plasma formation,
whereas in a solid it can lead to melting, vaporization, and surface plasma formation.
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intense pulse on a single atom. Under extremely intense laser irradiation atoms have
been found to produce a large number of odd harmonics of the fundamental laser fre-
quency (Section 14.7); in some cases harmonics higher than a few hundred have been
observed. The fact that only odd harmonics are generated is a consequence of the inver-
sion symmetry of an atom, just as in the case of our two-state model in Section 10.1.

PROBLEMS

10.1. (a) Show that (10.2.21) follows from (10.2.19) in the limiting case of a two-state
atom.

(b) Now consider, instead of the two-state model, a nonlinear electron oscillator
model in which (3.2.18b) is replaced by

d2x

dt2
þ v2

0xþ axn ¼ e

m
E0 cosvt

in the case of an applied field of frequencyv. Find, for n ¼ 2, the solution for
the induced dipole moment ex including terms up to second order in the field
amplitude E0.

(c) For this nonlinear oscillator model with n ¼ 3, find the solution for the
induced dipole moment including terms up to third order in E0.

10.2. Derive Eq. (10.4.9) for the paraxial propagation of a pulse in a medium with
group velocity dispersion and a Kerr-type nonlinear refractive index.

10.3. (a) Derive Eq. (10.5.25).
(b) Derive Eq. (10.5.26).

10.4. For quartz the refractive indices for the frequency corresponding to l ¼ 694.3
nm are no(v) � 1.5408 and ne(v) � 1.5498, while at the second-harmonic fre-
quency no(2v) � 1.5664 and ne(2v) � 1.5774. Discuss the possibility of angle
phase matching for second-harmonic generation with ruby laser radiation in

I I

Ii Ii

Lossless beam
splitter

Figure 10.10 Two fields of equal amplitude and intensity incident with equal angles of incidence on
opposite sides of a lossless beam splitter.
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quartz. What is the angle up between the pump and second-harmonic waves for
angle phase matching?

10.5. Verify expression (10.6.8) for angle phase matching in a negative uniaxial crys-
tal. Does the second-harmonic field propagate as an ordinary or an extraordinary
wave?

10.6. (a) Derive the Manley–Rowe relations (10.7.4).
(b) Derive Eq. (10.8.8).

10.7. Modify Eqs. (10.8.1) to include loss coefficients for the fields at v1 and v2.
Derive the threshold condition for parametric oscillation.

10.8. (a) Derive Eq. (10.9.2) and state the assumptions used in your derivation.
(b) Derive Eq. (10.9.3).

10.9. Consider two fields, each of amplitude Ei and intensity Ii, incident with equal
angles of incidence on opposite sides of a lossless beam splitter as shown in
Fig. 10.10. The “output” fields will have the same intensity
I / jREi þ T Eij2 ¼ jRþ T j2jEij2, where R and T are the (complex) ampli-
tude reflection and transmission coefficients, respectively. Since the beam split-
ter is lossless, we must have jRþ T j2 ¼ 1. Writing R ¼ jRjeifR and
T ¼ jT jeif T , show that cos(fR 2 fT) ¼ 0.

10.10. In deriving Eq. (10.9.4) we assumed that a photon cannot be “split” by a beam
splitter, that is, that a photon is an indivisible unit of energy. But two-photon
downconversion is sometimes described as a splitting of a photon of frequency
v3 into photons of frequency v1 and v2. Discuss this contradiction.
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11 SOME SPECIFIC LASERS AND
AMPLIFIERS

11.1 INTRODUCTION

In thermal equilibrium the ratio of (nondegenerate) upper- and lower-state populations of
an atomic or molecular transition is

N2

N1
¼ e�E2=kBT

e�E1=kBT
¼ e�(E2�E1)=kBT ¼ e�hn=kBT , (11:1:1)

where n is the transition frequency. This ratio is always less than one. This means that a
medium in complete thermal equilibrium is always an absorber rather than an amplifier
of radiation, regardless of how hot it is.

In order to have a population inversion on a transition, therefore, the level populations
N2 and N1 must have a nonthermal distribution. If we insist on thinking in terms of a
temperature, we see from (11.1.1) that a population inversion (N2 . N1) is associated
with a “negative (absolute) temperature.” The concept of negative absolute temperature
was sometimes used in the early days of maser and laser research, but it can be mislead-
ing because it applies only to the lasing levels, while the rest of the atom or molecule
exists at an entirely different and generally positive temperature.

The amplification of radiation by stimulated emission requires a population inversion,
and in order to have a population inversion we must “pump” the medium to overcome its
natural tendency to reach a thermal equilibrium. The suitability of a material as a laser
medium thus depends, among other things, on how readily we can force it away from
thermal equilibrium and establish a population inversion.

Arthur Schawlow joked that “anything will lase if you hit it hard enough.”1 Lasers are
often classified according to how the gain medium is “hit,” that is, according to the
method used to obtain population inversion and gain. Thus, we speak of optically
pumped lasers, electric-discharge lasers, chemical lasers, gas-dynamic lasers, etc. We
will now discuss some of the methods for realizing population inversion and gain and
also for generating extremely short and extremely intense pulses of light; each of these

Laser Physics. By Peter W. Milonni and Joseph H. Eberly
Copyright # 2010 John Wiley & Sons, Inc.

1In public lectures Schawlow used an “edible laser” in which the gain medium was a gelatin dessert spiked
with sodium fluorescein dye.
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methods draws on principles associated with different, broad areas of research and
development in chemistry, physics, and engineering.

11.2 ELECTRON-IMPACT EXCITATION

Acommonmeans of pumping gas lasers is an electric discharge, whichmay be produced
in a gas contained inside a glass tube by applying a high voltage to electrodes on either
side of the tube. Electrons are ejected from the negative electrode (the cathode) and drift
toward the positive electrode (the anode). When an electron collides with an atom (or
molecule), there is some probability that the atom makes a transition to a higher
energy state. This process of electron-impact excitation occurs in neon lamps, in
which neon atoms excited by collisions with electrons undergo spontaneous emission
and emit the deep red light so familiar from neon sign advertisements. Electron-impact
excitation is also the microscopic basis of fluorescent lamps. In this case the electrons
excite mercury atoms, which emit strongly in the ultraviolet; the tube is coated with a
material that absorbs in the ultraviolet and emits in the visible.

Wewill discuss in Sections 11.4 and 11.7 the electrical excitation of He–Ne and CO2

lasers. First, however, it will be worthwhile to discuss some general aspects of electron–
atom (–molecule) collisions.

The simplest electron–atom process is an elastic collision in which the kinetic energy
of the electron–atom system is conserved in the collision. In other words, none of the
initial kinetic energy in an elastic collision is converted to internal energy of the atom.
Furthermore there is relatively little exchange of kinetic energy between the electron
and the atom in such an elastic collision; this is a simple consequence of themuch smaller
mass of the electron compared to the mass of the atom (Problem 11.2).

In an inelastic collision with an atom, the kinetic energies of the electron before and
after the collision are different. In an inelastic collision of the first kind, the electron loses
kinetic energy. Energy lost by the electron is converted to internal excitation energy of
the atom and, of course, the total energies (kinetic plus internal) before and after the
collision are the same. These collisions of the first kind are what we normally refer to
as electron-impact excitation processes. In electron-impact excitation of molecules,
the internal energy added to the moleculemay be in the form of vibrational and rotational
energy as well as electronic energy.

If an electron collides with an already excited atom or molecule, it can cause the atom
or molecule to drop to a lower level of excitation, the energy difference now going into
an increase in the kinetic energy of the system. This type of inelastic collision is called a
collision of the second kind (or a “superelastic” collision).

A gas laser may be pumped directly by electron-impact excitation, in the sense that
collisions of the active atoms with the electrons are the sole source of the population
inversion. In this case the rates for the various excitation (collisions of the first kind)
and deexcitation (collisions of the second kind) processes enter into the population
rate equations as pumping and decay rates, respectively. Frequently, however,
electron-impact excitation produces a population inversion indirectly, in the sense that
it sets the stage for another process that acts more directly to produce a positive gain.
The most important of these other processes is excitation transfer from one atom (or
molecule) to another, which we discuss in the following section.
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The rates at which electrons excite atoms and molecules in collisions of the first kind
are determined by the collision cross sections s. These in turn depend upon the relative
velocity of the electron–atom (–molecule) pair. Thus, if a mono-energetic beam of Ne

electrons per unit volume is incident upon an atom, the rate at which the atom is raised
from level i to level f (Ef . Ei) is

Rif ¼ Nesif (v)v, (11:2:1)

where v is the relative velocity prior to collision and sif (v) is the cross section for the
process. The determination of the electron-impact excitation cross sections sif (v) for
electron–atom, electron–molecule, and electron–ion collisions is an old and active
branch of atomic and molecular physics. These cross sections are important not only
for the understanding and design of electric-discharge lasers, but also for a great
many other phenomena, including such things as lightning and the aurora borealis.

In an electric discharge the electrons do not all have the same kinetic energy; there is a
distribution f (E) of electron energies, defined such that f (E) dE is the fraction of elec-
trons with energy in the interval [E, E þ dE]. In this case Rif is obtained by averaging
over the electron energy distribution:

Rif ¼ Ne
2
m

� �1=2ð1
0
sif (E)E

1=2f (E) dE, (11:2:2)

where we have used E ¼ 1
2mv

2 to relate the electron energy and velocity. Collisions
with electrons can also ionize atoms and molecules and break apart (dissociate)
molecules. Equation (11.2.2) applies to any of these processes, each characterized by
a cross section s (E). The rate for a collision of the second kind may also be expressed
in the form (11.2.2).2

Electron energy distribution functions f (E) in electric-discharge lasers are often not
well described by the Boltzmann distribution f(E) � exp(2E/kBT). They are frequently
approximated by such a distribution, however, in which case the “electron temperature”
is much greater than the temperature of the atomic (or molecular) gas in the discharge,
typically being measured in thousands of degrees. The distribution f (E) is sometimes
obtained by direct numerical solution of the Boltzmann transport equation. In this
case the cross sections for all important electron collision processes are essential
input data for the computations.

11.3 EXCITATION TRANSFER

Oneway for an excited atom to transfer energy to another atom is by photon transfer: The
photon spontaneously emitted by one atom is absorbed by the other. In this way the first
atom drops to a lower level and the second atom is raised to a higher level, i.e., there is an
excitation transfer between the two atoms. This process has a negligible probability of
occurrence unless the photon emitted by the donor atom is within the absorption

2The cross section sfi (E) for a collision of the second kind may be related to the cross section sif (E ) for the
reverse process (collision of the first kind) by using the principle of detailed balance.
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linewidth of the acceptor atom, that is, there must be a resonance (or near-resonance) of
the atomic transitions.

Actually, the process of excitation transfer via spontaneous emission is quite negli-
gible compared to other transfer processes that result from a direct nonradiative (e.g.,
collisional) interaction between two atoms. The calculation of excitation transfer rates
between atoms (and molecules) is usually very complicated, and experimental determi-
nations of transfer rates are essential; such studies form an entire field of research.

It would take us too far afield to discuss experimental and theoretical techniques used
to obtain excitation transfer cross sections and rates. We will only describe some salient
results of such studies. In the following sections we discuss the essential role of
excitation transfer in two important lasers, He–Ne and CO2.

The most important fact about excitation transfer is that the transfer cross section is
large when the corresponding atomic or molecular transition frequencies are approxi-
mately equal. However, excitation transfer can occur between two species A and B
even if the transitions are not precisely resonant. The energy defect DE (Fig. 11.1)
can be made up by translational degrees of freedom, so there is no contradiction with
the law of conservation of energy.

In the case of a positive energy defect, for instance, the “extra” energy DE appears as
additional kinetic energy of A and B after the excitation transfer. In other words, A and B
have more translational energy after the collision than before. Since the temperature
of a gas is a measure of its translational energy content, this means that an exothermic
(DE . 0) process raises the temperature of the A–B system.

Similarly, in an endothermic (DE , 0) process the “defect” in energy is made up at
the expense of the kinetic energy of the collision partners. The kinetic energy of A and B
after the excitation transfer is less than that before the transfer. Therefore, exothermic
excitation transfer processes tend to lower the temperature of the system. It may be
shown from the principle of detailed balance that the rate for an exothermic process
is a factor exp(DE/kBT) greater than the reverse, endothermic process. Thus, if R is
the rate for an exothermic process, then R exp(2DE/kBT) is the rate for the reverse
process.

It is conventional to designate an excited atom or molecule by an asterisk. The
exothermic process indicated in Fig. 11.1a is written out as a reaction as follows:

A� þ B �! Aþ B� þ DE: (11:3:1)

Likewise the endothermic process of Fig. 11.1b is written symbolically as

A� þ B �! Aþ B� � DE: (11:3:2)

A* 
ΔE ΔE 

A 
(a) (b)

B 

B* 

A 

A* 

B 

B* 

Figure 11.1 (a) Exothermic and (b) endothermic excitation from atom A to atom B.
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We can write the following rate equation for the number densityNA� of excited atoms A�
(or molecules) of species A due to the process (11.3.1):

dNA�

dt
¼ �R(NA�NB � e�DE=kBTNANB�): (11:3:3)

The first term on the right is associated with the process (11.1a), described by the rate
constant R. Since this process occurs only if an A atom is excited and a B atom is
not, the rate of decrease of excited A atoms is proportional to the product of the
number densities of excited A atoms (NA�) and unexcited B atoms (NB).

3 Similarly,
the second term, associated with the process of Fig. 11.1b, is proportional to NB�

times NA because the process occurs only when a B atom is excited and an A atom is
unexcited. The principle of detailed balance, which is discussed below, has been used
to relate the forward and reverse rates in (11.3.3). In addition to (11.3.3) we may
write rate equations for NA, NB� , and NB for the processes indicated in Fig. 11.1
(Problem 11.3).

† In one form the principle of detailed balance is the requirement that in thermodynamic equi-
librium the rate of any process must be exactly balanced by the rate associated with the reverse of
that process. In thermodynamic equilibrium, therefore, the right side of (11.3.3) must vanish. This
means that

NA�

NA
¼ e�DE=kBT

NB�

NB
(11:3:4)

for thermal equilibrium. But since

DE ¼ (EA� � EA)� (EB� � EB) (11:3:5)

(recall Fig. 11.1a), we can write (11.3.4) as

NA�

NA
¼ e�(EA��EA)=kBT NB�

NB
e(EB��EB)=kBT

� �
: (11:3:6)

However, it is always true in thermal equilibrium that

NA�

NA
¼e�(EA��EA)=kBT (11:3:7a)

and

NB�

NB
¼ e�(EB��EB)=kBT (11:3:7b)

according to the Boltzmann law. Therefore, we see that (11.3.3) is consistent with the
steady-state Boltzmann law (for which dNA�=dt ¼ 0). However, it is important to recognize
that (11.3.3) applies regardless of whether the level populations are actually in thermal equili-
brium, as long as the translational degrees of freedom of the gas are in thermal equilibrium at
the temperature T.

3The product is a consequence of the fact that the probability of A being excited and B being unexcited is the
probability of A being excited times the probability of B being unexcited. That is, the two “events”—A
excited and B unexcited—are assumed to be statistically independent.
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Thus, the principle of detailed balance relates the forward and reverse rates for a process in just
such a way as to be consistent with the equilibrium distribution of states that the process would
establish were it acting alone. In the present example of collisional excitation transfer in a gas
whose translational degrees of freedom are characterized by a temperature T, the appropriate distri-
bution is that of Boltzmann. In the case of electron-impact excitation, in which the electrons might
not be well described by a Boltzmann distribution, the principle of detailed balance relates the
forward and reverse rates in a way that would bring the atomic states into equilibrium with what-
ever the electron energy distribution happens to be. If both electron-impact excitation and colli-
sional excitation transfer are occurring, as in many gaseous laser media, the steady-state
distribution of the active atomic levels will not in general be a Boltzmann distribution. That is,
the active levels will not be populated according to the statistical distribution (11.3.7). If they
were, collisional excitation would obviously be unattractive as a laser pumping mechanism. †

It is important to recognize that these energy transfer processes are not the only ones
that can occur in a collision involving an excited atom or molecule. In a molecular gas,
for example, collisions between molecules result in vibration-to-vibration (VV) energy
transfer between the molecules. But there is also a probability that in a collision a vibra-
tionally excited molecule will jump to a lower vibrational level, with the difference in
energy between the two levels appearing as an increase in the translational kinetic
energy of the colliding molecules. The latter process is called vibration-to-translation
(VT) energy transfer.

11.4 He–Ne LASERS

The He–Ne electric-discharge laser, with its red output beam at 632.8 nm, is one of the
most familiar gas lasers. He–Ne lasers can be made to operate at many other (mainly
infrared) wavelengths. Whatever the operating wavelength, the active lasing species in
He–Ne lasers is the Ne atom. It is excited by the transfer of excitation from He atoms,
which in turn are excited by collisions with electrons. The population inversionmechanism
in He–Ne lasers thus involves a combination of electron-impact excitation (of He) and
excitation transfer (from He to Ne).

Figure 11.2 shows simplified energy-level diagrams for the neon and helium atoms.
The 3.39-mm, 1.15-mm, and 632.8-nm lines of neon, which are the strongest lasing tran-
sitions in He–Ne lasers, are indicated. The common upper level of the 3.39-mm and
632.8-nm transitions, designated 3s2, is populated by excitation transfer from nearly res-
onant He atoms excited by electron impact to the 21S level. The upper level of the 1.15-
mm transition is nearly resonant with the 22S level of He, and is populated by excitation
transfer from He atoms in that excited state. Actually, Ne is also pumped directly into
excited states by electron impacts, but the excitation transfer from He is the dominant
pumping mechanism. The excited levels 21S0 and 23S1 of He, in addition to being
nearly resonant with levels of Ne (and therefore allowing strong collisional excitation
transfer) have the advantage of being forbidden by a selection rule to de-excite by spon-
taneous emission. This allows these levels to “hold” energy for delivery to Ne during
collisions. (The total decay rates of He 21S and 23S levels due to collisions with Ne
atoms are about 2�105 s21 and 104 s21, respectively, per Torr of Ne.)

The partial pressures of Ne and He in typical He–Ne lasers are roughly 0.1 and 1
Torr, respectively. At these low pressures the upper-state lifetimes are determined
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predominantly by spontaneous emission rather than collisional deexcitation. The
3s2 and 2s2 levels4 of Ne have short radiative (i.e., spontaneous emission) lifetimes,
roughly 10–20 ns, due to the strong allowed ultraviolet transitions to the ground
state. For Ne pressures typical of He–Ne lasers, however, these radiative lifetimes are
actually about 1027 s because of radiative trapping. This occurs when the spon-
taneously emitted photons are reabsorbed by atoms in the ground state, thereby effec-
tively increasing the lifetime of the emitting level. Since the ground state is generally
the most highly populated level even when there is population inversion [recall the
numerical estimates in Section 4.3], radiative trapping is significant only from levels
connected to the ground level by an allowed transition. Thus, the Ne 3p4 and
2p4 levels, which are forbidden by a selection rule from decaying spontaneously to
the ground level, are not radiatively trapped and have lifetimes of about 1028 s, roughly
10 times shorter than the 3s2 and 2s2 levels.

This means that the s ! p transitions indicated in Fig. 11.2 have favorable lifetime
ratios for lasing, that is, their lower ( p) levels decay more quickly than their upper (s)
levels, making it easier to establish a population inversion. The integrated absorption
coefficients of the 632.8-nm and 3.39-mm lines have roughly the same magnitude,
but the 3.39-mm line has a Doppler width about 5.4 times smaller than the 632.8-nm
line, and consequently a considerably larger line-center gain. Without some mechanism

21S 

23S 

11S 
He Ne 

Ground level Ground level 

Collisional 
relaxation 

Fast radiative decay 

6328 Å

2.395 μm

3.39 μm 

Electron 
impact 
excitation 

Collisional 
excitation transfer 

1.15 μm 

2s2

3s2

3p4

2p4

1s2

Figure 11.2 Partial energy-level diagrams of He and Ne.

4We follow here the Paschen notation for the Ne levels. A more modern and systematic notation, based on
Racah symbols, is not often encountered in the laser literature.
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for suppressing oscillation on the 3.39-mm line, therefore, the familiar 632.8-nm line
would not lase (Problem 11.4).

The 632.8-nm and 1.15-mm transitions have a common lower level, 2p4, which
decays rapidly into the 1s level. The latter is forbidden by a selection rule from decaying
radiatively into the ground level, and is therefore relatively long-lived. This is bad
for laser oscillation on the 632.8-nm and 1.15-mm lines because electron-impact exci-
tation can pump Ne atoms from 1s to 2p4, thereby reducing the population inversion
on these lines. However, Ne atoms in the 1s level can decay to the ground level when
they collide with the walls of the gain tube. In fact, it is found that the gain on the
632.8-nm and 1.15-mm lines increases when the tube diameter is decreased; this is
attributed to an increase in the atom–wall collision rate with decreasing tube diameter.

The first gas laser, which was also the first cw laser, was a 1.15-mm He–Ne laser
constructed in 1960 by A. Javan, W. R. Bennet, Jr., and D. R. Herriott. Inexpensive
He–Ne lasers have long since been available commercially and have many practical
applications. In most of these applications a visible laser beam is desired, and it is there-
fore necessary to suppress the infrared lines in order to obtain oscillation at 632.8 nm.
This is done by discriminating against the infrared lines by using a cavity in which
these lines have greater loss than the 632.8-nm line, and therefore a higher threshold
for oscillation. Typically, this is accomplished by coating the cavity mirrors with
dielectric materials that reflect in the visible but transmit in the infrared.

† Laser mirrors must be of much finer optical quality than the lenses and mirrors used in many
other optical instruments. For most industrial applications, laser mirrors that are flat to within a
quarter of a wavelength (l/4) are adequate, but for interferometric applications the degree of sur-
face flatness required is �l/20. The reflecting surface can be either a metallic or dielectric coat-
ing, or some combination of the two. The highest-reflectivity mirrors currently available are made
from a few tens of dielectric layers having a width of l/4 and alternating between two different
refractive indices (cf. Problem 5.10 and also the discussion of Bragg mirrors in Section 8.4).
Such “quarter-wave stacks” can have reflectivities exceeding 99.999% or more in a narrow
band around a specified wavelength. Dielectric layers can also be designed, for instance, to
reflect some fraction f1 of radiation of wavelength l1 while reflecting a fraction f2 of radiation
of wavelength l2.

Figure 11.3 indicates the general structure of a commercial He–Ne laser. For reasons
discussed in Chapter 7, one of the mirrors is flat whereas the other is curved. The gain tube,
which is typically 10–30 cm long, is shown with Brewster-angle windows to give a linearly
polarized output (Section 5.10). The mirrors can be attached to the glass tube with an epoxy

Flat mirror

Brewster
window Glass capillary with He, Ne gas

Curved mirror

Laser
output

Cathode Anode

Figure 11.3 Basic structure of a He–Ne laser.
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resin. However, epoxy eventually deteriorates and gas leaks out of the tube. “Hard-seal mirrors”
have been developed to increase the life of the gain tube; the mirrors are bonded directly to the
metal housing of the laser to form a tight seal without any epoxy. These lasers are low-power
devices, producing outputs typically measured in milliwatts. †

11.5 RATE EQUATION MODEL OF POPULATION INVERSION
IN He–Ne LASERS

We will consider a rate equation model of population inversion in a 3.39-mm He–Ne
laser. Our goal is to account for some observed results on the variation of small-
signal gain with the electric current i through the gain tube.

Figure 11.4 summarizes our notation for the pertinent energy-level population den-
sities. N2 and N1 denote the population densities (atoms/cm3) of the upper and lower
levels of the 3.39-mm laser transition. The ground-level population densities of He
and Ne are denoted by ~N0 and N0, respectively, and ~N2 denotes the population density
of the excited level 21S of He. In our simplified model we will ignore all other levels of
the He and Ne atoms. In other words, we assume that other levels are required only to
explain some finer details that are not presently of interest to us.

The rate of change of N2 due to excitation transfer with He is given by

dN2

dt

� �
excitation
transfer

¼ R~N2N0 � Re�DE=kBT ~N0N2, (11:5:1)

where R is the rate constant for the excitation transfer collisions and

DE ¼ E[He(21S)]� E[Ne(3s2)] (11:5:2)

is the energy defect of the He(21S )! Ne(3s2) inelastic collision. This energy defect is
quite small, about 0.04 eV, and so we will take exp(2DE/kBT ) � 1 as an approximation
in (11.5.1) (Problem 11.5). We therefore write

dN2

dt
¼ dN2

dt

� �
excitation
transfer

�R2N2 ¼ R~N2N0 � R~N0N2 � R2N2, (11:5:3)

where the decay rate R2 is the rate of decrease of N2 due to spontaneous emission and
other deexcitation processes.

He (21S)
N
~

2

N
~

0

N2

N1

N0

Ne (3s2)

Ne (3p4)

Figure 11.4 Simplified version of Fig. 11.2 for a model of population inversion on the 3.39-mm
transition of Ne.
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Similarly,

d~N2

dt
¼ d~N2

dt

� �
excitation
transfer

þ d~N2

dt

� �
electron
impact

þ d~N2

dt

� �
decay
processes

: (11:5:4)

The first term is just the negative of (11.5.1) (Problem 11.3). The second term is the rate
of change of ~N2 due to electron-impact excitation (and deexcitation) of He 21S, which
we write as

d~N2

dt

� �
electron
impact

¼ K1 ~N0 � K2 ~N2, (11:5:5)

K1 is the rate for the electron-impact excitation of He 21S from the ground level of He,
i.e., for the process

He(11S)þ e �! He(21S)þ e, (11:5:6)

whereas K2 is the rate for the reverse, “superelastic” collision. Finally, the third term on
the right side of (11.5.4) is the rate of decrease of ~N2 due to other deexcitation processes,
and is assumed to be characterized by some constant ~R2. Thus,

d~N2

dt
¼ �R~N2N0 þ RN2 ~N0 þ K1 ~N0 � K2 ~N2 � ~R2 ~N2: (11:5:7)

In a similar fashion we can write rate equations for ~N0 and N0. However, as we noted
in the preceding section, these ground-state populations are very large compared to
excited-state populations, and remain relatively unchanged by the pumping process.
We will therefore make the approximation that ~N0 and N0 are constants. This reduces
(11.5.3) and (11.5.7) to linear differential equations with constant coefficients. In par-

ticular, the steady-state values of N2 and ~N2, denoted N2 and ~N2, are easily obtained
by setting the derivatives in these equations to zero:

~N2 ¼ K1A~N0

1þ K2A
, (11:5:8a)

N2 ¼ RN0

R~N0 þ R2

K1A~N0

1þ K2A
, (11:5:8b)

where A is a constant in our simple-minded model:

A ¼ R2 þ ~N0

~R2(R2 þ R~N0)þ RR2N0
: (11:5:9)

Now the electron-impact rates K1 and K2 are directly proportional to the number
density (Ne) of electrons and therefore to the electric current i in the discharge tube,
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as is evident from Eq. (11.2.2). We can, therefore, write Eqs. (11.5.8) in terms of the
current:

N2 ¼ ai

1þ bi
, (11:5:10a)

~N2 ¼ ci

1þ bi
, (11:5:10b)

where a, b, and c are constants.
In order to express the gain in terms of the current, we need an expression for N1, the

(steady-state) population density of the lower laser level. We will assume that N1 varies
according to the rate equation

dN1

dt
¼ K3N0 � R1N1, (11:5:11)

where K3 is the rate at which electron impacts pump ground-state Ne atoms up to the
3p4 level, and R1 is the total decay rate of that level.5 The steady-state solution of this
equation is obtained as usual by setting dN1/dt ¼ 0, and is given by

N1 ¼ K3N0

R1
/ current: (11:5:12)

From the expression for the gain coefficient g in Table 4.1, therefore, we obtain from
(11.5.10) and (11.5.12) the gain–current relation

g ¼ ai

1þ bi
� bi, (11:5:13)

where a and b are constants.
Note that, since no stimulated emission terms were included in our model, Eq.

(11.5.13) is actually a prediction about the variation of small-signal gain with current.
This variation was studied in the early days of He–Ne laser research and, as indicated
in Fig. 11.5, the functional form (11.5.13), with certain values of the constants a, b,
and b, can be used to fit very well the measured data on small-signal gain vs. current.

One can also deduce relative values of various level population densities by measur-
ing the intensities of fluorescent “sidelight” radiation at different wavelengths. That is,
by measuring the strength of the spontaneous emission from a side of the laser tube,
one can estimate the relative population of the upper level from which this emission pro-
ceeds (Problem 11.6). Such results are shown in Fig. 11.6, and provide evidence for the
approximate proportionality of the He 21S and Ne 3s2 populations, as predicted by
(11.5.10). They show furthermore that the Ne 3p4 (and 2p4) population density is
very nearly proportional to the current, as predicted by (11.5.12).

5It is not known precisely how the lower levels, such as 3p4, are populated in He–Ne lasers. There is appar-
ently some electron-impact excitation from ground-state Ne atoms, as evidenced by the fact that pure Ne can
be made to lase (weakly). The p levels may also be populated via the decay of higher-lying Ne levels that are
populated by electron-impact excitation from ground-state or excited-state Ne atoms. In neglecting the deex-
citation of 3p4 by electron impact, we are assuming that the corresponding rate is much smaller than the decay
rate R1 due to spontaneous emission, etc.
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For small currents the small-signal gain is proportional to the current. As the current
increases, however, two effects work against a further increase of the gain. First, there is the
deexcitation of He 21S by electron impact; this is described by the rate constant K2 / b,
and is thus associated with the denominator 1 þ bi in (11.5.13). Because of this denomi-
nator, the first term in (11.5.13) does not increase linearly with i, but rather saturates to the
constant value a/b for large currents (bi�1). Second, there is the proportionality of the

0 20 40
Discharge current (mA)

60 80 100

1

2

4

6

8

10

12

14

16

He Ne 5s2
3s2

A

B

C

D

3s4

2p

1s

21S

60
96

 Å

35
93

 Å

Li
gh

t i
nt

en
si

ty
 (

ar
bi

tr
ar

y 
un

its
)

63
25

 Å

49
28

 Å

3.
39

 μ
m

21 S
 M

et
as

ta
bl

e 
de

ns
ity

 (
cm

–3
)

2

3 × 1011
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curve B are measurements of the 21S metastable population density.
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Figure 11.5 Measured variation of gain with current in a 3.39-mmHe–Ne laser. [From A. D. White
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lower-laser-level population Ne 3p4 to the current, which is associated with the term bi in
(11.5.13). Beyond a certain range of current values, therefore, the output power of a He–
Ne laser will decrease with increasing current, and lasing will eventually cease altogether.

It should be emphasized that we have not formulated a first-principles theory of
population inversion on the 3.39-mm line of a He–Ne laser. For instance, we have
not specified the values of the electron–atom collision rates K1, K2, and K3. This
approach to understanding population inversion processes—that is, trying to understand
general trends rather than obtaining detailed quantitative predictions—is more often the
rule than the exception in laser theory and design. This is partly because many of the
rates for the processes determining population inversion are often not well known
and, because of the complexity of the processes, theoretical analyses are highly involved
and not always highly reliable. Furthermore, in a given device various quantities, such as
number densities of atoms and electrons, may be hard to specify accurately, so that even
a trustworthy theory might be of only limited value. In spite of these disclaimers, how-
ever, some level of theoretical analysis is indispensable to the building of new lasers and
the improvement of old ones.

11.6 RADIAL GAIN VARIATION IN He–Ne LASER TUBES

It is usually assumed that the small-signal gain g0 is approximately constant throughout
the gain medium. For many purposes this is a reasonable approximation, but it is generally
not strictly true. We will now describe how the small-signal gain in a He–Ne laser varies
with the radial distance r from the axis of the gain tube, which is assumed to have a circular
cross section.

We will show below that the (free-) electron number density Ne varies with r accord-
ing to the formula

Ne(r) ¼ Ne(0)J0
2:405r

R

� �
, (11:6:1)

where R is the tube radius, J0 is the zeroth-order Bessel function,6 and Ne(0) is the
electron number density at the tube axis, where r ¼ 0 [J0(x) ¼ 1 for x ¼ 0]. Since
J0(2.405. . .) ¼ 0, it follows that Ne is zero on the tube wall, as expected.

The current density j is proportional to Ne, so that

j(r) ¼ j(0)J0
2:405r

R

� �
: (11:6:2)

The current i is the integral of j over the cross-sectional area of the tube:

i ¼ 2p
ðR
0
j(r)r dr ¼ 2pj(0)

ðR
0
J0

2:405r
R

� �
r dr � 1:36j(0)R2, (11:6:3)

where we have used the properties
Ð z
0 J0(x) x dx ¼ zJ1(z) and J1(2.405) � 0.519.

In the preceding section we derived the formula (11.5.13) for the current dependence
of the gain, neglecting any r variation of the electron number density. In other words, we

6A graph of the function J0(x) is given in Fig. 6.13.
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took Ne and j as simply proportional to the current i, with no r dependence. Let us
assume that (11.5.13) actually gives the small-signal gain at the center of the gain
tube, i.e., that the left side of (11.5.13) is really g(r ¼ 0). Then, since Ne (and j)
varies radially as J0(2.405r/R), we have for g(r) = 0 the formula (11.5.13) with i
replaced by iJ0(2.405r/R):

g(r) ¼ aiJ0(2:405r=R)
1þ biJ0(2:405r=R)

� biJ0
2:405r

R

� �
: (11:6:4)

A graph of g(r) is shown in Fig. 11.7 for several values of i, using the parameters a, b,
and b of Fig. 11.5. For small currents g(r) goes as J0(2.405r/R), having its maximum on
axis and falling off to zero at r ¼ R. As the current is raised g(r) becomes flatter near the
axis, and with higher currents has a dip on axis. That is, as the current is raised, a stage is
reached where the small-signal gain has a local minimum along the axis of the tube.

Similar results for the radial variation of the small-signal gain are obtained whenever
the on-axis gain-vs.-current curve has a maximum and then “turns over” with increasing
current, as in Fig. 11.5. Therefore radial variations of the form shown in Fig. 11.7 are
expected not only in He–Ne lasers but in a wide variety of other electric-discharge
lasers. Although these lasers employ somewhat different population inversion pro-
cesses, they all follow the general trends predicted in Fig. 11.7. Experimental results
for He–Ne and CO2 lasers are shown in Fig. 11.8. We refer the reader to the papers
cited in the figure for details of the different measurements.

† The basic starting point of the analysis above is the formula (11.6.1) for the electron density
in the (cylindrical) discharge tube. This formula may be understood from the following argument.

If the electron density has some nonvanishing gradient, the electrons will tend to redistribute,
or diffuse, just as a gradient in the temperature of a gas gives rise to a flow of heat. Wewill assume
that the diffusion of electrons follows the Fick law, i.e., that the electron diffusion rate across a
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Figure 11.7 Radial dependence of small-signal gain, obtained by plotting the function (11.6.4) for
the parameters a, b, b given in Fig. 11.5. The four curves correspond to currents i ¼ 10, 40, 100, and
150 mA, as indicated.
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given area is directly proportional, but opposite in direction, to the gradient. In other words, the
flux f (particles per second per unit area) of electrons is given by

f ¼ �DrNe, (11:6:5)

where the constant of proportionality D is the diffusion coefficient. If the electron density is
increasing in some direction (positive gradient), Eq. (11.6.5) says there will be a compensating
diffusion of electrons in the opposite direction. We will not attempt to justify (11.6.5), but it is
worth mentioning that this Fick law accurately describes many diffusion processes, such as the
diffusion of gas particles due to a density or thermal gradient, or the diffusion of neutrons in a
nuclear reactor.
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The rate at which electrons diffuse out of some closed surface S is given by the surface integral
of the flux:

Rate of diffusion out of volume V ¼
ð
S
f� n̂ dA, (11:6:6)

where V is the volume enclosed by S and n̂ is the unit vector outwardly normal to S. From the
divergence theorem (i.e., Gauss’s law) and (11.6.5) we have

Rate of diffusion out of volume V ¼
ð
V
r� f dV ¼ �D ð

V
r2Ne dV : (11:6:7)

Now in a steady-state discharge the rate of diffusion of electrons out of V must be exactly
balanced by the rate at which free electrons are produced inside V, in order that the total
number of electrons within V be constant. Free electrons are produced when an electron collides
with an atom (or ion) and ionizes it, leaving another free electron plus a positive ion. This elec-
tron-impact ionization is the electron production process that must balance the diffusive loss
(11.6.7). Letting Qi denote the ionization rate, we have

Rate of production of free electrons inside V ¼
ð
V
QiNe dV : (11:6:8)

Equating (11.6.7) and (11.6.8), we obtain

r2Ne þ Qi

D
Ne ¼ 0: (11:6:9)

This equation, subject to whatever boundary conditions are to be imposed, determines the elec-
tron density Ne.

For a cylindrical discharge tube it is convenient to write out the Laplacian r2 in terms of the
cylindrical coordinates r, u, z:

r2Ne ¼ @2Ne

@r2
þ 1

r

@Ne

@r
þ 1
r2
@2Ne

@u2
þ @2Ne

@z2

� �
: (11:6:10)

We will assume circular symmetry (no u dependence of Ne), and that the z dependence of Ne can
be ignored to a good approximation. Then the last two terms inr2Ne above may be dropped, and
(11.6.9) becomes

d2Ne

dr2
þ 1

r

dNe

dr
þ Qi

D
Ne ¼ 0: (11:6:11)

This differential equation has the solution

Ne(r) ¼ Ne(0)J0(r
ffiffiffiffiffiffiffiffiffiffiffi
Qi=D

p
), (11:6:12)

where the constant Ne(0) is the value of Ne at the tube axis, r ¼ 0.
To satisfy the boundary condition that the electron density vanishes on the wall of the tube,

i.e., that Ne(R) ¼ 0, we require that

J0(R
ffiffiffiffiffiffiffiffiffiffiffi
Qi=D

p
) ¼ 0: (11:6:13)

In other words, R
ffiffiffiffiffiffiffiffiffiffiffi
Qi=D

p
must be a zero of the zeroth-order Bessel function J0. In order to ensure

that Ne(r) given by (11.6.12) is positive-definite for all values of r 	 R, furthermore, we require
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R
ffiffiffiffiffiffiffiffiffiffiffi
Qi=D

p
be the first zero of J0, which is about 2.405. Thus

ffiffiffiffiffiffiffiffiffiffiffi
Qi=D

p
¼ 2:405=R, (11:6:14)

which, together with (11.6.12), gives (11.6.1).
The electrons in the discharge, because of their much higher average velocity, might be

expected to diffuse to the walls much more quickly than the positive ions, producing an
excess of negative charge near the walls. However, an electric field is set up by the charges
(a “space charge” field) in such a way as to retard the diffusion of electrons and effectively
“drag along” the positive ions. In this ambipolar diffusion both the positive and negative
charge carriers have the same diffusion constant. Our simplified derivation of (11.6.1) assumes
ambipolar diffusion, and D in our analysis is in fact the ambipolar diffusion coefficient. †

11.7 CO2 ELECTRIC-DISCHARGE LASERS

The electric-discharge carbon dioxide laser has a population inversion mechanism simi-
lar in some respects to the He–Ne laser: the upper CO2 laser level is pumped by exci-
tation transfer from the nitrogen molecule, with N2 itself excited by electron impact.

The relevant energy levels of the CO2 and N2 molecules are vibrational-rotational
levels of their electronic ground states.We discussed the vibrational-rotational character-
istics of the CO2 molecule in Section 2.5, and indicated in Fig. 2.10 the relative energy
scales of the three normal modes of vibration, the so-called symmetric stretch, bending,
and asymmetric stretch modes (Fig. 2.9). Like all diatomic molecules, N2 has a single
“ladder” of vibrational levels corresponding to a single mode of vibration (Fig. 2.7). In
Fig. 11.9 we show the CO2 and N2 vibrational energy level diagrams side by side.

Figure 11.9 shows that the first excited vibrational level (v ¼ 1) of the N2 molecule
lies close to the level (001) of CO2. Because of this near resonance, there is a rapid exci-
tation transfer between N2(v ¼ 1) and CO2(001), the upper laser level. N2(v ¼ 1) is itself
a long-lived (metastable) level, so it effectively stores energy for eventual transfer to
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Figure 11.9 Vibrational energy levels of CO2 and N2. The energies are given in cm
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CO2(001); it is also efficiently pumped by electron-impact excitation. As in the case of
the He–Ne laser, therefore, advantage is taken of a fortuitous near resonance between an
excited state of the lasing species and an excited, long-lived collision partner.

Laser action in CO2 lasers occurs on the vibrational transition (001)! (100) of CO2.
This transition has a wave number around (2349–1388) cm21 ¼ 961 cm21 (Fig. 11.9),
or a wavelength around (961 cm21)21 ¼ 10.4 mm in the infrared. The laser wavelength
depends also on the rotational quantum numbers of the upper and lower laser levels. For
the case in which the upper and lower levels are characterized by J ¼ 19 and 20, respect-
ively, the wavelength is about 10.6 mm, the most common CO2 laser wavelength.

The (100) and (020) vibrational levels of CO2 are essentially resonant. This “acciden-
tal degeneracy” results in a strong quantummechanical coupling in which states in effect
lose their separate identities.7 Furthermore the (010) and (020) levels undergo a very
rapid vibration-to-vibration (VV) energy transfer:

CO2(020)þ CO2(000) �! CO2(010)þ CO2(010): (11:7:1)

For practical purposes, then, the stimulated emission on the (001) ! (100) vibrational
band takes CO2 molecules from (001) to (010). The (010) level thus acts in effect like a
lower laser level that must be rapidly “knocked out” in order to avoid a bottleneck in the
population inversion.

Fortunately, it is relatively easy to deexcite the (010) level by vibration-to-translation
(VT) processes:

CO2(010)þ A �! CO2(000)þ A, (11:7:2)

where A represents some collision partner. The VT deexcitation of (010) effectively
depopulates the lower laser level and also puts CO2 molecules in the ground level,
where they can be pumpd to the upper laser level by the VV excitation transfer

N2(v ¼ 1)þ CO2(000) �! N2(v ¼ 0)þ CO2(001): (11:7:3)

In high-power CO2 lasers the lifetime of the CO2(010) level may be on the order of 1 ms
due to collisions of CO2withHe,N2, andCO2 itself. Of course, theVTprocess (11.7.2) is
exothermic and results in a heating of the laser medium; some of the other VT and VV
processes in the CO2 laser have the same effect. This heating of the laser medium is a
very serious problem in high-power lasers. In the next section we will see how it may
be overcome.

Electron impacts excite CO2 as well as N2 vibrations. Furthermore there are various
other processes that have to be accounted for in an accurately predictive rate-equation
model of a CO2 laser. Because of the many applications of high-power CO2 lasers,
such models have been developed and are often quite accurate. These models are com-
puter programs that numerically integrate rate equations for the various level populations
and the intensity. They also compute the electron energy distribution function, and from
this the electron-impact excitation rates (Section 11.2). Our discussion captures only the
bare essence of the population inversion process but is sufficient for a qualitative under-
standing of CO2 lasers.

7For a discussion of this Fermi resonance effect see, for instance, G. Herzberg, Molecular Spectra and
Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules, Robert E. Krieger
Publishing, Malabar, FL, 1990.
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In the laser research literature one finds expressions for the gain coefficients of CO2

and other infrared molecular-vibration lasers; at first glance these expressions often do
not resemble the “standard” formula for the gain coefficient given in Table 4.1. In the
Appendix to this chapter we carry out the steps leading from the formula in Table 4.1
to an expression that appears frequently in the literature.8 As an example of the use of
this expression we estimate the absorption coefficient for 10.6-mm CO2 laser radiation
propagating in air at sea level.

11.8 GAS-DYNAMIC LASERS

We mentioned in Section 4.10 that many of the most powerful lasers employ gaseous
gain media. Although solid laser media have much higher molecular densities than
gases, and therefore a potential for higher gains, they also are more susceptible to heating
that can damage the gain medium or induce distortions in it that can degrade the spatial
coherence of the laser radiation, especially in the case of high-power, cw or long-pulse
operation. The major damage mechanism for gaseous media, however, is photoioniz-
ation, and this is usually not a concern except at extremely high intensities, perhaps
1010–1014W/cm2 or higher, depending on the circumstances.

The pumping and lasing of a gaseous medium also generates waste heat, and this is
deleterious to the scaling of a gas laser up to very high powers. Various factors, such
as an increase in collisional deexcitation rates, contrive to reduce the power and coherence
properties of the laser radiation when the gas gets too hot. By the late 1960s the highest-
power lasers were CO2 lasers generating several kilowatts of power. This certainly rep-
resents a good deal of radiation intensity when it is concentrated in a narrow laser
beam; such a beam can drill holes in quarter-inch steel in a matter of seconds. But
these lasers typically had “folded” resonator designs that made the gain medium effec-
tively a hundred meters or more long in some cases. Because of the heat generated as
an unavoidable product of lasing, they seemed at the time to be approaching some sort
of practical upper limit in the quest for higher and higher powers.

In 1968, however, a CO2 laser was developed that produced more than 60 kW of
continuous-wave output power. The new idea was to remove the waste heat by using a
laser medium consisting of a gas flowing through the laser cavity (Fig. 11.10). In this
way the hot gas is expelled while fresh, cooler gas is continually flowing in and
lasing. High-power lasers operated in this way are called gas-dynamic lasers when
the gas flow velocity is supersonic.

It should be evident by now that laser engineering involves many diverse areas of
atomic, molecular, electronic, solid-state, and optical physics. The gas-dynamic laser
spawned a new branch of laser research connected with aerodynamic effects. We will
not be able to discuss any technical aspects of this interplay of radiation physics and
aerodynamics; instead we will describe qualitatively the population inversion mechan-
ism in gas-dynamic lasers.

In the CO2 gas-dynamic laser a gas mixture containing CO2 and N2 is heated in a
high-pressure container, or plenum. The temperature in the plenum may be 1500–
2000K, with a pressure on the order of several tens of atmospheres. The translational,

8Similar expressions for absorption coefficients associated with infrared molecular vibrational-rotational
transitions are used in studies of the atmospheric “greenhouse effect.”
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rotational, and vibrational degrees of freedom of the CO2 and N2 molecules in the
plenum are in thermal equilibrium, and the population densities satisfy a (high-tempera-
ture) Boltzmann distribution.

The gas is then suddenly allowed to leave the plenum through an array of nozzles.
A supersonic expansion results in which the gas (translational) temperature and pressure
are drastically reduced, to about 300–400K and 50 Torr, respectively. The rotational
degrees of freedom of the molecules also relax quickly to the new, much cooler thermal
equilibrium. The key point, however, is that the vibrational relaxation rates (VV and VT)
are much lower; the vibrational degrees of freedom are thus temporarily “frozen” near
the original, high-temperature Boltzmann distribution. On the other hand, the gas temp-
erature itself as measured by the average translational energy 3

2kBT of the molecules, is
greatly decreased by the expansion.We then have a nonequilibrium flow in which differ-
ent degrees of freedom in the gas are characterized by very different temperatures.

Population inversion in the nonequilibrium flow results for two reasons. First, the VT
collision rates at the gas translational temperature (300–400K) are such that the decay of
the lower level of a CO2 vibrational-rotational transition near 10.6mm is rapid, giving a
favorable lifetime ratio of upper and lower levels. Second, the N2 vibrational decay rates
(due to spontaneous emission and VT collisions) are very low, so that the N2 molecules
store energy for excitation transfer to CO2(001).

Note that the population inversion achieved in this manner does not require any
“external” process such as optical pumping or an electric discharge. In this sense the
gas-dynamic laser is thermodynamically similar to classical power generators (e.g.,
steam engines) in that, using hot and cold reservoirs, it converts thermal energy into a
more useful form of energy.

11.9 CHEMICAL LASERS

Chemical reactions can produce excited-state species and the population inversions
necessary for chemical lasers. In other words, chemical energy of molecular bonding
can be converted into electromagnetic energy in the form of laser radiation.

Laser beam

Flowing
gas Exhaust

Laser resonatorNozzles
Plenum

Figure 11.10 Schematic picture of a flowing-gas arrangement used in some high-power gas lasers.
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Wewill consider briefly one example of a chemical laser, the hydrogen fluoride (HF)
laser. HF lasers operate on several (sometimes many) HF vibrational-rotational tran-
sitions around 2.6–2.8mm. Vibrationally excited HF molecules are produced as a
result of two exothermic chemical reactions:

Fþ H2 �! HF� þ DH1, (11:9:1)

Hþ F2 �! HF� þ DH2: (11:9:2)

The heats of reaction of these two processes are DH1 � 31.6 kcal/mol and DH2 � 98.0
kcal/mol, and they are therefore referred to as the “cold” and “hot” reactions, respect-
ively. HF� denotes a vibrationally excited HF molecule. The cold reaction (11.9.1) pro-
duces HF molecules in excited vibrational levels up to v � 3, whereas the hot reaction
(11.9.2) results in significant population up to v � 10.

The overall result of the cold and hot reactions is summarized by writing

H2 þ F2 �! 2HF� þ DH1 þ DH2: (11:9:3)

But this disguises the role of atomic fluorine (F) in the cold reaction (11.9.1); without F,
the production rate of HF� is too slow. Since F atoms bond to form F2, the F2 molecules
must somehow be dissociated into two F atoms. There are several ways of doing this.
One utilizes the collisional dissociation of F2 by a collision partner A:

F2 þ A �! 2Fþ A (11:9:4)

in a high-temperature chamber. Another involves the use of radiation to free F atoms
from chemical bonding; this photochemical process is called photolysis, or, if pulsed
radiation is used, flash photolysis.9 Another common means of getting F atoms for

v = 2 band

v = 1 band

v = 0 band v = 0, J = 4

v = 1, J = 3

v = 2, J = 2

Figure 11.11 HF and other molecular lasers can lase simultaneously on two or more coupled tran-
sitions, as indicated here for a (v ¼ 2, J ¼ 2) ! (v ¼ 1, J ¼ 3) ! (v ¼ 0, J ¼ 4) cascade.

9An important example of photolysis occurs in the upper atmosphere. O2 molecules are dissociated by ultra-
violet solar radiation, and the freed O atoms react with O2 to produce ozone, O3. The “ozone layer” absorbs
far-ultraviolet solar radiation that is harmful to living organisms.
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HF chemical lasers is by electron-impact dissociation of F2 or another molecule bonding
F atoms, such as sulfur hexafluoride:

SF6 þ e �! SF5 þ Fþ e: (11:9:5)

Typically HF lases on low-lying vibrational-rotational transitions such as (v ¼ 1,
J ¼ 3) ! (v ¼ 0, J ¼ 4). Lasing tends to occur on two or more vibrational-rotational
transitions simultaneously, as indicated in Fig. 11.11. The various chemical and VT pro-
cesses that occur in HF lasers result in a considerable heating of the gain medium. High-
power HF chemical lasers are therefore frequently of the flowing-gas type. This and
other chemical lasers, such as the 1.315-mm chemical oxygen iodine laser (COIL) oscil-
lating on a magnetic dipole transition of atomic iodine, are among the most powerful
lasers, producing megawatts of continuous-wave infrared radiation.

11.10 EXCIMER LASERS

There aremolecules that can exist only in excited electronic levels, the ground level being
dissociative. In such a molecule the potential energy curve for the ground level has no
local minimum, and so there is no stable ground level (Fig. 11.12). A molecule of this
sort is called an excimer, a contraction for “excited dimer.” In the transition indicated
in Fig. 11.12 the lower level very quickly dissociates into two unbound atoms. The dis-
sociation time is on the order of a vibrational period, around 10213 s. This effective
absence of any lower-level population is the most significant feature of an excimer
laser operating on such a bound-free transition. Obviously, such a laser has a very favor-
able lifetime ratio of upper and lower levels.

Another attractive feature of excimer lasers is their wavelength, which extends
from the visible to the ultraviolet, depending on the particular excimer. Moreover the

Energy

Internuclear separation

Ground state (unstable)

Excited state

Figure 11.12 An excimer molecule has no stable ground state because the potential energy curve has
no local minimum.
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bound-free nature of the laser transition allows for tunability over a considerable range
of wavelengths (�5 nm), since well-defined vibrational-rotational transitions do not
occur. Such a tunable source of coherent ultraviolet radiation is very useful for a variety
of applications, such as high-resolution studies of molecular electronic spectra.

The KrF excimer laser at around 248 nm is one of the most efficient high-power ultra-
violet lasers. The population inversion process for this and other rare-gas monohalide
lasers (e.g., ArF, XeF, XeCl) involves a relatively large number of reactions; computer
models of such lasers sometimes include �100 rate equations for different processes.
These lasers are pumped either by an electric discharge or by an electron beam. Of
the processes leading directly to excited XY molecules, where X and Y refer to a
rare-gas atom and a halogen, respectively (e.g., X ¼ Kr, Y ¼ F), two are especially
important. One is the ion–ion recombination process in which ions Xþ and Y2 combine
in the presence of a third body to produce an excited XY molecule:

Xþ þ Y� �! XY�: (11:10:1)

The other is the “harpooning reaction”

X� þ YR �! XY� þ R, (11:10:2)

where R represents some radical attached to the halogen Y. The rate for such a process
tends to be largest when R ¼ Y, as in the reaction

Kr� þ F2 �! KrF� þ F (11:10:3)

in the KrF laser. Ion–ion recombination processes like

Krþ þ F� �! KrF� (11:10:4)

are very important in the monofluoride excimer lasers because of the rapid production of
F2 ions by the dissociative electron attachment reaction

F2 þ e �! F� þ F: (11:10:5)

High-power KrF lasers typically contain a gas mix of around 90%Ar, less than 10%Kr,
and about 0.5% F2. An electron beam produces electron–ion pairs, and the “secondary”
electrons so generated take part in processes such as (11.10.5). For pressures less than
about 1 atm, Arþ and F2 undergo ion–ion recombination to form ArF�, which reacts
with Kr to form KrF�. At higher pressures the charge-transfer reactions

Arþ þ 2Ar �! Ar2
þ þ Ar (11:10:6)

and

Ar2
þ þ Kr �! Krþ þ 2Ar (11:10:7)
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provide Krþ ions for the reaction (11.10.4). Kr2þ ions can also be formed by reactions
such as

Krþ þ 2Kr �! Kr2
þ þ Kr, (11:10:8)

and themolecular krypton ions can then react with F2 in an ion–ion recombination reac-
tion to form KrF�.

† An approximate expression for the gain coefficient for an excimer laser such as KrF may be
derived as follows from the general expression for g(n) given in Table 4.1. For a transition from a
bound upper state to a lower, unbound state, we assume that the lower-level population has in
effect a very large decay rate, so that N1 � 0 and

g(n) � l2A

8p
NS(n), (11:10:9)

where N is the upper-level population density and we assume n(n) ffi 1. Since NS(n) dn ; (@N/
@n) dn is effectively the number of excited molecules per unit volume for which there is gain in
the frequency interval [n, n þ dn], we rewrite (11.10.9) as

g(n) � l2A

8p
@N

@n
: (11:10:10)

Let R denote the internuclear separation and consider a transition from a vibrational level of
energy Ev of the excited, bound electronic state to an unbound state of energy E(R); E(R) is
the potential energy curve for unbound ground states (Fig. 11.12). The transition frequency
n ¼ [Ev 2 E(R)]/h, and therefore

@N

@n
¼ @N

@R

@n

@R

� ��1
¼ �h @N

@R

@E

@R

� ��1
¼ h

@N

@R

@E

@R

����
����
�1

(11:10:11)

and

g(n) � hl2A

8p
@N

@R

@E

@R

����
����
�1
, (11:10:12)

where we have used dE/dR , 0 for the unbound lower state (Fig. 11.12).
To obtain an expression for @N/@R we make the simplifying approximation that all the mol-

ecules in the excited electronic state are in the vibrational ground level (v ¼ 0). Then the average
population density of molecules within the internuclear separation interval [R, R þ DR] is DN ¼
N(v ¼ 0)jc0(x)j2DR, where N(v ¼ 0) is the total population density of the v ¼ 0 vibrational level of
the excited electronic state; x ¼ R2 R0, where R0 is the internuclear separation at which the
potential energy curve for the excited electronic state has its minimum; c0(x) ¼ (a/p)1/4

exp(2ax2/2) is the (harmonic oscillator) wave function for the v ¼ 0 vibrational state; and
a ¼ mv0=h� , where m and v0 are, respectively, the reduced mass and the angular vibrational fre-
quency. Thus, @N/@R ¼ N(v ¼ 0)jc0(x)j2 and

g(n) � hl2A

8p
a

p

� �1=2
N(v ¼ 0)e�ax

2 dE

dR

����
����
�1
: (11:10:13)

where dE/dR is evaluated at R ¼ R0, which is generally a good approximation because it is
roughly constant near R ¼ R0 (Fig. 11.12). (For KrF, for example, quantum mechanical
computations for the Kr–F interaction yield jdE/dRj � 3.6 eV/nm.) This also implies that
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n ¼ [Ev 2 E(R)]/h is a linear function of R and therefore x, so that the exponent in (11.10.13)
varies quadratically with n. In other words, g(n) is a Gaussian function of n, a consequence of
the assumption that the upper, bound vibrational state is the ground state of a harmonic oscillator.
This Gaussian form of the gain (and fluorescence) spectrum is consistent with experimental data
for rare-gas monohalide excimer lasers. †

11.11 DYE LASERS

Liquid dye lasers provide especially interesting examples of optical pumping, i.e.,
population inversion by absorption of radiation illuminating the laser medium. The
active molecules in these lasers are large organic molecules in a solvent such as alcohol
or water. The most useful feature of dye lasers is their tunability: By means of some
adjustment, a dye laser can bemade to oscillate over awide range of optical wavelengths.
This tunability has been extremely useful in atomic spectroscopy.

Figure 11.13 is an energy-level diagram typical of dye molecules. With each elec-
tronic level of the molecule is associated a set of vibrational and rotational energy
levels, which are spaced very closely compared to electronic energy-level spacings.
The vibrational energy levels are typically separated by 1200–1700 cm21, whereas
the rotational level spacings are roughly two orders of magnitude smaller. The symbols
S0, S1, S2, T1, T2 in Fig. 11.13 label electronic energy levels and the associated manifold
of vibrational and rotational levels. The symbols S and T stand for singlet and triplet elec-
tronic levels, respectively. In a singlet level the total electron spin quantum number is
zero (S ¼ 0), whereas in a triplet level S ¼ 1. A level having a total spin quantum
number S is (2S þ1)-fold degenerate, whence the names singlet (2S þ 1 ¼ 1) and triplet
(2S þ1 ¼ 3). For our purposes only one thing about these S and T levels is important: S
 ! S and T ! T transitions are radiatively allowed, whereas S ! T transitions are

S2 

S1 

Absorption 

S0 

Singlet states Triplet states 

Nonradiative decay (intersystem crossing) 

T1 

T2 

Emission 

Figure 11.13 Typical energy-level diagram of a dye molecule.
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radiatively forbidden. That is, the oscillator strengths are zero for S ! T transitions.
This is a consequence of the dipole selection rule DS ¼ 0 for electron spin.

As indicated in Fig. 11.13, the ground level S0 is a singlet state. In thermal equili-
brium practically all the dye molecules are in the S0 level. Because S  ! T radiative
transitions are forbidden, optical pumping can promote the molecule from the ground
level S0 to the higher-energy singlet states (S1, S2, etc.) but not to any of the triplet
states. To begin with, therefore, let us focus our attention only on the allowed sing-
let–singlet transitions.

Optical pumping takes the molecule from one of the vibrational-rotational levels of
the ground electronic state (S0) to one of the vibrational-rotational levels of the first
excited singlet electronic state (S1). The S0! S1 transition is possible over a broad fre-
quency range because there is a broad range of vibrational-rotational levels associated
with both S0 and S1. The transition frequencies typically lie in the visible or near visible,
and so the dye gives the solution a certain color because of selective absorption.
Furthermore the oscillator strengths for allowed transitions in dye molecules are usually
quite large. This can be understood from the large size of organic dye molecules. In the
hydrogen atom, for instance, the transition electric dipole moments are on the order of
ea0, where a0 ¼ 0.053 nm is the Bohr radius, roughly the “size” of the hydrogen atom.
Dye molecules are much larger, and consequently have much larger dipole moments and
oscillator strengths. Dye molecules therefore have strong absorption bands.

An excited dye molecule tends to decay very quickly to the lowest lying vibrational
level of a given electronic state. The decay process is nonradiative, and typical lifetimes
are in the picosecond range. A dye molecule in electronic state S1, for example, will
quickly decay to the “bottom” of the S1 manifold, as indicated in Fig. 11.13. A crude
description of the pumping of a dye laser therefore follows the four-level scheme of
Section 4.8 (Fig. 11.14). Absorption of radiation takes the molecule from the bottom
level of S0 to one of the S1 levels, where nonradiative decay quickly brings it to the
bottom level of S1. The latter serves as the upper laser level, the lower laser level
being one of the vibrational-rotational levels of S0.

S1

Absorption Emission

S2

0

1

Laser transition

2

3

Figure 11.14 Approximate four-level picture of a dye laser transition.
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Unfortunately, things are not as simple as the four-level picture suggests. For
although S  ! T transitions are radiatively forbidden, they may occur nonradiatively
in collisions between molecules. This is called intersystem crossing.10 The nonradiative,
intersystem decay of S1 into T1, and T1 into S0, is indicated in Fig. 11.13.

Intersystem crossing has some undesirable ramifications for the pumping of dye
lasers. The decay S1 ! T1, for instance, obviously reduces the number of molecules
in the upper laser level, and in effect reduces the number of laser-active molecules.
Since triplet–triplet transitions are strongly allowed, furthermore, the optical pumping
process S0 ! S1 also induces absorptive transitions T1 ! T2, which have frequencies
in the same region as S0 ! S1 transitions.

However, it is possible to get around the problems caused by intersystem crossing. By
dissolving oxygen in the dye solution, for example, the decay rate for the intersystem
crossing T1 ! S0 can be enhanced by orders of magnitude (to about 107 s21).
Continuous-wave dye laser oscillation can then be achieved if the T1 ! S0 decay is
faster than the S1 ! T1 decay. Otherwise the laser can only be operated in a pulsed
mode in which the excitation pulse duration is short compared to the S1 ! T1 decay.
In the latter case, loosely speaking, lasing occurs before S1 has a chance to be signifi-
cantly depleted by intersystem crossing.

Because of their large oscillator strengths, the S0 ! S1 transitions have small spon-
taneous emission lifetimes, typically in the nanosecond range. The upper laser level in
particular decays quickly, and a flashlamp used to optically pump a dye laser must have
fast-rising, high-intensity output in order to produce a significant population inversion.
In this regard the requirements on the flashlamps are more stringent than in the case of
ruby or Nd :YAG and Nd : glass lasers.

Dye lasers are also frequently optically pumped with the radiation from another laser.
Pulsed N2 lasers in the ultraviolet (337 nm) are particularly useful for pumping pulsed
dye lasers. Continuous-wave dye lasers are frequently pumped by the blue-green radi-
ation of an argon ion laser.

† One very important characteristic of laser dye molecules is that their emission spectra are
shifted in wavelength from their absorption spectra. This fortunate circumstance prevents the
laser radiation from being strongly absorbed by the dye itself. We can understand this character-
istic based on the Franck-Condon principle and the fact that the vibrational relaxation associated
with any electronic state is very rapid.

The Franck–Condon principle is basically just the statement that electron motion in molecules
is very rapid compared to the vibrations of the individual atoms. This means that electronic tran-
sitions occur very quickly, with practically no adjustment of the interatomic coordinate R. We
indicate in Fig. 11.15 an absorptive transition between the two lowest electronic states of a mol-
ecule. The transition is shown to proceed vertically (without change of R). It starts near the bottom
of the potential curve of the lower electronic state because in thermal equilibrium most molecules
will be in the lower vibrational states of the ground electronic level. Following the absorption, the
molecule is in a vibrational state of the upper electronic level. The vibrational motion of the mol-
ecule then changes R. The vibrational state also relaxes quickly to v ¼ 0, and so the eventual
downward electronic transition (due to spontaneous emission) proceeds along a different vertical
line. The emission wavelength is thus longer than the absorption wavelength. In Fig. 11.16 we

10There are in fact also radiative contributions to intersystem crossing because only dipole transitions are
strictly forbidden. Higher-order multipole transitions are much less likely than allowed (dipole) transitions
and therefore have much smaller transition rates.
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show the singlet-state absorption and emission spectra of a solution of rhodamine 6G, the most
commonly used dye molecule. The emission spectrum is shifted to longer wavelengths as
expected from the Franck–Condon pinciple. The shift between the peaks of the two curves is
called the Stokes shift. †

As noted earlier, the most important feature of dye lasers is their tunability. This tun-
ability is a consequence of the broad emission curve of a dye molecule (Fig. 11.16),
which allows dye laser radiation to extend over a broad band of wavelengths, typically
1–6 nm wide. Tuning within this band is accomplished by discriminating against most
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Figure 11.15 Illustration of the Franck–Condon principle. After absorption R changes due to the
molecular vibration, so that the emission occurs at a different R, and therefore a different wavelength,
than the absorption.
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Figure 11.16 Absorption and emission spectra of the dye molecule rhodamine 6G in ethanol (1024
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of the wavelengths, i.e., by making the cavity loss larger than the gain for most wave-
lengths. The most common way of doing this makes use of the Littrow arrangement
sketched in Fig. 11.17. In the arrangement shown one of the cavity mirrors is replaced
by a diffraction grating, which reflects radiation of wavelength l only in those directions
satisfying the Bragg condition [Eq. (6.A.1)]

2d sin u ¼ ml, m ¼ 1, 2, . . . , (11:11:1)

where d is the spacing between lines of the grating. Wavelengths not satisfying this con-
dition are not fed back along the cavity axis and consequently have large losses. Thus,
the bandwidth of the laser radiation is greatly reduced (typically to around 0.1 nm or
less), and the tuning is accomplished by rotating the grating.

11.12 OPTICALLY PUMPED SOLID-STATE LASERS

A typical design for the optical pumping of a solid-state laser rod is shown in Fig. 11.18.
The flashlamp typically contains Xe at a pressure of about a hundred or several hundred
Torr. An electric discharge in the Xe gas produces an intense burst of spontaneous

Diffraction
grating

Dye

Cuvette
Mirror

Output

Flashlamp

q

Figure 11.17 Littrow arrangement for wavelength tuning of a dye laser. Tuning is achieved by
rotation of the grating.

Laser rod Flashlamp Enclosure and reflector

Switch
Capacitance

Power supply

Figure 11.18 Helical flashlamp arrangement for the optical pumping of a solid-state laser. The mir-
rors may be external to the laser rod or may be silver coatings applied directly onto the ends of the rod.
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emission lying in a visible spectral range that is absorbed by the laser rod. The flashlamp
has a helical shape and wraps around the laser rod in order to expose as much of the rod
as possible to the lamp’s radiation.

Another flashlamp pumping configuration employs a flashlamp having the same
(linear) cylindrical shape as the rod, and the lamp and rod are placed along the focal
axes of an elliptical reflecting tube. This permits the focusing of a large portion of the
lamp’s output onto the laser rod.

Laser action was first obtained in 1960 by T. H. Maiman, using a ruby rod in the heli-
cal lamp configuration of Fig. 11.18. Maiman’s original laser produced millisecond
pulses of energy .1 J, each pulse itself consisting of random microsecond pulses.
We will consider the example of ruby laser a bit further here, as it illustrates some of
the concepts involved in the optical pumping of other solid-state lasers.

Figure 11.19 shows the relevant energy levels of the Cr3þ ion in ruby. The levels
labeled 4F1 and

4F2 (a conventional spectroscopic notation) are broad bands of energy,
as indicated in the figure. The level labeled 2E actually consists of two separate levels,
labeled 2A and E in conventional notation. These two levels are separated by about 29
cm21, or 8.7�1011 Hz, and it is the lower one, E, that serves as the upper laser level in
the ruby laser. The ground level is labeled 4A2, and it serves as the lower laser level of
the 694.3-nm laser transition.

The levels 4F1 and
4F2 each decay very rapidly into the

2E level, the decay rate being
about 107 s21. The decay process is not spontaneous emission but rather a nonradiative
decay in which the energy lost by the chromium ions is converted to thermal energy
(heat) of the crystal lattice. The upper laser level, on the other hand, is metastable.
That is, it has a long lifetime, about 3 ms, for (spontaneous emission) decay to the
ground level with the emission of 694.3-nm photons.

The absorption of radiation of wavelength around 400 or 570 nmwill populate the 4F1

or 4F2 levels, respectively. Figure 11.20 shows the absorption coefficient versus wave-
length in the visible region for ruby. Flashlamps used to pump ruby lasers should
obviously emit radiation at those wavelengths where ruby is strongly absorbing. The
rapid decay of the pumped bands into the upper laser level, with the ground level
itself acting as the lower laser level, means that ruby is approximately a three-level
laser system.

4F1

4F2

Blue Green

Emission

Fast nonradiative decay

2A

E
2E

6943 Å (red)

Ground level (4A2)

Figure 11.19 Simplified energy-level diagram of the Cr3þ ion in ruby.
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In Section 4.10 we estimated a pumping power density of about 1 kW/cm3 for laser
oscillation in ruby. For a 1-ms excitation pulse this translates to a pumping energy den-
sity on the order of 1 J/cm3. Since not all of the electrical energy delivered to the flash-
lamp is converted to radiation, and not all of the radiation is actually absorbed by the
ruby rod, an electrical power on the order of megawatts must be delivered to the flash-
lamp in ruby lasers.

The very broad absorption coefficient of ruby (Fig. 11.20) and other solid-state or
liquid laser materials is, of course, advantageous. It is well matched by the broad emis-
sion bandwidth of a “conventional” (i.e., nonlaser) light source such as a flashlamp,
which is much like a blackbody radiator. A medium with very sharp absorption lines
would be much more difficult to pump optically with a conventional broadband light
source. In a Doppler-broadened gaseous absorber, for instance, an absorption linewidth
is approximately v/c times the transition frequency, where v is the average atomic vel-
ocity and c is the speed of light (Problem 11.1). This v/c ratio is typically about 1025 or
1026, which explains why optical pumping is seldom used for gas lasers. In solid-state
or liquid media, however, the absorption linewidth is more like 1022–1024 times the
transition frequency.

A much more common solid-state system is the 1.06-mm Nd :YAG laser. The rel-
evant energy levels of the Nd3þ ions in the YAG crystal lattice are shown in
Fig. 11.21. Again we label the levels according to a conventional spectroscopic notation.
In this case we have a good approximation to a four-level pumping scheme. As in ruby,
the pump bands are broad and decay rapidly into the upper laser level. Because it is a
four-level system, however, and furthermore has a much larger stimulated emission
than ruby, the YAG laser has much lower pumping requirements (Section 4.10).

The Nd : glass laser is similar to Nd :YAG, except that the Nd3þ ions are present as
impurities in glass rather than YAG. Unlike Nd :YAG, it is almost always used in the
pulsed mode of excitation because the low thermal conductivity of glass makes it
too difficult to cool efficiently under continuous excitation. The Nd : glass laser is
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Figure 11.20 Absorption coefficient of ruby. [From D. C. Cronemeyer, Journal of the Optical
Society of America 56, 1703 (1966).]
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especially useful for mode-locked operation because of its large gain linewidth
(�3�1012 Hz ¼ 3 terahertz ¼ 3 THz).

Solid-state lasers are much more efficiently pumped with diode lasers. Diode-
pumped solid-state (DPSS) lasers were demonstrated in the 1960s, but it was only
after substantial improvements in the performance of laser diodes (Chapter 15) that
their advantages over flashlamp-pumped lasers were realized. “Wall-plug” efficiencies
(output laser power divided by electrical power consumed by the laser diodes) of
25% or more are obtained with DPSS lasers, compared to �1% in the case of flashlamp
pumping; the efficiency with which diode laser power is absorbed by the laser crystal
can be 80% or more, and the optical efficiency (output DPSS laser power divided by
diode laser power) can exceed 50%. Such efficiencies result when the laser diode wave-
length can be matched to a single absorption band of the lasing medium. A flashlamp
emits over a broad spectrum including all wavelengths in the visible, and consequently
there is much more wasted (and often deleterious) heat generated than in DPSS lasers.
The operating lifetime of the diodes can be tens of thousands of hours compared to the
much more frequent (and sudden) burnout of flashlamps and, because they do not
require bulky power supplies, DPSS lasers are “all solid-state” and much more
compact than lamp-pumped lasers.

Laser diodes with wavelengths around 810 nm are commonly used to pump 1064-nm
Nd :YAG or other crystalline lasingmediawith similar absorption bands. For example, a
commercial green laser pointer powered by two AAA batteries contains an 808-nm laser
diode that pumps a Nd :YVO4 (neodymium-doped yttrium orthovanadate) laser crystal
that emits 1064 nm radiation, which is frequency doubled by a small intracavity KTP
crystal (potassium titanium oxide phosphate, KTiOPO4) to generate a few milliwatts
of green (532 nm) light in a 1.1-mm-diameter output beam.

In end-pumped DPSS lasers, diode laser radiation is injected through an end facet of
the laser crystal, so that the pump radiation propagates along the long axis of the crystal

Pumped 
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Figure 11.21 Simplified energy-level diagram for the Nd3þ ion in a YAG crystal.
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rod or slab. This produces high optical efficiency and also excellent beam quality charac-
terized by small (,5) values of M2 (Section 7.13), especially when the diode output is
suitably shaped with fibers or other optical components to match the transverse mode
profile of the laser resonator. End pumping is often used in small vanadate lasers to
take advantage of the high optical efficiency and excellent lasing characteristics of
Nd :YVO4 while avoiding the difficulty found in growing large crystals of this material.

Because diode lasers are limited to typically a few watts of power, they are combined
in bars or arrays in DPSS lasers. A diode bar typically contains �50 independent,
edge-emitting diode lasers mounted on a chip, with a total output power �50W. In
high-power DPSS lasers in the kilowatt range, diode bars are stacked in two-dimensional
arrays of �10 bars.

End pumping is normally limited in the amount of power it can deliver to the laser
crystal. This is because the end facets of the crystal are usually only a few millimeters
across, and focusing of high-power radiation onto them causes local heating that can
result among other things in refractive-index variations in the crystal and therefore
poor laser beam quality. An obvious solution to this problem is to spread the pump radi-
ation over a broader area. This can be done by end-pumping a slab with wider end facets
or, more commonly, by side pumping of the crystal to achieve pumping over a broader
volume, analogous to the use of a helical flashlamp (Fig. 11.18). Although side-pumped
DPSS lasers can produce cw output powers in the kilowatt range, and peak powers in the
megawatt range with pulsed lasing, the beam quality is often poor. It should also be
noted that the wavelengths available with DPSS lasers are limited by those available
from laser diodes. The most common DPSS laser wavelengths at present are 1064 nm
and the 532-nm radiation obtained by second-harmonic generation.

As mentioned in Section 11.8, the scaling of solid-state lasers to higher powers is
often limited by heating of the laser rod. Besides the possibility of thermal damage,
heat deposition can result in transverse variations of the refractive index; the resulting
“thermal lensing” can seriously degrade the laser beam quality. A type of DPSS
laser that largely eliminates this problem is the thin-disk laser illustrated in
Fig. 11.22. Two advantageous features of the thin-disk design are apparent. First, the

Solder

Thin Disk

d

D

Heat Sink

Pump Radiation

Pump Radiation

Output 
Coupling Mirror

Laser Beam

Figure 11.22 A thin-disk laser. The gain medium is a thin disk pumped by laser diode radiation. The
back face of the disk reflects the pump and laser radiation and is attached to a heat sink. The front face
is antireflection coated for pump and laser radiation. [From A. Giesen, Laser Technik Journal, June,
No. 2, 42 (2005).]
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surface-to-volume ratio of the disk is much larger than for a conventional laser crystal
rod, and heat is efficiently dissipated in the water-cooled “heat sink.” Second, for
uniform pumping over the surface of the disk, there is little thermal lensing because
temperature gradients are mainly in the longitudinal direction.

The disk typically has a thickness �100–200mm and a diameter of several milli-
meters. Additional optical components are used so that the pump radiation makes
many passes through the disk, and it is possible in this way for the disk to absorb �90%
of the power from a diode stack. The output power can be increased simply by increasing
the pump area. Several kilowatts of (multimode) continuous-wave power have been
demonstrated with Yb :YAG thin-disk lasers. Excellent beam quality (M2 ffi 1.1) and
optical efficiencies �50% have been realized with disk lasers at output powers of several
hundred watts.

The first tunable solid-state laser to be marketed was the alexandrite laser in which, as
in the ruby laser, the lasing species is Cr3þ. In the case of alexandrite the chromium ion
substitutes for the Al3þ in chrysoberyl (BeAl2O4). Alexandrite has excellent thermal,
mechanical, and optical properties that, in addition to tunability and a broad absorption
bandwidth that allows relatively efficient flashlamp pumping or diode-laser pumping,
make it especially attractive for high average-power operation.

A simplified energy-level diagram for Cr3þ in alexandrite is shown in Fig. 11.23. The
relevant spectroscopy differs from that for the ruby laser (Fig. 11.19) in two important
respects. First, the fast nonradiative decay of the pump bands labeled 4T1 and

4T2 results
in the population of a “storage level” 2E that, at temperatures not substantially below
room temperature, results in thermal population of low-lying states in the 4T2 manifold;
any of these can serve as the upper laser level. Second, the lower laser level is not simply
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Figure 11.23 Simplified energy-level diagram for the Cr3þ ion in chrysoberyl. The separation
DE between the storage level (radiative lifetime �2 ms) and the “metastable” level (radiative
lifetime �6ms) is about 800 cm21, small enough that the metastable level can be thermally populated
after the storage level is populated by the fast nonradiative decay from the pumped levels.
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the electronic ground level 4A2 but rather any of a broad manifold of vibrational states of
this electronic level. The vibronic manifolds indicated in Fig. 11.23make the alexandrite
laser tunable in the near-infrared range �700–810 nm; the laser wavelength is selected
by discriminating against all wavelengths but the one desired. At low temperatures
laser emisison near 680 nm can occur directly from the storage level to the bottom
of the 4A2 manifold.

An unusual characteristic of alexandrite is that the gain increases with temperature up
to about 2258C, at which point it is �4 times the gain at room temperature. This results
from the increased thermal population of the upper laser level with temperature, that is,
a larger Boltzmann factor exp(2DE/kBT ). At higher temperatures the gain decreases
due to increasing fluorescence from excited states and other effects. One such effect is
excited-state absorption in which absorption occurs on transitions from excited states
to higher excited states.

A much wider range of tunability in the near infrared is realized with Ti : sapphire
lasers in which the lasing species is Ti3þ in Al2O3. Ti : sapphire has absorption bands
in the 400–600 nm range, where high-power diode lasers are not available. It is usually
pumped with 532-nm radiation from frequency-doubled Nd :YAG, or by an argon
ion laser at 514.5 nm, and is well described by the four-level laser model with an absorp-
tion cross section �6.5�10220 cm2 at these pump wavelengths. The unique feature of
Ti : sapphire is its extremely broad gain bandwidth, �100 THz, with gain possible at
wavelengths between 650 and 1180 nm. This is about 20 times the gain bandwidth of
the rhodamine 6G dye laser and more than 30 times that of Nd :YAG; it is in fact the
broadest gain bandwidth of any existing laser. It also has a high thermal conductivity
and other advantageous material properties.

Ti : sapphire has a peak stimulated emission cross section of about 3�10219 cm2 at 800
nm, an upper-level lifetime of about 3.2ms, and a large quantum efficiency (� 80%). It
has a large saturation intensity, �200 kW/cm2 compared to �3 kW/cm2 in Nd :YAG,
for example (Problem 11.8). For purposes of pulse amplification it also has the advantage
of a high saturation fluence, fsat � 1 J/cm2 at 800 nm (see Section 6.12 and Problem
11.8). The relatively short upper-level lifetime makes flashlamp pumping inefficient.

Ti : sapphire lasers, both continuous-wave and pulsed, have replaced dye lasers in
various applications requiring tunability in the near infrared. As with other tunable
lasers, tuning of Ti : sapphire lasers may be accomplished in a variety of ways, for
example, with diffraction gratings or prisms in a Littrow configuration (Fig. 11.17).
For continuously tunable lasers birefringent filters (also called Lyot filters) have
become the preferred wavelength selectors. These are basically thin, birefringent
quartz plates placed inside the laser cavity at the Brewster angle to the laser beam.
Rotation about the axis normal to the surface of the plate produces a rotation of the
laser polarization except for the wavelength at which the net polarization rotation is
zero after a round trip in the cavity. This is the selected wavelength; other wavelengths
suffer reflection losses. Since there are no coatings or significant reflection losses at
the selected wavelength, birefringent filters introduce less loss than gratings or prisms,
and the bandpass can be narrowed using stacked filters. Birefringent filters can be used
for cw as well as pulsed operation, but tuning for pulses in the femtosecond range
(Section 11.13) requires filters of larger bandwidth. Wavelength tuning of femtosecond
pulses from commercial Ti : sapphire lasers is accomplished with a motor-driven, mova-
ble slit that selects a particularwavelength dispersed by a prism. Such systems often come
with several interchangeablemirrors allowing high reflectivities at different wavelengths.
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11.13 ULTRASHORT, SUPERINTENSE PULSES

In Chapter 6 we discussed methods of producing very short, intense laser pulses. In par-
ticular, mode locking allows the generation of pulses much shorter than the time it takes
for light to make a round trip inside the laser cavity. The large gain bandwidths of dye
lasers allow the generation of mode-locked picosecond pulses; in 1981 a continuous
train of .100-fs pulses from a colliding-pulse dye laser was reported (Section 6.14).
As discussed in Section 8.4, pulse compression techniques led a few years later to
dye laser pulses as short as 6 fs. The development around the same time of
Ti : sapphire and other solid-state lasers with huge gain bandwidths has resulted more
recently in much more compact (and reliable) sources of laser pulses on the order of
a few femtoseconds, i.e., on the order of a few optical periods or less. In this section
we survey some of the principles underlying these developments.

Passive mode locking is generally preferable to active mode locking, primarily
because there is no need to match the cavity length L and therefore the longitudinal
mode spacing c/2L to the frequency of a modulator. As discussed in Section 6.11, it is
generally desirable for passive mode locking with a saturable absorber that the absorber
have a short relaxation time. But absorbers with short relaxation times tend to have
large saturation intensities and large small-signal absorption; this allows the gain in the
laser to reach a high value while the loss is too large to allow lasing. Then, once
the gain is sufficient to overcome the loss, the laser intensity grows rapidly and saturates
the absorber, producing an intense,Q-switched mode-locked train that depletes the gain to
a value below the threshold for laser oscillation. In other words, the large small-signal
absorption and saturation intensity prevent the generation of a continuous mode-locked
train. Q switching can be avoided in some laser designs: The passively mode-locked
colliding-pulse laser, for instance, avoids rapid gain depletion by increasing the degree
of saturation as the counterpropagating pulses overlap.

A practically instantaneous, passive method for producing mode-locked trains of
ultrashort pulses is based on the “Kerr nonlinearity” responsible for self-focusing.
This Kerr lens mode locking (KLM), which was discovered accidentally, follows
from the fact that the central, most intense part of the intracavity laser beam undergoes
the most self-focusing, while the least intense parts are too weak for the focusing effect
of the Kerr (n2) nonlinearity [Eq. (10.3.8)] to overcome diffraction (Fig. 11.24).

Gain cell

Aperture

Figure 11.24 Kerr lens mode locking. The low-intensity “wings” of the beam intensity are blocked
by an aperture and experience large loss, whereas the high-intensity, central portion of the beam under-
goes self-focusing that keeps it confined near the optic axis so that it can pass through the aperture.
There is therefore an intensity-dependent loss that results in (passive) mode locking.

532 SOME SPECIFIC LASERS AND AMPLIFIERS



The intensity-dependent loss therefore acts in a way similar to a saturable absorber to
produce passive mode locking, an obvious difference being that now it is the gain
cell itself that does the mode locking. The principal advantage of KLM is the fast
response time: The nonlinear refractive index and self-focusing arise from light-scatter-
ing processes and adjust practically instantaneously to changes in the intensity. The
response times of saturable absorbers, by contrast, are governed by the relatively long
relaxation and recovery times of the absorber. Because Ti : sapphire and other laser
rods are typically only �2 cm long in order to keep group velocity dispersion (GVD)
relatively small, the self-focusing effect is rather weak (n2I � 3�10216 cm2/W for sap-
phire), and consequently KLM is typically not “self-starting” and must be initiated by
some external means such as acousto-optic modulation. Alternatively, an additional
cell containing a material with a larger nonlinear index than the gain cell can be inserted
in the laser cavity.

The short lengths of the laser rods, and the addition of intracavity prisms to control
GVD, allow the generation of pulses with durations, energies, powers, and repetition
rates �10 fs, 5 nJ, 1 MW, and 100MHz, respectively, with Kerr lens mode locking.
Figure 11.25 shows the essential features of the design of a KLM Ti : sapphire laser.
Comparable laser outputs result when chirped mirrors (Section 8.4) are used for GVD
compensation instead of intracavity prisms.

† The measurement of pulse durations less than about 100 fs cannot be done directly
by conventional means since the resolving times of oscilloscopes and photodiodes are �100
ps and �1 ps, respectively. The fastest “direct” way of measuring the temporal variation
of a pulse’s intensity is to use a streak camera in which the pulse is mechanically or electronically
deflected onto a detector, forming a streak of light from which a temporal intensity profile can be
deduced. But even the fastest streak cameras have resolution times �100 fs.

Ultrashort pulse durations have for many years been inferred from intensity correlation func-
tions. Such a correlation function appears, for instance, when a pump pulse in second-harmonic
generation is split by a 50/50 beam splitter, and the two resulting pulses with intensity I(t) are
recombined in a nonlinear crystal after one pulse is delayed by a time t with respect to the other.

Ti : sapphire
crystal

Output
mirror

Pump laser

Slit

Figure 11.25 Basic design of a Kerr lens mode-locked laser with intracavity prisms for compen-
sation of group velocity dispersion.

11.13 ULTRASHORT, SUPERINTENSE PULSES 533



The second-harmonic intensity ISHG(t) in this case is proportional to I(t)I(t2 t) if pump depletion
is negligible. For pulses too short to be resolved, the response of a detector to the second-harmonic
intensity will be a time-averaged intensity autocorrelation function proportional to

G(t, t) ¼
ð1
�1

I(t)I(t � t) dt: (11:13:1)

OftenG(t, t) can provide a rough estimate of the pulse shape and duration, as shown in Fig. 11.26a
for the case of a Gaussian pulse. However, it does not reproduce very well more complicated pulse
shapes, as can be seen from the example of Fig. 11.26b, nor does it provide any phase information,
such as whether a pulse is chirped.

A far more accurate technique that provides intensity as well as phase information is
frequency-resolved optical gating (FROG). Consider again the example of second-harmonic gen-
eration. The second-harmonic electric field at time t is proportional to E(t)E(t � t), where t is
again the delay time between the two pump electric fields, and the spectrum of this field is
proportional to

S(v, t) ¼
ð1
�1

E(t)E(t � t)e�ivt dt
����

����
2

: (11:13:2)

Unlike (11.13.1), which is defined only in the time domain, the “FROG trace” S(v, t) depends on
both the frequency v and the time t. The field E(t) in (11.13.2) is “gated” by a delayed replica of
itself, E(t � t). S(v, t) is a time-dependent spectrum measured for varying delay times t, and
from this measurement Eq. (11.13.2) can be “inverted” to obtain the complex field envelope
E(t). In other words, a measurement of S(v, t) provides information about pulse intensity as
well as phase.

Various algorithms are available for determining E(t) from the measured S(v, t), typically an
N � N set of real numbers with N � 100. A standard algorithm involves an initial guess for E(t)
and therefore E(t)E(t � t) and

s(v, t) ¼
ð1
�1

E(t)E(t � t)e�ivt dt: (11:13:3)

The measured FROG trace S(v, t) is then used to replace js(v, t)j by ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(v, t)
p

, and numerical
inversion of (11.13.3) with a Fast Fourier Transform then gives a new estimate for

1
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Figure 11.26 (a) Gaussian pulse (solid curve) and its time-averaged autocorrelation function
(11.13.1) (hatched curve), both normalized. (b) As in (a) but for a more complicated pulse shape.
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E(t)E(t � t), which is used in (11.13.2) to obtain an estimate for S(v, t). The difference between
this computed S(v, t) and the measured FROG trace, characterized typically in a root-mean-
square sense, represents an “error” used to obtain a better estimate for E(t). Iterations involving
Fourier transformations between the time and frequency domains are continued until “conver-
gence” is obtained to (presumably) the best estimate of the complex field envelope E(t) that is
consistent with the measured FROG trace.

Like the intensity autocorrelation method, FROG can be used to measure a single pulse by
arranging for different parts of the pulse to have different time delays t. The details of various
implementations of FROG, as well as numerical inversion algorithms, are described in more
specialized literature.11 †

For some purposes it is desirable to generate even more powerful ultrashort pulses
than those available from mode-locked lasers. Direct amplification, for example, the
amplification of pulses from a mode-locked Ti : sapphire laser by a Ti : sapphire ampli-
fier, is most efficient when the pulse fluence is comparable to or larger than the saturation
fluence fsat (Section 6.12 and Problem 11.8). For a 10-fs pulse this implies intensities
.1015 W=cm2 in the case of Ti : sapphire at 800 nm (fsat �1 J/cm2), and a problem
with direct amplification is evident: The powerful pulses desired will strongly self-
focus and cause optical damage to the Ti : sapphire rods.

The most powerful ultrashort pulses are generated not by direct amplification but by
chirped pulse amplification (CPA). The idea is to stretch the pulses from a mode-locked
laser, amplify them, and then recompress them after amplification. The stretching of the
pulse durations by factors typically � 103–104 reduces their intensities by comparable
factors, putting them below the amplifier damage threshold and also avoiding possible
nonlinear effects that might cause spatial and temporal pulse reshaping or distortion; this
is the key feature of CPA. Several amplifiers can be used, beginning with a multipass
“preamplifier” after the pulse stretcher. The preamplifier increases pulse energies
from the nanojoule range to �1–10 mJ, which represents most of the overall amplifica-
tion. It serves to boost the pulse energy to a level where efficient energy extraction occurs
in subsequent amplifiers.

The pulse stretching in CPA is just the reverse of the pulse compression described in
Sections 8.4 and 8.5. Consider, for example, a pulse that has been chirped by self-phase
modulation (SPM). The instantaneous frequency (10.4.8) due to SPM increases with the
time t2 z/c:vinst(t) , v in the “front” part of the pulse (t, z/c),vinst(t) ¼ v at the peak
of the pulse (t ¼ z/c), and vinst(t) . v in the “back” part of the pulse (t . z/c). In other
words, SPMcauses the instantaneous frequency to increase from the front part of thepulse
to the back, a positive chirp. Thus, if a pulse is propagated through a nonlinearmedium that
causes chirpingbySPM, it canbe stretchedbysubsequent propagation in a linearmedium
with positive GVD, wherein the lower frequencies propagate faster than the higher fre-
quencies: The front part of the pulse moves farther ahead as the back part falls farther
behind.

Such pulse stretching is done with fibers, but for femtosecond pulses there are com-
plications due to high-order dispersion, and stretching is more often accomplished with
grating pairs. Figure 11.27 shows how the insertion of a “telescope” between two
gratings can convert the negative GVD of a grating pair to a positive GVD; pulse com-
pression can subsequently be done with a another (negative-GVD) grating pair.

11See, for instance, R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser
Pulses, Kluwer Academic, Norwell, MA, 2000.
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The chirped pulse compression methods described in Sections 8.4 and 8.5 are
employed in CPA following stretching and amplification. In this case negative GVD
produced by a grating pair causes the higher frequency components of a positively
chirped pulse to propagate faster than the lower frequencies. The back of the pulse
then “catches up” with the front of the pulse, resulting in its temporal compression.

Methods have been developed not only to compress or stretch femtosecond pulses but
also to generate almost arbitrary pulse shapes. Basically, such methods spatially separate
different frequency components of an input pulse and then modify in a prescribed way
the amplitudes and relative phases of the spatially separated components. The different
components are then recombined into a pulse having a spectrum that corresponds to the
desired temporal shape.12

The inventions of Q switching and mode locking in the 1960s resulted later in
“tabletop” lasers13 with peak pulse powers in the gigawatt range and focused
intensities �1015W/cm2; higher powers and intensities were prevented primarily by
optical damage thresholds. With the invention of chirped pulse amplification in the
mid-1980s, and the advent of media with huge gain bandwidths (Ti : sapphire in particu-
lar), the situation changed dramatically, and by the late 1990s peak powers in the terawatt
range and focused intensities �1021W/cm2 were realized with tabletop systems.
Ti : sapphire systems also increased repetition rates of earlier picosecond and femtose-
cond lasers so that average powers increased from �10 mW to �10W.

To appreciate the magnitude of the pulse powers that have been obtained by chirped
pulse amplification, recall that the Coulomb electric field that binds the valence electrons
in atoms and molecules is �e=4pe0a20, where e is the electron charge and a0 the Bohr
radius. This electric field is about 5�109 V/cm. The intensity of a monochromatic plane
wave with the same electric field strength is about 3�1016W/cm2, much smaller than
the intensities readily achievable by chirped pulse amplification (Problem 11.9). This

Grating Grating

Figure 11.27 Pulse stretching by insertion of a “telescope” between a pair of gratings. The lenses and
gratings cause lower frequencies to have smaller delay times than higher frequencies, and a pulse is
stretched in time.

12For a review of femtosecond pulse shaping see, for instance, A.M.Weiner, Review of Scientific Instruments
71, 1929 (2000).
13By “tabletop” lasers we mean systems that occupy an optical bench in a typical university laboratory. This
excludes, for example, large laser systems designed with the goal of realizing in a controlled manner the
extremely high temperatures and pressures required for nuclear fusion; they involve many beam lines and
very large buildings. CPA laser peak powers in excess of a petawatt (1015 W) have been demonstrated at
such facilities.
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means among other things that traditional perturbative approaches to the theory of the
interaction of light with atoms and molecules are inapplicable at the intensity levels
made possible by CPA—the applied field is no longer weak compared to the binding
field. At these intensity levels new phenomena appear such as the high-order harmonic
generation mentioned at the end of Chapter 10; some such effects are considered in
Section 14.7.

Once phenomena such as self-focusing, group velocity dispersion, and chirping are
understood, the essential physics of chirped pulse amplification can be said to be
conceptually straightforward. Quantitative analyses of CPA systems, however, are
another matter; they involve the determination of the angular GVD of prisms and
gratings, nonlinear spatial and temporal effects in pulse propagation, higher-order
dispersion effects giving rise to nonlinear chirping and thereby affecting GVD compen-
sation, amplified spontaneous emission, andmany other factors. Any detailed analysis of
the “front-end” Kerr lens mode-locked laser is in itself a nontrivial undertaking requiring
numerical modeling.

One of the main factors that limit the intensities possible with CPA systems is optical
damage by the stretched pulses to the amplifiers. For nanosecond pulses the fluence fd

at which optical damage can be expected in Ti : sapphire, for instance, is about 20 J/cm2.
Increasing pulse energies and intensities much beyond those achievable with table-
top systems requires much larger beam areas than are possible with amplifying
crystals of diameter �1 cm. Beam areas �10 m2, or even larger areas conceivable
with a large matrix of Ti : sapphire rods, have been considered for the extension of
CPA techniques to exawatt (1018 W) and zetawatt (1021 W) powers and
intensities �1028 W/cm2.14

11.14 FIBER AMPLIFIERS AND LASERS

In Section 8.7 we noted two developments that led to widespread use of optical fibers in
communications: low-loss fibers and progress in diode laser technology. Research and
development in these areas resulted in 1988 in the first transatlantic cable employing
glass fibers. Attenuation in the fiber was so low that regenerators along the cable were
spaced between about 40 and 70 km apart: At each regenerator (or “repeater”) an optical
signal from a modulated laser diode, weakened after propagation, was converted to an
electric current that was then amplified electronically and used to regenerate the optical
signal by driving another laser diode or by modulating its output.

Another major breakthrough occurred in the mid-1980s, when erbium-doped fibers
serving as all-optical amplifiers were developed. In the early 1990s it was demonstrated
that this amplification technique could increase the information capacity of fiber cables
by a factor of about 100 compared to electronic amplification, and by 1996 both trans-
atlantic and transpacific all-optical cables were installed. Some basic ideas behind opti-
cal fiber communications are discussed in Chapter 15. Here we begin by focusing on
some characteristics of erbium-doped fiber amplifiers (EDFAs).15

14T. Tajima and G. Mourou, Physical Review Special Topics—Accelerators and Beams 5, 031301 (2002).
15See, for instance, E. Desurvire, Erbium-Doped Fiber Amplifiers. Principles and Applications, Wiley,
Hoboken, NJ, 2002.
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The amplifying species in EDFAs is the Er3þ ion, just as another trivalent rare-earth
ion, Nd3þ, is the lasing species in Nd : glass lasers. The advantage of erbium-doped
fibers for telecommunications is the fact that they are efficient amplifiers within a pro-
nounced transmission window of silica glass at 1.55 mm (Section 8.7). As in the case
of Nd3þ, the amplifying transitions of interest in Er3þ occur between energy levels
with the same total orbital angular momentum and spin quantum numbers, L ¼ 6 and
S ¼ 3

2, respectively, but with different values of J, that is, between levels labeled in spec-
troscopic notation as 4IJ, where J is the total angular momentum quantum number
(Section 3.13). [Recall that in this notation L ¼ 6 is indicated by the letter I in the S,
P, D, F, . . . labeling of angular orbital momenta L ¼ 0, 1, 2, 3, . . . , respectively.] The
possible values of J range in integral increments from 6� 3

2 ¼ 9
2 to 6þ 3

2 ¼ 15
2 in the

case of Er3þ. In the crudest approximation, amplification in Er : glass is described by
the three-level system shown in Fig. 11.28: Pumping with diode laser radiation at 980
nm results in gain at 1.55mm. Amplification at 1.55mm can also be obtained by pump-
ing with radiation at 1480 nm; in this case the upper level 3 is a Stark-split sublevel of
4I13/2. The three-level model grossly oversimplifies the spectroscopy of Er : glass, just as
the four-level laser model oversimplifies the spectroscopy of Nd : glass (Section 4.10).16

It nevertheless provides a relatively simple and surprisingly accurate description of
various important characteristics of EDFAs, and as such it has been used frequently
in optical communications research.

The distribution of charge in the glass host produces an electric field, and this electric
field acting on the erbium ions causes a splitting of their energy levels by the Stark effect;
a level with total angular momentum quantum number J is split into J þ 1

2 sublevels that
have a Boltzmann population distribution at the temperature T of the glass. The amplifier
is described approximately by the three-level model (Fig. 11.28) with rates and cross
sections involving averages over those for the transitions between the different sublevels
of the levels 1, 2, and 3. Because of the spatial variation of the electric field in the crystal,
different Er3þ ions have different Stark splittings, resulting in an inhomogeneous line
broadening. The amplifying transition is also (homogeneously) broadened by

980 nm

1550 nm

Rapid decay

4I11/2

4I13/2

4I15/2

Figure 11.28 Three-level model for amplification at 1.55mm in Er : glass.

16At very low temperatures (T � 77K) only the lowest Stark-split sublevels have any significant population,
and Er : glass in that case is approximately described by the four-level model for gain.
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spontaneous emission. The absorption and emission spectra of the amplifying transition
are therefore determined by overlapping Lorentzian lineshapes and depart significantly
from a pure Lorentzian (or Gaussian) form; they are also temperature dependent.
Figure 11.29 shows a measured stimulated emission cross section s (l) for Er : glass.
Note the large peak cross section, �7 � 10221 cm2. The radiative lifetime of the
upper level is about 10 ms, and the gain bandwidth is nominally taken to be about 30
nm, or 4 THz.

The gain coefficient for EDFAs exhibits the behavior expected from formula (4.12.3)
for a three-level laser in which the pumping rate P is proportional to the pump laser
power. At low pump power levels (a few milliwatts) the gain coefficient increases line-
arly with pump power, but then begins to level off and increase more slowly as the pump
power is increased. Similarly, the gain coefficient saturates with increasing signal power
in approximately the manner expected from (4.12.3). As we now show, the three-level
amplifier model leads to a useful formula that, among other things, accounts for the sat-
uration and threshold characteristics of EDFAs.

Recall Eqs. (4.7.4) for the population densities N1 and N2 in the three-level model. In
terms of the field intensity Is and the stimulated emission and absorption cross sections,
s e
s and s a

s , respectively, we can write the equation for N2 as
17

dN2

dt
¼ �G12N2 þ PN1 � 1

hns
(s e

s N2 � s a
s N1)Is, (11:14:1)

where the subscript s denotes the “signal” field that undergoes amplification. In the case
of optical pumping with a field of intensity Ip, similarly,

PN1 ¼
s a
p

hnp
Ip, (11:14:2)
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Figure 11.29 Measured stimulated emission cross section of Er3þ in a fluorophosphate glass at room
temperature. [From W. J. Miniscalco and R. S. Quimby, Optics Letters 16, 258 (1991).]

17In the case of degenerate atomic levels, for example, s a
s ¼ (g2=g1)s e

s , and s
e
s N2 � s a

s N1 takes the familar
form s e

s [N2 � (g2=g1)N1].

11.14 FIBER AMPLIFIERS AND LASERS 539



with s a
p ; s a(np) the absorption cross section at the pump frequency np. We will gen-

eralize to allow the possibility that the pump can also stimulate transitions fromN2 toN1,
and replace (11.14.2) by

P(N1 � N2) ¼ 1
hnp

(sp
aN1 � sp

eN2)Ip, (11:14:3)

where sp
e ¼ s e(np) is the stimulated emission cross section at the frequency np; this

form assumes that the level 3 that is directly pumped decays rapidly to level 2, as is
characteristic of the three-level model. The pump, in order to populate N2 rather than
deplete it, will generally be at a frequency for which sp

e is relatively small, but including
sp

e will allow us to write our equations in a form that is more symmetrical in the different
fields. For example, the generalization of (11.14.1) is

dN2

dt
¼ �G21N2 �

X
j

Ij
hnj

(sj
eN2 � sj

aN1): (11:14:4)

In our model thus far, j here is summed over a signal field and a pump field, but it should
be clear that this equation holds for any number of signal and pump fields with intensi-
ties Ij and frequencies nj; this is important because EDFAs for optical communications
must amplify more than one input signal. The steady-state value N2 of the upper-level
population is obtained as usual by putting dN2/dt ¼ 0:

N2 ¼ � 1
G21

X
j

GjIj
hnj

[(sj
a þ sj

e)N2 � sj
aNT ]: (11:14:5)

We have used the fact that N1 þ N2 ¼ N1 þ N2 ¼ NT in the three-level model
[Eq. (4.7.5)]. Because the transverse cross-sectional area of the field of frequency nj
might be larger than the cross-sectional area of the active region, we have also introduced
the confinement factor Gj (,1), which in the simplest description is just the ratio of the
cross-sectional area of the active region to a cross-sectional area characterizing the field
intensity Ij.

In the plane-wave approximation,

uk
@Ik
@z
þ 1
vg

@Ik
@t
¼ (sk

eN2 � sk
aN1)Ik, (11:14:6)

where vg is the group velocity and uk ¼ þ1 for propagation in the forward (þz) direction
and uk ¼ 21 for propagation in the backward (2z) direction. We again introduce the
confinement factor and write the steady-state version of this equation in terms of
the power Pk ¼ IkS where S is the cross-sectional area of the active (gain) volume of
the amplifier:

uk
dPk

dz
¼ Gk(sk

eN2 � sk
aN1)Pk ¼ Gk[(sk

a þ sk
e)N2 � sk

aNT ]Pk: (11:14:7)

There is no competition for the letter P in the rest of this section, sowe are departing from
our usual practice of writing Pwr for power. From this expression we see that (11.14.5) is
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equivalent to

N2 ¼ � 1
G21S

X
j

uj
hnj

dPj

dz
, (11:14:8)

and this in turn allows us to write (11.14.7) in the form

uk
Pk

dPk

dz
¼ �ak � hnk

Psat
k

X
j

uj
hnj

dPj

dz
, (11:14:9)

with

ak ¼ Gksk
aNT (11:14:10)

and

Psat
k ¼

G21Shnk
Gk(sk

a þ sk
e)
: (11:14:11)

Psat
k is the saturation power for the field of frequency nk.

18

Now let us multiply both sides of (11.14.9) by uk, use the fact that u2k ¼ 1, and inte-
grate both sides of the resulting equation from z ¼ 0 to z ¼ L:

Pk(L) ¼ Pk(0) exp �ukakL� uk
hnk
Psat
k

X
j

uj
hnj

[Pj(L)� Pj(0)]

( )
: (11:14:12)

For forward-propagating fields the input and output ports for the amplifier are at z ¼ 0
and z ¼ L, respectively, whereas for backward-propagating fields the input and output
ports are defined by z ¼ L and z ¼ 0, respectively. So we define

Pin
i ¼ Pi(0), Pout

i ¼ Pi(L) for uk ¼ þ1, (11:14:13a)

Pout
i ¼ Pi(0), Pin

i ¼ Pi(L) for uk ¼ �1, (11:14:13b)

in terms of which (11.14.12) is

Pout
k ¼ Pin

k exp �akLþ hnk
Psat
k

X
j

1
hnj

[Pin
j � Pout

k ]

( )
: (11:14:14)

18Note that for Gk ¼ 1, G21 ¼ A21, and sk
a þ sk

e ¼ 2sk
e, Psat

k is just the area S times the saturation intensity
Isatn defined by (4.11.2).
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This relation among the different input and output powers in the amplifier may be
simplified by defining

Pin,out
i ¼ Pin,out

i

hni
, (11:14:15a)

Psat
i ¼

Psat
i

hni
: (11:14:15b)

The P’s represent photon fluxes rather than powers, and we use them to write the prin-
cipal result of our analysis as

Pout
k ¼ Pin

k exp �akLþ Pin � Pout

Psat
k

� �
, (11:14:16)

where

Pin,out ;
X
j

Pin,out
j : (11:14:17)

Summing both sides of (11.14.16) over all N beams, we obtain

Pout ¼
XN
k¼1

Pout
k ¼

XN
k¼1

ak exp �Pout

Psat
k

� �
, (11:14:18)

with

ak ; Pin
k exp �akLþ Pin

Psat
k

� �
: (11:14:19)

The amplifier in the three-level model is therefore characterized by two parameters for
each frequency nk: the (small-signal) attenuation coefficientak and the saturation photon
flux Psat

k , both of which can be determined by measuring the transmission of light at fre-
quency nk by the (unpumped) fiber. Then, given the N input photon fluxes Pin

k , we can
solve (11.14.18) numerically for Pout, which can then be used in (11.14.16) to solve
numerically for the output photon fluxes Pout

k of the N individual beams (Problem
11.10). Note that (11.14.16) is valid regardless of the propagation directions (forward
or backward) of the individual beams. This fact, together of course with its analytical
form, makes it much more useful than numerical solutions of the coupled differential
equations for the N intensities.

Figure 11.30 shows comparisons of experimental data for the gain of an Er : glass
fiber amplifier with theoretical predictions based on Eq. (11.14.16), in this case for a
single pump field at 1480 nm and a single signal field at 1550 nm. The gain is expressed
in decibels: G(dB) ¼ 10 log10[P

out
s =Pin

s ], while the pump power is expressed in dBm
(decibel-mW):

P (dBm) ¼ 10 log10[P(mW)], P(mW) ¼ power in mW: (11:14:20)
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Consider the case of a single signal beam and a single pump beam. The gain factors
for the signal and pump are, respectively,

Gs ¼ Pout
s

Pin
s

¼ exp �asLþ Pin � Pout

Psat
s

� �
, (11:14:21a)

Gp ¼
Pout

p

Pin
p

¼ exp �apLþ Pin � Pout

Psat
p

( )
: (11:14:21b)

Because any gain in our three-level model can result only from excitation of level 3 and
subsequently level 2, we cannot have Gs . 1 and Gp . 1; this would be inconsistent
with the conservation of energy. If we have gain (Gs .1) for the signal field, the pump
must be attenuated (Gp ,1). We have treated the signal and pump fields in a symmetrical
way in our equations, but they are distinguished physically bywhich is amplified andwhich
is attenuated.

Suppose, for example, that wewish to determine the threshold pump power (Pin
p )th for

amplification of a (co-propagating or counterpropagating) signal (Problem 11.11).
This is the pump power for which Gs ¼1, in which case the loss at the signal frequency
is just compensated by the gain. In this case Eq. (11.14.21a) implies that
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B
)

P 
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s = 0 dBm

P 
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s = –26.7 dBm

–20
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Figure 11.30 Gain at 1550 nm vs. laser pump power at 1480 nm for two different input signal
powers: 0 dBm ¼ 1 mW (crosses) and 226.7 dBm ¼ 2.14 mW (circles). The solid curves are theor-
etical predictions based on Eq. (11.14.16) and transmission data for the parameters as, ap, Psat

s , and
Psat

p for the fiber without pumping. [From A. A. M. Saleh, R. M. Jopson, J. D. Evankow, and J.

Aspell, IEEE Photonics Technology Letters 2, 714 (1990).]
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Pin � Pout ¼ asLPsat
s , or

(Pin
p )th � Pout

p ¼ asLPsat
s , (11:14:22)

since Pin
s � Pout

s ¼ 0 at threshold. Together with Eq. (11.14.21b), this gives

(Pin
p )th ¼

asLPsat
s

1� exp �apLþ Pin � Pout

Psat
p

� � : (11:14:23)

But (11.14.21a) with Gs ¼ 1 implies

exp
Pin � Pout

Psat
p

( )
¼ exp

asLPsat
s

Psat
p

( )
, (11:14:24)

so that (Problem 11.11)

(Pin
p )th ¼

asLPsat
s

1� exp asPsat
s =Psat

p � ap

h i
L

n o : (11:14:25)

Note that this threshold pump power for signal amplification is independent of the input
signal power.

In addition to the simplified energy-level model for Er3þ, this EDFAmodel assumes,
among other things, homogeneous broadening and plane-wave propagation of the signal
and pump fields guided by the fiber. Avery important omission in the model is amplified
spontaneous emission (ASE, Section 6.13), which can result in gain saturation if it
becomes sufficiently intense. In optical communications employing EDFAs the ASE
co-propagating with the signal can also degrade the signal-to-noise ratio at the receiver.
The omission of ASE for the modeling of gain and saturation characteristics can be
expected to be valid if the ASE power remains small compared to the saturation
power of the amplifier (Problem 11.12). The three-level model can be extended to
include ASE, and various refinements of it are found to have generally good predictive
value.19

Glass fibers doped with rare earths (erbium, neodymium, ytterbium, . . .) and pumped
with diode lasers can, of course, also serve as laser ocillators when end reflectors are
added to form a resonator. In fact, fibers were among the first laser media. The first
fiber laser was demonstrated in 1961, and following that work with 3-inch-long cladded
Nd : glass rods, a 1-m fiber laser was demonstrated in which a 10-mmNd : glass core was
clad with 1-mm-diameter lower-index glass. The fiber was wound into a helix for effi-
cient pumping by a flashlamp, and gains of approximately 50 dB were obtained.

One advantage of single-mode fiber lasers is their excellent beam quality (M2 � 1), a
consequence of the fact that the transverse spatial profile of the field is determined by the

19In the fiber literature this three-level model is usually referred to as a two-level model because the equations
are written explicitly only for the populations of the levels 1 and 2 of the amplifying transition, and not for the
level 3 that is pumped but decays rapidly to the level 2. See, for instance, Desurvire (footnote 15).
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refractive indices and radii of the fiber core and cladding and is insensitive to mechanical
or temperature fluctuations. The broad gain bandwidth allows wavelength tunability,
while the high efficiency and broad absorption bandwidth allow pumping with low-
power diode lasers that do not have to emit at a particular wavelength and do not
have to be temperature stabilized. The bending and coiling of a fiber (Section 8.7) elim-
inates alignment considerations that might complicate other laser systems in some appli-
cations. While the most important application of fiber amplifiers and lasers has
undoubtedly been in communications (Chapter 15), recent progress toward higher
output powers will likely result in the replacement of some existing high-power lasers
by much more compact and economical fiber lasers; for some applications, such as
laser marking and bar-coding, fiber lasers are already being used and marketed.

In the single-mode fiber amplifiers and lasers considered thus far, the doped, active
core is typically about 6–10 mm in diameter, and efficient coupling of the pump radi-
ation into such a tightly confined core requires the spatial coherence of a single-mode
pump (Chapter 13). Single-mode diode lasers are generally limited in power to a few
watts, which therefore limits the output of a conventional single-mode fiber laser to a
fewwatts. Significant progress in high-power fiber lasers occurred with the development
of double-clad fibers (Fig. 11.31) in which the active core is surrounded by a lower-
index, inner cladding (�100 mm), which in turn is surrounded by a lower-index, thinner
outer cladding. The inner cladding has a much larger diameter than the core and has a

Pump
radiation

Laser
radiation

Outer cladding

Inner cladding

(a)

(b)
(c)

Refractive index

Active core

Core

Inner cladding

Outer cladding

Figure 11.31 (a) A double-clad step-index fiber and (b) the refractive index profile. The inner
cladding diameter is typically a few hundred times larger than the active core diameter, which is typi-
cally .10mm. (c) A D-shaped inner cladding cross section that results in a greater filling factor than is
obtained with a cylindrically symmetric double-clad fiber in which both the inner cladding and core
cross sections are circular.
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larger numerical aperture (Section 8.6). The basic idea here is that the spatially incoher-
ent, divergent radiation from a high-power diode bar or stack can be injected into the
large numerical-aperture double-clad fiber and be absorbed by the active core as it is
guided down the length of the fiber. The absorption efficiency is defined by

h ¼ P(0)� P(L)
P(0)

¼ 1� e�[F(Score=Stotal)apL], (11:14:26)

where P(0) is the injected pump power, P(L) is the remaining pump power after propa-
gation over the length L of the fiber, ap is again the core absorption coefficient at the
pump wavelength, Score is the cross-sectional area of the core, and Stotal is the cross-
sectional area of the inner cladding plus that of the core. F (,1) is a filling factor
evaluated numerically based on Maxwell’s equations and the appropriate boundary
conditions. Such computations reveal that the modes of the cylindrically symmetric
double-clad fiber we have implicitly assumed are such that the filling factor is in fact
very small. Double-clad fibers are therefore designed to break the cylindrical symmetry;
the D-shaped inner cladding shown in Fig. 11.31c is one of various designs that lead to
filling factors �0.5. With such designs the advantage of double-clad fibers is realized:
Equation (11.14.26) implies that nearly all the pump power can be absorbed by the active
core of a double-clad fiber if, for instance, the fiber is long enough. Since the inner
cladding cross section is much larger than the core cross section, the absorbed power
�P(0) can be made much larger than that possible with single-clad fibers, and con-
sequently much higher output laser powers are possible with double-clad fibers.

Because of their large surface-to-volume ratio, high-power fiber lasers do not suffer
from heat dissipation problems that beset other lasers at high powers, and they are simply
air cooled or, if necessary at high power levels, water cooled. The power scaling of fiber
lasers and amplifiers is limited primarily by ASE, which limits the population inversion,
and nonlinear optical effects including stimulated Raman scattering (SRS) and stimu-
lated Brillouin scattering (SBS), which convert radiation in the core into radiation at non-
lasing frequencies or into vibrational modes of the glass that can result in damage or
fracture of the fiber. SRS and SBS are relatively weak in glass fibers, but become signifi-
cant in fiber lasers because of the long path length: The low attenuation coefficient
allows tens of meters of lasing fiber to be wrapped around a spool. Self-phase modu-
lation is another nonlinear effect that can reduce peak powers in pulsed fiber lasers.

One way to reduce nonlinearities is to make the core diameter dcore larger. As
Eq. (11.14.26) indicates, this can allow an increase in the absorption efficiency without
increasing the length L of the fiber. It also reduces the threshold powers for SRS and SBS
since these processes are intensity dependent: Increasing dcore increases the mode diam-
eter of the lowest-order mode and therefore decreases the intensity for a given power.
Simply increasing the core diameter, however, presents a problem when we recall that
the condition for a single mode in a step-index fiber is [Eq. (8.7.1)]

pdcore
l

NA ¼ pdcore
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � n22

q
, 2:405: (11:14:27)

So if we increase dcore we must decrease the numerical aperture (NA) proportionately in
order to prevent multimode oscillation that would generally render the beam quality of
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the laser unacceptable in many applications. But, as discussed in Section 8.7, decreasing
NA could result in large bending losses.

An elegant way around this multimode problem with larger cores is to coil the fiber
around a spool of appropriate radius. Recall from the discussion in Section 8.7 that
higher-order modes suffer greater bending losses than the lowest-order mode. The
bending radius can be chosen such that the power loss for the lowest-order mode is
sufficiently small, while the loss in higher-order modes is sufficiently large, that
only the lowest-order mode lases. This approach allows higher-power single-mode
lasing not only because nonlinear effects are weakened or prevented but also because
ASE in the core is reduced. This reduction is a consequence of the fact that spon-
taneous emission goes into all allowed modes of the field, and therefore only a rela-
tively small portion of the total spontaneous emission undergoes amplification in the
active core.

Single-mode high-power fiber lasers are sometimes said to be brightness upconver-
ters in that they convert the spatially incoherent, low-brightness radiation from bars or
stacks of laser diodes into spatially coherent, high-brightness radiation. There has
been rapid progress in the development of high-power fiber lasers. Yb : glass fibers
are especially useful as high-power gain media at �1.1mm because of the large quan-
tum efficiency (ffi90%) of ytterbium, which allows optical efficiencies .80% and little
“thermal loading” of the gain medium by the pump. High-power fiber sources, like those
based on other high-power laser systems, often consist of a laser followed by one or more
amplifiers, the so-called master-oscillator-power-amplifier (MOPA) configuration.
MOPAs have the advantage that the power in an amplifier is limited to the final
output power, whereas that inside a laser is usually much larger than the output
power (Chapter 5). Therefore, large output powers can be realized without excessively
large and possibly damaging intracavity powers. MOPAs can also be advantageous
when it is difficult to control the tunability or noise of the output of a high-power oscil-
lator, and they can amplify weak modulated pulses with high fidelity.

† The end reflectors forming a fiber laser resonator can be dielectric mirrors butted
onto the ends of the fiber or, more commonly in commercial fiber lasers, fiber Bragg gratings.
A fiber Bragg grating (FBG) is essentially just a short (�1 cm) section of fiber with a refractive
index that varies periodically with distance z along the fiber, for example, n(z) ¼ nþDn(z) with

Dn(z) ¼ a sin
2pz
dg

(11:14:28)

and jDnj 
 n. Light of wavelength l incident on the FBG along the z direction is transmitted
unless20

l ¼ 2ndg, (11:14:29)

in which case it is reflected. That is, the FBG serves as a reflector for light having a wavelength
equal to twice the period dg of the index grating times the refractive index of the fiber material.

The “photosensitivity” effect by which an index grating with a period on the order of an opti-
cal wavelength can be “written” into a fiber was discovered in the late 1970s. It was found that
when an intense beam from an argon ion laser was injected into a germanosilicate fiber, the
beam was increasingly reflected until, after a few minutes, it was almost totally reflected. This
was interpreted as the result of an index grating formed by the standing-wave interference pattern

20See Eq. (6.A.3) with u ¼ p/2 and ls ¼ dg.
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formed by two counterpropagating fields.21 How a spatial intensity variation translates into an
index variation is not completely understood, but it is believed to result from photoionization
resulting in a change in the absorption spectrum of the glass. The spatial variation of the absorp-
tion coefficient implies, from the Kramers–Kronig relation (Section 3.15), a corresponding
spatial variation of the refractive index.

The period dg here is obviously fixed by the wavelength of the laser that writes the grating. In
the late 1980s, however, it was realized that side illumination of a doped fiber with two beams
would allow the grating period to be “tuned” by varying the angle between the two beams.
Consider, for example, two fields with the same amplitude and with wave vectors k1 and k2, j
k1 j ¼ j k2 j ¼ k ¼ 2p/lw. The interference of the two fields produces a total field proportional
to exp(k1� r) þ exp(ik2� r) and therefore an intensity having an interference term proportional
to cos(k1 2 k2)� r. This interference term has a period P ¼ 2p/jk1 2 k2j along the “z” direction
defined by k1 2 k2. Now

jk1 � k2j ¼ [k21 þ k22 � 2k1� k2]1=2 ¼ k[2� 2 cos u]1=2 ¼ k 4 sin2
u

2

� �� 1=2

¼ 2k sin
u

2

� �
, (11:14:30)

where u is the angle between k1 and k2. Therefore

P ¼ 2p
2k sin(u=2)

¼ lw
2 sin(u=2)

: (11:14:31)

Theperiodof an indexgratingwrittenwith two interferingbeamsofwavelengthlw can, therefore, be
varied from lw/2 to 1, depending on the angle between the beams. In fact, this is the basic idea
behind the manufacture of FBGs. The source of the writing beams is usually an ultraviolet laser
(e.g., KrF at 248 nm) that illuminates a “phase mask” consisting of periodic corrugations such
that two interfering beams at the desired angle are formed by diffraction. Fiber Bragg gratings
have other applications besides their use as reflectors in fiber lasers. †

A major recent development in optical fiber technology is the photonic crystal fiber.
A photonic crystal is a material with a refractive index that varies periodically in one,
two, or three dimensions. A fiber Bragg grating may be regarded as a one-dimensional
photonic crystal; more complex photonic crystals can completely reflect light of a given
wavelength and polarization for essentially any angle of incidence. The concept, if not
theword, is an old one.Maxwell’s equations applied to structures that are periodic on the
scale of a wavelength have solutions in which only certain wavelengths are allowed, just
as the Schrödinger equation for an electron in a crystal restricts the energies to certain
bands separated by band gaps (Chapter 2). In the case of photonic crystals, forbidden
gaps are called photonic band gaps. Photonic band-gapmaterials have been of particular
interest for applications in which it is desirable to inhibit spontaneous emission: An

21Lord Rayleigh (1887) recognized the possibility of such an effect. In a paper dealing in part with “the
propagation of waves through a medium endowed with a periodic structure,” he cited experiments by
Becquerel on the reflection of light from metals coated with a film and suggested an explanation for the
observed strong reflection: “The various parts of the film . . . may be conceived to be subjected, during
exposure, to stationary luminous waves of nearly definite wave-length, the effect of which might be to
impress upon the substance a periodic structure recurring at intervals equal to half the wave-length of the
light . . . In this way the operation of any kind of light would be to produce just such a modification of the
film as would cause it to reflect copiously that particular kind of light.”
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excited atom whose transition frequency lies within a photonic band gap does not
radiate.22

In a photonic crystal fiber (PCF) the “crystal” structure involves a regular pattern of
thin air channels parallel to the fiber axis (Fig. 11.32). Unlike a step-index fiber, there is
no high-index core that is materially different from the cladding. It is not obvious that
such a structure can guide light: Is wave-guiding impossible without a high-index
core, or will guiding occur because the solid core is surrounded by a medium of
lower average (or “effective”) refractive index? For such a complicated geometry, this
question can be confidently answered only by numerical solutions of Maxwell’s
equations, or, better yet, by experiments. The first such experiments in the late 1990s
revealed not only that single-mode guided beams were possible in PCFs, but more sur-
prisingly that single-mode guiding occurred for a wide range (337–1550 nm) of wave-
lengths. The latter property, dubbed “endlessly single mode,” is in marked contrast to a
step-index fiber that, according to Eq. (11.14.27), becomes multimode when the wave-
length l is smaller than a certain value depending on the core diameter and the numerical
aperture of the fiber.

In numerical computations of the modal properties of PCFs of the type shown in
Fig. 11.32, it is found that only a single guided mode occurs if

d

L
. 0:41, (11:14:32)

where d and L are, respectively, the hole diameter and the center-to-center hole spacing
(or “pitch”) indicated in Fig. 11.32a. This condition is sometimes loosely interpreted by

Figure 11.32 (a) Schematic illustration of the cross section of one type of photonic crystal fiber. Note
the missing hole at the center. (b) Scanning electron microscope image of the PCF of this type used in
early experiments demonstrating the modal properties of such a structure. [From P. Russell, Science
299, 358 (2003) and J. C. Knight, Nature 424, 847 (2003).]

22Recall also the remarks in Section 3.11 concerning the inhibition of spontaneous emission in cavity QED.
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imagining that, since the air holes have a smaller refractive index than the surrounding
silica, and therefore that total internal reflection can occur at their interface with the sur-
rounding glass, the air holes define a sort of “sieve.” The lowest-order mode has a diam-
eter �2L and therefore cannot “slip through” the narrow gaps between the holes; it must
be confined to the central core (missing-hole) region. Higher-order modes, however,
have transverse spatial variations on a smaller scale, are able to slip through the gaps,
and therefore are not “trapped” or confined unless the hole spacing is sufficiently
small. The fact that (11.14.32) is insensitive to wavelength, or to d andL independently,
means that single modes with large diameters are possible over a very wide range of
wavelengths as long as a PCF like that in Fig. 11.32 is designed to satisfy (11.14.32).
For the PCF of Fig. 11.32b, d � 300 nm, L ¼ 2.3 mm, and d/L ¼ 0.13.

Figure 11.33 shows results of numerical computations on modal characteristics of
such a “missing-hole” PCF. For d/L satisfying (11.14.32) the PCF is “endlessly
single-mode” with modes confined near the central core, whereas in the parameter
region below the curve the PCF is multimode. In the parameter region above the
curve the PCF is single mode, but the mode diameters are comparable to the diameter
of the fiber, as opposed to modes satisfying (11.14.32), which are bell-shaped with
mode diameter �2L.

As discussed in Section 8.7, conventional fibers have unpredictable output polariz-
ations because of random structural variations; for this reason amplifiers and other com-
ponents of telecommunication systems must be polarization insensitive. PCFs with a
twofold symmetry as opposed to the full circular cross-sectional symmetry of a conven-
tional fiber, however, are found to be strongly birefringent and therefore are not suscep-
tible to unpredictable polarization due to random variations in structure or temperature.
Twofold symmetry can be realized, for instance, by using a regular pattern of holes with
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Figure 11.33 Parameters for single-mode vs. multimode PCFs of the type shown in Fig. 11.32.
The curve is obtained from the formula l/L ¼ 2.80[d/L2 0.406]0.86 obtained by B. T. Kuhlmey,
R. C. McPhedran, and C. M. de Sterke, Optics Letters 27, 1684 (2002), as a fit to results of numerical
simulations.
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two different diameters such that the pattern is unchanged under rotations byp about the
fiber axis.

In Section 8.4 we alluded to the deleterious effect of group velocity dispersion in fiber
communications. PCFs offer another advantage over conventional fibers in this regard:
d and L and other design parameters can be selected such that the D parameter charac-
terizing group velocity dispersion is very small. Numerical analyses of PCFs yield an
effective refractive index from which D can be computed, and a PCF can then be
designed to make D small. Experiments have demonstrated “ultra-flattened dispersion”
in PCFs: D � 0+ 1 ps/(km-nm) over a wavelength range of hundreds of nanometers,
compared to D �17 ps/(km-nm) at 1.55mm in conventional silica–glass fibers. PCFs
in fiber communications could eliminate the need for the dispersion compensation tech-
niques employed with step-index fibers (Chapter 15).

Hollow-core PCFs are especially attractive for guiding high-power radiation. In these
fibers there is a hollow central core surrounded by a regular pattern of air channels with
diameters smaller than the core. The confinement of an approximately Gaussian mode in
the core is the result of a photonic band gap of the surrounding array of air channels.
Modes within the band gap are confined to the hollow core and as such are far less
susceptible to nonlinear effects associated with propagation in glass.

Research in photonic crystal fibers has expanded dramatically in recent years.23 One
of the important questions being addressed in connection with the possible replacement
of step-index fibers by PCFs is whether the low attenuation of step-index telecom fibers
(�0.2 dB/km, as mentioned in Section 8.7) can be achieved with PCFs. In addition to
absorption and Rayleigh scattering, and losses due to bending for bending radii smaller
than a few millimeters, PCFs can suffer losses due to scattering from surface structure
and roughness at the glass–air interfaces; control of these losses involves details of the fab-
rication of these fibers that are beyond our scope here. Attenuations as lowas �0.6 dB/km
have been obtained with a solid-core PCF, while �1.2 dB/km is the lowest attenuation
reported for a hollow-core PCFat the present time. Hollow-core fibers appear theoretically
to be most promising in this regard due to the simple fact that the light propagates mainly
within the hollow core.

Photonic crystal fiber lasers made by doping the central core region with rare-earth
ions offer additional advantages besides the compactness, high gain, and broad gain
bandwidth associated with other fiber lasers. In particular, mode diameters �10 times
those of step-index fibers are possible, leading to substantially reduced nonlinearities
and much higher powers. The advantages of double cladding—large numerical aper-
tures and efficient coupling of pump power into the doped core—can also be realized
with PCFs in which air channels surrounding the doped core act to guide the laser radi-
ation while an additional air cladding confines the pump radiation (Fig. 11.34). The air
cladding replaces the low-index, solid outer cladding of a conventional double-
clad fiber. Such a design results in an inner cladding with high numerical aperture
(NA � 0.6) and therefore efficient coupling of pump power into the fiber. It also
allows larger single-mode core diameters and smaller inner cladding diameters, and
therefore shorter fiber lengths and reduced nonlinearities [Eq. (11.14.26)]. These
designs are therefore of great interest for power scaling of fiber lasers. For the PCF of
Fig. 11.34, single-mode output of 120W was obtained with a 48-cm fiber having

23The reviews cited in Fig. 11.32 include pictures of various PCF designs.
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core and inner cladding diameters of �180 and 60mm, respectively. It should also be
noted that pumping of more conventional double-clad Yb fiber lasers with high-
power diode stacks has yielded nearly single-mode output powers �1 kW and good
beam quality (M2 � 1.4). At the present time the primary limitation to high-power
scaling of fiber lasers appears to be the limited pump powers available from laser
diodes. High-average-power (�100W) pulsed fiber lasers employing chirped pulsed
amplification and other techniques are also under development.24

† The GVD and SPM of optical fibers—that is, their dispersive and nonlinear properties—
make them convenient for compression of the output pulses from mode-locked lasers. For wave-
lengths below about 1.3 mm the GVD (and therefore the chirp) is positive, and a pulse of suffi-
ciently short duration and sufficiently high intensity will therefore be temporally and spectrally
broadened by the combined effects of GVD and SPM in a fiber. It can then be compressed by
employing the negative GVD of prisms and gratings.

For wavelengths greater than 1.3 mm the negative GVD (and therefore negative chirp) of glass
fibers allows pulse compression by SPM and GVD in a single fiber. This relatively simple tech-
nique requires, of course, that a pulse be sufficiently intense and sufficiently short for SPM and
GVD, respectively, to be effective. When these conditions are met, a pulse can propagate with-
out any change in its duration as the effects of SPM and negative GVD are effectively balanced.
This temporal “soliton” effect has already been mentioned in Section 10.4. A rough estimate of
the peak pulse intensity I0 required for a pulse of duration tp to propagate as a soliton
can be obtained by equating the characteristic length scale LGVD for group velocity dispersion
[Eq. (8.4.8)] to the characteristic length scale

LSPM ¼ c

vn2I I0
(11:14:33)

for self-phase modulation. The peak “soliton power” obtained in this way is (Problem 11.13)

P � cjbj
vn2It 2

p

¼ l3jDjAeff

4p2cn2It 2
p

, (11:14:34)

Figure 11.34 Cross section of a double-clad PCF laser. [From J. Limpert, F. Roser, T. Schreiber, and
A. Tunnermann, IEEE Journal of Selected Topics in Quantum Electronics 12, 233 (2006).]

24See the article cited in Fig. 11.34.
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where Aeff is an effective cross-sectional area such that P ¼ I0 Aeff, and b and D are the GVD
parameters defined by Eqs. (8.4.2) and (8.4.23), respectively. This estimate provides an order-
of-magnitude approximation to the pulse power required for propagation without change in
the pulse duration in a medium with SPM and negative GVD. It predicts that only modest
pulse powers are required for soliton propagation in optical fibers, in agreement with observations
(Problem 11.13).

Equation (11.14.34) implies that the soliton pulse energy times the pulse duration (/ P �
tp � tp) is proportional to the dispersion parameter jDj. This observation is the basis for another
way in which pulses can be compressed: Decreasing jDj along the length of a fiber, while keeping
the pulse energy constant, results in a decrease in tp with propagation. Alternatively, in a fiber
amplifier the pulse energy increases with propagation while the dispersion parameter is approxi-
mately constant, resulting again in pulse compression. Of course, such pulse compression only
occurs if the pulse injected into the fiber has sufficient power for it to form a soliton, and the soli-
ton must be stable with respect to the variations along the fiber. In fact, one of the most important
characteristics of solitons is their stability: Provided that variations in the medium are not too
strong, a soliton will “adiabatically” adjust to them such that the opposing causes of broadening
and compression remain balanced and (11.14.34) remains applicable. †

11.15 REMARKS

The development of various kinds of lasers has been a largely evolutionary process
involving the efforts of large numbers of people throughout the world. By any reason-
able measure this development has been remarkable. Even the most optimistic early
expectations for the development and application of lasers turned out to be too
conservative.

Different lasers are very similar in their basic operating principles; the concepts of
gain, threshold, and feedback are central to an understanding of any laser, regardless
of the physical or chemical processes by which gain is established. Beyond that, how-
ever, it is obvious that different lasers differ greatly in their output power, tunability,
complexity, size, cost, and other characteristics.

Laser output powers, for example, range from milliwatts in the case of laser
pointers, for example, to the petawatt levels realized with chirped pulse amplification.
Powers a thousand times greater than those generated by a large electrical power plant
(�1 GW) are routinely produced with tabletop terawatt lasers, and it is not unusual
for lasers to generate powers in excess of the total power consumption in the United
States (�10 TW). Laser powers �1020 W appear to be feasible in more “futuristic” sys-
tems. By comparison, the total solar power received by the Earth is about �1017W, and
the power produced in the largest nuclear explosion to date (about 50Megatons) was
about (50Mt)(4�1015 J/Mt)/(40 ns) � 5�1024W ¼ 5 yottawatts.

The short pulses possiblewith lasers are the shortest man-made “events” ever created,
and with them it has become possible, for instance, to follow chemical reactions in real
time.25 Attosecond (10218 s) pulses have been measured in nonlinear processes made
possible by ultrashort, superintense laser pulses (Section 14.7); an attosecond is to a
secondwhat a second is to the age of the universe! At the other extreme, laser technology
has led to extremely stable, continuous-wave radiation that approaches an idealized
monochromatic wave in its temporal characteristics.

25See Section 14.7. For a review of the development of ultrashort laser pulses and a historical perspective see
N. Bloembergen, Reviews of Modern Physics 71, S283 (1999).
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Laser wavelengths span a large range of wavelengths from the far infrared to the ultra-
violet, and many other wavelengths can be obtained by nonlinear frequency mixing pro-
cesses such as second- and third-harmonic generation. Some of the most widely used
lasers in the visible and near infrared are tunable over tens or even hundreds of nano-
meters. The wide gain bandwidths of lasers such as Ti : sapphire allow not only wide
tunability but also the generation of ultrashort pulses by mode locking.

In this chapter we have considered only lasers based on stimulated emission invol-
ving at least one bound energy level. We have not considered free-electron lasers in
which coherent radiation is generated with beams of unbound electrons in magnetic
fields. Another active area of research not discussed here is the generation of coherent
soft X-ray radiation. One approach to X-ray lasers employs a plasma column generated
by high-power radiation, resulting under certain conditions in population inversion by
electron-impact excitation. Coherent soft X-ray radiation has also been produced in
high-order harmonic generation, and work is in progress with this approach to develop
tabletop coherent X-ray sources.

Another important topic not considered here is that of astrophysical masers. These
are galactic and intergalactic sources of microwave radiation produced by amplified
spontaneous emission on rotational transitions of molecules including OH, H2O, and
HCN. An astrophysical maser was first observed at a wavelength of 18 cm in 1965;
the “beaming,” high intensity, polarization, and other properties of the observed radi-
ation were so unusual that it was initially referred to as “mysterium.” Within a few
years it was concluded that this radiation must be the result of “maser” action on
rotational transitions of OH molecules excited by radiation from a nearby star. In
1969 such radiation was observed at 1.35 mm and was attributed to a well-known
rotational transition of H2O. Many such astrophysical masers powered by energy
from different astrophysical objects, including black holes, have been identified; they
exist in part because collisional deexcitation of excited states is very slow at interstellar
cloud densities. While their actual physical diameters can be on the order of the
Earth–sun separation or more, these distant “masers” are regarded by astrophysicists
as “compact” because of their small angular diameters, which have enabled high-
resolution observations of the properties of black holes, for instance. We turn our atten-
tion in the Chapters 14 and 15 to some (mostly) more down-to-earth applications of
stimulated emission.

APPENDIX: GAIN OR ABSORPTION COEFFICIENT FOR
VIBRATIONAL-ROTATIONAL TRANSITIONS

The gain coefficient is given by the formula (Table 4.1)

g(n) ¼ l2A

8p
N2 � g2

g1
N1

� �
S(n) (11:A:1)

if we take the refractive index n ffi 1. Let N2 ¼ N(v2, J2) be the number density of mol-
ecules in vibrational level v2 and rotational level J2, the upper level of a molecular
vibrational-rotational transition. Similarly, let N1 ¼ N(v1, J1) be the number density of
the lower level of the transition. Since the degeneracy of an energy level with rotational
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quantum number J is 2Jþ1, we have

g(n) ¼ l2A

8p
N(v2, J2)� 2J2 þ 1

2J1 þ 1
N(v1, J1)

� 
S(n): (11:A:2)

As noted in Chapter 2, rotational-level spacings in molecules are much smaller than
vibrational-level spacings: The former lie in the microwave region, whereas the latter are
in the infrared. In many molecules the separation of adjacent rotational energy levels
is small compared to kBT. Then the spacing between rotational levels is small compared
to the average kinetic energy of a molecule. In this case we might expect that, as a result
of collisions, the rotations of the molecule will be in thermal equilibrium at the gas
(translational) temperature T. Then the rotational levels will be distributed according
to the Boltzmann distribution:

N(v2, J2) ¼ N(v2)
gJ2
Z

exp � EJ2

kBT

� �
, (11:A:3a)

N(v1, J1) ¼ N(v1)
gJ1
Z

exp � EJ1

kBT

� �
: (11:A:3b)

Here N(v2) and N(v1) are the total vibrational population densities regardless of
rotation, i.e.,

N(v2, 1) ¼
X1
J¼0

N(v2,1, J): (11:A:4)

gJ2 ¼ 2J2þ1 and gJ1 ¼ 2J1þ 1 are the rotational-level degeneracies, and Z is the
rotational partition function:

Z ¼
X1
J¼0

gJe
�EJ=kBT , (11:A:5)

where (Section 2.4)

EJ ¼ hcBeJ(J þ 1): (11:A:6)

For CO2, Be ffi 0.39 cm21, and it is easily checked that hcBe 
 kBT , and therefore
EJ 
 kBT except for very low temperatures or states with very large J. Partly for this
reason we can expect that (11.A.3), the assumption of rotational thermal equilibrium,
to be an excellent approximation for CO2 and many other molecules. Using (11.A.6)
in (11.A.5), we calculate

Z ¼
X1
J¼0

(2J þ 1)e�(hcBe=kBT)J(Jþ1) ¼
X1
J¼0

(2J þ 1)e�xJ(Jþ1)

�
ð1
0
e�xy dy ¼ 1

x
¼ kBT

hcBe
(x
 1): (11:A:7)
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The replacement of the sum by the integral is accurate if x
 1; then we may replace
J(J þ 1) by the continuous variable y. Note that dy/dJ ¼ 2J þ 1, which is used in writ-
ing the second line of (11.A.7). [The reader may check numerically the validity of
(11.A.7).] Thus, using (11.A.3)–(11.A.7) in (11.A.2), we write the gain coefficient

g(n) ¼ l2A

8p
Be

T
(2J2 þ 1)[N(v2)e

�BeJ2(J2þ1)=T � N(v1)e
�BeJ1(J1þ1)=T ]S(n), (11:A:8)

where Be ; hcBe=kB is the rotational constant expressed in degrees Kelvin. For CO2,
�Be ffi 0:565K.

The selection rule for allowed rotational transitions is DJ ¼ 0, +1; transitions J2 1
! J, J þ 1! J, and J! J are referred to as P(J ) branch, R(J ) branch, andQ(J ) branch
transitions, respectively. Consider for definiteness a P(J ) branch, in which case (11.A.8)
becomes

g(n) ¼ l2A

8p
Be

T
(2J2 þ 1)e�BeJ2(J2þ1)=T [N(v2)� N(v1)e

�2Be(J2þ1)=T ]S(n) (11:A:9)

for the gain on the vibrational-rotational transition (v2, J2) ! (v1, J2 þ 1). Expressions
like this are found frequently in laser physics and spectroscopy. Note that only the
vibrational-level-densities appear; the rotational-level densities are “frozen,” so to
speak, at the Boltzmann distribution (11.A.3). In a rate-equation model for gain or
absorption on a vibrational-rotational transition, therefore, rate equations are necessary
only for the vibrational populations rather than the myriad vibrational-rotational popu-
lations. The assumption of rotational thermal equilibrium leads therefore to an enormous
simplification.

Equation (11.A.9) shows that there can be a positive gain even if N(v2) , N(v1),
provided that

N(v2) . N(v1)e
�2Be(J2þ1)=T : (11:A:10)

In other words, a population inversion can be achieved on a (P-branch) vibrational-
rotational transition without having an inversion on the total vibrational populations.
In this case gain is sometimes said to be due to a partial population inversion.

In the case of CO2, Eq. (11.A.9) requires a slight modification, for it turns out that
the (001) and (100) vibrational levels have associated with them only odd and even rota-
tional quantum numbers, respectively.26 The rotational partition function (11.A.7) is

26This is a consequence of the Pauli principle: The 16O nuclei in CO2 are bosons (their nuclear spin is 0), and
so the complete wave function of the CO2 molecule must not change sign when these two nuclei are inter-
changed. This is true for the nuclear spin part of the wave function and also for the electronic part of the
ground electronic state of CO2, and therefore the combined vibrational-rotational part of the wave function
must not change sign when the two 16O nuclei are interchanged. Under this interchange a state with rotational
quantum number J changes sign if J is odd but not if J is even, a consequence of the fact that the dependence
on the rotation angle u of the wave function of a linear rotor is characterized by the associated Legendre func-
tion PM

J (u), which has the property PM
J (uþ p) ¼ (�1)JPM

J (u). The antisymmetric vibrational states change
sign under the interchange whereas the symmetric vibrational states do not. Therefore, in order for the com-
plete CO2 wave function to be symmetric under interchange of the bosonic 16O nuclei, only odd (even) values
of J can occur for antisymmetric (symmetric) vibrational states. This is one of the many remarkable conse-
quences of the Pauli principle for identical particles. In the case of the isotopic molecule 18OC16O, odd and
even values of J are observed to occur for both symmetric and antisymmetric vibrational states.
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therefore effectively halved, and consequently the gain coefficient (11.A.9) is multiplied
by 2. For the (001) ! (100) vibrational band of CO2, A � 1

5 s
�1. Using l ¼ 10.6mm,

Be ¼ 0:565K, and J2 ¼ 19, therefore, we obtain

g(10:6mm) ¼ 6:4�10�10[N(001)� 0:93N(100)]S(n) cm2-s�1 (11:A:11)

for the P(20) branch, where the vibrational population densitiesN(001) andN(100) have
units of cm23 and the lineshape function S(n) is expressed in seconds. These quantities
will depend on factors such as pressure, temperature, and gas mix.

For definiteness, let us focus our attention on a situation in which the parameters
are known reasonably well, namely, CO2 in the Earth’s atmosphere. For T ¼ 293K
and P ¼ 1 atm, the total number density found from (3.8.20) is 2.5�1019 cm23.
Assuming an atmospheric concentration of 0.033% CO2, therefore, and a Boltzmann
distribution of CO2 vibrational levels, we estimate that at sea level the absorption coeffi-
cient for 10.6mm radiation due to CO2 is (Problem 11.14)

a(n) ¼ �g(n) � 5:4� 103S(n) cm�1-s�1: (11:A:12)

It remains to estimate the lineshape factor S(n).
At atmospheric pressures the 10.6-mm absorption line of CO2 is collision broadened.

At line center, therefore, S(n) ¼ 1/(pdn0), with the collision linewidth dn0 given by
(3.8.12). Since N2 and O2 are the most frequent collision partners of CO2 in the atmos-
phere, we can approximate dn0 by including only contributions fromN2 and O2. Wewill
assume the following cross sections (Problem 11.14):

s (CO2, O2) ¼ 9:5� 10�15 cm2, (11:A:13a)

s (CO2, N2) ¼ 1:2� 10�14 cm2, (11:A:13b)

so that

dn0 ¼ 2:7� 109 s�1 (11:A:14)

for the atmospheric concentrations �0.78 and 0.21 of N2 and O2, respectively, and
therefore (Problem 11.14)

S(n) ¼ 1
pdn0

¼ 1:2� 10�10 s�1: (11:A:15)

It follows that

a(n) ¼ 6:5� 10�7 cm�1, (11:A:16)

which is in good agreement with measurements of the absorption coefficient at 10.6 mm
due to atmospheric carbon dioxide at low altitudes.27 The attenuation coefficient for
10.6-mm radiation in the Earth’s atmosphere also has a significant contribution from
water vapor27 and particulate matter (“aerosols”).

27See, for instance, A. D. Wood, M. Camac, and E. T. Gerry, Applied Optics 10, 1877 (1971).
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PROBLEMS

11.1. (a) In the Introduction we noted that a transition between two nondegenerate
states is always absorbing in thermal equilibrium, that is, the gain coefficient
is negative. Show that the same conclusion holds regardless of the level
degeneracies.

(b) Show that the absorption linewidth of a Doppler-broadened transition is
typically 1025–1026 times the transition frequency.

(c) Use numerical estimates to show that optical pumping of a gaseous laser
medium with a blackbody source of radiation will usually not be very
practical.

11.2. Consider an elastic collision between an electron and an atom. Show that the
kinetic energy exchanged is relatively small.

11.3. For the excitation transfer process indicated in Fig. 11.1b, write rate equations
like (11.3.3) for the populations NA, NB, and NB� .

11.4. According to our discussion in Section 11.4, the higher gain of the 3.39-mm tran-
sition in the He–Ne laser would ordinarily preclude lasing at 632.8 nm, unless
the 3.39-mm line is deliberately suppressed. Why is this so?

11.5. In Section 11.5 we replaced the Boltzmann factor e�DE=kBT by unity, whereDE is
the energy difference between He(21S ) and Ne(3s2). Was this a reasonable
approximation for our purposes?

11.6. In Section 11.5 we mentioned that White and Gordon deduced relative level
populations by monitoring intensities of spontaneously emitted “sidelight.”
Show that a knowledge of the Einstein A coefficient of a transition, combined
with a frequency filter and an absolute intensity measurement, allows an absolute
measurement of the upper-level population. [For instance, White and Gordon
reported a He(21S ) population of about 2.5�1011 cm23 under lasing con-
ditions.] Does radiative trapping affect such a measurement?

11.7. Consider the equation
dI

dz
¼ g0I

1þ I=Isat

describing the propagation of the intensity of a plane wave in an amplifier with
small-signal gain g0 and saturation intensity Isat. Show that the intensity after a
propagation distance z satisfies the transcendental equation

x ¼ G0e
�a(x�1),

where x ¼ I/I0, G0 ¼ eg0z, a ¼ I0/I
sat, and I0 ¼ I(z ¼ 0) is the intensity input to

the amplifier. Make a plot of (a) x vs.G0 for a range of values of a and (b) x vs. a
for a range of values ofG0. (You can either solve numerically the transcendental
equation for x or numerically integrate the differential equation for I.)

11.8. (a) Using the four-level model, estimate the saturation intensities of Nd :YAG
and Ti : sapphire lasers.
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(b) Estimate the saturation fluence at 800 nm of a Ti : sapphire amplifier.
(c) Using the Frantz–Nodvik model (Section 6.12), derive a formula relating

the input and output pulse fluences, both expressed in units of the saturation
fluence of the amplifier. Is there an optimal input fluence for efficient energy
extraction from the amplifier?

11.9. (a) Calculate the Coulomb electric field between the electron and the nucleus in
the hydrogen atom, using the Bohr model for the ground level of the
electron.

(b) Calculate the intensity of a monochromatic plane wave with the electric field
strength found in part (a), and compare it with the intensity 1021W/cm2 that
can be obtained by chirped pulse amplification.

(c) Calculate the radiation pressure exerted by a field with the intensity
1021 W/cm2, assuming the field is normally incident on a mirror.
Compare it with estimates for the pressure at the center of the sun,
which is believed to be around 3�1011 atm.

11.10. From curve fits to measured attenuation data in the experiments cited in
Fig. 11.30 it was deduced that the absorption coefficients at 1550 and 1480
nm in the fiber were 0.876 and 0.792 m21, respectively, and the corresponding
saturation powers were hnpPsat

p ¼ 0:549mW and hnsPsat
s ¼ 0:279mW. Using

these data, and assuming a diode laser pump power of 5 mW (7 dBm), plot
the gain G in decibels of the signal field for fiber lengths up to 10 m in
length. Is there an optimal fiber length for maximal gain? If so, what is the phys-
ical basis for such an optimal length, that is, why doesn’t the gain increase mono-
tonically with the length of fiber?

11.11. (a) Using the three-level model and the data provided in the preceding problem,
calculate the threshold diode laser pump power for amplification of 1550 nm
radiation with a 3.87-m erbium-doped fiber. Compare your result to the
experimentally determined value of 1.2 dBm.

(b) Show that Gp , 1 guarantees that the denominator in (11.14.25) is always
positive.

11.12. (a) Amplified spontaneous emission in an amplifier can be expected to have a
negligible effect on the amplification of an input signal if the ASE noise
power (Pwr)N (Section 6.13) is small compared to the gain saturation
power. Using the data provided in Problem 11.11, estimate the amplifier
gain G (dB) at which ASE might become significant.

(b) Even for high-gain amplifiers ASE can be expected to have a negligible
effect on the amplification of an input signal if the input signal power is
large compared to the effective noise input for ASE (Section 6.13).
Assuming an EDFA gain bandwidth of 4 THz, and a spontaneous emission
factor �1, estimate the input signal power that should be exceeded if ASE is
not to affect its amplification. [Note: In the paper cited in Fig. 11.30 it is
stated that: “As a conservative guideline, [Eq. (11.14.16)] is valid for ampli-
fiers with gains less than �20 dB or for amplifiers with input signal powers
greater than �220 dBm.”]
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11.13. (a) Derive expression (11.14.33) for the propagation distance for which self-
phase modulation can be expected to play a significant role in the propa-
gation of a pulse with peak intensity I0.

(b) Using the approximate formula (11.14.34), estimate the peak pulse power
required for soliton propagation of a 1.55-mm, 10-ps pulse in an optical
fiber with a dispersion parameterD � 16 ps/(km-nm) (Problem 8.5), a non-
linear refractive index coefficient n2I � 3.2 � 10220 m2/W, and an effective
mode area Aeff ¼ p (2.5mm)2. (Answer: about 30 mW.) What is the peak
intensity and the energy contained in a 10-ps Gaussian pulse with this effec-
tive cross-sectional area and peak power?

11.14. (a) Verify expression (11.A.12) for the absorption coefficient due to CO2 of
10.6mm radiation in the atmosphere.

(b) Using the collision cross sections (11.A.13), estimate the absorption line-
width of the 10.6-mm transition of CO2 in the Earth’s atmosphere. [For a
discussion of these cross sections see T. W. Meyer, C. K. Rhodes, and
H. A. Haus, Physical Review A12, 1993 (1975).]

(c) Verify (11.A.15) and (11.A.16).
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12 PHOTONS

12.1 WHAT IS A PHOTON?

We have made frequent reference to photons of light. For some purposes it is convenient
to think in terms of photons, whereas for others the wave description of light is indispen-
sable. In this chapter we will discuss more carefully this wave–particle duality of light.
We will also introduce the theory behind measurements that count photons and some
aspects of the photon detectors used in these measurements.

The question whether light consists of particles or waves is, of course, a very old
one. Newton, around 1700, thought it consisted of particles. Later, as a result of careful
experimentation on the interference and diffraction of light, Newton’s particles of light
were abandoned in favor of a wave picture championed by Thomas Young and others.
The wave theory was brilliantly formulated mathematically by Maxwell at roughly the
time of the American Civil War, and the experiments of Heinrich Hertz (1887) gave
convincing support for Maxwell’s theory. Hertz confirmed that accelerated charges radi-
ate electromagnetic waves, and that these waves have the same characteristics as visible
light (Section 8.2).

By the 1890s Maxwell’s theory, together with oscillator models for the response of
matter to light, was used by Lorentz and others to explain, semiquantitatively, nearly
all the known optical phenomena (Chapter 3). Many scientists held that Newton’s
theories of mechanics and gravitation, together withMaxwell’s theory of electromagnet-
ism, contained the fundamental laws of the universe, and that in principle everything
about nature might one day be understood in terms of them. However, as is well known
to every student of modern physics, there were some experimental results that did not fit
into the picture. One was the spectrum of blackbody radiation, which led to the light-
quantum hypotheses1 of Planck (1900) and Einstein (1905). These ideas were used
by Bohr in his theory of the hydrogen atom (1913), and a decade later led to quantum
mechanics and the view that nature is fundamentally statistical rather than deterministic.
According to quantum mechanics the wave and particle views of light are both oversim-
plifications; radiation and matter have both wave and particle attributes, or a “wave–
particle duality.”

What, then, is a photon? By considering a few examples, we will try to explain the
essence of the answer given by quantum mechanics. The answer is subtle and also

Laser Physics. By Peter W. Milonni and Joseph H. Eberly
Copyright # 2010 John Wiley & Sons, Inc.

1The term photon was coined in 1926 by the chemist G. N. Lewis. Before 1926 physicists spoke of “quanta”
of light.

561



very beautiful. The examples described in the next few sections deal with photon polar-
ization, photon-induced recoil, and photon interference.

12.2 PHOTON POLARIZATION: ALL OR NOTHING

Consider the experiment shown in Fig. 12.1. A plane electromagnetic wave of frequency
n is incident on a polarizer oriented so that it passes radiation with polarization along the
x direction but absorbs radiation with the orthogonal, y polarization. The incident light is
assumed to be polarized at an angle uwith respect to the x direction (i.e., the electric field
vector at any point on the wave oscillates along a line at an angle u with respect to the x
axis). According to the classical law of Malus, a fraction cos2 u of the incident intensity
will pass through the sheet. This is the prediction of classical physics.

Now suppose that the incident light is reduced in intensity so that only a single photon
(of energy hn) is incident upon the polarizer. In this case the law ofMalus appears to fail:
The incident photon is not split by the polarizer. Instead experiments find that the entire
photon either passes through the polarizer or is absorbed: It is “all or nothing” when a
single photon is incident on the polarizer. The energy hn is evidently an indivisible unit
of energy for radiation of frequency n.

If we repeat this one-photon experiment many times, always with the same source and
arrangement, we find that sometimes the photon passes through the sheet and sometimes
it does not. If u is zero, however, we find that the incident photon always passes through
the sheet, whereas if u ¼ 908, no photon ever passes through. Repetition of the exper-
iment many times restores Malus’ law, but now as the statement that cos2 u is the prob-
ability that a photon polarized at an angle u to the polarizer axis will pass through.

The situation here is akin to coin flipping. When we say that the probability of getting
either heads or tails is 1/2, we mean that in a large number of tosses heads and tails will

q

Z

Figure 12.1 A plane monochromatic wave represented by vertically polarized photons is incident
on a polarizing sheet. The transmitted field is linearly polarized at the angle u of the polarizing axis
of the sheet.
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turn up approximately the same number of times. In any one toss of the coin, however,
we get either heads or tails, just as our one-photon experiment records either an entire
photon or nothing. Quantum mechanics asserts that the statistical aspect of our one-
photon experiment is a fundamental characteristic of nature.

Suppose the incident light in our experiment has an energy corresponding to n pho-
tons. Since each photon has the probability cos2 u of passing through the sheet, we
expect on the average that n cos2 u photons will be transmitted. As n increases, the devi-
ation of the number of transmitted photons from the average n cos2 u becomes smaller
relative to the average number. It becomes increasingly more accurate to say that a frac-
tion cos2 u of the incident intensity is passed by the filter. In other words, we approach
the classical form of the law of Malus when the number of incident photons is large.
Most optical experiments involve enormous numbers of photons (Problem 12.1); in
such experiments with polarized light the “all or nothing” nature of photon polarization
may be ignored for all practical purposes.

Our discussion has assumed an ideal photon source, one that produces a single
photon on demand.We have also assumed an ideal photon counter. Such an ideal device
would count every incident photon, and it would give no spurious counts when there are
no incident photons. Furthermore, it would respond immediately to the incident signal.
Needless to say, there is no such perfect detector. Nevertheless, as discussed in Section
12.7, available detectors come fairly close to the ideal.

12.3 FAILURES OF CLASSICAL THEORY

A photon of frequency n in free space carries not only an energy hn but also a linear
momentum of magnitude

p ¼ hn

c
: (12:3:1)

In other words, the linear momentum of radiation of frequency n is quantized in indivi-
sible units of magnitude hn/c. Conservation of linear momentum demands that an atom
that undergoes spontaneous emission must recoil with a linear momentum of magnitude
(12.3.1). According to quantummechanics, we cannot predict exactly in which direction
the photon will be emitted, and therefore we cannot predict the direction of atomic recoil
(Fig. 12.2).

Photon

De-excited
atom

Excited atom

q

Figure 12.2 Conservation of linear momentum implies that an atom recoils when it undergoes spon-
taneous emission. The direction of photon emission (and atomic recoil) is not predictable.

12.3 FAILURES OF CLASSICAL THEORY 563



Experiments with beams of excited atoms confirm the recoil associated with spon-
taneous emission (Fig. 12.3). In fact, the recoil of a spontaneously emitting atom was
inferred by O. R. Frisch in 1933 and has in more recent years been confirmed with
greater accuracy.

It is not surprising that an atom recoils when it emits a photon. It is like the recoil
a person feels upon firing a rifle, the person and the bullet corresponding to the atom
and the photon, respectively. However, the recoil of a spontaneously emitting atom is
not accounted for in the classical wave theory of radiation. Figure 12.4 shows why.
Classical theory treats spontaneous emission as a smooth process, with radiation being
continuously emitted more or less in all directions, according to the radiation pattern of
the source. Classical radiation from an isolated system such as an atom is also character-
ized by inversion symmetry. That is, the intensity of spontaneous radiation emitted in the
x direction is equal to the intensity emitted in the2x direction, and so on for every direc-
tion. It is obvious that an emitter of this type suffers equal and opposite recoil forces
along every axis and does not recoil at all. So classical wave theory predicts no recoil
in spontaneous emission, in contradiction to results of experiment.

Stimulated emission and absorption also impart recoil momentum to an atom
(Fig. 12.5) and the direction of atomic recoil follows exactly the direction of propagation
of the incident radiation. It is interesting that the Doppler effect in the emission or
absorption of radiation by a moving atom may be understood as a consequence of the

Source of
excited atoms

Collimating
diaphragms

Beam spreads
laterally because
of spontaneous
emission

Figure 12.3 A well-collimated atomic beam of excited atoms will spread laterally because of the
recoil associated with spontaneous emission.

Figure 12.4 A source emitting a spherical wave cannot recoil because the spherical symmetry of the
wave prevents it from carrying any linear momentum from the source.
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fact that photons carry energy hn and linear momentum hn/c (Problem 14.9). Atomic
recoil in absorption and emission is the sine qua non of the Doppler cooling discussed
in Section 14.4.

† The classic manifestation of the expression for photon momentum given in (12.3.1) is the
Compton effect, as discussed in textbooks on modern physics. A. H. Compton’s experiments
were reported in 1923. Einstein had already inferred in 1917 that photon momentum causes an
atom to recoil when it undergoes spontaneous emission. He did this by a careful analysis of ther-
mal equilibrium between radiation and matter, showing that the Planck distribution requires
atomic recoil in spontaneous emission (Section 14.4).

Regarding Einstein’s inference in 1917 that photon momentum causes an atom to recoil when
it undergoes spontaneous emission, it is interesting to remember that in his special theory of
relativity he had even earlier (in 1905) proposed the equation

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c 4 þ p2c2

p
(12:3:2)

connecting the energy E and linear momentum p of a body of rest mass m. For a photon, m ¼ 0
and E ¼ hn, so (12.3.1) then follows from Einstein’s 1905 relation. Nevertheless, the equation
p ¼ hn/c for a photon was not stated by Einstein (or anyone else) before his study of 1917 on
“The Quantum Theory of Radiation.” †

The photoelectric effect is often cited as evidence for the quantum nature of light. It is
convincing evidence, but the evidence must be interpreted carefully because most of the
basic features of the photoelectric effect can be explained without invoking photons or
the quantum theory of radiation. This can be appreciated by recalling equation (3.4.33)
for the rate of absorption by an atom in a field described by classical electromagnetic
theory. This equation also applies when the electron makes a transition from a bound
to a free state, as in the photoelectric effect. Then the equation predicts that electrons
should be ejected as soon as the field is incident on the photoemissive surface, as is
observed to occur. The observed proportionality of the photoelectron ejection rate to
the radiation intensity is also contained in equation (3.4.33).

Finally there is Einstein’s famous 1905 formula K.E.¼ hn2 W, relating the kinetic
energy of the ejected electron to photon energy hn, relative to the work functionW of the
photoemissive surface. This same feature is predicted by the absorption rate (3.4.33)
obtained without invoking photons. Thus all of these features of the photoelectric
effect, which are frequently said to require that light be described in terms of photons,
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Figure 12.5 Atomic recoil associated with (a) stimulated emission and (b) absorption.
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are explained by the transition theory of Chapter 3, which uses only an unquantized
description of the radiation field together with quantum theory for the atom.2

However, a remaining key feature cannot be explained by this theory. Classical elec-
tromagnetic radiation can deliver energy to a target atom only as fast as its Poynting flux
allows. This implies that a very weak incident field, requiring let us say 1 microsecond
to deliver hn of energy to a photoemissive surface, could never eject an electron with
kinetic energy equal to hn 2 W in a time shorter than 1 microsecond. But experiments
have repeatedly shown that photoelectrons can be ejected with no delay at all, even for
such weak radiation. This can be explained easily by a quantum mechanical interpret-
ation of a weak radiation field, viz., as one in which photons arrive very rarely but ran-
domly, and therefore occasionally even much earlier than a classical field can permit.
This is the key experimental observation that shows why the particle rather than the
wave aspect of photons is needed to fully understand the photoelectric effect.

Consider another situation involving an atom and a single photon. Take a single
excited atom A and two identical photon detectors B and C, as illustrated in Fig. 12.6a.
We imagine that B and C are perfect detectors in that each registers a count if and
only if a photon of radiation is incident upon it. When A undergoes spontaneous emis-
sion, it need not register a count in either B or C, but there is some probability that a count
is registered in B or C. We pose the following question: Is there any possibility that a
coincidence occurs, that is, that the emitted radiation from A can be detected at both
B and C?

The answer given by the quantum theory of radiation is clear: No. For A emits a single
photon, and a photon can trigger the emission of only one photoelectron. Therefore, the
radiation from A can register a count at either B or C, or neither, but never at both
B and C.

Now think of the radiation from A as a classical electromagnetic wave. As such it has
nonzero values over a certain region of space (and time). In particular, as illustrated in
Fig. 12.6b, the field propagates outward from A and eventually reaches both B and C,
so that there are measurable electric and magnetic fields at both B and C. And these

Excited atom  A
(a)

(b)

B

C

A

B

C

Wave of
radiation
emitted by A

Figure 12.6 (a) An excited atom and two photodetectors. Can radiation emitted spontaneously by A
be detected by both detectors? (b) According to classical radiation theory the field emitted by A will
reach both B and C.

2For further discussion, see, for instance, M. O. Scully and M. Sargent III, Physics Today, March, 38 (1972).
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fields can, according to classical electromagnetic theory, trigger photoelectric counts at
both B and C. Thus, there is a clear disagreement here between the classical and quantum
theories of radiation.

Experiment supports the quantum theory of radiation: The radiation emitted in a
single atomic transition cannot be split into more than one unit or excite more than
one detector.3

12.4 WAVE INTERFERENCE AND PHOTONS

Photons are energy quanta of the electromagnetic field, carrying energy hn and linear
momentum hn/c. They are often pictured as particles, like bullets or billiard balls, but
having no mass and moving at the speed of light. This particle picture certainly helps
us to understand atomic recoil in spontaneous emission, and a phenomenon such as
Compton scattering, but what have these effects to do with the vast body of evidence
for the wave nature of light? To see how quantum mechanics reconciles the wave and
particle aspects of light, we will consider the example of the Young two-slit experiment
(see Section 13.3), assuming that the slits are illuminated by a plane monochromatic
wave. As illustrated in Fig. 12.7, the slits in this case produce a well-known interference
pattern on a screen behind the slits.

The location of the intensity maxima is easily found from the condition for construc-
tive interference of the two waves emerging from the slits: their path difference s22 s1
must be an integral number of wavelengths. This gives the condition

y(max)
n ¼ n

lD

d
, n ¼ 0,+1,+2, . . . (12:4:1)

for the intensity maxima on the observation screen, assuming that the two slits subtend
a small angle at points of observation (Section 13.3). When the path difference s22 s1

Intensity
interference
patternS1

S

S2

L

Figure 12.7 The Young two-slit experiment.

3J. F. Clauser, Physical Review D 9, 853 (1974).
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is an odd integral number of half wavelengths, however, there is complete destructive
interference:

y(min)
n ¼ nþ 1

2

� �
lD

d
, n ¼ 0,+1,+2, . . . : (12:4:2)

For optical wavelengths, the slit separation d in a demonstration of the Young exper-
iment is typically on the order of a fraction of a millimeter, while D might be about
a meter.

† When Thomas Young (1773–1829) published his results in 1802, he encountered harsh
criticism from the proponents of Newton’s particle theory of light. Eventually, however, it was
recognized by nearly all scientists that Young’s experiment had put an end to Newton’s particle
theory. Young went on to other endeavors, and his accomplishments were remarkable. For
instance, his interest in Egyptology led him to make a major contribution toward deciphering the
Rosetta stone. His theory of color vision is still widely cited, as is his work on elasticity. He also
made pioneering contributions to the studies of sound, tides, and the human voice, among other
things. His work on the wave theory of light was done shortly after he began a medical practice
in London.

Young’s experiment did not actually require two slits. A narrow sunbeam entering a room
through a small hole was instead split in two by a card of thickness (approximately 1 mm) slightly
less than the diameter of the sunbeam, so that a “beam” passed along each side of the card. Young
remarked that his experiment could be done “whenever the sun shines, and without any other
apparatus than is at hand to everyone.” †

Imagine now that the Young experiment is performed with a single photon of light.
Can we obtain Young’s interference pattern in this case? According to quantum theory,
the intensity interference pattern indicated in Fig. 12.7 represents only the relative prob-
ability distribution for detecting the photon somewhere on the observation screen. That
is, a single photon by itself does not produce an interference pattern. Instead, there is a
relatively high probability of detecting the photon at points satisfying the constructive
interference condition (12.4.1), and the photon will never be found at points satisfying
(12.4.2) because at such points the probability is exactly zero.

In other words, the quantum theory of radiation says that the classical interference
pattern is correct, but not in the sense of classical theory. The strictly classical (wave)
interpretation of the interference pattern is that the entire pattern is observed regardless
of the intensity of the light incident on the screen containing the slits. However, the
quantum interpretation is that, with light so dim that only a single photon is involved,
we do not in fact observe a pattern but only a single photon at some point on the classi-
cally calculated pattern. To summarize: The wave and particle aspects of two-slit inter-
ference are reconciled by associating a particle (photon) probability distribution
function with the classical (wave) intensity pattern.

At the risk of belaboring the point, we emphasize that the interference pattern applies
to a single photon (in the probabilistic sense) but would not be revealed by a single
photon. When the Young experiment is performed with a light beam containing a very
large number of photons, even points of low probability (or, classically speaking, low
intensity) receive some photons because of the large numbers involved. In this case
we observe the complete interference pattern, just as if we perform the single-photon
experiment a very large number of times. In nearly all interference experiments, of
course, an extremely large number of photons is involved, as in all of classical optics
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(Problem 12.1). Under such circumstances we observe entire intensity patterns, exactly
as predicted by classical wave theory. This is why rather delicate experiments are necess-
ary to see departures from classical wave theory. Because a succession of identical inde-
pendent single-photon experiments eventually builds up the same pattern associated
with a many-photons-at-once experiment, the entire pattern must be “known” to each
single photon. It is conventional, therefore, to say in this context, following P. A. M.
Dirac, that a photon interferes only with itself.

In quantum mechanics both radiation and massive particles (electrons, photons, neu-
trons, etc.) display a wave–particle duality. A particle with linear momentum of magni-
tude p has a de Broglie wavelength l ¼ h/p associated with it. For a photon the de
Broglie wavelength is l ¼ h/(hn/c) ¼ c/n ¼ l, just the wavelength of a wave of fre-
quency n. Thewave fields in this case satisfyMaxwell’s equations. For material particles
the wave fields satisfy Schrödinger’s equation.

The association of a particle probability function with a wave interference pattern
correctly describes many phenomena that cannot be explainedwith wave or particle con-
cepts alone. Wave and particle attributes are interwoven in the microscopic world, both
being oversimplications derived from our experience with macroscopic phenomena.

† The first observation of an entire interference pattern with light so dim that only one photon at
a time could be detected was made by G. I. Taylor in 1909. At the suggestion of J. J. Thomson,
Taylor sought to determinewhether diffraction of light is affected if no more than one “light quan-
tum” at a time is incident on a photographic plate. Taylor observed the diffraction (shadow) pat-
tern of a needle using light from a flame illuminating a slit and attenuated by smoked glass. The
experiments were carried out at the house outside London of the 24-year-old Taylor’s parents; the
exposure time was about 3 months, during part of which Taylor was away on a yacht. He found
the same intensity pattern regardless of the light intensity; this came as a surpise to Thomson, who
expected that statistical fluctuations associated with single-quantum events would diminish the
visibility of interference fringes. In other words, Taylor (indirectly) observed the buildup of an
interference pattern from repeated single-photon experiments.4 In more recent times this effect
has been demonstrated more directly in two-slit interference with photomultipliers for photon
detection.5 †

12.5 PHOTON COUNTING

Imagine an ideal detector in which every incident photon ejects a photoelectron. By
counting the number of photoelectrons, we are in effect counting the number of incident
photons. Of course, real experiments are much more involved than this idealization
would suggest, but let us suppose nevertheless that we can count photons in this manner.

Consider the following experiment. We have a shutter that we can open and close
instantaneously. We place the shutter between a photon detector and an incident
quasimonochromatic beam of light. We open the shutter at some time t and close it at
a time t þ T, and record the number of photons that were counted while the shutter
was open. Next we open the shutter for another time interval T, and again take note

4For an entertaining discussion (“Take a Photon . . . ”) of this and related phenomena see O. R. Frisch,
Contemporary Physics 7, 45 (1965).
5S. Parker, American Journal of Physics 39, 420 (1971); 40, 1003 (1972).
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of the number of photons counted in that “run.” We repeat this procedure several
thousand times and make a histogram of the number of photons counted in a time inter-
val T. Our histogram might look like that shown in Fig. 12.8.

What we would like is a theory of such a photon count distribution. Based on the
scatter in the number of photon counts from one run to the next, we base our theory
on probabilities. That is, we only try to calculate the probability Pn(T ) of counting n
photons in a given time interval T.

Consider a very short subinterval Dt within the time interval T. We assume that p(t)
Dt, the probability of ejecting one electron in the time interval Dt, is given by

p(t)Dt ¼ aI(t)Dt, (12:5:1)

where I(t) is the incident intensity, averaged over a few optical periods, and a is a con-
stant depending on the details of the photon detector (density of atoms, size of exposed
surface, etc.). The time interval Dt is taken to be so short that the probability of ejecting
more than one electron during this time is completely negligible. Dt is not an intrinsic
parameter of our experiment but merely a theoretical construct, and so we can make it
as small as we please.

Let Pn(t) be the probability of counting n photons during a time t (0 	 t 	 T ) during
which the shutter is open. It is convenient to consider Pn(t þ Dt), where Dt is defined
above. There are two mutually exclusive ways of getting n photons in the time interval
t þ Dt: We can get n2 1 photons in the time interval t and 1 more in the interval from t
to t þ Dt, or n photons in the time t and none in the interval from t to t þ Dt. The prob-
ability of the first way is

Pn�1(t)p(t) Dt ¼ (probability of n� 1 photons in time t)

� (probability of 1 photon in Dt): (12:5:2)

These probabilities multiply for the same reason that the probability of getting two heads
in two successive flips of a coin is given by the product (1/2) (1/2) ¼ 1/4. Similarly the
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Figure 12.8 A hypothetical histogram of photon counts.
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probability of the second alternative is

Pn(t)[1� p(t)Dt] ¼ (probability of n photons in time t)

� (probability of no photon in Dt): (12:5:3)

Since each alternative leads to the same end result—n photons counted in a time interval
t þ Dt—we have

Pn(t þ Dt) ¼ Pn�1(t)p(t)Dt þ Pn(t)[1� p(t)Dt]: (12:5:4)

Here we add the probabilities for the two possible alternatives because they are mutually
exclusive. The probability of getting one head and one tail in two flips of a coin, for
instance, is the probability (1/2)(1/2) of getting a head and then a tail, plus the prob-
ability (1/2)(1/2) of getting a tail followed by a head.

Rearranging (12.5.4), we have

Pn(t þ Dt)� Pn(t)
Dt

¼ [Pn�1(t)� Pn(t)]p(t): (12:5:5)

SinceDt is at our disposal, let us make it so small that the left side becomes the derivative
of Pn(t):

Pn(t þ Dt)� Pn(t)
Dt

ffi lim
Dt!0

Pn(t þ Dt)� Pn(t)
Dt

¼ dPn
dt

: (12:5:6)

Therefore (12.5.5) becomes a differential equation for Pn(t):

dPn
dt
¼ p(t)[Pn�1(t)� Pn(t)], (12:5:7)

or, using (12.5.1),

dPn
dt
¼ aI(t)[Pn�1(t)� Pn(t)]: (12:5:8)

To compare the theory leading to (12.5.8) with the results of our photon counting
experiment, we must solve (12.5.8) for the probability Pn(T ) of counting n photons in
any one of our counting intervals of duration T. It is shown below that the desired
solution is

Pn(T) ¼ [X(T)]n

n!
e�X(T), (12:5:9)

where

X(T) ¼ a

ðT
0
I(t) dt: (12:5:10)

Equation (12.5.9) is correct as far as it goes, but there is a modification of our theory to
be made before we can meaningfully compare it to experiment. In an actual experiment
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we are dealing with a large number of time intervals T, each starting at a different time t.
For a time interval from t to t þ T rather than from 0 to T we must replace (12.5.10) by

X(t, T) ¼ a

ðtþT
t

I(t0) dt0: (12:5:11)

It is convenient to write this as

X(t, T) ¼ aTI(t, T), (12:5:12)

where

I(t, T) ¼ 1
T

ðtþT
t

I(t0) dt0 (12:5:13)

is the average incident intensity during the time interval from t to t þ T. Then (12.5.9)
becomes

Pn(t, T) ¼ 1
n!
[X(t, T)]n exp [�X(t, T)]: (12:5:14)

Finally, to compare with experiment we must average (12.5.14) over all the “starting
times” t. That is, the theoretical photon counting probability distribution is

Pn(T) ¼ hPn(t, T)i ¼ 1
n!
[aTI(t, T)]n exp [�aTI(t, T)]

� �
, (12:5:15)

where k. . .l denotes an average over t. Equation (12.5.15), which was first derived by
L. Mandel in 1958, is used frequently in the analysis of photon counting experiments.
In the following section we will consider an especially important example of the use
of this formula.

† To verify (12.5.9), consider the function

Pn(t) ¼ 1
n!
X(t)ne�X(t): (12:5:16)

The derivative of this function is

dPn
dt
¼ 1

n!
X(t)n

d

dt
e�X(t) þ 1

n!
e�X(t)

d

dt
X(t)n

¼ 1
n!
X(t)n � dX

dt
e�X(t)

� �
þ 1
n!
e�X(t) nX(t)n�1

dX

dt

� 

¼ dX

dt

[X(t)]n�1

(n� 1)!
e�X(t) � [X(t)]n

n!
e�X(t)

� �

¼ dX

dt
[Pn�1(t)� Pn(t)]: (12:5:17)
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From (12.5.10) it follows that

dX(t)
dt
¼ a

d

dt

ðt
0
I(t0) dt0 ¼ aI(t), (12:5:18)

and therefore (12.5.17) is just (12.5.8). In other words, the function (12.5.16) is a solution of the
differential equation (12.5.8).

We want a solution of (12.5.8) satisfying Pn(0) ¼ 0 because the probability of counting any
photons at exactly the time t ¼ 0, when the shutter has suddenly been opened, is zero. The func-
tion (12.5.16) satisfies this condition because X(0) ¼ 0. Therefore (12.5.16) with t ¼ T, i.e.,
(12.5.9), is the desired solution for Pn(t ¼ T ). †

12.6 THE POISSON DISTRIBUTION

Suppose the intensity I(t) of the incident beam in our photon-counting experiment is
constant:

I(t) ¼ I ¼ const: (12:6:1)

Then (12.5.13) becomes simply

I(t, T) ¼ 1
T

ðtþT
t

I(t0) dt0 ¼ 1
T
I

ðtþT
t

dt0 ¼ I: (12:6:2)

In this case the starting-time average in (12.5.15) is superfluous. Using (12.6.2) in
(12.5.15), we obtain the photon-counting probability distribution

Pn(T) ¼ (aIT)n

n!
e�aIT , (12:6:3)

or

Pn(T) ¼ (�n)n

n!
e��n, (12:6:4)

where

�n ¼ aIT : (12:6:5)

The probability distribution (12.6.4) is called the Poisson distribution. Note that it is
properly normalized to unity, as any valid probability distribution must be. That is,
the sum of the probabilities of all possible outcomes is equal to one:

X1
n¼0

Pn ¼
X1
n¼0

(�n)n

n!
e�n ¼ e��n

X1
n¼0

(�n)n

n!

 !
¼ 1, (12:6:6)

since the sum in parentheses is just the power series for the function e�n.
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One important quantity we can calculate, given Pn(T ), is the average number of
photons counted in a time interval T, denoted kn(T )l:

hn(T)i ¼
X1
n¼1

nPn(T) ¼
X1
n¼1

n
(�n)n

n!
e��n ¼ �ne��n

X1
n¼1

(�n)n�1

(n� 1)!

¼ �ne��n
X1
n¼0

(�n)n

n!
¼ �ne��ne�n ¼ �n ¼ aIT : (12:6:7)

This is a reasonable result: The average number of photons counted in a time T is equal to
the rate of ejection of photoelectrons, a I, times the time T.

We can also calculate the average of the square of the number of photons counted in a
time interval T (Problem 12.4):

hn(T)2i ¼
X1
n¼0

n2Pn(T) ¼ �n2 þ �n: (12:6:8)

The quantity

hDn(T)2i ¼ [n(T)� hn(T)i]2� �
, (12:6:9)

i.e., the average of the square of the deviation n(T ) 2 kn(T )l of n(T ) from its average
value kn(T )l, is the mean-square deviation of n(T ) from its average. It gives a measure
of the “spread” of n(T ) values about the average. From the definition (12.6.9) it follows
that

hDn(T)2i ¼ n(T)2 � 2n(T)hn(T)i þ hn(T)i2
D E

¼ hn(T)2i � 2hn(T)i2 þ hn(T)i2

¼ hn(T)2i � hn(T)i2, (12:6:10)

since kk. . .ll is the same as k. . .l. From (12.6.7) and (12.6.8), therefore,

hDn(T)2i ¼ �n (12:6:11)

for the Poisson distribution. Similarly, the root-mean-square (rms) deviation, Dn(T )rms,
for the Poisson distribution is

Dn(T)rms ¼
ffiffiffi
�n
p

: (12:6:12)

In Fig. 12.9 we plot the Poisson distribution for various values or �n. As �n increases, the
rms deviation in �n increases as

ffiffiffi
�n
p

, but the relative rms deviation, Dnrms=�n, decreases.
Actually (12.5.15) reduces to a Poisson distribution not only when I(t) is constant, but

more generally whenever themean intensity�I(t, T) given by (12.5.13) is independent of
t. In this more general case the average over t in (12.5.15) is again superfluous because
everything to be averaged over t is in fact independent of t. We obtain the Poisson dis-
tribution (12.6.4) with the average photon count

�n ¼ a

ðtþT
t

I(t0) dt0 ¼ a

ðT
0
I(t0) dt0 (12:6:13)

in a time interval T.
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One important example of a field having Poisson photon counting statistics is the
idealized monochromatic plane wave:

E(z, t) ¼ E0 cos v t � z

c

� �
, (12:6:14)

in which case the cycle-averaged intensity I(t) ¼ (ce0=2)E2
0 is obviously independent

of t [and therefore so is �I(t, T)]. In Chapter 13 we will see that laser light and ordinary
light give rise to different photon statistics, the Poisson distribution applying to laser
radiation.

† The Poisson distribution appears in many contexts in science and engineering. One famous
application is to radioactive decay: If a sample emits a particles, say, at a rate of r particles per
second, then the average number of a particles emitted in a time interval T is �n ¼ rT , and the
probability that n particles are counted in any time interval T is given by (12.6.4). Numerous
other applications are discussed in textbooks on probability and statistics. †

12.7 PHOTON DETECTORS

Radiation detectors are of two basic types: There are thermal detectors, which respond
to the heating of some part of the detector by incident light, and photon detectors, which
measure directly the rate of absorption of photons. Examples of thermal detectors are the
Golay cell, which detects the expansion of a gas heated by the absorption of light, the
bolometer, which responds to a change in electrical resistance of a material that is
heated by absorption, and the calorimeter, which measures the temperature rise of an
absorber. In this section we will describe some general aspects of photon detectors,
which count photons (or, more precisely, photoelectrons) without first converting
light to heat. The operating principle of photon detectors is the photoelectric effect:
Incident photons release electrons from bound states, leading to an electric current
and an output signal in the form of a current or a voltage drop across a resistor in
series with the detector.

Photon counting has become an indispensable tool in many applications requiring
detection of very weak light. Such applications arise in astronomy, medical diagnostics,
telecommunications, and biology, to name a few. Detection of molecular fluorescence
by photon counting, for instance, plays an important role in DNA sequencing.
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Figure 12.9 The Poisson distribution (12.6.4) for �n ¼ 2, �n ¼ 5, and �n ¼ 20.
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A phototube is a photon detector whose principle of operation is based on the “exter-
nal” photoelectric effect in which electrons are released from the surface of a material. Its
simplest form is the vacuum photodiode, an evacuated tube containing a photoemissive
surface called the photocathode, and an anode that collects electrons (because of its
higher voltage) emitted from the photocathode (Fig. 12.10). The photoelectric ejection
of electrons by incident radiation thus gives rise to an electric current in a circuit contain-
ing the phototube. It is the electric current that is measured, but since this current is
proportional to the number of incident photons, the phototube responds to the rate of
absorption of incident photons, that is, it is a “photon detector.”

Phototubes are most effective in the ultraviolet, visible, and near-infrared portions
of the electromagnetic spectrum. At lower frequencies the incident photons are not
energetic enough to eject electrons from photoemissive surfaces, i.e., to overcome the
“work function,” the energy required to release an electron. At higher frequencies
there is another technical difficulty, namely the absorption of the incident radiation by
the window of the phototube; this difficulty may be alleviated by coating the window
with a phosphor that emits at a lower frequency than it absorbs.

The sensitivity of a phototube may be increased by filling it with a low-pressure gas.
An electron ejected from the photocathode can ionize the atoms of the gas, producing
more electrons (called “secondary electrons”), which can themselves collide with atoms
to produce more electrons. This electron avalanche process results in a greater current,
and thus makes the phototube more sensitive to low-level radiation. A vacuum photo-
diode may have a response time, determined by the transit time of the photoelectrons
to the anode, as low as 10 ns; the addition of gas to increase the sensitivity, however,
tends to increase this response time by orders of magnitude.

Short response times, and the high sensitivity required for single-photon detection,
are achievedwith photomultipliers. A photomultiplier tube (PMT) is basically a phototube
with a series of additional anodes called dynodes, each at a higher voltage (typically �100
V) than the preceding one. The dynodes are coated with a material that loses secondary
electrons when it is struck by incident electrons. An electron ejected from the photo-
cathode by incident radiation is electrostatically focused to the first dynode, generating

Photocathode

Photocathode

Light

Anode

Figure 12.10 A vacuum photodiode acts as a current source in an electric circuit. The measured
current in the circuit is proportional to the rate of absorption of incident photons.
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secondary electrons. These are focused to the next dynode, producing more electrons,
and the process continues with a total of perhaps 10 dynodes in all. There is thus a mul-
tiplication of the number of electrons released at the photocathode, or equivalently an
amplification of the current. The electron multiplication factor is typically on the
order of 106–107. This results in high sensitivity combined with short response times.
A photomultiplier is thus capable of a prompt response to a single photon, but not all
incident photons eject electrons from the photocathode, so photomultipliers typically
operate with quantum efficiencies (the ratio of the average number of electrons ejected
from the photocathode to the average number of incident photons) below 30% in the vis-
ible and below 10% in the near-infrared. Moreover, not every electron released at the
photocathode makes its way to the first dynode; the collection efficiency, or the prob-
ability that an electron released at the photocathode arrives at the first dynode, depends
on the PMT geometry and other factors, and is typically .75%. The “detection effi-
ciency” is defined as the product of the quantum and collection efficiencies.

Because the anode current increases very rapidly with the voltage, the output signal of
a PMT is very sensitive to voltage fluctuations, so that the high-voltage power supply
must be very stable.

The detection accuracy of a PMT is limited by dark-current noise, or anode dark
current, the detector current that appears even in the absence of incident radiation as a
consequence of the thermionic emission of electrons mainly from the photocathode
but also from the dynode surfaces. Because these surfaces by design have small work
functionsW, there is thermionic current i(T ) even at room temperature. The temperature
dependence of this current is described by the Richardson–Dushman equation:

i(T) ¼ CST2e�W=kBT , (12:7:1)

where C is a constant that depends on the photocathode material, S is the photocathode
surface area, and kB is Boltzmann’s constant. Clearly, the dark current is reduced dra-
matically as the temperature T is lowered. For a work function of 1.5 eV, for instance,
i(260K) � 1024i(300K) (Problem 12.5). For photon-counting applications PMTs are
often equipped with thermoelectric (Peltier) coolers in order to minimize dark counts
(from perhaps 106 counts per second to �10 or less, although these numbers depend
strongly on the type of photocathode). The PMT sensitivity in its response to radiation
typically improves as well with cooling. Response curves and dark counts per second at
various temperatures are among the specifications provided by PMT vendors.

Figure 12.11 indicates how light incident on the photocathode leads to a stream of
electrons that are multiplied by the dynode chain to produce current pulses at the anode.
For light of sufficient intensity the pulses indicated in Fig. 12.11b overlap to such an
extent that there is a (fluctuating) current at the anode, as indicated in Fig. 12.11c.
The PMT in this case is said to operate in the analog mode. In this case the photons
are too closely spaced, loosely speaking, to be counted individually.

Figure 12.12 shows what happens when the incident light intensity is sufficiently low
that the current pulses at the anode do not overlap but are well-separated compared to
both their duration and the resolution time of the PMT. The PMT in this case is said
to operate in the digital or photon-counting mode.

Photomultiplers (and other useful photon detectors) have the important property of
linearity over a wide range of incident intensities: A plot of the output signal versus
intensity is essentially a straight line. Beyond some power the PMT response saturates,
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that is, it no longer increases with increasing intensity, and beyond some maximum
power specified by the manufacturer the PMT could be damaged.

For the detection of pulsed light it is important that a photodetector be able to respond
to rapid variations of the incident intensity. Figure 12.13 indicates two important times
that affect the temporal response of a PMT. One of these is the electron transit time from
the photocathode to the anode or, more precisely, the time it takes for the output pulse at
the anode to reach its peak value after the photocathode is irradiated by a very short pulse
of light. This time, together with the time constants of the electric circuitry used to con-
vert the anode output to a meter reading, obviously affects the response time of the PMT
to incident radiation. Because of the statistical nature of the electron multiplication pro-
cess, there is a spread, or dispersion, in the electron transit time that affects the resolution
time, or the accuracy with which light can be time resolved by the PMT. This determines
in part the other time indicated in Fig. 12.13, namely the rise time. PMT rise times
are typically about a few nanoseconds, whereas electron transit times are typically on
the order of tens of nanoseconds. The rise time affects the maximum count rate of a
PMT, which is typically �106–108 s21, or 1–100 MHz.

(a)

(b)

(c)

Time

Figure 12.11 Generation of a PMT output signal. (a) Electrons released at photocathode; (b) electric
current pulses at the anode; and (c) PMT output signal.

Time 

(a)

(b)

Figure 12.12 Generation of a PMT output signal when the incident light intensity is very low.
(a) Electrons released at photocathode; (b) PMT output signal.
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† The electron transit time dispersion, together with the electron multiplication factor, can be
used to estimate the PMT output signal in the case of a single incident photon releasing a single
electron from the photocathode. Assuming an electron multiplication factor of 5 �106, the
charge at the anode is (5 � 106)(1.6 � 10219 C) ¼ 8 �10213 C. If the electron transit time dis-
persion is 5 ns, the peak current at the anode will be about (8 �10213 C)/(5 ns) � 1024 A.

The input voltage to the electric circuitry that converts the anode signal to a meter reading of
“photon counts” is determined by the anode current and the load resistance R in series with the
PMT. A given small current will produce a larger voltage as R is increased, but an increase in R
will also increase the rise time because of the larger RC time constant. Too large a value of R can
also affect the potential difference between the anode and the nearest dynode, leading to a non-
linear variation with incident light intensity of the PMT output signal. These and other factors
dictate the selection of the load resistance. A typical value for R in PMTs used for photon count-
ing is 50 V. For this value the voltage in our example is �(1024 A)(50 V) ¼ 5 mV. †

Dark current, background radiation, and other sources of noise tend to produce photo-
electron counts that are spread over a wide range, whereas the signal counts tend to lie in
a fairly narrow range of values. An important part of PMT circuitry is a pulse height dis-
criminator that accepts only pulses within a preset range, so that noise pulses outside the
range of signal pulse heights are eliminated. This discrimination produces a substantially
larger signal-to-noise ratio than that obtained by simply counting all pulses.

The internal photoelectric effect is the basis for another type of photon detector in
which an incident photon is not sufficiently energetic to free an electron from the surface
of a material, but nevertheless gives the electron more energy inside the material.
Photoconductivity occurs when an electron is promoted to the conduction band of a
semiconductor by the absorption of a photon of energy hn greater than the band gap.
That is, shining light on a photoconductive material produces electron–hole pairs
(Section 2.7). An applied voltage causes the electrons and holes to drift in opposite direc-
tions, producing a current and a voltage drop across a load resistor.

The electrons typically move faster than the holes, and therefore their transit time
across the photoconductor is less than that of the holes, and it can also be less than the
electron–hole recombination time. When an electron reaches the anode, the external
circuit replaces it with another electron, maintaining the continuity of the current.
This continues until recombination occurs. If the electron transit time te is shorter than
the recombination time tr, therefore, each electron–hole pair produced by the absorption
of a photon adds a chargeGe to the circuit, where the effective gain G ¼ tr/te can be as
high as 106.

Transit time

Light pulse 

Rise time 

Time 

Fall time 

Anode signal

Figure 12.13 The electron transit time and the rise time at the anode of a PMT. The rise time is
defined conventionally as the time it takes for the anode signal to increase from 10% of its peak
value to 90% of its peak value. The fall time, which generally differs from the rise time, is defined
similarly.
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Common photoconductive materials for photon detectors are lead sulfide and
cadmium sulfide. The latter is used in the visible (e.g., in camera light meters), whereas
the former has a good response for wavelengths as high as 3 or 4 mm in the infrared.
Photoconductors have longer response times—typically greater than a microsecond—
than vacuum photodiodes or photomultipliers.

Faster response times are possible with photodiodes in which the internal photoelec-
tric effect occurs at a pn junction (Section 2.7). The junction is reverse biased in order
to make electrons flow to the n side and holes to the p side, thereby generating a current
from the absorbed light. Since recombination does not occur in the depletion layer, there
is no gain in the photodiode. Silicon is the most commonly used photodiode material in
the visible and near-infrared spectral range between 400 and 1100 nm. The responsivity
R, defined as the ratio i/P, where i is the electric current and P is the incident light
power, peaks for silicon photodiodes at about 0.7 A/Wat 700 nm. They are used in com-
mercial laser power meters, some of which can measure powers �1 nW.

The PIN photodiode results from the insertion of a layer of an “intrinsic” semiconduc-
tor (undoped or slightly doped) between the p and n layers. The i region effectively
widens the depletion layer so that more light is absorbed, and therefore more elec-
tron–hole pairs are generated. Response times �10 ps are possiblewith PIN photodiode
detectors but, because they do not have gain, they require external electronic amplifiers if
their sensitivity to incident light is to be increased. Their compactness and low cost make
PIN photodiodes especially useful in telecommunications and medical instrumentation.

Greater sensitivity is realized with the avalanche photodiode (APD), a reverse-biased
photodiode that is the semiconductor analog of a photomultiplier tube. In the APD a
strong (�105 V/cm) reverse-bias electric field causes the charge carriers to accelerate
to energies large enough to cause impact ionization of the crystal lattice. The bias voltage
is chosen to be slightly below the breakdown voltage Vbr at which impact ionization due
to thermally generated carriers can occur without any incident light. The additional
charge carriers produced in the ionization then cause further ionization, and there results
a cascade or “avalanche” multiplication of the current. In other words the APD, unlike
the photodiode, exhibits gain. The gain is very sensitive to the value of the bias voltage,
and consequently a very stable power supply is required to maintain a constant gain.

Typical APD gains are �100, too small for single-photon detection. For this purpose
APDs are operated in the Geiger mode in which the bias voltage is slightly above the
breakdown voltage Vbr. Biasing above breakdown can be done for a short time before
impact ionization and avalanche breakdown occur; the generation of an electron–hole
pair by the absorption of a photon then causes a large current pulse. Gains approaching
those of PMTs are achieved. Obviously, the bias voltage must be reduced and the current
pulse dissipated before another photon can be counted. This is done with a “quench cir-
cuit” that reduces and resets the bias voltage following the detection of a current pulse.
An important consideration in Geiger-mode APDs is the fact that charges can be trapped
around defects in the semiconductor and released at a later time, causing spurious current
pulses, or “after-pulsing,” as well as dark counts.

Unlike a photodiode or an “analog-mode” APD in which the bias voltage is below Vbr

and the output signal is a current that varies linearly with light intensity, the output of a
Geiger-modeAPD is a current pulse. A change in light intensity results in a change in the
rate at which current pulses are produced. In this sense an APD operated in the Geiger
mode is analogous to the Geiger counter used in nuclear physics. Silicon, germanium,
and InGaAs APDs are used for low-level light detection in the range of 400–1100,
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800–1600, and 900–1700 nm, respectively. Compared with PMTs they have higher
quantum efficiencies (.70% at the peak of their responsivity curve, around 700 nm
for silicon), greater linearity, lower noise levels, and are, of course, more compact.

Avalanche photodiodes are less economical than PIN photodiodes, and the sensitivity
of their multiplication factors to temperature variations requires additional electronics
for temperature control. Their fast response times and sensitivity to very weak optical
fields, however, make them attractive in applications such as high-bandwidth (&1
Gbits/s) fiber-optic communications (Section 15.6). PIN diodes have response times
comparable to those of APDs and do not require the large bias voltages used in APDs.

Photodetection is never free of noise. There are many sources of noise, and the subject
is too broad to treat in any detail here.6 One important concept for photon-counting
applications is shot noise, or noise associated with the discreteness of a quantity whose
measurement is described by a Poisson distribution. The term is said to derive from the
audible noise produced by gun shot fired on a target. An example of shot noise is the
“photon noise” arising from the fact that the photon number of a field incident on a detec-
tor is not fixed at a certain value but fluctuates. This translates into a random fluctuation
of the photoelectron count. If the incident photons produce an average of Np photo-
electron counts in a certain time interval t, and if the photon distribution is Poissonian,
then the rms deviation of the photoelectron count due to photon noise is

ffiffiffiffiffiffi
Np

p
.7

The discreteness of the electrons constituting dark current leads again to shot noise: If
Nd is the number of dark counts in the time interval t, then the rms deviation of the
photoelectron count due to dark current in the interval t is

ffiffiffiffiffiffi
Nd
p

.
Another source of shot noise in photon counting is background radiation arising, for

instance, from thermal sources. Background noise is especially important in the middle
and far infrared, where there is substantial thermal radiation at room temperature
(Problem 3.1). An average number Nb of counts produced by background light in the
time interval t gives an rms deviation

ffiffiffiffiffiffi
Nb
p

in the photoelectron count if we again
assume Poisson statistics.

The process of absorbing a photon and creating a photoelectron or an electron–hole
pair is, like the spontaneous emission of a photon, probabilistic and therefore also a
source of noise. If an incident photon creates a photoelectron (or electron–hole pair)
with probability h, and the incident photon flux is described by a Poisson distribution
with mean photon number �n in the time interval t, then the rms deviation of the photo-
electron number in the time interval t is h�n.

We can derive an expression for the rms fluctuation of photocurrent due to shot noise
in a PMT or PIN photodiode in the following way, assuming that the current fluctuations
may be described in terms of electron pulses of duration t and fluctuating electron
number N. The mean current during each pulse in this simplified model is kil ¼ kNl
e/t, and the variance is

h(i� hii)2i ¼ hDi2i ¼ e2

t2

� �
hDN2i ¼ e2

t2

� �
hNi ¼ e

t
hii, (12:7:2)

6Various vendors provide excellent descriptions of operating and noise characteristics of photodetectors.
Their websites are among the best sources for up-to-date information.
7This applies to any radiation that is well described by classical electromagnetic theory. It is possible to pro-
duce nonclassical squeezed states of light that exhibit photon noise below the shot level associated with
Poisson statistics.
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where we have invoked Poisson statistics in writing kDN2l ¼ kNl. The time interval t
may be identified with the inverse of the frequency bandwidth B. This is basically the
shortest response time of the photodetector and is determined by charge diffusion and
transit times as well as the RC time constant of the circuit. Taking t ¼ (2B)�1 in our sim-
plistic model gives a well-known result of more rigorous analyses:

Dirms ¼
ffiffiffiffiffiffiffiffiffiffiffi
hDi 2i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ehiiB

p
(shot noise): (12:7:3)

This implies an electrical noise power Di2rmsRL ¼ 2ehiiBRL, where RL is the load resist-
ance in the circuit. The mean current kil here is the sum of the signal current iS (pro-
portional to the incident optical power) and the dark current iD.

In the case of an APD with a gain or multiplication factor M (the average number of
secondary charge carriers generated for each light-generated carrier), the signal current,
for example, is iS ¼Mhe(Pwr/hn), compared to iS ¼ he(Pwr/hn) for a PIN photodiode.
The mean-square shot noise current would similarly be predicted to increase by a factor
M2 compared to that of a PIN photodiode. However, gain always amplifies noise as well
as signals, and as a consequence of gain in an APD the mean-square shot noise current is
actually increased by a factorM2F(M ), where F(M ) is the excess noise factor. The effect
ofM2F(M ) may be approximated as a multiplication of the mean-square shot noise cur-
rent by a factorMn, where n is typically between 2 and 3.M can be quite large, typically
�10 and �100, respectively, in germanium and silicon photodiodes.

Johnson noise, first identified by J. B. Johnson in the 1920s, refers to the thermal
fluctuations of charge carriers in any resistor at a finite temperature T; it is essentially
a consequence of the Brownian motion of electrons in the resistor. The mean-square
voltage noise in the frequency band [n, n þ B] for a resistance RL at temperature T is,
for kBT � hn,

hV2
Ni ¼ 4kBTRLB, (12:7:4)

where kB is Boltzmann’s constant. The corresponding rms current fluctuation is

Dirms ¼
ffiffiffiffiffiffiffiffiffiffi
hV2

Ni
R2
L

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kBT
RL

B

r
(thermal noise): (12:7:5)

This implies an electrical noise power Di2rmsRL ¼ 4kBTB, independent of RL. These
results for Johnson noise are applicable to APDs as well as PIN photodiodes.8

Although we are dealing here with ensemble averages, and assuming implicitly that
the random processes are ergodic, it should of course be remembered that the noise cur-
rents associated with shot noise or Johnson noise in a physical system vary randomly in
time. Fourier analysis of their time variations allows averages such as Dirms to be
expressed as integrals of “power spectra” over frequency. The power spectra are gener-
ally relatively constant with frequency (in which case one refers to “white noise”), and
therefore a measurement of Di2rms, for example, will produce a value proportional to the

8Note the similarity to Eq. (6.13.20). Formulas for Johnson noise may be derived along essentially the same
lines as our derivation of (6.13.20), and different derivations may be found, for instance, in textbooks on
statistical physics.
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frequency bandwidth involved in the measurement. This is why the average noise
powers for both shot noise and Johnson noise are proportional to B.

Taking both shot noise and thermal noise into account, we have a signal-to-noise ratio
for power (Pwr ¼ i2R):

SNR ¼ i2SRL

2e(iS þ iD)BRL þ 4kBTB
(12:7:6)

for a PIN photodiode. In terms of the incident optical power Pwr and the responsivityR,
the signal current is iS ¼ he(Pwr=hn) ¼ RPwr and the signal-to-noise ratio is

SNR ¼ R2RL(Pwr)2

2eRBRL(Pwr)þ 2eiDBRL þ 4kBTB
, (12:7:7)

The dependence of SNR on optical power obviously depends on the relative magnitudes
of the signal-current shot noise, the dark-current shot noise, and the thermal noise.
Equation (12.7.7) suggests that the signal-to-noise ratio can be increased by increasing
the load resistance RL. However, increasing RL increases the response time RLC, whereC
is the capacitance (typically in the picofarad range) characterizing the depletion layer, so
that RL cannot be increased without reducing the speed of response to a time-varying
intensity.

For an APD (12.7.6) and (12.7.7) are modified simply by multiplying the numerators
by M2 and the shot-noise terms in the denominators by M2F(M ):

SNR ¼ M2R2RL(Pwr)2

2M2F(M)eRBRL(Pwr)þ 2eM2F(M)iDBRL þ 4kBTB
(APD): (12:7:8)

Because of the excess noise factor F(M ), the signal-to-noise ratio of an APD is usually
less than that of a PIN photodiode when shot noise is dominant, e.g., when the signal is
large. When thermal noise is dominant, however, the factorM2 in the numerator implies
that an APD will have a much greater SNR. Of course, the shot-noise terms in the
denominator of (12.7.8) increase with increasing M, and in practice APDs are designed
to have multiplication factors that optimize the signal-to-noise ratio.

If, as is often the case, the thermal noise is dominant, the signal-to-noise ratio is pro-
portional to the square of the optical power:

SNR ffi M2R2RL

4kBTB

� �
(Pwr)2, (12:7:9)

withM ¼ 1 for a PIN photodiode. Photodetection circuitry generally includes amplifiers
and, as remarked earlier, noise as well as signals are amplified. The amplified noise can
be accounted for by replacing the temperature T in the formulas for Johnson noise by an
effective temperature Teff ¼ FnT, where Fn is typically �2–6.

The minimum detectable signal (Pwr)min is defined as the mean signal for which the
SNR is unity, and (12.7.9) implies that (Pwr)min /

ffiffiffi
B
p

when thermal noise dominates,
or whenever the signal-current shot noise is negligible compared to either dark-current
shot noise or thermal noise. If signal-current shot noise is much larger than dark-current
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shot noise and thermal noise, on the other hand, (12.7.8) implies that (Pwr)min / B. The
noise equivalent power (NEP) of a photodetector is defined as the optical power needed
to give SNR ¼ 1 when B ¼ 1 Hz.

† The human eye is a surprisingly good photon detector. The detector units on the retina are
of two types, called rods and cones because of their shapes. The response of the rods and cones
is different at different wavelengths. The cones are responsible for color vision and have a peak
sensitivity at about 560 nm, while the rods are most sensitive at wavelengths around 510 nm.

The rods and cones also have different saturation properties. The rods saturate more easily and
become relatively ineffective at high light levels, but are more sensitive at very low light levels. A
comparatively high light level (and thus a strong contribution from the cone response) is necessary
for color vision. The cones are more sensitive to longer wavelengths than the rods, as evidenced by
the difficulty we have seeing red through dark-adapted eyes (Fig. 12.14). Dark-adapted eyes operate
almost exclusively by rod response and are almost color blind.

The sensitivity of the dark-adapted eyewas studied in the classic experiments ofM. H. Pirenne
and his colleagues in the early 1940s.9 They found that the typical human retina can respond to
,10 photons around 510 nm, with an efficiency of about 60%. The overall detection efficiency of
the eye is actually much less than this because 80–90% of the light incident upon the eye is lost
before it can be absorbed by rod cells. (Of course, many animals have enormously more efficient
and sensitive eyes than we do.)

The experiments revealed that a rod cell in the human retina can absorb a single photon.
Observers were asked whether they saw a light flash when their dark-adapted eyes were exposed
to a very weak pulse of light. From a series of such trials a “probability of seeing” was calculated.
Reasoning that the mean number �n of photons arriving at the retina was proportional to the light
intensity I incident on the eye, and assuming Poisson statistics for n, Pirenne et al. assumed that
the theoretical probability of seeing when at least u photons arrive at the retina is

Pseeing(u) ¼
X1
n¼u

P(n) ¼
X1
n¼u

�nn

n!
e��n, (12:7:10)

100 Violet Blue Green Yellow Orange Red

80

60

40

20

0
400 500

Wavelength, nm

R
el

at
iv

e 
se

ns
iti

vi
ty

600 700

Figure 12.14 Relative sensitivity of the human eye as a function of wavelength for a “standard obser-
ver.” (From D. Halliday and R. Resnick, Physics, Wiley, New York, 1978.)

9See F. Rieke and D. A. Baylor, Reviews of Modern Physics 70, 1027 (1998), and references therein.
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or, since �n ¼ aI, where a is a constant,

Pseeing(u) ¼
X1
n¼u

(aI)n

n!
e�aI : (12:7:11)

The (unknown) constant a depends among other things on the observer’s age. However, when
Pseeing(u) is plotted vs. the logarithm of I, the shape of the curve depends on log I while different
values of a result only in a translation of the curve along the x axis. Therefore, a comparison of
Eq. (12.7.11) with the “experimentally” determined probability of seeing u or more photons can
be made without having to know the value of a. Figure 12.15 shows such a comparison. From
such data Pirenne et al. concluded that the dark-adapted eye can detect 5–7 photons.
Moreover, because the light arriving at the retina is spread over an area covering many rods, it
follows that a single rod cell can detect a single photon.

The time constant of the human eye is about 0.1 s, and this is associated with the “persistence
of vision” that makes movies possible: We do not notice the changing of frames if the rate is faster
than about 15 frames per second. Moreover, the eye does not “integrate” a signal much beyond
about 0.1 s. The experimental results of Pirenne and collaborators, for instance, were obtained
with millisecond pulses of light. If the same total electromagnetic energy were incident upon
the eye over a longer time, say 1 s, there would be no response because too few photons
would be available over the 0.1-s integration period. †

12.8 REMARKS

The photon concept is an integral part of the modern theory of light. In this chapter we
have described, conceptually, some effects that cannot be understood without knowing
that there are indivisible units (photons) of radiation energy and momentum. However,
the wave concept is an equally important part of the modern theory of light. For practical
applications it is sometimes more convenient to think in terms of light waves and
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Figure 12.15 Theoretical probability of seeing [Eq. (12.7.11)] for different values of the threshold
photon number u, compared with the experimental seeing frequency for a single observer. Since the
shapes of the different curves depend primarily on u, each curve was shifted along the log I axis
(see text). [From F. Rieke and D. A. Baylor, Review Modern Physics 70, 1027 (1998).]
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sometimes in terms of photons. Because they involve enormously large numbers of
photons, where the classical wave theory is quite adequate, most practical properties
of lasers can be explained by classical wave theory together with the quantum theory
of atoms, molecules, and solids.

We also described some general aspects of photon detection and counting, and have
discussed the extent to which they can be interpreted using classical wave theory. As
discussed in the following chapter, nonclassical properties of light are revealed only
by optical measurements involving field correlation functions higher than “first order.”

While there is no experiment that contradicts any predictions of the quantum theory
of radiation, it continues to fascinate and not infrequently to surprise many scientists.
Readers who find the photon concept difficult to comprehend—as well as thosewho find
it easy—might dowell to remember something Einstein said near the end of his life: “All
these fifty years of conscious brooding have brought me no closer to the answer to the
question ‘what are light quanta?’ Nowadays every rascal thinks he knows it, but he
is mistaken.”

PROBLEMS

12.1. (a) Estimate the average number of photons per second per square centimeter
reaching Earth’s surface from the sun.

(b) A laser pointer puts out 1 mWat a wavelength of 532 nm. How many photons
are emitted per second?

(c) Suppose you are seated 10 m from a screen onto which a speaker shines his
laser pointer. Assume that the screen scatters 20% of the radiation incident
upon it, and that your eye’s pupil has a diameter of 5 mm. What is the rate
at which photons from the laser pointer enter your eye?

12.2. (a) Two polarizers are placed one over the other with their polarization axes
orthogonal. Is there a nonzero probability that any photon will pass through
both sheets?

(b) A third polarizer is inserted between the two polarizers in part (a), so that its
axis makes an angle of 458 with respect to each of the other two. Is it possible
for any photon to pass through all three sheets?

12.3. At points of constructive interference in the Young two-slit experiment, the inten-
sity is twice the intensity calculated by adding the intensities associated with each
individual slit. This does not violate the principle of conservation of energy.
Indicate why not (a) qualitatively and (b) semiquantitatively.

12.4. Note that the Poisson distribution (12.6.4) has the property

�n
@

@�n
e�nPn(T)½  ¼ nPn(T)e

�n:

(a) Show therefore that hni ¼P1
n¼0 nPn(T) ¼ �ne��n@(e�n)=@�n.

(b) Find a similar formula for nkPn(T)e�n, and use it to verify (12.6.8) for kn2l and
to compute the analogous result for kn3l.
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(c) Assuming a Poissonian photon-counting distribution (12.6.3), what is the
probability that at least one photon will be counted in a time interval T?

(d) Show that the probability distribution for the time interval t between two
successive photon counts is p(t) ¼ aI exp(2aIt).

12.5. (a) Assuming a PMT photocathode surface with a work function of 1.5 eV,
estimate the reduction in dark current as the temperature is lowered from
300 to 260K.

(b) Assuming a dark current of 104 electrons/s at room temperature, estimate the
minimal power of the incident light signal required for the photoelectric cath-
ode current to exceed this value, assuming the PMT has a quantum efficiency
of 30%. What is the corresponding minimal power required at T ¼ 260K?

12.6. (a) A direct current of 0.5mA is displayed on an oscilloscope with bandwidth 1
MHz. Calculate the rms shot-noise current.

(b) Consider a 50-V resistor at room temperature. Calculate the rms thermal noise
current, the rms thermal noise voltage, and the thermal noise power in a band-
width of 1 MHz.

(c) A PIN photodiode has a responsivity of 1 A/W. Calculate the rms shot-noise
current when light of power 1 mW is incident on the detector, assuming a
detection bandwidth of 10 MHz.
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13 COHERENCE

13.1 INTRODUCTION

Laser radiation can be both quantitatively and qualitatively different from ordinary
radiation like that from the sun or a fluorescent lamp. There are the obvious differences,
such as the very bright and nearlymonochromatic nature of laser light, and its propagation
as directed beams, but there are also subtle differences that distinguish laser radiation in
other ways. For instance, if the light from the sun were filtered in such a way that only a
single, quasi-monochromatic and unidirectional component of it remained, it could still
be distinguished from laser radiation.

Of course, the obvious differences are very important, and some were reviewed
briefly in Chapter 1. In many applications, for instance, it is only brightness that is
needed. For this reason we will begin in the following section with a discussion of
this aspect of laser radiation. The remainder of the chapter deals with coherence pro-
perties of radiation. After a careful consideration of the concept of coherence we can
begin to appreciate the fundamental differences between lasers and other light sources.

13.2 BRIGHTNESS

Consider a thermal source of radiation. The radiation inside a blackbody cavity has a
spectral energy density r(n) given by (3.6.1). If we divide the frequency band into
small finite elements dn, the intensity of radiation “at” frequency n emitted by a black-
body is In ¼

Ð
dn I(n) dn � I(n) dn, or

In ¼ 1
4
cr(n) dn ¼ (2phn3=c2) dn

ehn=kBT � 1
: (13:2:1)

As discussed in Section 3.6, there are two reasons for the factor 1
4, both stemming from

the fact that an ideal blackbody emits radiation isotropically.
As an example of a thermal source of radiation, consider the sun. For wavelengths

between about 102 and 107 nm, the solar spectrum is approximately that of a blackbody
at T � 6000K (Section 3.6). At the He–Ne laser wavelength l ¼ 632.8 nm, the intensity
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given by (13.2.1) for such a blackbody is

In ¼ (1:14 � 10�7 J=m2) dn: (13:2:2)

If we take dn ¼ 100 MHz, then In ¼ 1.14 mW/cm2.
Now a 632.8-nm He–Ne laser might have an output power Pwr ¼ 1mW and a

Gaussian beam spot size w0 ¼ 1mm. The peak intensity at the waist of the (lowest
order) Gaussian beam in this case is (Problem 7.3) Imax ¼ 2Pwr=pw2

0 ¼ 64mW=cm2.
The spectral width of the laser may be larger than the value dn ¼ 100MHz used in
our example above, or it could be much smaller. The point is that even the low output
powers of He–Ne lasers give higher radiation intensities, within a narrow spectral
range, than the sun at its surface.

The total intensity radiated by a blackbody is obtained by integrating (13.2.1) over all
frequencies, which gives the Stefan law (3.6.24). The total intensity of radiation from the
sun is found to be (Problem 13.1)

I ¼ 6:4 � 107 J=m2=s ¼ 6:4 kW=cm2 (sun): (13:2:3)

This intensity is beyond the range of (unfocused) He–Ne lasers, but it is easily exceeded
by higher-power lasers, both cw and pulsed. Furthermore the laser radiation is all
concentrated within a narrow frequency range, whereas (13.2.3) is a sum over all
frequencies, distributed according to the Planck law.

† One convenient way to measure these differences in brightness between laser radiation and
thermal radiation is to recall (Section 3.6) that the average number of photons per mode in a ther-
mal (blackbody) field is (ehn=kBT � 1)�1. For the solar temperature T ¼ 5800K, this number
(defined as the photon “degeneracy factor” in Section 13.12) is about 0.02. For a laser, on the
other hand, this number can be enormously greater, as we will see in Section 13.12. The very
first gas laser constructed, for instance, had a photon degeneracy factor of about 1012. †

For many purposes, power and intensity are not adequate measures of “brightness.”
Instead, we define the brightness (or radiance) of a source as the emitted power per unit
area per unit solid angle. This concept of brightness is useful in practical applications,
especially when the radiation from a source is to be focused by a lens to increase its
intensity. A fundamental theorem in optics states that the brightness of a source is an
invariant quantity, unchangeable by a lens or any other passive optical system.1 That
is, the intensity of a light beam can be increased by focusing, but the brightness cannot.

An important aspect of brightness is that it is inversely proportional to the solid angle.
The solid angle subtended by a beam is proportional to the square of the divergence
angle u (Fig. 13.1). For a Gaussian beam, for instance, the solid angle is

V ¼ pu2 ¼ l2

pw2
0

(13:2:4)

and is thus inversely proportional to the beam area (pw2
0). Since brightness is power per

unit area per unit solid angle, it is clear that the brightness of a Gaussian beam does not
change as it propagates. Furthermore, since a Gaussian beam remains Gaussian under

1This is true provided the refractive indices of the object and image spaces are the same—a minor technical
point that will not concern us.
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focusing by a lens, it is also clear that the brightness of a Gaussian beam cannot
be changed by focusing it down to a smaller, more intense spot.

Laser beams have a high degree of directionality, that is, their divergence angles are
small. Therefore their solid angles of divergence are also small, and consequently
the brightness of a laser beam is very high. To see this, consider again the peak intensity
of a (lowest-order) Gaussian beam at its waist (Problem 7.3):

Imax ¼ 2Pwr

pw2
0

, (13:2:5)

where Pwr is the total power transported by the beam. From (13.2.4) it follows that the
corresponding brightness is

B ¼ Imax

V
¼ 2Pwr

l2
: (13:2:6)

For a He–Ne laser with Pwr ¼1mW and l ¼ 632.8 nm this brightness is 5 �105

W/cm2-sr. This is a modest brightness for lasers. A Q-switched laser, for instance,
might have a brightness of 1012 W/cm2-sr, and brightnesses many orders of magnitude
larger than this are possible. Conventional light sources, even very powerful ones, have
much lower brightnesses because their radiation lacks the directionality of laser beams.
For example, the sun has a brightness of about 130W/cm2-sr at its surface; this is
hundreds of times smaller than the brightness of He–Ne lasers, and trillions of times
smaller than the brightnesses possible with high-power lasers.

In many applications laser radiation is focused to produce an intense spot. Brightness
is extremely important in this respect because the intensity that can be obtained in the
focal plane of a lens is proportional to the brightness of the beam.

Consider the focusing of a Gaussian beam.Without focusing, the peak intensity at the
beam waist is given by (13.2.6). With a lens of focal length f we can focus the beam to a
spot size (Problem 13.2)

wf ¼ lf

pw0
(13:2:7)

in the focal plane of the lens. The focused beam is still Gaussian, and so its peak intensity
is given by (13.2.5) with w0 replaced by wf :

Imax( f ) ¼ 2Pwr
pw2

f

¼ 2Pwr
f 2

pw2
0

l2
¼ 2Pwr

f 2V
, (13:2:8)

R

a

area p a2

q

Figure 13.1 The solid angle V associated with a divergence angle u is V; pa2/R2 ¼ pu2 if u ¼
tan21(a/R) � a/R, i.e., if u is small.
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where V is the solid-angle divergence of the unfocused beam. This result indicates
that, for a beam of given area, the intensity that can be obtained by focusing is
directly proportional to the beam brightness. It shows explicitly why the small
divergence (i.e., directionality) of laser beams is so important for obtaining high
intensities by beam focusing.

Consider again the example of a He–Ne laser with Pwr ¼ 1mW, l ¼ 632.8 nm,
w0 ¼ 1 mm. From Table 7.1 we compute a divergence angle u ¼ 2 � 1024 rad, and
therefore V ¼ pu2 ¼ 1.3 � 1027 sr. Equation (13.2.8) gives Imax( f ) ¼ 15 kW/cm2

for the peak intensity of a beam focused with a lens of focal length f ¼ 1cm. A laser
with the same l and w0, but a power of 1W, gives Imax( f ) ¼ 15MW/cm2. Such
estimates of focal-spot intensities apply to the ideal case of perfect beam quality
(M2 ¼ 1) and are therefore, as discussed below, somewhat high; but they serve to
indicate the sorts of intensities possible even with lasers with modest output powers.
The large intensities are a consequence of the low divergence angles (high brightness)
of laser beams. Divergence angles of many lasers vary from a few tenths of millirads to
10 mrad; an ordinary flashlight, by contrast, might be characterized by a divergence
angle �108. It is the brightness of laser beams, together of course with the powers
achievable, that makes them useful in applications such as drilling and welding. It is
even easy to vaporize metal surfaces with laser radiation, so that in laser welding special
care must be taken to avoid vaporization.

Anordinary lampemitting apowerP in all directionsmaybe shown togive an intensity

I � Pwr
f 2

(13:2:9)

in the focal plane of a lens. This differs from (13.2.8) by the absence of V in the
denominator, which is very small for a laser beam. Consequently, lamps would have to
emit tensor hundredsof thousandsofwatts tomatch the intensities achievableby focusing
low-power milliwatt He–Ne lasers.

13.3 THE COHERENCE OF LIGHT

The essential features of light coherence are displayed in the Young two-slit interference
experiment as shown in Fig. 13.2. Light from a source S is incident upon a screen con-
taining two narrow slits, S1 and S2. At a second screen, a distance L away from the first
screen, we observe the intensity distribution of the light emerging from the two slits. For
some sources we see interference fringes on the second screen, i.e., the intensity is not
simply the sum of the intensities associated with each slit. In such cases we say that the
radiation has a certain coherence, i.e., the ability to form fringes.

An elementary approach to the explanation of the interference fringes is to assume
both that the source emits monochromatic radiation, and that the slit separation d is
much smaller than the screen separation L. At a point P on the observation screen the
path difference from the two slits is (Fig. 13.3)

l ¼ d sin u � d
Y

L
(13:3:1)
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if the two slits subtend a small angle u at P. Since v/c ¼ 2p/l, the intensity has
its maxima at points P for which this optical path difference is an integral number of
wavelengths, i.e., v(l2 � l1)=c ¼ n� 2p. This condition gives

Y (max)
n ¼ n

lL

d
, n ¼ 0, 1, 2, . . . (13:3:2a)

for the location of the intensity maxima on the observation screen. There is destructive
interference of the light from the two slits if the path difference is an odd integral number
of half wavelengths, i.e., v(l2 � l1)=c ¼ (nþ 1

2 )� 2p. At the points where y has one of
the values

Y (min)
n ¼ nþ 1

2

� �
lL

d
, n ¼ 0, 1, 2, . . . , (13:3:2b)

Y 

d 

P 

L 

S1 

S2 

1 

q q 2

Figure 13.3 If the angle u subtended by S1 and S2 at P is small, the path difference l is approximately
dY/L.

Intensity
interference
patternS1

S

S2

L

Figure 13.2 The Young two-slit interference experiment.
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therefore, there are minima in the intensity pattern on the observation screen. For optical
wavelengths the separation

DY ¼ lL=d (13:3:3)

between intensity maxima (minima) on the observation screen is quite small even for
very closely spaced slits. For example, for l ¼ 600 nm, d ¼ 0.1 mm, and L ¼ 20 cm,
we compute DY ¼ 1.2 mm.

However, a real experiment will lack some or all of the ideal features just employed,
and so a real interference pattern will have features not predicted by our discussion so far.
For example, in a real experiment performed with an ordinary source of light, such as a
mercury arc lamp, or a sodium lamp, or some other nonlaser source of light, the maxima
and minima are accurately located by Eqs. (13.3.2a), but as we increase d the interfer-
ence pattern becomes less sharp, and beyond a certain value of d the interference fringes
disappear altogether. A similar effect is observed when we hold d fixed and bring
the observation screen closer to the slits. Then the interference fringes fade out and
the intensity at any point P on the observation screen becomes simply the sum of the
intensities associated with the two slits individually.

In addition, a real source of radiation will not be perfectly monochromatic. If the
source emits radiation with a spread dl in wavelengths about l, interference maxima
of one wavelength may coincide with minima of another, causing the interference
pattern to be washed out. The difference in fringe separation for two wavelengths
separated by dl is, from (13.3.3), d(DY) ¼ Ldl/d. The washing out of the interference
pattern when the source is not perfectly monochromatic is therefore minimal if

d(DY)
DY

¼ Ldl=d

Ll=d
¼ dl

l
¼ dn

n

 1: (13:3:4)

Radiation with bandwidth dn
n is said to be quasi-monochromatic.
Because interference fringes are never ideally sharp, it is convenient to have a way to

characterize the sharpness of the interference fringes. The quantity defined for this pur-
pose is called visibility, defined by

V ¼ Imax � Imin

Imax þ Imin
: (13:3:5)

Here Imax and Imin are respectively the maximum and minimum intensities on the obser-
vation screen. If at any point there is complete destructive interference, so that Imin ¼ 0,
it follows from (13.3.5) that the visibility V ¼ 1, its maximum possible value. If, on the
other hand, there is no interference pattern, in which case the fields from the slits add
incoherently, then Imin ¼ Imax and therefore V ¼ 0. The visibility thus provides a quan-
titative measure of the sharpness of interference fringes. In this way, visibility is a
measure of the coherence of light.

Our example of a real experiment indicates that coherence depends on the experimen-
tal situation (e.g., on the slit separation d, distance L, and bandwidth dl). If the
light source in our experiment were a laser instead of a thermal source, we would
typically find high fringe visibilities for considerably larger slit separations. We
say, somewhat loosely, that the laser radiation is much more coherent than thermal
radiation.
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In order to understand the results of the two-slit experiment for different sources, we
must next consider more carefully what it is that the experiment actually measures. This
will also lead us to a deeper appreciation of the concept of coherence.

13.4 THE MUTUAL COHERENCE FUNCTION

Suppose a quasi-monochromatic field is incident upon the screen containing the two slits
in Fig. 13.3, and that the field is uniform over each slit. Suppose that thewidth of each slit
is a. In order to have any interference pattern on the observation screen, the slits must
cause enough diffraction that the field from each slit has a transverse spread much
larger than DY [Eq. (13.3.3)]. Since a diffraction angle u � l/a is associated with a
slit of width a (recall Section 7.11), we require that

uL ¼ lL

a
� DY ¼ lL

d
, (13:4:1)

or a
 d. Provided the slits are much narrower than their separation, therefore, the fields
from the slits will be diffracted enough to produce interference fringes on the screen. We
will assume this condition is satisfied.

If we consider a quasi-monochromatic field rather than a perfectly monochromatic
one, it is no longer appropriate to write

E(r, t) ¼ E(r)e�ivt (13:4:2)

for the complex electric field [cf. Eq. (7.4.2)]. If we have a field withN distinct frequency
components, we might write instead

E(r, t) ¼
X
m

Em(r)e�ivmt: (13:4:3)

In the case N ¼ 1, we recover (13.4.2) with E(r) ¼ E1(r). More generally, we may be
dealing with a field having a continuous distribution of frequencies, in which case we
replace (13.4.3) by the so-called analytic signal2

E(r, t) ¼
ð1
0

~E(r, v)e�ivt dv, (13:4:4)

where ~E(r, v) is the Fourier transform of the real physical field:

~E(r, v) ¼ 1
2p

ð1
�1

[E(r, t)þ E�(r, t)]eivt dt: (13:4:5)

In practice, instead of (13.4.3) or (13.4.4), it is often more useful to write

E(r, t) ¼ E(r, t)e�ivt, (13:4:6)

where the complex amplitude E(r, t) varies very slowly in time.

2In optical coherence theory, 12E(r, t) is called the analytic signal associated with the field Re[E(r, t)]. It is
usually denoted by V(r, t).
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All of formulas (13.4.3)–(13.4.6) indicate possible generalizations of (13.4.2) and
they all indicate that the complex field E is to be associated with the positive frequency
part of the real field. This is seen quite clearly in (13.4.4), where the frequency integral is
over the range 0 to1. [It is unfortunately firmly conventional that the positive frequency
part of the field is the one that goes with the exponential e2ivt having the negative sign.]

We will consistently use (13.4.6) to denote a quasi-monochromatic field. Given the
identity

Re[E(r, t)] ¼ 1
2
[E(r, t)þ E�(r, t)], (13:4:7)

we can then write the intensity in terms of the positive and negative frequency parts of
the field as follows:

I(r, t) ¼ ce0[Re E(r, t)]2 ¼ ce0
4

[E2(r, t)þ E�2(r, t)þ 2E�(r, t)E(r, t)]: (13:4:8)

In the special case of a purely monochromatic field, for instance, E(r, t) is given by
(13.4.2), so that

I(r, t) ¼ ce0
4

[E2(r)e�2ivt þ E�2(r)e2ivt þ 2jE(r)j2]: (13:4:9)

For optical fields,v is on the order of 1015 sec21, which means that the first two terms
in (13.4.9) oscillate sinusoidally with a period far shorter than the resolving time of any
available detector. That is, no available detector will be able to follow the rapid oscil-
lations at frequency 2v in (13.4.9). What is measured is an average of (13.4.9) over
many optical periods. Since the first two terms of (13.4.9) average to zero over an optical
period, we ignore them and write the measurable intensity as

I(r, t) ¼ ce0
2
jE(r)j2: (13:4:10)

In the quasi-monochromatic case, the first two terms in (13.4.8) execute almost purely
sinusoidal oscillations which likewise average to zero over any realistic measurement
time. In other words, in general we can write the measurable intensity as

I(r, t) ¼ ce0
2
jE(r, t)j2: (13:4:11)

In the two-slit interference experiment, the field E(P, t) at the point P on the obser-
vation screen is the sum of the fields diffracted by the slits. The field E(S1, t) will
give rise to the field

E1(P, t) ¼ K1E S1, t � l1
c

� �
(13:4:12)

at the point P. The retardation time l1/c is just the time it takes for light to propagate
from S1 to P (Fig. 13.3). K1 is a function of the distance l1 and of other geometrical
details of the particular experimental arrangement. It may be derived from diffraction
theory, but for our purposes its precise form is unnecessary; it will be convenient,
however, to know that K1 (and K2 below) is a pure dimensionless imaginary number,
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i.e., K ¼ �K�1 . This property of K1 and K2 is related to the factor of i used in our state-
ment of Huygens’ principle, Eq. (7.10.1). In any case (13.4.12) has an intuitively reason-
able form. It says simply that the field E1(P, t) at time t is due to diffraction of the field
that was incident on S1 at the earlier time t2 l1/c.

The field E(P, t) at P due to both slits is then

E(P, t) ¼ E1(P, t)þ E2(P, t) ¼ K1E S1, t � l1
c

� �
þ K2E S2, t � l2

c

� �
: (13:4:13)

Using this result in (13.4.11), we have

I(P, t) ¼ ce0
2

K1E S1, t � l1
c

� �����
����
2

þ K2E S2, t � l2
c

� �����
����
2

þ ce0jK1K2jRe E� S1, t � l1
c

� �
E S2, t � l2

c

� �� 
(13:4:14)

for the intensity at point P on the observation screen, averaged over a few optical periods.
In addition to the fluctuations of intensity due to the regular but very rapid time vari-

ation of the factors e+2ivt that we have discarded, every light field is subject to small
irregular fluctuations arising from a variety of causes. One fundamental source of
such fluctuations is the (necessarily random) spontaneous emission component of
every light beam. Other less fundamental but generally much more important sources
include fluctuations in the atmosphere and mechanical vibrations of optical elements
in the path of the beam.

To account for the influence of these fluctuations in a detailed way would be imposs-
ible. Fortunately, it is satisfactory to assume that these fluctuations can be treated in an
average sense. Recall that we adopted such a point of view in treating the effect of col-
lisions on a Lorentz oscillator [Section 3.8] when we assumed that, on average, an oscil-
lator has zero displacement and velocity immediately after every collision. On this basis
we developed equations of motion for the average oscillator rather than trying to account
for the details of the collisional history of an individual atom.

For the same reasons we will now assume that the average light field is representative
of the collection of all possible light fields compatible with the fluctuations mentioned.
This imaginary collection of light fields can be termed a statistical ensemble of light
fields, and we expect that observable properties of light fields can be associated with
averages over this collection, so-called ensemble averages. We will denote an ensemble
average by angular brackets, so the average intensity will be written kIl. Thus, following
(13.4.11), we have

hI(P, t)i ¼ ce0
2
hE(P, t)E�(P, t)i (13:4:15)

and so on. Note that the ensemble average is not the same as a time average. In particular,
the ensemble average may be time-dependent, and a time average by definition could not
be. Of course, there can arise situations in which a light signal is detected (by counting
photons, say) over a long time period 2T, not instantaneously at time t. In this case the
time-dependent ensemble average must be further time-averaged in order to correspond
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to the measuring process and we can add a bar above the symbol to denote this:

h�I(P, t)i ¼ 1
2T

ðT
�T
hI(P, t þ t0)i dt0: (13:4:16)

Upon averaging both sides of (13.4.14) over the field fluctuations, we obtain

hI(P, t)i ¼ ce0
2
jK1j2 E S1, t � l1

c

� �����
����
2

* +
þ ce0

2
jK2j2 E S2, t � l2

c

� �����
����
2

* +

þ ce0jK1K2jRe E� S1, t � l1
c

� �
E S2, t � l2

c

� �� �
: (13:4:17)

The function

G(r1, t1; r2, t2) ¼ hE�(r1, t1)E(r2, t2)i (13:4:18)

appearing in (13.4.17) is called the mutual coherence function of the fields at r1, t1 and
r2, t2. It is also called the two-point function or autocorrelation function of the electric
field. In terms of the mutual coherence function, we may write (13.4.17) as

hI(P, t)i ¼ hI1(P, t)i þ hI2(P, t)i

þ ce0jK1K2jRe G S1, t � l1
c
; S2, t � l2

c

� �� 
, (13:4:19)

where

hIi(P, t)i ¼ ce0
2
jKij2 E Si, t � li

c

� �����
����
2

* +
¼ jKij2 I Si, t � li

c

� �� �

(i ¼ 1, 2), (13:4:20)

is the intensity that would bemeasured at P if slit Siwere acting alone, i.e., if the other slit
were closed. The intensity (13.4.19) is not just the sum of the intensities I1 and I2 associ-
ated with each slit alone, unless the mutual coherence function vanishes. We see, there-
fore, that the mutual coherence function is intimately connected with the ability of the
fields to produce interference fringes, i.e., to act coherently.

The definition of the mutual coherence function is the principal result of this section.
In the following sections we will use this important quantity to discuss the concepts of
spatial coherence and temporal coherence.

13.5 COMPLEX DEGREE OF COHERENCE

We will find it convenient to have a normalized form of the mutual coherence function,
which we can connect to measures of coherence such as visibility. The term for the stan-
dard normalized measure is the complex degree of coherence.
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We will begin by considering sources of radiation that have reached a more or less
“steady-state” operation after they have been turned on. The radiation from such sources
may be assumed in most instances to have a property called stationarity.

A stationary field has the property that the mutual coherence function G(r1, t1; r2; t2)
depends on t1 and t2 only through the difference t2 2 t1. This is sometimes expressed by
saying that the mutual coherence function for a stationary field is independent of the
origin of time. For instance, for a stationary field, for any time increment s,

G(r1, t1; r2, t2) ¼ G(r1, t1 þ s; r2; t2 þ s), (13:5:1)

and so we can shorten the notation and write

G(r1, t1; r2, t2) ¼ G(r1, r2, t2 � t1) ¼ G(r1, r2, t) (13:5:2)

for stationary fields, where t ¼ t2 2 t1.
Note that, since

hI(P, t)i ¼ ce0
2
hE�(P, t)E(P, t)i ¼ ce0

2
G(P, t; P, t), (13:5:3)

the time independence of the measured intensity of a stationary field follows from the
property (13.5.1) of the mutual coherence function, i.e.,

hI(P, t)i ¼ hI(P)i ¼ ce0
2

G(P, P, 0) (13:5:4)

in the notation (13.5.2). Equation (13.5.1) may therefore be considered as the defining
characteristic of a stationary field.

A trivial example of a stationary field is a perfectly monochromatic field. To see this,
use (13.4.2) in (13.4.18):

G(r1, t1; r2; t2) ¼ hE�(r1, t1)E(r2, t2)i ¼ hE�(r1)E(r2)e�iv(t2�t1)i
¼ hE�(r1)E(r2)ie�ivt: (13:5:5)

Thus the mutual coherence function depends on t1 and t2 only through the differ-
ence t2 2 t1 ¼ t, and so a monochromatic field is stationary.

In the two-slit experiment, the intensity (13.4.19) becomes

hI(P, t)i ¼ I1 þ I2 þ ce0jK1K2jRe G S1, S2,
l

c

� �� 
, l ¼ l2 � l1, (13:5:6)

when a stationary field is incident on the slits. Here

Ii ¼ hIi(P)i ¼ jKij2hI(Si)i (13:5:7)

is the intensity associated with slit Si alone, and is independent of time because the
source is stationary. The intensity (13.5.6) is also time-independent.
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In the case of a monochromatic field, the mutual coherence function is given by
(13.5.5), and so

hI(P)i ¼ I1 þ I2 þ ce0jK1K2jRe E�(S1)E(S2)e�ivl=c
h i

: (13:5:8)

Suppose that E(S1) ¼ E0 and E(S2) ¼ E0e2iF. This means that the fields at the slits differ
only by a constant phase term. Then

ce0jK1K2jRe E�(S1)E(S2)e�ivl=c
h i

¼ ce0jK1K2E2
0j cos

vl

c
þF

� �

¼ 2
ce0
2
jK1E0j2 ce02 jK1E0j2

� �1=2
cos

2pl
l
þF

� �

¼ 2(I1I2)
1=2 cos

2pl
l
þF

� �
(13:5:9)

and therefore

hI(P)i ¼ I1 þ I2 þ 2(I1I2)
1=2 cos

2pl
l
þF

� �
: (13:5:10)

If F ¼ 0, there is constructive interference at point P if cos(2pl/l) ¼ 1, i.e., if the
path difference l in Fig. 13.3 is an integral number of wavelengths. Similarly, there is
destructive interference at points on the observation screen where l is an odd integral
number of half-wavelengths. We have merely justified our assumptions leading to
(13.3.2a) and (13.3.2b).

If F= 0, (13.5.10) implies there is constructive interference at points P where
2pl/l þ F ¼ 2pn, or

l ¼ nlþ l(F=2p), n ¼ 1, 2, . . . : (13:5:11)

If the two slits subtend a small angle at P, then (13.5.11) leads to

Y (max)
n ¼ n

lL

d
þ F

2p
lL

d
, n ¼ 0, 1, 2, . . . , (13:5:12a)

or

Y (min)
n ¼ nþ 1

2

� �
lL

d
þ F

2p
lL

d
, n ¼ 0, 1, 2, . . . (13:5:12b)

in place of (13.3.2a) and (13.3.2b). These equations indicate that a phase difference F
has the effect of shifting the positions of the intensity maxima and minima by the
amount FlL/2pd. The overall interference pattern, though shifted upwards or down-
wards (depending on the sign of F), is otherwise basically unchanged. In particular,
the separation D between intensity maxima (and minima) is the same as the value
(13.3.3) for the case F ¼ 0.
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The intensity on the observation screen in the two-slit experiment is given by (13.5.6)
whenever the field is stationary. It is convenient to write this as

hI(P)i ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffi
I1I2
p

Re[g(S1, S2, l=c)], (13:5:13)

where the dimensionless complex number g is defined by

g(S1, S2, l=c) ¼ (ce0=2)jK1K2jG(S1, S2, l=c)ffiffiffiffiffiffiffi
I1I2
p ¼ (ce0=2)jK1K2jG(S1, S2, l=c)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jK1j2hI(S1)i� jK2j2hI(S2)i
q

¼ (ce0=2)G(S1, S2, l=c)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihI(S1)ihI(S2)i
p , (13:5:14)

or in general

g(r1, r2, t) ¼ G(r1, r1, t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G(r1, r2, 0)G(r2, r2, 0)
p : (13:5:15)

g(r1, r2, t) is called the complex degree of coherence. As we will now show, it is inti-
mately related to the fringe visibility V defined by Eq. (13.3.5).

13.6 QUASI-MONOCHROMATIC FIELDS AND VISIBILITY

In the case of a purely monochromatic field, where G(r1, r2, t) is given by (13.5.5), the
complex degree of coherence is simply

g(r1, r2, t) ¼ e�ivt: (13:6:1)

For quasi-monochromatic light, we may assume that

g ¼ jg(r1, r2, t)je�iFe�ivt, (13:6:2)

where v is the central frequency and jg(r1, r2, t)j is a slowly varying function of t com-
pared with e2ivt. In this case, (13.5.13) becomes

hI(P)i ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffi
I1I2
p

g S1, S2,
l

c

� �����
���� cos 2pl

l
þF

� �
: (13:6:3)

Consider a region around Pmuch larger than awavelength. Over this region the factor
cos(2pl/l) varies rapidly between 21 and þ1 as l is varied, whereas the (slowly vary-
ing) factor jg(S1, S2, l/c)j is practically unchanged. Thus the maximum and minimum
intensities in the neighborhood of P are

Imax ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffi
I1I2
p jgj and Imin ¼ I1 þ I2 � 2

ffiffiffiffiffiffiffi
I1I2
p jgj, (13:6:4)

13.6 QUASI-MONOCHROMATIC FIELDS AND VISIBILITY 601



and so the fringe visibility (13.3.5) is

V ¼ 2
ffiffiffiffiffiffiffi
I1I2
p jgj
I1 þ I2

: (13:6:5)

The modulus g of the complex degree of coherence is thus a direct measure of the fringe
visibility.

In the special case I1 ¼ I2, the visibility and the modulus of the complex degree of
coherence are identical:

V ¼ jgj: (13:6:6)

From the definition of the visibility, it is clear that 0 	 V 	 1 in general, and therefore
also that3

0 	 jgj 	 1: (13:6:7)

When jgj ¼ 1 or 0, we have complete coherence or incoherence, respectively. When
0 , jgj, 1, the light is said to be partially coherent.

In many cases, it is useful to have a specific model of G that exhibits the commonly
observed property that G decreases as the separation t ¼ jt2 2 t1j increases. For one such
model of a quasi-monochromatic laser field with frequency vL,

G ¼ hE�0(r1)E0(r2)ie�jt=tcohje�ivLt, (13:6:8)

where tcoh is called the field’s correlation time. Obviously, the field is poorly correlated
with itself (G is small) over time displacements greater than jt2 2 t1j � tcoh. According
to theWiener–Khintchine theorem, the (stationary) field’s spectrum S(v) can be defined
as the Fourier transform of its autocorrelation function, so that in this case we can easily
determine

S(v) ¼ 2phE�0(r1)E0(r2)i 1=ptcoh
(v� vL)2 þ (1=tcoh)2

: (13:6:9)

The laser spectrum is thus predicted to be a smoothly peaked function centered at vL,
with a half-width l/tcoh. The spectral lineshape of most lasers is not Lorentzian, but
the other features of this model are satisfactory, especially the identification of the spec-
tral linewidth with the inverse coherence time of the light field (recall Section 1.2).

It is important to note that for a monochromatic field

jgj ¼ 1 (monochromatic field), (13:6:10)

which follows trivially from (13.6.1). Therefore, the idealized monochromatic field
always gives the maximum possible fringe visibility. However, nonmonochromatic radi-
ation can also satisfy the condition jgj ¼ 1 for complete coherence.

Themutual coherence functionG(r1, r2, t) is the average of the product of E�(r1, t) and
E(r2, t þ t). During the measurement time over which the average is taken, the fields at

3This general property of g may be derived from the definition (13.5.14) and the Schwarz inequality.
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r1, t and r2, t þ t may undergo rapid fluctuations. This is to be expected, because
the fields are due to a large number of individual radiators (atoms and molecules) that
themselves fluctuate due to collisions, thermal motion, etc. The functions G and g
characterize the degree to which the fields at r1, t and r2, t þ t are correlated, or able
to produce interference fringes, in spite of these fluctuations.

The total electric field is always the sum of the fields from all the individual sources.
The intensity is proportional to the square of the total field, and therefore has contri-
butions arising from the interference of the fields from different sources. If we had a
hypothetical detector that could respond instantaneously to the field fluctuations, we
would always measure interference fringes. Usually the interference terms fluctuate
too rapidly to be observed in a realistic measurement time. In other words, whether
the fields at r1, t and r2, t þ t exhibit any mutual coherence depends not only on the
intrinsic properties of the fields, or their sources, but also on what we measure.

13.7 SPATIAL COHERENCE OF LIGHT FROM ORDINARY SOURCES

We have seen two examples in which a phase shiftF appears in an expression for regis-
tered intensity in (13.5.10) and (13.6.3). We can think of an ordinary light source as one
that introduces a differentF from each of its infinitely many infinitesimal radiating units.
Such a source is completely incoherent in this sense, that it has no phase regularity at all
over its surface. It should be obvious that such a source cannot give rise to a field having
an intensity function with regularities such as interference fringes that can be seen on an
observing screen. Nevertheless, such a field can be coherent in a more subtle way that we
will now discuss. The essential element, as we will see, is the presence of a substantial
distance between the source and points on the observation screen. Then two different
points (r1 and r2) on the screen will each be receiving more or less the same jumble
of randomly phased fields from the source, and will therefore have nearly the same char-
acter. This makes the received fields at points r1 and r2 mutually coherent, although not
individually coherent in the sense of contributing to a fringe pattern.

While the detected intensity in the scenario just described will be unpatterned on the
observation screen, we recognize that it is a single-point measure, point by point on the
screen. The mutual coherence function, on the other hand, deals with fields at two differ-
ent spatial points (r1 and r2) and at two different times (t1 and t2). To isolate the spatial
characteristics of the mutual coherence function, we take t1 ¼ t2 ¼ t; then G(r1, t; r2, t)
determines the mutual coherence of the fields at two different points in space at the same
time. In this case we speak of spatial coherence. For stationary sources, spatial coher-
ence is characterized by the mutual coherence function G(r1, r2, 0) and the complex
degree of coherence g(r1, r2, 0). This is the case of most practical interest, and so we
will henceforth always assume stationarity.

To test experimentally for the spatial coherence of the light on the screen, we can
place pinholes at P1 and P2, and detect the mutual coherence at those points indirectly,
by determining whether or not light transmitted through the pinholes can create fringes
when falling on a second farther observation screen. The light phases at P1 and P2 will
not be constant, but the phase difference can be constant, and in that case the farther
screen will show an interference pattern, just as in the two-slit experiment with a
phase difference F between the fields at the slits [Eqs. (13.5.12)]. If the field phases
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at P1 and P2 are fluctuating and not sticking together, or cohering, the fields they transmit
will not be able to produce fringes, and we label the fields as incoherent.

It may seem surprising at first that an ordinary light source consisting of myriads of
individual, independent radiators, can emit light with any spatial coherence at all.
However, ordinary sources can (and frequently do) produce spatially coherent fields,
fields which give rise to interference fringes when used to illuminate the slits in a
two-slit experiment, for instance. We will now explain how an ordinary incoherent
source can emit spatially coherent radiation. As a result of our discussion, we will be
able to understand the experimentally observed decrease of the fringe visibility in the
Young setup as slit separation d is increased, as described in Section 13.3.

It is worth emphasizing that for a single polarization of monochromatic radiation
jg(r1, r2, 0)j ¼ 1; [recall Eq. (13.6.1)]. Needless to say, monochromaticity is an ideal-
ization that cannot be attained in the real world. However, we can produce quasi-
monochromatic radiation quite readily, and so we will focus our attention on this
more realistic case. We will denote by l the central wavelength of our quasi-
monochromatic field. The spread in wavelengths, dl, is very small compared to l
for such a field [Eq. (13.3.4)].

We note first that a point source of radiation, one with dimensions much smaller than
a wavelength, will always produce spatially coherent radiation. For even though the
radiated field may vary quite erratically in its amplitude and phase, as a result of fluctu-
ations in the source, every point on the wavefront has the same variation, that dictated by
the single point source (Fig. 13.4). Thus the variations are perfectly correlated across any
wavefront, and the emitted field is spatially coherent. The real question, therefore, is how
an actual extended source, comprising many independently fluctuating point sources,
can produce spatially coherent radiation.

Consider the case of two independent point sources, one on the axis in a two-slit
experiment and the other a distance r off axis (Fig. 13.5). The source on the axis is equi-
distant from the two slits and, because it is a point source, produces spatially coherent
radiation. It therefore produces fringes on the observation screen with perfect visibility
(V ¼ 1); the positions of intensity maxima and minima are given by (13.3.2a) and
(13.3.2b) for L� d.

Stable 
interference 

fringes 

P1 

P2 

Figure 13.4 Two points P1 and P2 transmitting light from an equidistant common point source have
exactly the same amplitude and phase variations, these being determined only by the fluctuations in the
source.
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The second point source is not equidistant from the two slits. The difference in path
length is D ¼ rd/R (Fig. 13.5), corresponding to a phase difference

F ¼ 2pD
l
¼ 2p(rd)

lR
: (13:7:1)

This point source therefore produces an interference pattern with intensity maxima and
minima given by (13.5.12). In other words, the interference pattern associated with the
second source is shifted a distance

F

2p
lL

d
¼ rL

R
(13:7:2)

from the interference pattern of the source on axis.
If the two point sources are completely independent, their fields fluctuate indepen-

dently, and do not interfere for any measurable time interval. However, an interference
pattern may still be observed, for the fringes associated with one (point) source may
practically coincide with the fringes of the other. This happens if the displacement
(13.7.2) of their interference patterns is small compared to the fringe spacing DY
[Eq. (13.3.3)] of the interference pattern associated with each individual source, i.e., if

rL

R
, DY ¼ lL

d
: (13:7:3)

Equation (13.7.3) says that, using the two point sources of Fig. 13.5, there will be
interference fringes in the two-slit experiment if the slit separation d is small enough,
namely if

d ,
l

r
R: (13:7:4)

The factor l/r is approximately the diffraction angle for light of wavelength l incident
upon an aperture of radius r (Section 7.11). This connection with diffraction theory is
the essence of the van Cittert–Zernike theorem, which relates the mutual coherence

d

D

r

q

q

Two point
sources

D @ d sin q
    @ d (r/R)

R

Figure 13.5 Two point sources in a two-slit experiment, one equidistant from the slits, the other
displaced by r from the axis of equidistance. For the second source the distances to the slits differ
by D. (The two angles labeled by u are equal because their sides are perpendicular.)
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function of the field from an ordinary source to the diffraction pattern for an aperture of
the same dimensions as the source. We will discuss one important example.

Consider a plane circular disk source of radius r. The van Cittert–Zernike theorem
gives a simple expression in this case for the degree of spatial coherence jg(r1, r2, 0)j
in a plane parallel to the source and a distance R from it (Fig. 13.6) in terms of the
first-order Bessel function J1(x):

jg(r1, r2, 0)j ¼ 2J1(x)
x

����
����, (13:7:5)

where

x ¼ 2pr
lR
jr1 � r2j ¼ 2prd

lR
, (13:7:6)

and it is assumed that r and d are much smaller than R. Comparing this with our results
in Section 7.11, we see that jg(r1, r2, 0)j2 is the Airy pattern associated with Fraunhofer
diffraction by a uniformly illuminated circular aperture of radius r. Equation (13.7.5)
gives the degree of coherence of the radiation at a distance R from the source.
Since 2J1(x)/x � 0.88 for x ¼ 1, the radiation has a degree of spatial coherence
jg(r1, r2, 0)j � 88% if x 	 1, i.e., if

2prd
lR
	 1, (13:7:7)

or d 	 (1/2p)(lR/r). In other words, the radiation has a high degree of spatial
coherence over a circular area of diameter

dcoh ¼ 1
2p

lR

r
� 0:16

lR

r
: (13:7:8)

This result of the van Cittert–Zernike theorem supports our intuitive argument leading
to (13.7.4).

r1

r2

R 

Circular disc source 
of radius r 

Figure 13.6 The van Cittert–Zernike theorem gives jg(r1, r2, 0)j in a plane a distance R from an
ordinary (nonlaser) source of quasi-monochromatic radiation. We consider the case of a circular
disk source of radius r, for which jg(r1, r2, 0)j is given by (13.7.5).
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Now we can understand the results of the two-slit experiment when an ordinary
source is used (Section 13.3). The light from such a source has spatial coherence over
a limited area (�pdcoh2 /4) on the screen containing the slits. As the slit separation is
increased, the degree of coherence of the fields at the two slits decreases. For slit separ-
ations large compared to dcoh, the fringe visibility approaches zero. The fringe visibility
also decreases if the slit separation is kept constant and R is decreased, i.e., if the source
is brought closer to the slits. Actually, if the slit separation is increased so that the fringe
visibility falls from near unity to zero, a continued increase in the slit separation causes
the visibility to increase and then decrease again repeatedly, but with very small second-
ary maxima. This is simply a reflection of the oscillatory behavior of the Bessel function
J1(x) in (13.7.5) (cf. Fig. 6.13). A similar result is obtained if the slit separation is fixed
while R is decreased.

The spatial filtering discussed in Section 7.13 is a way to obtain a spatially coherent
beam of large area from an ordinary source of radiation (see Fig. 7.33). The radiation
from the source is focused to a spot near a pinhole of radius a. The pinhole, which
acts as a plane circular source, is in the focal plane of a second lens of focal length f.
The beam emerging from the second lens is spatially coherent over a circle of diameter
given by (13.7.8) with r ¼ a and R ¼ f:

dcoh ¼ 0:16
lf

a
: (13:7:9)

A small pinhole therefore gives rise to a large spatially coherent beam.

† Consider as an example the light from the sun. As an approximation let us treat the sun as a
disk source of mean wavelength 550 nm. Over what linear dimensions on Earth is the light from
the sun spatially coherent? The answer is given by (13.7.8) with r ¼ 6.96 � 108 m, the radius of
the sun, and R ¼ 1.5 � 1011 m, the mean distance of the Earth from the sun:

dcoh ¼ (0:16)(550� 10�9 m)(1:5� 1011 m)
6:96� 108 m

¼ 0:02mm: (13:7:10)

We could use the arrangement of Fig. 7.33 to achieve a larger region of spatial coherence, but the
larger beam area would result in a diminution of intensity. Lasers, on the other hand, can give
large coherence areas and high intensity.

We can write (13.7.8) in the form

dcoh ¼ 0:16
l

u
, (13:7:11)

where u ¼ r/R is the angle subtended by the source at the observation plane. The sun, for
instance, subtends an angle u � 4.6�1023 rad at the Earth.

The smaller the angle u subtended by the source, the greater the diameter dcoh over which its
radiation is spatially coherent. The star Betelguese, for instance, subtends an angle � 2 � 1027

rad at the Earth. For l ¼ 550 nm, therefore, (13.7.8) gives dcoh � 0.8 m, In other words, stellar
radiation is spatially coherent over fairly large areas at the Earth’s surface. There are techniques
that take advantage of this to measure the angular diameters of stars.

The planets in our solar system typically subtend angles several orders of magnitude larger
than those of stars. Their radiation (i.e., the solar radiation they scatter to the Earth) is therefore
spatially coherent over much smaller distances at the Earth. This is partly responsible for the fact
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that stars twinkle, whereas planets normally do not. The twinkling is an interference effect arising
from refractive-index fluctuations in the Earth’s atmosphere. Similarly, distant streetlights appear
to twinkle, whereas closer ones do not. Such effects were noted by Aristotle (384–322 B.C.),
even before streetlights were common in Athens. †

13.8 SPATIAL COHERENCE OF LASER RADIATION

Laser radiation can have a high degree of spatial coherence. This in itself is not remark-
able, for we have seen that spatially coherent beams of light can be obtained from the
radiation of ordinary sources. What is unique about lasers is that they can combine
spatial coherence with high intensity, or at least an intensity high enough to be useful
in applications. It is this property of lasers that makes them so useful for holography,
for instance.

A laser oscillating on a single transverse mode has perfect spatial coherence.4 A two-
slit experiment will show interference fringes of high visibility. For a Gaussianmode, for
instance, sharp fringes are observed even if the slit separation is considerably larger than
the spot size w of the laser beam.

It is worth noting that this spatial coherence has nothing to do with stimulated
emission per se. The spatial coherence of a laser oscillating on a single transverse
mode is a consequence of the fact that the field is a mode of a resonator. As a result,
the field values at any two points across the wavefront are perfectly correlated, i.e., in
step with one another. For instance, even an emitter operating below the threshold for
laser oscillation exhibits perfect spatial coherence if the radiation is associated with a
single transverse mode.

However, a laser operating on more than one transverse mode does not have perfect
spatial coherence. In particular, a laser operating on many transverse modes has
spatial coherence properties much like those of ordinary sources of radiation, where
the van Cittert–Zernike theorem is applicable. This is why single-mode operation is
so important in holography, for instance.

To get an intuitive picture of the reason that oscillation on more than one transverse
mode reduces spatial coherence, recall that different transverse modes have different
field distributions, as in the case of a lowest-order Gaussian beam compared with a
higher-order one. It can thus be imagined that the different modes are being excited
by quite different groups of active atoms, and are therefore associated with completely
independent sources. This brings us close to our picture of an ordinary source of
radiation.

Figure 13.7 shows results of an experiment to determine the spatial coherence of a
632.8 nm He–Ne laser. The degree of spatial coherence was determined by a two-slit
arrangement with aperture spacings from 2 to 20 mm. When the laser was oscillating on
a single transverse mode, the result was jg(r1, r2, 0)j � 1. However, when the resonator

4This is true even if the laser is oscillating on more than one longitudinal mode. See Section 13.11. It should
be noted, however, that this conclusion is based on scalar wave theory in which polarization effects are
ignored. If the resonator is such that the polarization varies azimuthally across the output beam, for instance,
the complex degree of coherence of the laser radiation can be 1 for some pairs of points and 0 for others. See
D. P. Brown, A. K. Spilman, T. G. Brown, R. Borghi, S. N. Volkov, and E. Wolf, Optics Communications
281, 5287 (2008).
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was adjusted so that two transverse modes oscillated, jg(r1, r2, 0)j dropped dramatically
with increasing jr1 2 r2j. In fact, jgj for the case of only two transverse modes already
approaches that for an ordinary incoherent (e.g., thermal) source. As the number of oscil-
lating transverse modes increases further, jg(r1, r2, 0)j comes close to the functional form
(13.7.5) for a thermal source.

These experimental results, and others like them, show how crucial oscillation is on a
single transverse mode for the spatial coherence of laser radiation. Unfortunately, the
restriction to a single transverse mode often reduces the total output power of the
laser. For when several modes oscillate, each with their different field distributions,
the overall mode volume covers a greater portion of the available gain medium.

† One result of the spatial coherence of a laser beam is the speckle effect that is observed when
an expanded laser beam shines on a surface with fine-scale irregularities (e.g., a “diffuse” surface
like a wall). The reflected light has a speckled appearance, consisting of irregularly-shaped but
sharply-defined bright and dark areas. The bright and dark areas are associated, respectively,
with constructive and destructive interference of the light from the various surface scattering
elements (Fig. 13.8). Because the surface has more or less random irregularities, the speckle pat-
tern itself appears random and irregular. Laser speckle is a consequence of spatial coherence: if
the radiation incident on the scattering surface were not spatially coherent, the uncorrelated fluc-
tuations in the field at nearby points on the surface would wash out the interference pattern.

When we view an object illuminated by laser light, we often find it difficult to focus on it. This
is because our eyes involuntarily try to focus on the speckle. This cannot be done, because the
speckle pattern is not “on” the object or any other plane in space. Indeed, we see the interference
pattern even if we focus our eyes on a plane between the object and ourselves.

If a near-sighted observer moves his head from side to side, the speckle pattern appears to
move in the opposite direction, whereas a far-sighted person will see it moving in the same direc-
tion he is moving his head. This effect has a simple explanation (Problem 13.3). †

0 
0 

0.5 V

1.0 

10 
d (mm)

20

Figure 13.7 V ¼ jg(r1, r2, 0)j for a 632.8 nm He–Ne laser, as a function of d ¼ jr1 2 r2j.
Observations of single-mode (closed circles), double-mode (open circles), and multimode (crosses)
types of operation are shown along with the calculated visibility function of a thermal source
(dashed curve). From M. Young and P. L. Drewes, Optics Communications 2, 253 (1970).
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13.9 DIFFRACTION OF LASER RADIATION

The high degree of directionality of laser beams, and therefore their high brightness, is
intimately related to their spatial coherence. Our treatment of diffraction in Chapter 7
assumed perfect spatial coherence: we dealt with time-independent field amplitudes
and phases, so there were no fluctuations of these quantities to be averaged. For a
spatially coherent beam propagating in free space, the divergence angle obeys the
relation

u � l

D
, (13:9:1)

where D is the beam diameter. The precise value of the divergence angle depends on
the intensity distribution across the beam. For a Gaussian beam u ¼ (2/p)(l/D),
where D ¼ 2w0.

If the beam has only partial spatial coherence, the Huygens wavelets from different
points on the beam do not all add up coherently. Imagine, for instance, that the beam
is spatially coherent only over distances d , D across the beam. In this case the
divergence angle is

u � l

d
.

l

D
: (13:9:2)

In other words, if the beam is not spatially coherent, the divergence angle is greater than
in the spatially coherent case with the same intensity distribution. In particular, the
divergence angle associated with a laser operating on more than one transverse mode
will generally be greater than that for the single-mode case.

The divergence angle of a laser beam can be reduced simply by increasing the beam
diameter. This may be done, for instance, by letting the beam pass backwards through a

Figure 13.8 A speckle pattern [Courtesy of R. W. Boyd].
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Keplerian telescope (Fig. 7.24). The divergence angle is inversely proportional to the
beam diameter, and so the angle uf after passage through the telescope is related to
the initial angle ui by

uf
ui
¼ Di

Df
¼ 1

MT
, (13:9:3)

where MT is the magnification of the telescope. Low divergence angles are obiously
essential in such applications as alignment or surveying, where a laser beam is used
as a straight line.

Because of diffraction, a laser beam cannot be focused with a lens to the geometrical
point predicted by ray optics (but see footnote 6 in Sec. 7.11). The beam divergence is
minimized, however, if the beam is spatially coherent. In this case, because diffraction
sets the ultimate lower limit on the beam spread, we say we have reached the diffraction
limit. Realization of the diffraction limit in practice requires that aberrations and other
defects in components such as lenses and mirrors are negligible. Unfortunately, the
term “diffraction limit” is used without general agreement on its precise meaning; fre-
quently its intended meaning has to be understood from the context in which it is used.

13.10 COHERENCE AND THE MICHELSON INTERFEROMETER

If we take r1 ¼ r2 ¼ r in the definition (13.4.18), then G(r1, t1; r2, t2) determines the
mutual coherence of the fields at the same point in space but at two different times. In
this case we speak of temporal coherence. We are interested in stationary fields,
for which G(r, t1; r, t2) ¼ G(r, r, t) depends on t1 and t2 only through the difference
t ¼ t2 2 t1.

The significance of temporal coherence can be illustrated by considering as an
example the Michelson interferometer shown in Fig. 13.9. The incident beam is split
by a 50 : 50 beam splitter (BS) into two beams of equal intensity. One of these beams
is reflected off mirror M1 and makes its way to BS again, where part of it is transmitted.
Similarly, the other beam reflects off mirrorM2 and propagates back to BS, where part of
it is reflected. At a point such as P in Fig. 13.9 there is thus a superposition of two fields.
Because each of these fields is twice incident on BS, it has an intensity one-fourth the
intensity (at R, say) originally incident upon the interferometer; the field amplitude,

Adjustment
screws 

M2 

M1 

P 

R 

Incident beam 
d2 

d1 

l 

BS
L 

Figure 13.9 Basic setup for a Michelson interferometer.
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therefore, has been cut in half. So the total field at P at time t is

E(P, t) ¼ 1
2
E R, t � l1

c

� �
þ 1
2
E R, t � l2

c

� �
, (13:10:1)

where

l1 ¼ Lþ 2d1 þ l, l2 ¼ Lþ 2d2 þ l: (13:10:2)

In writing (13.10.1) we are assuming that the field amplitudes are reduced only by the
beam splitter. The first term is the field at P resulting from propagation via the upper
arm of the interferometer in Fig. 13.9. Except for the factor 1

2, this field is the same as
that at R at the earlier time t2 l1/c, where l1/c is the time it takes light to propagate
from R to P via the upper arm. The second term has the same interpretation, except
that it arises because of the second arm of the interferometer.

The intensity measured at P is

hI(P, t)i ¼ ce0
2
hjE(P, t)j2i ¼ ce0

8
E R, t � l1

c

� �����
����
2

þ ce0
8

E R, t � l2
c

� �����
����
2

þ ce0
4

Re E� R, t � l1
c

� �
E R, t � l2

c

� �� 
: (13:10:3)

For stationary fields, every term in this equation is independent of t, and furthermore the
mutual coherence function appearing on the right depends only on the path difference

t � l2
c

� �
� t � l1

c

� �
¼ l1 � l2

c
¼ 2

d1 � d2
c
¼ t: (13:10:4)

The measured intensity at P for a stationary field is thus

hI(P)i ¼ 1
4 hI(R)i þ hI(R)i þ ce0 Re G(R, R, t)½ 

¼ 1
2hI(R)i[1þ Re g (R, R, t)], (13:10:5)

where the complex degree of coherence is defined by (13.6.3):

g (R, R, t) ¼ (ce0=2)G(R, R, t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihI(R)ihI(R)ip ¼ (ce0=2)G(R, R, t)
hI(R)i : (13:10:6)

In the case of perfectly monochromatic light, for which g is given by (13.6.4), we have
from (13.10.5),

hI(P)i ¼ 1
2
hI(R)i(1þ cosvt) ¼ hI(R)i cos2 1

2
vt ¼ hI(R)i cos2 v

c
(d1 � d2)

h i

¼ hI(R)i cos2 2p
l

(d1 � d2)

� 
: (13:10:7)
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There is therefore constructive interference at P when

j d1 � d2j ¼ nl, n ¼ 0, 1, 2, . . . , (13:10:8a)

and destructive interference when

j d1 � d2j ¼ (nþ 1
2)l, n ¼ 0, 1, 2, . . . , (13:10:8b)

just as we should have expected. As the arm separation jd1 2 d2j is varied, there is a
sequence of alternately bright and dark spots at P.

For quasi-monochromatic light, where g is given by (13.6.5), we obtain from
(13.10.5) the intensity

hI(P)i ¼ 1
2
hI(R)i 1þ jg (R, R, t)j cos 2p

l
(d1 � d2)

� �� 
: (13:10:9)

The visibility in this case is

V ¼ hI(P)imax � hI(P)imin

hI(P)imax þ hI(P)imin
¼ jg (R, R, t)j: (13:10:10)

The Michelson interferometer thus provides a way of measuring temporal coherence,
just as the Young two-slit experiment may be used to measure spatial coherence
(Problem 13.4).

† The Michelson interferometer was invented by Albert A. Michelson, who began his study of
optics as a student at the U.S. Naval Academy. There hewas considered below average in seaman-
ship, but he excelled in science. His best-known work involved the use of his interferometer to
test for the motion of the Earth through the “ether.” The null result of the Michelson–Morley
experiment in 1887 led eventually to the abandonment of the ether concept.

The Michelson interferometer can be used to determine the wavelength of quasi-
monochromatic radiation (Problem 13.5), and in this role it has for a long time been a very
useful spectroscopic tool. †

13.11 TEMPORAL COHERENCE

It is found experimentally that the visibility (13.10.10) decreases with increasing t.
Furthermore the visibility decreases more rapidly for larger bandwidths dn of the
(quasi-monochromatic) radiation. In other words, the more nearly monochromatic the
radiation, the greater its temporal coherence.

To understand this, suppose we have radiation of spectral width dl incident upon a
Michelson interferometer. Then the total intensity at P is the sum of contributions
like (13.10.7) if we add intensities of different frequency components (Problem 13.6).
Since each wavelength component of the incident radiation is associated with a different
pattern of bright and dark spots as jd1 2 d2 j is varied, the pattern will be smeared out if
dl is large enough. Wewill assume for simplicity that the intensity is constant for wave-
lengths between l� 1

2dl and lþ 1
2dl, and zero outside this range, as shown in
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Fig. 13.10. Then we expect that the interference pattern is smeared out if jd1 2 d2 j is
large enough that the largest wavelength lþ 1

2dl corresponds to an intensity maximum,
whereas the smallest wavelength l� 1

2dl corresponds to an intensity minimum (or vice
versa). From (13.10.8) we have therefore the two conditions

j d1 � d2j ¼ n(lþ 1
2dl), (13:11:1a)

j d1 � d2j ¼ (nþ 1
2)(l� 1

2dl) (13:11:1b)

in this case, or

j d1 � d2j
lþ 1

2dl
¼ n, (13:11:2a)

j d1 � d2j
l� 1

2dl
¼ nþ 1

2
, (13:11:2b)

where n is an integer. Subtraction of the first of these equations from the second yields

j d1 � d2j 1

l� 1
2dl
� 1

lþ 1
2dl

 !
¼ 1

2
: (13:11:3)

Since dl
 l, we can combine the two fractions to obtain

jd1 � d2j dl
l2
¼ 1

2
, (13:11:4)

where we have dropped (dl)2/4 in the denominator compared to l2. Thus, we find

jd1 � d2j ¼ ct ¼ l2

2dl
: (13:11:5)

Since l ¼ c/n, it follows that differential increments of wavelength and frequency are
related by

dl

dn

����
���� ¼ c

n2
¼ l

n
, (13:11:6)
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l + –dl1 
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– –dl 1 
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Figure 13.10 Hypothetical intensity distribution as a function of wavelength.
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and so we have, for sufficiently small finite positive increments,

dl

dn
¼ l

n
, (13:11:7)

or

dl

l
¼ dn

n
: (13:11:8)

Using this relation in (13.11.5), we obtain

ct ¼ l

2
l

dl
¼ ln

2dn
¼ c

2dn
, (13:11:9)

that is,

t ¼ j d1 � d2j
c

¼ 1
2dn

: (13:11:10)

Equation (13.11.10) gives the value of the interferometer path separation jd1 2 d2 j,
or time difference t, at which we expect the interference pattern to be smeared out. For
separations larger than t the visibility should be very small or zero. In agreement with
experiment, t decreases with increasing bandwidth dn. The intensity distribution
shown in Fig. 13.10 was chosen for convenience, so the relation (13.11.10) derived
from it cannot be regarded as fundamental. Also, as in the case of spatial coherence,
there is some arbitrariness to the boundary between coherence and incoherence.
Instead of (13.11.10) it is conventional to define

tcoh ¼ 1
2pdn

(13:11:11)

as the coherence time of quasi-monochromatic radiation of bandwidth dn. The distance
ctcoh is called the coherence length. If a beam is divided into two parts, the coherence
length is the path difference beyond which there will be very little interference (or fringe
visibility) when the two fields are superposed. Note that the coherence length arises from
temporal coherence and is thus unrelated to the coherence area of Section 13.7, which is
a measure of spatial coherence.

A good nonlaser source of “monochromatic” radiation might have a bandwidth
dn ¼ 100 MHz. This translates into a coherence time

tcoh ¼ 1
(2p)(108 s�1)

¼ 1:6 ns (13:11:12)

and a coherence length

ctcoh ¼ 48 cm: (13:11:13)

More typical of such sources are coherence times and lengths on the order of 10210 s
and a few centimeters, respectively (Problem 13.7). With such sources the path separ-
ation (e.g., in a Michelson interferometer) must be less than a centimeter or two if
interference fringes are to be observed.
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A laser operating on a single transverse mode will have perfect spatial coherence,
whereas its temporal coherence will be determined by the bandwidth of the output radi-
ation. If it is operating on a single longitudinal mode, dn is often so small that the coher-
ence length is practically infinite for many purposes.

A laser operating on more than one longitudinal mode, however, can have a much
larger bandwidth, and therefore a much smaller coherence length, than in the single-
mode case. Many He–Ne lasers, for instance, operate on two longitudinal modes
separated in frequency by c/2L. In this case dn � c/2L, and therefore tcoh � L/pc,
so ctcoh �L/p. The coherence length of the laser radiation in this case is less than
the length of the laser itself.

If many longitudinal modes are lasing, the laser may emit radiation over virtually the
entire gain bandwidth. If we have a gain bandwidth of 30 GHz, for example, the coher-
ence length is on the order of c/(30 GHz) ¼ 1 cm if lasing occurs over the entire gain
bandwidth and on many modes. A laser operating on several longitudinal and transverse
modes can therefore resemble a thermal source in both its temporal and spatial coherence
properties. It remains true, of course, that the laser can emit more power than one can
ever hope to obtain from a conventional source of radiation.

In the special case of mode-locked lasers, where many longitudinal modes oscillate in
phase, the output is a train of phase-locked pulses and the spectrum is a frequency comb
(Section 14.7). The coherence length is determined by the duration of the individual
pulses, and since they can be extremely short, the coherence length can be very small.
For pulses in the femtosecond range, coherence lengths are measured in microns; this
makes them useful in optical coherence tomography (Section 14.7).

† The quantity jg (r, r, t)j is related to the Fourier transform of the spectral lineshape function.
For a Lorentzian lineshape of HWHM dn, for instance, it may be shown that [cf. (13.6.8)]

jg (r, r, t)j ¼ e�2pdnt ¼ e�t=tcoh , (13:11:14)

where tcoh is given by (13.11.11). In this case, therefore, ctcoh is just the value of the path sep-
aration jd2 2 d1j at which the visibility drops to e21, which incidentally illustrates again that
there is no sharp boundary between temporal coherence and incoherence, just as there is no
sharp boundary between spatial coherence and incoherence.

In the Young two-slit experiment the modulus jg (S1, S2, l/c)j appearing in (13.6.3) may be
replaced by jg (S1, S2, 0)j if l=c
 t, that is, if the path difference l for the two slits is small com-
pared with the coherence length of the radiation. This condition is frequently well satisfied in
practice, even for a “monochromatic” thermal source or a laser operating on many longitudinal
modes. In this case the Young experiment gives us a direct measure of spatial coherence, as
we assumed in our discussion. This allows us to speak separately of “spatial” and “temporal”
coherence. †

13.12 THE PHOTON DEGENERACY FACTOR

Consider a thermal source of quasi-monochromatic radiation of bandwidth dn. The radi-
ation from this source is spatially coherent over an area

Acoh � d2coh �
l2R2

r2
� l2R2

S
(13:12:1)
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at a distance R from the source, with S the source area. Acoh is called the coherence area.
The product of the coherence area and the coherence length, ctcoh �c/dn, defines the
coherence volume:

Vcoh ¼ Acoh � ctcoh ¼ cl2R2

Sdn
: (13:12:2)

In this section we will ignore geometrical details involving factors of p, 2, 2p, etc. We
will only concern ourselves with general orders of magnitude that are independent of
source shape—square or circular or whatever.

Let us now think in terms of photons and consider the number of photons crossing the
coherence area in a coherence time. We denote this dimensionless number by d:

d ¼ FAcohtcoh, (13:12:3)

whereF is the photon flux, i.e., the number of photons crossing a unit area per unit time.
For blackbody radiation r(n)dn is the energy per unit volume in the frequency interval
from n to n þ dn, and so r(n)dn/hn is the number of photons per unit volume in this
interval; r(n) is the spectral energy density (3.6.1). The photon flux from a blackbody
source of surface area S is therefore

Fn � c
r(n)dn
hn

S

4pR2
(13:12:4)

at a distance R from the source. The factor S/4pR2, the ratio between the emitting sur-
face area and the surface area of a sphere of radius R, takes account of the inverse square
law for photon flux. That is, R2Fnmust be a constant, independent of R. From (13.12.3)
and (13.12.4), therefore,

d � cr(n)dnS
4phnR2

� �
l2R2

S

� �
1
dn

� �
¼ cr(n)l2

4phn
¼ c3

4phn3
r(n): (13:12:5)

d is the number of photons crossing the coherence areaAcoh during a coherence time tcoh.
Blackbody radiation is unpolarized. The number of photons of a particular polarization
crossing Acoh in a time tcoh is therefore half the value (13.12.5):

d ¼ c3

8phn3
r(n) ¼ 1

ehn=kBT � 1
, (13:12:6)

the last step following from the Planck law (3.6.1).
From Eq. (3.6.20) we recognize d in (13.12.6) as the average number of thermal

photons in a mode of frequency n. In other words, the average number of photons cross-
ing an area equal to Acoh in a time equal to tcoh is equal to the average number of pho-
tons per mode. This number d is called the photon degeneracy factor, or simply the
degeneracy parameter. It represents a “degeneracy” in the sense that the d photons
are not distinguished from each other by spatial or temporal labels. For thermal radiation
d is much smaller than one, being typically 1022 or 1023 (recall the black-dot passage in
Section 13.2).
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It is clear that the degeneracy parameter is equal to the average number of photons in a
volume Vcoh: we simply write (13.12.3) as

d ¼ F

c
Acoh(ctcoh) ¼ F

c
Vcoh ¼ NVcoh, (13:12:7)

where N is the density of photons, related to the photon fluxF by the equationF ¼ cN.
How many photons per mode are in a laser beam? Our discussion of cavity modes in

Chapter 7 assumed a perfectly monochromatic field. Such a field has perfect spatial and
temporal coherence; the coherence volume is infinite in this hypothetical limit. Now a
single-mode laser is spatially coherent over the entire beam area A, but its temporal
coherence is limited by the frequency bandwidth dn. To estimate d in this case let us
assume, as we have proven for thermal radiation, that d is equal to the number of photons
crossing an area equal to Acoh in a time tcoh:

d ¼ FAcohtcoh � I

hn
A

1
dn
¼ IA

hc

l

dn
¼ Pwr

hc

l

dn
, (13:12:8)

where I is the intensity and Pwr ¼ IA the beam power.
As an example, consider a single-mode, 632.8-nm He–Ne laser emitting a power

Pwr ¼1 mW with a bandwidth dn ¼ 500 Hz:

d ¼ (10�3 J s�1)(632:8� 10�9 m)
(6:625� 10�34 J s)(3� 108 m s�1)(500 s�1)

¼ 6:4� 1012: (13:12:9)

This is fantastically larger than the photon degeneracy factor of blackbody radiation.
Furthermore, it is not difficult to exceed (13.12.9) by orders of magnitude in well-
stabilized single-mode lasers. And so, although ordinary thermal sources can emit radi-
ation as spatially and temporally coherent as laser radiation, they could produce such
huge numbers of degenerate photons only with source temperatures above about
1016K, temperatures unknown in the universe.

† The coherence volume has an interesting interpretation in terms of theHeisenberg uncertainty
principle. According to this principle of quantum theory, there is a fundamental limitation on the
accuracy to which the position and momentum of a particle can be simultaneously measured. The
uncertaintiesDx,Dy, andDz in the position coordinates of the particle are related to the uncertain-
ties Dpx, Dpy, and Dpz in the momentum components by (still ignoring factors of 2p)

DxDpx � h, DyDpy � h, DzDpz � h: (13:12:10)

The uncertainty DV ¼ Dx Dy Dz of the volume within which the particle can be localized in a
measurement is therefore

DV � h3

Dpx Dpy Dpz
: (13:12:11)

Let us apply (13.12.11) to the case of a photon of light of frequency n and bandwidth dn pro-
pagating in the z direction. Since the momentum of a photon is p ¼ h/l ¼ hn/c, we have

Dpz ¼ h

c
dn: (13:12:12)
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At a distance R from the source of surface area S, the uncertainties in Dpx and Dpy are (Fig. 13.11)

Dpx � h

l

S

R2

� �1=2
: (13:12:13)

Combining (13.12.11)–(13.12.13), we obtain

DV � cl2R2

Sdn
: (13:12:14)

We recognize the right-hand side as the coherence volume Vcoh given by (13.12.2).
We can summarize this result as follows. Photons emitted from a given source have linear

momenta that can only be determined within a certain tolerance owing to the finite area of the
source and the finite bandwidth of the radiation. Associated with this uncertainty in momenta
is an uncertainty in the volume within which any measurement can locate the photon. This
volume is equal to the coherence volume of the radiation. This connection between the
Heisenberg uncertainty principle and coherence, or the ability to produce interference effects,
is a general feature of quantum theory. †

13.13 ORDERS OF COHERENCE

The spatial and temporal coherence properties of radiation determine the degree towhich
the fields at two points in space, and at two points in time, are found to interfere.We have
seen that thermal sources, for instance, emit radiation that can be made to have the same
degree of spatial and temporal coherence as laser light, even if the laser is well stabilized
and oscillating on a single cavity mode. Of course, the use of pinholes, lenses, and wave-
length filters to increase the coherence of radiation from a nonlaser source can severely
reduce the light intensity far below that available from lasers.

Aside from this difference in photon number, we might ask whether there is any
difference in principle between coherent thermal radiation and coherent laser radiation:
If they have the same central frequency, the same bandwidth, the same degree of spatial
coherence, and the same intensity, can we distinguish thermal radiation from laser
radiation?

Source of surface 
area S 

R 

x 

z 
y 

q q 

Dpx ~ pz q ~ – q, q ~ —h 
l 

h
l

h2

R 2

S

S
R

l2
DpxDpy ~ (–q)2 = — —

Figure 13.11 Photons from a source of area S. The uncertainties in the momentum components px
and py are directly proportional to the angle u subtended by the source.
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It seems clear that we cannot distinguish them by measuring the location and visi-
bility of interference fringes in a Young or Michelson experiment. In fact no experiment
that divides a wavefront into two parts and then measures in someway the mutual coher-
ence function can show any difference.

However, it turns out that we can distinguish between the two radiation fields if we
undertake more sophisticated experiments. The mutual coherence function only charac-
terizes first-order coherence. In general, we can define nth-order coherence functions. A
second-order coherence function, for instance, is

G(2)(r1, t1; r2, t2 j r3, t3; r4, t4) ¼ hE�(r1, t1)E�(r2, t2)E(r3, t3)E(r4, t4)i: (13:13:1)

It depends on four space–time points. A general nth-order coherence function will like-
wise be a function of 2n space–time variables. Experiments that measure such higher-
order coherence functions, and the corresponding higher-order complex degrees of
coherence, can distinguish laser radiation from thermal radiation, even if the two
fields are identical in their spatial and temporal coherence functions.

The spatial and temporal coherence already described in this chapter depend on the
mutual coherence function G, which is a measure of first-order coherence. In other
words, ordinary spatial and temporal coherence are only manifestations of first-order
coherence, the ability of radiation to produce interference effects at two space–time
points (r1, t1) and (r2, t2).

In the great majority of laser applications only first-order coherence properties, like
directionality and quasi-monochromaticity, are important. In some applications not
even these coherence properties, but only the high intensity of laser radiation, really
matter. We will, therefore, not devote much space to higher-order coherence or the
types of experiments that measure higher-order coherence properties of radiation. In
Section 13.15, however, we will discuss an important example of a second-order coher-
ence function in connection with photon bunching.

It should be mentioned that in laser applications the word “coherence” is used mainly
in situations involving only first-order coherence. For instance, a beammay be said to be
“coherent” if it produces interference fringes in a Michelson interferometer with a
certain path separation, or if it gives interference fringes in a two-slit experiment with
a certain slit separation.

13.14 PHOTON STATISTICS OF LASERS AND THERMAL SOURCES

We have introduced some of the main ideas of optical coherence theory in terms of the
classical wave theory of light. The particle aspect of light was used only in Section
13.12, where we found it convenient to think in terms of photons in order to elucidate
the meaning of the volume of coherence. There we found that lasers and thermal
sources are drastically different in terms of the number of photons they can put into
a single field mode.

As discussed in Chapter 12, it is possible to count photons (or rather, to count, for
instance, the photoelectrons ejected from a photoemissive surface by the absorption
of photons). Such experiments very clearly reveal that the difference between lasers
and thermal sources is not merely a matter of how many photons can be generated.
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They show that lasers are different from conventional sources in a fundamental way
because their higher-order coherence functions are different.

In Section 12.5 we considered a typical photon-counting experiment, which records
the number of photoelectrons ejected by a light beam during a time interval T. By repeat-
ing the experiment a large number of times, the probability distribution Pn(T ) for the
number n of photoelectrons counted during a time T can be determined, and under
ideal circumstances we may say that this is the probability distribution for photons
counted in a time T. Using again our ensemble-average notation, we found that, if the
intensity

hI(t, T)i ¼ 1
T

ðtþT
t
hI(t0)i dt0 (13:14:1)

averaged over the counting time interval from t to t þ T is a constant, independent of t,
then Pn(T ) is the Poisson distribution:

Pn(T) ¼ nn

n!
e�n, (13:14:2)

where n is the average number of photons counted in a time interval T.
Equation (13.14.2) may be expected to apply to a cw laser beam. It also applies

to a beam of thermal radiation, provided the intensity (13.14.1) is independent of t.
This will be true if the counting interval T is large enough, because fluctuations in the
thermal-field intensity will be averaged out. In fact, T is “large enough” if it is large
compared to the coherence time tcoh ¼ 1

2pdn of the (quasi-monochromatic) thermal
radiation.

Suppose, however, that T is small compared to the coherence time of a thermal
source. Then the fluctuations in the intensity during a time T are not averaged out,
and the Poisson distribution (13.14.2) for the photon counts does not apply. To
obtain Pn(T ) in this case, let us consider a single-mode thermal field. Such a field is
in thermal equilibrium at some temperature Te, and the probability that there are exactly
n photons in the field is given by the Boltzmann law:

p(n) ¼ e�En=kBTeP1
m¼0 e�Em=kBTe

¼ e�nhn=kBTeP1
m¼0 e�mhn=kBTe

, (13:14:3)

since E ¼ nhn is the energy of a state with n photons of frequency n. The series can be
summed easily:

X1
m¼0

e�mhn=kBTe ¼
X1
m¼0

xm ¼ (1� x)�1, x ¼ e�hn=kBTe : (13:14:4)

Therefore,

p(n) ¼ (1� x)xn ¼ (1� e�hn=kBTe)e�nhn=kBTe : (13:14:5)
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This implies the familiar result for the average photon number n:

n ¼
X1
n¼0

np(n) ¼ (1� x)
X1
n¼0

nxn ¼ x(1� x)�1 ¼ (x�1 � 1)�1

¼ (ehn=kBTe � 1)�1: (13:14:6)

Using this result in (13.14.5), we may write the probability distribution p(n) in the form

p(n) ¼ nn

(nþ 1)nþ1
, (13:14:7)

which is the Bose–Einstein distribution.

† It is instructive to obtain (13.14.7) in a different way, using the fact that the intensity of light
from a thermal source of mean intensity kI l has the probability distribution

P(I) ¼ 1
hIi e

�I=hIi, (13:14:8)

as shown in the following section. For this purpose we first recall the formula (12.5.14) for the
photon counting distribution, assuming a stationary (e.g., thermal) light source in which the
intensity given by (12.5.13) is independent of t. Then (12.5.14) reduces to

Pn(T) ¼ 1
n!
[aTI(T)]ne�aTI(T): (13:14:9)

now suppose that I undergoes statistical fluctuations about a mean value kI l, and that its variations
are described by the probability distribution (13.14.8). In this case the photon-counting distri-
bution is not simply (13.14.9); we must instead take into account the statistical distribution of
I(T) and replace (13.14.9) by the ensemble average:

Pn ¼
ð1
0

1
hIi e

�I=hIi 1
n!
[aTI]ne�aTI dI ¼ [aThIi]n

[1þ aThIi]nþ1 ¼
nn

[nþ 1]nþ1
: (13:14:10)

The reader may wish to think about the extent (if any) to which this derivation of the Bose–
Einstein distribution formula requires quantum theory. †

Returning now to our photon counting with T 
 tcoh, we observe that for a single
mode Dn ! 0 and therefore tcoh!1. We can therefore assume T 
 tcoh, which
leads us to suspect that p(n) in (13.14.7) gives the photon-counting probability distri-
bution for a thermal field when the counting interval T is small compared to the coher-
ence time tcoh. This suspicion can be justified by a more rigorous approach, but we will
just assume it is true: The probability of counting n photons of a thermal field during a
time interval T 
 tcoh is

Pn ¼ n

(nþ1)nþ1 (thermal field), (13:14:11)

622 COHERENCE



where n is the average number of photons counted in a time interval T, as opposed to

Pn ¼ nne�n

n!
(laser) (13:14:12)

for a laser beam. Figure 13.12 compares the probability distributions (13.14.11) and
(13.14.12) for the case n ¼ 20. It is clear that a laser and a thermal source, even
though they may give the same average number n of photons during a counting interval,
will nevertheless have completely different photon statistics. The two fields may have
the same average intensity, the same frequency and bandwidth, and the same first-
order spatial and temporal coherence properties, but they are nevertheless different.

Photon-counting experiments have accurately confirmed the predictions (13.14.11)
and (13.14.12). They have also shown, again in agreement with theory, that the light
from a laser below the threshold for oscillation has the photon statistics of a thermal
field. In other words, a laser below threshold is characterized by the photon-counting
probability distribution (13.14.11), whereas above threshold it is characterized by the
Poisson distribution (13.14.12).

Since

lnPn ¼ ln
nn

(nþ 1)nþ1
¼ n ln

n

nþ 1
� ln (nþ 1), (13:14:13)

for the Bose–Einstein distribution, a plot of ln Pn vs. n is a straight line. Figure 13.13
shows experimental results for a 632.8-nm He–Ne laser, both below and above the
threshold for oscillation. Below threshold the observed distribution is given accurately
by the straight line (13.14.13), whereas above threshold good agreement is found
with the Poisson distribution.

In Section 5.14 we found that a remarkable transition occurs as a laser goes from
below threshold to above threshold: the average photon number changes rather abruptly
by orders of magnitude. Now we see that the threshold point is also the boundary
between two completely different types of photon statistics.
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Figure 13.12 Poisson and Bose–Einstein distributions on linear (a) and semilog (b) plots for
n ¼ 20.
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The coherence time tcoh of thermal sources is usually so small that as a practical
matter the counting interval T � tcoh in a photon-counting experiment. As discussed
following Eq. (13.14.2), the photon-counting distribution in this case will be
Poissonian. However, it is possible to produce “pseudothermal” light such that
T 
 tcoh. In the case of a thermal source the radiation consists of a superposition of a
large number of fields with randomly varying amplitudes and phases (Section 13.15).
This suggests that if laser radiation is incident on a large collection of randomly varying
scattering centers, the total scattered field will have the statistical features characteristic
of thermal radiation. Such pseudothermal radiation has been realized, for instance, by
scattering laser light off small (,1mm) plastic balls undergoing Brownian motion in
water. The coherence time of the scattered radiation in this case is �100 ms.
Pseudothermal radiation has also been produced using a rotating ground-glass plate.
Because of surface irregularities the radiation transmitted by the plate, rotated about
an axis parallel to an incident laser beam, is a superposition of fields from a large
number of independent scattering centers, which is approximately a superposition of
fields with randomly varying amplitudes and phases. The coherence time of the trans-
mitted (pseudothermal) light depends on the rotation speed of the glass plate, and can
easily be made much larger than a counting time T (typically 1–10 ms) for which a
meaningful number of photons can be counted. The photon-counting distribution of
pseudothermal light obtained by such methods has been found to be accurately
described by the Bose–Einstein distribution.5

In Section 12.6 we noted that the mean-square deviation of the photon number is
given by

hDn2i ¼ h(n� n)2i ¼ n (Poisson distribution) (13:14:14)

for the Poisson distribution. For the Bose–Einstein distribution it is not difficult to show
that a different result holds:

hDn2i ¼ n2 þ n (Bose–Einstein distribution): (13:14:15)

1

10–2

10–4

10–3

10–1

10–5

10 S
(n

)

S
(n

)

P
(n

)

P
(n

)
1000

10–1

0 10
n n

20

Experimental

Below threshold Above threshold

Ideal
Theoretical

0 20 40 60
1

102

104

n

Figure 13.13 Poisson statistics of a He–Ne laser above and below threshold. [From C. Freed and
H. A. Haus, IEEE Journal of Quantum Electronics QE-2, 190 (1966).]

5See, for instance, P. Koczyk, P. Wiewiór, and C. Radzewicz, American Journal of Physics 64, 240 (1996)
and references therein.
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Thus, whereas the relative rms deviation for the Poisson distribution is

(Dn)rms

n
¼ 1ffiffiffi

n
p (Poisson distribution), (13:14:16)

we have instead

(Dn)rms

n
¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
(Bose–Einstein distribution), (13:14:17)

for the Bose–Einstein distribution.Whereas the relative rms deviation from the mean for
the Poisson distribution decreases toward zerowith increasing n, the corresponding devi-
ation for the Bose–Einstein distribution approaches unity. Thus, the fluctuations in the
photon number for a thermal field can be much more pronounced than in the case of a
coherent laser field.

† Equation (13.14.15) is sometimes referred to as the Einstein fluctuation formula. Using
Eq. (13.14.6) for n, and the Planck formula

r(n) ¼ 8phn3

c3
n (13:14:18)

for the spectral energy density of thermal radiation, we obtain

hDn2i ¼ n2þ n ¼ c3

8phn3
c3

8phn3
r2(n)þ r(n)

� 
, (13:14:19)

The mean-square deviation from the average energy for thermal radiation of frequency n is

hDE2
ni ¼ (hn)2hDn2i[8pn2V dn=c3], (13:14:20)

where the factor in brackets is the number of field modes in the volume V and in the frequency
interval [n, n þ dn], as derived in Section 3.12. Thus, by using (13.14.19) in (13.14.20), we find

hDE2
ni ¼ hnr(n)þ c3

8pn2
r2(n)

� 
V dn, (13:14:21)

which is the form of the fluctuation formula for thermal radiation found by Einstein in 1909.
The Einstein fluctuation formula is important historically as the first indication of the wave–

particle duality of light. The first term inside the brackets in (13.14.21) can be derived from the
classical Poisson statistics of distinguishable particles, whereas the second term follows from a
purely wave approach to thermal radiation, as was shown by Lorentz. Thus, the fluctuation for-
mula (13.14.21) has both particle and wave contributions. Einstein showed that this formula is a
direct consequence of the Planck law for r(n). †

It should be clear by now that the Poisson distribution plays a central role in the theory
of photon counting. The Bose–Einstein distribution, similarly, is important as the fun-
damental photon distribution of thermal radiation. But these are not the only photon-
counting distributions that can be measured. More generally, if the mean intensity
I(T) has a probability distribution P(I ), then the measured photon counting distribution
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is given by the formula [cf. (12.5.15)]

Pn ¼
ð1
0
P(I)

1
n!
[aIT]ne�aIT dI: (13:14:22)

The Poisson factor in this expression accounts for the probability distribution of photon
counts that appears even if the mean intensity I(T) is constant. The distribution function
P(I ) accounts for the fact that I(T) may itself fluctuate. Equation (13.14.10) is an
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Figure 13.14 (a) Measured photon counting distribution of filtered starlight, compared with theory
[Eq. (13.14.22)] assuming the log-normal distribution with s 2

I ¼ 0:058. [From D. Dravins,
L. Lindegren, E. Mezey, and A. T. Young, Publications of the Astronomical Society of the Pacific
109, 173 (1997).] (b) Measured photon counting distribution for laser radiation propagated over a
10-km horizontal path in air, compared with theory assuming a log-normal distribution with
s 2

I ¼ 0:094. [From P. W. Milonni, J. H. Carter, C. G. Peterson, and R. J. Hughes, Journal of
Optics B: Quantum and Semiclassical Optics 6, S742 (2004).]
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example of (13.14.22) for the special case P(I ) ¼ (1/kI l)exp(2I/kIl). Another example
is provided by the propagation of radiation in Earth’s atmosphere. In this case the fluc-
tuations (scintillations) of the intensity are described approximately by the log-normal
distribution, i.e., P(I ) is given by Eq. (8.13.7). Figure 13.14a shows a measured
photon-counting distribution for filtered starlight at 550 nm for a counting time interval
T ¼ 200ms; a good fit to the data is obtained for an assumed intensity variance
s 2
I ¼ 0:058 (Section 8.13). Similarly, Fig. 13.14b shows the measured photon-counting

distribution for T ¼ 10 ms after laser radiation of very low intensity has propagated over
a 10-km horizontal path in air. A good fit to the data is obtained when P(I ) is assumed to
be a log-normal distribution with s 2

I ¼ 0:094.

13.15 BROWN–TWISS CORRELATIONS

We have emphasized that first-order coherence does not in general distinguish between
lasers and ordinary, thermal sources of radiation, even though the two have measurably
different photon statistics. Expressions (13.14.14) and (13.14.15) for the variance kDn2l
suggest that lasers and ordinary sources may be distinguished by their second-order
coherence properties, and this is indeed the case. We will now describe an experiment
concerned with second-order coherence properties of radiation.

The experiment is sketched in Fig. 13.15. Quasi-monochromatic radiation is incident
upon a 50 : 50 beam splitter, so that half the original intensity is directed to a photomul-
tiplier tube PM1, the other half to a second photomultiplier PM2. The responses of the
photomultipliers are used to determine the average of the product of I1(t) and I2(t þ t),
where I1 and I2 are the intensities incident on PM1 and PM2, respectively. We denote
this average by C(t):

C(t) ¼ hI1(t)I2(t þ t)i: (13:15:1)

The instrumentation performing this correlation is simply called the “correlator” in
Fig. 13.15. We assume the field has the property of stationarity, so that kI2(t þ t)l ¼
kI1(t)l ; I for a 50 : 50 beam splitter. As usual the intensities I1(t) and I2(t) are

Incident
light
(filtered)

Beam
splitter

I1

I2

PM 2

PM 1

Correlator

Figure 13.15 Experimental setup to determine second-order coherence properties of light by
measuring C(t) [Eq. (13.15.1)].
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themselves averages over a few optical periods. Note that, from definition (13.15.1),
we have

C(t) ¼ ce0
2

� �2
hE�(r1, t)E�(r2, t þ t)E(r2, t þ t)E(r1, t)i: (13:15:2)

That is, C(t) is a second-order coherence function. Here r1 and r2 refer to points on PM1
and PM2, respectively. Since spatial variations of the field will not play an important role
in our discussion, we will ignore them.

The second-order coherence function C(t) was first measured by R. H. Brown and R.
Q. Twiss in the 1950s. Brown and Twiss used radiation from a mercury arc lamp and
obtained a result like that shown in Fig. 13.16. The most significant feature of
Fig. 13.16 is the positive correlation for small values of the delay time t: for small t,
kI1(t)I2(tþt)l is larger than kI1(t)lkI2(t þ t)l ¼ I2. This Brown–Twiss effect6 is explain-
able in either classical or quantum mechanical terms. We begin with a quantum mech-
anical description, focusing our attention on the correlation with zero time delay, the
quantity C(0) ¼ k I1(t)I2(t)l.

We will assume again that quantummechanical expectation values are directly appli-
cable to the interpretation of a photon-counting experiment when the counting time is
short compared with the coherence time. The first question we must then address is
that of associating a quantum mechanical expectation value with C(0). Now a measure-
ment of the intensity of a quasi-monochromatic field records a quantity proportional to
hni ¼ n, the expectation value of the photon number, and so we might suspect that an
experiment such as that of Fig. 13.15 measures a quantity proportional to kn2l. In
fact, such an experiment measures not kn2l but kn2l 2 knl. To appreciate why this is
so, suppose the field incident on the beam splitter contains one and only one photon,
i.e., it is in a stationary state of energy hn. In this case kn2l ¼ 1. But the experiment
of Fig. 13.15 must give C(0) ¼ 0 in this case because the beam splitter cannot split
the incident photon. Thus, C(0) cannot be proportional to kn2l. On the other hand

〈I1(t )I2(t  +  τ)〉

〈I1〉〈I2〉

tt = 0

Figure 13.16 Photon bunching, or Hanbury Brown–Twiss intensity correlation near t ¼ 0.

6Brown’s given name Robert is sufficiently common that he deliberately emphasized his middle name
Hanbury by spelling it out in signing his articles. The erroneous impression is widespread that his family
name is actually Hanbury Brown, and the Brown–Twiss effect is almost universally referred to as the
Hanbury Brown–Twiss effect, a usage we adopt hereafter.
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kn2l 2 knl ¼ 0 in this example, so that kn2l 2 knl is at least a plausible possibility for the
quantum expectation value given by C(0). We will simply outline a derivation of this
result. A proof is given in the black-dot section below.

In an experiment like that indicated in Fig. 13.15, in which PM1 and PM2 can
simultaneously record photon counts, we are interested, according to (13.15.2), in the
average value of a product of four fields. If the incident field is in a stationary state of
n photons, this expectation value turns out to be proportional to n(n21). This result
may be understood as follows. The probability of counting a photon is proportional to
n, the number of photons in the field. Thus, the probability of then counting a second
photon is proportional to n21, the number of photons remaining after the first is
removed by the detection process. The probability of counting the two photons is
then proportional to the average of the product of n and n21, that is, to the expectation
value kn(n21)l¼kn2l 2knl.

Since kDn2l ¼ kn2l2knl2, it follows that

C(0)/ hn2i � hni ¼ hDn2i þ hni2 � hni ¼ hDn2i þ n2 � n: (13:15:3)

For a thermal source kDn2l is given by (13.14.15), and so

C(0) ¼ n2 þ nþ n2 � n ¼ 2n2: (13:15:4)

Now C(0) ¼ kI1(t)I2(t)l and hI1(t)i ¼ hI2(t)i ¼ I / n, and therefore (13.15.4)
implies that

hI1(t)I2(t)i
hI1(t)ihI2(t)i ¼ 2 (thermal radiation): (13:15:5)

According to this result, a thermal field exhibits excess intensity fluctuations (i.e., the
ratio is greater than 1) for t ¼ 0, as shown in Fig. 13.16. This is the Hanbury
Brown–Twiss effect for thermal radiation. It is seen from our derivation to be a conse-
quence of the Bose–Einstein statistics of thermal radiation.

This Hanbury Brown–Twiss correlation is often called photon bunching, for it indi-
cates a tendency for photons to arrive simultaneously at PM1 and PM2, i.e., to bunch
together. This bunching also occurs if PM1 and PM2 are close together or coincident,
in which case we may say that for thermal radiation there is a statistical tendency for
photons to arrive in pairs.

Suppose, however, that the incident light is from a laser. In this case the photon stat-
istics is Poissonian, and kDn2l is given by (13.14.14). From (13.15.3) we then have

C(0)/ nþ n2 � n ¼ n2, (13:15:6)

or

hI1(t)I2(t)i
hI1(t)ihI2(t)i ¼ 1 (laser): (13:15:7)

Thus, a field described by Poisson photon statistics shows no Hanbury Brown–Twiss
correlations. There are no excess fluctuations. The photon arrivals are statistically
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independent. This distinction between laser radiation and thermal radiation has been
accurately confirmed experimentally.

† In more advanced analyses it is convenient to define the non-Hermitian operators a and a†

from the coordinate q and momentum p:

a ¼ (2h�v)�1=2(p� ivq), a† ¼ (2h�v)�1=2(pþ ivq) (13:15:8)

for a harmonic oscillator of angular frequencyv and unit mass; in the quantum theory of radiation
an electromagnetic field mode of frequencyv corresponds exactly to such an oscillator. The oper-
ators a and a† satisfy the commutation relation

aa† � a†a ¼ 1, (13:15:9)

as is easily verified from definitions (13.15.8) and the commutation relation qp� pq ¼ ih� . When
the operator a acts on a stationary state jnl of oscillator energy nh�v, it converts it to a state jn21l;
a is therefore called a lowering (or annihilation) operator. Similarly a† acting on the state jnl pro-
duces the state jnþ1l, and so a† is called a raising (or creation) operator. In the quantum theory of
radiation these operators are called photon annihilation and creation operators, and it may be
shown that they represent the quantized complex field amplitudes E and E�, respectively.
Thus, we have

C(0)/ ha†a†aai (13:15:10)

for a single-mode field. Using (13.15.9), we have

a†a†aa ¼ a†(aa† � 1)a ¼ a†aa†a� a†a: (13:15:11)

Now from (13.15.8) it follows that

h�va†a ¼ 1
2(p

2 þ v2q2)� 1
2 ¼ H� 1

2h
�v, (13:15:12)

where H is the Hamiltonian operator for the mode “oscillator,” with eigenvalues (nþ 1
2)h
�v. It

follows that a†a is the operator associated with the photon number n, and so from (13.15.10)
and (13.15.11) we have

C(0)/ hn2i � hni, (13:15:13)

which is the result used above.
The key step in the derivation of (13.15.13) is the identification (13.15.10) of C(0) with ka†a†

aal. In particular, the ordering of the a, a† operators is absolutely crucial. This ordering, in which
a†’s appear to the left of a’s, is called normal ordering. For a discussion of the physical motiv-
ation for normal ordering, we refer the reader to more advanced treatises.7 †

The term “photon bunching” for the Hanbury Brown–Twiss effect might convey the
impression that the effect cannot be understood in classical terms. However, it is poss-
ible, and instructive, to explain the effect without invoking photons and the quantum
theory of radiation. For this purpose we consider a model of a thermal source in
which there are N atoms, atom j radiating a field whose time dependence is given by

Ej(t) ¼ E0e
�i(vtþfj), (13:15:14)

7See, for instance, L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University
Press, Cambridge, UK, 1995.
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where the phase fj varies randomly in time due to collisions among the atoms. The total
complex field is

E(t) ¼ E0e
�ivtXN

j¼1
e�ifj , (13:15:15)

and the total intensity is [recall (13.4.11)]

I(t) ¼ 1
2
ce0jE0j2

XN
i¼1

XN
j¼1

ei(fi�fj) (13:15:16)

when we average over a few periods of time 2p/v. Now if the randomly varying phases
fi are statistically independent, the average of ei(fi�fj) is zero unless i ¼ j, in which case
it is unity [recall Problem 6.5]. Thus, the average value of I(t) is

hI(t)i ¼ 1
2
ce0jE0j2

XN
j¼1

(1) ¼ 1
2
ce0NjE0j2: (13:15:17)

Note that this is a classical average over the random phases, not a quantum mechanical
expectation value.

Similarly, the average square of the intensity corresponding to (13.15.16) is propor-
tional to

hI2(t)i ¼ 1
2
ce0

� �2
jE0j4

X
i

X
j

X
l

X
m

hei(fi�fjþfl�fm)i: (13:15:18)

Because thefj’s are independent, the summand above is nonzero only when i ¼ j, l ¼ m
or when i ¼ m, j ¼ l. Thus,

hI2(t)i ¼ 1
2
ce0

� �2
jE0j4

XN
i¼1

XN
l¼1

(1)þ
XN
i¼1

XN
j¼1

(1)

 !
¼ 1

2
ce0

� �2
jE0j4(N2 þ N2)

¼ 2hI(t)i2: (13:15:19)

The factor of 2 leads to the result (13.15.5), i.e., to the photon bunching or Hanbury
Brown–Twiss intensity correlation. Obviously, we have here only a very crude model
of a thermal source. The point is that the uncorrelated emissions of rapidly fluctuating
fields lead naturally to the positive intensity correlations found in the Hanbury
Brown–Twiss experiment.

If the atoms of a source all act coherently to produce a total complex field with a single
phase f(t),

E(t) ¼ NE0e
�i(vtþf), (13:15:20)
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and therefore a total (cycle-averaged) intensity

I ¼ ce0
2
jNE0j2, (13:15:21)

then obviously (13.15.7) is satisfied (i.e., there are no Hanbury Brown–Twiss corre-
lations) simply because I is constant. Note that this absence of Hanbury Brown–
Twiss correlations applies even if the phase f in (13.15.20) is randomly varying,
because (13.15.21) is valid regardless of the variations of the single phase f. Thus,
we have a simple, classical explanation for the absence of Hanbury Brown–Twiss cor-
relations in an ideal laser beam.

† These results can be generalized as follows. Instead of (13.15.15) let us write

E(t) ¼ e�ivt
XN
j¼1

Aje
ifj ¼ Se�ivt, (13:15:22)

where nowwe allow for both the (real) amplitude Aj and the phasefj of the jth source to vary. The
complex quantity S ¼ XþiY, where the real quantities X and Y are given by

X ¼
XN
j¼1

Aj cosfj, Y ¼
XN
j¼1

Aj sinfj: (13:15:23)

We assume the random variables Aj and fj are uncorrelated, and that the phases fj are uniformly
and independently distributed over the interval [0, 2p], so that kcos fjl ¼ ksin fjl¼ kcos fj sin
fjl ¼ 0 and hcosfi cosfji ¼ hsinfi sinfji ¼ 1

2 if i ¼ j and 0 otherwise. Then

hXi ¼
XN
j¼1
hAj cosfji ¼

XN
j¼1
hAjihcosfji ¼ 0 (13:15:24)

and

hX2i ¼
XN
i¼1

XN
j¼1
hAiAj cosfi cosfji ¼

XN
i¼1

XN
j¼1
hAiAjihcosfi cosfji ¼

1
2

XN
j¼1
hA2

j i (13:15:25)

As in Sections 8.11 and 8.13, we invoke now the central limit theorem of probability theory. In
the case kXl ¼ 0, the central limit theorem requires that the probability distribution of X is

PX(X) ¼ 1

s
ffiffiffiffiffiffi
2p
p e�X

2=2s 2
, s 2 ¼ hX2i: (13:15:26)

The probability distributionPY (Y ) is likewiseGaussian, and it is easy to see that kY2l ¼ kX2l ¼ s2.
Furthermore X and Y are independent random variables, and so the joint probability distribution

PXY (X, Y) ¼ PX(X)PY (Y) ¼ 1
2ps 2

e�(X
2þY2)=2s 2

: (13:15:27)
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We can write the probability distribution PRu(R, u) for the polar “coordinates” R, u, defined by
writing X ¼ R cosu, Y ¼ R sinu, by noting that

PRu(R, u) dR du ¼ PXY (X, Y) dX dY ¼ PXY (X, Y)R dR du, (13:15:28)

and therefore

PRu(R, u) ¼ RPXY (X, Y) ¼ R

2ps 2
e�R

2=2s 2
: (13:15:29)

The probability distribution for R is obtained by integrating this distribution over all possible
values of u:8

PR(R) ¼
ð2p
0

PRu(R, u) du ¼ R

s2
e�R

2=2s 2
: (13:15:30)

The intensity is I ¼ jSj2 ¼ X2 þ Y2 ¼ R2. Using the fact that P(I ) dI ¼ P(I ) dR2 ¼ 2RP(I )
dR ¼ PR(R) dR, we have P(I) ¼ 1=2s 2ð Þe�I=2s 2

or, since kX2l þ kY2l ¼ kI l ¼ 2s2,

P(I) ¼ 1
hIi e

�I=hIi (13:15:31)

for the probability distribution of the intensity of radiation from a large number of independent
radiators. It follows in particular that

hIni ¼
ð1
0
In

1
hIi e

�I=hIidI¼ n!hIin, (13:15:32)

of which (13.15.19) is a special case. †
Although classical explanations are possible for many aspects of the coherence prop-

erties of optical fields, quantum theory allows for a far richer variety of photon statistics.
We have considered only two examples, namely the Poisson statistics of laser radiation
and the Bose–Einstein statistics of thermal radiation. The latter exhibits photon bunch-
ing; the former does not. To underscore the fact that other kinds of photon statistics can
arise, we consider briefly the possibility of photon antibunching, that is, reduced inten-
sity fluctuations (Fig. 13.17), or the opposite of the Hanbury Brown–Twiss correlation.
In this case there is a tendency for photons not to arrive in pairs, or even to arrive ran-
domly, but to arrive “well spaced.” In particular, there is zero probability of detecting a
second photon immediately after the detection of a first.

Photon antibunching has been observed in the resonance fluorescence of an atom pre-
pared as a two-state system by pumping with circularly polarized light (Section 14.3).
The two-state atom is driven up and down between the two states by a strong resonant
field. In addition to the stimulated transitions, the atom can spontaneously emit a photon
when it is in the upper state. After such a spontaneous emission of a photon, however, the
atom cannot emit a second photon until it has been pumped by the resonant field back

8This distribution was first obtained—without using the central limit theorem—by Lord Rayleigh (1887),
and is called the Rayleigh distribution.
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into the upper state. Thus, the fluorescence (spontaneous emission) radiation displays a
reduced intensity correlation, i.e., photon antibunching.

A field has first-order coherence if its complex degree of coherence g(r1, r2, t)
has modulus unity. This occurs if and only if the mutual coherence function (13.4.18)
factors:

G(r1, r2, t) ¼ hE�(r1, t)E(r2, t þ t)i ¼ hE�(r1, t)ihE(r2, t þ t)i: (13:15:33)

This factorization condition for first-order coherence follows easily from the definition
(13.6.3) of the complex degree of coherence. Similarly, a field is said to have second-
order coherence if (13.15.7) is satisfied; this condition is equivalent to a factorization
of the second-order coherence function of the field. In general, a field is said to have
nth-order coherence if its nth-order coherence function factors. This definition of coher-
ence leads to an elegant formulation of the quantum theory of coherence.9

PROBLEMS

13.1. (a) Assume that the sun is a 5800-K blackbody radiator. Calculate the intensity of
radiation from the sun.

(b) What is the intensity of solar radiation at the Earth’s surface? (Answer: about
1.4 kW/m2.)

13.2. In Section 7.6 we obtained the result (7.6.20) for the new waist of a focused
Gaussian beam, assuming that the lens intercepts the beam at its waist. Show
that (13.2.7) gives the spot size in the focal plane of the lens.

13.3. Explain why a nearsighted person sees a speckle pattern moving in the direction
opposite to the head motion. (Recall that the brain inverts the image on the retina.)
What would a farsighted person see? A person with no visual disorder? [See

0 t

〈I1〉〈I2〉

〈I1(t )I2(t  + τ)〉

Figure 13.17 Photon antibunching near t ¼ 0. [See H. J. Kimble, M. Dagenais, and L. Mandel,
Physical Review Letters 39, 691 (1977)].

9For a more extensive introduction to the subject see E. Wolf, Introduction to the Theory of Coherence and
Polarization of Light, Cambridge University Press, Cambridge, 2007.
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N.Mohon and A. Rodemann, Applied Optics 12, 783 (1973).] If you wear correc-
tive lenses, remember to remove them when you try this experiment. Explain why
this effect of speckle is similar to the following one you can do while sitting at
your desk. Focus your eyes on a distant object outside a window, and note the
apparent motion of an object on the window sill as you move your head up and
down or side to side. Then focus on the object on the sill, and note the apparent
motion of the object outside when you move your head.

13.4. In an actual Michelson interferometer using an extended source of light (see
Fig. 13.9), we observe circular interference fringes when viewing M1 through
BS if M1 and M2 are perpendicular (one of the mirrors of the interferometer
has tilting screws so that the mirror orientation is adjustable). Explain the appear-
ance of circular fringes. Do you expect to see circular fringes if the mirrors are not
perpendicular?

13.5. Explain how a Michelson interferometer can be used to determine the wavelength
of quasi-monochromatic radiation.

13.6. Why do we normally add intensities of different frequency components of radi-
ation to obtain the total measured intensity?

13.7. (a) Estimate the bandwidth and coherence time of white light, assuming it com-
prises wavelengths from 400 to 700 nm.

(b) Show that the coherence length of white light is on the order of the
wavelength.

(c) Is is possible to observe “white-light fringes”? [See A. Michelson, Light
Waves and Their Uses, University of Chicago Press, Chicago, 1906.]

13.8. Suppose a mercury arc lamp, emitting 546.1-nm radiation with a bandwidth of
1 GHz, is placed behind a 0.1-mm-diameter circular aperture in an opaque
screen. Beyond the screen is a second one with two narrow slits in it, and interfer-
ence fringes are observed on a third screen a distance 3 m from the second.
Calculate the slit separation for which the interference fringes first disappear.

13.9. A piece of transparent ground glass is placed before the two slits of a Young inter-
ference experiment and rotated rapidly. It is found that spatially coherent radiation
does not produce any interference fringes in this modified two-slit experiment.
Explain this observation. [See W. Martienssen and E. Spiller, American
Journal of Physics 32, 919 (1964).]
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14 SOME APPLICATIONS OF LASERS

In the early years of their development, lasers were regarded by skeptics as “a solution
looking for a problem.” More and more “problems” were found, and lasers have become
an important part of the science and technology of our time, with applications ranging
from medical to military. Lasers have been used in distance and velocity measurements,
holography, printers, bar coding, CD players, surgery, and many other areas for many
years now, and such “everyday” applications will not be touched upon here. We will
instead consider, in addition to some aspects of the medical applications of lasers,
just a few examples of the importance of lasers in research and emerging technology.
The special role of diode and fiber lasers in telecommunications is the main subject
of the next chapter.

14.1 LIDAR

Light detection and ranging (lidar) dates back to the 1930s, but because of lasers it
has become one of the primary tools in atmospheric and environmental research.
There are several types of lidar, all involving a transmitter of laser radiation and a recei-
ver for the detection and analysis of backscattered light (Fig. 14.1). Before describing
some lidar techniques and the information they provide, we will derive an equation
for the number of photons counted at the receiver. Our analysis will apply directly to
the most common type of lidar system, that in which the transmitter and receiver are
located at essentially the same place; the laser beam in this case is typically sent through
the receiver telescope. This is called the “monostatic,” as opposed to “bistatic,”
configuration.

Consider first the case in which the backscattered light is resonance fluorescence, that
is, spontaneous emission from atoms (or molecules) excited by laser radiation. Suppose
that a laser beam propagates vertically from ground level to an altitude z and excites
atoms within a column between altitudes z and zþ Dz (Dz
 z). The radiated energy
in time Dt from these atoms is

DEatoms(z, t) ¼ hnA21 Dt

ðzþDz
z

dz0 N(z0)
ð1
�1

dx

ð1
�1

dy p(x, y, z0, t), (14:1:1)
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where N(z) is the number density of atoms at altitude z, n is the transition frequency
(assumed to be equal to the laser frequency), A21 is the spontaneous emission rate,
and p(x, y, z, t) is the excited-state probability at time t for an atom at a point x, y, z.
If the excited atoms radiate isotropically, the power incident on a receiver of area Ar

is simply

Pwr(z, t) ¼ T0(z)
Ar

4pz2
DEatoms(z, t)

¼ T0(z)
Ar

4pz2
hnA21

ðzþDz
z

dz0 N(z0)
ð1
�1

dx

ð1
�1

dy p(x, y, z0, t), (14:1:2)

where T0(z) is the atmospheric transmission coefficient at the transition frequency for
propagation to ground from altitude z (or from ground to z), and is assumed not to
vary significantly between z and z þ Dz, and we continue to write Pwr for power, to dis-
tinguish it easily from P’s denoting pumping rate and pressure and probability, etc.

We will assume that the excited-state probability p(x, y, z, t) changes predominantly
by spontaneous emission; this is a reasonable assumption at high altitudes, where
molecular densities are sufficiently small that collisional deexcitation is negligible.
Suppose that the laser radiation is in the form of a pulse of duration tp long compared
to the radiative lifetime 1/A21. Then, for times t much longer than the radiative lifetime
(Problem 14.1),

p(x, y, z, t) ffi s (z, n)
A21hn

I(x, y, z, t), (14:1:3)

where s (z, n) is the absorption cross section at z at the laser frequency n, and so

Pwr(z, t) ¼ T0(z)
Ar

4pz2

ðzþDz
z

dz0 N(z0)s (z0, n)
ð1
�1

dx

ð1
�1

dy I(x, y, z0, t) (14:1:4)

in this approximation.

Transmitted beam Return light

Telescope

Detection
and data
analysis

Beam
expander

Laser

Transmitter Receiver

Figure 14.1 Basic elements of a standard lidar system. A beam expander is usually used at the trans-
mitter in order to reduce the divergence of the laser beam before it propagates into the atmosphere. The
receiver includes a wavelength filter, a photodetector, and computers and electronics for data acqui-
sition and analysis.
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Now consider the number of photons counted in a time interval from 2z/c to 2z/cþtd
by a detector at the receiver. 2z/c is the time it takes for the laser radiation to propagate to
altitude z, plus the time for photons radiated at z to propagate back to ground.1 The
number of photons counted from the “bin” [z, z þ Dz] in this time interval is

N (z) ¼ h� 1
hn
�
ð2z=cþtd
2z=c

dt Pwr(z, t)

¼ hT0(z)
Ar

4pz2
1
hn

ðzþDz
z

dz0 N(z0)s (z0, n)
ð1
�1

dx

ð1
�1

dy

ð2z=cþtd
2z=c

dt I(x, y, z0, t),

(14:1:5)

where h (	1) is the photon counting efficiency at the receiver. If td is much larger than
the pulse duration, the integral of I(x, y, z0, t) over x, y, and t in (14.1.5) is just the pulse
energy E(z0) at z0. Since E(z0) ¼ T0(z0)Ep ffi T0(z)Ep, where Ep is the energy of the pulse
leaving the transmitter, we write (14.1.5) as

N (z) ¼ hT2
0 (z)

Ar

4pz2
Ep

hn

ðzþDz
z

dz0 N(z0)s (z0, n): (14:1:6)

The column length Dz from which photons can reach the detector during the time
interval [2z/c, 2z/c þ td] is determined by 2Dz/c ¼ td, or Dz ¼ ctp/2. We have
assumed that this range bin length is made small enough that N(z0) and s (z0, n) do
not vary significantly within it. Then we obtain from (14.1.6) the lidar equation

N (z) ¼ hT2
0 (z)

Ar

4pz2
Ep

hn
N(z)s (z, n)

ctd
2

, (14:1:7)

for the number of photon counts at the receiver from a range bin of length Dz ¼ ctd/2 at
altitude z. There is clearly a trade-off between the range bin length and the strength of the
photon counting signal: The smaller the range bin, the greater the “range resolution” but
the smaller the number of photons backscattered from it.

Suppose some atmospheric constituent is probed as a function of altitude and the
detection electronics is designed to “reset to zero” at the end of each counting interval,
after which it begins counting photons from the next range bin. This range gating con-
tinues for some number of range bins, and photon counts per range bin are accumulated
with multiple laser pulses fired at some repetition rate Rrep over some “integration time”
t. The number of photons accumulated from a range bin of lengthDz over the integration
time t is obtained by multiplying (14.1.7) by Rrept. Then the lidar equation for the
number of photon counts from a range bin of length Dz at altitude z takes the form

N (z) ¼ hT2
0 (z)

(Pwr)Lt
hn

Ar

z2
N(z)s B(z, n)Dz, (14:1:8)

where (Pwr)L ¼ EpRrep is the laser power. We have assumed that the scattering (or
resonance fluorescence) is isotropic, i.e., that it is the same over all 4p steradians
about the scatterer; in this case the cross section for scattering in the backward direction

1Whether we use here the speed of light in vacuum (c) or the phase velocity or, more appropriately, the group
velocity, is inconsequential because the atmosphere is so weakly dispersive.
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is s (z, n)/4p, where s (z, n) is the total (over all angles) scattering cross section. But in
general the scattering (or resonance fluorescence) is not isotropic, and to indicate this we
have written sB(z, n) in (14.1.8) instead of s (z, n)/4p, where sB(z, n) is the “differen-
tial” cross section for backscattering, and reduces to s (z, n)/4p if the scattering happens
to be isotropic.

Various expressions relating to (14.1.7) and (14.1.8) are found in the lidar literature.
For example, the average power at the receiver implied by (14.1.7) is

Pwr(z) ¼ hnN (z)
htd

¼ T2
0 (z)

Ar

z2
EpN(z)s

B(z, n)
c

2

¼ (Pwr)0T
2
0 (z)

Ar

z2
N(z)sB(z, n)

ctp
2

, (14:1:9)

where (Pwr)0 is the single-pulse average power defined as Ep/tp. Similarly, if we take
the time td to be some arbitrary number of single pulse durations we infer from
(14.1.7) that the photon count obtained from a single laser pulse is

N (z) ¼ hT2
0 (z)

Ar

z2
Ep

hn
N(z)sB(z, n)

ctp
2

: (14:1:10)

What is called “the lidar equation” in the literature may refer to any of expressions
(14.1.7)–(14.1.10) or to some other variant of (14.1.7).

In practice the number of “background counts” NB, which includes detector dark
counts (Section 12.7) and counts from any background light sources (e.g., the sun),
must be added to the right-hand side of whatever form of the lidar equation is used.

If laser pulses propagate from ground at a zenith anglec, where c ¼ 0 defines vertical
propagation, then the distance of atoms at altitude z from the receiver is R ¼ z/cos c, and
this distance replaces z in the lidar equation. Similarly the lidar equation is often written
with T2

0 (R) expressed as an integral over the path to R:

T2
0 (R) ¼ exp �2

ðR
0
a(R0) dR0

� 
, (14:1:11)

where a(R0) is the atmospheric attenuation coefficient at propagation distance R0 at the
wavelength of interest. For instance, a(R0) due to Rayleigh scattering will obviously
decrease with altitude as the density of scatterers decreases.

It has been assumed that the backscattered photons come from resonance fluores-
cence, but the lidar equation is in fact more broadly applicable, as its form suggests.
If the backscattered photons are due to scattering by air molecules (predominantly
N2 and O2), the cross section s

B(z, n) in the lidar equation is the Rayleigh backscattering
cross section, which is

sB
R (z, n) ¼

p 2[n2(z, l)� 1]2

N2(z)l4
(Rayleigh backscattering cross section

for wavelength l ¼ c=n), (14:1:12)

as shown below. The laser radiation is assumed to be narrowband and at the same fre-
quency as the scattered radiation. Since Rayleigh scattering does not involve a change
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in molecular energy levels, it is often called elastic scattering in the lidar literature. This
terminology applies also to the more general case of Mie scattering in which the scat-
terers are not necessarily small compared to the wavelength. The lidar equation is
based on the approximation that multiple scattering is negligible; this is the approxi-
mation that each molecule scatters only the laser radiation and not the radiation scattered
in its direction by another molecule.

We have implicitly assumed in deriving the lidar equation that the field of view of the
receiving optics is larger than the laser beam divergence. It should also be noted that,
although we have referred to photon counts at the detector, as is appropriate when
return signals are measured with photomultiplier tubes or avalanche photodiodes in
the Geiger mode, strong return signals are usually recorded in the analog mode and
then converted to digital form (Section 12.7).

† The electric field from an electric dipole oscillating along a direction 1̂ is proportional
to (1̂� r̂)r̂� 1̂ in the radiation zone, where r̂ is the unit vector pointing from the dipole to the
point of observation [Eq. (8.9.13)]. The scattered power in the direction r̂ is therefore
proportional to

[(1̂� r̂)r̂� 1̂]2 ¼ 1� (1̂� r̂)2: (14:1:13)

For a dipole induced by an incident field, 1̂ is the polarization unit vector of the incident field.
Let u be the scattering angle, that is, the angle between the propagation direction ẑ of the incident
field and the direction r̂ in which the scattered field is observed. We write

r̂ ¼ x̂ sin u cosfþ ŷ sin u sinfþ ẑ cos u, (14:1:14)

where x̂ and ŷ are orthogonal unit vectors in the plane perpendicular to ẑ and f is the angle
between x̂ and the projection of r̂ onto the xy plane. Then, for incident radiation polarized
along x̂ or ŷ, respectively, we have

1� (1̂� r̂)2 ¼ 1� sin2u cos2f (x polarization), (14:1:15a)

¼ 1� sin2u sin2f ( y polarization): (14:1:15b)

In the case of unpolarized incident radiation the angular dependence of the scattered power can
be obtained simply by taking the average of (14.1.15a) and (14.1.15b), since the x and y com-
ponents of the incident field have the same (average) intensity:

1
2 (1� sin2u cos2 f)þ 1

2 (1� sin2u sin2f) ¼ 1� 1
2 sin

2u ¼ 1
2 (1þ cos2u): (14:1:16)

The same result is obtained for incident light that is circularly polarized because the x and y field
components again have equal intensities. The integral of (14.1.16) over all solid angles V isð

4p
dV

1
2
(1þ cos2 u) ¼

ð2p
0

df

ðp
0
du sin u

1
2
(1þ cos2u) ¼ 8p

3
, (14:1:17)

and so we define the differential scattering cross section ds/dV such that
Ð 2p
0 dfÐ p

0 du sin u(ds=dV) ¼ sR, where sR is the total cross section for Rayleigh scattering
defined by (8.9.5):

ds

dV
¼ sR � 3

8p
1
2
(1þ cos2 u) ¼ p 2[n2(z, l)� 1]2

l4N2(z)

1
2
(1þ cos2 u), (14:1:18)
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for n(l) ffi 1. Similary, for incident light linearly polarized in the x direction,

ds

dV
¼ p 2[n2(z, l)� 1]2

l4N2(z)
(1� sin2 u cos2 f), (14:1:19)

and for y-polarized light cos2 f is replaced by sin2f in this formula. Therefore, the differential
cross section for backscattering (u ¼ p) is

sB
R (z, n) ;

ds

dV
(u ¼ p) ¼ p 2[n2(z, l)� 1]2

N2(z)l4
(14:1:20)

for any polarization of incident light.
Using (14.1.20) and the formula (8.10.5) for the refractive index of air, we obtain for the quan-

tity N(z)sB
R (z, n) in the lidar equation for Rayleigh scattering the approximation (Problem 14.2)

N(z)sB
R (z, n) ffi

3:3� 104

l4
P(z)
T(z)

m�1, (14:1:21)

where P(z) and T(z) are, respectively, the atmospheric pressure (millibars) and temperature
(Kelvin) at altitude z and l is the wavelength in nanometers.2

Rayleigh lidars typically probe the atmosphere at altitudes above about 30 km, where scatter-
ing from aerosols is negligible.3 They have been used to infer atmospheric temperature distri-
butions at such altitudes. To get a rough idea of the number of photon counts predicted by the
lidar equation, consider a fairly typical sort of Rayleigh lidar system in which 532-nm, 1-J
laser pulses at a repetition rate of 30 Hz propagate vertically to 30 km, and backscattered
photons are returned from a 150-m range bin (td ¼ 1ms) to a 50-cm-diameter receiver aperture
over an integration time of 1 min. At z ¼ 30 km the atmospheric pressure and temperature are
approximately 12 mbar and 250K, respectively; then, from (14.1.8) and (14.1.21) (Problem 14.2),

N (z) � 3:2� 106 � hT2
0 (z) (14:1:22)

from a 150-m range bin at 30 km. A reasonable estimate of T2
0 (z) at 30 km is about 0.6 for visible

wavelengths far from any absorption resonances of air; the attenuation in this case is due predo-
minantly to Rayleigh scattering from air molecules and to scattering from aerosols. Assuming
h � 0.5 for the detection efficiency, we obtain N (z) � 106 photon counts. Note that the power
hnN (z)=(ht) backscattered to the receiver during the integration time in this example is about
10214 W, compared to an average laser power of (30 Hz)(1 J) ¼ 30W. †

The contribution of Rayleigh scattering by air molecules to the backscattered signal
can be calculated, since the backscattering cross section and the attenuation coefficient
for Rayleigh scattering are known as a function of pressure and temperature. The spectral
width of the backscattered light depends on the velocity distribution of the air molecules.
Since any aerosol particles present are much more massive and therefore have much
smaller thermal velocities than air molecules, the spectral width of backscattered light
from them is much narrower than that for Rayleigh scattering by air molecules.
Narrow-bandwidth filters can be used to distinguish the contributions of air and aerosol

2Since sB
R (z, n) is a differential cross section, N(z)s

B
R (z, n), strictly speaking, has dimensions of (length)21

(steradian)21 rather than (length)21. This distinction does not affect computations of backscattered photon
numbers.
3In the lidar literature Rayleigh scattering refers specifically to scattering by molecules rather than by aerosol
particles, which may or may not be small compared to the wavelength.
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particles to the elastic backscatter, and therefore to determine distributions of aerosol
concentrations. Similarly, whereas the absolute Doppler shift due to line-of-sight wind
is the same for light scattered by aerosols and by air molecules, the relativeDoppler shift
for aerosols is much larger; in other words, the ratio of the Doppler shift resulting from
being carried along by wind to the average thermal velocity is larger for aerosols. The
large relative frequency shift allows the Doppler shift to be accurately measured as a
separation between two narrow “spikes” in the spectrum of the backscattered light.
This allows accurate profiling of atmospheric winds and is the basis for the atmospheric
laser Doppler instrument (ALADIN) planned for operation aboard the European Space
Agency’s ADM-Aeolus “wind watch” satellite. This lidar system will operate at the
355-nm wavelength of frequency-tripled Nd :YAG laser radiation. It is expected to pro-
vide 100 wind profiles per hour with a range resolution of 1 km for altitudes up to 30 km.

Elastic-backscatter lidars can detect the presence of large, nonspherical particles (e.g.,
ice crystals or soot). For spherical particles the backscattered light has the same polariz-
ation as the laser radiation. Nonspherical particles, however, result in a “depolarization”
of backscattered light; analysis of this depolarization can therefore determine whether
such particles are present. Polarization-sensitive elastic-backscatter lidar has been
useful, for instance, in studies of the distribution of ice crystals in cirrus clouds and
of aerosols in dust layers.

Resonance fluorescence lidar studies of sodium and other mesospheric metallic
species (e.g., potassium and iron) believed to result from meteoric ablation have also
been important in atmospheric research. Sodium is found in a layer about 30 km wide
centered at about 95 km.4 It has been especially useful in resonance fluorescence lidar
because of its strong D line transitions and its relatively large density (only a few thou-
sand atoms per cubic centimeter!) in the mesosphere.

To be specific, let us consider, as in Section 3.13, the 3S1=2(F ¼ 2)$ 3P3=2 D2

transition. We can estimate as follows the number of photon counts N that can be
obtained from the full width of the sodium layer with laser radiation at this transition
frequency. Assuming nb range bins of length Dz [�30 km/nb] in the lidar equation
(14.1.8), we write

N �
Xnb
m¼1

N (zþ m Dz) � hT2
0
(Pwr)Lt

hn

Ar

z2eff
sB
Na

Xnb
m¼1

N(zþ mDz)Dz

¼ hT2
0
(Pwr)Lt

hn

Ar

z2eff
sB
NaCs, (14:1:23)

where Cs (m
22) is the sodium column density. We have replaced T0(z) and z within the

sodium layer by effective values T0 and zeff, and sB
Na is the backscattering cross section

for sodium resonance fluorescence, which for our rough estimates is assumed to be
isotropic; thus we take

sB
Na ¼

1
4p

(9:3� 10�16 m2), (14:1:24)

4The sodium layer is seen as a faint, thin yellow arc in a photograph taken by an astronaut during the
September, 1992 flight of the space shuttle Endeavour. This photograph is reproduced in W. J. Wild and
R. Q. Fugate, Sky and Telescope 87, 10 (1994).
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where 9.3 � 10216 m2 is the total (absorption) cross section calculated in Section 3.13
[Eq. (3.13.10)] for T ¼ 200K, which is approximately the temperature in the meso-
sphere. Then, from (14.1.23) with zeff ¼ 95 km, we obtain the number of photons per
unit area and per unit time arriving at the receiver during the integration time t :

N
hArt

� 2:4� 10�8T2
0 (Pwr)L(W)Cs(m

�2) photons=m2=s: (14:1:25)

The sodium column density Cs varies with location, time of year, and even time of day,
typical values being 32 6 � 1013 m22, corresponding to peak sodium densities of
around a few thousand atoms per cubic centimeter. Using Cs ¼ 4 � 1013 m22 and
T2
0 � 0:5, we estimate that N =(hArt) � 5� 105 T2

0 photons=m2=s per watt of laser
power arrive at the detector. This is much smaller than the photon flux from low-altitude
Rayleigh backscattering, which can be eliminated from the measured sodium resonance
fluorescence signal by range gating [for pulses shorter than about (95 km)/c � 300ms]
such that photon counting at the receiver is begun only after a sufficiently long time
following the launch of a laser pulse.

We have made assumptions about column density and temperature in order to esti-
mate photon returns, but, of course, one application of lidar is to determine such quan-
tities from measured photon counts. The temperature profile of the mesosphere, for
example, has been measured by sodium resonance fluorescence lidar based on the temp-
erature dependence of the absorption cross section shown in Fig. 3.20. The maximum
and minimum backscattering cross sections occur at frequencies we denote by nmax

and nmin, respectively, and the ratio of these cross sections depends on the temperature.
The ratio of range-gated photon return signals taken at the two laser frequencies nmax and
nmin, for example, can therefore be compared with the theoretical ratio (Fig. 3.20) to infer
the temperature as a function of altitude in the mesosphere. Figure 14.2 shows results of
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Figure 14.2 Temperature and sodium density in the mesosphere over Ft. Collins, Colorado, obtained
from sodium resonance fluorescence lidar. [From R. E. Bills, C. S. Gardner, and C.-Y. She, Optical
Engineering 30, 13 (1991).]

644 SOME APPLICATIONS OF LASERS



such measurements for the temperature as well as the sodium density. The relatively
high-resolution (Dz ¼ 1 km) data were obtained with a cw dye laser tuned alternately
between two frequencies.

† The sodium density can be obtained by normalizing the sodium photocounts to the Rayleigh
photocounts from aerosol-free altitudes (�.35 km) at which the Rayleigh scattering is due almost
entirely to air molecules; this has the advantage of effectively eliminating uncertainties in the
atmospheric transmission coefficient T0(z). Thus, from Eq. (14.1.8) it follows that the sodium
density NNa(z) at altitude z can be expressed as (Problem 14.3)

NNa(z) ¼ NR(zR)sB
R (zR, n)

sB
Na(z, n)

� 
z2

z2R

NNa(z)
NR(zR)

, (14:1:26)

Here zR and z are the altitudes for which the Rayleigh and sodium photon counts NR(zR) and
NNa(z), respectively, are taken, and NR(zR) is the density of molecular (Rayleigh) scatterers at
zR. The factor in brackets on the right-hand side is known theoretically as a function of the
laser frequency [cf. (14.1.21)], z2=z2R is determined by the altitudes probed, and the ratio of
sodium and Rayleigh photocounts is measured to infer NNa(z).

In deriving the lidar equation, we used the proportionality (14.1.3) between the excited-state
population and the intensity; this ignores the possibility of saturation or coherent excitation effects
that depend on the temporal variations of the electric field. In most lidar systems saturation or
coherent excitation effects are of no concern, and the forms of the lidar equation we have written
are quite adequate. It should be remembered, however, that backscattering cross sections gener-
ally depend on the polarization of the laser. In narrowband lidars, moreover, it is often necesary to
account for the laser linewidth via a convolution of the frequency-dependent cross section with
the laser spectrum. †

In differential absorption lidar (DIAL) the wavelength dependence of the trans-
mission coefficient T0 is used to determine the densities of absorbing species. Consider
the lidar equation for the power at the receiver [cf. (14.1.9)] when the laser is at wave-
length l:

Pwr(R, l) ¼ (Pwr)0(l)
Ar

R2
N(R)sB(R, l)DRe�2

Ð R
0
dR0a(R0,l), (14:1:27)

wherewe have used (14.1.11) and havewritten R instead of z to allow for arbitrary zenith
angles;DR is the range bin length, (Pwr)0(l) is the laser power at R ¼ 0 at wavelength l,
and a(R0, l) is the atmospheric attenuation coefficient at wavelength l and range R0.
The basic idea of DIAL is to measure photon return signals at two wavelengths lon
and loff, where lon is a wavelength that is “on” resonance with an absorption line of
the atmospheric molecule of interest and loff is “off” resonance. In other words, the
molecule of interest absorbs at wavelength lon but not at loff. From (14.1.27) we
obtain the ratio

Pwr(R, lon)
Pwr(R, loff )

¼ exp �2
ðR
0
dR0[a(R0, lon)� a(R0, loff )]

� �
: (14:1:28)

We are assuming that the laser powers as well as the range bin lengths are the same at the
two wavelengths, and that the two backscattering cross sections due, for instance, to
Rayleigh scattering, are also approximately the same.
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The attenuation at the twowavelengths is attributable to scattering from air molecules
and aerosols as well as to absorption by any molecules with absorption lines near these
wavelengths. Suppose, however, that only a particular molecular species contributes
significantly to the integral over R of the difference a(R, lon) 2 a(R, loff); this, of course,
is the species probed by DIAL with (slightly) different laser wavelengths lon and loff.
Then we can ignore all contributions to (14.1.28) except that from this particular
molecular species. Since

a(R0, lon)� a(R0, loff ) ¼ Na(R
0)[sa(R

0, lon)� sa(R
0, loff )], (14:1:29)

where Na and sa are the number density and absorption cross section, respectively, of
this particular molecule, it follows from (14.1.28) that

Pwr(R, lon)
Pwr(R, loff )

¼ exp �2
ðR
0
dR0 Na(R

0)Dsa(R
0)

� 
, (14:1:30)

where we define the “differential absorption cross section”

Dsa(R
0) ¼ sa(R

0, lon)� sa(R
0, loff ): (14:1:31)

Differentiation of (14.1.30) yields

Na(R) ¼ �1
2Dsa(R)

d

dR
ln

Pwr(R, lon)
Pwr(R, loff )

� 
, (14:1:32)

or, since the return signals are, of course, recorded in discrete range bins DR,

Na(R) ffi 1
2Dsa(R) DR

ln
Pwr(Rþ DR, loff )

Pwr(R, loff )
Pwr(R, lon)

Pwr(Rþ DR, lon)

� 
: (14:1:33)

Sometimes DIAL is said to be (approximately) “self-calibrating”: by measuring the
return signals at the two wavelengths lon and loff, the number density Na(R) in different
range bins is determined independently of the area of the receiving aperture, the photon-
counting efficiency, the absolute laser power, the density and cross sections of the back-
scatterers, and the atmospheric transmission coefficient T0(R). It is, of course, essential
that the differential absorption cross sectionDsa(R) of the molecule of interest be known
from theory or from laboratory experiments. DIAL has played a very important role in
the determination of absolute concentrations of ozone, water vapor, carbon dioxide, and
other environmentally important absorbers. It has also been used for temperature profil-
ing of the atmosphere based on the known concentration of O2 and the temperature
dependence of its differential absorption cross section.

† Lidar signals are often very weak, and it is sometimes essential to detect them in such a way
as to discriminate against background noise. This is done by heterodyne detection, as opposed to
the “direct detection” we have presumed. In heterodyne detection the return light is superposed
with light from a “local oscillator,” a cw laser at frequency vLO. Let ES cos(vS þ fS)t and
ELO cos(vLOt þ fLO) denote the electric fields of the signal and local oscillator, respectively.
The electric current iD of a photodetector will be proportional to the total intensity
10c[ES cos(vSt þ fS) þ ELO cos(vLOt þ fLO)]

2, or

iD / 1
2E

2
S þ 1

2E
2
LO þ ESELO cos [(vS � vLO)t þ (fS � fLO)] (14:1:34)
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when terms at frequencies 2vS, 2vLO, and vS þ vLO are dropped under the assumption that these
frequencies are so large that the detector can only respond to their time average, which is zero.
In addition to a dc component, the current at the detector oscillates at the difference (beat)
frequency vS 2 vLO, typically at radio frequencies, and with an amplitude proportional toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Pwr)S(Pwr)LO
p

, where (Pwr)S and (Pwr)LO are the powers of the signal and local oscillator.
The principal advantage of heterodyning is the greater signal-to-noise ratio achievable with a
sufficiently strong local oscillator field.

Heterodyne detection is “coherent” in that it responds to the signal field rather than directly to
the intensity; it records information about the phase (and polarization) as well as the power of the
signal. Lidars employing heterodyne detection are referred to as coherent DIAL, coherent
Doppler, and so forth. Heterodyne detection requires a highly stable pulsed laser and local oscil-
lator as well as sufficiently fast detectors; while offering better noise performance than direct
detection, it is more sensitive to phase perturbations and misalignments. Because of the speckle
effect due to atmospheric turbulence (Sections 8.11 and 13.8), there are shot-to-shot fluctuations
in the return signal from each range bin, and a time averaging must be performed to smooth out
these fluctuations. The heterodyne signal decreases for ranges R greater than the coherence length
of the source (Section 13.11). †

Other lidar techniques are based on Raman scattering, an inelastic scattering process
involving a change in the vibrational-rotational state of a molecule. The scattered radi-
ation is shifted in frequency from the incident laser radiation by the change in the
vibrational-rotational energy. Since the energy levels are distributed according to a
Boltzmann distribution at the ambient temperature, Raman lidars have been used for
temperature profiling of the atmosphere. Unlike resonance fluorescence lidar or DIAL,
Raman lidars do not require specific laser wavelengths that match an absorption line
of an atmospheric constituent; Raman cross sections are approximately proportional
to l24, as in Rayleigh scattering, so that the laser wavelengths used (often between
about 320 and 550 nm) are typically smaller than in other lidars. The cross sections
tend to be small, rendering Raman lidars most useful for probing constituents with rela-
tively high concentrations. One of their principal applications is to measurements of
water vapor concentrations in the troposphere, the lowest and densest layer of Earth’s
atmosphere containing nearly all its water vapor.5

The implementations and results of lidar are far too diverse to describe in any detail
here. Mobile lidar systems housed in trucks and airplanes are used to monitor concen-
trations in air of many constituents including ozone, carbon dioxide, methane, water
vapor, industrial emissions, and pollutants. Airborne lasers in the visible and ultraviolet
(e.g., frequency-doubled Nd :YAG laser radiation at 532 nm) are used in fluorescence
lidars in which chlorophyll, for example, absorbs at 532 nm and fluoresces at 685 and
740 nm; the strength of the radiation at these wavelengths provides information about
forest ecosystems and environmental variations. Fluorescence submarine lidars have
been developed for the detection of accidental or illegal chemical discharges in seawater.
All such lidars employ some variant of the basic lidar equation and software for
the “inversion” of the lidar equation to retrieve the desired information from measured
return signals.

The first spaceborne lidar—the Lidar-in-Space Technology Experiment (LITE)—
was launched in September, 1994 as the primary payload aboard the U.S. space shuttle

5The troposphere extends from ground to �8 km at the poles and to �18 km at the equator. It is where
weather “happens.”

14.1 LIDAR 647



Discovery. The transmitter was a Nd :YAG laser with frequency doublers and triplers
generating 532 and 355 nm wavelengths at a 10-Hz pulse repetition rate. The receiving
telescope had a 1-m diameter, and photomultipliers (for 532 and 355 nm) and an ava-
lanche photodiode (for 1064 nm) were used for the detection of return signals; the ver-
tical range resolution was about 15 m. This experimental system, the data from which
were validated by six lidar-equipped aircraft as well as more than 90 ground-based sys-
tems in 20 countries, demonstrated that return signals in space could be obtained from
ground or close to ground, and it succeeded in identifying storm systems, dust layers, and
complex cloud structures. Earth-orbiting lidar systems under development will take
comprehensive data from clouds and aerosols in order to obtain information needed
for climate modeling.

Lasers have long been used for distance and velocity measurements. Range finders
employ photodetection and timing electronics to measure the time T it takes for a light
pulse to reach an object and reflect back to the transmitter: The distance to the object is
d ¼ cT/2. The advantages of laser pulses over radio-frequency systems (radar) are their
very short durations, directionality, and their intensities that result in much stronger echo
signals. On July 20, 1969, Apollo 11 astronauts placed an 18-inch-square reflector on the
moon, and return pulses from a ruby laser at the Lick Observatory in California were first
detected on August 1. Distances between points on Earth and the moon were determined
to an accuracy of a few inches. The U.S. Laser Geodynamics Satellite (LAGEOS)
launched in 1976 is a sphere of mass 407 kg and diameter 60 cm covered with 426 retro-
reflectors for satellite laser ranging, similar in principle to lunar laser ranging. Laser
tracking of the position of LAGEOS in its orbital altitude �5900 km revealed small vari-
ations in the length of the Earth day. A second LAGEOS satellite was launched in 1992
to provide more data relevant to seismic activity. Both satellites remain in service as of
this writing.

Laser ranging can also be done interferometrically. In a Michelson interferometer
(Section 13.10), for example, the fringe maxima and minima are interchanged when
the arm separation is changed by l/2: The magnitude of this change in the arm separ-
ation can be determined in terms of the wavelength l by counting the number of fringe
shifts as the change occurs. This technique is used routinely in length calibrations and
machining applications.

Lasers are also used to measure velocities based on the Doppler effect. Laser veloci-
meters, some employing heterodyne detection, allow accurate measurements of velo-
cities of aircraft and fluid flows, for example. Velocities can also be measured by time
of flight: The time T for a laser pulse to propagate to a target and back implies the distance
d ¼ cT/2 to the object, and the slope of the plot of distance vs. time is the velocity. This
is how police lidar guns work. They typically employ GaAs diode lasers at an eye-safe
wavelength (904 nm) and average power (�50 mW). Since �100 pulses are used to
compute the velocity, a typical pulse repetition rate of 300 Hz implies that only �0.3
s is needed for a velocity determination—not much time for a speeding driver to react
and slow down.

14.2 ADAPTIVE OPTICS FOR ASTRONOMY

In Chapter 8 we introduced concepts such as the refractive index structure constant C2
n ,

the coherence diameter r0, and the seeing angle u that are especially important in the
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theory of the propagation of light in the turbulent atmosphere. We showed that even
under good seeing conditions a large ground-based telescope, while collecting more
light and allowing the observation of far fainter objects, will have no greater image
resolution than a much smaller telescope of comparable optical quality. Were it possible
to eliminate the effects of atmospheric turbulence, the image-resolving capability of
ground-based telescopes could exceed that of a space telescope (Section 8.11). Substan-
tial enhancement of the imaging performance of ground-based telescopes is in fact poss-
ible with adaptive optics.

The degradation of image quality caused by atmospheric turbulence arises primarily
from phase distortions across an incoming wavefront; recall the discussion in Section
8.11, where we showed that relatively small phase variations can substantially degrade
image quality. The basic idea of adaptive optics is to measure the phase distortions, that
is, the variations in local time lags across a wavefront, and to correct for them by advan-
cing the phase at points where the atmosphere has retarded it and retarding it at points
where the atmosphere has advanced it. The result, ideally, is a “corrected” wavefront in
which transverse phase variations have been removed and the image of an object in a
telescope is free of the blurring effect of the phase-distorting atmosphere. The advance-
ment and retardation of the local phases are done with a deformable mirror surface, or
“rubber mirror,” as indicated in Fig. 14.3. The phase distortions across an incident wave-
front—or more precisely the transverse phase gradients—are measured by a wavefront
sensor and used by a wavefront reconstructor to compute approximations to the actual
phase gradients. These are converted to voltages that drive an array of mechanical actua-
tors (or “pistons”) that adjust the shape of the deformable mirror surface so that the phase
variations across an incoming wavefront are (ideally) absent in the reflected wavefront.

The most common type of wavefront sensor in adaptive optics is the Shack–
Hartmann sensor, an array of lenslets or “subapertures” (Fig. 14.4). Each lenslet pro-
duces a spot on a detector array in the focal plane, and the displacement of the spot
from its local null position is a measure of the local phase gradient—and therefore the
local ray propagation direction—of the incoming wavefront at that subaperture. (The
null positions of the focal spots can be defined using an undistorted incoming wavefront

Input
wavefront

Deformable
mirror

Wavefront
reconstructor

Wavefront
sensor

Output
wavefront

Figure 14.3 Schematic of the principal components of an adaptive optical system.
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from a laser.) The Shack–Hartmann sensor thus transforms the local phase gradients
of the incoming wavefront into a matrix of focal-spot displacements. The spots have a
diffracted-limited form if the lenslet diameters are smaller than the atmospheric coherent
diameter r0 (Section 8.11). The detection array used to determine the phase gradient
associated with each subaperture is usually a “quad cell,” which consists of four detec-
tors (e.g., avalanche photodiodes) forming the quadrants of a square: The different
photon counts in the four quadrants provide the measure of the local phase gradient.

The performance of the adaptive optical system depends, among other things, on
how accurately the local phase gradients can be measured. Measurement errors arise
from uncertainties in the centroid positions of the focal spots in the Shack–Hartmann
sensor. These uncertainties are due to photon number fluctuations of the incoming wave-
front and to detector readout noise: Both types of noise diminish as the average number
of incoming photons per subaperture increases.

Thewavefront “reconstruction” process involves algorithms and software for estimat-
ing the actual phase profile from the measured matrix of phase gradients. This recon-
struction provides the information used to adjust the deformable mirror and retard or
advance the phase in such a way as to obtain the flat, undistorted output wavefront
indicated in Fig. 14.3.

Deformable mirrors are either segmented or continuous. The segmented type consists
of closely spaced planar mirror segments, each of which can be independently posi-
tioned, whereas the continuous type uses a single reflecting sheet (Fig. 14.5). Continu-
ous deformable mirrors require more sophisticated control algorithms but avoid
alignment and edge diffraction complications that arise with segmented mirrors.

When employed at a telescope the adaptive optical system of Fig. 14.3 operates as
follows. Light that has been phase distorted by atmospheric turbulence enters the tele-
scope and reflects off the deformable mirror. Part of the reflected light is incident on the
wavefront sensor. The sensor measures the phase “errors” (deviations of focal spots from
null positions), which would vanish if the deformable mirror were such that the reflected

Input wavefront

Lenslet array

Sensor array

Figure 14.4 Shack–Hartmann sensor consisting of an array of small lenslets (subapertures), each
of which focuses a small portion of an incoming wavefront onto a spot on a detector array in the
focal plane.
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wavefront had no phase distortions. The wavefront reconstructor then converts the
sensor output into voltages that drive the “pistons” of the deformable mirror to change
its shape in such a way as to reduce the phase errors measured by the sensor. In other
words, the adaptive optical system functions as a servo-control loop—a very compli-
cated one because of the large number of elements (pistons) that must be simultaneously
controlled. Moreover, it must correct for phase errors on a time scale short compared to
the �10 ms in which phase distortions of incoming light change because of atmospheric
fluctuations (Section 8.11). Deformable mirrors typically have much faster response
times, so the rapidity of atmospheric fluctuations is not problemmatic.

Adaptive optical systems also employ a fast steering or “tip-tilt” mirror to remove the
overall phase slope or tilt (Section 8.11) of thewavefront; tilt causes the imagewander or
“dancing” that is most responsible for the blurring of images obtained with long
exposure times (Section 8.12). A tip-tilt sensor controls the steering mirror to stabilize
the image for correction by the deformable mirror of “higher-order” phase distortions.
Tilt typically accounts for more than 80% of the total power in wavefront distortion,
but it can be followed and removed by the steering mirror with the light from stars as
dim as magnitude 17–19; stars of the required magnitude cover about 60% of the sky.6

† A highly simplified model shows how wavefront sensing errors decrease with increasing
light intensity. Consider instead of a quad cell a two-segment detector geometry that divides
the image plane in the neighborhood of a focal spot from a subaperture into the regions x , 0
and x. 0. Let NL and NR be the number of photons counted in the regions x , 0 and x. 0,
respectively, in a given time interval. Since the direction of ray propagation at the subaperture
is perpendicular to the local wavefront, a phase tilt implies NR = NL: The approximately
linear phase difference across the small subaperture results in a measured phase gradient

F/ NR � NL

NR þ NL
, (14:2:1)

Electrostrictive
actuator

stack

Face sheet

Figure 14.5 Continuous deformable mirror whose shape is controlled by voltages applied to a stack
of electrostatic actuators (pistons). Deflections �+1mm are typically obtained with drive voltages
�+100 V.

6It should be noted that wavefront tilt cannot be compensated using (single-wavelength) artificial laser guide
stars because of “reciprocity:” The downward-propagating light from the guide star follows the same path as
the upward-propagating laser beam, and so the guide star image will not appear to wander in the focal plane
of the telescope.
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and fluctuations DNR and DNL in NR and NL will cause a fluctuation

DF/ (NR þ NL)(DNR � DNL)� (NR � NL)(DNR þ DNL)

(NR þ NL)2

¼ NLDNR � NRDNL

(NR þ NL)2
(14:2:2)

in the measured phase. Assuming kDNRl ¼ kDNLl ¼ kDNRDNLl ¼ 0, kNRl ¼ kNLl ; N/2, and
Poisson statistics for NR and NL [kDN2

Rl ¼ kNRl, kDN2
Ll ¼ kNLl], we obtain a mean-square

fluctuation

kDF2l/ 1=N (14:2:3)

for the measured phase, where N is the average photon count, or, more precisely, the average
number of photoelectrons collected per subaperture. Wavefront sensing therefore increases in
accuracy with increasing light intensity. †

Astronomical sourcess are too faint for the wavefront sensor to make accurate enough
phase measurements for correction of higher-order distortions. Adaptive optical systems
for astronomy therefore use the brighter light from a reference “guide star.” Ideally the
light from the guide star is distorted in the same way by atmospheric turbulence as the
light from an astronomical object of interest, so that removal of the phase distortions of
the light from the guide star will result in an improved image of the object. In order for
the light from the guide star and the object to be phase distorted in the same way by
atmospheric turbulence, the distortions should derive from the same “patch” of sky.
The angle u subtended by this patch at the receiver should be no larger than roughly
the coherence diameter r0 divided by the effective height (�10 km) of the atmosphere,
in this case, u. 20 cm=10 km ¼ 4 arcsec ¼ 19mrad for r0 ¼ 20 cm in the visible. This
maximum allowable angular separation between the object and the guide star is called
the isoplanatic angle. Unfortunately, there is a dearth of sufficiently bright stars that
can be used as guide stars—it is estimated, for instance, that only about 0.1% of the
sky has stars sufficiently bright to serve as guide stars in the visible.

However, lasers allow artificial guide stars to be created anywhere in the sky. For
example, the Rayleigh-backscattered light from a laser beam propagating up into the
atmosphere can serve as a guide star. The resonance fluorescence from laser-excited
mesospheric sodium atoms provides another type of artificial guide star. Mesospheric
sodium has a major advantage over Rayleigh scattering as a guide star: It is at an altitude
(�95 km) much higher than can be probed with sufficient photon returns by Rayleigh
scattering. The light from it therefore suffers phase distortions attributable to essentially
the full height of the atmosphere, and so an adaptive optical system employing it as a
guide star will “correct” the wavefront from an astronomical object at “infinity.”
Figure 14.6 shows how an adaptive optical system and an artificial guide star can be
employed at a ground-based telescope. Experiments have demonstrated the feasibility
of adaptive optics using artificial as well as natural guide stars (Figs. 14.7 and 14.8).7

We will confine the remainder of our discussion mainly to the sodium guide star.

7For a comprehensive review of optical technology for improving the resolution of large ground-based tele-
scopes see, for instance, M. C. Roggemann, B. M. Welsh, and R. Q. Fugate, Reviews of Modern Physics 69,
437 (1997).
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It is estimated that photon returns from the sodium layer of �106 photons/m2/s are
required for adaptive optics as described above to result in a Strehl ratio of exp(21.0) ¼
0.37, a nominal value associated with generally adequate imaging.8 Calculations of
photon returns from the sodium guide star are the same as for the sodium resonance
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Figure 14.6 Schematic showing how adaptive optics with an artificial guide star can be used to
improve the resolution of a telescope.

8Estimates of required photon numbers for desired Strehl ratios, and comparisons of theoretical and
experimental photon returns for various laser pulse formats, are discussed, for instance, in P. W. Milonni,
R. Q. Fugate, and J. M. Telle, Journal of the Optical Society of America A 15, 217 (1998).
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Figure 14.7 The 3.5-m telescope facility at the Starfire Optical Range in NewMexicowith a 589-nm
beam propagating to the mesosphere to produce a sodium guide star. (Photo courtesy of J. M. Telle.)

Figure 14.8 One of the early demonstrations of adaptive optics in astronomy (July, 1994). Images of
Saturn and one of its moons (Titan) obtained (a) without and (b) with adaptive optics using a Rayleigh
guide star at 656.4 nm with the 1.5-m telescope at the Starfire Optical Range in New Mexico. (Photo
courtesy of R. Q. Fugate.)

654 SOME APPLICATIONS OF LASERS



fluorescence lidar and are generally consistent with observations. For example, formula
(14.1.25) predicts a return photon flux of 1.6 � 106 photons/m2/s per watt of cw laser
power at 589 nm, compared with a reported 1.9 � 106 photons/m2/s per watt when
T2
0Cs ¼ 6:7� 1013 m�2.9 The reported data were actually the average of photon returns

obtained with linearly and circularly polarized excitation, which gave 1.5 � 106

photons/m2/s/W and 2.2�106 photons/m2/s/W, respectively. For reasons discussed
in the following section, circular polarization generally results in larger photon return
fluxes. With a 30-W, circularly polarized transmitted beam, for example, the photon
return was approximately 70�106 photons/m2/s, whereas formula (14.1.25), which
is applicable for laser intensities sufficiently small that the polarization effects discussed
in the following section are insignificant, predicts a return of 52�106 photons/m2/s for
30 W of transmitted power.

† The intensity of light from an artificial guide star can be characterized by the “apparent mag-
nitude” m used to quantify the visually perceived brightness of stars. For reasons grounded more
in tradition than logic, the apparent magnitude is defined as

m ¼ �[19þ 2:5 log I], (14:2:4)

where I is the intensity in W/m2. The smaller m, the brighter the object. For the sun, the brightest
object in the sky, I ffi 1.4 kW/m2 at Earth’s surface, and so m ffi226.9. For the full moon,
m ¼212.6, while for Sirius (the brightest star aside from the sun), m ¼21.5. The faintest
stars observable with the naked eye have apparent magnitudes m ffi 6, whereas the Hubble
space telescope can detect objects as faint as magnitude 30 in the visible. A sodium guide star
yielding 70 � 106 photons/m2/s at ground level has an apparent magnitude of about 7.6. †

Quasi-monochromatic irradiation of mesospheric sodium excites only a narrow
velocity group within the approximately 3-GHz-wide Doppler absorption profile
(Fig. 3.20). By appropriate phase modulation the spectrum of laser radiation can be
made to cover essentially the entire Doppler absorption profile. Various pulse-train exci-
tation schemes have been employed, including trains of subnanosecond pulses produ-
cing the coherent excitation effects described in Chapter 9.

Saturation of the sodium transitions occurs at sufficiently high laser powers. If,
for example, the D2 line is excited by phase-modulated light whose spectrum is
relatively flat over the absorption cross section, then formula (4.11.2) with the D2 radia-
tive rate A21 ¼ 1/(16 ns) and an “average” cross section �s � 2� 10�16 m2 at 200K
(Fig. 3.20) implies Isat � 5 W/cm2 for the saturation intensity. Suppose, for example,
that such a phase-modulated pulse with a duration long compared to the radiative
lifetime saturates the D2 transition such that the excited-state probability for an atom
with coordinates (x, y) transverse to the propagation direction has the quasi-steady-
state value

�p(x, y) ¼
1
2I(x, y)=I

sat

1þ I(x, y)=Isat
(14:2:5)

9J. Telle, J. Drummond, C. Denman, P. Hillman, G. Moore, S. Novotny, and R. Fugate, Proceedings of the
SPIE (International Society for Optical Engineering) 6215, 62150K-1 (2006).
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during the pulse. Suppose also that the average intensity at the mesosphere may be
approximated by the Gaussian form10

I(x, y) ¼ I0e
�2(x2þy2)=w2 ¼ I0e

�2r2=w2
(14:2:6)

(w is typically �1 m). Then the rate at which photons are backscattered from such a
pulse to a receiving aperture of area Ar at ground is

R ¼ T0Cs

4pz2
Ar

ð1
�1

dx

ð1
�1

dy
A21 � 1

2 I(x, y)=I
sat

1þ I(x, y)=Isat

¼ T0Cs

4pz2
Ar(2p)

ð1
0
drr

A21 � 1
2 I0e

�2r2=w2
=Isat

1þ I0e�2r
2=w2=Isat

¼ T0Cs

4pz2
Ar

pw2

2
ln 1þ I0

Isat

� �
, (14:2:7)

aside from a possible factor accounting for anisotropy of the backscatter. Such an
approximate functional dependence of R on the peak intensity I0 provides a good fit
to observed photon returns from “long,” phase-modulated laser pulses.8

Work on sodium guide star includes research into methods of generating high-power
radiation at 589 nm. Chains of dye lasers have been used to generate trains of pulses
of sufficient intensity to strongly saturate the mesospheric sodium D2 line, but these
systems are large and complicated and the overall efficiency is low. Sum-frequency
(three-wave mixing) generation using Nd :YAG laser transitions at 1.064 and
1.319 mm (1/1064 þ 1/1319 ¼ 1/589) appears especially promising for laser guide
stars,9 and fiber lasers capable of yielding sufficiently high powers at 589 nm are also
an attractive possibility.

In Section 8.11 we introduced the seeing angle as a measure of angular resolution,
and estimated that under good seeing conditions (characterized by a coherence diameter
r0 ¼ 10 cm in the visible) the angular resolution of a 10-m telescope is about 1 arcsec
compared to its theoretical diffraction-limited value of 0.01 arcsec. In other words, com-
pensation for atmospheric turbulence could ideally result in an improvement in angular
resolution by a factor of 100! Aside from far more detailed imaging, such an improve-
ment in angular resolution would have important benefits for ground-based astronomical
spectroscopy: It would allow the use of smaller spectroscopic slits and therefore a
reduction of background radiation in the spectroscopy of very faint objects.

† Adaptive optics was first proposed in 1953 by the astronomer H. W. Babcock, who envi-
sioned a deformable mirror based on an oil film whose thickness over a mirror surface could
be controlled electrostatically. Similar ideas were advanced by V. P. Linnik. These concepts
were impossible to implement without the computers and image-monitoring devices that came
much later.

The concept of an artificial guide star, like much of adaptive optics, originated in classified
military research on satellite surveillance and other applications. One type of guide star or
“beacon” used in satellite surveillance is a “glint” of sunlight reflected by a satellite. The use

10The laser radiation propagating to the mesosphere is of course subject to speckle and other effects of
turbulence discussed in Chapter 8.
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of Rayleigh-scattered light as a beacon for adaptive optics was first suggested in the late 1970s. In
1982 mesospheric sodium was proposed as a beacon for adaptive optics in a classified report;11 in
1985 it was suggested as a guide star for adaptive optics on telescopes,12 and the first experimen-
tal studies in that direction were reported in 1987.13 In 1991 most of the military research on adap-
tive optics and laser guide stars in the United States was declassified. †

Adaptive optics with a sodium guide star is not a perfect solution to the problem of
imaging through atmospheric turbulence. For one thing, focus anisoplanatism—the fact
that the light from the guide star is a spherical wave rather than the plane wave from an
astronomical object at “infinity”—implies that the guide star light does not “sample”
exactly the same part of the turbulent atmosphere as the light from an object at infinity.
And as already mentioned, a natural guide star is still required in order to compensate for
the overall phase tilt caused by the atmosphere. But the results thus far have been
impressive, and development of adaptive optical telescope systems with the sodium
guide star is proceeding rapidly. Figure 14.9 shows an example of the image improve-
ment obtained with the 8.2-m Subaru telescope at Mauna Kea, Hawaii, one of a growing
number of very large (6–10 m) ground-based telescopes employing adaptive optics
with sodium guide stars. The adaptive optics system used a 188-subaperture Shack–
Hartmann wavefront sensor, about 2 m wide, and a 13-cm-diameter deformable mirror
with 188 actuators. The 589-nm beam was obtained by sum-frequency generation with
1064- and 1319-nmNd :YAG laser radiation; the 589-nm radiation was sent by a photo-
nic crystal fiber from the room housing the lasers and the nonlinear optics to the launch
telescope. The diffraction-limited angular resolution at the 2.2-mm imaging wavelength
is �2.2 � 1026/(8.2) ¼ 0.27mrad ¼ 0.06 arcsec, compared to a 0.6-arcsec resolution
without any adaptive optics. With adaptive optics and the sodium guide star the angular
resolution was nearly diffraction-limited.

Figure 14.9 One of the early demonstrations of the use of the sodium guide star for adaptive optics
on a large telescope (October, 2006). Images of the Trapezium region of the Orion Nebula with
(left) and without (right) adaptive optics. (# Subaru Telescope, National Astronomical Observatory
of Japan.)

11W. Happer, G. J. MacDonald, C. E. Max, and F. J. Dyson, Journal of the Optical Society of America B 11,
263 (1994).
12R. Foy and A. Labeyrie, Astronomy and Astrophysics 152, L29 (1985).
13L. A. Thompson and C. S. Gardner, Nature 328, 229 (1987).
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14.3 OPTICAL PUMPING AND SPIN-POLARIZED ATOMS

Aside from occasional allusions to the possibility of using polarized light to preferen-
tially populate particular magnetic substates (cf. Sections 3.7 and 4.11), we have pre-
sumed that degenerate states differing only in the magnetic quantum number m are
equally populated. In the calculation of the absorption cross section for the sodium
D2 line in Section 3.13, for example, the three magnetic substates of the 3S1/2(F ¼ 1)
level and the five magnetic substates of the 3S1/2(F ¼ 2) level were assigned equal
populations, as must be the case for degenerate states in thermal equilibrium. The pro-
cess by which a departure from a thermal distribution occurs due to irradiation with light,
as in the creation of population inversion in dye or solid-state lasers, for example, is
called optical pumping. The term often refers specifically to the redistribution of hyper-
fine levels and magnetic substates by a resonant atom–field interaction, and it is in this
sense that we will use it here. Optical pumping as such was well understood by the late
1940s but, as with so many other aspects of spectroscopy, it came into very widespread
use primarily because of the quasi-monochromaticity, directionality, tunability, and
intensity of light made possible by the laser.

Let us briefly review the physical significance of the magnetic substates. An atom has
a magnetic dipole moment proportional to its angular momentum F, and for a level with
total angular momentum quantum number F there are 2F þ 1 degenerate substates cor-
responding to “magnetic” quantum numbersm ¼ 2F, 2F þ1, . . . , 21, 0, 1, . . . , F2
1, F. (Recall the simplified discussion of the hydrogen atom in Section 2.2, or Fig. 3.19
for the hyperfine structure of the sodiumD2 line.) An atom in a statewith magnetic quan-
tum number m will be found in a measurement to have a component of angular momen-
tummh� along any chosen “quantization axis,” which is usually called the z axis. We are
denoting the total angular momentum by F, the standard notation for the sum of the elec-
tron orbital angular momentum L, the electron spin angular momentum S, and the
nuclear spin angular momentum I. Atoms with an odd isotope number (the sum of
the number of protons and the number of neutrons in the nucleus) have a net nuclear
spin, hyperfine structure, and a total angular momentum F ¼ L þ S þ I. For atoms
with even isotope numbers the net nuclear spin I ¼ 0 and the total angular momentum
is L þ S; in this case F in the discussion to follow, unless otherwise noted, is actually
L þ S and is conventionally denoted by J.

In the presence of aweakmagnetic fieldB ¼ Bzẑ the degeneracy of the different mag-
netic substates is removed by the Zeeman effect: The state F,m is shifted in energy by an
amount proportional to F� B ¼ mBz:

DEF,m ¼ mBgFmBz, (14:3:1)

where mB ¼ eh�=2me ¼ 9:274� 10�24 joule=tesla is the Bohr magneton (e and me are
the electron charge and mass, respectively) and gF is a so-called Landé g factor. For
example, the Zeeman shift of a substatem of a hyperfine level with total angular momen-
tum quantum number F (Section 3.13) is given approximately by (14.3.1) with

gF ffi gJ
F(F þ 1)þ J(J þ 1)� I(I þ 1)

2F(F þ 1)
,

gJ ffi 1þ J(J þ 1)þ S(Sþ 1)� L(Lþ 1)
2J(J þ 1)

:

(14:3:2)
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For sodium, I ¼ 3
2, S ¼ 1

2, gJ¼3=2(3P3=2) ¼ 4
3, and gJ¼1/2(3S1/2) ¼ 2. Then, for example,

gF¼1(3S1=2) ¼ �1
2 and gF¼1(3P3=2) ¼ 2

3.
Now the fact that light carries intrinsic angular momentum implies that there can be a

change Dm in the magnetic quantum number when light is absorbed or emitted.
Circularly polarized photons carry angular momentum +1 (in units of h� ) directed
along the propagation direction ẑ, and the selection rule for allowed transitions is
Dm ¼+1 when the quantization axis is taken to be the ẑ direction. For linearly polarized
photons the selection rule is Dm¼0 with the quantization axis along the polarization
direction, as discussed below. Based on these selection rules, it is easy to see how polar-
ized light can be used to preferentially populate a particular magnetic substate, or in
other words to “align” (or “spin-polarize”) an atom so that along a particular direction
its magnetic dipole moment has only one possible value. We will illustrate this with a
few examples.

The solid arrow in Fig. 14.10 shows the Dm ¼ þ1 transition allowed when light with
sþ circular polarization is resonant with an atomic transition having a lower level with
three degenerate magnetic substates (m ¼ 21, 0, 1) and an upper level with a single
magnetic substate (m ¼ 0).14 The only allowed absorptive transition that can be induced
by sþ light is between the lower state with m ¼ 21 and the upper state with m ¼ 0.15

Spontaneous emission from the upper states, however, is constrained only by the selec-
tion rule Dm ¼ 0, +1, since we cannot associate any special direction or quantization
axis with it. The upper state m ¼ 0 can therefore decay spontaneously into any of the
three lower states in Fig. 14.10. When a spontaneous transition occurs from the upper
state to either the m ¼ 0 or m ¼ 1 lower state, the atom remains in that lower state

m = 0

m = –1 0 +1

F = 0

F = 1

Figure 14.10 Optical pumping with sþ light of an atomic transition with lower- and upper-level
angular momentum quantum numbers 1 and 0, respectively. The sþ light induces a transition indi-
cated by the solid arrow, whereas spontaneous emission can occur on the transitions shown by the
dashed arrows.

14sþ and s2 circular polarizations are defined with respect to the transitions they can produce rather than
with respect to left- or right-hand circular polarization of the light itself. Thus, for example, sþ light propa-
gating in the þz direction (the direction of the quantization axis) is said in optics to be left-hand circularly
polarized, as is s2 light propagating in the 2z direction. s+ photons have angular momentum +h� along
their direction of propagation and therefore can induce Dm ¼+1 absorptive transitions. It is best in this con-
text to avoid referring to “left” or “right” circular polarizations.
15Stimulated emission from the upper m¼ 0 state to the lower m ¼ 21 state is also allowed, but it does not
change the fact that the atom ends up eventually with zero population in the m ¼ 21 state.
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because there are no allowed transitions from it that can be induced by the applied sþ
light. It is obvious then that, after a sufficient number of absorption and emission tran-
sitions, the atom will end up with zero probability of being in the m ¼ 21 state, and
therefore will cease to absorb any sþ light. In fact it is easy to see that any transition
with a lower level having a greater (or equal) number of magnetic substates than the
upper level will eventually cease to absorb sþ light; the same conclusion holds for
applied s2 light.

The same sort of thing happens when resonant linearly polarized light (labeled by p
instead of s) is incident on the atom with the upper and lower levels of Fig. 14.10.
Because of the Dm ¼ 0 selection rule for induced transitions in this case, while again
Dm ¼ 0, +1 for spontaneous emission transitions, the atom after a few induced and
spontaneous transitions will have zero probability of being in the m ¼ 0 lower state
and will not absorb the applied p light. The conclusion that p light will cease to
absorb is also reached (of course!) if we choose to take the direction of light propagation
rather than the direction of polarization as the quantization axis and regard the
p-polarized light as a superposition of sþ and s2 light [cf. (14.3.4)]. In terms of this
quantization axis, with the magnetic quantum number denotedm0, absorptive transitions
occur only from the m0 ¼+1 lower states, and after a spontaneous transition from the
upper state to the m0¼ 0 lower state the atom can no longer absorb.16

Consider next an example in which the lower level of a transition has a smaller
number of magnetic substates than the upper level. Figure 14.11 shows allowed induced
and spontaneous transitions when resonant sþ light is incident on an atom with lower
and upper levels having three and five degenerate magnetic substates, respectively.
It is clear that in this case the atom will eventually have zero probability of being in
any state other than the lower m ¼ 1 state or the upper m ¼ 2 state. After it is fully
“pumped” by sþ light it can only make spontaneous and stimulated transitions between
these two states—it is a two-state atom. The circularly polarized light has “spin-
polarized” the atom in the sense that its component of angular momentum along the
direction ẑ of field propagation (the quantization axis) is either h� (when it is in the
lower, m ¼ 1 state) or 2h� (when it is in the upper, m ¼ 2 state); if the sþ light is shut

m = –2 –1 

m = –1 0 +1 

0 +1 +2 
F = 2

F = 1

 

Figure 14.11 Optical pumping with sþ light of an atomic transition with lower- and upper-level
angular momentum quantum numbers 1 and 2, respectively. sþ light induces transitions shown by
solid arrows, whereas spontaneous emission occurs on transitions indicated by dashed arrows.

16The m0 states can be expressed as a linear combination of the m states, and vice versa. In general magnetic
substates corresponding to two different quantization axes making an angle u are related by rotation matrices
d(F)mm0 (u). See, for instance, A. R. Edmonds,AngularMomentum inQuantumMechanics, Princeton University
Press, Princeton, NJ, 1996.
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off, the atom will stay in the lower m ¼ 1 state after making a spontaneous transition to
that state. With s2 light, similarly, a two-state atom is created with lower and upper
states m ¼ 21 and m ¼ 22, respectively.

† Wewill derive the general selection rule Dm ¼ 0,+1 for electric dipole transitions using the
example of a one-electron, spinless atom and the fact that a transition from a state 1 of energy E1 to
a state 2 of energy E2 . E1 is governed by the matrix element [see Eq. (9.3.16) and Problem 14.6]

x21 � 1̂ ¼
ð
f�2(x)(x � 1̂)f1(x) d

3x: (14:3:3)

The polarization unit vector 1̂ will in general have components in all three directions x̂, ŷ, and ẑ
defined by some Cartesian coordinate system. Consider polarization in the xy plane. It is con-
venient in this case to combine the x and y components and define sþ and s2 circularly polarized
light with complex unit polarization vectors (Problem 3.4)

1̂+ ¼ 1ffiffiffi
2
p (x̂+ iŷ), (14:3:4)

where the orthogonal unit vectors x̂ and ŷ are perpendicular to the light propagation direction ẑ.
To evaluate (14.3.3) we express the hydrogen wave functions in terms of spherical coordinates
(r, u, f) defined with respect to the same (x, y, z) coordinate system, i.e., x¼ r sin u cos f,
y ¼ r sin u sin f, and z ¼ r cos u. Now all we need to know to derive the selection rule for the
magnetic quantum number is that, for a state of our hydrogen atom with principal, orbital angular
momentum, and magnetic quantum numbers n, ‘, m, respectively, the dependence of the wave
function fn‘m(r, u, f) on the azimuthal angle f is described entirely by a factor exp(imf).
Thus, for an electric dipole transition from a state with quantum numbers n, ‘, m to a state
with quantum numbers n0, ‘0, m0 the matrix element (14.3.3) is proportional to

ð2p
0

e�im
0fe+ifeimf df ¼

ð2p
0

e�i(m
0�m+1)f df, (14:3:5)

since x� 1̂+¼ (xx̂þ yŷþ zẑ)� 1̂+¼ (1=
ffiffiffi
2
p

)(x+ iy)¼ (1=
ffiffiffi
2
p

)(r sin u cosf+ir sin u sinf)¼
(1=

ffiffiffi
2
p

)r sin u exp(+if). m and m0 have only integer values, and consequently the integral
(14.3.5) is zero unless the exponent in the integrand is zero, i.e., unless the selection rule m0 ¼
m þ 1 (for sþ light) or m0 ¼ m2 1 (for s2 light) is satisfied.

The matrix element for the stimulated emission transition from the excited state 2 with mag-
netic quantum numberm0 to the lower energy state 1 with magnetic quantum numberm is just the
complex conjugate of (14.3.3) (Problem 14.6). In this case the same selection rule applies
(Dm ¼+1) but the magnetic quantum number decreases when the transition is induced by
sþ light and increases when the transition is induced by s2 light.

For light polarization parallel to the z axis we have x � 1̂ ¼ x � ẑ ¼ z ¼ r cos u, and the matrix
element (14.3.3) is proportional to

ð2p
0

e�im
0feimf df ¼

ð2p
0

e�i(m
0�m)f df, (14:3:6)

which vanishes unless m ¼ m0. In other words, for linearly polarized light we have the selection
rule Dm ¼ 0 for allowed transitions. In this case the quantization axis (z) has been chosen to be
along the direction of field polarization, whereas for circular polarization we took it to be the
direction of field propagation.
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Selection rules for the total angular momentum quantum number are derived in textbooks
on quantum mechanics or atomic physics: DF ¼ 0, +1, but F ¼ 0$ F0 ¼ 0 transitions are for-
bidden, that is, their electric dipole transition matrix elements are zero. If F is the total angular
momentum quantum number in the case of nonzero nuclear spin (F ¼ J þ I, the sum of
electronic and nuclear angular momenta), we also have the selection rules DJ ¼ 0, +1
(J ¼ 0$ J 0 ¼ 0 forbidden) and DmJ ¼ 0, +1.

There are also selection rules for magnetic dipole and electric quadrupole transitions,
which have much smaller transition rates than electric dipole transitions (typically about 105

and 108 times smaller, respectively). The selection rules for magnetic dipole transitions are
DF ¼ 0, +1 and Dm ¼ 0, +1, whereas for electric quadrupole transitions DF ¼ 0, +1, +2
and Dm ¼ 0, +1, +2. In all cases F ¼ 0$ F0 ¼ 0 transitions are forbidden. †

Let us return to the example of the sodium D2 line. In Section 3.13 we calculated the
absorption cross section shown in Fig. 3.20 under the assumption that the eight magnetic
substates of the two 3S1/2 hyperfine levels were equally populated, as is approximately
the case in thermal equilibrium at temperatures for which kBT is large compared to the
1.77 GHz 3S1=2(F ¼ 1)$ 3S1=2(F ¼ 2) hyperfine splitting. Suppose we irradiate the
sodium atom with 589-nm sþ light that can induce transitions out of both the 3S1/2
hyperfine levels. From Fig. 3.19 and the selection rules DF ¼ 0, +1 and Dm ¼ 1 it
can be seen that, for irradiation times long compared to the 16-ns radiative lifetime of
the excited states, the sodium atom will be a two-state atom: only the 3S1/2(F ¼ 2,
m ¼ 2) and 3P3/2(F ¼ 3, m ¼ 3) states will have nonzero occupation probabilities.
The optical pumping to this two-state system occurs in �20 excitation and decay tran-
sitions, after which the absorption cross section will have only a single peak instead of
the two appearing in Fig. 3.20. As discussed below, this results in stronger absorption
than in the case of the unpolarized D2 line. If the sþ light is shut off after the two-
state atom has been realized, the sodium atom after spontaneous emission from
the 3P3/2(F ¼ 3, m ¼ 3) state will be in the single, spin-polarized state 3S1/2(F ¼ 2,
m ¼ 2). In this state the electron with spin z-component mS and the nucleus with spin
z-component mI have their spins aligned: m ¼ mF ¼ mL þ mS þ mI ¼ 0þ 1

2þ 3
2 ¼ 2.

Suppose instead that we irradiate the sodium atoms with narrowband, linearly polar-
ized (p) radiation that can only induce transitions from the 3S1/2(F ¼ 2) level. Because
the atoms excited to the 3P3/2(F ¼ 1, 2, 3) levels can undergo spontaneous transitions to
3S1/2(F ¼ 1, m ¼+1), the sodium atoms in this case will become transparent to the p
light after several excitation and decay transitions.

Absorption can increase or decrease in strength, therefore, when the incident light
causes different, degenerate magnetic substates to have different populations. Such
optical pumping occurs in the absence of collisions and magnetic fields that tend to
redistribute the m-state populations. In collisions of sodium atoms, for example, the
valence electrons can be exchanged; these spin-exchange collisions can quickly
“thermalize” the populations of the magnetic substates. Spin-relaxation collisions can
have large collision cross sections (�10214 cm2 for alkali atoms) and can prevent
or rapidly destroy spin polarization. In a dilute vapor with relatively infrequent
atom–atom collisions, atom–wall collisions can likewise prevent spin polarization.

Spin relaxation rates are greatly reduced in experiments with atomic beams, where
collisions are effectively avoided. They are also substantially reduced by the use of
“buffer” gases, especially inert gases, that cause very little spin relaxation in collisions
with polarized atoms. Buffer gases at pressures of typically a few Torr are used to slow
down the diffusion of polarized atoms to the cell walls and to maintain their polarization
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for times on the order of seconds or longer in the case of alkali atoms. Coating the cell
walls with paraffins and other materials that do not cause significant spin relaxation is
another frequently used method for preserving spin polarization.

Magnetic fields, including Earth’s magnetic field, can also induce transitions between
different magnetic substates F,m and F,m0. Such staticB fields cannot induce transitions
between states of different energy, and, in particular, cannot cause transitions between
states of different total angular momentum quantum number F. The frequency with
which a static B field induces oscillations between different m states is on the order of
mBB=2ph� , as shown below. For Earth’s magnetic field, for example, B � 0.5 G
(gauss) ¼ 0.5 � 1024 T (tesla), and so the time scale for spin depolarization due to
the geomagnetic field is typically on the order of a microsecond. Optical pumping exper-
iments often employ a magnetic field applied along the direction of spin polarization;
since the energy of the magnetic dipole moment M of the atom in a magnetic field B
is 2M � B, the field serves to maintain the spin polarization in the presence of any
stray, weak magnetic fields Bs for which M � Bs = 0.

† For an example of how a magnetic field can affect optically pumped atoms, consider the
experiment sketched in Fig. 14.12. Light propagating in the y direction and linearly polarized
along x is resonant with an atomic transition that we assume for simplicity has a lower level
with F ¼ 0 and an upper level with F ¼ 1. There is also a static B field along the z direction,
which we will take to be the quantization axis.

For the incident electric field we write

E(y, t) ¼ x̂E0e
�i(vt�ky) ¼ 1

2
[(x̂þ iŷ)þ (x̂� iŷ)]E0e

�i(vt�ky)

¼ 1ffiffiffi
2
p [1̂þ þ 1̂�]E0e

�i(vt�ky), (14:3:7)

where as always it is implicit that we are to take the real part. The 1̂þ and 1̂� components result in
nonvanishing probability amplitudes for the F ¼ 1, m ¼ 1 and F ¼ 1, m ¼ 21 atomic states,
respectively. We denote the stationary-state wave functions (eigenfunctions) of these two states
by F1(x) and F21(x), respectively, and similarly let F0(x) denote the wave function for the

Incident
light

B
→

E
→ Cell

containing
atomic
vapor

x

y

z

Figure 14.12 Light polarized along x propagates in the y direction and excites atoms in a dilute
vapor. In the absence of a magnetic field the atoms do not radiate any light in the x direction. With
a magnetic field B in the z direction, however, resonance fluorescence polarized along y is observed
in the x direction. This is the Hanle effect.
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F ¼ 0, m ¼ 0 lower state of the (one-electron) atom. Then for the wave function at time t for an
atom in the field (14.3.7) we write

c(x, t) ¼ a0(t)F0(x)þ a1(t)F1(x)þ a�1(t)F�1(x): (14:3:8)

Let us calculate the expectation value p(t) of the electric dipole moment of an atom described
by this wave function:

p(t) ¼ e

ð
d3xc�(x, t)xc(x, t) ¼ ex0,1a�0(t)a1(t)þ ex0,�1a�0(t)a�1(t)þ c:c:, (14:3:9)

since the only nonvanishing dipole matrix elements are between the state F ¼ 0, m ¼ 0 and the
states F ¼ 1, m ¼+1. In terms of spherical coordinates r, u, f,F0(x) ¼ F0(r, u) andF+1(x) ¼
F(r, u)e+if, so that for the x, y, and z components of x0,+1 we obtain

x0,+1 ¼
ð
d3x F�0(r, u)xF(r, u)e+if

¼
ð1
0
dr r

ðp
0
du sin uF�0(r, u)r sin uF(r, u)

ð2p
0

df cosfe+if

; m

ð2p
0

df cosfe+if ¼ pm, (14:3:10a)

y0,+1 ¼ m

ð2p
0

df sinfe+if ¼+ipm, (14:3:10b)

z0,+1 ¼
ð1
0
dr r

ðp
0
du sin uF�0(r, u)r cos uF(r, u)

ð2p
0

dfe+if ¼ 0, (14:3:10c)

and therefore x0,+1 ¼ x0,+1x̂þ y0,+1ŷþ z0,+1ẑ ¼ pm(x̂+ iŷ) and

p(t) ¼ pem[a�0(t)a1(t)(x̂þ iŷ)þ a�0(t)a�1(t)(x̂� iŷ)]þ c:c: (14:3:11)

We will assume now that the light incident on an atom in Fig. 14.12 is in the form of a short
pulse that excites the atom at time t ¼ t0, after which the state probability amplitudes evolve
according to the time-dependent Schroödinger equation [cf. (9.2.2)]

_a0 ¼ 0, (14:3:12a)

_a1 ¼ �i(v0 þ vL)a1, (14:3:12b)

_a�1 ¼ �i(v0 � vL)a�1, (14:3:12c)

where h�vL ¼ mBg1B and �h�vL are the Zeeman shifts of the F ¼ 1, m ¼ 1 and F ¼ 1, m ¼ 21
states, respectively [Eq. (14.3.1)] and v0 is the F ¼ 0$ 1 transition frequency of the unper-
turbed atom. Then

a0(t) ¼ c0, (14:3:13a)

a1(t) ¼ c1e
�i(v0þvL)(t�t0), (14:3:13b)

a�1(t) ¼ c�1e�i(v0�vL)(t�t0), (14:3:13c)

where c0, c1, and c21 are the probability amplitudes at t ¼ t0. Since the linearly polarized
pulse is a superposition of 1̂þ and 1̂2 components of equal amplitude, we can assume that
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c�0c1 ¼ c�0c�1 ; r; we also assume that the phases of the probability amplitudes are chosen to
make r real. Then it follows from (14.3.11) and some simple algebra that

p(t) ¼ 4pemr cosv0(t � t0)fx̂ cos[vL(t � t0)]þ ŷ sin[vL(t � t0)]g, (14:3:14)

where vL ¼ mBg1B=h� is the Larmor frequency.
This result suggests—correctly—that when B ¼ 0 (vL ¼ 0) the resonance fluorescence from

the atoms in the experiment of Fig. 14.12 is always linearly polarized along the same axis (x) as
the polarization of the incident field: The atomic dipole oscillates along the x axis and therefore
does not radiate in the +x directions. When B = 0, however, the dipole has a component along
y, produces resonance fluorescence polarized along y, and therefore does radiate in the +x direc-
tions. This effect of a magnetic field on resonance fluorescence is called the Hanle effect.

The Hanle effect is easily explained with the classical electron oscillator model (Chapter 3)
when we include the force ev 3 B in the equation of motion for the electron displacement x.
In our example the electric field polarized along x causes the electron to oscillate with a com-
ponent of velocity v along x, so that a magnetic field along z results in a force ev 3 B along y.
The oscillating electric dipole moment of the atom therefore acquires a y component that results
in y-polarized radiation in the +x directions.

We have not accounted for the damping of the expectation value p(t) of the atomic dipole
moment as a result of the spontaneous emission from the excited states. To do so requires only
that we replace the density matrix element r in (14.3.14) by r exp(2g t/2), where g is the
spontaneous emission rate, which is the same for the degenerate magnetic substates of a given
energy level:

p(t) ¼ 4pemr cosv0(t � t0)e
�g (t�t0)=2fx̂ cos[vL(t � t0]þ ŷ sin[vL(t � t0)]g: (14:3:15)

If a polarizer (or “analyzer”) on the x axis is oriented to fully transmit radiation polarized along a
direction â making an angle w with respect to ẑ, the time-averaged intensity I(t) of the resonance
fluorescence measured by a detector behind the polarizer will be proportional to the time average
of [p(t) � â]2, or (Problem 14.7)

I(t)/ e�g (t�t0) cos2fvL(t � t0)� wg: (14:3:16)

This is the basis of a useful technique for measuring excited-state lifetimes (1/g). In fact “the
Hanle effect has been developed into one of the most reliable methods for measuring the lifetimes
of excited levels of atoms and molecules.”17 This is explored further in Problem 14.7.

Two points about our simplified approach to the Hanle effect are noteworthy. First, r = 0
means that the Hanle effect involves off-diagonal coherence of the atomic density matrix
(Chapter 9); this explains why it attracted interest during the development of quantum theory
in the 1920s. Second, as suggested by the classical oscillator model, expressions like (14.3.15)
for the Hanle effect, with relatively small modifications, describe more general cases than the sim-
plest one we have considered of a transition between levels with angular momentum quantum
numbers 0 and 1. †

We have considered specifically some examples involving polarized light, but in fact
a redistribution of magnetic substates occurs also for unpolarized light, provided it is
anisotropic (e.g., unidirectional). As long as the light is not isotropic the spherical sym-
metry of an unperturbed atom is “broken” and different magnetic substates defined with
respect to some quantization axis interact differently with different field polarization

17A. Corney, Atomic and Laser Spectroscopy, Oxford University Press, Oxford, 2006, p. 478. Chapter 15 of
this book is an extensive treatment of the Hanle effect.
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components, regardless of whether the field has a definite polarization. Polarized emis-
sion lines from the solar corona, for example, are observed and explained as a conse-
quence of the interplay of the sun’s magnetic field and optical pumping with the
(unpolarized) radiation from the photosphere.18

Optical pumping has been a very useful tool in basic atomic physics, especially in
experimental studies of hyperfine structure and nuclear magnetic moments, atomic
collisions, and other aspects of spectroscopy. In the remainder of this section we briefly
discuss an application of optical pumping in atomic frequency standards. The following
section describes another important application.

† The idea that ground- and excited-state populations of atomic energy levels can deviate sub-
stantially from a thermal distribution as a result of resonant atom–field interactions, and in par-
ticular that atoms can become spin polarized, is attributed to Alfred Kastler, whowas awarded the
1966 Nobel Prize in Physics for his research on optical pumping. Kastler’s work included the
prediction and observation of the polarization of the “twilight glow” resulting from the excitation
of the mesospheric sodium D lines by sunlight. The earliest observations of spin polarization of
atomic ground levels by optical pumping were reported by J. Brossel, Kastler, and J. Winter in
1952 and by W. B. Hawkins and R. H. Dicke in 1953. †

Since 1967 the second in the International System of Units (SI) has been defined as
“the duration of 9,192,631,770 periods of the radiation corresponding to the transition
between the two hyperfine levels of the ground state of the cesium-133 atom”
(Fig. 14.13). Time and frequency standards have evolved over many years and are an
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18J. Trujillo Bueno, E. Landi Degl’Innocenti, M. Collados, L. Merenda, and R. Manso Sainz, Nature 415,
403 (2002).
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integral part of such applications as satellite communications and especially the U.S.
Global Positioning System (GPS), which would not exist without them; every GPS
satellite is equipped with an atomic clock. They are also required for basic scientific
experiments aimed at determining whether various fundamental “constants” actually
vary in time. The details of the design and implementation of these systems are complex,
but the basic operating principles are relatively simple. In the most widely used type of
atomic clock the frequency of radiation near an atomic absorption line is varied and con-
trolled to lock it to the peak absorption frequency n0. Then a number N of oscillation
periods 1/n0 of the radiation is counted to determine a “standard” time interval; thus
the time taken to count N ¼ 9,192,631,770 cycles of radiation at the 6S1/2(F ¼ 3) !
6S1/2(F ¼ 4) transition of cesium is, by definition, a second. Until recently it has been
necessary in atomic clocks to employ microwave frequencies, which are small enough
to allow accurate electronic counting of cycles (Section 14.7).

Cesium has been used in atomic clocks since the 1950s, and hundreds of commercial
time and frequency standards based on its “clock transition” are currently in operation.
Like all atomic transition frequencies, the cesium clock frequency is fundamentally the
same everywhere aside from generally calculable shifts due to electric, magnetic, and
gravitational fields. Cesium, while hardly the only atom used for atomic clocks, has a
vapor pressure that allows relatively intense atomic beams to be produced, a large
mass resulting in small thermal velocities and Doppler shifts and, in common with all
alkali atoms, only two lower hyperfine levels (Fig. 14.13). Other advantages of
cesium include its relatively large clock transition frequency, so that a large Q factor
n0/Dn0 is obtained for a given linewidth Dn0, and the fact that this transition is only
weakly affected by small electric fields that may be present.

In a type of atomic clock that served as the primary frequency standard from the late
1960s until about 1990, a beam of cesium atoms, all in the (approximately equally popu-
lated) F ¼ 3 and F ¼ 4 hyperfine levels, pass through a strong and spatially inhomo-
geneous “Stern–Gerlach” magnetic field in region A that deflects atoms in different
hyperfine states (and therefore with different magnetic moments) by different amounts
(Fig. 14.14) and in one of two directions determined by the “polarity” (the sign of the
magnetic quantum number m) with respect to the field.19 A second inhomogeneous
magnetic field in region B is designed to deflect atoms further, such that, absent anything
else, no atoms would be “focused” onto a hot-wire atom detector; such a detector causes
ionization of atoms incident upon it and thereby an electric signal proportional to the
number of incident atoms. However, if an atom undergoes a transition between the
F ¼ 3 and F ¼ 4 levels in a region C between A and B, the deflection caused by
magnet B reverses that caused by A, so that those atoms that have undergone a transition
are focused onto the atom detector. In other words, magnet A selects atoms in certain
magnetic substates, while magnet B is used for the detection of atoms that have made
a transition. Transitions are effected in region C by a 3.26-cm microwave field that is
resonant with the F ¼ 3, m ¼ 0 $ F ¼ 4, m ¼ 0 transition in the presence of a weak,
(nearly) uniform magnetic field (the “C field”) that Zeeman splits the different magnetic
substates; the m ¼ 0 substates are chosen because they have no (first-order) Zeeman
shifts [Eq. (14.3.1)]. Region C is surrounded by a high-permeability material in order
to shield it from Earth’s magnetic field. The C field, perpendicular to the atomic

19Because the atoms have a distribution of velocities, it is generally not possible by this method to put only
atoms in one particular magnetic substate in region C of Fig. 14.14.
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beam, acts to Zeeman shiftm= 0 states in the presence of residual stray magnetic fields
away from the F ¼ 3, m ¼ 0 $ F ¼ 4, m ¼ 0 resonance, which has only a very small,
second-order (/ B2) Zeeman shift.

The narrow linewidth of the clock transition results in a sharp resonance frequency n0,
the frequency at which the applied microwave field produces the largest signal from the
atom detector. A feedback loop keeps the field locked to this frequency, and the field
cycles provide the periodic “clicks” used to keep time. The locked microwave frequency
is downconverted electronically and used in a servo loop to lock a quartz oscillator at a
frequency of 5MHz; this is used to generate a signal consisting of one pulse per second,
the “output” of the atomic clock.

In this scheme most of the atoms in the atomic beam—about 15
16 of them if only

the 6S1/2(F ¼ 4, m ¼ 0) state, say, were selected—are rejected, resulting in a smaller
signal-to-noise ratio than would otherwise be possible. State preparation by optical
pumping, however, has increased the accuracy of atomic frequency standards. For
example, all the atoms entering region C can be prepared in the 6S1/2(F ¼ 3) level by
irradiating them with laser radiation tuned to the 6S1/2(F ¼ 4) $ 6P3/2(F ¼ 3)
transition, the upper state of which has a radiative lifetime of about 30 ns.
Spontaneous transitions occur to both 6S1/2(F ¼ 4) and 6S1/2(F ¼ 3), and transitions
out of the latter level do not occur because they are too detuned from the laser radiation;
therefore all the atoms are pumped into that level. A second laser can be used to optically
pump all the atoms into the 6S1/2(F ¼ 3, m ¼ 0) state, thus preparing them for the
6S1/2(F ¼ 3, m ¼ 0) $ 6S1/2(F ¼ 4, m ¼ 0) clock transition in region C.

Optical pumping can also be used for state detection. For example, a laser tuned to
the 6S1/2(F ¼ 4) $ 6P3/2(F ¼ 5) transition results in allowed spontaneous transitions
from 6P3/2(F ¼ 5) to 6S1/2(F ¼ 4), so that the detection of photons radiated in these
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Figure 14.14 Schematic of a cesium atomic clock. The atomic beam is split by a state-selecting mag-
netic field A into two beams. Atoms selected to enter region C are irradiated with microwave radiation
resonant with the clock transition indicated in Fig. 14.13. Those that have undergone the clock tran-
sition are focused by the magnetic field B onto an atom detector, the response of which is maximized
when the microwave frequency is matched to the clock transition. Feedback circuitry keeps the micro-
wave frequency locked to this value.
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transitions indicates that atoms in region C have undergone the clock transition. In other
words, in optical pumping schemes the state selection magnets A and B are replaced by
lasers, the atom detector is replaced by a photodetector, and signal-to-noise ratios are
increased because atoms are prepared in desired states rather than just selected from
an ensemble of atoms distributed over many states. Optical pumping is employed in
the cesium frequency standard NIST-7 of the U.S. National Institute of Standards and
Technology (NIST). This served as the primary frequency standard in the United
States from 1993 to 1999 but has been replaced in this role by the NIST-F1 standard
employing laser cooling (Section 14.4).

The accuracy Dn0 with which the cesium resonance frequency can be determined is
limited by the transit time td over which the atoms interact with the microwave field; the
fractional widthDn0/n0 is inversely proportional to the “interrogation time” td, i.e.,Dn0/
n0 / 1/n0td (Section 9.11). It is therefore advantageous to make td as large as possible.
Cesium, in addition to the fact that it has the largest vapor pressure and the largest
ground-level hyperfine splitting of any alkali, has the advantage of a large mass and
therefore small thermal velocities (typically �250 m/s). Relatively long interrogation
times (�0.004 s for a path of length L � 1 m) are therefore obtained with cesium.
However, it is impractical to produce magnetic fields that are sufficiently homogeneous
over such lengths; small field inhomogeneities give rise to line-broadening effects. For
this reason atomic frequency standards, which require extremely narrow resonance lines,
employ a U-shaped microwave cavity (Fig. 14.14) that takes advantage of the Ramsey
method of separated oscillatory fields. As discussed in Section 9.11, this avoids line
broadening due to field inhomogeneities while allowing large transit times and the
very sharp resonance of the central Ramsey fringe.

InaccuraciesDn0/n0 as small as about 5�10215 have characterized cesium frequency
standards of the type just described. This corresponds to a clock accuracy of about 1 s
in 6 million years. The atomic fountain clocks described in the following section are
more accurate by about an order of magnitude. These measurements of the cesium
clock frequency are probably the most accurate measurements ever made of any physical
quantity.

The cesium atomic clock is passive, as opposed to active frequency standards based
on masers. The hydrogen maser frequency standard operating on the 21-cm hyperfine
transition 1S1/2(F ¼ 1, m ¼ 0)! 1S1/2(F ¼ 0, m ¼ 0) of atomic hydrogen, for
example, operates on the basis of a quartz oscillator locked to the frequency of the
hydrogen maser radiation.

The technical details involved in the operation of atomic clocks and their application
to the GPS, for example, are complex and too far removed from laser physics to delve
into here. The interested reader can easily find more information on the websites of com-
panies that sell atomic clocks and of national laboratories, such as NIST, that maintain
“primary” time and frequency standards.

In Section 3.7 we wrote rate equations for the occupation probabilities of degenerate
upper states and degenerate lower states of transitions between two energy levels. We
briefly discussed conditions under which the degenerate states of equal energy could
be assumed to be equally populated, including the case where the atom is irradiated
with isotropic rather than unidirectional radiation, or where collisions act to equalize
the degenerate-state populations, or where the light intensity is too small to produce
significant optical pumping. Under such conditions degeneracy results simply in factors
like the ratio g2/g1 appearing in formulas for the small-signal gain or absorption
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coefficient. This is the case for most naturally occurring optical phenomena and may
therefore be called the case of “natural excitation.” In this respect a remark from a classic
work on atomic spectroscopy is revealing: “If the excitation occurs in some definitely
non-isotropic way, as by absorption from a unidirectional beam of light . . . , large depar-
tures from natural excitation may be produced. The study of such effects raises a whole
complex of problems somewhat removed from the main body of spectroscopy.”20

Whether laser spectroscopy is considered to be “somewhat detached” from the main
body of spectroscopy is only a matter of viewpoint, of course. However, the reader
should be aware that formulas for absorption, emission, and dispersion found in pre-
laser reference material may not be directly applicable to atoms prepared by laser radi-
ation, which is definitely not isotropic!

† It is often necessary in detailed computations to know how electric dipole transition matrix
elements depend on the quantum numbers F,m and F0,m0 of the two states of an atomic transition.
Formulas expressing this dependence may be found in the book by Condon and Shortley20 and
other monographs.21 Here we present a few pertinent formulas.

The transition electric dipole moment between states with angular momentum quantum num-
bers F, m and F0, m0 is nonvanishing only if q ¼ m0 2m is 0 or +1, as discussed earlier. This
dipole matrix element is denoted kF0m0jdqjFml in the “bra-ket” notation of quantum theory.
According to the Wigner–Eckart theorem, it has the form

kF0m0jdqjFml ¼ (�1)F0�m0 F0 1 F
�m0 q m

� �
kF0kdkFl, (14:3:17)

where kF0jjdjjFl is the reduced matrix element and the quantity in large parentheses is the
3j symbol, numerical values for which can be found in books21 or on the Web.

The reduced matrix element is independent of m and m0. In the case of hyperfine transitions it
depends not only on F and F0 but also on the electron angular momentum quantum numbers J and
J0 of the two states and on the nuclear spin angular momentum quantum number I:

kF0kdkFl ¼ (�1)F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2F þ 1)(2F0 þ 1)

p J 0 I F0

F 1 J

� �
kJ 0kdkJl: (14:3:18)

Here kJ0jjdjjJl is a further “reduced” matrix element, and the quantity in curly brackets is the 6j
symbol that, like the 3j symbol, is tabulated in various places.21 The numerical value of kJ0jjdjjJl
follows from the formula

1
trad
¼ 4 �v 3

3h�c3
1

2J 0 þ 1
jkJ 0kdkJlj2 (14:3:19)

for the radiative lifetime trad of the upper statewith quantum number J0; the value of trad is usually
provided by experiment. Here, owing to the smallness of the hyperfine splittings, �v is simply

20E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, London,
1959, p. 97.
21See, for instance, R. D. Cowan, The Theory of Atomic Structure and Spectra, University of California
Press, Berkeley, CA, 1981. Different conventions, which are of no physical consequencewhen followed con-
sistently, are used in the definitions of the 3j and 6j coefficients. For example, the reduced matrix element
kJ0jjdjjJl is sometimes defined such that a factor 2J þ 1 appears on the right-hand side of Eq. (14.3.19).
We follow the conventions of Cowan, which is consistent with Condon and Shortley. We also write the elec-
tric dipole operator, which we have usually denoted by m, as d here in order to conform to a conventional
notation used in defining reduced matrix elements and related quantities.
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an average transition frequency, for example, �v ¼ 2pc=l with l ¼ 589.0 nm in the case of
the sodium D2 transitions. The spontaneous emission rate for the particular transition F0,
m0 ! F, m is

A(F0, m0 ! F, m) ¼ 4�v3

3h�c3 jkF
0m0jdqjFmlj2, (14:3:20)

and the total rate of spontaneous emission from the state F0,m0 may be shown from the properties
of the 3j and 6j symbols to be just 1/trad:

X
F,m

A(F0, m0 ! F, m) ¼ 1
trad

: (14:3:21)

So all the hyperfine states of the excited energy level have the same radiative lifetime, as implied
by (14.3.19).

The Rabi frequency for the F, m$ F0, m0 transition in the case of a linearly polarized field
E(t) ¼ E0x̂ cos (vt þ f) is

xF0 ,m0;F,m ¼ kF0m0jdq¼0jFmlE0

h� , (14:3:22)

whereas for a circularly polarized field E(t) ¼ (1=
ffiffiffi
2
p

)E0[x̂ cos(vt þ f)+ ŷ sin(vt þ f)],

xF0,m0;F,m ¼ kF0m0jdq¼+1jFmlE0

h� : (14:3:23)
†

14.4 LASER COOLING

Atoms recoil when they emit or absorb light, as required by conservation of linear
momentum and the fact that photons carry linear momentum. Einstein (1909) inferred
from his analysis of thermal radiation that atoms recoil not only when they absorb radi-
ation but also when they undergo spontaneous or stimulated emission: They must do so
if their average kinetic energy as they absorb and emit thermal radiation at temperature T
is to be equal to the value 3

2kBT required by the equipartition theorem of statistical mech-
anics. (kB is Boltzmann’s constant.) As discussed in Chapter 12, the recoil of an atom in
spontaneous emission in particular provides strong evidence for the validity of the
photon concept. In fact, the Doppler effect can be understood simply as a consequence
of the fact that a photon of frequency n absorbed (or emitted) by a moving atom carries
linear momentum hn/c (Problem 14.9).

The recoil forces exerted on atoms by resonant laser radiation are used to slow atoms
to very small velocities and thereby to cool gases to extremely low temperatures. In this
section we discuss some of the basic physics of laser cooling.

Since a photon carries a linear momentum hn=c ¼ h�v=c ¼ h� k, the force (¼ rate of
change of linear momentum) on an atom is F ¼ h� kRabs, where Rabs is the rate at which
photons are absorbed. In the case of a two-state atom,

Rabs ¼ dP2

dt

� �
abs

: (14:4:1)
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(dP2/dt)abs, the rate at which the upper-state probability P2 changes due to absorption,
may be obtained from the optical Bloch equations (9.5.1). Since P2 ¼ r22 ¼
1
2(r22 � r11)þ 1

2(r22 þ r11) ¼ 1
2(wþ 1),

dP2

dt

� �
abs

¼ 1
2

dw

dt

� �
abs

¼ � 1
2
xv, (14:4:2)

which in steady state is obtained as usual by equating the derivatives in (9.5.1) to zero.
The resulting expression for the absorption rate in a monochromatic field has a familar
form:

Rabs ¼ dP2

dt

� �
abs

¼
1
2x

2=b

1þ D2=b2 þ x2=bA21
¼

1
2A21I=Isat

1þ D2=b2 þ I=Isat
, (14:4:3)

where we have used the fact that the intensity I is proportional to x2 to write Rabs in terms
of the line-center saturation intensity Isat. The force on the atom is therefore

F ¼
1
2A21I=Isat

1þ D2=b2 þ I=Isat
h�k: (14:4:4)

In the case under consideration of radiative broadening, b ¼ A21/2 (Section 9.4).
Consider as an example a sodium atom that has been optically pumped by circularly

polarized light into the state 3S1/2(F ¼ 2,m ¼ 2). For I ¼ Isat ¼ 6.3 mW/cm2 the accel-
eration is found from (14.4.4) to be

a ¼ 4:6� 105 m=s2 (14:4:5)

for laser radiation at resonance (D ¼ 0) with the atom (Problem 14.8). This is 5 � 104

times the acceleration due to gravity and indicates that resonant laser radiation of very
modest intensity can significantly affect how atoms move about. It should be noted,
however, that for this simplified calculation we have ignored the Doppler shift kv ¼
vv/c, which contributes to an atom–field detuning.

The force (14.4.4) will obviously slow down an atommoving oppositely to the propa-
gation direction of laser radiation, but eventually it will make the atom turn around and
speed up. Suppose, however, that there are two laser beams, propagating in opposite
directions. Assuming that both lasers have the same intensity and the same detuning
D from resonance with a stationary atom, the total force they exert on an atom with
velocity v is

F ¼
1
2A21I=Isat

1þ (Dþ kv)2=b2 þ I=Isat
h�k �

1
2A21I=Isat

1þ (D� kv)2=b2 þ I=Isat
h�k: (14:4:6)

The first term is the force exerted by the laser beamwith propagation direction parallel to
that of the atom’s velocity v, so that it exerts a force in the same direction and is resonant
with the atomic transition when v ¼ v0 þ kv. (Recall that D ¼ v0 2 v, the detuning of
the field frequency v from the atomic transition frequency v0.) The second term is the
force exerted by the laser with propagation direction opposed to the atom’s velocity, so
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that it is at resonance when v ¼ v0 2 kv. For velocities such that the Doppler shift kv is
small in magnitude compared to b and jDj, a binomial expansion of (14.4.6), together
with the fact that b ¼ A21/2, gives

F ffi �kv, k ¼ 4(I=Isat)h�k2D=b
(1þ D2=b2 þ I=Isat)2

(14:4:7)

for the total force. This force acts to “damp” the atom’s velocity if k. 0, i.e., if D. 0,
which means that the laser frequency v is smaller than the atomic transition frequency
v0. This has a simple interpretation. The laser beam propagating in the direction oppo-
site to the atom velocity and exerting a retarding force on it is seen by the atom to be
Doppler shifted closer to resonance, since its frequency in the laboratory frame is
below the atomic resonance frequency; the counterpropagating beam exerting a force
acting to increase the atom’s velocity, however, is seen by the atom to be Doppler shifted
further away from resonance. The net effect, calledDoppler cooling, is therefore to slow
down the atom.

The net force (14.4.6) is zero if D ¼ 0 and acts to increase rather than decrease
an atom’s velocity if the lasers are tuned above the atomic resonance (D, 0).
Figure 14.15 plots F vs. v for D ¼ b and I ¼ 0.1Isat. It is seen from this figure and
Eq. (14.4.6) that the force is always in a direction opposite to v for D . 0, but is very
small for atomic velocities much greater in magnitude than D/k ¼ lD/2p. For our
sodium example with D ¼ b, lD/2p ¼ lA21/4p ¼ 3 m/s: An atom’s velocity must
already be relatively small in order to slow it further by Doppler cooling. jkvj , b
defines a “velocity capture range,” i.e., the velocities for which atoms are significantly
slowed by Doppler cooling. The cooling of “warmer” atoms is discussed below.

The force (14.4.7) implies that an atom in the field of two counterpropagating laser
beams tuned below resonance will eventually come to rest. But our analysis thus far
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Figure 14.15 The force (14.4.6) vs. kv/b for D ¼ b and I ¼ 0.1Isat.
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has ignored the fact that the absorption process itself, while producing no net recoil when
v ffi 0 [Eq. (14.4.7)], causes the mean-square momentum of the atom to increase:
The atom can recoil with momentum +h� k, depending from which laser it absorbs a
photon. Thus, for small v, the rate at which the mean-square momentum of an atom
increases due to absorption is 2Rabs, where Rabs is given by (14.4.3) (for v ffi 0) and
the factor 2 comes from the fact that we have two laser beams of equal intensity. In
addition, the atom can be driven from the ground state back to the ground state by
resonance fluorescence and in so doing recoil with momentum h� k. This recoil, again,
has no preferred direction and is therefore zero on average, but, like absorption, it
causes the mean-square momentum of the atom to grow at the rate 2Rabs(h� k)2. The
increase of the average kinetic energyE of an atom of massM due to absorption followed
by emission is therefore

dE

dt

� �
heating

¼ d

dt

k p2l
2M
¼ 4Rabs(h� k)2

2M
, (14:4:8)

and this prevents an atom from coming to a complete stop.
The cooling force (14.4.6) causes the average kinetic energy to decrease at the rate

dE

dt

� �
cooling

¼ kFvl ¼ �kkv2l ¼ � 2k
M

1
2
Mkv2l

� �
¼ � 2k

M
E: (14:4:9)

Setting the sum of (14.4.8) and (14.4.9) to zero, we obtain the equilibrium kinetic energy
E ¼ (Rabs=k)(h� k)2, or, from (14.4.3) and (14.4.7),

E � h�b2

4D
1þ D2

b2

� �
: (14:4:10)

We are assuming for simplicity that I=Isat 
 1, that is, that we are in the linear absorp-
tion regime. This is consistent with our neglect of stimulated emission in deriving
(14.4.8).

According to the equipartition theorem of statistical mechanics, in thermal equili-
brium at temperature T the average kinetic energy E ¼ 1

2

� �
kBT for motion along one

axis, that axis here being defined by the two counterpropagating laser beams. Then
(14.4.10) implies the equilibrium temperature

T � h�b2

2DkB
1þ D2

b2

� �
(14:4:11)

for a gas in the field of two counterpropagating laser beams tuned below resonance.
dT/dD ¼ 0 when D ¼ b, and for this value of the detuning the temperature is
minimized:

T � h�b
kB

: (14:4:12)
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The smallest possible temperature achievable by Doppler cooling is therefore estimated
to be

TD
min ¼

h�b
kB
¼ h�A21

2kB
: (14:4:13)

For the sodium D2 line, for example, TD
min � 240mK, corresponding to an rms velocity

�0.3 m/s. Note also that the time scale for Doppler cooling in this case, which accord-
ing to Eq. (14.4.9) is �M/2k, is about 16ms for I/Isat ¼ 0.1. In other words, extremely
low temperatures can be achieved in very short times by Doppler cooling with very
modest laser intensities.

Two counterpropagating laser beams slow the atoms’ velocities only along one axis.
Doppler cooling in all three dimensions of space is realized using three pairs of counter-
propagating beams, each with detuning D . 0, along three orthogonal axes (x, y, and z).
An atommoving in any direction then experiences “viscosity” similar to that of a particle
in a fluid, while the random “kicks” (recoils) it gets in absorption and emission are
analogous to the thermal fluctuations resulting from collisions of a particle with the
molecules of a fluid. Because of these analogies, a vapor undergoing three-dimensional
Doppler cooling has come to be referred to as optical molasses.

Optical molasses was first observed in 1985. The temperature of Doppler-cooled
sodium vapor was inferred from the time taken for atoms to leave the confinement
region after the lasers were all turned off, and the result was consistent with the expected
TD
min � 240mK. Further experimentation during the next few years at Bell Laboratories

and NIST, however, resulted in temperatures �40mK, well below the theoretical mini-
mum for Doppler cooling.

The explanation of this sub-Doppler cooling invokes effects not included in the deri-
vation of (14.4.13), beginning with the fact that the atoms undergo optical pumping in
a field having a spatially varying polarization. We follow here a simplified model that
brings out the essential features,22 assuming two counterpropagating plane waves with
orthogonal linear polarizations. At a point z along the axis of propagation we write the
total electric field as (the real part of)

E(z, t) ¼ 1ffiffiffi
2
p E0(x̂e

ikz þ ŷe�ikz)e�ivt, (14:4:14)

or

E(z, t) ¼ 1ffiffiffi
2
p E0(x̂þ ŷe�2ikz)e�i(vt�kz) ¼ 1̂(z)E0e

�i(vt�kz), (14:4:15)

where

1̂(z) ¼ 1ffiffiffi
2
p (x̂þ ŷe�2ikz) (14:4:16)

22J. Dalibard and C. Cohen-Tannoudji, Journal of the Optical Society of America B 6, 2023 (1989).

14.4 LASER COOLING 675



is the complex unit polarization vector, defined with respect to propagation in the
positive z direction. Now

1̂(z)! 1ffiffiffi
2
p (x̂þ ŷ) for kz ¼ 2pz

l
¼ 0,

! 1ffiffiffi
2
p (x̂� iŷ) ¼ 1̂� for kz ¼ p

4
,

! 1ffiffiffi
2
p (x̂� ŷ) for kz ¼ p

2
,

! 1ffiffiffi
2
p (x̂þ iŷ) ¼ 1̂þ for kz ¼ 3p

4
,

! 1ffiffiffi
2
p (x̂þ ŷ) for kz ¼ p, (14:4:17)

and so on: As z changes in steps of l/8, the field polarization changes from linear (along
x̂þ ŷ) to s2 circular to linear (along x̂� ŷ) to sþ circular to linear (along x̂þ ŷ) . . . ,
and so forth.23 Because the transition matrix elements between magnetic substates are
different for these different field polarizations, the populations of different magnetic
substates of an atomwill vary as it moves along z. This occurs whenever the two counter-
propagating fields have different polarizations and the total field therefore has a polariz-
ation gradient.

There is another effect that was neglected in our discussion of Doppler cooling:
Energy levels of atoms are shifted in an electric field. This is an electric analog of the
Zeeman shifts in a magnetic field. As is the case with Zeeman shifts, these Stark
shifts (or “light shifts”) are generally different for different magnetic substates. Light
shifts of ground magnetic states play a key role in sub-Doppler cooling; in the simplified
model followed here it is assumed that the ground level has an orbital angular momen-
tum quantum number J ¼ 1

2 and therefore only twomagnetic substates,m ¼+1
2. For the

excited level it is assumed that J ¼ 3
2 and therefore m ¼ �3

2,� 1
2,

1
2,

3
2 (Fig. 14.16a). We

will assume laser intensities small enough that excited-state populations are negligible
and focus attention on the m ¼+1

2 ground states. As shown below, the light shifts of
these two states at any point z in the field (14.4.14) are

DE(m ¼ �1
2) ¼ �2V � V sin 2kz, (14:4:18a)

DE(m ¼ þ1
2) ¼ �2V þ V sin 2kz: (14:4:18b)

For our purposes it will not be necessary to have a numerical value for V, which is
positive for the case of interest in which the laser frequency v is less than the atomic
transition frequency v0.

23Note that any phase difference between the two counterpropagating waves can be discarded simply by
defining the z ¼ 0 origin appropriately.
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Optical pumping by the field (14.4.14) results in transfer of population between the
ground m ¼+1

2 states. Writing (14.4.16) in the form

1̂(z) ¼ 1ffiffiffi
2
p 1ffiffiffi

2
p (1̂þ þ 1̂�)� iffiffiffi

2
p (1̂þ � 1̂�)e�2ikz

� 

¼ 1
2
1̂þ(1� ie�2ikz)þ 1

2
1̂�(1þ ie�2ikz), (14:4:19)

where 1̂+ are the complex unit polarization vectors for s+ light [Eq. (14.3.4)], we see
that the intensity of sþ light at any point z is proportional to (14)j1� i exp (�2ikz)j2 ¼
(12)(1� sin 2kz), while the intensity of s2 light is proportional to (14)j1þ
i exp (�2ikz)j2 ¼ (12)(1þ sin 2kz):

I(s+) ¼ 1
2I0(1+ sin 2kz), (14:4:20)

where I0 is the maximum intensity. The intensities I(s+) determine the time scale tp for
population transfer by optical pumping between them ¼+1

2 ground states. For sþ light,
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Figure 14.16 (a) Magnetic substates of a J ¼ 1
2$ J ¼ 3

2 transition. (b) Light shifts (14.4.18) of the
m ¼+1

2 states of the J ¼ 1
2 ground level. The dashed arrows indicate transitions between the light-

shifted J ¼ 1
2, m ¼+1

2 ground states and the J ¼ 3
2 level at points for which sin 2kz ¼ 1.
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for instance, absorptive transitions are allowed from the m ¼ �1
2 ground state to the

excited m ¼ þ1
2 state and from the m ¼ þ1

2 ground state to the m ¼ þ3
2 excited state.

As discussed in the preceding section, all the population in steady state will be in the
m ¼ þ1

2 ground state if the intensity is small enough that saturation of the
m ¼ þ1

2$ m ¼ þ3
2 transition is negligible, even if all the population initially resides

in the m ¼ �1
2 ground state. In other words, sþ light transfers population from the

m ¼ �1
2 ground state to the m ¼ þ1

2 ground state. Similarly, s2 light transfers popu-
lation from the m ¼ þ1

2 ground state to the m ¼ �1
2 ground state. Depending on z,

either transfer rate can be dominant since the relative strengths of the sþ and s2

components vary with z according to (14.4.20).
We can now understand, qualitatively, how the polarization gradient and optical

pumping cause atoms to lose kinetic energy. Consider an atom at a point z such that
the field polarization is s2. At such a point the atom will be in the state
J ¼ 1

2, m ¼ �1
2 in steady state as a result of optical pumping. Now suppose the atom

is moving to the right with a velocity v such that vtp � l/4, so that after the time tp
it will be at a point where the field polarization is sþ (Fig. 14.16). In other words, the
atom will have “climbed the potential hill” from a trough to a peak in the light-shifted
energy. At the peak the light polarization is sþ and the population transfer rate from
m ¼ �1

2 to m ¼ þ1
2 is greatest. The population transfer is not instantaneous, and if we

imagine that the atom stays in the m ¼ �1
2 state as it climbs the potential hill, and is

then optically pumped at the top of the hill into the m ¼ þ1
2 state at the bottom, we

can see from Fig. 14.16b that it emits a larger photon frequency than it absorbs and there-
fore that its kinetic energy decreases. After the absorption and emission the atom again
starts climbing the potential hill. In reality, of course, the absorption, emission, and opti-
cal pumping are statistical processes. But it should be clear that, because the population
transfers between the m ¼+1

2 states are not instantaneous but require a finite time �tp,
there is a net tendency for kinetic energy to be converted to potential energy and there-
fore for the atoms to be slowed. Regardless of whether an atom is moving to the right or
to the left, it finds itself continually climbing a potential hill and losing kinetic energy in
this so-called Sisyphus cooling.24

† The light shifts can be derived by first considering the work involved in inducing an electric
dipole moment p ¼ aE. Since the potential energy of an electric dipole moment p in an incre-
mental electric field dE is 2p � dE, this work is

W ¼ �
ðE
0
p � dE ¼ �a ðE

0
E � dE ¼ � 1

2
aE2: (14:4:21)

The factor 1
2 appears because the dipole is induced by the field. In the case of a monochromatic

field E0 cos vt, the cycle-averaged energy

DEi ¼ �1
4ai(v)E2

0 (14:4:22)

24“The gods had condemned Sisyphus to ceaselessly rolling a rock to the top of a mountain, whence the stone
would fall back of its own weight.”—Albert Camus, TheMyth of Sisyphus and Other Essays, Vintage Books,
New York, 1955, p. 119.
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is the “light shift” of an atom in a state with polarizability ai(v). The polarizability is in general
complex, and ai(v) here is implicitly assumed to be its real part.

The nearly resonant atom–field interaction is characterized by a detuning D ¼ v0 2 v, in
which case the polarizability of the lower state of the transition can be inferred from
Eq. (9.6.30) and the formula n(v) ¼ 1 þ Na(v)/210 for the refractive index n(v) of a dilute
gas of N atoms per unit volume [cf. Section 3.15]:

ai(v) ¼
jm jij2
h�

D

D2 þ b2
(14:4:23)

for the lower state.25 In the more general case in which the state i can make allowed transitions to
more than one other state, this generalizes to

ai(v) ¼ D

h� (D2 þ b2)

X
j

jm jij2, (14:4:24)

and the light shift (14.4.22) becomes

DEi ¼ � D

4h� (D2 þ b2)
E2
0

X
j

jm jij2 ; �CI
X
j

jm jij2, (14:4:25)

where I is the intensity and C is positive for D . 0 (i.e., for the field tuned below resonance). It is
assumed that the states j all have the same energy, so that a single detuning D appears in this
equation, and that all the transitions i$ j are characterized by the same homogeneous linewidth.
This simplification applies in fact to the example of interest here.

Consider now the two ground states of Fig. 14.16. For the J ¼ 1
2, m ¼ �1

2 state,

DE(m ¼ �1
2) ¼ �CI(sþ) k32 1

2jd1j12� 1
2l

�� ��2�CI(s�) k32� 3
2jd�1j12� 1

2l
�� ��2, (14:4:26)

since it has an allowed transition to J ¼ 3
2, m ¼ 1

2 for sþ light and an allowed transition to
J ¼ 3

2, m ¼ �3
2 for s2 light. We use here the notation of Eq. (14.3.17) for the electric dipole

matrix elements. Since we are ignoring any hyperfine structure for our model atom, the matrix
elements kJ0m0jdqjJml (with q ¼ m0 2 m) are given simply by (14.3.17) with F0 ¼ J0 and
F ¼ J. Then

k32
1
2jd1j12� 1

2l
�� ��2¼ 3

2 1 1
2

�1
2 1 �1

2

 !2
k32jjdjj12l
�� ��2¼ 1

12 k
3
2jjdjj12l
�� ��2 (14:4:27)

and

k32� 3
2jd�1j12� 1

2l
�� ��2¼ 3

2 1 1
2

3
2 �1 �1

2

 !2
k32jjdjj12l
�� ��2¼ 1

4 k
3
2jjdjj12l
�� ��2: (14:4:28)

Therefore

DE(m ¼ �1
2) ¼ �C 1

12I(sþ)þ 1
4I(s�)


 �
k32jjdjj12l
�� ��2, (14:4:29)

25Note from (9.6.30) that the polarizability of the upper state j is aj(v) ¼2ai(v). Herewe are concerned only
with ground-state light shifts and therefore ground-state polarizabilities.
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and, from Eq. (14.4.20),

DE(m ¼ �1
2) ¼ � 1

12CI0 k32jjdjj12l
�� ��2(2þ sin 2kz) ; �V(2þ sin 2kz) (14:4:30)

for the light shift of an atom in state J ¼ 1
2, m ¼ �1

2 at the point z in the field (14.4.14). Similarly,

DE(m ¼ þ1
2) ¼ �CI(sþ) k32 3

2jd1j12 1
2l

�� ��2�CI(s�) k32� 1
2jd�1j12 1

2l
�� ��2

¼ �C 1
4I(sþ)þ 1

12I(s�)

 �

k32jjdjj12l
�� ��2

¼ �V(2� sin 2kz): (14:4:31)

†

Since V and the optical pumping time tp are directly proportional and inversely
proportional, respectively, to the intensity, the rate 1=tcool ¼ E�1(dE=dt)cool / Vtp
for Sisyphus cooling is independent of intensity, in contrast to the rate (14.4.9) for
Doppler cooling, which is proportional to intensity. As in the case of Doppler cooling,
the heating rate is proportional to the intensity. Since the equilibrium temperature is pro-
portional to the heating rate times tcool, it is proportional to intensity for Sisyphus cool-
ing. The velocity capture range is also intensity dependent, again in contrast to Doppler
cooling: Our simplified discussion shows that the optimal situation for Sisyphus cooling
occurs when vtp �l, that is, when an atom with velocity v moves a distance �l during
an optical pumping time tp, so that kv �1/tp, implying a velocity capture range inver-
sely proportional to tp and therefore directly proportional to the laser intensity.

At low laser intensities the cooling in optical molasses is observed to be less effective
in the presence of magnetic fields, which cause transitions among magnetic substates
and thereby weakens the Sisyphus effect. If the laser intensity is sufficiently large, how-
ever, the cooling becomes less sensitive to magnetic fields because the light shifts and
optical pumping rates become larger. Detailed analyses of Sisyphus cooling are found to
be consistent with such experimental observations as well as with the extremely low
temperatures—as small as a few microkelvins—that have been realized in optical
molasses.

The temperatures obtained by Sisyphus cooling can be lowered by lowering the
ground-state light shift, for example, by decreasing the laser intensity or by increasing
the detuning. But there are limits even to Sisyphus cooling. The smallest average kinetic
energy for atoms absorbing and emitting photons is that associated with the recoil of a
nearly stationary atom when it absorbs or emits a single photon. The mean-square recoil
momentum, (h�v0=c)2, implies a minimum average kinetic energy (h�v0=c)2=2M ¼
h2=2Ml2 for an atom with mass M and transition wavelength l, and therefore a
temperature

Trecoil ¼ h2

MkBl
2 : (14:4:32)

ForM ¼ 23 amu and l ¼ 589 nm (sodium), Trecoil ¼ 2.4mK; forM ¼ 133 amu and l ¼
852 nm (cesium), Trecoil ¼ 0.2 mK. Temperatures several times larger than Trecoil have
been obtained by Sisyphus cooling. By employing quantum interference effects similar
to those used to inhibit absorption in electromagnetically induced transparency (Section
9.10), it has been possible to cool atoms to temperatures well below the recoil limit.
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† The force on an electric dipole moment p in an electromagnetic field is given by the “Lorentz
force,”

F ¼ (p �r)Eþ @p
@t
� B: (14:4:33)

To obtain the force on an electric dipole in the electromagnetic field

E(r, t) ¼ 1
2E0(r)e�ivt þ 1

2E
�
0(r)e

ivt, B(r, t) ¼ 1
2B0(r)e�ivt þ 1

2B
�
0(r)e

ivt , (14:4:34)

we write

p(r, t) ¼ 1
2p0(r)e

�ivt þ 1
2p
�
0(r)e

ivt, (14:4:35)

with p0(r) ¼ a(v)E0(r) and a(v) ¼ aR(v) þ iaI(v) the complex polarizability. It follows from
the Maxwell equationr � E ¼ 2@B/@t that B0 ¼ 2(i/v)r � E0, and from these expressions
that the cycle-averaged z component of the force (14.4.33) is

Fz(r) ¼ 1
4
aR(v)

@

@z
jE0(r)j2

� 1
2
aI(v)Im E0x(r)

@E�0x
@z
þ E0y(r)

@E�0y
@z
þ E0z(r)

@E�0z
@z

� 
: (14:4:36)

The x and y components of the force are obtained by replacing @/@z with @/@x and @/@y,
respectively. The formula (14.4.36) also gives the dipole force on a small dielectric sphere
(Section 14.5).26

Consider as an example a two-state atom, for which the complex, near-resonance polarizabil-
ity can be inferred from (9.6.18), for instance:

a(v) ¼ jmj
2

h�
1

D� ib
(D ¼ v0 � v): (14:4:37)

The first term on the right-hand side of (14.4.36) is therefore the z component of

Fdipole ¼ �r[U(r)], (14:4:38)

where

U(r) ¼ � jmj
2

4h�
D

D2 þ b2
jE0j2, (14:4:39)

which is just the light shift (14.4.22). In other words, the “dipole force” Fdipole is the force result-
ing from a gradient of the light-shift energy; this is the basis for the optical lattices discussed in
the following section.

To interpret the other part of the force in (14.4.36), let us assume for simplicity the plane wave

E0(r) ¼ x̂E0e
ikz: (14:4:40)

26See, for instance, P. C. Chaumet and M. Nieto-Vesperinas, Optics Letters 25, 1065 (2000).
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In this case the part of the total force that is proportional to the imaginary part of the polarizability
in (14.4.36) is

Frecoil ¼ 1
2
jmj2
h�

b

D2 þ b2
E2
0kẑ ¼ h�kẑ

1
2x

2b

D2 þ b2
¼ h�kẑRabs, (14:4:41)

for a two-state atom, Rabs being just the absorption rate [cf. Eq. (14.4.3)] when the intensity is well
below Isat, as assumed here. Frecoil is just the recoil force (14.4.4) exerted on the atom.

The dipole force arises from spatial variations in the Stark shift U(r) of an atom, whereas the
recoil force is a direct consequence of absorption (and, more generally, emission). The recoil
force has its maximum value at resonance (D ¼ 0) and decreases as 1/D2 when the field is far
off resonance, whereas the dipole force vanishes at resonance and decreases more slowly, as
1/jDj, far off resonance.27 The recoil force saturates with intensity according to the formula
(14.4.3). The potential energy (14.4.39) determining the dipole force via (14.4.38) at large inten-
sities takes the form (Problem 14.10)

U(r) ¼ � 1
2
h�D ln 1þ I

Isatn

b2

D2 þ b2

� 
: (14:4:42)

We have assumed in our discussion of laser cooling that only the recoil force affects the
motion of an atom. This assumption is justified if the field is well described as a plane
wave (rE0 ¼ 0). In general, however, the dipole force must be taken into account and,
as discussed in the following section, it can significantly affect the motion of atoms in
optical fields.

We mentioned at the beginning of this section that Einstein invoked recoil in absorption and
emission in his treatment of thermal radiation. Assuming an isotropic and unpolarized field
with spectral density r(v), Einstein obtained a cooling rate of the form (14.4.9) with “friction”
coefficient

k ¼ h�v
c2

� �
(P1 � P2)B r(v)� v

3
dr

dv

� 
: (14:4:43)

P1 and P2 are the lower- and upper-state probabilities of the two-state transition of frequency v
and B is the Einstein coefficient for absorption in a broadband field (Section 3.6). The retarding
force F ¼ 2kv arises from Doppler shifts and “aberration” in the broadband field. The cooling
rate in thermal equilibrium is balanced by the recoil heating rate, which Einstein calculated to be

dE

dt

� �
heating

¼ 1
3

h�v
c

� �2
P1Br(v): (14:4:44)

From this result, together with (14.4.9), (14.4.43), and E ¼ (12)kBT , therefore, the sum of the
heating and cooling rates is zero when r(v) satisfies

r� v

3
dr

dv
¼ h�v

3kBT
P1

P1 � P2
r (14:4:45)

with P2=P1 ¼ exp (�h�v=kBT) in thermal equilibrium. The solution for r(v) with “initial
condition” r(0) ¼ 0 is exactly the Planck spectrum. †
27In terminology that seems to generate more confusion than insight, the recoil and dipole forces are some-
times attributed to “real” and “virtual” transitions, respectively.
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The lowest temperatures obtained by laser cooling are realized with trapped atoms
(Section 14.5). In order for atoms to be captured by a trap, their velocities must be
small, much smaller than the typical mean velocity of atoms emerging from an oven,
which is �800 m/s for sodium atoms at a vapor temperature T ¼ 600K. Before atoms
can be trapped and cooled to temperatures in the microkelvin range and below, therefore,
theymust first be cooled to temperatures well below their oven vapor temperature. This is
done with a counterpropagating laser beam with frequency v tuned below the atomic
resonance frequency v0, so that an atom with an initial velocity v experiences the largest
retarding force when v0 ¼ v þ kv, that is, when it is at resonance with the Doppler-
shifted field frequency. The atom moves increasingly out of resonance, however, as
its velocity decreases, and the degree of slowing it experiences is substantially reduced
unless v or v0 can be varied to maintain resonance. The field frequency can be changed
by chirping, but the most commonly employed method of maintaining resonance is to
change the atomic resonance frequency with a magnetic field that varies along the
atomic beam. In this Zeeman slowing the magnetic field along the atomic beam is
varied by varying the winding of a solenoid, as indicated in Fig. 14.17.

† To get an idea of the sort of numbers involved in Zeeman slowing, let us assume that atoms
start out with a velocity vi ¼ 800 m/s and are brought to a complete stop (vf ¼ 0) after a distance
z. Using a ¼ 4.6 � 105 m/s2 [Eq. (14.4.5)] for the deceleration of sodium atoms in a field of
intensity I ¼ Isat ¼ 6.3 mW/cm2, we calculate that the time taken for the atoms to be stopped
is t ¼ (vi 2 vf)/a ¼ 1.7 ms, and the distance over which this occurs is z ¼ 1

2at
2 ¼ 70 cm.

The Doppler shift at a distance z from the trap (Fig. 14.17) is kv(z) ¼ vv(z)/c. To estimate the
magnetic field required to compensate for this Doppler shift, we assume that the Landé g factors
of the upper and lower states of the atomic transition differ by a factor �1—a reasonable approxi-
mation—so that the Zeeman shift of the transition frequency is Dv0 � mBBz=h� for sþ light
(Dm ¼ þ1). The magnetic field required to keep an atom in resonance with the field as it
slows down is therefore

Bz(z) ¼ h�v
mBc

v(z) � h�v0

mBc
at ¼ h�v0

mBc

ffiffiffiffiffiffiffi
2az
p

: (14:4:46)

For the sodium transition at 589nmweobtain, assuming again the accelarationa ¼ 4.6�105 m/s2,

Bz(z) � 120
ffiffi
z
p

gauss, (14:4:47)

where z (in centimeters) is the distance from the trap and we have used the fact that a tesla is 104

gauss. †

Zeeman slower
solenoid

AtomsOven
Laser

Figure 14.17 A Zeeman slower. Atoms are slowed by the force of a counterpropagating laser
beam and are kept near resonance with the Doppler-shifted laser field by the Zeeman shift of their
transition frequency in a magnetic field that varies along the direction of the atomic beam. The laser
and magnetic field parameters are chosen such that the atoms are slowed enough to allow them to
be captured in a trap.
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Laser cooling is used to slow cesium atoms and thereby to obtain the extremely small
transit-time line-broadening characteristic of atomic fountain clocks that, as noted earlier
(Section 14.3), are about 10 timesmore accurate than atomic beam clocks. Some features
of a fountain clock are indicated in Fig. 14.18. Cesium atoms in a trap (Section 14.5) are
cooled to microkelvin temperatures at the intersection of six laser beams, as discussed
above, and then “launched” upward. The launching can be done by the force on the
atoms of a single laser beam, but this results in heating of the atoms as they absorb
and emit photons and suffer recoil kicks. The atoms are instead launched by up-shifting
the frequency of the upward-propagating laser beam and down-shifting the frequency
of the downward-propagating laser beam to produce a moving standing wave. If the
up-shifted and down-shifted frequencies are, respectively, n þ Dn and n2 Dn, this
standing wave moves upward with a velocity v ¼ l Dn (Problem 14.11), and the atoms
move along with the standing wave without any average recoil velocity: The Doppler
effect causes the atoms to see the same frequency n for both fields, resulting in optical
molasses in the moving frame. The atoms continue moving upward at a few meters/
second after the lasers are turned off (Problem 14.11), and, after being optically
pumped into one of the states of the clock transition, they enter the microwave cavity,
which serves as the first field for the Ramsey method of separated oscillatory fields.
The atoms pass through the cavity, reach their apogee, and then fall by gravity and
experience the second Ramsey field as they pass through the microwave cavity a
second time. For a total atom path length of �30 cm the Ramsey interrogation time
T � 1 s and therefore the Ramsey fringes are extremely sharp (Section 9.11). The detec-
tion of atoms that have made the clock transition is done by irradiating the atoms that fall
through the microwave cavity with laser radiation and counting resonance fluore-
scence photons, and the peak of the atomic resonance is determined by the frequency
of the microwave field that produces the largest fluorescence signal. The essential differ-
ence from the older atomic beam clock, then, is the narrower resonance of the
cesium clock transition resulting from the long interrogation time made possible by
laser cooling.

Microwave
cavity

Atoms move up
and then fall

Laser

Figure 14.18 An atomic fountain in which atoms make two passes through a microwave cavity,
corresponding in effect to the Ramsey method of separated oscillatory fields. The long Ramsey
interrogation time (Section 9.11) is the primary reason for the high degree of accuracy of atomic foun-
tain clocks.
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14.5 TRAPPING ATOMS WITH LASERS AND MAGNETIC FIELDS

Laser cooling as such does not trap atoms since atoms can diffuse out of the laser fields.
For trapping we require forces acting to spatially confine atoms. The most ubiquitous
atom trap is themagneto-optical trap (MOT) employing both lasers and magnetic fields.
Before discussing the operating principles of a MOT we will consider briefly the trap-
ping of atoms by a static magnetic field, specifically the quadrupole magnetic field

B ¼ B[xx̂þ yŷ� 2zẑ], (14:5:1)

where B is the magnetic field gradient along the x and y axes; the gradient of B along the
z axis is�2B, as required by the Maxwell equationr�B ¼ 0. The field (14.5.1) is pro-
duced by a pair of Helmholtz coils (Fig. 14.19) when the coil separation is 1.25 times the
coil radius.

The Zeeman-shifted energy of an atom in a state i in a magnetic field of magnitude B
has the form [Eq. (14.3.1)]

Ei(B) ¼ Ei(B ¼ 0)� miB, (14:5:2)

where mi (/ mmB) is the magnetic dipole moment of state i along the direction of the
magnetic field. A state with mi . 0 therefore has its lowest Zeeman-shifted energy at
points in space where the magnetic field is strongest, and an atom in such a state will
experience a force2r(2miB) acting to move it to a point where the magnetic field
is higher. A state with mi . 0 is said to be a high-field seeker. Similarly a state with
mi , 0 is a low-field seeker.28 The potential energy function 2miB � mBB ¼ 9.274 �
10224B J, or 0.67BK when expressed as temperature in degrees Kelvin (K). Thus, for
the magnetic fields typical of laboratory experiments (B
 1 tesla), the “depth” of a
magnetic trap is much less than 1K; atoms must be cooled to such temperatures
before they can be magnetically trapped. Trapping is accomplished much more effec-
tively by combining magnetic fields with lasers, as we now discuss.

Figure 14.19 Two Helmholtz coils with opposing electric currents produce a quadrupole magnetic
field.

28In regions free of electric currents there are no local maxima of jBj, and consequently only low-field seekers
can be trapped by magnetic fields alone. This is discussed byW. H. Wing, Progress in Quantum Electronics
8, 181 (1984).
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Equation (14.5.2) implies that atomic transition frequencies in a magnetic field such
as (14.5.1) are position-dependent. The force exerted by a laser field on an atom there-
fore depends on the position of the atom, and it is this position-dependent force that
confines atoms in a magneto-optical trap. Unlike a purely magnetic trap, a MOT acts
not only to trap atoms but also to cool them with counterpropagating laser beams as dis-
cussed in the preceding section. To understand this in more detail we consider a model
atomwith a J ¼ 0 ground level and a J ¼ 1 upper level. The atom is assumed to be on the
z axis, where the magnetic field (14.5.1) is B ¼ �2Bẑz. The frequencies of the Dm ¼ 0
and Dm ¼+1 transitions are

v0(J¼ 0,m¼ 0! J¼ 1,m¼ 0)¼v0,

v0(J¼ 0,m¼ 0! J ¼ 1,m¼þ1)¼v0�mBgBz

h� ¼v0þ2mBgBz
h� ¼v0þDv0,

v0(J¼ 0,m¼ 0! J ¼ 1,m¼�1)¼v0þmBgBz

h� ¼v0�2mBgBz
h� ¼v0�Dv0:

(14:5:3)

where Dv0¼ 2mBgBz=h� and v0 is the transition frequency in the absence of the mag-
netic field. The recoil force exerted on the atom by s+ light of frequency v is given by
Eq. (14.4.4) with D ¼ v0 2 v+Dv0:

F(s+)¼
1
2A21I=Isat

1þ (1+Dv0=b)2
h�kffi

1
4A21I=Isat

1+Dv0=b
h�k (14:5:4)

for Dv0
b and I
 Isat. To simplify the algebra we have set v02v ¼ b ¼ A21/2, and
we are ignoring for the moment any motion of the atom. Under these assumptions the
average recoil force when the atom is irradiated with sþ light propagating in the þz
direction and s2 light propagating in the 2z direction (Fig. 14.20) is

F(sþ)�F(s�)ffi
1
4A21I

Isat

� 
1

1þDv0=b
� 1
1�Dv0=b

� 
h� kffi�

1
2A21I

Isat

� 
h� kDv0

b

¼� 2I
Isat

mBgB
h� h�k

� 
z;�ksz (14:5:5)

s– s+ 

B

I I 

B

Figure 14.20 One-dimensional model of a magneto-optical trap (MOT). After W. D. Phillips in
Fundamental Systems in Quantum Optics, eds. J. Dalibard, J.-M. Raimond, and J. Zinn-Justin
(North-Holland, Amsterdam, 1992), p. 165.
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when the two fields have the same intensity I. The combined effects of the magnetic field
and the counterpropagating laser fields produce a restoring force with “spring constant”
ks. The approximation (14.5.5) is valid when themagnetic field and the distance from the
center of the trap (z ¼ 0) are sufficiently small.

In addition to the trapping effect in aMOT there is cooling by the counterpropagating
laser beams: The MOT produces a trapped optical molasses. Let us continue with our
one-dimensional model and include the effects of both the trapping and Doppler cooling
forces on the motion of an atom of massM. The equation of motion for the coordinate z
of the atom is M d2z/dt2¼2ksz2av, or

d2z

dt2
þ gt

dz

dt
þ v2

t z ¼ 0: (14:5:6)

Here the oscillation frequency vt for an atom in the MOT is given by

v2
t ¼

ks
M
¼ 2ImBgBk

MIsat
(14:5:7)

and the damping constant gt ¼ k/M, where k is defined by (14.4.7). As in (14.5.4) we
simplify some algebra by taking D ¼ v02v ¼ b. Then, if I/Isat is small,

gt ffi
Ih�k2
MIsat

: (14:5:8)

Equation (14.5.6) is the familiar equation for a damped harmonic oscillator and
expresses the fact that atoms in a MOT are both trapped and cooled. For M ¼ 23 amu,
l ¼ 589 nm, and g � 1, we estimate vt/2p � 2 kHz and gt � 105 s21 for I/Isat ¼ 0.3
and B ¼ 10 G=cm, as is fairly typical of MOTs. The atom oscillations are typically
“overdamped” (gt . vt), as this example suggests. In an actual MOT the oscillation
frequencies are different along the x, y, and z axes but have similar magnitudes.

The force (14.5.5) exerted on atoms by the counterpropagating laser beams in a MOT
is typically considerably larger than the magnetic forcer(mBgB) ¼ mBgB for atoms at a
distance of a wavelength or so from the center of the trap (Problem 14.12). Typically,
1018–1021 atoms/m3 are trapped, and the size of the trapped “cloud” can be inferred
from the temperature T: According to the equipartition theorem, the average potential
energy 1

2ksz
2 and the average kinetic energy 1

2Mv2 are equal to 1
2kBT in thermal equili-

brium, so that the cloud size is estimated to be

zcloud �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ks

p
, (14:5:9)

which is typically �1022 cm for temperatures T � 200mK obtained by Doppler cooling
(Problem 14.12). The temperature T can be inferred by turning off the trap and determin-
ing the velocities of escaping atoms by their time of flight from the trap.

These results of our highly simplified, one-dimensional model for a MOT are in
reasonable accord with those of three-dimensional numerical analyses that account for
hyperfine structure and all the magnetic substates of real atoms. When such analyses
include polarization gradients and other effects, they become quite complicated, and
in fact the physics of atom cooling and trapping is a subject to which entire books are
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devoted.29 Magnetic traps have been developed over many years, especially in connec-
tion with the confinement of hot plasmas in nuclear fusion research, and there is an
extensive literature on the subject.

Techniques for the cooling and trapping of ions differ in several respects from those
we have described for neutral atoms. In this case the electric charge of the particles
allows them to be efficiently cooled and trapped with static electric and magnetic
fields. In a Penning trap, for example, ions are confined in the x and y directions by a
magnetic field along z while a quadrupole electric field confines them in the z direction.
Cooling can be done by applying a laser beam along some other direction; the laser field
cools ions moving toward it and pushes them back to the center of the trap where they
exchange energy in collisions with hotter ions, resulting in a cooling of the ion “cloud.”
Ion cooling with a single laser beam is done similarly in a Paul trap, which confines ions
with oscillating electric fields. The repulsive forces between ions make it difficult or
impossible to realize Bose–Einstein condensation and, since we highlight that topic
in the following section, we will not consider ion traps any further.

† We have described the motion of atoms in a MOT using elementary classical mechanics
rather than quantum mechanics. Classical theory is a good approximation provided the atoms
are not too cold and therefore their de Broglie wavelengths are not too large. We discuss this
point a bit more in the following section.

According to the formula (2.3.8) for a particle in a harmonic-oscillator potential, the motion of
an atom in aMOT is characterized by the quantized energies En ¼ h�vt(nþ 1

2 ), n ¼ 0, 1, 2, 3, . . . ,
and so we can expect classical theory to be accurate if h�vt=kBT is small. But at sufficiently low
temperatures quantum effects become important, and in particular the zero-point energy 1

2h
�vt

puts a lower limit on the temperature to which atoms can be cooled in a MOT:

Tmin ¼ h�vt

kB
: (14:5:10)

This limiting temperature is very small (Problem 14.12), but it has been closely approached in
experiments in which a single beryllium ion is confined in a Paul trap with vt �100MHz. †

There is a great deal more to be said about laser cooling and trapping of atoms than is
warranted here.29 In the remainder of this section we will touch on two applications of
the dipole force (14.4.38).

The light shifts (14.4.18) we calculated in connection with Sisyphus cooling imply
that the model atoms in their m¼+1

2 ground states experience periodic potentials in
the counterpropagating laser fields; the period of these potentials is half the wavelength
of the presumed plane wave. The dipole force given by Eq. (14.4.38),

Fdipole ¼ �r[U(r)] ¼ r 1
4aR(v)E2

0(r)

 �

(14:5:11)

when we take E0 to be real, implies that an atom finds itself in a periodic potential U(r)
whenever the light intensity is periodic, for example, when the atom is in a standing-
wave field. The intersection of two plane waves at an angle u results in a periodic

29See, for instance, H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping, Springer, New York,
1999. A tutorial on the design and operation of an “inexpensive” MOT is given by C. Wieman, G. Flowers,
and S. Gilbert, American Journal of Physics 63, 317 (1995).
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potential with period l/[2 sin(u/2)] for a polarizable particle [cf. Eq. (11.14.31)], and,
more generally, pairs of interfering fields can produce a great variety of two- and three-
dimensional potentials with different periodicities along different directions. An atom in
such an “egg-crate” potential, called an optical lattice, behaves very much like an elec-
tron in a crystal, where the allowed energies are restricted to certain bands depending on
the crystal structure (Chapter 2). The light shifts can be comparable to or greater than the
average kinetic energy of atoms loaded into the lattice from aMOT. By varying the laser
intensity or detuning, the atoms can be tightly or weakly bound by the potential wells of
the “egg crate”; they can be confined—“held in midair” by laser beams—in potential
wells comparable in their spatial extent to an optical wavelength. If the field frequency
is such thataR(v) . 0, the dipole force moves atoms towardmaxima of the electric field;
if aR(v) , 0, it moves atoms toward field minima. Either way, the atoms can be trapped
by the optical lattice, and the trapping potentials are increased or decreased as the field
intensity is increased or decreased. Thus it is possible with optical lattices to obtain a
“phase-space density” of atoms large enough to realize “all-optical” Bose–Einstein
condensation (Section 14.6).

Absorption and recoil in optical lattices can be minimized by detuning the lasers
far from atomic resonances. The peak values of the light-shift potentials are usually
expressed in units of the atomic recoil energy (Problem 14.14). Another attractive feature
of optical lattices is that the interaction strengths of atoms at different lattice sites can be
controlled by designing the lattice appropriately, and relaxation processes can be effec-
tively eliminated. Fundamental quantum phenomena predicted for electrons in crystal
lattices but difficult to observe because of electron–electron and electron–photon
interactions can be probed very “cleanly” with atoms stored in optical lattices.
Transferring atoms from a Bose–Einstein condensate in a magnetic trap to an optical
lattice has led to some remarkable experimental studies, one of which is described in
the following section.

We have restricted our discussion of laser trapping thus far to atoms, but lasers are
also used to trap many other particles including, for example, DNA molecules, biologi-
cal cells, and small dielectric particles. The physical basis for this trapping is again the
dipole force (14.5.11). Consider a nonabsorbing dielectric sphere with radius a smaller
than the wavelength of incident light. With n the refractive index of the dielectric
material, and nb the refractive index of the medium in which the sphere is placed, the
polarizability aR of the sphere is given by electromagnetic theory as

aR ¼ 4pe0n
2
b

n2 � n2b
n2 þ 2n2b

� �
a3: (14:5:12)

(aR, n, and nb are all evaluated at the frequency of the incident light.) It follows that the
dipole force (14.5.11) is in the direction of increasing electric field if n . nb, and in the
direction of decreasing electric field if n, nb. A sphere immersed in water and irradiated
with a Gaussian beam at an optical wavelength will experience a radial force toward the
axis of the beam if its refractive index n is greater than about 1.33. However, there is also
a force of radiation pressure in the direction of propagation of the beam (Problem 14.15):

Frad ¼ n2b
4pe0

v4

3c3
a2
R(v)E

2
0 ¼

8p
3c

n5b
v

c

� �4 n2 � n2b
n2 þ 2n2b

� �2
a6I: (14:5:13)
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In order to trap a particle with n . nb both radially and axially with a focused Gaussian
beam, for example, the axial gradient of the field in the direction of the focal spot must be
large enough that the dipole force (14.5.11) acting to push the particle toward the focus
exceeds the force Frad acting to push it away. This condition is not difficult to satisfy.
Figure 14.21 shows a commonly used setup for trapping a dielectric particle with a
single laser beam, an example of an optical tweezer. (The terminology comes from
the use of laser beams to noninvasively “take hold” of a particle and move it from
one place to another.) Diode-pumped Nd :YAG lasers are commonly used in biological
applications of laser tweezers; the 1064-nm wavelength is not absorbed by water and
does not damage biological samples. The frequency-doubled Nd :YAG radiation at
532 nm, by contrast, is strongly absorbed by many samples and can serve as an “optical
scissors” used in conjunctionwith an optical tweezer. Optical tweezer technology and its
applications are advancing rapidly and, as with other applications of lasers, we cannot
go into it in any depth without straying into topics quite distinct from laser physics
as such.30

14.6 BOSE–EINSTEIN CONDENSATION

The classical mechanics of an object with linear momentum p is valid if the de Broglie
wavelength ldeB ¼ h/p is sufficiently small, just as ray optics well describes some
aspects of the propagation of light when the wavelength l [equal to the photon de
Broglie wavelength h/(hn/c)] is small compared to apertures and other things affecting
the propagation. For an ideal gas with N atoms per unit volume at temperature T, for
example, the wave nature of the atoms is not expected to play any role unless their
de Broglie wavelengths are comparable to the interatomic spacing �N21/3. Using

Laser beam

Trapped
particle

Lens

Figure 14.21 “Optical tweezer” used in microscopy. A particle is trapped where the field intensity is
greatest.

30A large list of papers on optical tweezers, with succinct commentaries, has been compiled by M. J. Lang
and S. M. Block, American Journal of Physics 71, 201 (2003).
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p2=2M ¼ 3
2kBT to calculate ldeB for atoms of mass M, we estimate therefore that the

temperature must be less than

Tc � 1
3

h2

MkB
N2=3 (14:6:1)

if the wave nature of the atoms is to be important. A gas below this critial temperature
might be expected to behave as a single “matter wave” rather than as a collection of inde-
pendently moving atoms, much as laser light is better described as awave rather than as a
collection of independently propagating photons. The possibility that particles ofmatter
can behave collectively as a wave exhibiting interference and diffraction effects follows
from a prediction in 1924–1925 by Einstein, who showed that, at sufficiently low temp-
eratures, noninteracting particles can “condense” into a single quantum state of zero
velocity. This is called Bose–Einstein condensation (BEC).

The critical temperature Tc for BEC is generally extremely small. Consider, for
example, a gas of 87Rb atoms at a density N ¼ 2.5 � 1018 m23, about 1027 times the
density of air at standard temperature and pressure (STP). Using (14.6.1) we calculate
Tc � 130 nK, much smaller even than the sort of temperatures quoted in our discussions
of Doppler and Sisyphus cooling. Nevertheless, as discussed below, BEC has in fact
been realized in atomic clouds, including 87Rb at the density 2.5 � 1018 atoms/m3.

† Einstein deduced the condensation effect along the lines of the following simplified argu-
ment. Consider the number of possible quantum states dNE of a particle with energy in the inter-
val [E, EþdE ] in an ideal gas of volume V. This is analogous to the number (3.12.12) of field
modes; in the case here of particles of mass M, all occupying the same internal quantum state
(e.g., the same electronic state of an atom),

dNE ¼ 1

(2p)3
V d3k ¼ V

(2p)3
4pk2dk: (14:6:2)

This is derived in the same fashion as (3.12.12), except that (i) no factor of 2 associated with
photon polarization appears, and (ii) k here is related to the energy E by E ¼ p2=2M ¼
h�2k2=2M, i.e., by relating a particle’s momentum p to its de Broglie wavelength ( p ¼ 2ph�=
ldeB ¼ h�k). It follows that dNE ¼ r(E) dE, where the “density of states” is

r(E) ¼ VM3=2

p2h�3 ffiffiffi
2
p E1=2: (14:6:3)

If the atoms are bosons, the number of particles N at temperature T is

N ¼ N0(T)þ
ð1
0

r(E) dE

z(T)eE=kBT � 1
: (14:6:4)

The first and second terms on the right-hand side are the numbers of particles with energy E ¼ 0
and E . 0, respectively. Because of z(T ), whose functional form wewill not require, the denomi-
nator in the second term differs from the (eE=kBT � 1)�1 familiar from the case of thermal photons.
z(T ) appears because, unlike the number of photons in thermal equilibrium, the total number of
particles (atoms) of an ideal gas in thermal equilibrium is a conserved quantity; z(T ) is deter-
mined by this number. Since [z(T)eE=kBT � 1]�1 represents the average number of particles in a
particular state of energy E. 0, and as such must be positive, we must have z(T ) � 1. It then
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follows from (14.6.3) that the integrand of the second term in (14.6.4) vanishes when E ¼ 0: as
stated, the integral is the density of particles with energy E greater than 0.

The Bose–Einstein “condensation” of particles into the state with E ¼ 0 occurs only at very
low temperatures. It can be seen from (14.6.4) that, as the temperature decreases, z(T ) must also
decrease in order to keep the total number of particles fixed. As T ! 0, z(T ) ! 1, its smallest
possible value and the value that maximizes the number of particles with E. 0. Assuming
z(Tc) ffi 1, we define the critical temperature Tc for BEC as the temperature at which E. 0 for
all the particles:

N ¼
ð1
0

r(E) dE

eE=kBTc � 1
¼ VM3=2

p2h�3
ffiffiffi
2
p
ð1
0

ffiffiffiffi
E
p

dE

eE=kBT � 1
¼ 2:612V

2pMkBTc
h2

� �3=2
, (14:6:5)

or

Tc ¼ 0:084
h2

MkB
N2=3 (N ¼ N =V): (14:6:6)

Below this temperature some of the particles will be in the condensed phase [N0(T) . 0]. Tc as
defined here is about 14 the cruder estimate (14.6.1). At temperatures T, Tc,

N ¼ N0(T)þ
ð1
0

r(E) dE

eE=kBT � 1
¼ N0(T)þ 2:612

2pMkBT

h2

� �3=2

¼ N0(T)þ 2:612
2pMkBTc

h2

� �3=2 T

Tc

� �3=2
¼ N 0(T)þN T

Tc

� �3=2
: (14:6:7)

The fraction of particles in the condensed state is therefore

N 0(T)
N ¼ 1� T

Tc

� �3=2
: (14:6:8)

The length

lT ¼ h2

2pMkBT

� �1=2
(14:6:9)

is called the thermal de Broglie wavelength, and Nl3T is called the phase-space density. From
(14.6.7) it follows that the condition T, Tc for BEC can be expressed in terms of the phase-
space density:

Nl3T . 2:612: (14:6:10)

Usually z(T ) is written as e�m=kBT , where m, the chemical potential, is a thermodynamic quan-
tity defined as the change in the energy of a system when a particle is added while the volume and
entropy are kept constant. In the case of a BEC at a fixed temperature, the number of particles with
energy E. 0 is constant [cf. Eq. (14.6.4)], so that any added particles must become part of the
zero-velocity condensate. In other words, the chemical potential is nearly zero and therefore
z(T) ffi 1 for a BEC, as we have assumed in our derivation of Tc. In Einstein’s work a parameter
related to z(T ) appeared via a “Lagrange multiplier” used in imposing the constraint that the par-
ticle number is constant. Einstein suggested that condensation might be observed with a gas of
electrons—this was before it was understood that particles are either bosons or fermions, that
no two fermions can occupy the same quantum state, and therefore that the condensation
effect cannot occur with (unpaired) electrons or any other fermions. †
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Before laser cooling and trapping, experimental studies of Bose–Einstein conden-
sates were limited primarily to liquid 4He. At the required temperatures most substances
solidify, and in those that do not the atoms interact too strongly to approximate an ideal
gas. Liquid 4He, the superfluidity of which has traditionally been associated with Bose–
Einstein condensation, is the major exception. The small mass and therefore large zero-
point energy of helium atoms prevents solidification at atmospheric pressures, and below
a critical temperature of about 3K, some fraction of the atoms go into a superfluid state in
which the liquid has zero viscosity (Problem 14.16). At lower temperatures nearly all the
atoms are in the superfluid component. While many studies strongly support the con-
clusion that superfluid 4He is a Bose–Einstein condensate, the density is sufficiently
large that interatomic interactions are significant, as evidenced by the mere fact that
low-temperature 4He is a liquid. One of the most remarkable features of Einstein’s
prediction, after all, is that condensation can occur in the absence of any particle
interactions.

In dilute atomic clouds at temperatures below that required for Bose–Einstein
condensation, the average distance between atoms is fairly large, typically �102 nm.
At such separations, interactions resulting in collisions that are deleterious to BEC are
weak if the atoms are spin polarized, as discussed below. However, these weak inter-
actions actually turn out to be essential for meeting the major experimental challenge,
which has been to realize the exceedingly small critical temperatures that, because
of the low densities of dilute gases, are much smaller even than those obtained by
Sisyphus cooling, as noted earlier. If we assume a density of 1018 atoms/m3 in an
atom trap, the critical temperature predicted by Eq. (14.6.6) is about 20 nK for 87Rb,
for example, whereas the recoil limit is about 400 nK. Actually, as also discussed
below, critical temperatures for trapped atoms can be considerably larger than that
given by (14.6.6), but they are still much smaller than temperatures reached by laser
cooling.

The temperatures required for BEC in atomic clouds are realized by evaporative
cooling. In this technique the six cooling laser fields (Section 14.4) are turned off and
the low-field-seeking atoms are magnetically trapped; the lasers are turned off in
order to avoid photon scattering processes that limit the achievable densities and temp-
eratures. Themagnetic trapping field is then slowly reduced, so that the (Zeeman energy)
depth of the magnetic trap is lowered, allowing atoms with sufficient kinetic energy to
escape the trap while cooler atoms remain. An rf magnetic field can also be applied to
induce transitions between magnetic substates such that atoms with the largest kinetic
energies are changed from low-field seekers to (untrapped) high-field seekers. The
effects of the reduced trapping field and the rf field are then to allow hotter atoms to
be removed from the cloud while cooler ones remain, analogous to the cooling of a
cup of coffee by evaporation; note that atom interactions in the form of elastic collisions
are essential for evaporative cooling, that is, for keeping the cloud thermalized as
the evaporation proceeds. Evaporative cooling from a laser-cooled temperature of
�10 mK to �200 nK, sufficient for the formation of a spin-polarized condensate of
about 2000 87Rb atoms, was first achieved in 1995; a zero-velocity BEC component
of the cloud was verified by a time-of-flight measurement of the atoms’ velocity distri-
bution when the cloud was allowed to freely expand. Following those experiments, BEC
has been demonstrated by similar methods in different gases. The basic technique has
usually been to use Zeeman slowing to cool an atomic beam from an oven, capture
and laser-cool the slowed atoms in a MOT, turn off the lasers and magnetically trap
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the atoms, and then evaporatively cool the atoms (typically a few million of them) to
below the critical BEC temperature.31

A serious problem that had to be overcome in the first experiments concerned the
trapping in the static magnetic quadrupole field after the lasers were turned off. An
atom moving in such a field experiences a time-dependent field that can cause it to
make a transition from a low-field-seeking magnetic substate to an untrapped, high-
field-seeking state if this time variation is sufficiently rapid, that is, if the magnetic
field the atom sees has a Fourier frequency component near the frequency for a transition
between two Zeeman-shifted magnetic substates. Near the center of the trap the mag-
netic field and therefore the Zeeman splittings are small enough for even a slow atom
to experience a time-dependent field that causes its magnetic moment to flip into an
untrapped state: The quadrupole trap has in effect a “hole” near its center that prevents
atoms from being trapped for very long. In one of the original experiments this problem
was solved by applying an oscillatory magnetic field such that the total (time-averaged)
magnetic field did not vanish anywhere in the trap and therefore there was no “hole.” In
another a “blue-tuned” laser at a frequency giving a negative atomic polarizability was
applied such that atoms were repelled from the hole. Experiments that followed have
employed different magnetic field configurations to circumvent the problem.

† To derive the critical temperature Tc for atoms in a magnetic trap with restoring forces along
the x, y, and z axes and atom oscillation frequencies vx,vy, and vz along these axes, we first recall
that the quantized energy levels for the atomic motion in the trap are

E ¼ nx þ 1
2

� �
h�vx þ ny þ 1

2

� �
h�vy þ nz þ 1

2

� �
h�vz (nx, ny, nz ¼ 0, 1, 2, . . . ): (14:6:11)

Consider the number NE of possible states with energies less than E. For cases of interest in the
trapping of neutral atoms, the energies may be assumed to be much greater than the zero-point
energies 1

2h
�vx, 1

2h
�vy, and 1

2h
�vz. Then for the calculation of NE the integers nx, ny, and nz may

be replaced by continuous variables Ex=h�vx, Ey=h�vy, and Ez=h�vz:

NE ¼ 1

h�3vxvyvz

ðE
0
dEx

ðE�Ex

0
dEy

ðE�Ex�Ey

0
dEz ¼ E3

6h�3vxvyvz

: (14:6:12)

The number of states with energy between E and E þ dE is therefore

dNE ¼ E2 dE

2h�3vxvyvz

¼ r(E) dE, (14:6:13)

which defines the density of states r(E). Proceeding now as in (14.6.5)–(14.6.8), using this den-
sity of states instead of the density of states (14.6.3) for untrapped particles, we obtain the critical
temperature

Tc ¼ 0:94
h�(vxvyvz)1=2

kB
N 1=3 (14:6:14)

31For references to the original work and more detailed discussions see, for instance, C. J. Pethick and
H. Smith, Bose–Einstein Condensation in Dilute Gases, Cambridge University Press, Cambridge, 2004.
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and the condensate fraction

N 0(T)
N ¼ 1� T

Tc

� �3
: (14:6:15)

Unlike the critical temperature (14.6.6) for free particles, (14.6.14) depends on the number of
particles rather than the density. In the original 87Rb experiments the critical temperature was
about 170 nK.

Another important consideration in the physics of cold atomic gases is spin polarization.
BECs in magnetic traps normally consist of spin-polarized atoms, e.g., alkali atoms in which
the valence electrons have “spin up.” The atom interaction involving spin-up (or spin-down) elec-
trons differs from the interaction when the spins are opposite because the Pauli principle allows
two electrons in different spin states to occupy the same atomic orbital, as occurs in covalent
bonding. If the two electrons have the same spin, however, the Pauli principle forbids them
from sharing the same orbital, and the atom–atom interaction in this case is consequently
weaker. Of particular interest for BEC are the so-called doubly polarized andmaximally stretched
states of the electronic ground state; spin-depolarizing collisions of atoms in these states have very
small cross sections and the atoms are low-field seekers. In the doubly polarized state the spin
components of the electron (mJ) and the nucleus (mI) are aligned and have their largest allowed
values, for example,mI ¼ 3

2 and mJ ¼ 1
2 for Na or

87Rb (nuclear spin I ¼ 3
2); the quantization axis

is in the direction of the magnetic field. Thus, for Na or 87Rb, both of which have F ¼ 1 and F ¼ 2
hyperfine ground levels, the doubly polarized state has the quantum numbers F ¼ 2, mF ¼ 2. In
the maximally stretched state, F ¼ I � 1

2 and mF ¼ � I � 1
2

� �
, for example, F ¼ 1, mF ¼ 21 for

Na or 87Rb. Collisions of atoms in these states are primarily the “good” collisions necessary to
keep the gas thermalized during evaporative cooling, as opposed to the “bad” collisions that
act to quench the low-field-seeking trapped states. †

The technique of evaporative cooling was developed about a decade prior to its play-
ing an essential role in the first observations of BEC in dilute gases. It was conceived for
the cooling of magnetically trapped hydrogen, which was considered at the time the
most promising candidate for BEC of an atomic gas; this consideration stemmed from
the fact that the interactions of spin-polarized hydrogen atoms are very weak, preventing
the formation of hydrogenmolecules. The longest-wavelength transition from the ground
state of hydrogen is the Lyman-a line at 122 nm, too short for laser cooling with avail-
able lasers. This short wavelength and the small mass of the H atom also imply too large
a recoil temperature (Trecoil ¼ 1.3 mK) for BEC (Problem 14.16). BEC in magnetically
trapped hydrogen was achieved in 1998 by cryogenic cooling followed by evaporative
cooling. The BEC transition was observed at Tc ¼ 50 mK at a density of 1.8 � 1020

atoms/m3. The presence of a condensate was inferred from a large shift in the absorption
frequency of the two-photon 1S ! 2S transition (Problem 14.9).

Atoms in a Bose–Einstein condensate can be “loaded” into an optical lattice from a
magnetic trap by applying off-resonance laser beams to produce the desired lattice spa-
cings and light-shift potential depths. With the magnetic trapping fields turned off, the
atoms are left trapped solely by the laser fields forming the lattice. The potential depth is
usually sufficiently large that, according to classical mechanics, the atoms cannot cross
the potential energy barrier between sites and move about the lattice. However, accord-
ing to quantum theory there is a nonzero probability that they can “tunnel” across the
barriers, and in the case of a Bose–Einstein condensate this can result in an atomic
matter wave whose phase is approximately constant while the number of atoms at
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each lattice site fluctuates. This is analogous to a coherent light wave in which the phase
but not the number of photons is fixed (Chapter 12): The smaller the fluctuations in the
phase, the greater the fluctuations in the photon number, and vice versa. In the case of a
fixed number of atoms at each site of an optical lattice, the phase of the matter wave is not
well defined and, by analogy to a similar situation for electrons in a crystal, the atoms are
said to form a Mott insulator. In this case, no interference effects involving a coherent
matter wave are observed when the gas is released from the lattice. If, on the other hand,
the phase of the matter wave is well defined while the number of atoms at each site fluc-
tuates, matter–wave interference effects can be observed. By changing the potential
depth of an optical lattice it has been possible to observe the Mott transition between
aMott insulator and the (“superfluid”) case of coherent matter waves exhibiting interfer-
ence. It has also been demonstrated that evaporative cooling leading to a Bose–Einstein
condensate can be done with atoms trapped in an optical lattice, without any magnetic
trapping field. In this case the evaporative cooling results from lowering the power of the
laser beams defining the lattice.

Two-slit interference and other effects of coherentmatter waves have been observed in
experiments with optical lattices and other cold-atom systems, and the new field of atom
optics is based on the wave properties of cold atoms. Atomic interferometers employing
atom–wave analogs of mirrors, gratings, and other optical elements will very likely be
used in applications such as the detection of rotations and gravitational gradients.32

Bose–Einstein condensates have been produced by trapping atoms with magnetic
fields from planar wire structures fabricated lithographically on a substrate. The small
scale (�0.1–10mm) of these structures allows strong magnetic field gradients to be pro-
duced with small currents (,1 A) and low power dissipation, and the wire patterns can
be designed to form, for instance, magnetic traps similar to the Helmholz coil quadru-
pole trap described earlier. The tight trapping results in rapid cooling and the formation
of a BEC in a second or less. The motion and positions of atoms trapped a few microns
above the surface of these structures are more controllable than in the case of MOTs in
which the trapping fields are produced by lasers and coils outside the atomic cloud. For
example, it has been demonstrated that a BEC cloud can be moved about in a prescribed
fashion on such an atom chip. Integrated atom chips including tiny lasers and readout
electronics might eventually be the basis of miniaturized sensors, atomic clocks, and
other devices.

† Atoms in which the numbers of electrons, protons, and neutrons are even (odd) integers
are bosons (fermions). Neutral atoms (number of electrons equal to the number of protons) are
therefore bosons or fermions depending on whether the number of neutrons is even or odd,
respectively. Thus, 7Li (atomic number Z ¼ 3, neutron number N ¼ 4) is a boson, whereas 6Li
(Z ¼ 3, N ¼ 3) is a fermion. It is a remarkable consequence of quantum statistics that a Bose–
Einstein condensate can be made with 7Li but not with 6Li, which differs from 7Li only in
having one less neutron in the nucleus.

While fermionic atoms cannot form BECs, they can be cooled and trapped with lasers
and magnetic fields. Techniques have been developed to control with applied fields the intera-
tomic forces in cold fermion gases in such a way that pairs of atoms behave compositely
as bosons, somewhat similar to the way coupled pairs of electrons behave as bosons in a
superconductor. †
32See, for instance, M. A. Kasevich, Science 298, 1363 (2002) for an overview of matter–wave experiments
and applications of atom interferometry.
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14.7 APPLICATIONS OF ULTRASHORT PULSES

Ultrashort laser pulses make possible an astounding degree of time resolution, and the
extremely high intensities that often characterize them are of interest for basic research
as well as for a growing number of applications. In this section brief introductions are
given to three new fields created by ultrashort laser pulses.

Time Resolution of Atomic and Molecular Processes

In the 1870s the photographer EadweardMuybridge carried out experiments on the Palo
Alto, California, farm of Leland Stanford to answer the question whether all four hooves
of a horse are off the ground at any point in its trot. Using a series of cameras whose
shutters were triggered by strings placed along a track, and later a periodic mechanical
triggering, Muybridge eventually achieved millisecond time resolution—probably the
record at the time—and found that the answer to the question was Yes.

Great progress in the resolution of short-duration events followed advances in elec-
tronics and other areas. But before femtosecond lasers33 there was no way of following
in real time such things as the vibrations of atoms in molecules or the detailed time
evolution of a chemical reaction. Chemical reactions at room temperatures typically
involve atomic or molecular velocities �103 m/s and distances �10210 m, implying
a time scale �(10210 m)/(103 m/s) ¼ 100 fs. Observation of the evolution of a reaction
therefore requires a time resolution of about 1/10�100 fs ¼ 10 fs, about 1000 times
shorter than that possible with the fastest available electronics.

However, resolution on femtosecond time scales is still possible. We saw an
example of this in Section 11.13, where we described how the durations of femto-
second laser pulses can be inferred from measurements of a field autocorrelation func-
tion. The “event” of a laser pulse is recorded via an interference of the pulse with
itself: The pulse is used to measure its own time evolution. But how can femtosecond
pulses be used to time-resolve processes occurring in and among atoms and
molecules? To illustrate how this is done, we will focus on the vibrations of a diatomic
molecule.

Recall that the potential energy function V(R) for the bonding of the atoms of a
diatomic molecule is well approximated near its minimum by a parabola, that is, by a
harmonic-oscillator potential [cf. Fig. 2.6]. The vibrational energy levels are therefore
approximately those of a harmonic oscillator [Eq. (2.3.8)]; anharmonic effects are
accounted for by formula (2.3.12), where the frequency ve characterizes the molecule
and the vibrational mode. To the extent that the vibrations are harmonic, we can picture
a diatomic molecule as two atomswhose separationR oscillates sinusoidally in timewith
a period 1/ve that is typically �10213 s.

Figure 14.22 shows potential energy functions V0(R), V1(R), and V2(R) for three elec-
tronic levels 0, 1, and 2 of a hypothetical diatomic molecule. A field of frequency npump

can induce transitions between vibrational states of electronic levels 0 and 1, and a field
of frequency nprobe can induce transitions between vibrational states of electronic levels 1
and 2, as indicated. In accordance with the Franck–Condon principle (Section 11.11),
transitions are indicated by vertical lines, i.e., they occur without a change in the

33“Femtosecond” here refers to pulse durations between roughly 1 fs and 0.1 ps ¼ 100 fs.
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interatomic separation R. Excitation to the electronic level 2 by absorption of radiation at
npump followed by absorption of radiation at nprobe can be monitored by detection of the
fluorescence accompanying transitions from 2 to some other level 3 (“laser-induced
fluorescence,” indicated by LIF in Fig. 14.22).

Suppose a laser pulse at frequency nprobe is applied after some time t following a
pulse at frequency npump. During this time the interatomic separation R of a vibrating
molecule in electronic level 1 will have changed. If the durations of the pump and
probe pulses are short compared to the vibrational period, the variation with t of the
LIF from level 2 signifies the variation of R with t: Oscillations of the interatomic
separation R are reflected in oscillations in the observed LIF signal. If, as estimated
above, the period of the molecular vibrations in electronic level 1 is 100 fs, these
vibrations can be observed in “real time” using pump and probe pulses of duration
less that 100 fs. This is the basic idea behind time-resolved studies of atomic and

hnprobe 

LIF V2 

E 

GL 

hnpump 

E
(v

i)–
E

(v
j)

V3 

V1 

V0 

R 

Figure 14.22 Time resolution of molecular vibrations using femtosecond pump and probe pulses.
The pump pulse excites a molecule to an electronic level 1 with potential energy function V1(R),
and after some time delay t the probe pulse is applied to excite the molecule to a level 2 that decays
by fluorescence to level 3. During the time t the interatomic separation R changes, so that the strength
of the fluorescence signal depends on t. The variation with t of this signal therefore reflects the vari-
ation with t of the distance between the atoms. [From M. Gruebele and A. H. Zewail, Journal of
Chemical Physics 98, 883 (1993).]
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molecular processes with femtosecond lasers: Pump pulses set the “zero” of time from
which temporal variations are determined with time-delayed probe pulses. The time
delay t between the pump and probe pulses can be varied by changing the difference
DL in their path lengths: t ¼ DL/c. A path difference of a micron, for example,
corresponds to a time delay of 3.33 fs.

Figure 14.23 shows the first reported time resolution of molecular vibrations. The
molecule in the experiments was room temperature I2, for which the vibrational
period of the electronic level “2” is known from spectroscopic studies to be � 300 fs.
The pump and probe wavelengths were 620 and 310 nm, respectively. The vibrational
period is clearly seen in the data. The amplitude of the LIF signal is modulated at a
longer period (10 ps) as a consequence of anharmonicity. On a much longer
time scale a period �600 ps is observed as a consequence of the rotation of the I2
molecule.

In our simplified discussion we have imagined that the interatomic separation R
follows a classical trajectory, when in fact it must be described statistically using a
quantum-mechanical wave function C(R, t): The probability that R is between R
and R þ dR (dR
 R) at time t is jc(R, t)j2 dR. The lowest energy (v ¼ 0) vibrational
stationary state (or eigenstate), for example, is described by a time-independent wave
function whose squared modulus in the harmonic-oscillator approximation is a
Gaussian function of R. (Recall the remarks near the end of Section 11.10.) This is
indicated for the electronic level with potential curve V0(R) in Fig. 14.22. The band-
width of the pump pulse results in nonvanishing occupation probabilities for a range
of vibrational eigenstates of the electronic level 1, as also indicated in Fig. 14.22. To
simplify matters, let us suppose that only two eigenstates, with vibrational quantum
numbers v and v þ 1 and wave functions fv(R) and fvþ1(R), have significant
excitation probabilities, so that the wave function describing the vibrational state of
the molecule in electronic level 1 at the time t ¼ 0 immediately after irradiation by
the pump pulse is

c(R, 0) ¼ av(0)fv(R)þ avþ1(0)fvþ1(R): (14:7:1)

Experimental–molecular iodine Theoretical–two vibrational motions

300 fs 300 fs

Time delay (fs)Time delay (fs)

5 ps

(a) (b)

Figure 14.23 (a) Femtosecond pump-probe data showing vibrations of molecular iodine with an
oscillation period of 300 fs. The much longer oscillation period of 10 ps is due to the anharmonicity
of the vibrations. (b) Calculated signal with the two principal oscillation periods seen in (a). [From
M. Dantus, R. M. Bowman, and A. H. Zewail, Nature 343, 737 (1990).]
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The probability amplitudes satisfy the time-dependent Schrödinger equations

ih� _av(t) ¼ Evav(t) and ih� _avþ1(t) ¼ Evþ1avþ1(t) (14:7:2)

in the absence of any perturbation of the molecule [cf. Eq. (3.A.7)], so that av(t) ¼
av(0) exp(�iEvt=h� ), avþ1(t) ¼ avþ1(0) exp(�iEvþ1t=h� ), and the vibrational wave func-
tion is

c(R, t) ¼ av(0)e
�iEvt=h�fv(R)þ avþ1e�iEvþ1t=h�fvþ1(R) (14:7:3)

at a time t after irradiation of themolecule by the pump pulse and before irradiation by the
probe pulse. The probability distribution for the interatomic separation R is therefore

jc(R, t)j2 ¼ jav(0)j2jfv(R)j2 þ javþ1(0)j2jfvþ1(0)j2

þ 2Re a�vþ1(0)av(0)f
�
vþ1(R)fv(R)e

i[Evþ1�Ev]t=h�
h i

: (14:7:4)

This oscillates in time at the frequency (Evþ1 2 Ev)/h which, in the harmonic-oscillator
approximation, is just cve [Eq. (2.3.12)]. This oscillatory behavior of the probability
distribution for R is indicated for the potential curve V1(R) in Fig. 14.22.

Now consider the probability amplitude for the transition to a vibrational eigenstate v0
of electronic level 2 when the probe pulse is applied at a time t after the pump pulse.
Assuming it is small enough for lowest-order perturbation theory to be accurate, this
amplitude is proportional to

ð1
�1

f�v0 (R)Dc(R, t) dR ¼ av(0)e
�iEvt=h�

ð1
�1

f�v0(R)Dfv(R) dR

þ avþ1(0)e�iEvþ1t=h�
ð1
�1

f�v0 (R)Dfvþ1(R) dR

;Dv0,vav(0)e
�iEvt=h� þ Dv0,vþ1avþ1(0)e�iEvþ1t=h�, (14:7:5)

wherefv0(R) is thewave function for the vibrational eigenstate v
0 for the potential energy

curve V2(R) and D is an electric dipole moment operator that depends on the polariza-
tion of the probe field. The probability amplitude will of course also depend on the
electric field of the probe; this dependence can be ignored for our purpose here,
which is simply to note that the LIF signal intensity of interest, which is proportional
to j Ð1�1 f�v0 (R)Dc(R, t) dRj2 for a pump-probe delay t, will, like (14.7.4), oscillate at
the frequency (Evþ1 2 Ev)/h ffi cve. Because the vibrational states are approximately
equally spaced, this conclusion holds also if more than two vibrational states of the elec-
tronic level 1 are populated by the pump pulse. The (anharmonic) deviations from equal
spacings result in additional frequency components in the LIF signal.

Quantum mechanics therefore predicts the same sort of LIF signal intensity expected
from a classical trajectory picture of molecular vibrations: The signal oscillates with
the pump-probe delay t at principally the vibrational frequency cve, with additional
frequency components due to anharmonicity. The wave function (14.7.3) depends on
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the probability amplitudes [av(t) and avþ1(t)] of the two states described by fv(R) and
fvþ1(R) and not just their occupation probabilities [jav(t)j2 and javþ1(t)j2]. In other
words, it is a coherent superposition of two states, just as the wave function (9.3.3) is
a coherent superposition of the states of an atom modeled as a two-state system. In gen-
eral, the broad bandwidth of a femtosecond pulse, together with the approximately equal
spacing of vibrational levels, results in a so-called coherent wave packet:

c(R, t) ¼
X1
v¼0

av(t)fv(R): (14:7:6)

The number of vibrational levels with significant probability amplitudes av(t) is typi-
cally �5–10 in studies of the type considered here. Of course, a more realistic theory
requires that rotational energy levels be included. Since rotational periods are
typically �103 times larger than vibrational periods, an effect of rotations is to introduce
periodicities on a much longer time scale than is shown in Fig. 14.23.

Fourier analysis of time series such as the data plotted in Fig. 14.23 can be used to
extract spectroscopic information about molecular vibrations and rotations, i.e., to deter-
mine vibrational and rotational constants. This femtosecond wave packet spectroscopy
can be performed on molecules in cells as well as in beams, since collision times are
so much longer than the pulse durations and delay times (Problem 14.17).

Femtosecond lasers have made it possible to follow the movements of atoms in
chemical processes, creating the field of femtochemistry. For example, the breaking of
the chemical bond between two atoms of a diatomic molecule has been time-resolved
by the femtosecond pump-probe technique. A pump pulse creates a coherent wave
packet that oscillates within the potential energy well characterizing the bond. If
npump is sufficiently large, the outer wings of the wave packet can escape the well,
that is, the molecule can dissociate. If the time-delayed probe pulse is at the frequency
for which there is absorption when the molecules are closest together, for instance, an
LIF signal oscillates as the molecule vibrates, but the oscillation is damped because
of dissociation. Fluorescence from a dissociation product excited by a laser at the appro-
priate wavelength can also track the dissociation in real time.

The femtosecond pump-probe method has been employed in studies of subpicose-
cond processes in liquids and solids as well as in gases. It has spawned another field,
femtobiology, based on time-resolved studies of phenomena such as vision and photo-
synthesis at the molecular level.

With the advent of attosecond pulses (see below) it has become possible to observe
phenomena on a time scale characterizing the motion of atomic electrons.34 Because
electrons have a much smaller mass than atoms, their movements can be expected,
generally speaking, to be faster and therefore to be significant on much shorter time
scales; the relevant time scale for an atomic electron can be roughly estimated using
the Bohr model, according to which the orbital period of the electron in the ground
state of hydrogen is about 150 attoseconds (as). With pump-probe techniques it is
even possible to follow the oscillations in time of the electric field of a femtosecond opti-
cal pulse. The details of such measurements are complicated, but the basic concept can

34See, for instance, R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer,
A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature 427,
817 (2004).
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be simply illustrated as in Fig. 14.24. The arrows in the lower left part of the figure
indicate the electric field E(t) of a few-cycle, linearly polarized femtosecond pulse
whose oscillations are to be measured. This field is applied at a time t after the time
t ¼ 0 at which an extreme-ultraviolet (XUV) attosecond “burst” of radiation photo-
ionizes an atom to produce a free electron. The field E(t) does not cause any significant
ionization of the atom, but it does impart to the electron a momentum impulse

Dp(t) ¼ e

ð1
t
E(t0) dt0: (14:7:7)

Depending on the sign of this impulse along the direction pointing to the electron detec-
tor in Fig. 14.24, the time of flight of the electron is either increased or decreased; in
other words, time-of-flight (TOF) measurements on the electrons provide information
about the amplitude and phase of E(t), and repeated TOF measurements with identical
pulses and different time delays then allow the temporal variation of E(t) to be mapped
out (Fig. 14.25). Thus, for two different times differing by a time dt much smaller than
the period of the femtosecond field oscillations,

Dp t � 1
2
dt

� �
� Dp t þ 1

2
dt

� �
¼ e

ðtþ1
2dt

t�1
2dt

E(t0) dt0 ffi edtE(t), (14:7:8)

Field-induced change
of electron momentum, p(t)

Laser light
field, EL(t)

XUV
pulse

Electron
detector

Electrons

Atoms

time, t

Figure 14.24 Attosecond burst of radiation (XUV pulse) photoionizes an atom, and a time-delayed
femtosecond pulse then imparts a momentum impulse to the freed electron, affecting its time of flight to
a detector. By repeating the TOF measurements with identical pulses and different time delays, the
oscillations of the electric field of the femtosecond pulse can be determined. [From E. Goulielmakis,
M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh,
U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Science 305, 1267 (2004).]
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or

E(t) ffi Dp t � 1
2dt

� �� Dp t þ 1
2dt

� �
edt

, (14:7:9)

and E(t) can be determined by TOF measurements in which t is varied over the duration
of the femtosecond pulse.

† Among the highly nontrivial details ignored in our discussion is the need for precise timing
between the attosecond and femtosecond pulses. For the data shown in Fig. 14.25, the ionizing
pulses were 250-as bursts of 13.4-nm (93-eV) XUV radiation produced via harmonic generation
with 0.5-mJ, 750-nm, �5-fs Ti : sapphire laser pulses incident on a neon target (see below). The
attosecond and femtosecond pulses then propagated along the same direction to a second neon
target where the photoionization occurs. This second neon target, a ,50-mm jet, was at the
focus of a specially manufactured spherical mirror, such that the focused femtosecond pulse inci-
dent on the jet had a diameter .60mm. Because of their much longer wavelengths, the femto-
second pulses diverged more in their propagation to the mirror, spreading over a diameter on the
mirror of about 25 mm compared to a much smaller spot for the attosecond pulses. Piezoelectric
adjustment of the movable central part of the mirror with nanometer precision allowed the time
delay between the femtosecond and attosecond pulses incident on the second neon target to be
controlled with attosecond precision [(1 nm)/c ¼ 3.3 as]. †

High-Harmonic Generation

In Chapter 10 we explained various nonlinear optical phenomena by expanding the
polarization P in powers of the electric field strength. As remarked at the end of that
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Figure 14.25 Electric field oscillations of a few-cycle femtosecond pulse, determined from electron
time-of-flight data. [From E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer,
A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz,
Science 305, 1267 (2004).]
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chapter, this perturbative approach cannot be usefully applied when, for instance, the
radiation is so intense that many harmonics of the incident radiation are generated. In
this regime of “extreme nonlinear optics” the field so strongly affects an atom that it
is anything but a small perturbation.

The electric fields resulting from mode locking and chirped pulse amplification can
approach or exceed the fields acting on atomic electrons (Section 11.13). For the hydro-
gen atom, for example, the electric field at the electron is about 5�109 V/cm; a laser
with this electric field strength would have an intensity of about 3�1016 W/cm2,
which is smaller than the intensities obtainable by mode-locking and CPA techniques
(Problem 11.9). Similarly the energies of photons that can be created by harmonic gen-
eration can exceed the binding energies of atomic electrons, for example, the 13.6-eV
ionization energy of the hydrogen atom. For this reason photons created in high-
harmonic generation are often characterized in terms of energies in electron volts
rather than their associated wavelengths or frequencies: near-IR to optical wavelengths
correspond to �1–2 eV (�1200–600 nm), XUV wavelengths to �10–100 eV
(�120–12 nm), and soft X rays are characterized by photon energies up to �1 keV
(�1 nm). For a Ti : sapphire laser at a wavelength of 800 nm, by comparison, the
photon energy is about 1.5 eV.

It is not surprising that an extremely intense field can generate high-harmonic radi-
ation, given that the response of matter to high-intensity radiation is nonlinear
(Section 10.1 and Problem 10.1). The electric field from an atom is proportional to
d2p/dt2 in the radiation zone, where p(t) is the induced electric dipole moment.
Integrating the equations determining p(t) in the model of a two-state atom in a field
of frequency v, for example, and then computing the Fourier transform S(V) of the
field radiated by p(t), one finds for sufficiently high intensities that S(V) has peaks at
harmonics V ¼ Nv for a large set of odd integers N. By performing such an exercise,
one can also demonstrate the inefficacy of an approach based on a perturbative expan-
sion of p(t) in powers of the electric field.

High-harmonic generation (HHG) has most often been achieved by focusing laser
pulses onto a small cell or jet of atoms with a high ionization potential, i.e., an inert
gas. Figure 14.26 shows an HHG spectrum measured in one of the earliest such exper-
iments. The basic features of this harmonic distribution have been amply confirmed in
many later experiments: There is a steep decline in the intensity of the first few harmo-
nics, followed by a plateau of roughly comparable intensities and then a sharp cutoff
beyond which no higher harmonics are observed. Note also that only odd harmonics
appear, as expected from inversion symmetry (Chapter 10).

The development of Ti : sapphire systems yielding extremely intense pulses has
greatly extended the range of HHG photon energies, so much so that compact femto-
second laser sources are now used to generate coherent (laserlike) XUV and soft
X-ray radiation for various applications. The photon energies are limited by the cutoff
feature of HHG spectra, e.g., N ¼ 33 in Fig. 14.26. Experimental results have been
consistent with the following “universal” cutoff, i.e., the largest photon energy
achievable by HHG in a gas of atoms with ionization potential Ip:

Emax ¼ Ip þ 3:17Up, (14:7:10)

where Up is the ponderomotive energy, defined as e2E2
0=4mv

2, where E0 is the electric
field strength of the laser radiation at the fundamental (angular) frequencyv and e andm
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are the electron charge and mass, respectively. Up is the cycle-averaged “quiver energy”
of an electron in an electric field E0 cos vt:

m€x ¼ eE0 cosvt, v(t) ¼ _x(t) ¼ eE0

mv
sinvt,

1
2
mv2(t) ¼ e2E2

0

2mv2
sin2 vt,

Up ;
e2E2

0

4mv2
¼ 0:93�10�13Il2 eV,

(14:7:11)

where I (W/cm2) is the intensity and l (mm) is the wavelength of the presumed
monochromatic field. The relation (14.7.10) has a surprisingly simple explanation, as
follows.35

At the high intensities needed for HHG we can expect ionization. It is not necessary
for our purposes to delve into the quantum theory of the ionization process; in fact we
will describe the freed electron using classical mechanics, assuming that at the instant
ti at which ionization occurs, the electron is momentarily at rest at the position x ¼ 0
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Figure 14.26 Distribution of harmonics in an early experiment on high-harmonic generation. The
harmonics were generated when 3 � 1013 W/cm2 mode-locked Nd : YAG pulses were focused onto
a 15-Torr, �1-mm argon jet. 3s, 3p, and 3pþ indicate ionization energies for levels of Ar and Arþ.
[From X. F. Li, A. L’Huillier, M. Ferray, L. A. Lompré, and G. Mainfray, Physical Review A 39,
5751 (1989).]

35K. C. Kulander, K. J. Schafer, and J. L. Krause, in Super-Intense Laser-Atom Physics, eds. B. Piraux, A.
L’Huillier, and K. Rz̧ażewski (Plenum, New York, 1993), p. 106; P. B. Corkum, Physical Review Letters 71,
1994 (1993).
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of the ion in a field E0 cosvt linearly polarized along the x direction. Ignoring any effect
of the parent ion, we describe the electron’s motion at times t. ti by the classical
Newton equation, m€x ¼ eE0 cosvt, which gives

v(t, ti) ¼ _x(t, ti) ¼ eE0

mv
(sinvt � sinvti), (14:7:12a)

x(t, ti) ¼ � eE0

mv2
[cosvt � cosvti þ v(t � ti) sinvti] (14:7:12b)

for the chosen initial conditions. Equation (14.7.12b) can be solved for the time tf (.ti)
at which an electron freed from the atom at time ti and “quivering” in the field can collide
with the ion, that is, the time tf for which x(tf, ti) ¼ 0. The velocity at which the electron
strikes the ion in this classical model is v(tf, ti), and the kinetic energy is E(tf , ti) ¼
1
2mv

2(tf , ti). Thus, for any particular ionization time ti we can calculate the time tf at
which the freed electron can “recollide” with the ion, and from that the electron’s kinetic
energy E(tf, ti) at the moment of impact (Problem 14.19). Figure 14.27 shows numerical
results for E(tf, ti) obtained in this way for values of vti between 0 and 2p. For vti such
that E(tf, ti) ¼ 0 in the figure the freed electron never returns to the ion.36

The largest possible value of E(tf, ti) is 3.17Up, which is found to occur at
vti ffi 0:30 rad ¼ 178; the corresponding value of tf is given by vtf ffi 4:45 rad. Thus,
tf 2 ti ¼ (4.452 0.30)/v ¼ 1.8 fs for an 800-nm Ti : sapphire pulse, compared with
the 2.7-fs period of a monochromatic wave at 800 nm. In reality, of course, the electric
field is not periodic, and during a few-cycle pulse, for instance, the electron can return to
the ion a few times at most. The main point for our purposes is that in an initial recolli-
sion the electron’s kinetic energy cannot exceed 3.17Up. For a gas of atoms in which
these ionizations and recollisions occur, the kinetic energies vary over the distribution
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Figure 14.27 Numerical results from Eqs. (14.7.12) for the kinetic energy of an electron at the
moment it returns to the parent ion after ionization at time ti. The largest kinetic energy the electron
can have when it hits the ion is computed to be 3.17Up.

36We are ignoring any motion of the electron transverse to the direction of field polarization. Such motion
will reduce the number of electrons that actually recollide with their parent ions.
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of ionization times, but the kinetic energy with which any electron can hit its parent ion
cannot exceed Emax ¼ 3.17Up.

We have avoided any analysis of the ionization process, and likewise we will not ana-
lyze in any detail what happens when the electron collides with the ion. It can scatter off
the ion and in so doing absorb energy from the field, or it can lose energy by releasing
another electron from the ion by collisional ionization. It can also lose energy by radi-
ation since together with the ion it forms a dipole driven by the laser field; based on the
remarks above, any emitted photons must be at odd harmonics of the field. The classical
model, of course, can only be taken so far, but it suggests that the largest possible energy
that the electron could losewhenever it recollides with the ion is Emax þ Ip, this being the
largest possible energy lost when the electron is recaptured by the ion and falls into the
ground atomic level of energy 2Ip from which it was freed in the first place. Equating
this largest possible energy loss to the largest possible energy of a radiated photon, we
arrive at the HHG cutoff relation (14.7.10). Electrons recolliding with their ions with
kinetic energies smaller than Emax result in radiation at lower harmonics.

Further support for this model of high-harmonic generation may be found in its pre-
dictions regarding the laser polarization, which we have assumed to be linear. If wewrite
the Newton equation of motion for an ionized electron in a circularly polarized field, we
find that the electron never returns to the ion, in which case there should be no HHG. In
fact it is found experimentally that high-harmonic intensities decrease very rapidly with
increasing polarization ellipticity of the laser field, which is 0 for linear polarization and
1 for circular.

† The model just described is called the three-step model: (1) an atom is ionized by the field, (2)
the freed electron is driven back into the ion by the field, and (3) an electron returning to the ion
emits a high-harmonic photon. The ionization is assumed to occur by a tunneling process that is
best understood in the limiting case of a static electric field E. In this case an electron in the hydro-
gen atom, for example, has a total potential energy�e2=r þ eEz if the applied static field is along
the z direction. Thus, the applied field effectively lowers the “Coulomb barrier” confining the
electron, allowing it to escape (ionize) by quantummechanical tunneling; the stronger the applied
field, the more the barrier is lowered and the greater is the rate of tunneling.

Although the applied field in the three-step model for HHG is certainly not static, the assump-
tion that ionization occurs by tunneling appears to be a good approximation if the field frequency
is not too large. This condition may be expressed in terms of the Keldysh parameter defined as

g ¼
ffiffiffiffiffiffiffiffi
Ip
2Up

s
¼ v

vt
, (14:7:13)

where vt ¼ eE0=
ffiffiffiffiffiffiffiffiffiffi
2mIp

p
. g delineates approximately between ionization by tunneling and by a

multiphoton ionization process, tunneling dominating if g , 1. The assumption of tunneling ion-
ization in the three-step model is implicit in the initial condition that the electron velocity is zero at
time ti, since in the case of tunneling ionization, as opposed to multiphoton ionization, the initial
kinetic energy of the electron can be assumed to be small. In the case of tunneling, furthermore,
the ionization typically occurs in a short time compared to the field period, and the amplitude of
the electron quiver is larger than an atomic dimension (Problem 14.19). For the ground state of the
hydrogen atom, for example, the rate of tunneling ionization in the static-field approximation is
given by quantum theory as

Rion(t) ¼ 4vat
Eat

E(t)
exp � 2

3
Eat

E(t)

� 
, (14:7:14)
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where vat ¼ (1=4pe0)2me4=h�3 ¼ 4:1�1016 s�1 and Eat ¼ (1=4pe0)e=a20 ¼ 5�109 V=cm is the
electric field on the electron (a0 ¼ Bohr radius). Note the exponential sensitivity of the tunneling
rate on the electric field strength E(t). For a multiphoton ionization process involving the absorp-
tion of q photons, by contrast, the ionization rate is approximately proportional to E2q

0 .
For a linearly polarized field E(t) ¼ E0 cosvt the cycle-averaged tunneling ionization rate is

Rion ¼ 1
p

ðp=2
�p=2

Rion(t)d(vt) ¼ 4vat

p

1
F

ðp=2
�p=2

1
cos x

e�2=(3Fcosx) dx, (14:7:15)

where F ; E0/Eat (.0). Since the integrand is strongly peaked around x ¼ 0, we make the
approximation 1=cos x ffi 1=(1� x2=2) ffi 1þ x2=2 in the exponential and replace cos x by 1 in
the prefactor:

Rion � 4vat

p

1
F

ðp=2
�p=2

e�(2=3F)(1þx
2=2) dx ¼ 4vat

p

2
F
e�2=3F

ðp=2
0

e�x
2=3F dx

¼ 4vat

p

2
F
e�2=3F

ffiffiffiffiffiffi
3F
p ðp=(2 ffiffiffiffi3Fp )

0
e�u

2
du ffi 4vat

p

2
F
e�2=3F

ffiffiffiffiffiffi
3F
p ð1

0
e�u

2
du

¼ 4vat

ffiffiffiffiffiffiffi
3
pF

r
e�2=3F ¼

ffiffiffiffiffiffi
3F
p

r
Rstatic
ion , (14:7:16)

where Rstatic
ion ¼ (4vat=F) exp �2=3Fð Þ is the ionization rate in a static field of strength E0. We have

assumed that F 
 1, as is the case in most situations of interest, allowing us to replace the upper
integration limit by 1 in the second line.

For circularly polarized light the magnitude of the electric field is independent of time, and the
tunneling ionization rate is the same as that for a static field.

The calculation of the HHG spectrum and cutoff in the three-step model is based on the
expression [cf. Eq. (3.A.13)]

p(t) ¼
ð
d3xc�(x, t)exc(x, t) (14:7:17)

for the expectation value of the electric dipole moment when an atomic electron is described by a
wave function c(x, t). The electron in a strong field can either remain in the initial atomic ground
state with wave function cg(x, t), or it can be in a continuum state with wave function cc(x, t) if
ionization occurs. If it is assumed that the occupation probabilities of excited bound states are
negligible, c(x, t) in Eq. (14.7.17) takes the form c(x, t) ¼ agcg(x, t) þ accc(x, t), where jagj2
and jacj2 are, respectively, the probabilities that the electron is in the ground state or a continuum
state. Assuming furthermore that the ionization probability is small, or in other words that the
ground state is negligibly depleted, the dipole moment (14.7.17) is determined approximately
by the real part of

Ð
d3x c�g(x, t)excc(x, t), and this expression can be evaluated “semiclassically”

using results of the classical model of electron–ion recollisions.35 †

According to the three-step model, electrons ionized by the laser field at different
times recollide after different times with their parent ions, and their different kinetic
energies upon recollision result in a distribution of radiated photon energies over the
odd harmonics of the laser. The HHG radiation is assumed to be sufficiently weak
that it does not produce any significant ionization. Each electron that does recollide
with its parent ion does so by first being pulled away from the ion by the field and
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then being forced back into the ion, the process occurring over a half-cycle of the field.
After each half-cycle of the laser field, therefore, there is a burst of radiation whose spec-
trum consists of all the harmonics up to the cutoff photon energy, and whose duration is
much shorter than a field cycle.

The cutoff relation (14.7.10) is an approximate, theoretical upper limit to the HHG
photon energy, given the ionization potential and the laser intensity and frequency. In
practice, the observed cutoff energy is generally smaller than that predicted by
(14.7.10) for several reasons.37 One is that at sufficiently high intensities the ground
state is fully depleted and all the atoms are ionized by the leading edge of the laser
pulse; the intensity I appearing in (14.7.11) is then replaced by a smaller “saturation”
intensity Is that can be estimated from quantum theoretical calculations of ionization
rates. Figure 14.28 shows a comparison of experimentally observed HHG photon
cutoff energies to the theoretical cutoff given by (14.7.10) with calculated values of
Is used for I in the expression for the ponderomotive energy. In these experiments
800-nm, 26-fs pulses from a Ti : sapphire laser system were focused onto gas jets from
1-mm-diameter nozzles, such that the gas pressures were �8 Torr in the �100-mm
focal region. The peak intensity of the 20-mJ laser pulses was �6�1015 W/cm2.

The three-step model applies to a single atom, and as such does not account for propa-
gation effects such as phase mismatching. Furthermore, the intensity used to estimate the
cutoff energy might well be higher than that in the medium under conditions of signifi-
cant ionization, resulting in a smaller than calculated cutoff energy: The refractive index
of a plasma, given approximately by Eq. (3.14.13), decreases with electron density,
which is largest where the field intensity is greatest and causes the most ionization.
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Figure 14.28 Experiment vs. theory for the cutoff HHG photon energies in inert gases. Note the
logarithmic scale. [From Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn,
Physical Review Letters 79, 2967 (1997).]

37See, for instance, K. Miyazaki and H. Takada, Physical Review A 52, 3007 (1995).
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Therefore, a beam with a Gaussian transverse spatial profile, for example, will experi-
ence a smaller refractive index near the beam axis and can undergo self-defocusing as
it ionizes atoms in its path. The good agreement between the experimental results
shown in Fig. 14.28 with the predictions based on the single-atom cutoff relation
(14.7.10) was attributed in part to the low gas density; at higher densities, where propa-
gation effects are more significant, the cutoff energies were smaller, as expected.

Thus far, we have considered HHGmainly in terms of the frequencies generated, and
have not addressed the question of the temporal nature of the HHG pulses aside from
concluding from the three-step model that their duration should be extremely short.
Their short wavelength, broad spectral width, and low intensities make them unamen-
able to the standard autocorrelation techniques described in Section 11.13, and studies
of their temporal characteristics became possible only relatively recently. It is now well
established that HHG produces attosecond pulse trains, and, as discussed below, can
even produce the single attosecond pulses desired for time-resolved studies of subfem-
tosecond phenomena [cf. Figs. 14.23 and 14.24].

The very broad frequency spectrum associated with high-harmonic generation
immediately suggests the possibility of producing attosecond pulses. Recall from our
discussion of mode locking in Section 6.8 that ifN phase-locked fields with equal ampli-
tudes and with angular frequencies separated byD are superposed, the resulting field is a
train of pulses separated in time by T ¼ 2p/D, each pulse having a duration t ¼ T/N. In
HHG, where only odd harmonics of the fundamental (laser) frequency v appear, we
have frequencies separated by 2v, suggesting that the generation of N harmonics
might result in a pulse train with T ¼ p/v and t ¼ p/Nv. For example, 100 harmonics
of 880-nm radiation might form a train of 15-as pulses separated by 1.5 fs. However, the
equal spacing of the high harmonics is by no means sufficient to make an attosecond
pulse: The harmonics must also be phase-locked.

Quantum mechanical calculations reveal that the harmonics generated by a single
atom are not phase-locked. It is found that, in the language of the semiclassical three-
step model, the main contribution to each harmonic comes from two electron trajectories
that correspond to different ionization and recollision times but that recollidewith the ion
with the same kinetic energy. Based on their differences in ionization and recollision
times, these two types of trajectory are referred to as “long” and “short.” The two types
of trajectory give rise to single-atom HHG emission in the form of a pulse train in which
there are mainly two pulses per half-cycle (T ¼ p/v) of the laser field. However, non-
linear propagation effects in a gas act in such a way that the harmonics are generated by
either the long or the short trajectories, depending on the focusing geometry, and the
harmonics are phase-locked. The HHG emission is then in the form of a train of extre-
mely short pulses, one per half-cycle.38 Experimental results are consistent with these
predictions. It has been found, for instance, that the 5 odd harmonics 11–19 generated
by 40-fs Ti : sapphire laser pulses (T ¼ p/v ¼ 1.35 fs) in argon are phase-locked and
can combine to produce trains of 250-as pulses separated by 1.35 fs.39

Pump-probe time resolution of subfemtosecond phenomena, as discussed in the pre-
ceding subsection, generally requires single attosecond pulses rather than pulse trains.
Pulse pickers that select a single pulse (or a sequence of pulses to produce a train with

38P. Antoine, A. L’Huillier, and M. Lewenstein, Physical Review Letters 77, 1234 (1996).
39P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H. G. Muller, and P. Agostini, Science
292, 1689 (2001).
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a smaller repetition rate) from a mode-locked train of picosecond or femtosecond pulses
typically employ a Pockels cell between two crossed polarizers, much like a light modu-
lator (Fig. 5.19). The repetition rate of attosecond pulses in HHG, however, is far too
fast for any electronics that can switch a Pockels cell. Single attosecond pulses have
been produced by a polarization gating technique that relies on the strong dependence
of HHG on the laser ellipticity, as noted earlier; the idea, basically, is to form a laser
pulse with a time-dependent ellipticity, such that HHG can occur only within a
narrow time window. Here we will briefly describe single attosecond pulse generation
in the particular case of a few-cycle laser pulse. Based on the three-step model in
which electrons emit short bursts of radiation only every half-cycle of the field, a
few-cycle laser pulse can be expected to produce at most only a few pulses of high-
harmonic radiation.

For the electric field of a linearly polarized laser pulse used to generate high harmo-
nics we write

E(t) ¼ E(t) cos(vt þ f): (14:7:18)

Usually, we can make the assumption that the envelope E(t) is slowly varying in time
compared to the carrier wave cos(vt þ f). Since v � 1015 s21 at optical frequencies,
this is a valid approximation for pulses in which E(t) varies negligibly on a femtosecond
time scale, for example, for picosecond pulses; for such pulses the constant phase f in
(14.7.18) is unimportant. We used this approximation in Chapter 9, for instance, to
formulate the theory of resonant pulse propagation based on the Maxwell–Bloch
equations. For pulses lasting only a few cycles of the carrier wave, this approximation
of a slowly varying envelope breaks down. Moreover, the phase f for such pulses
plays an important role in HHG, which depends sensitively on how the electric field
varies over the duration of the laser pulse. In particular, different half-cycles of the
field have different electric field amplitudes (Fig. 14.29) and will therefore lead to
different peak (cutoff) photon energies.

Consider the example of a Gaussian pulse envelope:

E(t) ¼ E0e
�t2=t2 cos (vt þ f), (14:7:19)
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Figure 14.29 Carrier-envelope phase f of a few-cycle pulse gives the phase difference between the
peak of the pulse envelope and the nearest peak of the carrier wave.
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for a pulse duration amounting to just a few cycles (Fig. 14.29). The pulse envelope
peaks at t ¼ 0, which coincides with the peak modulus of the electric field only if
f ¼ 0, where f, the carrier-envelope phase (CEP), specifies the difference in time
from the peak of the envelope to the nearest peak of the carrier. As illustrated in
Fig. 14.30, a few-cycle laser pulse with zero carrier-envelope phase results in a single
burst of radiation at the peak photon energy, whereas a nonvanishing CEP can produce
two. Techniques have been developed to measure and control the carrier-envelope phase
of few-cycle laser pulses and thereby to reliably produce single attosecond pulses by
high-harmonic generation.40

As discussed in Chapter 10, harmonic generation is generally very inefficient without
phase matching. Gaseous media are nearly always used for high-harmonic generation

ti
Time

ti1 ti 2
Time

(a)

(b)

Figure 14.30 Dependence of peak-energy high-harmonic generation on the carrier-envelope phase
of a few-cycle pulse. The peak pulse intensity is large enough to give rise to tunneling ionization and
therefore bursts of high-harmonic radiation at times near that at which the peak of the pulse envelope
occurs. In (a) the CEP is zero. Atoms undergo tunneling ionization at a time ti, and an electron freed at
this time, as indicated by the solid arrow, recollides with the parent ion half a field cycle later, emitting a
burst of radiation according to the three-step model. In (b) the CEP is nonzero, and tunneling ionization
of atoms is indicated at the two times ti1 and ti2. The radiation that occurs half a field cycle after ion-
ization now results in two bursts of radiation. In each case the electron “trajectories” shown are those for
which the electron recolliding with the ion experiences the strongest field half-cycle, resulting in bursts
of radiation at the peak photon energy.

40See C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, and J. W. G. Tisch,
Nature Physics 3, 52 (2007) and references therein.
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in order to minimize absorption, and the ionization that accompanies the process results
in large phase mismatches between the fundamental and the co-propagating harmonics
due to the plasma dispersion. Since gases are not birefringent, they do not permit angle
phase matching based on birefringence. It has been demonstrated, however, that HHG
conversion efficiencies can be subtantially increased by a quasi-phase-matching in
which counterpropagating Ti : sapphire pulses in a waveguide containing an inert gas
modulate the field in such a way that phase matching is effectively realized periodically
along the waveguide.41 Enhancement of HHG conversion efficiencies will have import-
ant consequences for attophysics and in a broad range of applications requiring coherent
XUV and soft X-ray sources.

Frequency Combs and Optical Frequency Metrology

Throughout its history optical spectroscopy has been based on measurements of wave-
lengths rather than frequencies. Wavefront distortions result in different path lengths
for different parts of a wave, limiting the most precise measurements to relative accu-
racies (Dl/l) of about 10210. Measurements of frequencies could be far more accurate
since, as noted in Section 6.8, atomic clocks allow measurements of time to relative
accuracies on the order of 10215. While frequency counters allow measurements of
microwave frequencies as high as a few tens of gigahertz, no available electronics can
count the �1015 cycles per second of optical waves. This problem was circumvented
in the late 1990s with the use of frequency combs, allowing measurements of absolute
optical frequencies (optical frequency metrology). By an “absolute” frequency (or an
absolute measurement of frequency) we mean one that involves the second as defined
by the cesium clock transition (Section 14.3); absolute frequencies are measured by
referencing them to the oscillations of this transition. Since optical frequencies
are �105 times larger than that of the clock transition, measurements of absolute optical
frequencies require that a very large frequency gap must somehow be bridged from the
microwave to the optical.

Recall that the output of a mode-locked laser consists of a continuous, periodic
train of pulses (Figs. 6.9 and 6.10). The spectrum of the pulse train is a comb of frequen-
cies, such that the (angular-frequency) spacing vr between the “teeth” of the comb is
equal to 2p/T, where T is the spacing in time between pulses [Fig. 6.8 and
Eq. (6.8.5b)]. vr depends on the length of the laser cavity and is in the radio-frequency
range, typically 107–109 s21. The frequency combs used in optical frequency metro-
logy are obtained from mode-locked lasers; for reasons discussed below, the comb
frequencies are

vn ¼ nvr þ v0, (14:7:20)

where v0, like vr, is very much smaller than an optical frequency; n is a positive integer,
typically �106 (Section 6.8). This formula, as well as an expression for the “offset”
frequency v0, will be derived below. We will also describe how v0 can be measured.

A frequency comb acts as a “ruler” for the measurement of optical frequencies. To
determine the absolute frequencyvL of a single-mode laser, for example, a measurement

41X. Zhang, A. L. Lytle, T. Popmintchev, X. B. Zhou, H. C. Kapteyn, M.M.Murnane, and O. Cohen,Nature
Physics 3, 270 (2007).
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can be made of the signal detected by a photodetector when the single-mode laser and
the mode-locked laser fields are superposed (heterodyned). As can be seen from
Fig. 14.31, the rf signal will peak not only at the comb frequencies but also at beat fre-
quencies determined by the difference vL2nvr2v0 between the laser frequency and
the nearest comb frequency (Problem 14.21). Sincevr andv0 are known, n can be deter-
mined ifvL is known beforehand (e.g., by having measured thewavelength with a wave-
meter) to within +vr/4; this yields vL. If such information about vL is not known
beforehand, n can be determined by varying the comb spacing vr of the mode-locked
laser. The frequency comb “ruler” can be applied in other ways. For example, the
single-mode laser radiation can be frequency doubled, and the difference frequencies
v1¼vL2nvr2v0 and v2¼2vL22nvr2v0 between vL and v2L and the nth and
2nth comb lines can be measured by heterodyning. Again n can be determined if vL

is known beforehand to within +vr/4, or by “dithering” vr if it is not. Then vL is
given in terms of the known quantities vr, v1, v2 and n by the relation v22v1 ¼
vL2nvr. The measured frequencies are “absolute” when they are referenced to a fre-
quency standard, for example, when cycles per second are counted with a cesium
atomic clock. It is the fact that n is very large (�106) that allows the “bridging of the
gap” between rf and optical frequencies.

Measurements of absolute optical transition frequencies have been made by locking
the frequency of a laser to a transition (Section 5.13) and then measuring the absolute
frequency of the laser by the frequency comb technique. Such methods have been
used to measure the 1S–2S transition of the hydrogen atom, for example, to a few
parts in 1014. These ultra-high-precision techniques are valuable not only for spectro-
scopy and for applications including atomic clocks and navigation, but also for basic
research in quantum electrodynamics and in determining whether the fundamental
constants of nature might actually change over time.

To explain the form (14.7.20) of the frequency comb of a mode-locked laser, consider
the electric field E(t) from the laser incident on a photodiode; E(t) is a sum of pulses
separated by a time T ¼ 1/vr. Assuming the pulses are identical and described by an
electric field E(t) exp (�ivct), where E(t) is a pulse envelope and vc a carrier frequency,
we write

E(t) ¼
X
m

E(t � mT)e�ivc(t�mT), (14:7:21)

nwr + w0

wL

wr

Frequency 

(n + 1)wr + w0

Figure 14.31 Frequency comb spectrum and position of optical frequency vL with respect to the
closest comb frequency nvrþv0. Heterodyning results in beat notes determined by vL 2 nvr2v0.
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where the summation is over a large number of integersm. The Fourier transform of this
field is

~E(v) ¼ 1
2p

ð1
�1

E(t)eivt dt ¼ 1
2p

ð1
�1

dt
X
m

E(t � mT)e�ivc(t�mT)eivt

¼ 1
2p

X
m

ð1
�1

dt E(t)e�ivcteiv(tþmT)

¼ 1
2p

X
m

eimvT
ð1
�1

dt E(t)ei(v�vc)t

¼ ~E(v� vc)
X
m

eimvT , (14:7:22)

where ~E(v) is the Fourier transform of the envelope of a single pulse. We have already
encountered the sum in the last line in Section 6.7. For the large number of summands
appropriate for a mode-locked laser, it consists of a series of peaks separated by 2p/T,
i.e., a series of peaks at vn ¼ 2pn/T, where n is an integer and T is the pulse spacing.
So (14.7.22) merely tells us what we already know from Chapter 6 about mode-locked
pulse trains.

The assumption of identical pulses in a mode-locked train, however, is not valid when
the pulses are very short and therefore have a large bandwidth causing significant dis-
persion in the laser medium and optical elements. In this case the pulse envelope will
propagate within the laser cavity at a group velocity vg while the carrier wave at fre-
quency vc propagates at the phase velocity vp (Sections 8.3 and 8.4). This results in a
carrier-envelope phase difference that we denote by Df. Now based on the “boun-
cing-ball” picture of the intracavity field of a mode-locked laser (Section 6.8), we
infer that each successive pulse from the laser has an additional carrier-envelope
phase difference Df over that of the preceding pulse, so aside from some overall
phase we can assign a carrier-envelope phase mDf to the mth pulse of the mode-
locked train. We therefore replace (14.7.21) by

E(t) ¼
X
m

E(t � mT)e�ivc(t�mT)eimDf (14:7:23)

and (14.7.22) by

~E(v) ¼ 1
2p

ð1
�1

E(t)eivt dt ¼ 1
2p

ð1
�1

dt
X
m

E(t � mT)e�ivc(t�mT)eimDfeivt

¼ 1
2p

X
m

eim(vTþDf)
ð1
�1

dt E(t)ei(v�vc)t

¼ ~E(v� vc)
X
m

eim(vTþDf): (14:7:24)
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The only difference from (14.7.22) is that the peaks in the spectrum now occur at vnT þ
Df ¼ 2pn:

vn ¼ nvr � Df

T
; nvr þ v0, (14:7:25)

with v0 ¼ 2Df/T ¼2(Df/2p)vr. Equation (14.7.24) describes the pulse train in the
frequency domain, as opposed to the time-domain expression (14.7.23) (Fig. 14.32).

To use the frequency comb as a “ruler” to measure optical frequencies, it is necessary
of course to have accurate values of vr and v0. Whereas vr can be measured from the
beat signal when the pulse train is incident on a photodiode, the measurement of the fre-
quency offset v0 is not so straightforward. A common way of doing so is to frequency-
double the nth comb line (frequency vn) and measure the beat signal between its second
harmonic (2vn) and the 2nth comb line (v2n):

2vn � v2n ¼ 2(nvr þ v0)� (2nvr þ v0) ¼ v0: (14:7:26)

Our simplified discussion ignores some critical issues in the actual implementation of
frequency combs.42 We have implicitly assumed in writing (14.7.26), for instance, that
the frequency comb from a mode-locked laser covers at least an octave of frequencies,
that is, that the highest frequencies in the comb are twice as large as the lowest. Although
a full octave is not strictly necessary, it is highly advantageous because it permits
straightforward determinations, as described, of both rf frequencies vr and v0; once
they are measured and stabilized, optical frequencymetrology becomes a going concern.

Figure 14.32 Amode-locked pulse train in (a) the time domain and (b) the frequency domain. Pulse-
to-pulse carrier-envelope phase shifts Df in the time domain translate in the frequency domain to an
offset v0 from integral multiples of the pulse repetition frequency vr. [After S. T. Cundiff and J. Ye,
Reviews of Modern Physics 75, 325 (2003).]

42For a comprehensive discussion see, for instance, S. T. Cundiff and J. Ye, Reviews of Modern Physics 75,
325 (2003) and the many references therein.
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An unchirped, transform-limited Gaussian laser pulse of duration t has a FWHM
spectral width DV ¼ (4 ln 2)/t [Eq. (8.5.22)]. For this width to span an octave around
the central frequency vc, we require DV ¼ vc, or t ¼ (4 ln 2)/vc ¼ (4 ln 2)/2p cycles,
i.e., the pulse would have to have a duration of roughly a single cycle or less. Because of
its extremely broad spectrum, the primary generator of frequency combs in optical fre-
quency metrology is the Ti : sapphire laser with Kerr lens mode locking and compen-
sation for group velocity dispersion (Fig. 11.25), but even the radiation from this
system does not usually span an octave. For this reason octave-spanning frequency
combs have been produced by spectrally broadening mode-locked pulses using self-
phase modulation in fibers.

Recall from Section 10.4 that a nonlinear refractive index causes spectral broadening
due to “self-chirping” or self-phase modulation. Group velocity dispersion of a short
pulse causes it to broaden in time, reducing the peak intensity and therefore the self-
phase modulation (Section 8.4). It has been found, however, that when a femtosecond
pulse propagates in a photonic crystal fiber (Section 11.14) in which the silica core is
surrounded by a particular arrangement of air holes, there is nearly zero group velocity
dispersion near the 800-nm central wavelength of Ti : sapphire. This allows mode-
locked pulses from a Ti : sapphire laser to propagate with little temporal broadening
while maintaining the high intensities needed for substantial self-phase modulation
and spectral broadening; more than an octave around 800 nm has been obtained in
this way.43 This is an example of supercontinuum generation in which a very broad
(“white light”) spectrum is created from the much narrower spectrum of a laser. Self-
focusing and other nonlinear phenomena in addition to self-phase modulation play a
role in determining the white-light pulses generated by a mode-locked pulse train, and
it is not at all obvious that successive pulses are strongly correlated in phase, as they must
be if they are to serve as a broadband frequency comb (Problem 14.21). Interference
experiments have demonstrated nevertheless that the supercontinuum white-light pulses
generated by mode-locked laser pulses of interest for optical frequency metrology can in
fact be phase-locked. In other words, supercontinuum generation can be used to convert
a phase-locked laser pulse train into an octave-spanning phase-locked train.

A crucial factor for optical frequency metrology is the stabilization of the frequencies
vr andv0 against unpredictable fluctuations in the laser cavity length. A small fraction of
the mode-locked Ti : sapphire laser output, typically consisting of �30-fs pulses, can be
used to measure vr (or a high harmonic of vr) with a photodiode and using a feedback
loop to adjust the cavity length and lock vr to a frequency referenced to an atomic clock
or a GPS-controlled quartz oscillator. For some purposes, such as measuring the differ-
ence in frequency between two lasers, locking of vr alone suffices, whereas for absolute
optical frequency measurements it is also necessary to lock v0. For this purpose the
pulse train is injected into the photonic crystal fiber to generate an octave-spanning fre-
quency comb, and part of the output from the fiber is used to measure v0 as described
above [Eq. (14.7.26)]. One way of varying v0 in order to lock it is to swivel the laser
feedback mirror of the layout shown in Fig. 11.25. Since the spectrum of the laser radi-
ation with intracavity prisms is not uniform over the mirror, a swivel introduces a fre-
quency-dependent phase shift and results in a group delay and a change in Df and
therefore v0.

43D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science
288, 635 (2000).
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Locking vr and v0 at particular frequencies allows the synthesis of a comb of optical
frequencies referenced to an atomic clock. Optical synthesizers providing �500,000
absolute frequencies covering most of the optical and near-infrared spectrum, and
containing the femtosecond laser and all the other instrumentation needed for comb
generation in a unit occupying �1 m2 on an optical bench, are now commercially avail-
able for absolute frequency measurements, high-precision spectroscopy, precise dis-
tance measurements, and other applications. It has been said that having such a
synthesizer is like having �500,000 extremely stable and precisely tuned lasers all at
once. Optical synthesizers will likely be used to make optical clocks by locking a
laser to the extremely narrow resonance of a cold atom. Because of the much shorter
periods of optical cycles compared to microwaves, optical clocks will in turn result in
even more precise timekeeping than is now possible.

† Prior to frequency comb generators absolute optical frequencies were measured by
constructing long, complex “harmonic chains” to multiply the cesium clock frequency by harmo-
nic generation in crystals, electronic frequency mixing, and other techniques. Because of their
complexity and the large amount of laboratory space required, and because they could only be
used to measure a single optical frequency, only a few such harmonic chains were developed.
The frequency comb technique has revolutionized optical frequency metrology, and high-
harmonic generation might extend the range of frequency metrology to XUV and soft X-ray
frequencies.

Knowing that the spectrum of a mode-locked laser consists of a comb of frequencies, one
might wonder in hindsight why the idea of a frequency comb as a ruler for optical frequency
measurements was not put into practice until relatively recently. One reason, it seems, is that it
was not realized just how uniform the frequency combs are; frequency metrology requires that
the lines be “exactly” equally spaced [cf. Eq. (14.7.20)]. One might reasonably expect that dis-
persion effects in the laser would cause the mode spacing to vary slightly across the comb.
Experiments in the late 1990s, however, revealed—surprisingly—that the mode spacing in a
Kerr lens mode-locked laser with dispersion compensation (Fig. 11.25) is uniform and equal
to the pulse repetition frequency to at least one part in 1017, even after the spectrum of the
pulse train is broadened by propagation in a fiber! Part of the 2005 Nobel Prize in Physics
was awarded to J. L. Hall and T. W. Hänsch “for their contributions to the development of
laser-based precision spectroscopy, including the optical frequency comb technique.” †

14.8 LASERS IN MEDICINE

Lasers continue to play a large role in medicine. Our brief overview will focus on some
qualitative aspects of laser–tissue interactions and on the growing importance of laser
science in medical imaging.

The first medical application of lasers was in ophthalmology, just a few years after the
first demonstrations of laser oscillation in the early 1960s. It was known for centuries that
visual loss can result from prolonged, direct viewing of the sun. This occurs due to a
burning and consequent scarring of the macula, the central part of the retina responsible
for acute vision (Fig. 14.33). It was suspected for some time that a localized burning and
scarring might actually be useful for the treatment of certain visual disorders, and in the
late 1940s G. Meyer-Schwickerath demonstrated that burns produced by white-light
sources such as the sun and xenon lamps could be used to connect the retina to its sub-
stratum tissue. The brightness of lasers made it immediately apparent that they could be

718 SOME APPLICATIONS OF LASERS



used in ophthalmology. In particular, it was apparent that lasers could be used for photo-
coagulation of small areas of ocular tissue, and that this could be done with very short
exposure times. Furthermore the monochromaticity of laser radiation allows selective
coagulation of a particular tissue, since the photocoagulation process is initiated by
wavelength-dependent absorption of light. Laser therapy has not only replaced some
older surgical procedures for visual disorders but has also been used for conditions
where effective treatments were previously unavailable.

† For safety’s sake it must be remembered that even a low-power laser can damage the retina.
To estimate the intensity focused on the retina when the eye is in the direct path of a laser beam,
assume that the lens of the eye has a focal length of 2.3 cm and that the pupil diameter is 2 mm.
The diameter of the spot on the retina is fu, where u is the divergence angle of the laser beam. [See
Eq. (13.2.7) for this formula in the special case of a Gaussian beam.] The fraction of the laser
power entering the eye is equal to the square of the pupil diameter d divided by the square of
the laser beam diameter D. The intensity of the focused radiation at the retina is therefore

I ¼ Pwr
d

D

� �2 1

p ( f u)2=4
¼ 4(Pwr)d2

pD2f 2u2
: (14:8:1)

Consider a green laser pointer with Pwr ¼ 1 mW, beam diameter D ¼ 1.5 mm, and divergence
angle u ¼ 1.4 mrad. In this example I � 200 W/cm2. This estimate assumes perfect transmittiv-
ity of the eye (not too bad an approximation in the visible) and direct viewing with the eye held
fixed and not blinking. But it illustrates the important point: Even very low-power lasers are
potentially hazardous.44 A 100-W lightbulb would not create nearly such a hazard; it is the
small divergence angle u of a laser that makes the focused intensity so large. †

Laser therapies may be broadly classified as photoabsorptive or photodisruptive.
Photoabsorption results in electronic and vibrational excitation, breaking of molecular
bonds, and a rise in temperature. Large biological molecules, such as proteins, can
undergo conformational changes when the temperature is increased. The result is a
thermal denaturation in which certain biological functions are lost or impaired due,
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Figure 14.33 The human eye.

44The retinal damage threshold in the case of continuous illumination can be as low as 2–3 W/cm2.
[A. M. Clarke, W. T. Ham, Jr., W. J. Geeraets, R. C. Williams, and H. A. Meuller, Archives of
Environmental Health 18, 424 (1969).]
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for instance, to changes in cell membranes. Such thermal denaturation is responsible for
effects such as inflammation and coagulation of tissue. Through a normal reparative
response it leads to a scar, which can serve to connect tissues such as the sensory and
pigmented layers of the retina. In other words, coagulation can “weld” disconnected
tissue back together. Coagulation can also occlude (close) and destroy blood vessels;
this is used in the treatment of diabetic retinopathy, in which fragile blood vessels may
appear on the retina. These abnormal vessels tend to break, and the hemorrhaging can
cause loss of vision. Since the pigmented cells behind the nerve-containing outer layer
of the retina absorb strongly in the blue-green, whereas the neural retina, lens, cornea,
and vitreous do not, the green argon ion laser is the primary tool for this procedure.

Photocoagulation begins with absorption of light, the primary absorbers of light in
the human eye being melanin, hemoglobin, and xanthophyll. The ocular medium
itself is transparent between about 380 and 1400 nm. At shorter wavelengths the lens
and cornea are absorbing, and at longer wavelengths the primary absorber is water.
Lasers allow a selective energy treatment in that the total energy of irradiation during
the exposure can be accurately controlled. This allows a trained ophthalmologist to pre-
select a certain energy that, based on experience, will produce a minimal degree of
coagulation. The energy can then be increased gradually until a desired degree of coagu-
lation has occurred, with minimal damage or side effects.

Exposure time is of course another very important consideration. For a given total
energy, the temperature rise of the irradiated tissue increases with decreasing pulse dur-
ation, since there is less time for thermal diffusion to the surrounding tissue. With short
pulses, therefore, the temperature rise can be quite large and can lead to vaporization at
the irradiated spot; the clinical manifestation of this vaporization is the appearance of gas
bubbles near the target. The vaporization can also generate pressure waves strong
enough to damage eye tissue.

In contrast to photocoagulation, photodisruptive laser therapies are nonthermal.
Photodisruption is initiated by ionization from the intense heat produced by a pulsed
laser at the target. The resulting plasma absorbs energy from the laser and becomes
very hot, expands rapidly, and produces a shock wave that can blast a hole in an
ocular membrane. Such a hole can be several times larger than the waist of the laser
beam at the focal point. In laser iridectomy for the treatment of glaucoma, a hole is
made in the iris to relieve the elevated intraocular pressure.

A common application of laser photodisruption of tissue is in treating the clouding of
the posterior capsule membrane behind the lens, an occasional complication of cataract
surgery. In this outpatient treatment, called posterior capsulotomy, a pulsed Nd :YAG
photodisruptor tears a hole in the clouded membrane, opening a path for clear vision.
This is done without damage to the retina by focusing the laser to a spot just behind
the lens. The divergence of the beam beyond the focus then results in a reduced intensity
at the retina. The attenuation of the beam by the plasma created also helps to reduce the
intensity at the retina.

Laser in situ keratomileusis (LASIK), introduced in the mid-1990s, has become the
most common surgical procedure for refractive correction. After a metal blade is used to
make a flap in the outer layer of the cornea, an ArF excimer laser (193 nm, �10-ns
pulses, �100-Hz pulse repetition rate) penetrates the inner part of the cornea and
breaks molecular bonds, allowing cells to escape in the form of a tiny “mushroom
cloud.” Following this ablative sculpting with the excimer laser, the flap is closed and
serves as a natural “bandage.” Most complications from LASIK are flap-related; in a
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recent innovation the flap is made with a mode-locked, femtosecond diode-pumped
Nd :YAG laser at 1.053mm. The positions and focal depths of successive pulses on
the cornea are computer controlled, the pulses creating, by ionization and the formation
of an expanding plasma that results in bubbles in the corneal tissue, thousands of holes
(“cavitation bubbles”) of diameter �2–3 mm. The pattern of holes defines the flap and
its thickness (�102mm) and “hinge,” and the flap is then lifted prior to the application of
the sculpting excimer laser. The flap is created in a matter of seconds, and with the
programmed application of the femtosecond laser is done much more precisely than
is possible with a hand-held blade. The low-energy femtosecond pulses have no
effect on the intracorneal tissue until they reach their programmed depth; they do not
cause any temperature rise or shock waves.

For precise corneal sculpting, information about the aberrations in the patient’s eye
must be input to the software controlling the excimer laser pulses. This information
is obtained by wavefront sensing with an “aberrometer,” which is usually a Shack–
Hartmann sensor as described in Section 14.2. An eye-safe laser enters the eye and
the aberrations of the originally “flat” wavefront are measured after it propagates through
the cornea, vitreous, and lens and then reflects off the retina and makes a return pass
through the eye. As in adaptive optics, the displacements of spots focused onto a
CCD sensor by the lenslet array correspond to local phase gradients of the wavefront
incident on the array, which in turn are determined by the refractive imperfections in
the entire optical system of the eye (Fig. 14.34). The measured spot displacements
and a computer are used to control the excimer laser pulses that sculpt the cornea to
correct for these imperfections.

† There is still much to be learned about laser–tissue interactions. Given that living tissue is
about 80% water by weight, it might be expected, for example, that the effects of the UV excimer
laser pulses used in LASIK on living tissue can be understood in large part from how they affect
water. But there are important differences in the way these pulses interact with water and with
living tissue. One is that tissue elasticity limits the growth of cavitation bubbles, so that they
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Figure 14.34 An “aberrometer” for determining the aberrations of an eye using a Shack–Hartmann
wavefront sensor. The displacements of spots on the CCD array are a measure of the aberrations and are
used to control an excimer laser for the corneal sculpting needed for refractive correction. [After
L. N. Thibos, Journal of Refractive Surgery 16, S563 (2000).]
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are much smaller than in water; the photodisrupted regions of living tissues can be as small as a
few hundred nanometers. This is beneficial in that it allows greater cutting precision than might be
expected based on experiments with water.

As already noted, photodisruptive laser therapies rely on ionization and plasma formation. As
discussed in Section 10.10, this optical breakdown is an avalanche process that proceeds from the
presence or creation of a few electrons. In the optical breakdown of pure water these “seed” elec-
trons are created by multiphoton ionization, which requires high intensities. In many biological
tissues, however, there are large concentrations of a molecule (NADH) that is ionized by low-
intensity UV radiation, yielding the seed electrons necessary for plasma formation; such tissues
can be cut with lower laser intensities than tissues lacking this molecule.45 †

The same properties of lasers—brightness, directionality, and monochromaticity—
used in eye surgery are employed in many other surgical procedures. Apart from opthal-
mology, laser surgery appears to be most well established in dermatology and gynecol-
ogy, but it is now commonly used in many other specialties. One of its advantages is that
blood loss is greatly reduced compared to surgeries with knives. Together with magni-
fication, this greatly facilitates the removal of tiny structures. In laryngeal surgery, for
example, a laser and an endoscope make possible a degree of precision difficult to
obtain by other procedures. In cancer surgery with lasers there is less danger than
with cold-knife surgery of dislodging cancer cells and worsening the malignancy.

The most ubiquitous laser in nonophthalmic surgery has been the CO2 laser. This is
not surprising, given that water strongly absorbs at 10.6 mm; the absorption coefficient
of living tissue is roughly 200 cm21 at 10.6 mm. Thus, CO2 laser radiation interacts
strongly with living tissue, and a focused CO2 laser beam can produce explosive boiling
of tissue fluids, resulting in an incision as the focal point is moved. Hand-held CO2

surgical lasers, which have for many years been commercially available, are used, for
instance, to remove arterial plaque during open-heart surgery.

Photodynamic therapy, which was invented in the early 1900s, came into widespread
use in the mid-1980s and is now performed mainly with red diode lasers or diode laser
arrays. This procedure begins with the injection into the bloodstream of a “precursor”
that results in a photosensitizer, a substance that absorbs light of a particular wavelength.
The targeted tissue is irradiated for several minutes with red laser light or LED radiation
transported by a fiber. When the photosensitizer molecules absorb the light, they make a
singlet–singlet transition and then undergo intersystem crossing to an excited,
metastable triplet state (Section 11.11). From this state the excitation energy can be
transferred to oxygen molecules in tissues, which in the process are excited from
the ground triplet state to an excited singlet state. Singlet oxygen happens to be very reac-
tive and, depending on the photosensitizer used, will react with and destroy undesirable
(e.g., cancerous) cells. Photodynamic therapy is usually confined to about a 1-cm
layer of tissue, the absorption depth of the light, and is therefore most effective
for the treatment of small tumors on the skin or on internal organs accessed with
optical fibers.

While the CO2, argon ion, Nd : YAG, and excimer lasers remain the primary medical
lasers, it is expected that diode-pumped fiber lasers, particularly because of their com-
pactness, will in the near future take on increased importance as commercial develop-
ment proceeds. Similarly, femtosecond lasers, including femtosecond fiber lasers, will

45M. S. Hutson and X. Ma, Physical Review Letters 99, 158104 (2007).
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likely become more widely used in medicine, having already become effective and
commercially viable tools in ophthalmology.

Laser physics and optical science more generally have spawned many medical diag-
nostic tools such as fiber endoscopes and other instruments that continue to be developed
and improved. We will conclude this section with brief descriptions of two relatively
new imaging technologies. In each case we focus on the basic principles and refer the
reader to the specialized literature for details of clinical implementations.

† The imaging technique discussed below, based on spin-polarized gases, is basically a new
way of magnetic resonance imaging (MRI). It is perhaps useful therefore to review briefly
some basic principles of MRI.

As noted in Section 14.3, nuclei with an odd number of nucleons have spin. The nucleus of
interest for MRI is the hydrogen nucleus (proton)—hydrogen atoms make up about 60% of the
human body by number and about 10% bymass. The proton has spin 1

2, and so in a static magnetic
field B0 ¼ B0ẑ it has two allowed energy levels, Eþ and E2, corresponding to two different spin
orientations (“spin up” and “spin down”) with respect to ẑ, and the transition frequency between
these two levels is [Eq. (14.3.1)]

vp ¼ Eþ � E�
h� ¼ 1

2mNgB0
� �� �1

2mNgB0
� �
 �

=h� ¼ mNgB0

h� ; gB0: (14:8:2)

mN and g are, respectively, the nuclear Bohr magneton and the proton g factor, and
g ffi 2p� 42:576 MHz/tesla is the gyromagnetic ratio of the proton; g relates the magnetic
dipole moment m and the angular momentum (spin) vector s: m ¼ g s, with jsj ¼ h�=2 for
spin 1

2. An extremely strong field B0, as large as 1.5 T or more generated with liquid-helium-
cooled superconducting coils, is used in MRI; for B0 ¼ 1.5 T, vp ¼ 63.86 s21. The torque on
a magnetic dipole moment m in a magnetic field B is m � B, which gives the rate of change
of the angular momentum s, so that

dm
dt
¼ gm� B: (14:8:3)

This equation says that the magnetic moment m precesses about B0, and that the precessional
frequency is vp ¼ gjBj.

In a sample exposed to a magnetic field B0ẑ and in thermal equilibrium at temperature T, there
will be a net bulk magnetizationM0ẑ, i.e., an imbalance in the densities of spin-up and spin-down
protons:

M0 ¼ PDg
h�
2
� e�E�=kBT � e�Eþ=kBT

e�E�=kBT þ e�Eþ=kBT
¼ PDg

h�
2
tanh

Eþ � E�
2kBT

� �

¼ PDg
h�
2
tanh

h�gB0

2kBT

� �

ffi PD
h�2g2B0

2kBT
(14:8:4)

for h�gB0=2kBT 
 1, where PD is the proton density. For T ¼ 300K and B0 ¼ 1.5 T,
h�gB0=2kBT ¼ 5:1� 10�6, implying that the thermal magnetization in MRI is very small.
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In MRI an rf field propagating perpendicular to the direction ẑ of the static field, and having a
frequency close to vp, induces transitions between the levels Eþ and E2 via the interaction with
the proton spins of its time-dependent magnetic field B1. According to (14.8.3) such a field will
result in a component of the magnetization perpendicular to the axial direction ẑ, i.e., it causes
the magnetization M0 to tilt away from the ẑ direction by some tipping angle Q and therefore
to precess about the strong static field B0ẑ. This in turn results in a time-dependent magnetic
flux perpendicular to ẑ that, from Faraday’s law of induction (r�E ¼2@B/@t), generates a
voltage in an induction “pick-up” coil. This voltage is the MRI signal.

Considered as a two-state system, the proton can be described by Bloch equations; in fact, as
noted in Section 9.5, the Bloch equations were first derived in the context of nuclear magnetic
resonance (NMR) theory. When relaxation processes are included, the NMR Bloch equations
take the form (9.5.3), where T1 and T 02 are “longitudinal” and “transverse” relaxation times for
the damping of the components of the magnetization parallel and perpendicular to B0, D ¼
vp 2 v, the Rabi frequency x ¼ gB1, and w0 ¼ M0. The “area” of the pulse B1, i.e., the integral
over time of the Rabi frequency, Eq. (9.5.21), defines the tipping angle Q. A pulse with Q ¼ p,
for example, will cause a magnetic moment to make a 1808 flip.

After the magnetization is “tipped” by the rf pulse, it relaxes back to its equilibrium valueM0.
The transverse (x, y) components, proportional toM0, decay exponentially at a rate determined by
T 02 as well as by an “inhomogeneous broadening” time T�2 due to spatial inhomogeneities in B0

and therefore different precessional frequencies of different spins; as was noted in Section 9.11 in
connection with the Ramsey method of separated fields, no one has solved the problem of making
a magnetic field that is uniform over a large region of space (in the case of MRI, a region very
roughly the size of a human body). The decay of the transverse components of the magnetization
results in an exponentially damped voltage signal in a pick-up coil, a so-called free induction
decay signal. The longitudinal (z) component of the magnetization increases after a tipping
pulse at the rate 1=T1 (,1=T 02): M(t) ¼ M0[1� exp (�t=T1)] [see Eq. (9.5.3c) with x ¼ 0,
w ¼ M, and w0 ¼ M0].

Spins in different tissues have different resonance frequencies vp, relaxation times T1, T 02,
proton densities PD, and magnetizations M0 in a magnetic field. These are determined, for
instance, by different amounts of water (long relaxation times, �1 s) and fat (short relaxation
times, �102 ms). Thus, the gray matter of the brain has relaxation times T1 � 760 ms and
T 02 � 77 ms, whereas for the white matter T1 � 510 ms and T 02 � 67 ms.46 They are distin-
guished by the different signals produced in a pick-up coil following the tipping rf pulses.
Various “pulse sequences” with different pulse areas, repetition rates, and other characteristics
have been devised to produce MRI signals; a commonly used pulse sequence for eliminating
T�2 effects is the spin echo sequence discovered by E. L. Hahn in the early 1950s.47

In MRI the voltage signals are converted to a spatial map (image) of proton densities using
magnetic field gradients. A “slice” of the sample is selected by a magnetic field gradient Gz

along the z direction. Different slices of the sample along z have different precession frequencies
vp ¼ (gB0 þ gGzz), and only one slice will be resonant with the rf field and produce a signal. The
thickness of the slice is determined by the bandwidth of the rf pulse, and can be changed by chan-
ging Gz. This provides one (z) dimension of localization within the sample. A magnetic field gra-
dient Gx orthogonal to z performs frequency encoding by causing different spins within a slice to
have slightly different precession frequencies: a spin with spatial coordinate x along this gradient
has a precession frequency vp(x) ¼ g(B0 þ Gxx) and therefore oscillates as exp[2ig(B0 þ
Gxx)t]. Aside from the rapidly varying factor exp(2ig B0t), therefore, the magnetization of a

46J. L. Prince and J. Links, Medical Imaging Signals and Systems (Prentice Hall, Upper Saddle River,
NJ, 2005).
47A conceptually similar phenomenon—the photon echo—occurs for atomic transitions. See, for instance,
L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, (Dover, New York, 1987), Chapter 9.
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volume element at x oscillates as exp(2igGxxt), and the signal at a pick-up coil from all the spins
along x is

S(t) ¼ k

ð1
�1

M0(x)e
�igGxxt dx, (14:8:5)

where k is a calibration constant. Defining kx ¼ g Gxt, we replace (14.8.5) by

s(kx) ¼
ð1
�1

M0(x)e
�ikxx dx: (14:8:6)

Inversion of this Fourier transform gives

M0(x) ¼ 1
2p

ð1
�1

s(kx)e
ikxx dkx: (14:8:7)

In other words, frequency encoding during the signal readout allows a computation of a one-
dimensional map [M0(x)] of the magnetization in the selected slice of the sample. To obtain a
two-dimensional image of each slice, a third magnetic field gradient Gy along the y direction is
applied prior to the frequency conversion and signal readout. Gy has the same effect on the
spins as Gx, but it is turned off prior to the signal readout. This leaves spins at different points
along the y direction with different phases, similar to the way frequency encoding imparts differ-
ent frequencies. The effect of this phase encoding is to replace (14.8.7) by a two-dimensional
Fourier transform of the form

M0(x, y) ¼ 1
2p

� �2ð1
�1

ð1
�1

s(kx, ky)e
i(kxxþkyy) dkx dky (14:8:8)

giving the two-dimensional map M0(x, y) for the selected slice: 256 frequency-encoding
sequences, each involving 256 phase-encoding steps, produce a 256 � 256 pixel array that is
converted to a gray-scale image on a film. †

Very detailed images of soft tissues are obtained by magnetic resonance imaging. For
porous tissues such as the lung and colon, however, the air-filled spaces do not have
enough protons to generate a meaningful magnetization signal. Larger magnetizations
could be realized by increasing the magnetic field strength B0 or by lowering the temp-
erature [Eq. (14.8.4)]. But current MRI scanners already use extremely strong magnetic
fields, and increasing B0 further would increase the complexity and the cost beyond their
already high levels. And numerical estimates based on (14.8.4) indicate that the
temperatures required would freeze patients to death—not a viable option. A different
approach, based on the injection into porous tissue of a spin-polarized gas, was proposed
in 1994.48 The idea is to spin-polarize a gas by optical pumping (Section 14.3) and then
inject it into a porous tissue; for the lungs, the patient simply inhales the spin-polarized
gas, whose atoms have their spins and therefore magnetic dipole moments aligned. The
degree of magnetization per particle is enormously larger than that implied by the
thermal-equilibrium expression (14.8.4) for the protons in tissues imaged by standard
MRI; this compensates for the low density of the gas, so that MRI as described above

48M. S. Albert, G. D. Cates, B. Driehuys, W. Happer, B. Saam, C. S. Springer, Jr., and A. Wishnia, Nature
370, 199 (1994).
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can be done with the “breathable magnets” of the spin-polarized gas. For lung imaging,
the patient inhales the spin-polarized gas before entering the MRI chamber.

Only certain atoms are suitable as breathable magnets. The atoms should have a
nuclear spin in order to have a nuclear magnetic moment, and this eliminates all atoms
with an even number of nucleons (Section 14.3). While alkali atoms are easy to spin-
polarize with resonant laser radiation, the fact that they react violently with water or
oxygen obviously rules them out. The spin-polarized atoms should have no toxic effects
and should have long spin relaxation times so that their magnetization is sufficiently
long-lived. They should not interact to form molecules that result in strong depolariz-
ation of the nuclear spins. Such considerations point to noble gases with nuclear spin
I ¼ 1

2, and
3He and 129Xe in particular. Aside from the “Donald Duck voice” effect of

helium, there are no adverse effects associated with it. Xenon, likewise, has for many
years been used as an anesthetic and poses no known health risks, and moreover the
small dosages of spin-polarized 129Xe that are sufficient for MRI reduce the anesthetic
effects. 129Xe has some advantages over 3He in that it is more readily and inexpensively
available. Unlike 3He, it occurs naturally at a concentration �1027 in the atmosphere
and is a by-product, along with the more abundant 131Xe, of the distillation of air for
the commercial production of O2 and N2.

Optical pumping of ground-state noble-gas atoms is generally impractical; for He, for
example, the transition from the ground level to the first excited level has awavelength of
58 nm and cannot be accessed with available lasers. Helium has been spin-polarized by
exciting it to a metastable excited level in an electric discharge and then optically pump-
ing it with a laser at 1083 nm. Both 3He and 129Xe are spin-polarized in large concen-
trations by spin-exchange collisions (Section 14.3) with optically pumped alkali atoms.
The most common way of doing this is to optically pump Rb atoms with 795 nm, cir-
cularly polarized laser radiation, usually obtained with a high-power (�100 W) diode
laser array. The electronic spin polarization of the Rb atoms is then transferred to the
3He or 129Xe nuclei in collisions involving a magnetic hyperfine interaction. Since
the hyperfine interactions are weak, the exchange probability in a collision is small, and
it can take seconds or minutes for spin polarization of 129Xe nuclei by this method, and
hours to do so for 3He. Spin relaxation of 129Xe is sufficiently slow that the degree of
polarization is limited by the Rb polarization. On the other hand, 3He has a larger mag-
netic moment than 129Xe (about three times larger), and thus far greater degrees of spin
polarization have been realized with it (�20–50% compared to �10–30% for 129Xe).
3He is found to produce sharper MRI images and has been used in most lung imaging
studies. 129Xe has one extremely attractive property in contrast to 3He: It dissolves
in blood and in many tissues. The circulation time of the blood in a human body
is �15 s, whereas 129Xe in the blood maintains its polarization for tens of seconds,
enough time for it to be used for brain imaging, for instance.

Unlike conventional MRI, where between rf sampling pulses the magnetizationM0ẑ
is restored by relaxation to thermal equilibrium in a time T1 typically �1 s, inMRIwith a
spin-polarized gas the magnetization is reduced with each successive sampling pulse
and can be restored only by adding more polarized gas. The pulse sequencing is also
different from conventionalMRI; for example,p/2 pulses are not used in the spin-polar-
ized case because such a pulse would tip the Bloch vector into the xy plane and thereby
destroy the polarization with a single pulse. Typically �100 pulses are used to produce
an image, each pulse having the same small area. For pulses with an area of 0.20 rad
(11.58), for example, the magnetization after 100 sampling pulses is reduced by a
factor 12[cos(0.20)]100 ¼ 0.87, assuming that no other processes act to reduce the
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magnetization during the pulse sequence. The fact that 100 rf pulses can be applied
without having to wait for the magnetization to be restored by slow relaxation processes
is important for lung imaging, for example, where a patient cannot be expected to hold
his breath for too long.

Another attractive feature of MRI with spin-polarized gases is that they do not require
the huge magnetic fields of conventional MRI systems. In the latter the magnetization is
proportional to B0 [Eq. (14.8.4)] and the voltage signal in a pick-up coil is, by Faraday’s
law of induction, proportional to the rate of change of the magnetization, that is, to
vpB0 ¼ gB2

0; a large B0 is required to generate a large enough signal in the presence
of noise associated with amplifiers and resistances in the system, since the magnetization
is entirely thermal in origin and therefore small. When themagnetization is due to a spin-
polarized gas, however, the factor B0 on the right-hand side of (14.8.4) does not enter
into the determination of the signal since the magnetization of the gas is not thermally
equilibrated; the signal is then proportional to B0, which only determines vp, not the
magnetization. It has been demonstrated that magnetic fields �20 G can be used for
MRI with spin-polarized gases, so that the cost and other disadvantages of extremely
strong magnetic fields are avoidable.

Spin polarization of 3He gas persists for several days in glass containers, and frozen
129Xe maintains its polarization for comparable durations. Compact systems producing
spin-polarized gases for clinical lung imaging have been developed. A flask containing
3He, N2, and a small amount of Rb is heated to vaporize the Rb. Circularly polarized
laser radiation optically pumps the Rb vapor and results after a few hours in the polar-
ization of most of the 3He. The flask is then cooled to condense out the Rb, and the spin-
polarized 3He gas is drawn into a plastic bag for later inhalation by a patient.

In the first MRI images demonstrated with spin-polarized 129Xe gas, a xenon
density of �1.2 � 1019 cm23 filled the excised lung of a mouse,48 compared to the
�5 � 1022 cm23 proton concentrations of tissues imaged in conventional MRI. Since
this demonstration many other studies have been reported, and this new approach to
MRI imaging appears to be progressing rapidly toward widespread clinical use.49

Another novel imaging method is based on the connection between the bandwidth of
light and interference. As discussed in Section 13.11, the coherence length of light
decreases with increasing bandwidth; the larger the bandwidth, the smaller the arm sep-
aration has to be in a Michelson interferometer, for instance, in order to observe inter-
ference fringes. Femtosecond laser pulses, for example, have coherence lengths on
the order of microns, so that no interference fringes are observed in a Michelson inter-
ferometer if the arm separation exceeds, say, a few microns (Section 13.11). This is the
basis for optical coherence tomography (OCT), and the basic idea behind it is sketched
in Fig. 14.35.50

49Reviews with many references to research papers in both the physics and medical literature have been pub-
lished by T. Chupp and S. Swanson, Advances in Atomic, Molecular, and Optical Physics 45, 41 (2001) and
S. J. Kadlecek, K. Emami, M. C. Fischer, M. Ishii, Y. Jiangsheng, J. M. Woodburn, M. NikKhah, V. Vahdat,
D. A. Lipson, J. E. Baumgardner, and R. R. Rizi, Progress in Nuclear Magnetic Spectroscopy 47, 187
(2005).
50D. Huang, E. A Swanson, C. P Lin, J. S Schuman, W. G Stinson, W. Chang, M. R Hee, T. Flotte,
K. Gregory, C. A Puliafito, and J.G. Fujimoto, Science 254, 1178 (1991). A review of optical coherence
tomography “from bench to bedside” is given by A. M. Zysk, F. T Nguyen, A. L. Oldenburg, D. L.
Marks, and S. A. Boppart, Journal of Biomedical Optics 12, 051403 (2007).
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The broadband source in OCT is typically “superfluorescent” (mirrorless) diode laser
radiation transported by a fiber, but femtosecond lasers and supercontinuum radiation in
fibers are also used in order to obtain extremely small coherence lengths. Compared to
imaging techniques such as MRI and X-ray computed tomography (CT), OCT has a
much smaller imaging depth (typically a few millimeters) but offers greater resolution
of fine structure. Because the light source is nonionizing, it allows long exposure
times that are not possible with X rays. Commercially available OCT systems are com-
pact and less complex thanMRIs or CTs, and their clinical utility has been demonstrated
in oncology, opthalmology, dermatology, and other areas.

14.9 REMARKS

Lasers have made possible the most accurate determination of several physical quan-
tities, the smallest measured time intervals, the most accurate clocks, the lowest tempera-
tures ever realized, and some of the highest powers ever generated. They have been used
to determine distances between Earth and the moon to an accuracy of a few centimeters
and to enable ground-based telescopes to produce images comparable in quality to those
of a space telescope; to determine concentrations of atmospheric constituents in the
atmosphere as well as temperature, density, and wind profiles; to produce ultracold
gases and a state of matter in which large numbers of atoms are described by a single
quantum state and in which the interference of atom waves can be observed and put
to practical use; to time-resolve chemical and biological processes; to determine our gro-
cery bills, print what we read, record our music, and cut and weld materials used in many
other aspects of everyday life. Their importance in medicine continues to grow and they
are an integral part of modern communications and the Internet. The list of applications
has no foreseeable end.

Broad band
light

Beam
splitter

Mirror

Sample

Camera

Figure 14.35 Simplified illustration of optical coherence tomography. Light from a broadband
source (short coherence length) enters a Michelson interferometer, one arm of which contains a
sample S (e.g., a retina or a fingertip). Interference fringes are observed only for path separations, deter-
mined by the topography of S, that differ by less than the coherence length. This allows depth resolution
of the sample, while the camera provides two-dimensional profiling, so that three-dimensional imaging
of S with micron-scale resolution is achieved if the coherence length of the light source is on the order
of a micron.
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The operating principle of every laser is, of course, stimulated emission of radiation.
As discussed in Section 3.6, it was Einstein who first realized that matter can radiate by
stimulated emission as well as by spontaneous emission. But no one at the time seems to
have imagined the possibility of radiation amplifiers and oscillators, much less their
widespread use decades later. While some applications could be confidently predicted
when the first lasers were constructed in the early 1960s, many others were not foreseen
by even the most imaginative scientists and engineers. The reader might find it interest-
ing to think about which laser applications were the most unpredictable, and to speculate
on directions future applications might take.

PROBLEMS

14.1. (a) Using Eqs. (3.7.5) for the case in which the level populations of a two-level
atom change by absorption and stimulated and spontaneous emission in a
narrowband field, show that the upper-state probability p(t) changes accord-
ing to the equation

_p(t) ¼ �A21p(t)þ s(n)
hn

I(t)

if the lower-state probability ffi1.
(b) Assuming that the laser pulse duration is long compared to the radiative life-

time, derive Eq. (14.1.3).

14.2. (a) Verify the approximation (14.1.21) for Rayleigh backscattering at frequen-
cies roughly in the visible range.

(b) Verify Eq. (14.1.22) for the number of backscattered photons for the
assumed lidar system parameters.

14.3. Show that the sodium density at different altitudes in the mesosphere can
be determined from the ratio of sodium and Rayleigh photocounts as in
Eq. (14.1.26). What assumptions are implicit in this equation?

14.4. (a) Estimate the maximum photon flux (number of photons per unit area per unit
time) at ground level that can be obtained when the 589-nm D2 line of meso-
spheric sodium is uniformly irradiated with resonant radiation having a 1-m2

spot size at the mesosphere.
(b) What would be the apparent magnitude of a guide star that produces this

photon flux?
(c) Approximately what fraction of quasi-monochromatic 589-nm laser radi-

ation propagated from ground is absorbed by the mesospheric sodium
layer? (Assume that the laser power is sufficiently low that saturation effects
are negligible.)

(d) Why should the saturation formula (14.2.5) be applicable? Shouldn’t the
absorption or gain coefficient for a Doppler-broadened transition saturate
according to the formula (4.14.7)?

14.5. (a) The reflector placed on the moon by Apollo 11 astronauts consists of 100
corner cubes, each about 1.5 inches across. Estimate the diameter at Earth
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of the return ruby laser pulses. (A corner cube consists of three reflecting
edges intersecting at right angles. Any incident ray is reflected parallel to
itself.)

(b) The laser pulses from a police lidar gun have a beam divergence angle of
3 mrad. Estimate the diameter of these pulses at a distance of 300 m from
the policeman. Can you think of ways to thwart this type of “radar”?

14.6. Show that the matrix element for an electric dipole transition in which light is
absorbed and an atom goes from a state 1 with magnetic quantum number m
to a state 2 with magnetic quantum number m0 is given by (14.3.3), and that
the reverse, stimulated emission transition is given by the complex conjugate
of (14.3.3).

14.7. (a) Show that a detector placed along the x axis, and responding to an average
over times long compared to v�10 of the power radiated by the electric dipole
(14.3.15), will record an intensity with the time dependence (14.3.16) if it is
behind a polarizer oriented at an angle w with respect to the z axis.

(b) Suppose that the atoms are excited by linearly polarized light as in Fig. 14.12
and that the detector records the time-integrated intensity

J /
ðt
�1

dt0 I(t)

with t � 1=g. Show that J is proportional to

1
2g
þ g cos 2w

g 2 þ 4v2
L

þ 2vLsin 2w

g 2 þ 4v2
L

:

Plot this signal vs.vL for (i) w ¼ 0, (ii) w ¼ p/4, (iii) w ¼ p/2, and (iv) w ¼
3p/4. What experimental situation does this signal describe? Compare your
results with the corresponding experimental results shown in Fig. 14.36.

14.8. (a) Show that optical pumping with circularly polarized light results in complete
transparency in the case of the sodium D1 line in the absence of any spin
relaxation effects.

(b) Calculate the electric dipole matrix element kF0m0jdq¼1jFml for the tran-
sition 3P3/2 (F ¼ 3, m ¼ 3) ! 3S1/2(F ¼ 2, M ¼ 2) of sodium. (You will
have to look up the values of the 3j and 6j symbols for the set of quantum
numbers F0 ¼ 3, m0 ¼ 3, F ¼ 2, m ¼ 2, J 0 ¼ 3

2, J ¼ 1
2, I ¼ 3

2.)
(c) Confirm that the saturation intensity for this transition in the case of pure

radiative broadening is 6.3 mW/cm2, as stated in Section 4.11.
(d) Verify Eq. (14.4.5).

14.9. (a) An atom has a transition frequency n0 ¼ (E2 2 E1)/h, where 1 and 2 refer to
the ground level and first excited level, respectively, and it is moving with
velocity v away from a source of radiation of frequency n. Using conservation
of energy and linear momentum, and assuming that line broadening is
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negligible, show that the atom will absorb a photon of frequency n
provided that

n ¼ n0 1þ v

c

� �
:

Assume that v
 c, so that relativistic effects may be ignored.
(b) Show that there is a recoil shift

n� n0 ¼ hn20
2Mc2

in the absorption frequency, where M is the atomic mass.
(c) Derive an expression for the recoil shift in the case of two-photon absorption.

Calculate the recoil shift in the case of the 1S–2S two-photon transition
in atomic hydrogen, and compare your answer with the measured recoil
shift of 6.7 MHz reported by D. G. Fried, T. C. Killian, L. Willmann,
D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, Physical Review
Letters 81, 3811 (1998).

–5 
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0 5 gauss 

Figure 14.36 Time-integrated Hanle signals from mercury atoms for polarizer angles (a) w ¼ 0,
(b) w ¼ p/4, (c) w ¼ p/2, and (d ) w ¼ 3p/4. (See Problem 14.7.) [From B. P. Kibble and
G. W. Series, Proceedings of the Physical Society of London 78, 70 (1961).]
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(d) Estimate the critical temperature for Bose–Einstein condensation of atomic
hydrogen at a density of 1.8 � 1020 atoms/m3.

14.10. Derive the formula (14.4.42) for the potential energy function for the dipole
force. [Note: You might use the fact that the dipole force in (14.4.36) applies
even under conditions where the polarizability can be saturated. You could
also proceed as in the derivation of the light shift (14.4.22).]

14.11. (a) Show that the superposition of an upward-propagating laser beam of
frequency n þ Dn and a downward-propagating laser beam of frequency
n 2 Dn results in a “moving standing wave” with upward velocity lDn
(l ¼ c/n).

(b) Estimate the length traveled and the time taken for a cesium atom in an
atomic fountain to reach its apogee and return to its original position after
being launched by a moving standing wave with l ¼ 852 nm (Fig. 14.18)
and Dn ¼ 1.6 MHz.

14.12. (a) Compare the optical trapping force to the magnetic force acting on atoms in a
MOT, and show that the optical force is dominant for atoms at a distance of a
wavelength or more from the center of the trap.

(b) Use Eq. (14.5.9) to estimate the size of the cloud of sodium atoms trapped in
a MOT.

(c) Estimate the zero-point energy of a sodium atom in a magnetic trap with
B ¼ 10 G/cm.

14.13. A sodium atom in a MOT with a magnetic field gradient of 30 G/cm and coun-
ter-propagating laser fields of intensity 1 mW/cm2, detuned from the D2 tran-
sition by 30 MHz, is displaced from the center of the trap. Estimate the time it
takes for the atom to move to the center of the trap.

14.14. Suppose that sodium atoms are in an optical lattice formed by a laser of intensity
4 mW/cm2 detuned by 60 GHz from the D2 line. Show that the peak value of the
light-shift potential energy function is about 10 times the sodium recoil energy.
[J. H. Denschlag, J. E. Simsarian, H. Häffner, C. McKenzie, A. Browaeys,
D. Cho, K. Helmerson, S. L. Rolston, and W. D. Phillips, Journal of Physics
B: Atomic, Molecular and Optical Physics 35, 3095 (2002).]

14.15. (a) Derive the expression (14.5.13) for the (cycle-averaged) force of radiation
pressure on a dielectric sphere with a radius small compared to the radiation
wavelength. (Hint: Show that this force is equal to nbP/c, where P is the
Rayleigh-scattered power.)

(b) A focused laser beam is to be used to balance the force of gravity on a latex
sphere of diameter 5 mm. Assuming that latex has a density of 1.05 g/cm3

and a refractive index of 1.6 at the laser wavelength, estimate the laser inten-
sity and power required when the sphere is to be held in air, assuming a
Gaussian laser beam focused to a spot of diameter 10mm. Repeat these
estimates when the latex sphere is in water.

14.16. (a) Estimate the critical temperature for Bose–Einstein condensation of liquid
4He, for which the density is 2.2�1028 atoms/m3.
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(b) Calculate the recoil temperature Trecoil for the laser cooling of
87Rb atoms at

the 780 nm transition.
(c) Calculate the recoil temperature for hydrogen atoms at the 122-nm Lyman-a

transition, and compare it with the critical temperature obtained in Problem
14.9 for BEC in hydrogen.

14.17. (a) Assuming a wave function of the form (14.7.6), and probability amplitudes
av(t) ¼ av(0) exp (�iEvt=h� ), derive an expression for the expectation value
of the interatomic separation R. Compare your formula to that obtained if
there is no “off-diagonal coherence,” that is, if collisions or other “decoher-
ence” effects cause the quantities a�v(t)av0(t) to decay rapidly in time for v=v0.

(b) Explain how signals such as that shown in Fig. 14.23 can be used to obtain
values for vibrational and rotational constants of a molecule.

(c) Our simplified analysis of the time resolution of molecular vibrations with
femtosecond pump and probe pulses in Section 14.7 assumes a single mol-
ecule. Under what conditions can we apply such a single-molecule theory to
an ensemble of molecules in order to interpret experimental data such as
shown in Fig. 14.23?

14.18. (a) Use Eq. (3.14.6) and the formula n2(v) 2 1 ¼ (N/10)a(v) for the refractive
index to obtain

ai(v) ¼ e2

m

X
j

fj
v2
j � v2

for the polarizability of an atom in state i, where the summmation is over
all states j connected to state i by oscillator strengths fj and transition
frequencies vj.

(b) What modifications reduce this expression to the approximation (14.4.23)?
(c) Show that the light shift obtained using the polarizability derived in part

(a) reduces to the ponderomotive energy Up [Eq. (14.7.11)] in the limit in
which the field frequency v is much greater than any of the transition
frequencies vj.

14.19. (a) Show that the times tf at which the electron returns to the ion in the model
presented in Section 14.7 are given by solutions of the equation

cos uf � cos ui þ (uf � ui) sin ui ¼ 0,

where uf ¼ vtf and ui ¼ vti, ti being a time at which ionization occurs. Show
also that the electron’s kinetic energy when it reaches the ion is E(tf, ti) ¼
2Up(sin uf 2 sin ui)

2, where Up is the ponderomotive energy.
(b) Solve numerically for E(tf, ti) for ui between 0 and p/2 and verify the results

plotted in Fig. 14.27. In particular, verify that the maximum value of E(tf, ti)
is 3.17Up.

(c) What is the probability that an electron will recollide with its parent during
the first cycle of the laser field following ionization?

(d) How are the predictions of the model changed when the laser radiation is
circularly polarized?
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(e) Using the Bohr model, compare the amplitude of the electron’s quivering in
the field to the size of an atom when the Keldysh parameter g given by
(14.7.13) is less than 1.

14.20. Estimate the tunneling ionization rate for a hydrogen atom in (a) a linearly polar-
ized field of intensity 3 � 1016 W/cm2 and (b) a circularly polarized field of the
same intensity.

14.21. (a) Describe the spectrum obtained by the heterodyning of a single-mode laser
with a mode-locked laser, assuming the two fields have frequencies as indi-
cated in Fig. 14.31.

(b) Explain why there must be phase coherence among pulses equally spaced in
time if the pulse train is to serve as a comb for optical frequency metrology.
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15 DIODE LASERS AND OPTICAL
COMMUNICATIONS

15.1 INTRODUCTION

Any means of communication, whether smoke signals or telephone, involves a trans-
mitter and a receiver of information. In optical communications an electrical signal is
converted to a modulated light wave, which then transmits the signal to a receiver. At
the receiver the light signal is converted back to an electrical signal, where it might,
for example, be “read” as a television picture.

A monochromatic wave would not convey any information.1 To transmit information
with an electromagnetic wave, we have to turn it on and off or, as in AM or FM radio,
modulate it in some way. The rate at which information can be transmitted obviously
depends on the rate at which modulations are impressed on the wave. This modulation
rate must be slow compared to the carrier frequency that might, for example, be a broad-
cast frequency to which your radio is tuned. The higher the carrier frequency, therefore,
the higher the rate at which information can be conveyed; for this reason the great poten-
tial of optical communication was recognized for a long time.

Optical communication became practical with the advent of lasers. But major hurdles
stood in the way of long-distance optical communication by laser radiation in air: The
atmosphere introduces signal distortion due to turbulence (Chapter 8), and even under
the most favorable weather and seeing conditions only direct line-of-sight communi-
cation (e.g., satellite-to-satellite) would be possible if the atmosphere were the “trans-
mission channel.”

These obstacles were overcome around 1970 with the development of low-loss
optical fibers that could serve as transmission channels at near-infrared wavelengths
(Section 8.7). At the same time light-emitting diodes and room-temperature laser
sources suitable for efficient coupling of light into fibers were undergoing rapid devel-
opment. By 1977 optical communication systems based on these developments
were commercially available, and in 1988 the first transatlantic undersea optical cable
was installed. Optical networks employing lasers and fibers have in large part been
responsible for the expansion of the Internet and its ever-increasing economic and
societal impact.

Laser Physics. By Peter W. Milonni and Joseph H. Eberly
Copyright # 2010 John Wiley & Sons, Inc.

1Recall earlier remarks concerning radio wave modulation (Section 6.10) and group velocities exceeding the
speed of light in vacuum (Section 8.3).
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This chapter focuses on some basic physics of diode lasers and their role in fiber-optic
communications. We also introduce some elementary concepts of information theory in
order to better understand the relation between bandwidth and the rate of information
transmission in the inevitable presence of noise.

15.2 DIODE LASERS

In Section 2.9 we discussed light-emitting diodes (LEDs) in which radiation results from
the radiative recombination of electrons and holes at a pn junction. If there is a large
enough density of electrons and holes in a biased junction of doped p and n materials,
this radiation can stimulate the recombination of electrons and holes, and lasing results if
the amplification of radiation by stimulated emission exceeds the loss. This is the oper-
ating principle of semiconductor diode lasers. Diode lasers are ubiquitous in bar-code
readers, laser pointers, printers, and compact disc players, for example; we will focus
primarily on their properties of interest for fiber-optic communications. In addition to
their wavelengths, efficiencies, and extremely small size, the most distinctive feature
of semiconductor diode lasers for optical communications is the degree to which their
output can be modulated by varying the applied current. In this section we introduce
some general features of diode lasers, including their gain characteristics that follow
from the energy bands and the Fermi–Dirac distribution of electrons in semiconductors.

To get some idea of the sort of parameters that characterize diode lasers, consider first
the geometry shown in Fig. 15.1. The gain medium consists of a pn junction with an
active region of width d. In this region an “injection” current results in a sufficient
number of electron–hole pairs to produce gain; d may be estimated from the diffusion
length of the charge carriers and is very small, typically �1mm in a homojunction laser.
The widthD, which is discussed further below, indicates the size of the transverse mode
volume of the radiation field; whereas in most lasers D , d (Chapter 7), the reverse can
be true in diode lasers. Needless to say, neither d nor D are sharply defined.

+ 

w 

Active 
region 

d 

p-type material 

n-type material 
Polished end Polished end 

Laser 
output 

D 

Metal contact 

L

Figure 15.1 A diode laser (homojunction design).
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The threshold gain for a diode laser may be expressed in terms of a threshold injection
current. The familiar expression (3.12.11) for the gain coefficient,2

g(n) ¼ l2A21

8pn2
N2 � g2

g1
N1

� �
S(n), (15:2:1)

was derived assuming a transition between discrete bound states of energy E2 and E1

(E2 2 E1 ¼ hn) characterized by a lineshape function S(n). In diode lasers amplification
occurs between states within a range of energies E2 and E1 (cf. Fig. 15.2), and the
spontaneous radiative transitions are electron–hole recombinations ocurring at a rate
we will denote by 1/tR; tR is typically �3 ns for (direct-band-gap) semiconductor
gain media. Thus, we replace (15.2.1) by

g(n) ¼ l2

8pn2tR
rc(E2)

dE2

dn
� rv(E1)

dE1

dn

� 
: (15:2:2)

rc(E2) dE2 is the volume density of states in the energy interval (E2, E2 þ dE2) of the
conduction band, and rv(E1) dE1 is the density of states in the interval (E1, E1 þ dE1)
of the valence band; we are ignoring for the moment the fact that different states in
these energy intervals have different occupation probabilities. The factors dE2/dn and
dE1/dn appear because rc(E2) and rv(E1) are defined with respect to energy increments,
whereas S(n) is defined with respect to frequency increments [

Ð1
0 S(n) dn ¼ 1]. Besides

replacing A21 in (15.2.1) by 1/tR, we have dropped the degeneracy ratio g2/g1; the
only degeneracy of interest here will be that associated with electron spin, and will be

E2 

E1 

k

hn
Eg 

Figure 15.2 E–k curves for the conduction and valence bands of a direct-band-gap semiconductor.
A transition from an energy level E2 to an energy level E1 is accompanied by the emission of a photon
of frequency n ¼ (E2 2 E1)/h.

2Recall that l throughout this book is the wavelength in vacuum (l ¼ c/n), and that A21 is the spontaneous
emission rate in the medium and is itself proportional to n if local field corrections are negligible
(Section 3.12).
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dealt with later. Equation (15.2.2) gives the gain coefficient for the transition of
frequency n ¼ (E2 2 E1)/h between two particular energy levels E2 and E1 within
continuous distributions of upper- and lower-level energies (Fig. 15.2).

The threshold gain coefficient is given by Eq. (4.3.13):

gt ¼ a� 1
2L

ln r1r2, (15:2:3)

where L is the length of the gain region, r1 and r2 are the mirror reflectivities, and a is the
cavity loss per unit length due to intracavity field attenuation effects other than trans-
mission through the mirrors. The threshold condition for laser oscillation at frequency
n, therefore, takes the form

rc(E2)
dE2

dn
� rv(E1)

dE1

dn

� 
t

¼ 8pn2tR
l2

a� 1
2L

ln r1r2

� �
: (15:2:4)

To simplify as much as possible, let us assume that rc(E2) dE2/dn 2 rv(E1) dE1/dn �
rc(E2) dE2/dn � hrc(E2) and that a current injects electrons into the conduction band of
the active (gain) region with energies in a range �DE2 about E2. Then the density of
conduction-band electrons is �rc(E2)DE2 under the assumption that every state in
the energy interval (E2, E2 þ DE2) of the conduction band is occupied by an electron.
We denote by J the current density (flow of charge per unit area per unit time) and
write J/ed for the electron injection rate per unit volume. Electrons are also being lost
at a total rate Re due to radiative as well as nonradiative recombination processes, and
in steady state the injection rate equals the loss rate: J/ed ¼ Rerc(E2)DE2. To simplify
still further we will assume that the “internal quantum efficiency” h ¼ 1/(RetR), the
fraction of injected electrons undergoing radiative recombination, is close to unity—
not a bad approximation for diode lasers.With all these assumptions and approximations
we can write the threshold condition in terms of a threshold current density Jt:

Jt ¼ 8pn2

l2
DE2

h
(ed) a� 1

2L
ln r1r2

� �
: (15:2:5)

This expression does not account for the fact that the mode volume is wider than the
width d of the active region. The greater density of charge carriers in the active region
results in a greater refractive index than in the surrounding medium, and therefore
some confinement of radiation to the active region. This is called index guiding; there
is also gain guiding due just to the fact that there is gain in the active region but not
in the surrounding material. But if these “wave-guiding” effects are weak, the radiation
has a mode volume of width D. d. The effective gain coefficient is then smaller than
(15.2.2) by a factor �d/D, and the actual threshold current density is a factorD/d larger
than (15.2.5). For our purposes of making some rough estimates for homojunction
lasers, we will assume D � d.

Diode lasers usually do not require mirrors for feedback. This is because the refractive
index n is large enough for significant Fresnel reflection at the semiconductor–air
interfaces. From the Fresnel formulas for normal incidence we have the reflection
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coefficient [Eq. (5.A.6)]

r ¼ n� 1
nþ 1

� �2
(15:2:6)

if we approximate the refractive index of air by unity. For GaAs n � 3.6 and therefore
r � (2.6/4.6)2 � 0.32 for the reflection coefficient of the laser “mirrors.” By polishing
the two opposite ends of the diode, and leaving the remaining sides rough (so that they
are poor specular reflectors), laser oscillation is favored along the axis joining the
polished ends (Fig. 15.1). Sometimes coatings are applied to the polished ends to
increase their reflectivities.

GaAs, with a band gap such that l � 860 nm, is a diode laser medium for which
experiments and numerical models suggest the very rough estimate DE2/h � 1013 Hz.
With this estimate and the fairly typical values d ¼ 2 mm, L ¼ 500 mm, and a ¼
10 cm21, we calculate from (15.2.5) that Jt � 500 A/cm2. For a junction area lw ¼
500 � 100 mm2 (Fig. 15.1), this implies a threshold current JtLw � 250 mA.

Note that the gain region is less than a millimeter across in any direction in our
example: Diode lasers are tiny! The fact that the internal quantum efficiency is close
to unity suggests that diode lasers are also potentially very efficient, and in fact they
are among the most efficient of all lasers, with typical overall efficiences (laser output
power divided by input electrical power) �30–40% or more.

Our estimate of 500 A/cm2 for the threshold current density of a GaAs laser is in
order-of-magnitude agreement with measurements for low-temperature GaAs lasers.
However, the considerations leading up to this result were obviously highly simplified,
and it turns out that, for all but the very lowest operating temperatures, our simplistic
theory predicts much too small a value for the threshold current density of homojunction
GaAs lasers.

At room temperature, current densities more like 500,000 A/cm2 are needed to reach
threshold. However, current densities are dramatically smaller for structures employing
heterojunctions, stripes, quantum wells, and other concepts.

Gain Coefficient

Before turning attention to these other structures, we will derive an equation for
the gain coefficient of a diode laser, starting from the fact that the E2 k curves
(Chapter 2) of the conduction and valence bands are approximately parabolic, as
shown in Fig. 15.2. Recall that the E2 k relation for a free electron of mass m is
E ¼ h�2k2=2m [Eq. (2.A.4)]. For an electron of energy E2 in the conduction band
(E2 . Ec) of a semiconductor, similarly,

E2 ffi Ec þ h�2k2
2mc

, (15:2:7a)

and likewise, for a hole of energy E1 in the valence band (E1 , Ev),

E1 ffi Ev � h�2k2
2mv

; (15:2:7b)
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mc and mv are the effective masses of conduction-band electrons and valence-
band holes, respectively (Chapter 2); for GaAs, for example, mc ffi 0:07m and
mv ffi 0:50m. A radiative recombination transition from a level E2 of the conduction
band to a level E1 of the valence band occurs with the emission of a photon of frequency
n given by

hn ¼ E2 � E1 ¼ Ec � Ev þ h�2k2
2

1
mc
þ 1
mv

� �
¼ Eg þ h�2k2

2mr
, (15:2:8)

where Eg ¼ Ec 2 Ev is the gap energy (ffi 1:44 eV for GaAs) andmr ¼ mcmv/(mc þ mv)
is the reduced electron–hole effective mass. It follows from (15.2.7) and (15.2.8) that

E2 ¼ Ec þ mr

mc
(hn� Eg), (15:2:9a)

E1 ¼ E2 � hn ¼ Ev � mr

mv

(hn� Eg): (15:2:9b)

The density of states rc(E) can be derived in essentially the same way as Eq. (14.6.3),
with a few modifications. First, (14.6.3) applies to particles in a particular spin state, and
must be multiplied by 2 to allow for the two possible spin states (“up” and “down”) of
the electrons in a semiconductor. Second, Eq. (14.6.3) was derived under the assumption
that E ¼ h�2k2=2M, that is, for free particles of massM, whereas (15.2.7a) is appropriate
for an electron in the conduction band of a semiconductor. These considerations lead to
the density of states (Problem 15.1)

rc(E) ¼
ffiffiffi
2
p

mc
3=2

p2h�3 (E � Ec)
1=2 (E . Ec): (15:2:10)

For the valence band, similarly, the density of states is

rv(E) ¼
ffiffiffi
2
p

mv
3=2

p2h�3 (Ev � E)1=2 (E , Ev): (15:2:11)

Onemore fact of utmost importancemust be accounted for: No two electrons can occupy
the same state, i.e., electrons are fermions. States of electrons in a solid are defined by the
k vector and the spin quantum number, and the Pauli exclusion principle forbids elec-
trons from all “piling up” into a state of lowest energy. Instead they fill up allowed
energy states in accordance with the exclusion principle, one electron per state, up to
some maximum energy Ef, the Fermi energy. For any finite temperature T, some of
the electrons reach energies larger than Ef; the average number of electrons with
energy E is given by the Fermi–Dirac distribution function:

F(E, Ef ) ¼ 1

e(E�Ef )=kBT þ 1
: (15:2:12)

At T ¼ 0, F(E, Ef) is 1 for E , Ef and 0 for E . Ef, whereas for T . 0, F(E, Ef) . 0 for
energies E . Ef. Ef plays the same role as the chemical potential m of Section 14.6,
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wherewe introduced the Bose–Einstein occupancy factor [e(E�m)=kBT � 1]�1 as opposed
to the occupancy factor (15.2.12) for fermions: It is determined by the condition that
the total number of particles is fixed. Thus, if Nc is the density of conduction-band
electrons,

Nc ¼
ffiffiffi
2
p

m3=2
c

p2h�3
ð1
Ec

(E � Ec)1=2 dE

e(E�E fc)=kBT þ 1
, (15:2:13)

where Efc is a Fermi energy characterizing the energy distribution of conduction-
band electrons. The density Nv of holes in the valence band can similarly be related
to a Fermi energy Ef v for valence-band electrons: The occupancy factor for a
hole of energy E is equal to the nonoccupancy factor 1� F(E, Ef v) ¼ 1�
[e(E�E f v)=kBT þ 1]�1 for an electron of energy E in the valence band, and therefore

Nv ¼
ffiffiffi
2
p

mv
3=2

p2h�3
ðEv

�1
(Ev � E)1=2 1� 1

e(E�Ef v)=kBT þ 1

� �
dE

¼
ffiffiffi
2
p

mv
3=2

p2h�3
ðEv

�1

(Ev � E)1=2 dE

e(Ef v�E)=kBT þ 1
: (15:2:14)

Taking into account the Fermi–Dirac distribution, we replace (15.2.10) by3

rc(E) ¼
ffiffiffi
2
p

m3=2
c

p2h�3 (E � Ec)
1=2 1

e(E�E fc)=kBT þ 1
(E . Ec): (15:2:15)

The Fermi–Dirac distribution applies at thermal equilibrium, in which case there can be
no gain. However, in writing (15.2.15) we do not require that the conduction-band elec-
trons and valence-band holes are thermally equilibrated with each other. Provided that
relaxation processes, mainly electron–electron and electron–phonon collisions, are fast
enough, and much faster than interband transitions, it is reasonable to assume that the
conduction-band electrons and the valence-band holes are described approximately
by thermal distributions. In fact, the intraband relaxation times are typically on
the order of picoseconds, whereas the interband transition times are on the order of
nanoseconds. Under such circumstances we can define the separate, “quasi-Fermi
levels” Efc and Ef v, whereas in global thermal equilibrium there is only a single Fermi
level Ef ¼ Efc ¼ Ef v.

In the same way we account for the Fermi–Dirac distribution by replacing the
valence-band density of states (15.2.11) by

rv(E) ¼
ffiffiffi
2
p

mv
3=2

p2h�3 (Ev � E)1=2
1

e(E�Ef v)=kBT þ 1
(E , Ev): (15:2:16)

3This now represents a density of electrons rather than a density of states, i.e., rc(E) dE is the average number
of electrons per unit volume in the energy interval [E, E þ dE].
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The expressions (15.2.2), (15.2.9), (15.2.15), and (15.2.16) then imply the gain
coefficient4 (Problem 15.1)

g(n) ¼ C(hn� Eg)
1=2 1

e(E2�E fc)=kBT þ 1
� 1

e(E1�E f v)=kBT þ 1

� 

(hn ¼ E2 � E1 . Eg), C ;
ffiffiffi
2
p

mr
3=2l2=4p 2h�2n2tR: (15:2:17)

† The factor in brackets in (15.2.17) can be arrived at equivalently as follows. The probability
of a downward (stimulated-emisson) electron–hole recombination transition from level E2 in the
conduction band to level E1 in the valence band is proportional to the occupancy factor F(E2, Efc)
for an electron of energy E2 in the conduction band, times the occupancy factor 12 F(E1, Ef v)
that there is a hole (i.e., that there is no electron) of energy E1 in the valence band. The probability
of an upward (absorptive) electron–hole recombination transition from level E1 in the valence
band to level E2 in the conduction band is proportional to the occupancy factor F(E1, Ef v)
that there is an electron of energy E1 in the valence band, times the nonoccupancy factor 12
F(E2, Efc) that there is no electron of energy E2 in the conduction band. The gain coefficient is
therefore proportional to

F(E2, Efc)[1� F(E1, Ef v)]� F(E1, Ef v)[1� F(E2, Efc)]

¼ F(E2, Efc)� F(E1, Ef v)

¼ 1

e(E2�Efc)=kBT þ 1
� 1

e(E1�Ef v)=kBT þ 1

� 
, (15:2:18)

as in (15.2.17). †
The gain coefficient (15.2.17) vanishes if hn , Eg, obviously because a photon at

such a frequency cannot satisfy the energy conservation condition hn ¼ E2 2 E1

(Fig. 15.2). It follows furthermore from (15.2.17) that (positive) gain requires E2 2
Efc , E1 2 Ef v, or E2 2 E1 ¼ hn , Efc 2 Ef v. In other words, the gain coefficient
(15.2.17) is positive only for frequencies n satisfying

Eg , hn , Efc � Ef v: (15:2:19)

g(n) depends on the Fermi energies Efc and Ef v, and these energies depend on the elec-
tron and hole concentrations in the rather complicated way expressed by (15.2.13) and
(15.2.14). Equation (15.2.13), for instance, implies that Efc increases with Nc. This can
be seen from the fact that the denominator in the integrand of (15.2.13) decreases with
increasing Efc, so that, with all other parameters held fixed, dNc/dEfc . 0 and therefore
dEfc/dNc . 0. (See also Problem 15.1 for the special case T ¼ 0.) Since g(n) increases
with Efc, it increases with Nc, which in turn implies that it should increase with current
density. Closer examination, taking account of the dependence of g(n) on Ef v and Nv,
confirms that this is indeed the case, and moreover that the gain bandwidth as well as
the peak gain should increase with current density (cf. Fig. 15.3). This property of
diode lasers is somewhat unusual: In most other types of laser the gain bandwidth is

4More detailed discussions of the assumptions leading to (15.2.17) may be found, for instance, in M. Shur,
Physics of Semiconductor Devices, Prentice-Hall, Englewood Cliffs, NJ, 1990, or B. E. A. Saleh and
M. C. Teich, Fundamentals of Photonics, Wiley, New York, 2007.
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approximately independent of the pumping strength, at least insofar as power broaden-
ing and other effects that might affect the lineshape function S(n) can be ignored.

The conduction-band electron density Nc ¼ Nc þ N, where N is the density due to
the applied current and Nc is the density in the absence of the current. Similarly the
valence-band hole density Nv ¼ Nv þ N, where Nv is the hole density without the cur-
rent. We can take the electron and hole densities due to the current to be the same (N ),
since injection of an electron into the conduction band leaves a hole in the valence band.
Equations (15.2.13) and (15.2.14) determining Efc and Ef v are then [see the note in
Problem 15.2]

Nc þ N ¼
ffiffiffi
2
p

mc
3=2

p2h�3
ð1
Ec

(E � Ec)1=2 dE

e(E�Efc)=kBT þ 1
, (15:2:20a)

Nv þ N ¼
ffiffiffi
2
p

mv
3=2

p2h�3
ðEv

�1

(Ev � E)1=2 dE

e(Ef v�E)=kBT þ 1
: (15:2:20b)

A semiconductor is characterized among other things by an energy gap Eg, carrier
charge densities Nc and Nv, and effective masses mc and mv that depend on the
doping and the energy bands (E2 k curves) of the material. Given these quantities
and the injected electron density N, the energies Ec 2 Efc and Ev 2 Ef v are determined
for any temperature T by Eqs. (15.2.20). Once these energies are known, Eqs. (15.2.9)
can be used to compute the gain coefficient g(n) [Eq. (15.2.17)] for any frequency n.
Figure 15.3 shows results of such computations for an example in which Eg ¼ 0.96
eV, mc ¼ 0.059m, mv ¼ 0.44m, n ¼ 3.5, tR ¼ 2.5 ns, and Nc ¼ Nv ¼ 2� 1023 m�3.
We have plotted g(n) vs. n for four different values of N, assuming T ¼ 300K.

Figure 15.3 brings out some important points. First, as noted above, the gain band-
width increases with N and therefore with current density. The gain bandwidth for the
largest value of N (curve D) is 14.7 THz. The computed values of Efc 2 Ec and
Ef v 2 Ev for this N are, respectively, 0.092 eV and 0.031 eV, and the gain bandwidth
is that expected from Eq. (15.2.19): (0.0922 0.031 ¼ 0.061) eV, or Dn ¼ 14.7 THz.
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Figure 15.3 (a) Computed gain coefficients g(n). 0 vs. n 2 Eg/h for T ¼ 300K. Results are shown
for four different values ofN: (A) 1.2 � 1024, (B) 1.4 � 1024, (C) 1.6 � 1024, and (D) 1.8 � 1024 m23.
The frequencies n 2 Eg/h are in units of THz (10

12 Hz). (b) Computed peak values of the gain coeffi-
cient vs. N.
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Second, the frequency at which the gain is largest at fixed temperature is seen to increase
with N and therefore with current. Both of these features are observed with diode lasers;
the peak gain coefficient at fixed temperature shifts in frequency by typically a few
megahertz per microampere change in injection current. Another difference between
diode lasers and most other types of laser is evident in Fig. 15.3, namely that diode
lasers can have huge gain coefficients. These large gains are necessary for lasing,
given the large threshold gains (15.2.3) implied by the short gain lengths L and the
low facet reflectivities. Of course, the threshold gains can be reduced with reflective
coatings, but other losses, including the spreading of light outside the gain region and
the nonspecular light scattering at layer interfaces, often remain relatively large.5

In Fig. 15.3 we also plot the peak gain coefficients gmax. The smallest value of N that
results in a positive gain is computed to be 8.1 � 1023 m23. If we argue as before that
N and the current density J are related by J ¼ (ed/tR)N, and assume d ¼ 2mm, then
the current density needed for a positive gain in this example is

(1:6� 10�19 C)(2� 10�6 m)(8:1� 1023 m�3)
2:5� 10�9 s

¼ 1:0� 104 A=cm2: (15:2:21)

Note that we have assumed an internal quantum efficiency h ¼ 1. If the radiative
recombination rate divided by the total recombination rate is h ¼ 0.90, for example,
then this estimate for the current density must be multiplied by 1/h ¼ 1.1.

For N greater than about 1.2 � 1024 m23 the peak gains plotted in Fig. 15.3 satisfy

gmax ffi s[N � Ntr] (15:2:22)

with s ¼ 1.9 � 10220 m2 and Ntr ¼ 9.5 � 1023 m23. Ntr is the value of N needed for
“transparency,” i.e., for the gain to have a positive value instead of a negative value
corresponding to absorption. Writing J ¼ edReN and J0 ¼ edReDNtr, we obtain a
gain–current relation of the form frequently used to relate gain to current for
diode lasers:

gmax � b(J � J0) b ;
shtR
ed

� �
: (15:2:23)

We can define a threshold current density Jt by equating (15.2.23) to the threshold gain
coefficient (15.2.3):

Jt
d
� e

tR

gt
s
þ Ntr

� �
(15:2:24)

for h �1. Using the parameters assumed in obtaining Fig. 15.3, and a ¼ 10 cm21

and L ¼ 500 mm as in our earlier estimate for the threshold gain of a diode laser,

5Manufacturers of diode lasers generally consider information about the actual design and preparation of the
facets to be proprietary.
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we calculate

Jt
d
� 7:2� 103 A=(cm2-mm), (15:2:25)

which is comparable to measured values. The threshold current is It ¼ ( junction
area) � Jt ¼ LwJt.

Steady-state laser oscillation requires that electrons be injected into the conduction
band at a rate of at least It/e. With an injection current I . It the laser power radiated
by stimulated radiative recombination of electrons and holes is just h(I 2 It)/e times
the energy hn of each photon emitted (Problem 15.3):

P ¼ h
I � It
e

� �
hn: (15:2:26)

(In this chapter no confusion can arise so we use simply P instead of Pwr to designate
power.) In the uniform-field approximation the fraction of this power emerging as output
laser radiation is the output coupling loss coefficient divided by the total loss coefficient:

f ¼ �
1
2L ln (r1r2)

a� 1
2L ln (r1r2)

, (15:2:27)

and therefore the steady-state output power is approximately

Pout ¼ h
I � It
e

� �
hn
� 1

2L ln (r1r2)

a� 1
2L ln (r1r2)

: (15:2:28)

Consider as an example a laser with a threshold current density given by (15.2.25).
For a heterojunction laser with L ¼ 200mm, w ¼ 10mm, and d ¼ 0.1mm (see
below), It ¼ 14 mA. For h ¼ 0.9, a ¼ 10 cm21, and r1 ¼ r2 ¼ (n 2 1)2/(n þ 1)2 ¼
(2.5/4.5)2 ¼ 0.31,

Pout � 0:7(I � 14) mW (I in mA) (15:2:29)

for l ¼ 1.3mm. Currents I of a few tens of milliamps are therefore predicted to result in
output powers on the order of a few milliwatts, as is typical of room-temperature hetero-
junction diode lasers with the parameters we have assumed.

The model leading to the gain coefficient (15.2.17) thus provides reasonably good
qualitative and (semi)quantitative agreement with measurements made with diode
lasers. A more “first-principles” computation of the gain coefficient and the gain–
current relation would require energy-band computations for any given semiconductor
material, doping, temperature, etc. (recall the Kronig–Penneymodel of Chapter 2 for the
illustrative example of a one-dimensional crystal), whereas we have simply assumed
values for the band gap and effective masses, for example, that would be deduced
from such computations (or from experiments).

† The model used to derive (15.2.17) is an approximation to a more general theory. One
approximation implicit in (15.2.17) is that the k vector of an electron does not change in an inter-
band transition, allowing us to consider only vertical (“momentum-conserving”) transitions as
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shown in Fig. 15.2 (Section 2.9). This approximation is implicit in Eqs. (15.2.7), where it is
assumed that k is the same for both energy levels E1 and E2. We have also assumed that the line-
shape function Sep(n) for the homogeneous broadening due to electron–electron and electron–
phonon collisions has a very narrow width Dnc near n ¼ (E2 2 E1)/h compared to the width of
g(n) determined by (15.2.17). As already noted, collision times are roughly on the order of picose-
conds. ThenDnc � (1012/2p) Hz, which is small compared to thewidth of the gain curve shown in
Fig. 15.3a, for instance.

Similar approximations can be used to model the emission characteristics of a light-
emitting diode. In this case the quantity of interest is not a gain or absorption coefficient but a
spontaneous emission rate. To obtain the spectrum of spontaneously emitted light when a current
is applied to an LED, for example, we first use (15.2.18) to write the gain coefficient (15.2.17) in
the form

g(n) ¼C(hn� Eg)
1=2F(E2, Efc)[1� F(E1, Ef v)]

� C(hn� Eg)
1=2F(E1, Ef v)[1� F(E2, Efc)]: (15:2:30)

This is the difference of two terms, the first of which we identify with stimulated emission from
level E2 and the second with absorption from level E1. Comparison with (15.2.1) or (15.2.2)
shows that the spectrum of spontaneous emission is proportional to the first term:

Rsp(n)/ (hn� Eg)
1=2F(E2, Efc)[1� F(E1, Ef v)]

¼ (hn� Eg)
1=2 1

e(E2�E fc)=kBT þ 1

� 
1� 1

e(E1�E f v)=kBT þ 1

� 
: (15:2:31)

In both (15.2.30) and (15.2.31), of course, hn . Eg. We ignore a factor l2 ¼ c2/n2, which is
nearly constant over the effective width of the function Rsp(n). In Fig. 15.4 we plot (15.2.31),
computed in the same way as the gain coefficient by first determining the quasi-Fermi
levels. We have used the same parameters as in Fig. 15.3 and assumed a value of N too small
for positive gain.
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Figure 15.4 Computed spontaneous emission spectrum (arbitrary units) for the parameters of
Fig. 15.3 but with N ¼ 2 � 1023 m23.
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A more detailed theory of gain, absorption, and spontaneous emission in semiconductor
devices includes not only “nonvertical” transitions (cf. Section 2.9) and their matrix elements
but also effects such as a reduction of the energy gap Eg due to the injected charge carriers.
Thus, for example, the range of frequencies for which g(n) . 0 is found to extend to energies
hn below the constant energy gap that we have assumed in obtaining the results shown in
Fig. 15.3. The basic features of the variation of gain with injected charge carriers shown in
Fig. 15.3, however, are not substantially altered.6 †

Most applications of diode lasers call for room-temperature operation. The large cur-
rent densities required for the homojunction design of Fig. 15.1, the simplest type of
diode laser, then pose serious problems. This difficulty was overcome in the 1970s
with the development of heterojunction diode lasers. Figure 15.5 illustrates a
“double” heterojunction design, which employs not only n- and p-type GaAs layers,
but also n- and p-layers of an AlAs–GaAs alloy, denoted AlGaAs. Because of the
band-gap differences at the two GaAs–AlGaAs junctions, there is a greater confinement
of electrons and holes in the active region ( p-type GaAs in the example shown). This
comes about because the band-gap differences act in effect as potential energy barriers
for the electrons and holes, preventing them from diffusing out of the active GaAs layer.
Furthermore the greater refractive index of GaAs compared to the AlGaAs compound
helps to confine the radiation to the active region by index guiding, thus reducing the
width d appearing in (15.2.24) and therefore the threshold current density. In addition,
the loss coefficient a is smaller than in the homojunction case, simply because any radi-
ation that “spills over” into the AlGaAs layers finds itself in a nonresonant, nonabsorbing
medium (because of the large band gap compared to the radiation frequency). For these
reasons, cw heterojunction lasers can operate at room temperatures with current densities
typically �1000 A/cm2.

Threshold currents are reduced still further by confining the current across the
active region to a narrow stripe, as shown in Fig. 15.6. This may be done as shown by
building high-resistance regions into the diode. For a double heterojunction laser
with a gain region of length L ¼ 1mm and width w ¼ 10mm, the threshold current is
�(103 A/cm2) (1021 cm) (1023 cm) �102 mA, and a typical output power for such a
device ranges from a few milliwatts to a few tens of milliwatts [cf. (15.2.29)]. Another

p-type GaAs
(active region)

n-type GaAs

n-type AlGaAs

p-type AlGaAs

Figure 15.5 A double-heterojunction diode laser.

6In order to compare with computations including nonvertical transitions we chose the parameters for these
figures in accordance with those assumed by N. K. Dutta, Journal of Applied Physics 51, 6095 (1980) for a
In0.72Ga0.28As0.6P0.4 laser. Results of that work corresponding to our Fig. 15.3 are reproduced in Fig. 16.2–3
of Saleh and Teich, op. cit., see footnote 4.
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advantage of the stripe geometry is that the cross-sectional area of the output radiation is
reduced, making it easier to couple the radiation into an optical fiber. Stripe lasers also
tend to have a more stable output.

Quantum Wells

As noted, the energy gaps between valence and conduction bands are different in the
GaAs and AlGaAs materials of Fig. 15.5 (Section 2.9), and this results in a potential
energy barrier for electrons in the conduction band and for holes in the valence band.
The electrons and holes in the gain region are therefore in potential energy wells, or
quantum wells. In the simplest approximation these quantum wells are modeled as infi-
nite square wells for which the allowed electron energies in the conduction band are
(Problem 2.7)

Ecq ¼ Ec þ q2p 2h�2
2mcd2

(q ¼ 1, 2, 3, . . .), (15:2:32)

and similarly the allowed hole energies in the valence band are

Evq ¼ Ev � q2p 2h�2
2mvd2

(q ¼ 1, 2, 3, . . .): (15:2:33)

If d is very small, these energy levels cannot be well approximated by continua; they
have only certain allowed values, and radiative transitions between these levels in quan-
tum well lasers occur at wavelengths that depend on the thickness d of the active region.
The laser frequency for oscillation between the lowest energy level of the conduction
band and the highest level of the valence band, for example, is

n ¼ 1
h

Eg þ p 2h�2
2d2

1
mc
þ 1
mv

� �� 
¼ 1

h
Eg þ p 2h�2

2mrd2

� �
: (15:2:34)

Stripe contact

(a)
(b)

Laser
output

High-resistance
regions

+

Active
regionMetal

contacts

Figure 15.6 (a) Diode laser with a stripe contact to confine the current to a small part of the active
layer. (b) Stripe contact obtained by building high-resistance regions into a laser diode.
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The components kx, ky of the electron k vectors parallel to the two planes separated
by d in a quantum well laser take on a continuous range of values. When all three
components of k take on a continuous range of values, the number of electron states
in a volume V and in a differential volume d3k of k space is 2V dkx dky dkz/(2p)

3,
where the factor 2 accounts for the two possible states of electron spin for each k. For
a quantum well, however, there are 2dkx dky=(2p)2 ¼ 2(2pk2 dk2)=(2p)2 ¼ (k2=p) dk2
states per unit area associated with the “parallel” components of k (k22 ¼ k2x þ k2y ),
and so the number of states per unit volume in the interval [k2, k2 þ dk2] is
(1=d)� (k2=p) dk2 ; ~r(k2) dk2. The E2 k relation (15.2.7a) is similarly modified
when the electrons are confined in a quantum well:

E ¼ Ec þ Eq þ h�2k22
2mc

(q ¼ 1, 2, 3, . . . ), (15:2:35)

where Eq is defined by (15.2.32). Using the relation rq(E) ¼ ~r(k2)(dk2=dE), we obtain

rcq(E) ¼
mc

ph�2d (E . Ec þ Eq) (15:2:36)

for the density of states of conduction-band electrons with quantum number q; if E ,
Ec þ Eq, rcq(E) ¼ 0. A similar expression for the density of states for the valence
band, rvq(E), is obtained by replacing mc by mv. The gain coefficient for allowed tran-
sitions, which conserve both the k vector and the quantum number q, may be derived
(and computed) along the same lines as (15.2.17). Allowing for all possible quantum
numbers q for the conduction-band electrons and valence-band holes, we obtain

g(n) ¼ l2

8pn2tR

2mr

h�d
1

e(E2�Efc)=kBT þ 1
� 1

e(E1�Ef v)=kBT þ 1

� 

�
X1
q¼1

u hn� Eg � q2p 2h�2
2mrd2

� �
: (15:2:37)

We have introduced the unit step function (or “Heaviside function”) u(x), defined such
that u(x) is 1 for x . 0 and 0 for x , 0. According to Eq. (15.2.37) the dependence on
frequency of the gain coefficient of a quantumwell laser has a “staircase” behavior, exhi-
biting step-like increases at frequencies n ¼ (Eg þ q2p 2h�2=2mrd2)=h, q ¼ 1, 2, 3, . . .; as
the injection current is increased, gain first appears at the frequency (15.2.34). As in bulk
semiconductor lasers, the dependence of the quasi-Fermi levels on the charge carrier
densities results in higher gain and larger gain bandwidth as the injection current is
increased. Injection currents are often such that only the q ¼ 1 “step” satisfies the con-
dition Eg , hn , Efc 2 Ef v for positive gain [Eq. (15.2.19)].

Quantumwell lasers differ from older types of double-heterojunction lasers in that the
thickness d of the active region is much smaller. This gives them the important advan-
tage of larger gain per injected electron, and consequently higher efficiencies and much
smaller threshold currents than bulk semiconductor lasers. The higher efficiency is
related to the “staircase” nature of the effective density of states in (15.2.37), which
results in a greater fraction of electrons in lasing energy states. The smaller number of
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charge carriers required to realize a particular level of gain also results in weaker internal
losses than bulk semiconductor lasers; threshold current densities ,100 A/cm2 are
possible. Typical threshold currents and output powers are .1 mA and .100 mW,
the output powers of individual quantum well lasers being limited by optical damage
to the small-area facets. The d dependence of the electron and hole energies also
allows the flexibility of selecting different laser wavelengths by fabricating lasers with
different thicknesses d of the active region. Quantum well lasers tend to be less sensitive
to temperature and, for reasons discussed in Section 15.3, to allow faster modulation
rates. They have replaced bulk double-heterojunction lasers in many applications.

The active layer width d can be as small as 10 nm or less in a quantum well laser,
while the field mode width D might be �10 times or more larger. The effective gain
coefficient, or “modal gain coefficient,” is therefore smaller than g by a factor �d/D.
Low-refractive-index confinement layers are usually added to either side of the quantum
well, resulting in greater confinement of the field within the well. Another way to
increase the modal gain coefficient is to have multiple quantum wells in the gain
region. The modal gain coefficient of a multiquantum well laser is then approximately
the sum of the gains of the individual wells. In addition, the current within each well can
be below a level that would saturate the gain, so that the total modal gain for a given
current is maximized.

Equations (15.2.32) and (15.2.33) apply when the electrons and holes are confined
along one direction, perpendicular to the junction layers. Different material structures
can also result in confinement in two or three dimensions, in which case the potential
energy wells are referred to as quantum wires and quantum dots, respectively. Such
structures are fabricated by molecular beam epitaxy or chemical vapor deposition,
and at this writing quantum wire and quantum dot lasers are being actively researched
and developed.

† Lasing can also occur on the long-wavelength (�5–10 mm) intraband transitions between
discrete energy levels of a quantum well rather than on the interband transitions involving
electron–hole recombination. In a quantum cascade laser a voltage is applied across a series of
alternating high- and low-band-gap materials, such that an electron in any one of �20 wells
finds itself in a potential well. In the applied electric field an electron can tunnel from one quantum
well to the next, and in so doing it loses energy in discrete steps as it jumps from an energy level in
one well to a different energy level of the adjacent well. This results in the emission of a large
number of photons as each electron “cascades” down the series of quantum wells. Quantum
cascade lasers are most useful for the generation of long-wavelength radiation that would be
difficult to obtain with conventional (interband) diode lasers because of the requirement of a
small band gap and therefore substantial numbers of thermally excited electrons and holes. †

Mode Properties

In optical communication systems employing wavelength-division multiplexing
(Section 15.6), different wavelengths are separately modulated and transmitted through
a single fiber in order to transmit different signals simultaneously. This requires that the
different wavelengths be sufficiently far apart that interference among the different
signals is negligible. The gain bandwidths of diode lasers (cf. Fig. 15.3) allow laser
oscillation on several longitudinal modes over bandwidths �2 nm at low powers
(�1 mW), while the useful bandwidth of a fiber might be �10 times greater; this
would allow only �10 “channels” to be transmitted by the fiber. Increasing the
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number of possible channels therefore requires that the laser linewidth be reduced.
Linewidth reduction also limits group velocity dispersion and “mode-hopping” effects
in which fluctuations in temperature or injection currents cause fluctuations in the laser
wavelength.

An obvious way to achieve single-longitudinal-mode oscillation is to reduce the
length L of a diode laser so that the mode spacing (ffi c/2nL) is sufficiently large that
only a single frequency within the gain bandwidth can lase (Section 5.10). Even for L
as small as 100 mm, however, the mode spacing of edge-emitting diode lasers is typi-
cally small compared to the very large gain bandwidth (Problem 15.4). More generally,
as with all laser media with predominantly homogeneous broadening, gain “clamping”
tends to favor single-mode oscillation, but spatial hole burning, which is especially sig-
nificant because of the short cavity length and therefore the small number of spatial field
cycles in the gain medium, often results in oscillation on several longitudinal modes
(Section 5.10). As the injection current and power level are raised, the temperature
rises, which results in an increase in the output wavelength, typically by �0.3 nm/K.
This often causes the wavelength of a free-running diode laser to jump to a larger
value, drifting gradually to higher values between jumps.

A diode laser can be tuned to a particular frequency by forming an “external cavity”
using a diffraction grating at some distance from the diode; this is basically just the
Littrow method used for dye lasers and other tunable lasers (Sections 11.11 and
11.12). Rotation of the grating selects a particular lasing frequency, other frequencies
within the gain bandwidth being prohibited from lasing by their smaller feedback and
larger loss. In optical communication systems, however, it is far more practical to use
diode lasers with built-in Bragg gratings. In a distributed Bragg reflector (DBR)
design, for example, Bragg gratings are fabricated on both sides of the gain medium,
and act in effect as end mirrors that reflect in only a narrow band of frequencies.

Wavelength tuning is commonly done by fabricating the laser such that there is a
periodic corrugation forming a grating along the length of active layer. If dg is the
spatial period of the grating and n is the refractive index, the lasing wavelength will
be that satisfying the Bragg condition (11.14.29): l ¼ 2ndg or, more generally, l ¼
2ndg/m for diffraction order m (¼1, 2, 3, . . .). In such a distributed feedback (DFB)
laser the reflection and feedback occur continuously throughout the gain medium
rather than at end mirrors. The lasing wavelength can be further controlled by varying
the injection current, which changes the density of charge carriers and therefore the
refractive index n. DFB lasers have much greater wavelength stability thanmost ordinary
lasers with end mirrors.

The small size of diode lasers has some important consequences when we compare
their operating characteristics to other types of laser. For example, unlike most other
lasers, the fundamental laser linewidth due to spontaneous emission noise is much
larger in diode lasers precisely because of their small size [Eq. (5.11.12)], and further-
more this linewidth is enhanced by effects that can usually be ignored in other lasers [cf.
Eq. (5.11.16) and Section 15.4]. Mode locking, which requires a modulation frequency
equal to the mode spacing, provides another example. Mode locking of a diode laser by
modulation of the injection current would require a modulation frequency �100 GHz
for a cavity length L � 500 mm (Problem 15.4); such a fast modulation of an electric
current cannot be done with conventional electronics. Mode locking of diode lasers
can instead be done by the external-cavity technique—placing a mirror at some distance
away from a facet of the diode that has been antireflection coated. This reduces the
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required modulation frequency to approximately c/2Lext, where Lext is the length of the
extended cavity.

An immediate consequence of the small size of a diode laser is the large divergence
angle of the emitted radiation. This results simply from the small “aperture” of a diode
laser. Since radiation of wavelength l has a divergence angle �l/D due to diffraction
when it passes through an aperture of diameter D [Eq. (7.11.10)], a gain region of thick-
ness d and width w in a diode laser implies two divergence angles, ud � l/d and uw �
l/w, as shown in Fig. 15.7. For example, for l ¼ 860 nm, d ¼ 2mm, and w ¼ 10mm,
ud � 258 and uw � 58. The “fanning out” of diode laser radiation is therefore much more
pronounced than in other types of laser, and moreover the radiation pattern is asym-
metrical due to the significantly different values of d and w.

Thus far, we have considered only edge-emitting diode lasers in which the laser radi-
ation is in a direction approximately parallel to the active layer (cf. Fig. 15.1). Of course,
there is also gain in directions perpendicular to the active layer, allowing the possibility
of “surface emission.” Since thewidth d of the active quantumwell layer is much smaller
than its lengthL, the gain-length product gd for surface emission ismuch smaller than it is
for edge emission. To overcome reflection losses, g must be larger than the threshold
value �(1=2d) ln (r1r1) in order to have a surface emission laser; in other words, the
product r1r2 of the reflectivities must be greater than exp(22gd). If g ¼ 200 cm21 and
d ¼ 1mm, for example, this requires r1r2 . 0.98, which cannot be realized in practice
by simple Fresnel reflection. In vertical cavity surface-emitting lasers (VCSELs) large
reflectivities are obtained with Bragg gratings consisting of embedded layers of semi-
conductors with different energy band gaps and alternatingly high and low refractive
indices, as shown in Fig. 15.8. Layer materials, thicknesses, and spacings can be chosen
such that reflectivities .0.99 are obtained at a chosen wavelength, and consequently
threshold currents are small (,1mA), which allows fast modulation of the laser radiation
(Section 15.3) in optical communications. Surface emission results in a larger output
aperture and therefore a smaller beam divergence angle (typically 58–108) than edge
emission. Furthermore the radiation pattern is symmetrical (and nonastigmatic),
making it easier to collimate the output beam with a simple lens and inject it into a
fiber. The mode spacing �c/2nd, compared to �c/2nL for an edge emitter (Problem
15.4), is large compared to the gain bandwidth and therefore results in single-mode
oscillation. Many commercial VCSELs are based on GaAs/AlGaAs and emit in a

d 

w 
qd

qw

Figure 15.7 Angular distribution of radiation from a diode laser of wavelength l. ud � l/d,
uw � l/w.
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range �850+100 nm, although VCSELs at other wavelengths, including the visible,
are not unusual. VCSELS based on GaInNAs or InAlGaAsP emit at longer wavelengths,
including the 1.3- and 1.55-mmwavelengths for optical communications (Section 15.6).
Laser mice employing VCSELS are now common; they are able to track surface vari-
ations much more accurately than LED optical mice, and their low-power consumption
makes them especially attractive for battery-powered operation.

A large number of VCSELs can be “grown” together on a semiconductor wafer,
making the testing and production process more economical than in the case of edge
emitters. Two-dimensional arrays of thousands of VCSELs emitting �102 W can be
fabricated such that different individual lasers can be separately controlled and can
have different wavelengths determined by the widths of the active layers. Laser printers
employing VCSEL arrays have recently been marketed.

† The diode laser bars and stacks presently used to pump high-power solid-state or fiber lasers
and amplifiers (Sections 11.12 and 11.14) or in other applications consist of edge-emitting lasers
(Fig. 15.9), each bar emitting �50 Wor more. The use of bars instead of awide single active layer
avoids the problem of amplified spontaneous emission parallel to the active layer, where the gain-
length product would be large. Since the lasers operate independently, the angular distribution of
the radiation has the same properties as that from each laser. In particular, the beam quality associ-
ated with the angle uw in Fig. 15.7 tends to be low because of the (relatively) large width w, along
which the active medium might have significant nonuniformity. For coupling into a fiber the
asymmetric output beam and the large divergence angle associated with the angle ud in
Fig. 15.7 require a high numerical-aperture, aspherical lens. Beam-shaping optical components
can also be used to “symmetrize” the output beam so that it has an approximately circular waist.
For some beam delivery applications different lasers in a bar are coupled to different fibers, which
are then bundled.

+ Electrode

DBR 

Laser 
beam 

Active layer 

Substrate
– electrode

Figure 15.8 Schematic of a vertical cavity surface-emitting laser (VCSEL).
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A diode stack typically consists of perhaps 20 bars for a total power of a few kilowatts or more.
Both bars and stacks require heat sinks to keep the temperature constant, which is necessary for
stable and efficient operation. Bars are cooled by mounting the semiconductor chip on a heat sink
that might use flowing water in microchannels. In the case of stacks there are heat sinks between
the bars, limiting how closely the bars can be stacked. †

15.3 MODULATION OF DIODE LASERS

Laser radiation can be modulated using, for example, a Pockels cell and polarizers
(Section 5.12). A great advantage of diode lasers in optical communications is that
they can be modulated directly just by modulating the injection current. Equally import-
ant is the fact that modulation can be done at a very high rate, allowing a high rate of
transmission of information. In this section we present a simplified model to explain
the most important characteristics of this modulation.

Our discussion of gain in diode lasers in the preceding section focused on steady-state
laser operation. To treat a time-dependent injection current, we will resort to a pheno-
menological rate equation model for the densities of photons and injected electrons,
assuming that neither depends significantly on position within the active layer and
that lasing occurs primarily at a single frequency. While this model is simplistic in
several respects, it expresses some generic features of the interaction of light with semi-
conductor gain media, and as such has been found useful as a starting point for the analy-
sis of time-dependent phenomena in various types of diode laser. We denote the photon
density by Q and write for it the familiar rate equation

dQ
dt
¼ GQ�Q

tp
, (15:3:1)

Laser diodes

(a)

(b)

Figure 15.9 (a) A diode-laser bar, consisting perhaps of �50 individual edge-emitting diode lasers,
each with an active layer of length L �1 mm and a width w � 0.1 mm for a total width �10 mm.
(b) A diode stack of bars.
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whereG is the (temporal) gain coefficient at the frequency of interest and 1/tp is the rate
at which photons are lost to output coupling, scattering, etc. For the density N of
electrons we write the rate equation

dN

dt
¼ 1

V

I

e
� N

tR
� GQ: (15:3:2)

The first term on the right-hand side is the rate at which N increases due to an injection
current I in the active region of volume V, and the second is the rate at which it decreases
due to electron–hole recombination at the rate 1/tR. The last term is the rate of change of
N due to the interaction of radiation with the electrons and holes. The form of this term
ensures that, if there were no injection current or recombination, the sum of the total
number of “excitations” is constant, i.e., d(N þQ) ¼ 0. For G we assume the form
suggested by the numerical results presented in the preceding section: G ¼ vgg ¼
vgs (N 2 Ntr) ; Cs(N2 Ntr). Then

dQ
dt
¼ Cs(N � Ntr)Q�Q

tp
(15:3:3a)

and

dN

dt
¼ 1

V

I

e
� N

tR
� Cs(N � Ntr)Q: (15:3:3b)

The steady-state values of N and Q for a constant current I are found as usual by
setting dN=dt ¼ dQ=dt ¼ 0:

Q ¼ tpI

Ve
� tp

tR
Ntr þ 1

CstR

� �
, (15:3:4a)

N ¼ Ntr þ 1
Cstp

: (15:3:4b)

Now suppose that the current I is not constant but has a small time-dependent modu-
lation component Im(t): I(t) ¼ I þ Im(t). This results in time-dependent perturbations
Qm(t) and Nm(t) of Q and N: Q(t) ¼ QþQm(t) and N(t) ¼ N þ Nm(t). Assuming
the magnitudes of Im(t), Qm(t), and Nm(t) are small compared to their respective
steady-state values �I, Q, and N, we obtain from (15.3.3) approximate equations for
the modulated parts of Q and N:

dQm

dt
¼ CsQNm, (15:3:5a)

dNm

dt
¼ 1

V

Im
e
� 1

tR
þ CsQ

� �
Nm � 1

tp
Qm: (15:3:5b)

Suppose furthermore that the current modulation is periodic, with frequency vm:

I(t) ¼ �I þ Im(t) ¼ �I þ ~Ime
�ivmt, (15:3:6)
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with ~Im a constant modulation amplitude. Using this expression in (15.3.5), and writing
similarly

Q(t) ¼ Qþ ~Qme
�ivmt and N(t) ¼ N þ ~Nme

�ivmt, (15:3:7)

we obtain

ivm
~Qm þ CsQ~Nm ¼ 0, (15:3:8a)

1
tp

~Qm � ivm � 1
tR
� CsQ

� �
~Nm ¼ 1

V

~Im
e
: (15:3:8b)

We are interested in particular in how the photon density is modulated by the modulation
of the injection current, and solve (15.3.8) for ~Qm:

Q(t) ¼ Qþ ~Qme
�ivmt

¼ Q� Cs=eV

v2
m þ i(1=tR þ CsQ)vm � CsQ=tp

" #
~ImQe�ivmt: (15:3:9)

The modulus of the factor in brackets has its maximum value at the current modulation
frequency

(vm)max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CsQ
tp
� 1
2

1
tR
þ CsQ

� �2s
: (15:3:10)

The photon lifetime tp is typically much smaller than the recombination lifetime tR.
For example, even if we ignore all losses except for output coupling and assume end
facets with reflectivities r1 ¼ r2 ¼ 0.99, 1/tp ffi 2(c/2nL) ln(r1r2) ¼1.7 � 109 s21, or
tp ¼ 0.6 ns for L ¼ 500mm, whereas tR is usually �3–4 ns, as noted earlier. Since
CsQ is also typically on the order of nanoseconds, we can approximate (15.3.10) by

(vm)max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CsQ=tp

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vgsQ=tp

q
: (15:3:11)

This result shows why diode lasers can be modulated at high rates: They have
large values of the cross section s, or in other words a large gain per injected
electron, and usually a small photon lifetime tp. If we relate Q to the laser output
power Pout using the output coupling fraction f defined by (15.2.27), we can approximate
(15.3.11) by (Problem 15.5)

(vm)max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vgsPout

f hnV

s
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
slPout

nhf V

s
(15:3:12)

if we approximate the group velocity vg by the phase velocity c/n.
Let us return to the example in the preceding section, where we obtained s ¼ 1.9 �

10220 m2 [Eq. (15.2.22)]. Assuming L ¼ 250mm,w ¼ 3mm, d ¼ 0.1mm, l ¼ 1.3mm,
Fresnel reflection coefficients r1 ¼ r2 ¼ r ¼ 0.31 (for n ¼ 3.5), a ¼ 10 cm21, and an
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output power of 5 mW, we calculate f ¼ 0.8 and

nmax ¼ (vm)max

2p
� 5 GHz: (15:3:13)

Figure 15.10 plots the modulus of the factor in brackets in (15.3.9) for the parameters
assumed in obtaining the estimate (15.3.13). The predicted response is seen to be
approximately Lorentzian. The important conclusion of this analysis is that diode
laser intensities can be modulated at high frequencies, and over a fairly large bandwidth,
by direct modulation of injection currents.

However, our simplified model does not place any upper limit on the modulation fre-
quency. According to Eq. (15.3.12), (vm)max is linearly proportional to the square root of
the laser power. It suggests, for instance, that modulation frequencies much greater than
(15.3.13) could be obtained by increasing the laser power as much as possible as long as
other effects such as damage to the laser facets do not come into play. In reality, in con-
trast to the nearly Lorentzian response shown in Fig. 15.10, there is a rapid rolloff in the
modulated intensity when the injection current is modulated at very high frequenciesvm.
In particular, the monotonic increase in (vm)max with photon density predicted by
(15.3.11) breaks down when, for instance, two-photon absorption becomes significant,
or whenQ becomes sufficiently large to cause a rise in the temperature T appearing in
the gain coefficient (15.2.17). As T increases, the energy distributions of electrons and
holes broaden, and the densities of electrons and holes undergoing radiative recombina-
tion at the lasing frequency therefore decrease, so that the gain decreases with increasing
Q. To account for such gain suppression effects, let us first note from (15.3.4b) that
G ¼ Cs(N � Ntr) ¼ Cs(N �N)þ Gt, where Gt ¼ 1/tp is the value of G needed to
reach the laser threshold. Now consider again a (small) periodic modulation of the injec-
tion current as in (15.3.6)–(15.3.8), this time accounting phenomenologically for the
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Figure 15.10 Response of the modulated intensity to the injected current modulation frequency, as
predicted by small-signal analysis of the rate equation model [Eqs. (15.3.1) and (15.3.2)]. The modulus
of the factor in brackets in (15.3.9) is plotted in scaled units. The parameters assumed are those used in
obtaining (15.3.13).

15.3 MODULATION OF DIODE LASERS 757



decrease of G with Q by writing

dG ffi Cs ~Nm þ @G

@QQm ; Cs ~Nm � rgQm (15:3:14)

for the change in G, due to the current modulation, in the small-signal analysis of
Eq. (15.3.3). This results in the replacement of Eqs. (15.3.8) by (Problem 15.5)

(ivm � rgQ) ~Qm þ CsQ~Nm ¼ 0, (15:3:15a)

1
tp
� rgQ

� �
~Qm � ivm � 1

tR
� CsQ

� �
~Nm ¼ 1

V

~Im
e
, (15:3:15b)

which, of course, reduce to Eqs. (15.3.8) when rg ¼ 0. The solution of these equations
for ~Q implies that the modulation of Q is strongest when (Problem 15.5)

vm ¼ (vm)max ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CsQ
tp
� 1
2
r2gQ

2

s
, (15:3:16)

if, in addition to the assumptions made in writing (15.3.11), we assume that rgQ�1=tR
and rg� Cs; for present purposes we simply assert that this is generally a good approxi-
mation. The obvious difference between this result and (15.3.11) is that (vm)max does not
increase monotonically withQ. Equation (15.3.16) implies that (vm)max is largest when
Q ¼ Cs=r2gtp, and that at this photon density

(vm)max ¼
1ffiffiffi
2
p Cs

rgtp
: (15:3:17)

Experimental data suggest rg � 3 � 10212 m3/s as a rough but reasonable estimate for
our purposes.7 Then, for the same laser parameters used to obtain (15.3.13), we estimate
from (15.3.17) that

nmax ¼ (vm)max

2p
�30 GHz: (15:3:18)

Because of gain suppression effects, current modulation frequencies much larger than
this in our example would not produce much laser intensity modulation.

From Eq. (15.3.15a) we have ~Nm ¼ �(CsQ)�1(ivm � rgQ) ~Qm, or, in terms of Nm(t)
and Qm(t),

Nm(t) ¼ 1
Cs

1

Q
dQm

dt
þ rgQm(t)

� 
: (15:3:19)

7L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley, New York, 1995.
See also A. Yariv, Optical Electronics in Modern Communications, 5th ed., Oxford University Press,
New York, 1997, Chapter 15.
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This follows from our assumption of a periodic modulation (ivmQm ¼ �dQm=dt), but
the linear relation between ~Nm and ~Qm, and the fact that Qm(t) can be expressed as a
(Fourier) superposition of monochromatic components, gives (15.3.19) a general
validity under the assumption used in deriving it—that ~Nm and ~Qm are small compared
to N andQ, respectively. In other words, any modulation of the injection current results
in a modulation of the density N of injected electrons:

N(t) ¼ N þ Nm(t) ¼ N þ 1
Cs

1

Q
dQm

dt
þ rgQm(t)

� 
; N þ DN(t): (15:3:20)

In addition to the obvious modulation of the gain that this implies, there is also a modu-
lation of the refractive index. Recall that, in terms of the complex refractive index
n ¼ nR þ inI, a plane wave experiences amplification (or attenuation) and a phase
shift determined by nR and nI, respectively:

eikz ¼ eiv(nRþinI )z=c ¼ ebz=2eivnRz=c (b ¼ �2vnI=c): (15:3:21)

Identifying the amplification rate G ¼ (c/nR)b ¼ 22vnI/nR, and using again the
relation G ¼ Cs(N2 Ntr), we can relate nI to the density N:

nI ¼ �CsnR
2v

(N � Ntr): (15:3:22)

Assuming that the relative change in nR is small compared to that of N(t), therefore, we
can relate the change in the imaginary part of the refractive index to the change in the
electron density DN(t):

DnI(t) ¼ �CsnR
2v

DN(t): (15:3:23)

The Kramers–Kronig relation between nR and nI (Section 3.15) implies that there must
also be a change DnR(t) in nR. It is conventional in diode laser theory to relate DnR(t) to
DnI(t) as follows:

DnR(t) ¼ aDnI(t): (15:3:24)

For reasons discussed in the following section, a is called the linewidth enhancement
factor.

Recall that the longitudinal mode frequencies n of a laser resonator are approximately
inversely proportional to the (real part of the) refractive index nR(n). [See, e.g.,
Eq. (5.9.2) with l ¼ L, the case of interest here.) Thus, DnR(t)/nR ¼ 2Dn(t)/n and,
from (15.3.24), (15.3.23), and (15.3.20),

Dn(t) ¼ aCs

4p
DN(t) ¼ a

4p
1

Q
dQm

dt
þ rgQm(t)

� 
: (15:3:25)

This shows that modulation of the laser intensity by modulation of the injection current
results in a frequency chirp. This is a very important consideration in fiber-optic
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communication systems because a frequency chirp implies a spectral broadening
of a light pulse, and group velocity dispersion in a fiber causes a pulse temporal broad-
ening proportional to the spectral width of the pulse (Section 8.4) and the propagation
distance. Equation (15.3.25) implies that too rapid a modulation of the intensity
might result in large temporal broadening of pulses and therefore a deleterious pulse
overlap in a long optical fiber (or any other medium with group velocity dispersion).
In other words, long-distance, high-speed communication of information might require
that a diode laser be externally modulated rather than “internally” modulated by the
injection current.

15.4 NOISE CHARACTERISTICS OF DIODE LASERS

Like all lasers, diode lasers exhibit unavoidable, randomfluctuations in the phase and the
intensity of their radiation. In Section 5.11 we derived the (Schawlow–Townes) line-
width arising from spontaneous emission noise, and remarked that for diode lasers, in
contrast to most other lasers, this fundamental source of noise typically dominates “tech-
nical noise.” We noted furthermore that for diode lasers, again in contrast to most other
lasers, corrections to the Schawlow–Townes formula due to “excess spontaneous emis-
sion noise,” and especially to a coupling of the laser phase and intensity, can be signifi-
cant. We now discuss in greater detail these two corrections to the Schawlow–Townes
formula. Aside from the appearance of the dimensionless quantities K and a, the
analyses below may be viewed as two derivations of the fundamental laser linewidth
in addition to the one presented in Section 5.11.

Excess Spontaneous Emission Noise: The K Parameter

When the mirrors of a laser are not highly reflecting, the expression for the Schawlow–
Townes linewidth must be corrected to include the K parameter associated with “excess
spontaneous emission noise,” as mentioned in Section 5.11. The K parameter for a
Fabry-Pérot resonator with mirror reflectivities r1 and r2 is defined by Eq. (5.11.15).
For the reflectivities r1 ¼ r2 ¼ 0.3 corresponding to Fresnel reflection with n ¼ 3.5
[Eq. (15.2.6)], K ¼ 1.13, while for r1 ¼ r2 ¼ 0.05, K ¼ 2.01. This correction to the
Schawlow–Townes linewidth is therefore modest for most situations of practical
interest, but it can be significant for very lossy cavities. Since a full derivation of the
K parameter is rather complicated, we will only present a plausibility argument for
formula (5.11.15).

We start from the rate equation for the photon number q in a gain medium described
simply by the occupation densitiesN2 andN1 of the upper and lower levels, respectively,
of the lasing transition:8

dq

dt
¼ cs (N2 � N1)qþ csN2 � gq: (15:4:1)

8In order to compare with the expression for the Schawlow–Townes linewidth in Section 5.11, we approxi-
mate the refractive index by 1 in our discussion here of the K parameter. The effect of the refractive index on
the Schawlow–Townes linewidth is contained in the expression (15.4.35).
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The second term on the right accounts for spontaneous emission into the lasing mode,
and as such is equal to the stimulated emission rate from the upper level N2 when the
photon number q ¼ 1 (Section 3.7). In steady-state oscillation (dq/dt ¼ 0),

cg ¼ g

1þ nsp=q
ffi g� g

nsp
q

; g� j, (15:4:2)

where g ¼ s (N2 2 N1) is the steady-state gain coefficient and we again define the
“spontaneous emission factor” nsp ¼ N2/(N2 2 N1). The steady-state gain is less
than the loss g ¼ 2(c/2L) ln(r1r2): Spontaneous emission, represented by j, puts
photons into the lasing mode and therefore reduces the gain required for a steady-
state photon number q. We have generally assumed that the number of photons due to
spontaneous emission is much smaller than the number due to stimulated emission
and taken cg ¼ g, the gain ¼ loss condition for laser oscillation. This is a superb
approximation for calculating laser intensity and power, but it would imply a laser line-
width of zero.

Let us first show how (15.4.2) leads to the Schawlow–Townes linewidth. The line-
widthDn of a quasi-monochromatic field of central frequency n is inversely proportional
to the coherence time tcoh [Eq. (13.11.11)] determined by the mutual coherence function
G(r1, t; r2, t þ t) for r1 ¼ r2. [Recall, e.g., Eq. (13.5.5).] Since this mutual coherence
function, which we denote simply by G(t), is proportional to the ensemble average
kE�(t)E(t þ t)l of the product of the complex conjugate of the electric field at a time t
and the electric field at a time t þ t, it is seen from (15.4.1) that (for a stationary
field) it satisfies (Problem 15.6)

dG

dt
¼ �ivGþ 1

2
(cg� g)G ¼ �ivG� 1

2
jG (v ¼ 2pn): (15:4:3)

We do not include any contribution corresponding to the second term on the right-hand
side of (15.4.1). This is because of the random nature of spontaneous emission; in a more
rigorous, fully quantummechanical approach, this termmakes no net contribution to the
ensemble average of the mutual coherence function, basically just because the electric
field produced by spontaneous emission is zero on average. The factor 1

2 in (15.4.3) is
just a consequence of the fact that q is proportional to the field intensity. Thus,

G(t) ¼ G(0)e�ivte�jt=2 ¼ G(0)e�ivte�t=tcoh : (15:4:4)

The linewidth of quasi-monochromatic radiation with this mutual coherence function is
proportional to 1/tcoh ¼ j/2 ¼ gnsp/2q. More precisely the laser spectrum, defined by
the Fourier transform of (15.4.4) [cf. Eq. (13.5.5)], is a Lorentzian lineshape function
centered at n and having a full width at half-maximum

Dn ¼ 1
ptcoh

¼ gnsp
2pq

, (15:4:5)

which is equivalent to the expression (5.11.13) for the Schawlow–Townes linewidth
(Problem 15.6).
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This shows again that the Schawlow–Townes linewidth is a consequence of spon-
taneous emission. It was assumed in its derivation, however, that the intracavity laser
field is uniform and characterized completely by a photon number q, whereas we
know from Section 5.5 that there are substantial spatial variations of the field when
the output coupling is large. Large output coupling, furthermore, implies large loss
and therefore that a high gain is needed to support laser oscillation. Since spontaneous
emission noise is amplified in a gain medium (Section 6.13), we must take this into
account in calculating the linewidth of a laser with large output coupling, for example,
a Fabry-Pérot laser resonator with small mirror reflectivities. In other words, for lasers
with large output coupling we must deal with two effects that were ignored in our deri-
vation of the Schawlow–Townes linewidth: (i) spatial variations of the intracavity field
and (ii) the amplification of spontaneous emission.

It will be convenient for our purposes to address the problem using the concept of
“effective noise.” As discussed in Section 6.13, in the quantum theory of radiation a
field mode of frequency n has a zero-point energy 1

2 hn; we can imagine an infinite set
of plane-wave modes, each undergoing quantum fluctuations with mean energy 1

2 hn
per mode. Let us assume that this effective noise radiation can be reflected, transmitted,
and amplified in just the sameway as “ordinary” radiation, and consider a laser resonator
with mirror power reflectivities ri and transmissivities ti ¼ 1 2 ri (i ¼ 1, 2) (Fig. 15.11).
Thus, for example, noise radiation can enter the resonator at z ¼ 0, and a part of it exits at
z ¼ L after amplification, as indicated in Fig. 15.11a. It can also be reflected at z ¼ L
and, after another pass through the gain medium, emerge as a left-going wave at

r1, t1 r2, t2 
(a)

r2, t2 r2, t2 
(c)

z = 0 z = L 
(b)

z = 0 z = L 
(d )

Figure 15.11 A Fabry-Pérot laser resonator with mirror power reflectivities r1, r2 and transmissiv-
ities t1, t2. The gain medium produces a single-pass power amplification G2 ¼ exp (gL). The four
contributions to the amplification of “effective input noise” are indicated.
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z ¼ 0, as shown in Fig. 15.11b. Noise radiation entering the resonator at z ¼ L can
similarly follow one of the two paths shown in Figs. 15.11c and 15.11d.

How does the gain medium affect the effective noise intensity? Consider, for
example, the effect of path (b). The modification of the noise intensity for this path
derives from (i) the transmissivity t1; (ii) the gain G resulting from propagation from
z ¼ 0 to z ¼ L; (iii) the reflection coefficient r2 at z ¼ L; (iv) further gain G on going
from z ¼ L to z ¼ 0; and (v) the transmissivity t1. Thus, the noise radiation propagating
leftward in the region z, 0 is modified in intensity by the product of the factors involved
in processes (i)–(v): t1Gr2Gt1. The path shown in Fig. 15.11c similarly adds an amplified
component t2Gt1 to the noise radiation propagating leftward in the region z , 0, so that
the intensity of this radiation is amplified altogether by the factor t1Gr2Gt1 þ t2Gt1.
Similarly, the noise intensity propagating rightward in the region z . L is amplified
by the factor t1Gt2 þ t2Gr1Gt2 due to the two paths shown in Figs. 15.11a and 15.11d.
The noise intensity (at the laser frequency n) outside the resonator is therefore modified
by a total factor t1Gr2Gt1þ t2Gt1 þ t1Gt2 þ t2Gr1Gt2 compared to what it would be in
free space. Using the threshold (steady-state) condition G2r1r2 ¼ 1 for laser oscillation,
we find by simple algebra that

t1Gr2Gt1 þ t2Gt1 þ t1Gt2 þ t2Gr1Gt2 ¼ t1ffiffiffiffi
r1
p þ t2ffiffiffiffi

r2
p

� �2
: (15:4:6)

The four paths shown in Fig. 15.11 are the only ones that modify the noise intensity.
Suppose, for example, that we include a path in which noise radiation is incident from
the left at z ¼ 0, passes through the gain medium, reflects off the mirror at z ¼ L, makes
another pass through the gain medium, reflects off the mirror at z ¼ 0, passes again
through the gain medium, and then exits the resonator through the mirror at z ¼ L.
The intensity of noise radiation propagating through the mirror at z ¼ L is therefore
modified compared to its free-space level by the factor t1Gr2Gr1Gt2; using again the
threshold condition r1r2GG ¼ 1, we see that this factor is just t1Gt2, the amplification
factor already accounted for by the path shown in Fig. 15.11. Similar considerations
for other paths involving multiple passes through the resonator should convince
the reader that the four paths shown in Fig. 15.11 account for all the amplification of
noise radiation.

It is less clear without a more rigorous and detailed analysis than is appropriate
here that the factor (15.4.6) associated with the amplification of noise radiation also
accounts for the amplification of spontaneous emission noise, although the discussion
in Section 6.13 certainly lends support to such a surmise. The laser linewidth calculated
on the basis of the amplification of “effective input noise” is found to be

Dn ¼ nsphn

2pPout

c

2L

� �2 t1ffiffiffiffi
r1
p þ t2ffiffiffiffi

r2
p

� �2
, (15:4:7)

which is to be compared to the Schawlow–Townes linewidth defined by (5.11.12) or
(5.11.13) with l ¼ L:

DnST ¼ nsphn

2pPout

c

2L
ln (r1r2)

h i2
: (15:4:8)
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After some straightforward algebra using ti ¼ 1 2 ri, i ¼ 1, 2, we obtain

Dn ¼
t1ffiffiffi
r1
p þ t2ffiffiffi

r2
p

ln (r1r2)

" #2
DnST ¼ (

ffiffiffiffi
r1
p þ ffiffiffiffi

r2
p

)(1� ffiffiffiffiffiffiffiffi
r1r2
p

)ffiffiffiffiffiffiffiffi
r1r2
p

ln (r1r2)

� 2
DnST ¼ KDnST, (15:4:9)

which is just Eq. (5.11.14).9

We have thus been led to the correction of the Schawlow–Townes formula by the K
parameter by taking account of the amplification of spontaneous emission noise in a
laser. This amplification always occurs but is significant only when the output coupling
is large (i.e., when r1 and r2 are small in Fabry-Pérot resonators) and, consequently, the
gain required for laser oscillation is large; then the “excess spontaneous emission noise”
characterized by K can be measurably greater than unity. If, on the other hand, r1 and r2
are close to unity, then K ffi1.

The K parameter—often referred to as the Petermann factor in the literature—has for
many years been treated in different ways and with considerable discussion as to its
proper interpretation.10 It is worth noting that the K parameter does not describe an
increased rate of spontaneous emission; the rate of spontaneous emission is given by
the second term on the right-hand side of (15.4.1). Rather, it describes the amplification
of spontaneous emission.

We have restricted our discussion to Fabry-Pérot resonators, but any laser resonator is
characterized by a K parameter that can act as a significant device parameter whenever
transmission or diffractive losses are large. Not surprisingly, large K-factor enhance-
ments of the Schawlow–Townes linewidth—as large as �200 or more—have been
measured with unstable-resonator lasers. From a mathematical perspective the K para-
meter is associated with the nonorthogonality of the modes of a lossy resonator: The
cavity modes are eigenfunctions of a non-Hermitian operator and are not orthogonal.

Let us write Eq. (15.4.2) in the form

q ¼ cgnsp
g� cg

¼ gnsp
gt � g

, (15:4:10)

where again gt is the threshold gain coefficient and g in the correct version of this
formula is themodal gain coefficient introduced earlier. When the amplification of spon-
taneous emission is accounted for, the right-hand side of this equation, which as we have
seen is associated with spontaneous emission noise, is multiplied by K:

q ¼ K
gnsp
gt � g

: (15:4:11)

This formula in one form or other is often cited to explain why gain-guided diode lasers
tend to oscillate on many longitudinal modes, whereas index-guided lasers typically

9Experimental results consistent with formula (15.4.9) have been reported by W. A. Hamel and
J. P. Woerdman, Physical Review Letters 64, 1506 (1990).
10A more rigorous analysis and review of this and other aspects of “quantum noise” in semiconductor laser
physics is given by C. H. Henry and R. F. Kazarinov, Reviews of Modern Physics 68, 801 (1996). This work
also presents formulas for the K parameter that generalize the expression used here for longitudinal modes of
Fabry-Pérot resonators.
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oscillate mainly on just one or two modes. It implies that, for a fixed laser power
(or photon number q), a larger value of K requires a larger value of the difference
gt 2 g between loss and gain. This in turn implies that the relative differences between
gt 2 g for different modes decrease. Since very small values of this relative difference
can significantly affect mode discrimination, therefore, a larger K implies a smaller
degree of mode discrimination. In gain-guided lasers there is greater loss and a larger
K parameter than in index-guided lasers due to the fact that there is less lateral confine-
ment of the field. Gain guiding consequently allows more longitudinal modes to lase
than index guiding. It was in this context that the K parameter was first investigated
in the late 1970s and early 1980s. The expression we have obtained for the K parameter
[Eq. (15.4.9)] applies to index-guided lasers, but the physical interpretation of the K
parameter in terms of amplified spontaneous emission noise applies also to gain-
guided lasers.

Phase-Intensity Coupling: The a Parameter

We consider next the correction to the Schawlow–Townes formula associated with the
linewidth enhancement factor a defined by Eq. (15.3.24). To simplify as much as poss-
ible we assume in the wave equation (8.2.13) an electric field and a polarization density
of the form

E(z, t) ¼ x̂E(t)e�i(vt�kz) and P(z, t) ¼ x̂P(t)e�i(vt�kz): (15:4:12)

If the complex amplitudes E(t) and P(t) vary slowly compared to exp(2ivt), we can
drop their second derivatives with respect to time in the wave equation and write
(Problem 15.5)

v2

c2
� k2

� �
E þ 2i

v

c2
_E ¼ � v

e0c2
(vP þ 2i _P) (15:4:13)

in the approximation of slowly varying envelopes (cf. Section 9.6). Following a pro-
cedure similar to that in Section 8.3, we next write

E(t) ¼
ð1
�1

dD~E(vþ D)e�iDt, (15:4:14a)

P(t) ¼
ð1
�1

dD~P(vþ D)e�iDt ¼
ð1
�1

dDx(vþ D)~E(vþ D)e�iDt, (15:4:14b)

and make a first-order Taylor series approximation to the susceptibility x(v) about the
carrier frequency v:

P(t) ¼ e0

ð1
�1

dD[x(v)þ x0(v)D]~E(vþ D)e�iDt

¼ e0x(v)E(t)þ ie0x
0(v)

d

dt

ð1
�1

dD~E(vþ D)e�iDt

¼ e0x(v)E(t)þ ie0x
0(v)

dE
dt

, (15:4:15)
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where x(v) ¼ n2(v) 2 1 is the (linear) electric susceptibility and x 0 ; dx/dv. Then, in
terms of the refractive index n(v) and the group velocity vg (Section 8.3), (15.4.13)
becomes (Problem 15.5)

dE
dt
¼ ivgc

2nv
n2

v2

c2
� k2

� �
E: (15:4:16)

An injection current will change the refractive index of the active medium.We denote
by n0(v) the index in the absence of a current and by Dn(v) ¼ DnR(v) þ iDnI(v) the
change in the index caused by an injection current, and use n ¼ n0 þ DnR þ iDnI in
(15.4.16). Taking n0 to be real and k ¼ n0v/c, and assuming that DnR and DnI are
small enough that Dn2R, Dn

2
I , and DnR DnI can be ignored, we replace (15.4.16) by

_E ;
dE
dt
¼ ivgv

c
(DnR þ iDnI)E ¼ � vgv

c
DnI(1� ia)E, (15:4:17)

where a is defined by (15.3.24).
The imaginary part of the index change, DnI, causes changes in the real part of the

field amplitude E, i.e., it is associated with gain (G) and loss (g) in the medium:

� vgv

c
DnI ¼ 1

2
(G� g), (15:4:18)

and (15.4.17) becomes

_E ¼ 1
2(G� g)(1� ia)E, (15:4:19)

or, in terms of the real field amplitude jEj and phase f (E ¼ jEjeif),

d

dt
jEj2 ¼ E _E� þ _EE� ¼ (G� g)jEj2, (15:4:20a)

_f ¼ �a

2
(G� g): (15:4:20b)

Since jEj2 is proportional to the field intensity and therefore to the number of photons q
in our model, we can write these equations equivalently as

_q ¼ (G� g)q, (15:4:21a)

_f ¼ �a

2
(G� g) ¼ � a

2q
_q ¼ �a

2
d

dt
( ln q): (15:4:21b)

This exhibits the coupling between the field phase and intensity, the strength of which
depends on the a parameter.

Equations (15.4.21) do not include effects of spontaneous emission. To calculate the
principal quantity of interest here—the mean-square phase fluctuation—we will follow
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an intuitive approach for the effect on the phase of spontaneous emission.11 The basic
idea behind this approach is indicated in Fig. 15.12. A change Df(1)

i in the phase f
due to the ith spontaneous emission event can be read off directly from the change in
the phasor shown in Fig. 15.12:

Df(1)
i ffi

1ffiffiffi
q
p sin ui: (15:4:22)

There is another contribution to the change in f in a spontaneous emission event, this
one due to the phase-intensity coupling described by (15.4.21b); integrating both
sides of that equation from a time before the ith spontaneous emission event occurs to
a time immediately after, we obtain

Df(2)
i ¼ �

a

2
[ ln (qþ Dqi)� ln (q)] ffi � a

2q
Dqi (15:4:23)

if the change Dqi in the length of the phasor of Fig. 15.12 is small compared to the
length q of the phasor before spontaneous emission. Dqi can be deduced with
reference to Fig. 15.12 and the law of cosines: qþ Dqi ¼ qþ 1þ 2

ffiffiffi
q
p

cos ui, or
Dqi ¼ 1þ 2

ffiffiffi
q
p

cos ui. Therefore

Df(2)
i ffi �

a

2q
(1þ 2

ffiffiffi
q
p

cos ui) ¼ � a

2q
� affiffiffi

q
p cos ui: (15:4:24)

Then for the change in f in the ith spontaneous emission event we write

Dfi ¼ f(1)
i þ Df(2)

i ¼ �
a

2q
þ 1ffiffiffi

q
p ( sin ui � a cos ui), (15:4:25)

÷q
 +

 Dq
i

Dfi 
(1) 

1 
qi

f 

÷q
 s

in
 f

 

÷q

÷q cos f 

Figure 15.12 A complex field represented as a “phasor”
ffiffiffi
q
p

eif. The ith spontaneous emission of a
photon produces a rotation of the phasor by ui as shown. [Adapted from C. H. Henry, IEEE Journal
of Quantum Electronics QE-18, 259 (1982).]

11C. H. Henry, IEEE Journal of Quantum Electronics QE-18, 259 (1982).
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and the total phase change after N spontaneous emission events is

Df ¼
XN
i¼1

Dfi ¼
1ffiffiffi
q
p
XN
i¼1

( sin ui � a cos ui): (15:4:26)

We have dropped a constant phase �(a=2q)N , as we are only interested in phase
fluctuations. The random nature of spontaneous emission implies that the angles ui are
independent random variables with average values kuil ¼ 0 and ksin uil ¼ kcos uil ¼ 0,
ksin2 uil ¼ kcos2 uil ¼ 1

2. Then

kDf2l ¼ 1
q

XN
i¼1

ksin2 uilþ a2kcos2 uil
� � ¼ 1

q

XN
i¼1

1
2
þ 1
2
a2

� �

¼ N
2q

(1þ a2): (15:4:27)

For the (average) numberof spontaneous emission events in a time twe assumeN ¼ Ct,
where C is the rate of spontaneous emission into the lasing mode (Section 5.11). Then

t�1kDf2l ¼ C

2q
(1þ a2): (15:4:28)

As in the preceding subsection we calculate the linewidth Dn using the mutual coher-
ence function G(t). Aside from irrelevant factors, we may define this mutual coherence
function as the ensemble average (Problem 15.6)

G(t) ¼ qe�ivtkeiDfl (15:4:29)

under the assumptions that the photon number q is constant in steady-state laser oscil-
lation and that the laser field is stationary (Section 13.5). According to (15.4.26) and
(15.4.27) we can regardDf as a sum of a large number of independent random variables
having zero mean and variance s2 ¼ kDf2l ¼ Ct(1 þ a2)/2q. We will therefore
assume, based on the central limit theorem, that the phase excursion Df of the laser
field has a Gaussian distribution with zero mean [cf. Eq. (13.15.26)]:

P(Df) ¼ 1

s
ffiffiffiffiffiffi
2p
p e�Df

2=2s 2
, (15:4:30)

and therefore

G(t) ¼ qe�ivt
ð1
�1

d(Df)eiDfP(Df) ¼ e�ivt
q

s
ffiffiffiffiffiffi
2p
p

ð1
�1

d(Df)eiDfe�Df
2=2s 2

¼ e�ivte�s
2=2 ¼ e�ivte�t=tcoh , (15:4:31)
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where t�1coh ; C(1þ a2)=4q. Thus, Dn/ C(1 þ a2)/4q. More precisely, the laser spec-
trum, defined by the Fourier transform of (15.4.31), is a Lorentzian lineshape function
centered at n ¼ v/2p with width (FWHM)

Dn ¼ 1
ptcoh

¼ C

4pq
(1þ a2): (15:4:32)

Except for a factor 1
2 discussed below, this reduces when a ¼ 0 to the formula (5.11.6),

which leads in turn to the expression (5.11.13) for the Schawlow–Townes linewidth
DnST. That is, the phase-intensity coupling characterized by the parameter a increases
the Schawlow–Townes linewidth by the factor 1 þ a2. In deriving (5.11.13) we ignored
internal cavity losses as well as dispersion in the gain medium, but these effects are
easily accounted for as follows. The output power P0 per facet of a diode laser is related
to the cavity photon number q by the formula

P0 ¼ 1
2
qhn � vg

2L
ln r2

� �
¼ 1

2
qhn � vg

L
ln r

� �
;

1
2
qhnvgam (15:4:33)

if both facets are assumed to have the same reflectivity r. Similarly, using relations simi-
lar to those employed in Section 5.11, we can write the spontaneous emission rate C into
the lasing mode as (Problem 15.5)

C ¼ vgnspgt ¼ vgnsp(aþ am), (15:4:34)

in which a is the loss coefficient in the active medium [Eq. (15.2.3)]. Equations
(15.4.32)–(15.4.34) allow us to relate Dn to the output power per facet and other quan-
tities characterizing a particular laser:12

Dn ¼ hnv2gnspgtam
8pP0

(1þ a2) ; (1þ a2)Dn0ST, (15:4:35)

Dn0ST is (correctly) half the Schawlow–Townes linewidth modified to allow an internal
loss a= 0 and to include dispersion via a group velocity vg=c.

Before discussing some details concerning the derivation of (15.4.35), let us consider
a numerical example. Figure 15.13 shows experimental data, obtained with a scanning
Fabry-Pérot interferometer, for the linewidth of a heterojunction diode laser as a function
of the power P0. The measured linewidth confirms the 1/P0 dependence predicted
by (15.4.35). The parameters entering (15.4.35) for these measurements were:11

a ¼ 45 cm21, am ¼ 39 cm21, gt ¼ a þ am ¼ 84 cm21, hn ¼ 1.5 eV, nsp ffi 2.6, and
vg ¼ c/4.33.13 With these numbers we calculate from Eq. (15.4.35) the laser

12This is equivalent to formula (26) of Henry, op. cit., footnote 11.
13np, which can be deduced from the ratio of spontaneous emission and gain spectra, was determined in
different experiments cited by Henry, op. cit., as was the group velocity vg, which can be inferred from a
measured longitudinal mode spacing vg/2L (Problem 15.4).
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linewidth

Dn ffi 3:9
P0(mW)

(1þ a2) MHz: (15:4:36)

The experimental data of Fig. 15.13 are accurately fit by the formula Dn ¼ (114+5)/
P0(mW), implying that a ffi 5.3. In other experiments the parameter a for a heterojunc-
tion laser was inferred by a measurement of the change with carrier density of the gain
(and therefore DnI).

11 The Kramers–Kronig relation between the real (DnR) and imagin-
ary (DnI) parts of Dn yielded the estimate a ¼ DnR/DnI � 6, consistent with the value
needed to bring (15.4.36) into agreement with the data shown in Fig. 15.13.14

Other experiments have confirmed that the fundamental linewidth of diode lasers is
much larger than in other lasers, where it is usually so small as to be practically irrele-
vant; recall our estimate of Dn for a He–Ne laser following Eq. (5.11.13). It has also
been confirmed that the Schawlow–Townes linewidth DnST underestimates the
observed linewidths by factors 1 þ a2 � 30.

† The difference between (5.11.6) and (15.4.32) with a ¼ 0 is related to the fact that both
amplitude and phase fluctuations contribute in general to the laser linewidth. In the near-
threshold, linear regime of laser oscillation the amplitude and phase fluctuations contribute
equally to the linewidth. In the above-threshold, nonlinear regime, however, the amplitude is
stabilized by gain clamping and only phase fluctuations contribute to the linewidth. Thus, the
linewidth (15.4.32) is half that given by (5.11.6), which is expressed in a form that includes con-
tributions from both amplitude and phase fluctuations.

The phase excursion Df in (15.4.31) takes on all values between 21 and1, but of course it
should only be necessary to work with phases between 0 and 2p. If Df’s in a range small

2G = (114 ± 5)P –1
0

Reciprocal output power P     (mW)–1 –1
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Figure 15.13 Measured linewidth of a single-mode diode laser as a function of power P0. [From
M. W. Fleming and A. Mooradian, Applied Physics Letters 38, 511 (1981).]

14A different procedure for measuring a is described, for instance, in K.-G. Gan and J. E. Bowers, IEEE
Photonics Technology Letters 16, 1256 (2004).
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compared to 2p make the dominant contribution to (15.4.31), then it is irrelevant as a practical
matter whether the integration extends from 21 to1 or from 0 to 2p. In any event, a more rig-
orous approach to the “phase diffusion” responsible for the laser linewidth fully validates
(15.4.31).

Our derivation of (15.4.35) assumes a Fabry-Pérot cavity, but similar expressions apply in
other configurations. For a distributed feedback laser, for example, (15.4.35) can be applied
provided that we use the appropriate output coupling loss for am. Except for diode lasers, the
a parameter is typically very small, and the factor 1 þ a2 makes a very small contribution to
the Schawlow–Townes linewidth, which is already extremely small for most (nonsemiconduc-
tor) lasers. As noted in Section 5.11, in most lasers the primary causes of the laser linewidth
are “technical” factors such as mirror vibrations, temperature fluctuations, etc. The appearance
of the a parameter in expressions such as (15.3.25) indicates that it plays a role not only in
the laser linewidth but also in various other effects that depend on phase variations and
fluctuations.15 †

The derivation leading to (15.4.35) ignored the amplification of spontaneous emis-
sion noise by the gain medium. It should be clear from our interpretation of the K
and a parameters that the enhancement of the linewidth by both “excess spontaneous
emission noise” and phase-intensity coupling is accounted for when (15.4.35) is
replaced by

Dn ¼ K(1þ a2)Dn0ST: (15:4:37)

Intensity Noise

Spontaneous emission causes laser radiation to have random fluctuations in power as
well as phase. Thus, the output power of a single-mode laser is described by

P(t) ¼ Pout þ DP(t): (15:4:38)

Pout is the average output power and DP(t) is the fluctuation at time t of the power from
its average value. As usual kXl denotes the average over the ensemble of all possible
values of X. We will assume that the “random process” DP(t) is stationary and ergodic,
so that kDP(t) DP(t þ t)l is independent of t and ensemble averages are equal to time
averages (Section 8.11).

A conventional measure of power fluctuations is the relative intensity noise (RIN)

RIN(v) ¼ SP(v)
P2
out

, (15:4:39)

where the spectral power density SP(v) is defined in this context as the Fourier transform
of the autocorrelation function kDP(t)DP(t þ t)l:

SP(v) ¼
ð1
�1

kDP(t) DP(t þ t)le�ivt dt: (15:4:40)

15A review of early work leading to our present understanding of the a parameter is given by M. Osiński and
J. Buus, IEEE Journal of Quantum Electronics QE-23, 9 (1987).
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From the inverse Fourier transform of (15.4.40) we have16

kDP(t) DP(t þ t)l ¼ 1
2p

ð1
�1

SP(v)e
ivt dv, (15:4:41)

and in particular the relative mean-square power fluctuation is

kDP2l
P2
out
¼ k[P(t)� Pout]2l

P2
out

¼ kDP(t)DP(t)l
P2
out

¼ 1
2pP2

out

ð1
�1

SP(v) dv

¼ 1
2p

ð1
�1

RIN(v) dv, (15:4:42)

from which we can define a laser signal-to-noise ratio:

SNRL ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
P2
out

kDP2l

s
¼

ffiffiffiffiffiffi
2p
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ1

�1RIN(v) dv
q : (15:4:43)

A model for RIN(v) and its dependence on the device parameters of a diode laser
starts from the coupled equations for the photon density Q, the carrier density N, and
the phase f:

dQ
dt
¼ (G� g)Q, (15:4:44a)

dN

dt
¼ 1

V

I

e
� N

tR
� GQ, (15:4:44b)

df

dt
¼ �a

2
(G� g), (15:4:44c)

where G ¼ vgs (N2 Ntr) ¼ Cs(N 2 Ntr) is the gain factor. The first two equations are
equivalent to Eqs. (15.3.3a) and (15.3.3b), respectively, with g ¼1/tp, and the third
equation is identical to (15.4.21b). Since Q is proportional to the output power P,

RIN(v) ¼ SQ(v)

Q2 , (15:4:45)

with

SQ(v) ¼
ð1
�1

kDQ(t) DQ(t þ t)le�ivt dt: (15:4:46)

Suppose first thatQ andN are perturbed from their steady-state valuesQ andN by dQ
and dN, with jdQj 
 Q and jdNj 
 N. In a linear stability analysis of the coupled
equations (15.4.44a) and (15.4.44b) we obtain equations for dQ and dN by keeping

16The fact that the spectral density and the autocorrelation function are Fourier transforms of each other is the
Wiener–Khintchine theorem, which we invoked in Section 13.5 to relate the spectrum of a stationary field to
its autocorrelation function.
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only terms linear in the perturbations. The resulting equations are identical in form to
Eqs. (15.3.5) with Im ¼ 0, since here we are assuming a constant current I:

d _Q ¼ CsQdN, (15:4:47a)

d _N ¼ � CsQþ 1
tR

� �
dN � g dQ: (15:4:47b)

Writing dQ ¼ dQ0eVt and dN ¼ dN0e
Vt, we solve the resulting two linear algebraic

equations for V ¼ VR þ iVI and find that the real part of V (VR) is negative, i.e., that
the steady-state solutions Q and N of Eqs. (15.4.44a) and (15.4.44b) are stable
(Problem 15.7). The imaginary part of V (VI) is the frequency of the oscillations that
are damped at the exponential rate VR; this frequency is found to be

VI ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
CsgQ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CsQ=tp

q
(15:4:48)

in the same approximation used in writing (15.3.11). In other words, from the discussion
following (15.3.11), we can expect typical relaxation oscillation frequencies (Section
6.3) of diode lasers to be on the order of a few gigahertz.

Equations (15.4.44) do not include effects of spontaneous emission. As we saw in our
discussion of the a parameter, spontaneous emission gives rise to mean-square fluctu-
ations in the phase f. It also results in mean-square fluctuations in Q and N. Because
of these fluctuations relaxation oscillations are not exponentially damped but rather
are “driven” to persist by random spontaneous emission events. Including effects of
spontaneous emission noise in Eqs. (15.4.44), we can calculate kDQ(t) DQ(t þ t)l
and therefore its Fourier transform SQ(v) and the relative intensity noise, RIN(v).17

Figure 15.14 shows results of the calculation for a typical, strongly index-guided
1.3-mm InGaAs laser. RIN(v) is strongest near the relaxation oscillation frequency
(15.4.48) and decreases with increasing laser power, as would be expected if the inten-
sity noise is due primarily to spontaneous emission rather than to “technical noise” or to
noise associated with electron–hole recombination. These results are consistent with
determinations of RIN(v) made by measuring the laser power with a fast photodetector
and SP(v) with an electronic spectrum analyzer. For diode laser powers of a few milli-
watts the signal-to-noise ratio is typically found both theoretically and experimentally to
be roughly 20 dB,17 i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffi
kDP2l

p
Pout

¼ 1
SNRL

� 1
102

: (15:4:49)

For multimode lasers the relative intensity noise defined in terms of the total power
over all modes is found to vary roughly in the same way as the single-mode results
shown in Fig. 15.14, although the power in some modes can exhibit much larger relative
intensity noise than the total power.

17For details of the calculation see, for instance, G. P. Agrawal and N. K. Dutta, Semiconductor Lasers,
2nd ed., Van Nostrand Reinhold, New York, 1993, Chapter 6.
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Intensity noise is an important consideration in optical communications because it is a
source of fluctuations in the current

i(t) ¼ h
eP(t)
hn

(15:4:50)

measured by a detector. Here h is the quantum efficiency of the detector and P(t) is the
incident power of light of frequency n. In the simplest approximation, ignoring compli-
cations associated with photoelectron counting statistics, it follows from (15.4.50) that

kDi2l ¼ h2 e

hn

� �2
kDP2l ¼ h2 e

hn

� �2 P2
out

2p

ð1
�1

RIN(v) dv ¼ h2 e

hn

� �2 P2
out

SNR2
L

, (15:4:51)

or ffiffiffiffiffiffiffiffiffiffi
kDi2l

p
kil

� 1
SNLL

: (15:4:52)

In Section 15.6 we discuss the implications of intensity noise and other sources of noise
for the design of optical fiber communication links.

15.5 INFORMATION AND NOISE

All modern methods of telecommunication involve electrical signals. In telephony, for
example, sound waves modulate electric currents at the transmitter, and currents at the
receiver generate modulated sound waves. The speed and accuracy with which the
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Figure 15.14 Relative intensity noise RIN(v) calculated for three different power levels for a 1.3-mm
InGaAs laser. (Adapted from Fig. 6.10 of G. P. Agrawal and N. K. Dutta, Semiconductor Lasers,
2nd ed., Van Nostrand Reinhold, New York, 1993.)
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audio signal is reconstructed at the receiver depends on the physical properties of the
transmitting and receiving systems as well as the transmission channel (e.g., copper
wires). The transmitter, the channel, and the receiver all introduce noise that prevents
the original signal from being communicated with perfect fidelity. In fiber-optic com-
munications electrical signals are converted to optical signals that are transmitted by a
fiber and then converted back to an electrical signal at the receiver. Noise appears in
the electronics, the transmitting diode laser or LED, the fiber, and in the detection of
the optical signal. Attenuation in the fiber limits the distance over which a signal can
be transmitted without amplification along the way, which itself introduces noise. In
this section we review some basic concepts relating to the transmission of information
in the presence of noise, beginning with the quantification of information in terms of
binary digits.

Imagine some process that always produces one of two possible outcomes, like heads
or tails of a coin flip. We can assign to each outcome a label such as “yes” or “no,” or
“heads” or “tails,” or simply one of the binary digits 0 and 1. Each outcome then pro-
vides one binary digit, or bit of information. Similarly, if there are four possible out-
comes, two bits of information specify each outcome. To see this, imagine the four
possible outcomes are represented by four slots in a line. Then one bit of information
is required to specify whether the outcome belongs to, say, one of the left pair of
slots or one of the right pair, and one more bit of information then fully specifies the out-
come. In general, if each possible, equally likely outcome of some process is represented
by a string of N 0’s and 1’s, the information associated with each outcome is defined as

I ¼ log2 N bits: (15:5:1)

Information as such may or may not relate well to colloquial concepts of information.
Some source may generate numbers or symbols that have no “meaning” or “value,”
but we nevertheless define its information content by (15.5.1). On the other hand, every-
one would agree that Hamlet andMacbeth each contain a great deal of “information” in
the everyday sense of the term, but if a source of some sort generates either the entire text
of Hamlet or the entire text ofMacbeth with equal likelihood, the reception ofMacbeth,
say, provides a mere 1 bit (log2 2) of information as defined by Eq. (15.5.1).

Consider, for example, the outdated but instructive example of a teletype system
in which five binary digits are represented by holes punched in a transmission tape.
We might label a punched hole by 1 and the absence of a hole by 0. There are 25 ¼
32 possible sequences of 0’s and 1’s, enough to allow for the 26 letters of the
English alphabet plus some control signals such as start and stop. Each sequence of
five 0’s and 1’s (e.g., 00101) carries I ¼ log2 2

5 ¼ 5 bits of information.
In communications we are especially concerned with the rate of information transfer.

If the transmission speed in our teletype example is 60 five-letter words per minute,
then the information transmission rate is (60 � 5 letters/minute� 5 bits/letter), or
25 bits/s (bps).

Consider as another example a black-and-white television signal in which the
information is contained in small picture elements (pixels) of different light intensity.
If we assume the eye can distinguish 10 intensity gradations, and that each pixel has
an intensity corresponding to one of these gradations, then each pixel contains I ¼
log210 ¼ 3.32 bits of information. Assuming 30 frames/s, 525 lines/frame, and 500
pixels/line, we have the information rate (30)(525)(500)(3.32) ¼ 2.61�107 bits/s ¼
26.1Mbps.
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† The characterization of information by bits and bytes [1 byte (B) ¼ 8 bits] in computers and
digital electronics ultimately derives, of course, from the (millions of) transistors acting as on/off
(or 0/1) switches in integrated circuits. Examples: (i) a computer with a 32-bit CPU can access
232 ¼ 4.3 � 109 different memory addresses at a time; (ii) the text of this book uses about 2.2MB
of memory on the authors’ computers; (iii) a CD stores about 700MB, whereas a DVD game disc
might store 8.5–50 GB; (iv) a 56k dial-up modem (“modem” being a contraction of “modulator-
demodulator”), which modulates and demodulates analog signals from a telephone line to encode
and decode digital information in terms of 0’s and 1’s, transfers data at a rate of 56 kilobits per
second (Kbps); (v) a cable modem for Internet access might transfer data at a “bandwidth” of a
megabit per second (Mbps) or more; (vi) modems that modulate and demodulate light transmitted
by undersea optical fibers have bandwidths of about a gigabit per second (Gbps); and (vii) the
human genome is estimated to contain about 800 MB of information.

In the American Standard Code for Information Interchange (ASCII) each character in a
text is represented by a byte, a packet of 8 bits; this allows 28 ¼ 256 different characters to
be represented. For example, a file consisting of the sentence “Lasers are based on the principle
of stimulated emission of radiation.” has a size of 71 bytes (59 letters, 11 spaces, and a period).
Each character in ASCII is represented by a particular string of eight 0’s and 1’s. The ASCII space
character, for example, corresponds in binary notation to 00100000 ¼ 0(27) þ (0)26 þ 1(25) þ
0(24) þ 0(23) þ 0(22) þ 0(21) þ 0(20) ¼ 32 in decimal notation.18

The terms “megabyte” and “gigabyte” often refer to 220 ¼ 10242 and 230 ¼ 10243 bytes and
not to 10002 and 10003 bytes, respectively, in characterizing file sizes and random-access
memory (RAM) as opposed to hard disk and flash memories. In network applications a megabyte
per second (MBps) and a gigabyte per second (GBps) refer to the “decimal” definitions—106 and
109 bytes per second, respectively. †

In digital modulation systems information is conveyed by a sequence of pulses cor-
responding to 0’s and 1’s depending on whether their amplitudes are less than or greater
than some particular value. A major advantage of digital systems, in addition to the fact
that digitized information can be stored and retrieved electronically, is their accuracy, as
indicated in Fig. 15.15. A signal in the form of a stream of 0’s and 1’s (Fig. 15.15a) is
shown degraded by noise as in Fig. 15.15b. In Fig. 15.15c, however, the original signal
is accurately recovered by letting any measurement (e.g., of current or voltage) above a
certain “decision level” define a 1 and any measurement below that level a 0.

The first step, conceptually, in a pulse code modulation (PCM) scheme (Fig. 15.15) is
to digitize an analog signal, which might, for instance, be a modulated current generated
by voice, music, or video. By the nature of practical electronics it will have a finite band-
width and a highest frequency. Digitization is done by sampling (or integrating) the con-
tinuous analog signal at different times. For illustrative purposes let us consider a “toy
model” in which the analog signal to be digitized is a current that varies in time as in
Fig. 15.16a with a noise level of 0.1 units, that is, the peak current shown would be
measured as 0.8+0.05 units (e.g., mA). We divide the range of currents into 8 bins
(0.0–0.1, 0.1–0.2, etc.), which we label 0, 1, 2, 3, 4, 5, 6, 7, or, in binary notation,
(000), (001), (010), (011), (100), (101), (110), (111). Each sampled current then rep-
resents log2 8 ¼ 3 bits of information.

The question immediately arises: How well does the digitized signal represent the
original analog signal? In other words, what sampling rate is required to accurately rep-
resent the continuous analog signal by a stream of bits? The answer is provided by the
Nyquist sampling theorem: The sampling rate must be at least twice the largest frequency

18The Microsoft Windows calculator accessory in “scientific mode,” for example, allows direct conversion
between binary and decimal representations.

776 DIODE LASERS AND OPTICAL COMMUNICATIONS



contained in the Fourier decomposition of the analog signal. Equivalently, the sampling
rate must be at least twice the bandwidth of the analog signal.

† This can be understood as follows. Let us represent the analog signal A(t) of duration T as a
Fourier series:

A(t) ¼
X
j

aj cos
2pjt
T
þ bj sin

2pjt
T

� �
: (15:5:2)

We assume for simplicity, but with no real loss of generality, that the lowest frequency appear-
ing in the Fourier decomposition (15.5.2) is 0, i.e., that A(t) has a “dc” component. If the largest
frequency component is nmax, corresponding to a maximum j given by jmax/T ¼ nmax, or jmax ¼
nmaxT, then the Fourier decomposition (15.5.2) involves a set of jmax frequency components.
Sampling A(t) at any particular time provides one condition the 2jmax numbers aj and bj must
satisfy; to obtain 2jmax linear equations, enough to solve for the 2jmax “unknowns” aj and bj,
we must sample A(t) at 2jmax different times, corresponding to a sampling rate 2jmax/T ¼
2nmax. nmax gives the range of frequencies in the Fourier decomposition of A(t), i.e., it is the
bandwidth of the analog signal. With this sampling rate the analog signal can be optimally
synthesized from its digital representation using (15.5.2). In the simple example shown in
Fig. 15.16 the sampling is done at equally spaced time intervals, which is the preferred
sampling in practice. †

Let us return now to our toy model in which each sampled value of the analog
signal represents 3 bits of information. If the sampling rate is 2B, where B is the
bandwidth of the analog signal, and if the sampled values are transmitted by

Signal 

Signal 
degraded 
by noise 

Decision
level 

Recovered 
signal 

Decision times 

(a)

(b)

(c)

Figure 15.15 A digital signal (a), degraded by noise (b), can be exactly reconstituted (c) even in the
presence of substantial noise.
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stringing them together in a bit stream as indicated in Fig. 15.16b, then the infor-
mation transmission rate is (3 bits/sample)(2B samples/s) ¼ 6B bps. In a more realis-
tic scenario we might represent the current values by, say, 16 ¼ 24 bins and the
bandwidth might be something like 3 kHz for a voice signal (roughly the bandwidth
of sound waves in ordinary speech), in which case the transmission rate would be
4 bits � 6 kHz ¼ 24 kbps.

In addition to allowing more accurate communication of information in the presence
of noise (Fig. 15.15), pulse code modulation has the advantage that digital receivers can
more precisely “decide” whether a pulse is present or not than an analog receiver can
determine a particular signal level within a continuum; these are extremely important
advantages. But there is, as always, a trade-off: More bandwidth is required. For an
analog signal of bandwidthBwemust sample at the rate 2B, and to transmitN-bit digitized
signal levels we therefore require a bandwidth 2BN, N times the bandwidth of the analog
signal. As noted at the beginning of this chapter, higher bandwidths are possible with
higher carrier-wave frequencies, which explains the dominance of optical systems in
contemporary telecommunications.

Consider now a generalization of our toy model in which an analog signal varies in
strength from 0 to s, and that in the presence of noise of average strength n we digitize
it into s/n “levels.” Including the decision level 0, then, we have a total of 1 þ s/n differ-
ent levels for each sampled value of the signal. If, based on the Nyquist theorem, we
sample N ¼ 2BT values of the signal in a time T, where B is the signal bandwidth,
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Figure 15.16 (a) Digitization of a continuous analog signal. The currents in this case are divided into
8 bins and the sampled values are labeled by the bin numbers in binary notation. (b) Transmission of
the signal as a bit stream, with pulses shown as idealized square waves.
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then the total number of possible combinations of sampled values is

1þ s

n

� �N
¼ 1þ s

n

� �2BT
: (15:5:3)

In terms of the signal and noise powers, which we take to be proportional to Sp ¼ s2 and
Np ¼ n2, respectively, this can be written

1þ S1=2p

N1=2
p

 !2BT
ffi 1þ Sp

Np

� �BT
, (15:5:4)

for Sp � Np, which corresponds to

log2 1þ Sp
Np

� �BT
¼ BT log2 1þ Sp

Np

� �
bits, (15:5:5)

or a bit rate

C ¼ B log2 1þ Sp
Np

� �
bps: (15:5:6)

In information theory a rigorous derivation of this formula for the capacity of a noisy
channel is obtained under the reasonable assumptions that the noise in the transmission
channel has zero mean and is additive, Gaussian, and “white” in the sense that its power
spectrum is approximately independent of frequency. C as given by (15.5.6) is shown
to be the maximum rate at which information can be transmitted over a channel of
bandwidth B when the average received signal and noise powers are, respectively,
Sp and Np.

19

† Bandwidth in the case of analog systems refers to the range of frequencies contained in the
Fourier decomposition of a signal and is expressed in hertz. This bandwidth might be defined, for
instance, as the difference between the maximum and minimum frequencies, or the full-width-at-
half-maximum width of the Fourier spectrum, etc. In digital systems and computer technology,
however, “bandwidth” generally refers to a transmission rate, expressed in bits/second. Equation
(15.5.6) provides a relation between these different meanings of bandwidth. As we have defined
it, B (in hertz) is simply the largest frequency needed for an accurate Fourier synthesis of an
analog signal, assuming that the Fourier spectrum has a dc component (i.e., a minimum fre-
quency of zero). On the other hand, C is a bit rate, expressed in bits/second. Equation (15.5.6)
implies that this “bandwidth” in bits/second is numerically larger than the bandwidth in hertz
if the signal-to-noise ratio Sp/Np .1. For instance, a bandwidth of 10 MHz might in a particular
system result in a bit rate of 50 Mbps, corresponding to “5 bits per hertz.” †

The definition (15.5.1) assumes equally likely outcomes. More generally, if a given
outcome or “symbol” in a finite stream of symbols occurs with probability Pi, the

19Equation (15.5.6) for the channel capacity is often called Shannon’s formula, after Claude E. Shannon,
who is generally regarded as the principal originator of information theory. One of the best semipopular expo-
sitions of information theory remains that by J. R. Pierce, Symbols, Signals and Noise, Harper & and Row,
New York, 1961.
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information obtained from an observation of it is defined as

Ii ¼ log2
1
Pi

bits: (15:5:7)

If a particular outcome is certain (probability 1), then obviously no information is
conveyed when it occurs: Ii ¼ 0. It is useful to define the average information per
symbol, or entropy,20

H ¼
XN
i¼1

Pi log2
1
Pi
¼ �

XN
i¼1

Pi log2 Pi, (15:5:8)

where Pi is the probability of the ith outcome. H is a measure of “surprise”: If a highly
improbable (Pi
 1) event occurs, this occurrence is “surprising” and—by definition—
carries a lot of information. If, on the other hand, an event is highly predictable, we do
not get much information when we observe it. If a particular outcome is absolutely
certain, its occurence provides no information whatsoever (H ¼ 0) that was not
known before its observation.

The relation (15.5.6) shows that the rate of transmission of information is limited by
the bandwidth of the communication system. Its importance lies in part in a fundamental
theorem of information theory to the effect that, if R is the rate at which a source gen-
erates entropy H, and C is the capacity of a noisy transmission channel, it is possible
to transmit the source output over the channel with arbitrarily small error provided
that R, C. This leads to source compression techniques for deliberately reducing the
information content of the source (by, e.g., using a coarser signal digitization) in
order to transmit information more reliably (and more quickly) over a noisy channel.
It would take us well beyond our scope here to discuss these matters further, but we
note that readers who have downloaded music files on the Internet have benefited
from source compression algorithms. In any event, it must be emphasized that no trans-
mission channel is free of noise. This might, for instance, be thermal (Johnson) noise in
conducting wires or amplified spontaneous emission noise in fiber amplifiers. Moreover,
while the formula (15.5.6) for the channel capacity assumes among other things that the
noise is independent of bandwidth, it will be recalled that both Johnson noise and ampli-
fied spontaneous noise are in fact proportional to the bandwidth. Writing Np ¼ N0B,
where N0 is the noise power per unit bandwidth, we can replace (15.5.6) by

C ¼ B log2 1þ Sp
N0B

� �
bps: (15:5:9)

This shows that the channel capacity cannot be increased indefinitely by increasing the
bandwidth; subject to the assumptions about the transmission channel under which
(15.5.6) is valid, the maximum channel capacity for a given received signal power Sp

20This terminology arose from the similarity of (15.5.8) to entropy as defined in statistical mechanics.
E. T. Jaynes and others have interpreted thermodynamic entropy as an example of a more general informa-
tional entropy.
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and a noise power N0 per unit bandwidth is

Cmax ¼ lim
B!1 B log2 1þ Sp

N0B

� �� 
¼ log2 lim

B!1 1þ Sp
N0B

� �B" #
¼ log2 e

Sp=N0

¼ Sp
N0 ln 2

: (15:5:10)

Noise causes bit errors—a 1 pulse to be interpreted as a 0 or a 0 as a 1. As a general
rule, an acceptable bit error rate (BER) in telecommunications is about 1029, that is, one
out of every 109 received bits is in error.21 Assuming the noise that causes these errors
has a Gaussian distribution with zero mean, consistent with the central limit theorem for
noise arising from many small, additive contributions, we write [cf. (13.15.26)]

P(iN) ¼ 1

s
ffiffiffiffiffiffi
2p
p e�i

2
N=2s

2
(15:5:11)

for the probability distribution of the noise current iN at the receiver. s 2 ¼ ki2Nl is the
mean-square noise current, which will have contributions from shot noise, intensity
noise of the transmitting laser, Johnson noise, etc., but for now we leave it unspecified;
a numerical example is given in the following section. We suppose that a 1 pulse is
associated with a signal current iS and a 0 pulse with a zero current. Then a 0 pulse is
recorded as a 1 pulse if the noise current exceeds a threshold value of, say, iS/2 for
recording a 1. In this case the current iS þ iN exceeds the threshold for recording a 1
pulse even if iS ¼ 0. Similarly, the noise current can cause a 1 pulse to be recorded as
a 0 if iN , 2iS/2, in which case iS þ iN is below the threshold iS/2 even if iS ¼ 1.
The bit error rate is therefore half the probability that iN . iS/2 plus half the probability
that iN , iS/2, since on average half the pulses are 1’s and half are 0’s:

BER ¼ 1
2

ð1
iS=2

P(iN) diN þ 1
2

ðiS=2
�1

P(iN) diN ¼ 1

s
ffiffiffiffiffiffi
2p
p

ð1
iS=2

e�i
2
N=2s

2
diN , (15:5:12)

since P(iN) is symmetric about iN ¼ 0. A simple change of variables allows us to write
this as

BER ¼ 1ffiffiffiffi
p
p

ð1
iS=(2

ffiffi
2
p

s)
e�x

2
dx ¼ 1

2
erfc

iS
2
ffiffiffi
2
p

s

� �
¼ 1

2
erfc

iS

2
ffiffiffiffiffiffiffiffiffiffi
2ki2Nl

p
 !

, (15:5:13)

where erfc is the complementary error function defined by (3.10.8). In Fig. 15.17 we plot
BER as a function of i2S=ki

2
Nl; i

2
S and ki

2
Nl are proportional to the received signal and noise

powers, respectively. From this plot it follows that a bit error rate BER.1029 requires a
signal-to-noise power ratio i2S=ki

2
Nl &140 (21.5 dB).

21In some applications much smaller bit error rates are required (and realized). Note that the bit error “rate” is
actually a probability, not a rate as such; the more appropriate term “bit error ratio” is sometimes used.
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In error correction coding a bit sequence is replaced by many different longer
sequences with “redundancy,” each long sequence being identified with the same orig-
inal sequence. Bit errors in the original sequence are corrected when the original bit
sequence is recovered from the longer sequences.22 Error correction coding is widely
used in computer technology. In fiber-optic communication it reduces the signal-to-
noise ratio needed, for instance, to transmit a signal over some distance without ampli-
fication. Together with dispersion management and wavelength-division multiplexing
(see below), it has dramatically increased the bit rates of long-haul fiber-optic communi-
cation systems.

15.6 OPTICAL COMMUNICATIONS

A voice signal with a bandwidth of 3 kHz can be transmitted over large distances as a
modulated current on a telephone line. However, simultaneous transmission of, say,
200 such voice signals without interference requires a bandwidth �2 � 3 kHz �
200 �1MHz. At these high frequencies resistance increases because of the “skin
effect” (currents become tightly confined to the surface of a wire) and signal power is
also dissipated as radiation. Coaxial and twisted-pair cabling allow bit rates of hundreds
of megabits per second, but high-frequency ohmic losses limit transmission distances
to �1 km between repeaters. Wireless systems usually permit larger distances between
repeaters (e.g., cell phone towers), but their bit rates are ultimately limited to �1% of
their microwave carrier frequencies, or a few gigabits per second. The capacity of a com-
munication channel is often characterized by its bit rate–distance product, the product
of the bit rate times the distance between repeaters. The primary advantage of fiber-optic
communication lies in bandwidth and bit rate–distance product: The high carrier
frequencies of optical waves, together with the large transmission bandwidths and
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Figure 15.17 Bit error rate (BER) vs. i2S=ki
2
Nl (in dB) calculated from Eq. (15.5.13). (Adapted from

A. Yariv, Optical Electronics in Modern Communications, 5th ed., Oxford University Press,
New York, 1997, Fig. 10–20.)

22See, for instance, Pierce, op. cit., footnote 19.
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low attenuation coefficients of fibers, allow data to be transmitted at very high bit rates
over large distances. And because signals in optical communications are transmitted by
light rather than electric currents, they are not distorted by external electromagnetic
fields.

The components of a fiber-optic communication system are shown schematically in
Fig. 15.18. A bit stream in the form of electric current pulses modulates the light from a
diode laser to produce a stream of “0” and “1” optical pulses that are coupled into an
optical fiber; the modulation can be done either directly by varying the injection current
for the laser or by external (electro-optical) modulation of the laser output. After trans-
mission through the fiber—which might also include a series of fiber amplifiers in the
case of a “wide area network” (WAN) involving distances of hundreds of kilometers
or more—the light pulses are coupled out of the fiber and onto a detector, whose
output is demodulated to produce the electrical output signal. In this section we consider
some basic power, noise, and dispersion characteristics of the generic fiber-optic
communication system of Fig. 15.18.

Optical fibers were discussed in Chapter 8, where we noted that the glass fibers used
in communications are characterized by attenuation factors of only �0.2 dB/km at
1.55 mm; at this wavelength the power loss in propagating through a kilometer of
fiber is only about 4%. Diode lasers emitting at this and other wavelengths where
fibers have very small attenuation have been developed specifically as transmitters in
fiber-optic communications (Section 15.2) and, fortuitously, erbium-doped fiber ampli-
fiers (EDFAs) can amplify radiation over a wide range (�4 THz) at these wavelengths
(Section 11.14) and serve as “all-optical” repeaters. For short transmission distances
repeaters are not necessary, whereas for “long-haul” transmission they are essential.
Fiber lengths and bit rates in optical communications are determined not only by attenu-
ation and gain, but also by noise and by the dispersion effects discussed in Chapter 8.
We will first consider the power budget of a fiber link.

The optical power P at the receiver is determined by the laser power PL input to the
fiber, attenuation in the fiber, and any amplifiers in the link:

P ¼ PLe
�a0LGA�1s , (15:6:1)

Signal Modulator
Diode
laser

PIN
photodiode

or APD

Fiber

Signal

Figure 15.18 A fiber-optic communication system.
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where a0 is the fiber attenuation coefficient, L is the fiber length, G is the total power
amplification factor due to any and all amplifiers, and we have included a factor A�1s
(,1) to account for loss at points where two fibers are connected (spliced) or where
light is coupled into or out of the fiber at the transmitter and receiver. Since decibels
are simply additive, it is convenient to express powers in dBm (Section 11.14) and
gains and losses in dB. Taking the logarithm (base 10) of both sides of (15.6.1) and
then multiplying through by 10, we obtain

P ¼ PL �Aþ G�As, (15:6:2)

for the power at the receiver in dBm. PL (dBm) is the laser power and
A ¼ 10 log (e�a0L), G ¼ 10 logG, and As ¼ 10 logAs are all expressed in dB. If Pmin

(dBm) is the minimum power detectable at the receiver, or the receiver sensitivity,
then the power budget for the fiber link is expressed as

PL �Aþ G�As ¼ Pmin þM, (15:6:3)

whereM (dB) is a “systemmargin” included to ensure that the power at the receiver will
be large enough to exceed the smallest detectable power and to guard against any losses
that might develop in system components over time. Equation (15.6.3) can be used to
calculate, for instance, the maximum fiber length for G ¼ 0, that is, the maximum
distance between repeaters, for a specified system margin M when PL, a0, As, and
Pmin are known.

Such a calculation depends not only on the attenuation and gain properties of the
fiber link but also on the bit rate. The dependence on the bit rate comes from the depen-
dence of the minimum detectable power Pmin on the bandwidth B. As discussed in
Section 12.7, Pmin is approximately proportional to either B or

ffiffiffi
B
p

, depending on the
dominant source of noise at the receiver. In any case, the fact that Pmin increases with
bandwidth implies from (15.6.3) that, other things being equal, the transmitted laser
power PL or the gain G in the fiber link must increase with bandwidth and therefore
with bit rate in order to maintain a specified system margin M.

† There is a “quantum limit” toPmin that depends on the acceptable bit error rate. If the average
number of photons counted in a “1” light pulse is �n, the probability of detecting n photons when a
“1” pulse is incident on the detector is

Pn ¼ (n)ne�n

n!
: (15:6:4)

We assume there are no photons in a “0” pulse. The probability that a 1 pulse is incorrectly
identified as a 0 pulse, i.e., the probability that no photons are detected when a 1 pulse is incident
on the detector, is

Pn¼0 ¼ (n)0e�n

0!
¼ e�n: (15:6:5)

Assuming an equal number of 0 and 1 pulses, therefore, the bit error rate is

BER ¼ 1
2e
�n, (15:6:6)
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and, if we require a bit error rate of 1029 (Section 15.5), the minimum required value �nmin of �n is
given by 1

2e
��nmin ¼ 10�9, or �nmin ¼ 20. Assuming again that there are no photons in 0 light pulses,

and that 0 and 1 pulses are equally likely on average, we require an average of nmin ¼ 1
2�nmin ¼ 10

photons per pulse to realize a bit error rate of 1029. For light of frequency n this implies a mini-
mum average optical powerP q

min equal to 10hn times the bit rate. For light of wavelength 1.55 mm
and a bit rate of 100Mbs, therefore, P q

min ¼ 1:3� 10�10 W, or 268.9 dBm. More generally, for
a bit rate br (bps) and a minimum of nmin photons per bit on average needed to achieve a specified
bit error rate, the average power at the receiver must exceed the quantum limit

P q
min ¼ nminhnbr: (15:6:7)

The minimum detectable power Pmin of an actual receiver is usually much larger than the
quantum limit for bit error rates of practical interest. A PIN receiver, for example, might have
a minimum detectable power corresponding to 3000 photons at 1.55 mm and 100Mbs, or
Pmin ¼ 3:8� 10�8 W ¼ �44:1 dBm. †

Suppose, for example, that we have a single-mode fiber into which is coupled PL ¼
1 mW (0 dBm) of 1.55-mm diode laser radiation, and that along the fiber there are 10
splices, each with an attenuation As ¼ 0:1 dB, as is typical. Suppose further that the
receiver has a minimum detectable powerPmin ¼ 10�8 W (250 dBm) for the particular
bit rate of interest and that a (typical) system marginM ¼ 6 dB is imposed. What is the
fiber length L for which we can meet the power budget (15.6.3) without any amplifiers?
Equation (15.6.3) with G ¼ 0 (no amplifiers) implies

A ¼ 10 log (ea0L) ¼ 4:34a0L ¼ PL �As � Pmin �M, (15:6:8)

or

L ¼ 1
4:34a0

[0� 10� 0:1� (�50)� 6]: (15:6:9)

Since a0 ¼ 4.96 � 1022 km21 for A ¼ 0:2 dB/km, we calculate L ¼ 200 km as the
maximum fiber length for which the system margin can be met without amplifiers or
regenerators.

Such estimates do not address the question of whether the BER is acceptable.
Figure 15.17 gives the BER as a function of the signal-to-noise ratio i2S=ki

2
Nl. If we

require a BER of 10210, for example, we must have i2S=ki
2
Nl . 22 dB. The signal current

iS ¼ he(P/hn), where P is the optical power at the receiver and h is the probability
that an incident photon creates an electron–hole pair in a PIN or APD detector
(Section 12.7). P ¼ PLe�a0L, where L is the length of fiber traversed from the laser
transmitter to the receiver, so we can write the signal current and its square at the
receiver as

iS ¼ hePL

hn
e�a0L, i2S ¼

hePL

hn

� �2
e�2a0L: (15:6:10)

We are assuming for simplification here that splicing and connection losses are
negligible.
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The noise current has several contributions. In Section 12.7 we discussed signal-
current shot noise, dark-current shot noise, and Johnson noise. Their total contribution
to the mean-square current noise is [Eqs. (12.7.3) and (12.7.5)]

ki2Nl¼Di2rms¼ 2e(iSþ iD)Bþ4kBT
RL

B

¼ 2e
hePL

hn

� �
Be�a0Lþ2eiDBþ4kBT

RL
B (shot noise and Johnson noise): (15:6:11)

In (15.6.10) and (15.6.11) PL is the average laser power. As discussed in Section 15.4,
the laser intensity undergoes fluctuations due primarily to spontaneous emission in the
laser medium, and the intensity noise results in photocurrent noise when the laser radi-
ation is incident on a detector. For the mean-square current noise in a bandwidth B we
have [Eq. (15.4.51)]

ki2Nl¼
hePLe�a0L

hn

� �2
(RIN)B (laser intensity noise): (15:6:12)

Here RIN is taken to be the relative intensity noise at the center of the frequency band of
width B. Assuming that dark-current shot noise is negligible compared to the other
sources of current fluctuations, we take the total mean-square current noise to be

ki2Nl¼
2he2PL

hn

� �
Be�a0Lþ4kBT

RL
Bþ hePLe�a0L

hn

� �2
(RIN)B, (15:6:13)

which implies the signal-to-noise ratio

i2S
ki2Nl
¼ (hePL=hn)2e�2a0L

(2he2PL=hn)Be�a0Lþ (4kBT=RL)Bþ (hePLe�a0L=hn)2(RIN)B
: (15:6:14)

If we require a BER of 10210 or less, this ratio must exceed 22 dB, or 158. This condition
depends on the carrier frequency, average power, and intensity noise of the transmitting
laser, the detector efficiency, load resistance, and bandwidth, and the fiber attenuation
and length. It can be used to determine, for example, the length of fiber needed to realize
a specified bit error rate without repeaters.

It is seen from (15.6.14) that the signal-to-noise ratio at the receiver decreases with
increasing fiber length. In other words, in order to realize a particular bit error rate
with the laser power and other parameters fixed, the fiber length must be kept below a
certain value in the absence of repeaters; subject to the assumptions and approximations
used in obtaining (15.6.14), this value determines the spacing of the repeaters (fiber
amplifiers) between the transmitter and the receiver. Equation (15.6.14) shows that at
sufficiently large distances the dominant source of noise is thermal:

i2S
ki2Nl
ffi hePL

hn

� �2 RL

4kBTB
e�2a0L: (15:6:15)
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For a rough estimate let us assume the (somewhat) typical values PL ¼ 1 mW, h ¼
0.5, RL ¼ 50V, B ¼ 200MHz (corresponding to a bit rate of, say, 400Mbps), and
a0 ¼ 5 � 1022 km21 at the wavelength l ¼ c/n ¼ 1.55mm. Recall from Section 12.7
that the effect of noise due to electronic amplification of the current at the receiver is
to replace the physical temperature T in (15.6.15) by an effective value Teff . T; we
will take Teff ¼ 3(293K), consistent with the remarks in Section 12.7. With these
assumptions, the maximum fiber length L that allows a signal-to-noise ratio
i2S=ki

2
Nl . 158, and therefore a bit error rate ,10210, is 95 km.

The formulas for power budgeting and signal-to-noise ratio show that the perform-
ance of a fiber-optic communication system should improve with increasing laser
power PL. However, laser powers can only be increased so far before nonlinear-optical
effects in the fiber, in particular stimulated Brillouin scattering, begin to have deleterious
effects. The threshold power for the onset of SBS at wavelengths near 1.5mm in fibers
can be as small as a few milliwatts, although it is considerably larger for the relatively
large spectral widths typical of pulses used in communications. At much larger
powers stimulated Raman scattering (SRS) can similarly cause loss of laser power in
a fiber as radiation at other wavelengths is generated.

A basic and extremely important consideration in fiber-optic communication is fiber
dispersion (Chapter 8). There is first of all material dispersion, the dependence of the
fiber refractive index on frequency; this results in group velocity dispersion and pulse
broadening that, unless reduced in some way, can seriously limit bit rates (Section
8.4). Intermodal dispersion can also cause pulse broadening and overlap to a degree
that increases with the length and numerical aperture of a multimode fiber but, as
noted in Section 8.6, it is absent in single-mode fibers. Multimode fibers are used
only for short-distance communications, typically within or between buildings.
Whereas LEDs can be used as transmitters in such applications, their nondirectional
emission results in inefficient coupling of radiation into single-mode fibers; diode
lasers are therefore required for long-haul communications.

In addition to material dispersion, single-mode fibers also exhibit polarization
mode dispersion arising from the birefringence of an optical fiber: Two orthogonal
polarizations have different refractive indices and therefore different group velocities
(Section 8.7). Because of the unpredictable nature of the output polarization, it is import-
ant that the optical elements of a fiber-optic communication system be insensitive to
polarization. Even if the light injected into a fiber is strongly polarized, temperature vari-
ations in the fiber can result in effectively random polarization of the light exiting the
fiber, and different frequency components will generally have different polarizations.
These effects can also cause pulses to overlap, but they are usually weak except at
very high bit rates (&10 Gbps), and telecommunication fiber cables are now manufac-
tured such that polarization mode dispersion is fairly small even at these rates.

Material dispersion is of coursemost pronounced for the short pulses used in high-bit-
rate systems. In Section 8.4 we estimated the spreading in time of a pulse as a function of
the propagation distance and the dispersion parameter of the fiber [cf. Eqs. (8.4.21)–
(8.4.23)]. We found, for example, that for a standard telecom fiber an initial 10-ps
pulse at a 1.55-mm carrier wavelength will have a duration approximately three times
larger after propagating 15 km in the fiber. The maximum bit rate for a 100-km distance
is similarly calculated to be �1/(200 ps) ¼ 5 Gbps, compared to a theoretical bit rate of
100 Gbps without group velocity dispersion (Problem 15.11). Amplifiers overcome the

15.6 OPTICAL COMMUNICATIONS 787



problem of attenuation in long-distance fiber-optic communications, but they do not cor-
rect for group velocity dispersion.

As discussed in Section 8.4, the effect of group velocity dispersion is reduced (or
“compensated”) when there are two propagation paths with opposite dispersion
parameters (D). We showed how GVD compensation for ultrashort pulse generation
is done with prisms and gratings. In long-haul and high-bit-rate fiber-optic communi-
cation systems dispersion management is essential. It is accomplished by introducing
dispersion compensation modules (DCM) consisting, for example, of a fiber Bragg
grating or a loop of “dispersion-shifted fiber” with a suitable dispersion parameter
and length. Insertion losses associated with the DCMs must be included in detailed
power budget calculations. Standard telecom fibers have minimum dispersion at
1.3 mm and minimum attenuation at 1.55 mm. InGaAsP diode lasers can operate at
either wavelength, the latter used most often for long-haul communications of hundreds
of kilometers or more. Diode laser transmitters presently operate at a few milliwatts of
output power and can transmit bit streams at about 40 Gbps.

The development in the late 1980s of erbium-doped fiber amplifiers (EDFAs) for
amplification of wavelengths near 1.55 mm was crucial to the advance of long-haul
fiber-optic communications. Direct optical amplification can, of course, also be done
with current-driven diode laser amplifers, but EDFAs have several major advantages
over this method as well as techniques involving electronic amplifiers. Being fibers,
they are easily connected to the transmission fiber, and are pumped by diode lasers
very much like the diode laser transmitters. They have a large amplification bandwidth
(�4 THz), their response is approximately linear, they have better noise characteristics
than diode laser amplifiers, and the amplification is polarization-independent. Their
importance for long-haul optical communication is comparable to that of vacuum-
tube amplifiers for the development of long-distance telephone communication
around 1915.23 As noted in Section 8.7, the low attenuation of telecom fibers allows
distances �70 km or more between repeaters in undersea fiber cables.

Different signals can, of course, be transmitted simultaneously over separate fibers in
a cable. Time-division multiplexing (TDM) allows transmission of different signals over
a single fiber. A time-division multiplexer “interleaves” the 0’s and 1’s of N different bit
streams so that, if the time separation between bits for each stream is T, the new stream
has a bit separation of T/N (Fig. 15.19) and therefore the channel capacity is increased
from 1/T to N/T. So-called T1 and T3 lines for telephone and Internet connections, for
example, have standardized data rates of 1.544 and 44.736Mbps, respectively, and allow
correspondingly N ¼ 24 and 672 separate voice channels, for example, if we assume

TDM

Time

Time

Figure 15.19 Time-division multiplexing illustrated for an example with two separate bit streams.

23An important difference between long-distance telephone service before and after fiber-optic communi-
cations is in the cost per distance. The largest profits of telephone companies used to come from long-distance
calls, whereas fiber-optic systems—research and development on which was funded in large part from those
profits—allow telephone service at a cost that is practically independent of distance.
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64 kbps per channel. The standardized optical network rates designated OC-192 and
OC-768 correspond, respectively, to data rates of 10 and 40 Gbps, the latter allowing
over 500,000 telephone conversations to take place simultaneously over a single line.
TDM bit rates are limited by practical electronic response times to a few tens of gigabits
per second.

Fiber channel capacity is greatly increased by wavelength-division multiplexing
(WDM). In this approach N different wavelengths or “channels” from N diode lasers,
or perhaps a tunable laser that can be rapidly switched among N different output wave-
lengths, are separately modulated to produce N different bit streams that propagate
together along the fiber. At the end of the transmission channel the different wavelength
components are separated and each enters one of N different receivers. This allows
tens of bit streams, or channels, each at �10 Gbps, to be transmitted by a single fiber.
The standardized central channel frequencies agreed upon by the International
Telecommunication Union are integral multiples of 50 GHz, so that EDFAs with band-
widths of 4 THz allow the simultaneous amplification of 4 THz/50 GHz ¼ 80 different
channels. For this purpose the difference between the central channel frequencies must
be very small—on the order of 50 GHz—and in this case the technique is referred to as
dense wavelength-division multiplexing (DWDM). Because of the small channel separ-
ation, DWDM generally requires transmitting lasers with temperature control in order to
keep the channel frequencies approximately constant. If transmission of only a few chan-
nels is sufficient, the channel separation can bemuch larger and no temperature control is
required; in this case the multiplexing is called coarse wavelength-division multiplexing
(CWDM). The bit rates possible with DWDM are truly enormous—in the range of
terabits/second (Tbps). This compares to the bit rates of a few gigabits per second
cited earlier for wireless, microwave communications. In other words, the large band-
widths of optical fibers, and in particular the large-gain bandwidths of erbium-doped
fiber amplifiers, allow bit rates �1000 times greater than what is possible with wireless
communication systems.

† The first transatlantic fiber-optic cable, installed in 1988, operated at 1.3 mm at a bit rate of
2 � 280 Mbps on two single-mode fibers with attenuation of 0.4 dB/km. This was followed in
1991 by a transatlantic cable with twice the bit rate on fiber with an attenuation of 0.2 dB/km at
1.55 mm and repeater spacings of about 120 km. Several other transoceanic fiber cables were
installed in the following few years. In 1995 EDFAs were used for the first time in transatlantic
cables; they were spaced by 45 km between the United States and France and by 75 km in the
section between France and the United Kingdom. In 1999 a transatlantic fiber-optic cable with
a bit rate of 5 Gbps was upgraded to 20 Gbps by adding WDM components on both sides of
the Atlantic. The oceans are now laced with dozens of fiber-optic cables; maps of cables connect-
ing the continents may be found on the Web. DWDM and other developments have made Tbps
transmission rates practical. There is an ever-increasing demand for bandwidth, and more cables
are presently being installed or planned with bit rates �10 Tbps.

Cable television companies began replacing copper cables with fibers in the 1990s, enabling
them also to extend services to include Internet access. Long-distance telephone companies have
been able to avoid the cost of laying new underground fiber by using WDM to increase band-
widths. In fact the cost of laying new fiber is the main reason that network connections to
homes still largely employ copper wires rather than optical fibers. †

In this brief introduction we have only considered the most important and common
type of fiber-optic communication system and have not discussed other systems or com-
ponents that are being actively researched and developed. The latter include coherent
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optical communication systems in which the frequency or phase of light is modulated
rather than the intensity, and detection at the receiver involves homodyne or heterodyne
techniques. In such systems the phase noise and linewidth of the transmitting laser take
on added importance in determining the receiver sensitivity.

In soliton communication systems the light pulses propagating in a fiber are the shape-
and duration-preserving solitons discussed in Section 9.9 in the context of self-induced
transparency and in Section 11.14 in the case of pulse propagation in fibers. In a fiber a
temporal soliton can result from the combined effects of group velocity dispersion and
self-phase modulation, and we showed that the required powers for such solition for-
mation are rather modest (Problem 11.13). The promise of soliton communication lies
mainly in the fact that pulse spreading does not occur and dispersion management is
unnecessary.

The design of a fiber-optic communication system obviously involves many different
factors and components. In addressing only some of the most basic optical physics in the
current technology we have ignored consideration of the coupling of the laser pulses into
the fiber; the electronic components used for sampling, digitization, and decision levels
for the input electrical signal to be transmitted; internal or external modulation of the
laser transmitter; detection circuitry including electronic amplifiers; noise associated
with amplified spontaneous emission in any erbium-doped fiber amplifiers in the
system; and optical instrumentation for wavelength multiplexing and demultiplexing.
Nor havewe discussed the possible use and advantages of transmission in photonic crys-
tal fibers, for instance. The reader can undoubtedly think of other important elements
and possibilities involved in the design of a fiber-optic communication system.24

PROBLEMS

15.1. (a) Derive the density of states (15.2.10).
(b) Verify Eq. (15.2.17) for the gain coefficient.
(c) Consider a doped semiconductor withNc conduction-band electrons per unit

volume and Nv valence-band holes per unit volume at T ¼ 0. Show that the
quasi-Fermi levels are given by

Efc ¼ Ec þ (3p2)2=3
h�2
2mc

N2=3
c and Ef v ¼ Ev � (3p 2)2=3

h�2
2mv

N2=3
v :

15.2. Using the results quoted in the text for the quasi-Fermi levels Efc and Ef v corre-
sponding to curve D of Fig. 15.3, plot the Fermi–Dirac occupancy factor as a
function of energy E0 ¼ E2 2 Ec in electron volts for conduction-band electrons.
Also plot the occupancy factor for valence-band holes as a function of energy
E00 ¼ Ev 2 E1. [Note: The calculation of Ec 2 Efc and Ev 2 Ef v using
Eqs. (15.2.20) can be done by simple iteration. For example, Eq. (15.2.20a)

24See, for instance, E. Desurvire, Erbium-Doped Fiber Amplifiers. Principles and Applications, Wiley,
Hoboken, NJ, 2002; G. P. Agrawal, Lightwave Technology: Components and Devices, Wiley, New York,
2004; G. P. Agrawal, Lightwave Technology: Telecommunication Systems, Wiley, New York, 2005.
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can be cast in the form

x ¼ N0

N þNc

ð1
0

y1=2dy

ey þ 1=x
,

with x ¼ exp[(Ec 2 Efc)/kBT ] and N0 ¼
ffiffiffi
2
p

m3=2
c (kBT)3=2=p 2h�3, and this

equation can be solved iteratively for x starting from some initial “guess” on the
right-hand side.

15.3. Based on the “gain clamping” of a laser in steady-state oscillation, justify the
expression (15.2.26) for the output power of a diode laser.

15.4. Consider a diode laser with a frequency-dependent refractive index n in the
active region of length L. Show that the longitudinal mode spacing is

Dn ¼ c

2L[nþ n dn=dn]
¼ vg

2L
,

where vg is the group velocity and n and dn/dn are evaluated at the laser fre-
quency. [Hint: Start from the condition exp(2ikL) ¼ 1, or 2nL ¼ ml, where m
is a very large integer. This implies l þ m Dl ¼ 2L Dn with Dl and Dn the
changes in the mode wavelength and the refractive index, respectively, when
m changes by 1.] Under what conditions does this equation apply to any
laser? Show that, in terms of wavelength l ¼ c/n, the mode spacing is

Dl ¼ l2=2L
n� l dn=dl

:

15.5. (a) Derive Eqs. (15.4.13) and (15.4.16).
(b) The phase change (15.4.24) was obtained using the expression Dqi ¼

1þ 2
ffiffiffi
q
p

cos ui for the change in the photon number due to a single spon-
taneous emission event. The average change in the photon number is
kDqil ¼ 1, since kcos uil ¼ 0, but the mean square, kDq2i l, is large, since
q� 1. Explain how kDq2i l can be much greater than 1 even though it results
from the spontaneous emission of a single photon.

(c) Derive Eq. (15.4.34).
(d) Why is the linewidth of a diode laser so large compared to other lasers?
(e) In (15.4.17) and (15.4.18) DnI characterizes gain and loss in the active

medium, whereas in (15.4.34) the loss includes that due to output coupling
from the facets as well as internal cavity loss. Does this apparent inconsis-
tency affect the validity of (15.4.37)?

15.6. (a) Derive Eq. (15.4.3) for the mutual coherence function.
(b) Verify that (15.4.5) is equivalent to the Schawlow–Townes linewidth

defined by expression (5.11.13).
(c) Justify expression (15.4.29) for the mutual coherence function.

15.7. (a) Show that the steady-state solutions of Eqs. (15.4.44a) and (15.4.44b) are
stable against small perturbations.
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(b) Show that the angular frequency of relaxation oscillations is given approxi-
mately by (15.4.48).

15.8. A pulse code modulation system has a root-mean-square voltage noise equal to
5% of the threshold voltage above which a pulse is identified as a “1.” Estimate
the bit error rate.

15.9. Estimate the bit error rate for a signal-to-noise ratio i2S=ki
2
Nl equal to (i) 10 dB,

(ii) 15 dB, (iii) 20 dB, and (iv) 25 dB.

15.10. Consider a long communications channel, such that the signal power Sp at the
receiver has been so attenuated that it is much smaller than the receiver noise
power Np, which we assume to be due entirely to thermal fluctuations at temp-
erature T. Show that the channel capacity C ffi 1:44Sp=kBT.

15.11. Consider a telecom fiber with group velocity dispersion characterized by
b ¼ 22 ps2/km at 1550 nm [Eq. (8.4.2)]. A 1550-nmGaussian pulse with initial
duration tp ¼ 10 ps is injected into this fiber. Calculate the pulse duration after a
propagation distance of (i) 1 km, (ii) 10 km, and (iii) 100 km.
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16 NUMERICAL METHODS FOR
DIFFERENTIAL EQUATIONS

The main text in Chapters 1–15 deals almost everywhere either with analytic solutions
to oversimplified equations or the derivation of equations that are more realistic but do
not have analytic solutions. In this chapter we address the need to use numerical methods
to attack almost all of the problems that arise in practical situations related to laser
physics. For some readers the present chapter will seem unnecessary in view of the avail-
ability of various packaged numerical equation solvers in common use. Nevertheless a
brief discussion of the solution of differential equations of the type appearing frequently
in laser physics seems not altogether superfluous. Packaged programs are not always the
most efficient way for beginners to obtain rapid and accurate solutions to ordinary and
partial differential equations, especially multi-dimensional versions of them. Together
with freely available compilers for FORTRAN and other languages, the programs
below can be used by anyone with a personal computer to solve a rather wide variety
of equations encountered in laser physics (and other areas). In the three sections
below, called Appendices, we list explicit FORTRAN programs, the programming
language with which we happen to be most familiar. The choice of a particular language
is becoming less and less restrictive with the increasing availability of free software for
conversion between FORTRAN and Cþþ and other languages.

16.A FORTRAN PROGRAM FOR ORDINARY DIFFERENTIAL
EQUATIONS

The Runge–Kutta algorithm is an easily implemented and frequently used method
for the numerical integration of ordinary differential equations. For the first-order
differential equation

dy

dx
¼ f (x, y), (16:A:1)

the fourth-order Runge–Kutta algorithm for y(x þ h) is

y(xþ h) ¼ y(x)þ 1
6 (k1 þ 2k2 þ 2k3 þ k4), (16:A:2)
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where

k1 ¼ hf (x, y),

k2 ¼ hf xþ h

2
, yþ k1

2

� �
,

k3 ¼ hf xþ h

2
, yþ k2

2

� �
,

k4 ¼ hf (xþ h, yþ k3):

(16:A:3)

The form of (16.A.2) and (16.A.3) is such as to duplicate the Taylor series for y(x þ h)
up to fourth order in the step size h. The method is easily extended to systems of
equations, as in the example below. The Runge–Kutta method is described in detail
in many textbooks on mathematical methods and numerical analysis. For the reader’s
convenience we list here a FORTRAN program for the Runge–Kutta integration of the
two coupled equations (6.4.3):

program main
dimension y(2),dy(2),w(2,5)
t=0.
y(1) = 1.e-3
y(2) = 2.0
dt = .01
nstep = 1000
do 1 n = 1, nstep
call rung(2,y,dy,t,dt,w)

1 continue
print 100,t,y(l),y(2)

100 format(3e16.7)
stop
end
subroutine deriv (t,y,dy)
dimension y(2),dy(2)
dy(1)=(y(2)-1.)*y(1)
dy(2)=-y(1)*y(2)
return
end
subroutine rung(n,y,dy,t,dt,w)

c n is the number of equations
dimension y(n),dy(n),w(n,5)
do 10 j= 1,n

10 w(j,1) = y(j)
call deriv(t,y,dy)
do 20 j=1,n
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20 w(j,2)=dy(j)*dt
z=t+.5*dt
do 40 i=2,3
do 30 j=1,n

30 y(j)=w(j,1)+w(j,i)/2.
call deriv(z,y,dy)
do 40 j= 1,n

40 w(j,i+1)=dy(j)*dt
z=t+dt
do 50 j=1,n

50 y(j)=w(j,1)+w(j,4)
call deriv(z,y,dy)
do 60 j= 1,n

60 w(j,5)=dy(j)*dt
do 70 j=1,n

70 y(j)=w(j,1)+(w(j,2)+2.*(w(j,3)+w(j,4))+w(j,5))/6.
t=t+dt
return
end

The dependent variables are stored in the array y. In this case [Eqs. (6.4.3)] y(1) ¼ x
and y(2) ¼ y. t is the independent variable (t), and the step size dt [denoted by h in
(16.A.3)] is taken to be 0.01. In general dt should be taken small enough to give an
accurate solution of the equations, but not so small that the program is unnecessarily
time-consuming. The accuracy of the solution can always be checked by halving the
step size and noting whether there is a significant change in the computed solution.

nstep is the number of integration steps. Each call to rungmoves time forward by
dt. In the way our program is set up, therefore, the final values of y after the last call to
rung are y(1) ¼ x(tmax) and y(2) ¼ y(tmax), where tmax ¼ nstep�dt. In general, the
intermediate values of y can be stored in arrays for plotting purposes.

Subroutine deriv simply defines the derivatives. In our example dy(1) ¼ dx/dt and
dy(2) ¼ dy/dt. Subroutine rung does a fourth-order Runge–Kutta integration,
using the derivatives defined in deriv. n is the number of (first-order) simultaneous
differential equations to be solved; in our example n ¼ 2. w is a work array that must
be dimensioned n by 5. Only the main and deriv routines in our example depend
on the specific problem, the rung subroutine being a “canned” routine, is usable as it
stands in every problem. It may be worth noting that rung can also be used to solve
higher-order differential equations of mixed order. For example, to solve the system

d2x

dt2
þ x ¼ 0, x(0) ¼ dx

dt

� �
t¼0
¼ 1 (16:A:4)

using rung, we let y(1) ¼ x, y(2) ¼ dx/dt. Then (16.A.4) is equivalent to the two first-
order equations

dy(1) ¼ y(2), dy(2) ¼ �y(1) (16:A:5)

with initial values y(1) ¼ y(2) ¼ 1.
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rung can be used as it stands to solve complex as well as real systems of equations.
One simply writes the equations ofderiv in complex form and declares the appropriate
variables complex. The program above is set up specifically to solve an autonomous
set of equations of the type shown in Eqs. (6.4.3), where the right sides do not
depend explicitly on the independent variable, but it is easily modified to solve non-
autonomous systems.

16.B FORTRAN PROGRAM FOR PLANE-WAVE PROPAGATION

A detailed account of propagation of laser radiation generally requires numerical
solutions of coupled partial differential equations. We will describe two computational
techniques for obtaining solutions of typical forms of such equations.

In the plane-wave approximation the evolution of the field with distance of propa-
gation z and time t typically involves the partial derivatives @/@z and @/@t in the
combination @/@z þ (1/c)@/@t, as in Eqs. (9.6.18) and (9.6.21), for example. It is con-
venient to introduce new independent variables h ¼ z and t ¼ t 2 z/c to convert this
combination to the single derivative @/@h; this procedure was followed in Section
8.4, where the group velocity vg rather than the vacuum speed of light c appeared in
the propagation equation of interest. In numerical computations it is usually also con-
venient to scale both dependent and independent variables and work with dimensionless
quantities. How the scaling is done will depend, of course, on the particular set of
equations to be solved.

We will consider a relatively simple but illustrative example of the propagation of
intensity in a medium assumed to consist of N two-state atoms per unit volume. The
coupled atom-field equations in our example are

@I

@z
þ 1

c

@I

@t
¼ sNIw, (16:B:1a)

@w

@t
¼ �A21(wþ 1)� 2s

h�v Iw: (16:B:1b)

These equations follow from (9.6.17) and (9.6.21) when we assume G1 ¼ G2 ¼ 0
and again define w ¼ (N2 2 N1)/N and the stimulated emission cross section s ¼
vjmj2b=[e0h�c(D2 þ b2)] for a homogeneously broadened transition. (If we assume
that the intensity is in the form of a pulse of sufficiently short duration that the first
term on the right-hand side of (16.B.1b) can also be dropped, then our model reduces
to the “Frantz–Nodvik model” of Section 6.12. The reader can use the analytical results
obtained there as a check of the FORTRAN program listed below.) It is straightforward to
apply the numerical approach we now describe to more general situations in which, for
example, it is the propagation of the complex electric field envelope E(z, t) rather than
the intensity that is of interest, or when the field is coupled to more than two atomic
states or when the right-hand side of (16.B.1a) is replaced by some prescribed function
of the intensity or of z and t.

796 NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS



In our example it is convenient to define the new, dimensionless independent vari-
ables h ¼ sNz and t ¼ A21(t2 z/c), in terms of which our model equations become

@I

@h
¼ Iw, (16:B:2a)

@w

@t
¼ �(wþ 1)� 2s

h�vA21
Iw: (16:B:2b)

We will also scale the intensity by defining~I ¼ (2s=h�vA21)I:

@~I

@h
¼ ~Iw, (16:B:3a)

@w

@t
¼ �(wþ 1)� ~Iw: (16:B:3b)

In this form all variables are dimensionless.Wewill assume a temporally Gaussian pulse

of duration tp incident on the medium at z ¼ 0: I(z ¼ 0, t) ¼ I0e
�(t�t0)2=t 2p , or

~I(h ¼ 0, t) ¼ ~I0e
�(t�t0)2=~t 2p , (16:B:4)

where ~I0 ¼ (2s=h�vA21)I0 and ~tp ¼ A21tp is the pulse duration in units of the radiative
lifetime 1/A21. We also assume that all the atoms are initially excited (w ¼ 1).

Equation (16.B.2a) implies

~I(hþ Dh, t) ffi [1þ w(h, t)Dh]~I(h, t) (16:B:5)

for small Dh. We can use this first-order (in Dh) forward stepping in h to obtain ~I(h, t)
for all values of t by integrating (16.B.2b) over t for each step in h. The FORTRAN pro-
gram planewave implements this scheme for the numerical solution of equations
(16.B.2). The output arrays xarray and yy at each step in h are the temporal profiles
of~I and w at h, and can be plotted versus the time array xx.

program planewave
c this program is used to solve equations (16.B.2)
c elen is the length of the medium
c tlen is the total time interval, chosen here to

be ten times the pulse duration
c ndt is the number of time steps, each of size
c dt=tlen/ndt
c nde is the number of steps in eta, each of size
c de=elen/nde
c pulsdur is the pulse duration
c xipeak is the peak intensity of the assumed
c temporally gaussian incident pulse
c elen, tlen, pulsdur, and xipeak are all scaled
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c and dimensionless
common/field/xint
common/fieldd/ndt,pulseo(500),pulsdur,xipeak,tlen
dimension y(1),dy(1),w(1,5),xarray(500),
.xx(500),yy(500)

elen=10. ; ndt=500 ; nde=100
pulsdur=0.10 ; tlen=10.*pulsdur ; xipeak=1.0
de=elen/nde; dt=tlen/ndt

c define the incident intensity temporal profile
c and store in array pulseo

call spulse

do 1 it=1,ndt
xarray(it)=pulseo(it)

1 continue
do 2 iz=1,nde
y(1)=1.0
tin=0.0
do 3 it=1,ndt
xint=xarray(it)
xarray(it)=(1.0+y(1)*de)*xint
call rung(1,y,dy,tin,dt,w)

c rung is the fourth-order runge-kutta integrator
c (Appendix 16.A)

xx(it)=tin
yy(it)=y(1)

3 continue
c xarray(it) and y(1) are respectively the
c temporal profiles of the pulse intensity
c and the population difference w at distance
c eta=iz*de into the medium
c xx(it) is the array of time increments

2 continue
stop
end

subroutine spulse
c this subroutine defines the temporal profile of
c the incident pulse

common/fieldd/ndt,pulseo(500),pulsdur,xipeak,tlen
cent=0.5*tlen
dt=tlen/ndt
do 1 i=1,ndt
t=(i*dt-cent)/pulsdur
pulseo(i)=xipeak*exp(-t*t)

1 continue
return
end
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subroutine deriv(x,y,dy)
common/field/xint
dimension y(1),dy(1)
dy(1)=-(y(1)+1.)-xint*y(1)
return
end

16.C FORTRAN PROGRAM FOR PARAXIAL PROPAGATION

When the plane-wave approximation is not made, the propagation equations obviously
become more complicated. We now describe a computational approach for problems of
this sort, using the example of second-harmonic generation when the paraxial wave
approximation is made for pump and second-harmonic pulses and when the two
pulses have different group velocities and group velocity dispersion. Including diffrac-
tion and temporal variations, we replace Eqs. (10.7.5) by

1
2ikv

@2Ev
@x2
þ@2Ev

@y2

� �
þ@Ev

@z
þ 1
vv

@Ev
@t
þ i

2
bv

@2Ev
@t2
¼ iv

ffiffiffiffiffiffi
m0

ev

r
�dE�vE2v, (16:C:1a)

1
2ik2v

@2E2v

@x2
þ@2E2v

@y2

� �
þ@E2v

@z
þ 1
v2v

@E2v

@t
þ i

2
b2v

@2E2v

@t2
¼ iv

ffiffiffiffiffiffiffi
m0

e2v

r
�dE2

v: (16:C:1b)

We assume perfect phase matching and ignore “walkoff” associated with birefringence
(Section 8.8), which is often a small effect; phase matching and walkoff are easily
included in the numerical approach we now describe. Equations (16.C.1) can be simpli-
fied slightly by making a transformation similar to that made in replacing (16.B.1) by
(16.B.2); in this case we define h ¼ z and j ¼ t2 z/vv and replace (16.C.1) by

1
2ikv

@2Ev
@x2
þ@2Ev

@y2

� �
þ@Ev

@h
þ i

2
bv

@2Ev
@j2
¼ iv

ffiffiffiffiffiffi
m0

ev

r
�dE�vE2v, (16:C:2a)

1
2ik2v

@2E2v

@x2
þ@2E2v

@y2

� �
þ@E2v

@h
þ 1

v2v
� 1
vv

� �
@E2v

@j
þ i

2
b2v

@2E2v

@j2
¼ iv

ffiffiffiffiffiffiffi
m0

e2v

r
�dE2

v:

(16:C:2b)

We define dimensionless independent variables Z ¼ h/L, X ¼ x/a, Y ¼ y/a, and
T ¼ j/t, the lengths L and a and the time t at this point being arbitrary. We also
define dimensionless dependent variables F and H by writing

Ev ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2I0

nve0c

r
F, E2v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2I0

n2ve0c

r
H: (16:C:3)

jFj2 and jHj2 are, respectively, the fundamental intensity and the second-harmonic
intensity in units of the (arbitrary) intensity I0. These scalings transform
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Eqs. (16.C.2) to

@F

@Z
� ilL

4pa2nv

@2F

@X2
þ @2F

@Y2

� �
þ ibvL

2t2
@2F

@T2
¼ iCF�H, (16:C:4a)

@H

@Z
� ilL

8pa2n2v

@2H

@X2
þ @2H

@Y2

� �
þ L

t

1
v2v
� 1
vv

� �
@H

@T
þ ib2vL

2t2
@2H

@T2
¼ iCF2: (16:C:4b)

Here l ¼ 2pc/v is the fundamental wavelength and

C ¼ v�dL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I0

n2vn2v(e0c)
3

s
(16:C:5)

is a dimensionless constant.
A simplified “split-step” approximation to the solution of Eqs. (16.C.4) is obtained as

follows. Given F(X, Y, Z ¼ 0, T ) and H(X, Y, Z ¼ 0, T ) at the input plane (Z ¼ 0) of the
medium, we first solve the differential equations

@F

@Z
¼ iCF�H, (16:C:6a)

@H

@Z
¼ iCF2 (16:C:6b)

over a step DZ, keeping fixed the X, Y, and T dependence of F and H. Then use the
resulting F and H as initial values to obtain approximations to F(X, Y, DZ, T) and
H(X, Y, DZ, T) by solving the equations

@F

@Z
� ilL

4pa2nv

@2F

@X2
þ @2F

@Y2

� �
þ ibvL

2t 2
@2F

@T2
¼ 0, (16:C:7a)

@H

@Z
� ilL

8pa2n2v

@2H

@X2
þ @2H

@Y2

� �
þ L

t

1
v2v
� 1
vv

� �
@H

@T
þ ib2vL

2t 2

@2H

@T2
¼ 0 (16:C:7b)

for the entire range of values of X, Y, and T of interest. These approximations are then
used as initial conditions to solve again (16.C.6) and (16.C.7), giving us an approxi-
mation to F(X, Y, 2DZ, T) and H(X, Y, 2DZ, T). This procedure of solving (16.C.6)
and (16.C.7) separately (in “split steps”) and sequentially is continued for as many
steps as are necessary to advance to Z ¼ Zfinal.

The solution of the differential equations for the “diffractionless” step [Eqs. (16.C.6)
in our example] must, in general, be done numerically using, for instance, a Runge–
Kutta integrator. Equations of the form (16.C.7), being linear, can be solved using
Fourier transforms; what makes the Fourier transform approach especially efficient is
the Fast Fourier Transform (FFT) algorithm for the numerical evaluation of Fourier
transforms.
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We define a Fourier transform ~F(a, b, Z, g) by writing

F(X, Y , Z, T) ¼
ð1
�1

da

ð1
�1

db

ð1
�1

dg ~F(a, b, Z, g)e�2pi[aXþbYþgT], (16:C:8)

or equivalently

~F(a, b, Z, g) ¼
ð1
�1

dX

ð1
�1

dY

ð1
�1

dT F(X, Y , Z, T)e2pi[aXþbYþgT]: (16:C:9)

In “frequency space” Eq. (16.C.7a), for example, is simply

@

@Z
~F(a, b, Z, g) ¼ �iV(a, b, g) ~F(a, b, Z, g), (16:C:10)

or

~F(a, b, Z þ DZ, g) ¼ ~F(a, b, Z, g)e�iV(a,b,g )DZ , (16:C:11)

with

V(a, b, g) ;
plL

a2nv
(a2 þ b2)� 2p 2bvL

t 2
g 2: (16:C:12)

X, Y, and T are replaced in computations by discrete variables nX DX, nY DY, and nTDT,
and F(X, Y, Z, T ) is defined on a lattice:

F(X, Y , Z, T) �! F(nX DX, nY DY , Z, nT DT) ; F (nX , nY , nT , Z), (16:C:13)

where nX ¼ 0, 1, . . . ,NX 2 1, nY ¼ 0, 1, . . . ,NY 2 1, and nT ¼ 0, 1, . . . ,NT 2 1. It will
be convenient to take the integers NX, NY, and NT to be even.

The Fourier transform of F is also discretized in computations:

~F(a, b, Z, g) �! ~F(a‘, bm, Z, gn) ; ~F (a‘, bm, gn, Z), (16:C:14)

and we write

~F (a‘, bm, gn, Z) ¼
XNX�1

nX¼0

XNY�1

nY¼0

XNT�1

nT¼0
F (nX , nY , nT , Z)e

2pi[nXa‘DXþnYbmDYþnTgnDT]:

(16:C:15)

Note that a‘, bm, and gn are not restricted to positive values.
The smaller we choose DX, for instance, the larger are the frequencies a‘ that we can

“resolve” in the X variations of F . In fact, there is a maximum frequency that can be
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resolved for a given DX, the Nyquist critical frequency given by amax ¼ 1/(2DX ).
Therefore, we take the frequencies a‘ in (16.C.15) to range from 21/(2DX ) to
21/(2DX ). Furthermore, since nX takes on NX different values, we can obtain from
the equations (16.C.15) only NX frequencies a‘. So we take

a‘ ¼ ‘

NXDX
, ‘ ¼ �NX

2
, . . . ,

NX

2
, (16:C:16a)

and similarly

bm ¼
m

NY DY
, m ¼ �NY

2
, . . . ,

NY

2
, gn ¼

n

NT DT
, n ¼ �NT

2
, . . . ,

NT

2
,

(16:C:16b)

and replace (16.C.15) with

~F (‘, m, n, Z) ¼
XNX�1

nX¼0

XNY�1

nY¼0

XNT�1

nT¼0
F (nX , nY , nT , Z)e

2pi[nX‘=NXþnYm=NYþnTn=NT ]: (16:C:17)

a‘, for instance, appears from (16.C.16a) to have NX þ 1 values, which contradicts
our assertion that there are at most NX values. But, from (16.C.17), ~F (�‘, m, n, Z) ¼
~F (NX � ‘, m, n, Z), and in particular ~F (�NX=2, m, n, Z) ¼ ~F (NX=2, m, n, Z), so
there are, in fact, NX independent values of a‘. It is conventional to take the integer ‘
to vary from 0 to NX 2 1, in which case the values 1 	 ‘ 	 NX=2� 1 correspond to
positive frequencies, ‘ ¼ 0 to zero frequency, and NX=2þ 1 	 ‘ 	 NX � 1 to negative
frequencies. Using the same convention for labeling the frequencies bm and gn, we write
the inverse Fourier transform of (16.C.17) as

F (nX , nY , nT , Z) ¼ NXNYNT

XNX�1

‘¼0

XNY�1

m¼0

XNT�1

m¼0
~F (‘, m, n, Z)e�2pi[nX‘=NXþnYm=NYþnTn=NT ]:

(16:C:18)

The factor NXNYNT ensures that (16.C.17) follows from (16.C.18) and vice versa.
The numerical solution of Eq. (16.C.7a) for each propagation step DZ therefore pro-

ceeds by computing the Fourier transform (16.C.17), evaluating (for each ‘, m, and n)

~F (‘, m, n, Z þ DZ) ¼ ~F (‘, m, n, Z)e�iV (‘,m,n)DZ (16:C:19)

with

V(‘, m, n) ¼ plL

a2nv

‘

NX DX

� �2
þ m

NY DY

� �2" #
� 2p 2bvL

t 2
n

NT DT

� �2
, (16:C:20)
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and then performing the inverse Fourier transform (16.C.18) for each nX, nY, and nT.
Equation (16.C.7b) is, of course, solved in the same fashion at each propagation step.

In our example we assume E2v(x, y, z ¼ 0, t) ¼ 0 and initial Gaussian profiles in
space and time for Ev:

Ev(x, y, z, t) ¼ E(0)
v e�(x

2þy2)=w2
0e�t

2=t 2p : (16:C:21)

In terms of F and the scaled variables X, Y, and T, this translates to

F(X, Y , Z ¼ 0, T) ¼ F0e
�(X2þY2)e�T

2
(16:C:22)

when we choose a¼ w0 and t ¼ tp. The definitions (16.C.3) imply that jF0j2 is the peak
intensity of the input pump field and, as already noted, jF(X, Y, Z, T)j2 and jH(X, Y, Z, T)j2
are, respectively, the intensities, in units of I0, of the fundamental and second-harmonic
fields at X, Y, Z, T. We assume the fundamental to have awavelength l ¼ 1064 nm and to
be incident on a crystal for which �d ¼ 3:4� 10�24. For type I phase matching with an
ordinary pump and an extraordinary second harmonic we take nv ¼ 1.494, n2v ¼ 1.471,
vv ¼ 1.966 � 108 m/s, v2v ¼ 1.941 � 108 m/s, bv ¼ 7.411 � 10221 s2/m, and
b2v ¼ 1.870 � 10221 s2/m; these happen to be appropriate values for the crystal
KDP. If we choose I0 ¼ 1 GW/cm2 and L ¼ 1 cm, then C ¼ 1.09. In the program
paraxial listed below we let F0 ¼ 1.0, w0 ¼ 0.1 cm, tp ¼ 1 ns, and the propagation
distance (zlength) ¼ 1 cm. We assume there is no input second-harmonic field:
H ¼ 0 at Z ¼ 0.

Different FFT programs are available for the evaluation of discrete Fourier trans-
forms. paraxial calls the readily available and well-documented subroutine
fourn1 and puts the F and H arrays (dataf and datah) in the “normal
FORTRAN form” required there.

FFT routines such as fourn require the number of elements in the arrays to be a
power of 2. paraxial as listed below assumes NX ¼ NY ¼ 128 (¼27) and NT ¼ 64.
The X, Y, and T grid sizes (xsize, ysize, and tsize) are all taken to be 5.0, and
the dimensionless propagation length Z goes from 0 to zlen ¼ 1 in lz ¼ 10 steps.
Of course, all these can be changed. In particular, xsize, ysize, and tsize
should always be made large enough that F and H in our example remain negligibly
small at the grid boundaries.

paraxial can be checked and applied in different ways. For example, if we turn off
the coupling between F andH by setting C ¼ 0 (or by just “commenting out” the call to
subroutine medium) we can check that the results obtained with paraxial conform
with known analytical results for Gaussian beam propagation.

The subroutine plotfile is used for plotting the input pump intensity at Z ¼ 0
versus X for Y ¼ T ¼ 0, and the output second-harmonic intensity versus Y for X ¼
T ¼ 0 and versus T for X ¼ Y ¼0. plotfile stores the data in the file pl to be read
or plotted. We use plotfile for X, Y, and T variations in order to indicate how these
variations are retrieved using the normal Fortran ordering of the F and H files.

1W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN 77,
second edition, Cambridge University Press, New York, 1986.
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The propagation length (1 cm) inparaxial is such that neither diffraction nor group
velocity dispersion are significant; the much longer crystal lengths required for these
effects to be important in our example would be unrealistic. However, small-scale
phase variations across the input pump beam, or much shorter pulse durations, could
introduce substantial spatial and temporal variations of the fields, as the reader may
verify in “numerical experiments.”

paraxial employs the simplest implemention of the FFT-based split-step method
and as such is accurate to first order inDZ; it is easy to modify the program, using a “sym-
metrized” split-step procedure,2 so that it is accurate to second order. To reduce the com-
putation times we have used in medium a second-order Runge–Kutta algorithm rather
than the fourth-order version. For many problems of interest paraxial requires com-
putational times on the order of a few minutes or less on typical laptop computers.

program paraxial

c this program solves time-dependent wave equations including

c diffraction

c this version solves the equations (16.C.2)

c lx, ly, lt are the numbers of grid points in x, y, and t,

c respectively

c lz is the number of propagation steps in the z direction

common/fort/np,nhalf

common/propmed/C,npp

complex xi,f(128,128),h(128,128)

dimension xx(128),xintf(128),xinth(128),frqx(128),

>frqy(128),frqt(128)

dimension nn(3),dataf(4194304),datah(4194304)

dimension cf(4194304),sf(4194304),ch(4194304),sh(4194304)

c note: 4194304=2(128)(128)(128)

open(unit=2,file="pl")

tpi=6.28318530717959 ; pi=.5*tpi ; xi=cmplx(0.0,1.0)

zlength=1.0e-2 ; wspot=1.0e-3 ; xlam=1.064e-6 ; taup=10.0e-9

lx=128 ; ly=lx ; lt=64 ; lz=10

xsize=5.0 ; ysize=5.0 ; tsize=5.0 ; zlen=1.0

c initialize data for grid size, etc.

lx2=lx/2 ; ly2=ly/2 ; lt2=lt/2 ; lxx=2*lx ; lxx1=lxx-1 ; lz1=lz-1

dx=xsize/lx ; dy=ysize/ly ; dt=tsize/lt ; dz=zlen/lz

nxy2=lx*ly ; nxy=2*nxy2 ; nbig=nxy*lt ; nhalf=nbig/2 ; np=nbig-1

npp=np; nn(1)=lx ; nn(2)=ly ; nn(3)=lt

C=1.09 ; f0=1.0 ; xnf=1.494 ; xnh=1.471

c define group velocities and group velocity coefficients of f and h

c fields

2See, for instance, J. A. Fleck, J. R. Morris, and M. D. Feit, Applied Physics 10, 129 (1976) and more recent
literature on split-step methods.
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groupf=1.966e8

grouph=1.941e8

betaf=7.411e-21

betah=1.870e-21

diffrf=pi*xlam*zlength/wspot**2*dz/xnf

ff=2*pi**2*betaf*zlength/taup**2*dz

diffrh=pi*0.5*xlam*zlength/wspot**2*dz/xnh

grh=tpi*(zlength/taup)*(1./grouph-1./groupf)*dz

hh=2*pi**2*betah*zlength/taup**2*dz

z=0.0

c define initial (x,y) field distribution at z=0,

c assumed gaussian

f0=1.

do 5 i=1,lx

x=(i-lx2)*dx

do 6 j=1,ly

y=(j-ly2)*dy

f(i,j)=f0*exp(-(x**2+y**2))

h(i,j)=0.0

6 continue

5 continue

c define spatial frequencies for x,y grids, in normal fortran form

c assumed in fourn

call freq(frqx,lx,dx)

call freq(frqy,ly,dy)

c define the temporal frequencies for t grid

call freq(frqt,lt,dt)

c put arrays into normal fortran form

do 100 m=1,lt

t=(m-lt2)*dt

fm=exp(-t**2)

c fm defines the temporal profile of the pulse intensity

c we are assuming here a gaussian temporal profile.

k=0

jp=1

do 10 j=1,nxy,2

k=k+1

if(k.gt.lx) then

k=1

jp=jp+1

endif

jj=(m-1)*nxy+j

c also put the appropriate sines and cosines in the form appropriate

c to the normal fortran form assumed for the data arrays

vf=diffrf*(frqx(k)**2+frqy(jp)**2)-ff*frqt(m)**2
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vh=diffrh*(frqx(k)**2+frqy(jp)**2)-grh*frqt(m)-hh*frqt(m)**2

cf(jj)=cos(vf)

sf(jj)=sin(vf)

ch(jj)=cos(vh)

sh(jj)=sin(vh)

dataf(jj)=real(f(k,jp))*fm

dataf(jj+1)=aimag(f(k,jp))*fm

datah(jj)=0.0

datah(jj+1)=0.0

10 continue

100 continue

c define initial x intensity profile along a slice with y=t=0

i=0

do 800 j=1,lxx1,2

k=nhalf+nxy2+j

i=i+1

xx(i)=i*dx

xintf(i)=dataf(k)**2+dataf(k+1)**2

800 continue

call plotfile(2,lx,xx,xintf)

do 20 nnn=1,lz

if(nnn.eq.1) go to 21

c go to real spacetime domain

call fourn(dataf,nn,-1)

call fourn(datah,nn,-1)

21 continue

c modify field by effect of the medium

call medium(dataf,datah,dz)

c go to (spatial and temporal) frequency space

call fourn(dataf,nn,1)

call fourn(datah,nn,1)

c free propagation by dz in frequency space

do 320 j=1,np,2

datfj=dataf(j)*cf(j)+dataf(j+1)*sf(j)

datfj1=dataf(j+1)*cf(j)-dataf(j)*sf(j)

dataf(j)=datfj

dataf(j+1)=datfj1

dathj=datah(j)*ch(j)+datah(j+1)*sh(j)

dathj1=datah(j+1)*ch(j)-datah(j)*sh(j)

datah(j)=dathj

datah(j+1)=dathj1

320 continue

20 continue

c back to real spacetime

call fourn(dataf,nn,-1)

call fourn(datah,nn,-1)
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c define y intensity profile of second harmonic along x=t=0

c note: t=0 refers to temporal center of the input pulse

do 81 j=1,ly

k=nhalf+lx+2*(j-1)*lx

xx(j)=j*dy

xinth(j)=datah(k)**2+datah(k+1)**2

81 continue

call plotfile(2,lx,xx,xintf)

c define t intensity profile of second harmonic along x=y=0

do 84 j=1,lt

k=nxy2+lx+(j-1)*nxy

xx(j)=j*dt

xinth(j)=datah(k)**2+datah(k+1)**2

84 continue

call plotfile(2,lt,xx,xinth)

stop

end

subroutine fourn(data,nn,isign)

c this FFT subroutine is described and listed in Press et al.1

c use common/fort/np,nhalf in fourn

subroutine medium(dataf,datah,dz)

common/propmed/C,npp

c this routine calculates the change in the field over a step deltaz

c due to the medium

c a second-order runge-kutta algorithm is used

dimension dataf(1),datah(1)

do 1 j=1,npp,2

fr=datah(j) ; fi=datah(j+1)

hr=datah(j) ; hi=datah(j+1)

frk1=dz*C*(fi*hr-fr*hi) ; fik1=dz*C*(fr*hr+fi*hi)

hrk1=-2.*dz*C*fr*fi ; hik1=dz*C*(fr*fr-fi*fi)

fri=fr+frk1 ; fii=fi+fik1

hri=hr+hrk1 ; hii=hi+hik1

frk2=dz*C*(fii*hri-fri*hii) ; fik2=dz*C*(fri*hri+fii*hii)

hrk2=-2.*dz*C*fri*fii ; hik2=dz*C*(fri*fri-fii*fii)

fr=fr+.5*(frk1+frk2) ; fi=fi+.5*(fik1+fik2)

hr=hr+.5*(hrk1+hrk2) ; hi=hi+.5*(hik1+hik2)

dataf(j)=fr ; dataf(j+1)=fi

datah(j)=hr ; datah(j+1)=hi

1 continue

return

end

subroutine plotfile(lu,n,x,y)

dimension x(1),y(1)
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do 100 k=1,n

write(lu,1500) x(k),y(k)

100 continue

1500 format(1p2e15.7)

return

end

subroutine freq(frq,lx,delta)

dimension frq(1)

lx2=lx/2

lxx=lx2+1

lxx1=lxx+1

xnd=1./(lx*delta)

do 1 i=1,lx2

frq(i)=(i-1)*xnd

1 continue

frq(lxx)=1./(2.*delta)

do 2 i=lxx1,lx

frq(i)=-(lx-i+1)*xnd

2 continue

return

end
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3j symbol, 670, 730
6j symbol, 670, 730

a parameter, 206, 765–771
A coefficient, 78, 88, 98, 117, 147, 160, 558
ABCD law, 288–293, 302
ABCD matrix, 273, 275
Aberrometer, 721
Ablation, 643
Absorption, 11, 78–84

and recoil, 564, 671–675, 680, 682
multiphoton, 492, 493
of broadband radiation, 84, 85, 123
of narrowband radiation, 93–99, 119–123
selective, 69

Absorption coefficient, 115, 131, 426
carbon dioxide, 555–557, 560
fiber, 363, 559
helium, 140
living tissue (at 10.6 mm), 722
ruby, 527
saturation, 161, 162
small-signal, 162, 267, 454, 542
sodium D2 line, 140
water, 68

Absorption cross section, 121–123, 531,
539, 540, 643–646

differential, 646
sodium D2 line, 121–123, 531, 539, 540,

643, 644, 646, 655, 658, 662
Ti : sapphire, 531

Absorption length, 436–439
Absorption rate, 81, 82, 84, 85, 106, 132
Absorption spectrum, 363, 444, 548
fiber, 363

Acceptor, 43, 50
ionization, 45

Acceptor level, 45, 50
Accidental degeneracy, 514
Acousto-optical modulation, 236, 533
Adaptive optics, 387, 648–657
Aerosols, 378, 493, 557, 642, 643, 645, 646, 648
After-pulsing, 580
Airy disk, 314–316
Airy formula, 224
Airy pattern, 314, 315, 322, 606
Airy, G. B., 314
astigmatism, 314

ALADIN (Atmospheric Laser Doppler
Instrument), 643

AlGaAs laser, 747
Alkali metals, 25, 26, 127, 662, 663, 667, 669
spin-polarized, 695, 726
spin relaxation, 662, 663
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AM mode locking, 246, 248, 252, 253
AM radio, 69, 126, 140, 248, 251, 735
Ambipolar diffusion, 513
American Civil War, 561
American Standard Code for Information

Interchange (ASCII), 776
Amplified spontaneous emission, 258–263,

268, 537, 544, 554, 559
bandwidth, 260–262
effective noise input, 262
spatial coherence, 262
temporal coherence, 262

Amplifiers, 2, 115, 142, 217, 219, 255–262,
268, 349, 363, 437, 535–550, 558, 559,
580, 727, 753, 783–788

and noise, 258–263, 727, 788, 790
and transatlantic fiber cables, 363
all-optical, 537
area theorem, 437
bandwidth, 261
chirped-pulse, 535–537
diode-laser pumped, 753
electronic, 580, 583, 727, 788, 790
fiber, 537–550, 788

in wide-area networks, 783
three-level model, 539–544

polarization-insensitive, 550
servo, 217, 219
Ti : sapphire, 535, 559
see Amplified spontaneous emission,

Erbium-doped fiber amplifier
Amplitude modulation, 214, 247,

248, 250
see AM radio, Mode locking

Analog mode, 580
Angular dispersion, 348, 349
Anharmonic oscillator, 29
Anharmonicity, 29, 30, 34, 697, 699, 700
Anomalous dispersion, 129–132,

339, 469
sodium, 130, 131

Anomalous refraction, 369
Antireflection coating, 228, 751
APD, see Avalanche photodiode
Apollo 11, 648, 729
Apparent magnitude, 655
Area theorem, 437, 439, 454
Aristotle, 608
ASE, see Amplified spontaneous emission
Astrophysical maser, 554
Asymmetric stretch mode, 33, 34, 513
Atmospheric transmission coefficient, 638,

645, 646

Atmospheric turbulence, 377–379, 386, 387,
647, 649, 650, 652, 656, 657

Atom trapping, 683–690, 693–696, 732
Atomic beam clock, 448, 450, 666–670, 684
Atomic beams, 112, 129, 164, 447, 448, 564,

662, 667, 668, 683, 684, 693
and spin relaxation, 662
and vapor pressure, 667
collimation, 112, 164
transit-time broadening, 447
Zeeman slowing, 683, 693

Atomic clock, see Atomic beam clock
fountain, 669, 684

Atomic cloud, 687, 688, 691, 693, 696, 732
Atomic coherence, 402, 413, 445, 451, 452
Atomic fountain, 448, 669, 684, 732
Attosecond pulses, 701, 702, 712
in high-harmonic generation, 710

Autocorrelation function, 534, 535, 599, 697,
710, 771, 772

and Wiener–Khintchine theorem, 772
intensity, 534, 535
power, 771

Avalanche breakdown, 48
Avalanche ionization, 493
Avalanche photodiode (APD), 580–583, 648,

650, 785
analog mode, 580
bandwidth, 581
Geiger mode, 580

B coefficient, 88, 98, 117, 132
B-integral, 471
B-parameter, 471
Babcock, H. W., 656
Background radiation, 579, 581, 656
Balmer, J. J., 17
Balmer formula, 17, 18
Balmer series, 64
Band gap, 38, 39, 50, 51, 548
direct, 53
indirect, 51, 53

Band-gap engineering, 53
Bandwidth
and bit rate, 776–779, 789
and coherence, 5, 6, 594, 613–619
and communication channel capacity, 780,

781
and minimum detectable signal, 583
and Nyquist sampling theorem, 776, 777
and optical communications, 782, 783
and photocurrent fluctuations, 581–583, 786
AM and FM radio, 251
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amplifier, 261
analog and digital systems, 779
cavity, 195–198, 205, 217, 227, 432
gain, 165, 166, 199, 261, 262, 531, 532,

536, 539, 545, 551, 554, 559, 616,
742, 743, 749–752, 789

of adaptive-optical systems, 387
of amplified spontaneous emission, 262
of avalanche photodiodes, 581
of lasers compared to sunlight, 4
of modem, 776
of oscilloscope, 587
of servo, 219
of voice signals, 778
power-broadened, 166
time–bandwidth product, 354, 355

Bandwidth-limited pulse, 355
Barrier voltage, 47, 48
Beam expander, 308, 637

Galilean and Keplerian types, 308
Beam quality, 320, 321, 329, 363, 364, 529,

530, 544, 546, 552, 592, 753
and Strehl ratio, 321
fiber bundles, 363, 364
single-mode fiber lasers, 544

Beam splitter, 209–212, 227, 336, 489, 490,
495, 533, 611, 612, 627, 628

polarizing, 209, 212, 227
Beam spread, 388–392, 611
Beam waist, 285–287, 294, 297, 308, 324, 591
Beam wander, 388–392, 394
Beer length, 115
Beer’s law, 115, 139, 493
Bees, 375
Bending mode, 33, 34, 513
BER, see Bit error rate
Bessel beams, 322–327
Betelguese, 608
Bias voltage, 580
Biaxial crystal, 366
Binary digit (bit), defined, 775
Bioluminescence, 76
Birefringence, 208, 212, 365, 396, 476,

713, 799
random, 362

Bit, see Binary digit
Bit error rate (BER), 781, 782, 784, 785, 787

quantum limit, 784, 785
Bit rate

and bandwidth, 776–779, 789
and carrier frequency, 782
of optical communication systems, 782,

783, 787–790

of optical compared to wireless communi-
cations, 789

Bit rate-distance product, 782
Blackbody, 6, 17, 86, 89–92, 138, 139, 227,

262, 527, 558, 561, 589, 590, 617, 618,
634

peak emission frequency, 138
peak emission wavelength, 90, 138
spectral brightness, 6

Blacktop road, 139
Bleaching, 167
Bloch, F., 415
Bloch equations, 419, 420, 422, 435,

436, 724
Bloch sphere, 416, 419
Bloch’s theorem, 57, 58
Blood, 378, 720, 722, 726
circulation time in human body, 726
turbulent flow, 378

Blue sky, 373, 376
and Rayleigh scattering, 373, 376

Bohr, N., 17, 207
Bohr magneton, 723
Bohr model, 17–20, 22, 23, 55, 559,

701, 734
Bohr radius, 20, 405, 522, 536, 708
Bolometer, 575
Boltzmann distribution, 99, 499
Boltzmann factor, 46
Bose–Einstein condensation, 690–694
critical temperature, 691, 694

Bose–Einstein distribution, 622, 624,
625, 741

Bosons, 556, 691, 692, 696
Bouguer’s law, 139
Bound-free transitions, 127, 518, 519
Bragg condition, 525, 751
Bragg diffraction, 265, 266
Bragg formula, 265, 266
Bragg grating, see Fiber Bragg grating
Bragg mirror, chirped, 350, 351
Brain, 634, 724, 726
gray matter, relaxation times, 724
white matter, relaxation times, 724

Breathable magnets, 726
Brewster windows, 202, 306
Brewster’s angle, 202, 211, 349
Brightness, 4–7, 54, 139, 140, 547, 589–592,

610, 718, 722
invariance, 590
lasers vs. thermal sources, 7, 590
of Gaussian beam, 590
unchanged by focusing, 590
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Brillouin, L., 265
Brillouin scattering, 251
Broadband radiation, 84, 85, 123
Brown–Twiss correlations, 627–634
Butterfly metaphor, 431
Buys Ballot, C. H. D., 105
Byte, defined, 776

Cable television, 789
Calcite, 208, 369
Calorie, dietician’s, 267
Capacity, communication channel, 779–782,

789
and wavelength-division multiplexing, 789

Carbon dioxide (CO2), 33
absorption coefficient, 555–557, 560
collision broadening, 138, 557
laser, 7, 510, 513–516

in surgery, 722
vibrational modes, 33
vibrations and rotations, 33

Carbon disulfide (CS2), 466
Carrier frequency, 247, 264, 337, 341, 346,

422, 714
Carrier-envelope phase, 711–716

and few-cycle pulses, 711, 712
Carrier wave, 214, 248, 250, 337, 349, 420,

711, 715, 778, 787
Cauchy constants, 125
Cauchy formula, 125, 377, 399
Causality, 131, 132
Cavitation bubbles, 721
Cavity bandwidth, 195, 197, 198, 203, 205,

206, 217, 218, 226, 432
Cavity dumping, 268
Cavity lifetime, 197
Cavity Q, 233, 236
Cavity quantum electrodynamics (Cavity

QED), 113, 549
Cavity ring-down, 197
CCD (charge-coupled device), 303, 721
Central limit theorem, 383, 393, 632, 633,

768, 781
Centrosymmetric media, 462–464
Cesium atomic clock, 666–669, 684
Channel capacity, 779–781, 788,

789, 792
maximum, 781
Shannon’s formula, 779

Chaos, 2, 431, 453
Charge-transfer reaction, 519
Chemical potential, 692, 741

Chemical reactions, 76, 264, 517, 553, 697
time resolution, 697

Chemiluminescence, 76
Chirped Bragg mirrors, 350, 351
Chirped pulse, 264, 352–355, 535–537,

552, 553, 559, 704
Chirped pulse amplification (CPA), 535–537,

553, 559, 704
Chirping, 264, 265, 351, 353–355, 396,

470, 535, 537, 683
Clamping, see Gain coefficient
Clock transition, 448, 666–669, 684, 713
Clouds, 375, 376, 379, 643, 648
and light scattering, 375
atomic, 687, 688, 691, 693, 696, 732
interstellar, 554

Coarse wavelength-division multiplexing, 789
Coherence, 589–635
and bandwidth, 5, 6, 594, 613–619
and measurement, 603
and monochromaticity, 602
atomic, 402, 413, 445, 451, 452
first-order, 586, 620, 623, 627, 634
off-diagonal, 440, 462, 665, 733
orders of, 619, 620
partial, 602, 610
spatial, 143, 603–610
temporal, 143, 613–616
see Complex degree of coherence, Visibility

Coherence area, 607, 617
Coherence diameter, 379–388, 391, 396, 400,

648, 652, 656
Coherence length, 5, 489, 615–617, 647,

727, 728
in phase-matching, 476
in two-photon downconversion, 488
white light, 635

Coherence time, 5, 6, 490, 599, 615, 617, 621,
622, 624, 628, 761

and photon counting, 622, 628
atmospheric, 388
quasimonochromatic radiation, 615, 621
wavefront, 387
white light, 635

Coherence volume, 617–619
and Heisenberg uncertainty principle,

618, 619
Coherent optical communication systems, 790
Coherent wave packet, 701
Coincidence imaging, 488, 489
Colliding-pulse laser, 264, 349, 532
Collimator, 328
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Collisions
dephasing, 102, 113, 410–412, 446
elastic, 102, 150, 409–413, 440, 558

and evaporative cooling, 693
inelastic, 102, 116, 150–152, 410, 411, 498

first and second kind, 498, 505
population-changing, 113
soft, 411
superelastic, 498, 506

Collision broadening, 99, 100, 102, 105, 109,
113, 139

Collision cross section, 103–105, 108, 499,
558, 662

hard-sphere, 104
Color, 3, 4, 11, 39, 53, 67
Color vision, 376
Complex degree of coherence, 598–601
Compton effect, 565
Condensate fraction, 695
Conduction band, 37, 39, 40, 49–51, 740
Confinement layers, 750
Confocal parameter, 284
Confocal resonator, 306, 321
Coolidge, W. D., 92
Cornea, 720, 721
Corner cube, 730
Corundum, 69, 108, 525
Coulomb barrier, 707
Coupled wave equations, 480–483
Covalent solids, 38, 39
Covariance, 377
CPA, see Chirped pulse amplification
Crab nebula, 376
Critical angle, total internal reflection, 52, 356,

362, 364, 398
Critical beam power, self-focusing, 466
Cross section

see Absorption cross section, Collision cross
section, Differential cross section,
Rayleigh scattering, Spin relaxation,
Stimulated emission

Crystal lattice, 35, 39, 41, 48, 56–64, 159,
160, 526, 527, 689

impact ionization, 580
vibrations, 50, 51

Crystalline solids, 35, 69
Current–voltage characteristics, 48

D lines, 67, 68, 118, 130, 666
Dark-adapted eye, 315, 584, 585

as photon detector, 584, 585
Dark counts, 577, 580, 581, 640

Dark current, 577, 581–583, 587, 786
shot noise, 583, 786

Death-ray pistols, 8
De Broglie wavelength, 569, 688, 690, 691
ideal gas, 691, 693
thermal, 692

Debye, P. W., 265
Decibel, 148, 363, 542, 784
decibel-mW (dBm), 542

Decision level, 776, 779
Decoherence, 410, 445–447, 733
rate, 410, 445
time, 446, 447, 462

Deformable mirrors, 649–651, 657
Degeneracy, 22, 97, 150
in emission and absorption, 96–98

Degeneracy parameter, see Photon degeneracy
parameter

Delay line, 264
Delay time, 347–351, 440, 533–535, 628,

698–703, 717
pump-probe, 700, 701

Delta function, see Dirac delta function
Dense wavelength-division multiplexing, 789
Density matrix, 401, 402, 408, 413–416, 419,

420, 423, 425, 440, 441, 443, 455, 665
off-diagonal elements, 425, 428, 444
perturbative solution, 461
three-state atom, 443
two-state atom, 413, 414

Density of states, 691, 694, 737
conduction and valence bands, 740

Dephasing collisions, 102, 113, 410–412, 446
Depletion layer, 47, 48, 580
Depletion region, 45, 46
Detailed balance, 499–501
Detuning, 80, 106, 111, 170, 404, 406, 407,

422, 427, 436, 437, 442, 454, 672–675,
679, 689

average, 451
in Sisyphus cooling, 680

Deuterium fluoride (DF), 30–33
Diabetic retinopathy, 720
DIAL, see Differential absorption lidar
Diatomic molecule, 26–34, 65, 513, 697, 701
rotations, 31–33
vibrations, 26–31, 513, 697

Dicke, R. H., 9, 666
Difference-frequency generation, 481
Differential absorption lidar (DIAL), 645–647
Differential cross section, 640, 641, 642,

645, 646
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Diffraction, 4, 10, 116, 252, 260, 265, 266, 285,
286, 297, 309, 310, 312, 314, 320, 329,
371, 381, 396, 466, 532, 561, 569, 606,
691, 799, 800, 804

and self-trapping, 468
and solitons, 471
by an aperture, 312–317
Fraunhofer approximation, 311, 314
Fresnel approximation, 310, 311

Diffraction angle, 251, 266, 605
Diffraction grating, 251, 252, 266, 349, 350,

355, 525, 531
Diffraction limit, 320, 381, 611

and Strehl ratio, 381
Diffraction-limited, 320, 321, 382, 386, 391,

656, 657
angular resolution, 657
divergence angle, 320

Diffraction of light by sound, 251, 252, 265
Diffusion coefficient, 511, 513
Digital modulation systems, 776
Diode lasers, 40, 528, 529, 544, 545, 648,

722, 736–739, 741–745, 747,
750–754, 756, 758, 760, 764, 770,
771, 783

bars and stacks, 753, 754
divergence angles, 752
double heterojunction, 747, 749, 750
edge-emitting, 752, 753
excess spontaneous emission noise,

760–765, 771
gain bandwidth, 742, 743, 749–752, 789
gain coefficient, 737–744
gain–current relation, 745
gain-guided, 738, 764
gain suppression, 757, 758
heterojunction, 745, 747
homojunction, 736, 738, 739
index-guided, 738, 764
linewidth, 206, 760–771
linewidth enhancement factor, 765–771
mode hopping, 751
mode locking, 751
modulation, 754–760
modulation and frequency chirp, 759, 760
output power, 745
quantum cascade, 750
quantum well, 748–750
relaxation oscillations, 773
single-mode, 545, 751, 769
spatial hole burning, 751
stripe, 748

surface-emitting, 752, 753
threshold current density, 744, 745
threshold currents, 747
wavelength tuning, 751

Diode-pumped solid-state lasers, 528, 529
Dipole approximation, 72, 134, 404
Dipole force, 681, 682, 688–690, 732
Dipole moment, 72, 74, 123, 132, 134, 173,

212, 332, 334, 372–375, 410, 420, 421,
443, 444, 458, 462, 522, 658, 659,
663–665, 670, 678, 681, 685, 700, 704,
708, 723, 725

force on, 681
induced, 123, 132, 334, 462, 522, 704

and light shifts, 678
magnetic, 658, 659, 663, 685, 723, 725
operator, 700
permanent, 212
transition, 173, 421, 461, 670

and Wigner–Eckhart theorem, 670
Dipole sum rule, 127, 128
Dirac delta function, 112, 345
Direct-band-gap semiconductor, 51, 53,

737, 740
Directionality of laser radiation, 4, 7, 591, 592,

610, 648, 658, 722
Discriminator, 579
Dispersion, 123–132
angular, 348, 349
anomalous, 129–132, 339, 469

sodium, 130, 131
intermodal, 357, 364
material, 349, 350, 357, 787
negative, 348–350
normal, 125, 130
polarization-mode, 364, 787
positive, 349

Dispersion compensation, 345, 347–350,
533, 551, 788

Dispersion compensation modules, 788
Dispersion, group velocity, see Group

velocity dispersion
Dispersion parameter, 344, 399
Dispersive delay line, 264
Distributed Bragg reflector, 751
Distributed feedback laser, 751, 771
Divergence angle, 4, 314, 324, 391
diffraction-limited, 320
Gaussian beam, 286

DNA, 265, 575, 689
Donor, 43
ionization, 45

814 INDEX



Donor level, 50
Doppler, C. J., 105
Doppler broadening, 105, 108–111, 163,

164, 172, 191, 192, 196, 227
Doppler cooling, 673, 680
Doppler effect, 105, 108, 335

from conservation of energy and linear
momentum, 139, 730, 731

Doppler lineshape, 106, 107, 171, 191, 440
Doppler shift, 109, 139, 170, 171, 643,

667, 673, 682–684
Doppler width, 107, 108, 110, 120, 121, 123,

138, 147, 163, 196, 455, 503
Double refraction, 369
Dust, 373, 393, 643, 648

and blue sky, 373
and optical breakdown, 393

Dye lasers, 3, 7, 243, 521, 523, 524, 531,
532, 656

gain bandwidth, 531, 532
mode-locked, 243
spatial hole burning, 190

Dye molecule, 69, 521–523
Dynodes, 576, 577, 579

E–k curve, 51, 62, 64, 739, 740, 743
Ear, see Human ear
Earth, 67, 69, 138, 553, 558, 586, 634, 647,

648, 655, 728, 729
Earth’s magnetic field, 663, 667
Eddies, 378, 379, 389

and turbulence, 378
EDFA, see Erbium-doped fiber amplifier
Effective mass, 44, 63, 64

conduction-band electrons, 740
valence-band holes, 740

Effective noise input, 260–262, 762
Eikonal, 467
Einstein, A.

and A and B coefficients, 88, 117
and photon energy, 565
and photon momentum, 565
and stimulated emission, 1, 88, 729
derivation of Planck spectrum, 88, 89
fluctuation formula, 625
on photons, 586
prediction of Bose–Einstein condensation,

691
summation convention, 460
recoil and Planck spectrum, 682
recoil in emission and absorption,

564, 671

theory of light-matter interactions, 11
theory of photoelectric effect, 10, 565

Elastic collisions, 102, 150, 409–413, 440, 558
and evaporative cooling, 693

EIT, see Electromagnetically induced
transparency

Elastic restoring force, 208
Electric dipole approximation, see Dipole

approximation
Electric dipole moment, see Dipole moment
Electric susceptibility, see Susceptibility
Electrical conductivities, 39
Electro-optic effect, 212, 228, 461, 783
KDP, 228
Kerr, 212
Pockels, 212, 461

Electro-optical phase modulation, 252, 253
Electro-optical switches, 236, 237
Electromagnetically induced transparency, 441,

444–446, 452, 455, 680
and off-diagonal coherence, 445
spatial compression, 446

Electron oscillator model, 21, 69–73, 86, 132,
136, 137, 208, 402

and quantum theory, 132, 136, 137
Electron transit time, 578
Electron–hole recombination, 48, 51, 53, 55,

579, 737, 740–744, 750, 755, 773
nonradiative, 50, 738
radiative, 49, 50, 51, 736, 738, 740, 744,

745, 757
rate, 51, 744

Electron-impact excitation, 141, 498, 499, 502,
504, 506, 507, 514, 554

Endothermic process, 500
Energy bands, 35, 56, 59, 132, 739
Energy defect, 500, 505
Energy-time uncertainty relation, 203, 446
Entropy, 2, 692, 780
in information theory, 780
in statistical mechanics, 780

Envelope, see Pulse envelope
Equipartition theorem, 674
Er : glass amplifier, see Erbium-doped fiber

amplifier
Erbium-doped fiber amplifier (EDFA),

537–552, 788
and bit rates, 789
advantages over electronic amplifiers in

optical communications, 788
gain bandwidth, 539, 559
stimulated emission cross section, 539
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Error correction coding, 782
Evanescent waves, 316

and resolution, 316
Evaporative cooling, 693, 695, 696
Excess spontaneous emission noise, 206,

760–765, 771
see K parameter

Excimer lasers, 518, 519, 521, 722
in surgery, 722

Excitation transfer, 499, 500, 502, 505, 513,
514, 516, 558

Exciton, 49
Exothermic process, 500
Extraordinary wave, 368, 399, 477–479,

484, 487
Eye, see Human eye

f-number, 316
Fabry-Pérot etalon, 200–202, 215–219,

223, 225
finesse, 225
free spectral range, 218, 225

Fade probability, 394
Far-sightedness, 609
Faraday effect, 190
Faraday isolator, 207, 217
Faraday rotator, 190, 191
Faraday’s law of induction, 724, 727
Far-wing limit, 112
Feedback, 2, 141–143, 194, 215, 668, 751

distributed, 751, 771
positive, 207

Feedback loop, 215, 668, 717
Feedback system, 194
Femtobiology, 701
Femtochemistry, 701
Femtosecond pulses, 531, 535, 536, 701–703,

711, 717, 721
Femtosecond pump-probe method, 701
Femtosecond time resolution, 697
Fermi energy, 740
Fermi level, 741

quasi-, 741, 746, 749, 790
Fermi resonance, 514
Fermi–Dirac distribution, 736, 740, 741
Fermi–Dirac occupancy factor, 790
Fermion gases, 696
Fermions, 692, 696, 740, 741
Few-cycle pulses, 702, 703, 706,

711, 712
carrier-envelope phase, 711, 712

Feynman, R. P., 415

Fiber (optical)
absorption coefficient, 363, 559
absorption spectrum, 363
bending flexibility, 363
birefringence, 362, 364
graded-index, 357
intermodal dispersion, 357, 364
macrobending loss, 364
material dispersion, 349, 357, 787
microbending loss, 364
photonic crystal, 548–551, 657, 717, 790
polarization-mode dispersion, 364, 787
power loss mechanisms, 363
single-mode, 357, 361–364
splicing loss, 784, 785
step-index, 357, 358, 398

Fiber amplifiers, 537–552, 780, 783, 786,
789, 790

in wide-area networks, 783
three-level model, 539–544
see Erbium-doped fiber amplifier (EDFA)

Fiber Bragg grating, 351, 547, 548, 788
Fiber lasers, 269, 349, 364, 537–552, 656,

722, 753
beam quality, 544
single-mode, 544–552, 751

Fiber link, power budget, 783–785
Fiber-optic communications, 331, 345, 363,

364, 396, 581, 760, 775, 782–790
advantages, 782
bit rates compared to wireless

communications, 789
long-haul, 782
power budgeting, 783–785
transatlantic, 789

Fick law, 510
Filamentation, 467
Filtered starlight, 627
Fine structure constant, 22
Finesse, 219, 225
First-order coherence, 586, 620, 623, 627, 634
Fizeau, A., 336
Flashlamp, 525–531, 544
Floquet’s theorem, 57
Fluence, 256, 257, 454, 493, 535, 537, 559
Fluorescence, 5, 67, 76, 167, 521, 531, 575,

647, 684, 698, 701
parametric, 486

Fluorescent tube, 93
FM mode locking, 250, 251
FM radio, 126, 140, 251, 735
Focal length, 272–274, 292, 314
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Focus anisoplanatism, 657
Folding mirror, 189
Forward-biased junction, 47, 49, 56
Fountain atomic clock, 669, 684
Four-level laser model, 156–160
Four-wave mixing, 463, 492
Fourier optics, 314
Fox–Li iteration procedure, 318–320
Franck–Condon principle, 523, 524, 697
Franklin, B., 20
Frantz–Nodvik model for pulse amplification,

255–258, 559, 796
Fraunhofer approximation (diffraction), 311,

314
Fraunhofer D lines, 67, 68
Fraunhofer diffraction, 311, 312, 314, 344
Fraunhofer diffraction formula, 312
Fraunhofer diffraction integral, 311
Free induction decay, 724
Free spectral range, 218, 225
Frequency combs, 713, 716–718
Frequency modulation, 250, 251

see FM radio, Mode locking
Frequency pulling, 194–197

and longitudinal mode spacing, 197
He–Ne laser, 196
He–Xe laser, 196

Frequency-resolved optical gating (FROG),
534, 535

Frequency stabilization, 194, 205, 215–219
inverse Lamb dip, 194
Lamb dip, 194, 215
Pound–Drever–Hall, 215–219

Frequency tripling, 463
Fresnel approximation (diffraction), 310, 311
Fresnel diffraction, 310, 344
Fresnel diffraction formula, 312, 317
Fresnel formulas for reflection and trans-

mission, 53, 200, 210–212, 223, 224
normal incidence, 53, 223, 224, 739

Fresnel loss, 53, 212
Fresnel number, 298
Fresnel reflection, 350, 738, 739, 752, 760
Fringe visibility, see Visibility
Frisch, O. R., 564
FROG, see Frequency-resolved optical gating
FWHM (full width at half maximum),

defined, 82

g parameters, 278, 297, 321
condition for resonator stability, 297

GaAlAs, 53

Gallium arsenide (GaAs), 45, 51, 52, 64, 648,
739, 740, 747, 748, 752

band gap, 739, 740
laser, 739, 747

GaAsP, 53
Gain bandwidth, 165, 166, 199, 261, 262, 531,

532, 536, 539, 545, 551, 554, 559, 616,
742, 743, 749–752, 789

and number of laser modes, 199, 616
diode lasers, 742, 743, 749–752, 789
dye lasers, 531, 532
EDFA, 539, 559
Ti : sapphire, 531, 532

Gain coefficient, 13, 114–118, 141–148, 163,
165, 173, 230, 257, 259, 425, 430, 454,
507, 515, 520, 539, 554, 556, 558, 729

and spatial hole burning, 169
and spectral hole burning, 170
clamping, 175, 176, 181, 195–200, 205,

430, 751, 770, 791
and single-mode lasing, 751

four-level laser, 166, 173
modal, 750
related to refractive index, 195
saturation, 162–165, 239
saturation and Doppler broadening, 170, 171
small-signal, 164–167, 169, 172, 179, 185,

188, 189, 191, 199, 200, 507, 510, 558
three-level laser, 164–166
threshold, 145–150, 157, 160, 161, 176,

178, 199, 737, 738, 744
Gain guiding, 738
Gain suppression, 757, 758
GaInNAs laser, 753
Gas-dynamic laser, 515, 516
Gaussian beam, 282–288, 290–294, 296–299,

302, 307–310, 312, 317, 320, 322, 324,
326–328, 342, 392, 394, 397, 467, 468,
590, 591, 608, 610, 634, 689, 690, 803

brightness, 590
divergence angle, 286, 287, 308
radius of curvature, 287
see ABCD law

Gaussian beammodes, 292–294, 296, 297, 318
higher-order, 298, 301, 302

Gaussian pulse, 339, 341–347, 351, 353–355,
446, 454, 534, 560, 711, 792

chirped, 353–355
Gaussian spherical wave, 294
Geiger mode, 580
Giant pulse, 255
see Q switching
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GPS (Global Positioning System), 667,
669, 717

Green function, 317
Greenhouse effect, 69, 515
Griffith, A. A., 363
Group velocity, 118, 336, 337, 339–341, 344,

348, 349, 352, 357, 396–398, 427,
438–441, 445, 446, 454, 455, 469, 540,
639, 715, 717, 796, 799

Group velocity dispersion, 341, 342, 344, 345,
347–349, 353, 364, 396, 428, 470, 471,
533, 537, 551, 552, 787, 799, 804

compensation for, 345, 347–350, 533,
551, 788

Guide star, 651–653, 655–658, 729

Hahn, E. L., 438, 724
Hall, J. L., 718
Hall effect, 43, 64

anomalous, 43
Hamiltonian, 132, 133
Hanbury Brown–Twiss correlations,

see Brown–Twiss correlations
Hanle effect, 664, 665, 730

and off-diagonal coherence, 665
Hänsch, T. W., 718
Hard-seal mirrors, 505
Harmonic oscillator, 21, 28, 51, 239

zero-point energy, 31
Harpooning reaction, 519
Heats of reaction, 517
Heaviside step function, 749
Heisenberg, W., 403
Heisenberg uncertainty principle

and coherence volume, 618, 619
Helium, 125, 126, 140, 693

absorption coefficient, 140
refractive index, 125, 126

Helium–neon (He–Ne) laser, 6, 7, 9, 108, 146,
187, 196, 199, 200, 205, 222, 227, 238,
243, 259, 267, 279, 292, 298, 303,
306–308, 320, 328, 399, 498, 500,
502–513, 558, 589–592, 608, 616,
618, 623

frequency pulling, 196
gain vs. current, 507
intensity vs. output coupling, 188
Lamb dip, 193
linewidth, 205
population inversion, 160, 505–509
radial gain variation, 509–513
rate-equation model, 505–509

spectral brightess, 6
spot size, as function of distance, 308

Helium–xenon (He–Xe) laser, 196, 239, 510
frequency pulling, 196

Hellman–Feynman theorem, 65
Helmholtz coils, 685
Helmholtz equation, 279, 281, 323, 327, 358,

359, 397
Hemispherical resonator, 279, 306, 307
Hemoglobin, 720
Herapath, W. B., 370
Herapathite, 370
Hermite–Gaussian beams, 303, 306
Hermitian operator, 133, 320
Hertz, H., 561
Heterodyne detection, 647, 648, 714
Heterojunction, 745, 747
High-harmonic cutoff energy, 704, 707–711
High-harmonic generation, 494, 703–712
and field polarization, 707
attosecond pulses, 710
cutoff energy, 704, 707–711
spectrum, 704, 708
three-step model, 707–712

High-power lasers, 321, 647
Hole (absence of electron), 40–51, 53, 56,

579–581, 736, 737, 739–743, 745–750,
755, 773, 785, 790

see Electron–Hole recombination
Hole burning, 167, 169–171, 190, 192, 197,

200
spatial, 167, 169–171, 180–183, 190,

200, 751
spectral, 169–171, 192, 197, 200, 238

Hollow-core fiber, 551
Homogeneous broadening, defined, 108
and single-mode lasing, 199, 200, 751

Homojunction, 736, 738, 739
Hong-Ou-Mandel interferometer, 489, 490
Hot-wire atom detector, 667
Hubble telescope, 386, 655
Human ear, 251
Human eye, 315, 375, 395, 584, 585, 718–720
as photon detector, 584, 585
relative sensitivity, 584
time constant, 585

Human genome, information, 776
Huygens, C., 246, 248
Huygens spherical waves, 310, 311
Huygens’ principle, 309, 310
HWHM (half width at half maximum),

defined, 82
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Hydrogen atom, 17, 18, 22, 23, 25, 32, 33, 44,
55, 106, 127, 522, 559, 561, 658, 661,
695, 704, 707, 714, 723, 733

electric field, 704
in human body, 723
tunneling ionization rate, 734
two-photon absorption, 695

recoil shift, 731
Hydrogen fluoride (HF), 30–32, 517, 518

laser, 517, 518
Hyperfine structure, 118, 658, 662,

666–671, 679
and Wigner–Eckhart theorem, 670
cesium clock transition, 666–669, 684
interactions, 726
rubidium, 695
sodium, 119–123, 163, 662, 695
splittings, 119, 120, 662

Hypo (sodium thiosulfate), 376

Ice, 64, 208, 643
intermolecular separation, 64
birefringence, 208

Iceland spar, 369
Ideal gas, 104, 138, 373, 374, 690, 691

de Broglie wavelength, 691
Ideality factor, 48
Idler wave, 481–486
Image dancing, 389
Image resolution, 382, 387, 489, 649

and adaptive optics, 387, 649
and coincidence imaging, 489
and Strehl ratio, 382

Imaging systems, 380, 382, 386
and atmospheric coherence diameter, 386

InAlGaAsP laser, 753
Index guiding, 738
Indirect-band-gap semiconductor, 50, 51, 53
Indium antimonide (InSb), 45
Index of Refraction, see Refractive index
Inelastic collisions, 102, 116, 150–152, 410,

411, 498
first and second kind, 498, 505

Information theory, 774–776, 779
Inhomogeneous broadening, defined, 108
Injection current, 737
Injection locking, 219
Intensity, formula for, 81, 117, 372
Intensity noise, 771–774
Intermodal dispersion, 357, 364
Internal quantum efficiency, 738, 744
International Telecommunication Union, 789

Internet, 728, 735, 776, 780, 788, 789
Intersystem crossing, 523
Inverse Lamb dip, 194
Inversion symmetry, 462, 494, 564, 704
Ionic solids, 38
Ionization, 25, 45, 48, 493, 512, 580, 667,

702, 704–710, 712, 720, 722, 733, 734
acceptor, 45
avalanche, 493
donor, 45
multiphoton, 493, 722
tunneling, 707

Ionization energy, 11, 25, 704
Ionization potential, 704, 709
Ionization rate, 708
Ionosphere, 69, 126, 140
Isolator, 190, 191, 207, 210, 217
Isotropic media, 212

Jaynes, E. T., 780
Jitter, 389
Johnson, J. B., 582
Johnson, K. S.
Q factor, 198

Johnson noise, 582, 583, 780, 781, 786
Jupiter, 335

K parameter, 206, 760–765
see Excess spontaneous emission noise,

Laser linewidth, Petermann factor
Kastler, A., 666
KDP (potassium dihydrogen phosphate), 214,

228, 399, 478, 803
linear electro-optic coefficient, 228
refractive indices, 399, 478

Keldysh parameter, 707, 734
Kerr cell, 214, 236, 237, 253
Kerr effect, 212
Kerr lens mode locking (KLM), 255,

265, 532, 533, 537, 717
Kleinman’s symmetry conjecture, 461
Knife-edge, 188, 189
Kolmogorov, A. N., 378
theory of turbulence, 378, 379, 387

Kramers–Kronig relation, 131, 548,
759, 770

and causality, 131, 132
Krypton fluoride (KrF) laser, 519–521
Kronig–Penney model, 59–61, 64, 745

LAGEOS (Laser Geodynamics Satellite), 648
Laguerre–Gaussian beams, 303–306
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Lamb dip, 192–194, 227
inverse, 194

Lambert’s law, 115
Land, E., 369, 370, 376
Laplacian, 282, 323, 367, 512

transverse, 282, 323
Larmor frequency, 665
Laser

and eye safety, 719
carbon dioxide, see Carbon dioxide laser
chaotic, 432
chemical, 516–518
diode, see Diode lasers
diode-pumped solid-state, 528, 529
distributed feedback, 751, 771
dye, see Dye lasers
edible, 497
electric-discharge, 11, 498, 499, 502, 510,

513–515
excimer, 7, 518–521, 720–722
fiber, see Fiber lasers
gas-dynamic, 515, 516
Kerr lens mode-locked (KLM), 255, 265,

532, 533, 537, 717
optically pumped, 159, 523, 525–531
see Single-mode laser

Laser cooling, 73, 448, 671, 682–685, 688,
693, 695, 733

Laser-induced fluorescence (LIF), 698–701
Laser iridectomy, 720
Laser linewidth, 203–207, 219, 428,

760–771
and excess spontaneous emission noise,

206, 760–765, 771
and phase diffusion, 771
and phase-intensity coupling, 765–771
a parameter, 206, 765–771
compared to natural linewidth, 113, 206
K parameter, 206, 760–765
linewidth enhancement factor, 206, 759,

765–769
Petermann factor, 764
Schawlow–Townes formula, 205, 206,

760–764, 769–771
Laser mice, 753
Laser pointers, 528, 553, 586, 719, 736

and eye safety, 719
Laser radiation

diffraction, 610–611
directionality, 4, 7, 591, 592, 610, 648,

658, 722
divergence angle, 610, 752

photon statistics, compared to thermal
sources, 575, 620–627, 633

spatial coherence, 608–610, 616
temporal coherence, 616

Laser resonators, 8–10, 143, 206, 269,
274–279, 292–309, 317–322, 327,
328, 358, 359, 544, 547

confocal, 306, 321
diffraction theory, 317–320
folded, 515
Fox–Li theory, 318–320
hemispherical, 279, 306, 307
magnification, 321
open, 9
optimal output coupling, 178–180
quasihemispherical, 307, 328
stability, 274–279, 297

marginal, 297
unstable, 206, 278, 321, 322, 764
see Q factor

Laser therapy, 719–722
photoabsorptive and photodisruptive, 719
photodynamic, 722

Laser-tissue interactions, 721
Laser tweezers, 689, 690
LASIK (laser in situ keratomileusis), 720
Lattice defects, 69
LCD, see Liquid-crystal display
LED, see Light-emitting diode
Leonardo da Vinci, 378
and turbulence, 378

Lewis, G. N., 561
naming of photon, 561

Lidar, 637–648
Lidar equation, 639–643, 645, 647
LIF, see Laser-induced fluorescence
Light shift, 676, 678, 679, 681, 733
and ponderomotove energy, 733

Light-emitting diode (LED), 40, 49, 50–55,
65, 93, 736, 746, 753, 775, 787

emission spectrum, 746
organic (OLED), 55

Linear momentum, 139, 563–565, 567, 569
and de Broglie wavelength, 569
photon, 139, 563–565, 567, 569

Lineshape function, 81, 83, 85, 94–96, 106,
109–111, 113, 132, 142, 163, 261, 262,
425, 436, 437, 557, 565, 616

Linewidth enhancement factor, 206, 759,
765–769

see a parameter, Laser linewidth
Linnik, V. P., 656
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Liquid crystal display (LCD), 54, 55
Liquid helium, and Bose–Einstein

condensation, 693
Liquid-crystal display, 54
Lithium niobate (LiNO3), 214
Littrow arrangement, 525, 531
Log-normal distribution, 392–395, 627
Longitudinal modes, 197–202, 219, 225, 237,

238, 246, 248, 261, 269, 302, 616, 750,
751, 759, 764, 765

frequency spacing, 9, 10, 197, 199, 239, 242,
243, 532, 616

and frequency combs, 718
and frequency pulling, 197
and number of lasing modes, 9, 10,

165, 199
and group velocity, 769, 791
and refractive index, 751, 752

in gain-guided and index-guided lasers,
764, 765

Lorentz force, 69, 73, 681
Lorentz–Lorenz relation, 128
Lorentz model, 73

see Electron oscillator model
Lorentzian lineshape, 81–83, 205, 259, 599,

616, 761
Lorenz, E. N., 431
Lorenz model (chaos theory), 431, 453
Lyapunov exponent, 453
Lyman series, 64

Macula, 718
Magnetic dipole moment, see Dipole moment
Magnetic quadrupole field, 694, 696
Magnetic quantum number, 22, 23, 99,

658–661, 667, 730
Magnetic resonance imaging (MRI), 723–727

with spin-polarized gases, 725–727
Magneto-optical trap (MOT), 685–689, 693,

696, 732
Malus’ law, 208, 562, 563
Mandel, L., 572
Manley–Rowe relations, 482, 495
Markovian model, 101
Maser, 1–3, 206, 451, 497, 554, 669

astrophysical, 554
Material dispersion, 349, 350, 357, 787
Matrix mechanics, 403
Matter waves, 691, 695–696
Maximal-loss method, 188
Maxwell–Bloch equations, 420, 422, 425, 426,

428–432, 436, 438, 440, 452–454

Maxwell–Boltzmann distribution, 105, 171
McCall, S. L., 438
Mean-field approximation, 169
Melanin, 720
Mesosphere, 122, 643, 644, 653, 656, 729
Metallic solids, 39
Metamaterials, 317
Meyer-Schwickerath, G., 718
Michelson, A. A., 336, 613
Michelson interferometer, 612, 615, 635, 648
circular fringes, 635

Michelson–Morley experiment, 613
Microwave cavity, 7
Microwave oven, 397
Minimum detectable power, 784
dependence on bit rate, 784
quantum limit, 784, 785

Minimum detectable signal, 583
Mirrorless lasers, 259
Modal gain coefficient, 750
Mode discrimination, 303, 765
Mode frequencies, 10, 34, 193, 199, 225,

243, 248, 296, 429
Mode hopping, 751
Mode-locked pulse train, 255, 264, 267,

713–718, 734
and frequency combs, 713–718

Mode locking, 239, 242, 243, 246, 248, 251,
252, 254, 255, 350, 532, 533, 536, 554,
704, 710, 717

“bouncing-ball” picture, 246, 715
AM, 246, 248, 252, 253
FM, 250, 251

Modulation index, 248, 250
Molasses, 675, 676, 680, 687
Molecular monolayer, 20
Molecular rotations, 31
Molecular solids, 38
Molecular vibrations, 26, 30, 31, 33, 138,

363, 698–701, 733
time resolution, 697

Momentum-conserving transitions, 745
Moon, 648, 655, 728, 729
MOT, see Magneto-optical trap
Mott transition, 696
Moving standing wave, 684, 732
MRI, see Magnetic resonance imaging
Multiphoton absorption, 492, 493
Multiphoton ionization, 493, 722
Mutual coherence function, 595, 761
Muybridge, E., 697
Mysterium, 554

INDEX 821



n-photon absorption, 492
n-type semiconductor, 41, 43
NADH molecule, 722
Narrowband radiation, 93–99, 114, 119–123

emission and absorption, 93–99, 119–123
Natural line broadening, 113
Natural linewidth, 113, 206

and laser linewidth, 113, 206
Neodymium glass (Nd : glass) laser, 6, 329,

527, 538, 544
spectral brightness, 6

Neodymium YAG (Nd :YAG) laser, 159, 161,
226, 527, 647

four-level model, 160
threshold pump power, 161

Near-sightedness, 609
Negative dispersion, 348–350
Negative oscillators, 128
Negative uniaxial crystal, 478, 484, 487, 495
Night sky, color, 376
Noise current, 587, 781, 786

dark current, 577, 579
Noise equivalent power (NEP), 584
Noisy channel, 779
Noncentrosymmetric media, 462, 471, 492
Nondiffracting beams, 324, 326
Nonlinear optics, 457–495, 657, 704

extreme, 704
Nonlinear susceptibility, 460–464, 472, 492
Nonradiative decay, 11, 522, 523, 526, 530, 531
Nonradiative recombination, 50
Nuclear Bohr magneton, 723
Nuclear magnetic resonance (NMR), 724
Numerical aperture, 356, 357, 362, 546
Nyquist critical frequency, 802
Nyquist sampling theorem, 776–778

Off-diagonal coherence, 419, 440, 445, 451,
462, 665, 733

and electromagnetically induced
transparency, 445

and Hanle effect, 665
and Rabi oscillations, 419
and Ramsey method of separated oscillatory

fields, 451
and self-induced transparency, 440

Olive oil, 20
Ophthalmology, 718, 719, 723
Optic axis, 208, 212, 366, 368, 369, 477
Optical Bloch equations, 430, 432, 433, 435,

452, 459, 462, 672
generalized, 441

Optical breakdown, 467, 469, 493, 722
of water, 722

Optical coherence tomography (OCT),
727, 728

Optical communications, 345, 362, 540, 544,
735, 736, 750, 752–754, 774, 782–790

Optical depth, 139
Optical frequency metrology, 713, 717
Optical isolator, 190, 191, 207, 210, 217
Optical lattice, 681, 689, 732
Optical length, 194
Optical molasses, 675, 676, 680, 687
Optical parametric oscillator, 485, 486
Optical pumping, 658–671, 676–678, 725,

726, 730
Optical rectification, 461
Optical scissors, 689, 690
Optical synthesizers, 718
Optical transfer function (OTF), 382
Optical tweezers, 689, 690
Optically thick medium, 140
Optically thin medium, 139, 140
Optimal output coupling, 179, 187, 189
Orbital angular momentum, 33
Orbital angular momentum quantum number,

22, 33, 118
Orbital angular momentum (OAM) states, 306
Ordinary wave, 368, 399, 477–479, 484, 487
Orion Nebula, 658
Oscillator strength, 76, 127
negative, 99
see Dipole sum rule

Output coupling, 143
large, 183, 187
optimal, 179, 187, 189

Overmodulation, 248
Ozone layer, 517

pn junction, 45–48, 52, 53, 55, 56, 64, 580
p-type semiconductor, 41, 43
Parametric amplification, 482–484
Parametric fluorescence, 486
Parametric oscillator, 485, 486
Paraxial approximation, 329, 359, 370,

371, 470, 799
Paraxial rays, 271–274, 290
Paraxial wave, 285, 287, 298, 299, 301, 317,

342, 799
Paraxial wave equation, 279, 280, 282, 290,

298, 303, 312, 317, 332, 333, 341, 370
Parity, 404, 452, 462, 464
Partial coherence, 602, 610
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Paschen notation, 503
Paschen series, 64
Paul trap, 688
Pauli, W., 23
Pauli exclusion principle, 24, 26, 35, 695
PCF, see Photonic crystal fiber
Pendulum clocks, 246, 248

synchronization, 246
Periodic table, 23–26

see inside back cover
Petermann factor, 764

see Excess spontaneous emission noise,
K parameter, Laser linewidth

Phase delay, 218
Phase diffusion, 771
Phase-intensity coupling, 765–771

see Laser linewidth
Phase locking, 239–246, 267, 616, 710, 717
Phase matching, 475–479, 483, 484, 487, 491,

492, 494, 495, 712, 713, 799, 803
type I, 479
type II, 479

Phase structure function, 382–384, 387, 390
Phonons, 51, 741, 746
Phosphor, 93
Phosphorescence, 76
Photocoagulation, 719, 720
Photoconductivity, 579, 580
Photocurrent fluctuations and noise, 581–583,

587, 774, 781, 786
dark current, 577, 579, 581–583, 587, 786

Photodiodes, 336, 533, 576, 580–583, 587,
641, 648, 650, 785

avalanche (APD), 580–583, 648, 650, 785
analog mode, 580
bandwidth, 581
Geiger mode, 580

PIN, 580–583, 587, 785
vacuum, 576, 580

Photodynamic therapy, 722
Photoelectric effect, 10, 39, 565, 566, 575,

576, 579
Einstein theory, 10, 565
internal, 579
failure of classical electromagnetic theory,

566
main features explained without photons,

565
Photoionization, 126, 515, 548, 703
Photomultiplier, 576, 577, 579

dark current, 579
rise time, 578

Photon, 561–587
energy, 3, 257, 562, 563, 565, 704
linear momentum, 139, 563–565,

567, 569
see Einstein, Photoelectric effect

Photon antibunching, 633, 634
in resonance fluorescence, 633

Photon bunching, 620, 628–633
see Brown–Twiss correlations

Photon counting, 7, 392, 488, 572, 573, 575,
577, 579, 581, 587, 622, 624, 625, 627,
628, 639, 644, 646

and coherence time, 622, 628
and Poisson distribution, 625
and starlight, 627
see Photon statistics

Photon degeneracy parameter, 617, 618
for blackbody and laser radiation, 617, 618

Photon detectors, 575–585
dark current, 577, 579, 581
Johnson noise, 582, 583, 780, 781, 786
minimum detectable signal, 583
noise equivalent power (NEP), 584
shot noise, 581–584, 781, 786

Photon echo, 724
Photon statistics, 222, 575, 620–627, 633
laser, above and below threshold, 222,

623, 624
laser, compared to thermal sources, 575,

620–627, 633
Photonic band-gap materials, 548, 549
Photonic crystal fiber (PCF), 548–551, 657,

717, 790
hollow-core, 551

Photosensitizer, 722
Phototube, 576
Picosecond pulses, 243, 264, 532, 536, 711
Piezoelectric, 193, 217, 252, 703
PIN photodiode, 580–583, 587, 785
Planck spectrum, 85–92, 617, 625, 682
Einstein’s derivation, 88, 89

Plane of incidence, 202
Planets, 335, 607, 608
and spatial coherence, 608

Plasma frequency, 69, 126, 139, 339
Pockels cell, 212–215, 217, 228, 237, 253,

711, 754
Pockels effect, 212, 461
Point source, 280, 288, 309, 310, 314–316,

326, 604–606
and Airy pattern, 314–316
spatial coherence, 604
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Poisson distribution, 573–575, 581, 586, 587,
621, 623–625

and photon counting, 625
Polarizability, 123, 128–130, 334, 372, 443,

459, 678, 679, 681, 682, 733
and light shift, 678, 679
and ponderomotove energy, 733
and refractive index, 123
complex, 443, 681
dielectric sphere, 689
resonant, 129, 130, 679, 681, 682
Lorentz–Lorenz relation, 128

Polarization-mode dispersion, 364, 787
Polarizing beam splitter, 209, 212, 227
Polaroid, 202, 369
Ponderomotive energy, 704–707, 709, 733

and light shift, 733
see High-harmonic cutoff energy,

High-harmonic generation
Population-changing collisions, 113
Population inversion, 497, 498

threshold, 147, 148, 155, 160
see Gain coefficient

Positive uniaxial crystal, 399, 477, 478
Posterior capsulotomy, 720
Pound, R. V., 219
Pound–Drever–Hall stabilization, 215–219
Power broadening, 113, 163, 166, 170, 239

sodium, 164
Power budget of fiber link, 783–785
Preamplifier, 535
Principal quantum number, 22
Probability amplitude, 133, 402, 403, 405,

441–443, 445, 446, 449, 451, 452, 490,
663–665, 700, 701, 733

Propagator, 317
Pseudothermal radiation, 624
Pulse amplification, 255–258, 559, 631

chirped, 535–537, 553, 559, 704
Frantz–Nodvik model, 255–258, 559, 796

Pulse area, 418, 420, 433, 436, 437, 439, 440,
454, 724

in NMR, 724
Pulse code modulation, 776, 778, 792
Pulse envelope, 255, 337, 338, 339, 341, 346,

352, 420, 422, 432, 454, 534, 535, 711,
712, 714, 715

see Slowly varying envelope approximation
Pulse height discriminator, 579
Pulse propagation, 255, 401, 432–446

area theorem, 437
Pulse sequences in MRI, 724

Pump depletion, 479, 482, 534
Pump-probe experiments, 699–701, 710

q parameter, 288–291, 293, 296, 302
Q factor, 5, 198, 667
naming of, 198

Q switching, 8, 229, 233–237, 239, 253,
254, 267, 532, 536

active, 237
passive, 237

Quadrupole magnetic field, 685
Quantum cascade laser, 750
Quantum efficiency, 180
internal, 738, 744

Quantum jump, 7, 10, 11, 26, 75, 403, 404
Quantum well laser, 748–750
Quantum wells, 748
Quarter-wave plate, 208, 209, 253
Quartz, 252, 307, 473, 474, 475, 478, 494,

495, 531
nonlinear coefficient, 474
oscillator, 668, 669, 717
refractive index, 474, 475, 478, 494

Quasi–Fermi levels, 741, 746, 749, 790
Quasihemispherical laser resonator,

307, 328
Quasi-phase matching, 713
Quiver energy, 705
see High-harmonic generation,

Ponderomotive energy

Rabi frequency, 407, 418, 419, 424, 425,
444, 447, 448, 671, 724

Rabi oscillations, 407, 413, 419, 446,
451, 493

and off-diagonal coherence, 419
in multiphoton processes, 493

Racah symbols, 503
Radiative broadening, 112, 113, 163,

164, 206
lineshape, 113

Radiative lifetime, 77, 121
and sum over radiative channels, 77
typical values for excited atomic

states, 75
Radiative recombination, 49, 50, 740
interband, 50

Radiative transfer, equation of, 139
Radiative trapping, 503
Raman lidar, 647
Ramsey, N. F., 451
Ramsey fringes, 449, 669, 684
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Ramsey method, separated oscillatory fields,
446–450

and off-diagonal coherence, 451
Rate equations, 84, 95, 152, 178, 230, 255, 401,

402, 407, 419, 420, 423–426, 430–432,
438, 440, 452, 498, 506, 514, 519, 556,
558, 669

Rate-equation approximation, 423, 425,
426, 432

Ray matrix, 274, 275, 290, 291, 293, 327, 328
Rayleigh (J. W. Strutt), 20, 355, 376
Rayleigh criterion, 315, 386
Rayleigh range, 284, 285, 291, 294, 326, 493
Rayleigh scattering, 363, 372–375, 388, 389,

393, 394, 396, 399, 400, 551, 640, 642,
645, 647, 652

and blue sky, 373, 376
cross section, 372

backscattering, 640
total, 641

Rayleigh–Jeans spectrum, 86, 88
Recoil, 563–565, 671–675, 680, 682, 684,

689, 693, 731–733
and absorption, 564, 671–675, 680, 682
and spontaneous emission, 563–565,

680, 682
and stimulated emission, 564, 565, 682

Recoil force, 564, 671, 682, 686
and Planck spectrum, 682

Recoil limit, 680, 693
Recoil shift, 731
Recoil temperature, 695, 733
Recombination lifetime, 756
Reduced mass, 31, 71, 740

electron–hole, 740
Reduced matrix element, 670
Reflection coefficient, 53, 144, 216, 227, 490,

739, 756
see Fresnel formulas for reflection and

transmission
Refractive index, 116–118, 123–132, 334,

335, 397, 739, 791
and anomalous dispersion, 129–132, 195
and antireflection coatings, 228
and confinement layers, 750
and energy density, 117
and evanescent waves, 316
and excited states, 127, 128
and frequency pulling, 194–198
and gain coefficient, 116
and intensity, 117
and Kerr lens mode locking, 533

and Maxwell–Bloch equations, 426–428
and polarizability, 733
and saturation, 469
and self-induced transparency, 440
and spontaneous emission rate, 117
and stimulated emission cross section, 117
and thermal lensing, 529
air, 377, 642
Cauchy formula, 124, 125, 377
complex, 444, 759
covariance, 379, 383
dielectric sphere, 689, 690, 732
effective, 549, 551
fluctuations, 387, 389, 393, 400
fluctuations in atmosphere, 377, 383
free electrons, 126, 127, 139
helium, 125, 126
ionosphere, 139
KDP, 399
latex, 732
Lorentz–Lorenz relation, 128
negative, 317
nonlinear, 264, 469, 470, 494, 560, 717
plasma, 126, 709
quartz, 474, 475, 478, 494
related to absorption coefficient, 131
related to gain coefficient, 195
resonant, 129–132, 195
ruby, 160
sodium, 130, 131
structure constant, 379, 400
structure function, 377–379, 382–384
waveguides, 397
see Birefringence, Bragg condition,

Diffraction of light by sound, Electro-
optic effect, Electromagnetically
induced transparency, Fiber Bragg
grating, Group velocity, Kramers–
Kronig relation, Phase matching,
Rayleigh scattering, Self-Focusing,
Self-Phase Modulation

Relative intensity noise (RIN), 771–774
and photocurrent fluctuations, 774

Relaxation oscillations, 232, 233, 266
Resolution limit, 315
eye, 315
Rayleigh criterion, 315

Resonance enhancement of nonlinear
polarization, 459, 461

Resonance fluorescence, 633, 637, 639, 640,
644, 647, 664, 665, 684

lidar, 643, 644
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Resonance radiation, 67
Resonators, see Laser resonators
Retina, 584, 585, 634, 718–721, 728
Reverse-biased junction, 47, 48, 56, 580
Richardson–Dushman equation, 577
Rigrod, W. W., 187
Rigrod analysis, 187
RIN, see Relative intensity noise
Ring laser, 7, 190, 264
Ring-down method, 197
Rise time, 578, 579
Roemer, O., 335
Roof prism, 730
Rotating-wave approximation (RWA), 406,

419, 436, 442, 459
Rotational constant, 65
Ruby, 11, 159, 527
Ruby laser, 7, 39, 69, 108, 159–161, 173,

180, 226, 233, 235, 237, 243, 438, 473,
525–527, 648

pumping requirements, 160
quantum efficiency, 180
relaxation oscillations, 233
three-level model, 159

Russell, J. S., 440
RWA, see Rotating-wave approximation
Rydberg levels, 10

Saturable absorber, 237, 253–255, 350
Saturation, see Absorption coefficient, Gain

coefficient
Saturation current, 47
Saturation fluence, 257, 531
Saturation flux, 166, 167

three-level laser, 165
Saturation intensity, 162–167, 173, 176, 177,

186, 188, 191, 227, 237, 253–255, 263,
267, 454, 531, 532, 558, 655, 672,
709, 730

Doppler-broadened transition, 163, 191
four-level laser, 167, 173, 263
radiatively broadened transition, 163
sodium, 163, 164, 655, 730
three-level laser, 166, 173
Ti : sapphire, 531

Schawlow, A. L., 497
Schawlow–Townes formula (laser linewidth),

205, 206, 760–764, 769–771
Schrödinger equation, 14, 15, 56, 57, 64,

128, 132–135, 341, 397, 401, 452,
548, 700

time-dependent, 402–407, 441, 448, 451

three-state atom, 441
two-state atom, 404

Scintillation, 392–394
Second-harmonic generation, 461, 462, 471,

473–476, 478, 479, 481, 482, 484,
492–494, 529, 534, 799

Seeing angle, 386, 387, 648, 656
Selection rule, 127, 462
k vector, 51

Self-focusing, 464–467, 469, 471, 492, 493,
532, 533, 537, 717

and self-trapping, 468
Self-induced transparency, 438–440, 452,

454, 455, 457
Self-phase modulation, 349, 469–471, 535,

546, 552, 560, 717
Self-trapping, 468
Semiclassical laser theory, 428–430
Semiconductor lasers, see Diode lasers
Seven-segment display, 54
Shack–Hartmann sensor, 649, 650, 657, 721
Shannon, C. E., 779
Shannon’s formula, 779
Shot noise, 581–584, 781, 786
Shutters, electro-optical, 236
Signal wave, 481–486
Silicon, 38, 39, 41, 42, 44, 69
doped, 44

Single-mode laser, 175, 177, 191, 192,
198–203, 205, 215, 219, 430–432, 544,
608–610, 618, 679, 714, 734, 751,
752, 769

and gain clamping, 199, 200, 751
heterodyned with mode-locked

laser, 734
linewidth, 205, 769
oscillation in single transverse mode,

608–610
and spatial coherence, 608–610

VCSELs, 752
see Diode lasers, Fiber lasers

Singlet, 522
Singlet transition, 522
Sisyphus cooling, 678, 680
SIT, see Self-induced transparency
Skin effect, 782
Skylight polarization, 375
Slowly varying envelope approximation, 339,

397, 420, 422, 429, 711, 765
and few-cycle pulses, 711

Small-signal absorption coefficient, 162, 267,
454, 542

826 INDEX



Small-signal gain, 165, 166, 172, 173,
176–180, 185–189, 191, 192, 199, 200,
221, 227, 232, 233, 257, 259, 454, 485,
505, 507–510, 558, 669

three-level laser, 165
Snell’s law, 52, 211, 356, 369
Sodium

D lines, 118
absorption coefficient, 140
absorption cross section, 121–123, 531, 539,

540, 643, 644, 646, 655, 658, 662
anomalous dispersion, 130, 131
guide star, 652, 653, 655–657
light shift and recoil energy, 732
mesospheric, 643–645, 652, 653, 655–657
power broadening, 164
radiative lifetime, 121
saturation intensity, 163, 164, 655, 730

Solar spectrum, 373
Solar temperature, 90, 222
Solitary waves, 440
Soliton, 440, 454, 471, 552, 553, 560, 790

spatial, 471
stability, 553
temporal, 471, 552, 790

Soliton communication systems, 790
Sommerfeld, A., 22
Source compression, 780
Space Shuttle Endeavour, 643
Spatial coherence, 143, 603–610

amplified spontaneous emission, 262
extended source, 604
laser radiation, 608–610, 616
ordinary sources, 603–608
point source, 604

Spatial hole burning, 167, 169–171,
180–183, 190, 200, 751

Spatial soliton, 471
Speckle, 383, 634
Spectral hole burning, 169–171, 192, 197, 200,

238
Spectral power density, 771
Spiking, 233
Spillover, 297
Spin echo, 724
Spin polarization, 658–671, 695, 725, 726

in Bose–Einstein condensation, 695
Spin-polarized atoms, 658–671, 725, 726
Spin relaxation, 662, 663, 726, 730

cross sections, 662
alkali metals, 662, 663
and atomic beams, 662

Spontaneous and stimulated emission rates,
and photon number, 89, 95

Spontaneous emission, 11, 74–78, 88, 89, 187,
190, 203

and recoil, 563–565, 680, 682
Spontaneous emission factor, 261, 761
Spot size, 282, 283, 285–288, 290–292,

294–297, 299, 302, 303, 306–308, 318,
320, 321, 328, 329, 353, 362, 386, 390,
392, 400, 465, 468, 469, 590, 591, 608,
634, 729

Square well, 57, 60, 64, 748
Squeezed states, 581
Stable equilibrium, 26, 28, 29
Stanford, L., 697
Stark effect, 191
Stark shift, 676, 682
Starlight, 335, 377, 392, 626, 627
aberration, 335
photon counting distribution, 626, 627
scintillations, 392
twinkling, 377, 392

Stars, 90, 607
angular diameters, 607
as blackbodies, 90
spectra, 90

Step-index fiber, 361
Stimulated and spontaneous emission rates
relation in terms of photon number,

89, 95
Stimulated Brillouin scattering, 469,

546, 787
Stimulated emission, 1, 3, 11–14, 88, 89,

93–95, 141, 142, 153, 255, 497
and Planck spectrum, 88
and recoil, 564, 565, 682
and saturation, 162, 166, 167
cross section, 94, 117, 139, 160, 161, 167,

257, 527, 531, 539, 540
nonlinearity, 14

Stimulated Raman scattering, 467, 469,
546, 787

Stops, 316
STP, 125
Strehl ratio, 321, 381, 382, 385, 653
and beam quality, 321
and diffraction limit, 381
and image resolution, 382

Stripe laser, 739, 747, 748
Structure constant, 379, 400, 648
refractive index, 379, 400, 648
temperature, 379
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Structure function, 377–389, 390, 391,
396, 397

amplitude, 387
phase, 382–384, 387, 390
refractive index, 377–379, 382–384, 396
temperature, 378
velocity, 379

Sub-Doppler cooling, 676
Sum rule, see Dipole sum rule
Sum-frequency generation, 482
Sun, 4–7, 67, 69, 90, 138, 227, 559, 586, 634,

655, 656, 666
as blackbody, 90, 634
as thermal source, 90, 589
brightness, 591
Fraunhofer D lines, 68
peak emission wavelength, 90
radiation intensity, 590
spatial coherence of radiation, 607
spectral brightness, 6
spontaneous and stimulated emission, 90
temperature, 6, 90

Superconductor, 696
Supercontinuum generation, 717
Superelastic collisions, 498, 506
Superfluid, 696
Superradiance, 259
Superradiant laser, 143
Supersonic expansion, 516
Surge probability, 394
Surgery, lasers in, 720–722
Susceptibility, 333, 365, 459–465, 472, 492,

765, 766
electric, 365, 766
magnetic, 333
notation, 459–461, 463, 472
tensor, 365, 459, 460, 461
see Nonlinear susceptibility

Sylvester’s theorem, 276
Symmetric stretch mode, 33, 34, 513
Synchronization, 246
System margin, 784, 785

Taylor, G. I., 569
Technical noise, 206, 760, 773
Telescopes, 314, 316, 377, 386, 387, 389,

396, 451, 611, 649, 652–658, 728
and adaptive optics, 648–657
Galilean, 308
ground-based, 377, 386, 387, 649, 650, 652,

657, 728
Hubble, 386, 655

image dancing, 389
Keplerian, 308, 611
magnification, 611
resolution, 386, 387, 451, 649, 656, 657
seeing angle, 386

TEM mode, 302
TEM00 mode, 302, 303, 306, 320, 327, 328
spot size measurement, 302, 303, 328

Temporal coherence, 143, 613–616
of laser radiation, 616

Temporal soliton, 471, 552, 790
Thermal lensing, 529
Thermal radiation, 7, 69, 85–93, 99, 116, 117,

132, 137, 138, 262, 590, 594, 619–625,
629, 630, 633, 671, 682

classical theory, 86
compared to laser radiation, 7, 590,

619–625, 629, 630, 633
photon degeneracy factor, 617, 618
photon statistics, compared to lasers, 575,

620–627, 633
Planck spectrum, 85–92, 617, 625, 682
see Blackbody, Brown–Twiss correlations

Thermionic emission, 577
Thin lens, 272–274, 288, 290, 291, 302, 327,

329, 353
Third-harmonic generation, 463, 492
Thomson, J. J., 569
Three-level laser model, 153–160
Three-state atom, 441
Three-wave mixing, 460–464, 480, 481,

492, 656
Threshold, 14, 143, 220–222
see Gain coefficient, Population inversion

Threshold current density, 745
Threshold gain, see Gain coefficient
Ti : sapphire amplifier, 535
Ti : sapphire laser, 531, 704, 717
absorption cross section, 531
gain bandwidth, 531, 532
quantum efficiency, 531
saturation fluence, 531
saturation intensity, 531
stimulated emission cross section, 531

Time-bandwidth product, 354, 355
Time-division multiplexing, 788
Time-of-flight measurements, 702
Tip-tilt mirror, 651
Tipping angle, in MRI, 724
Torque on magnetic dipole, 723
Total internal reflection, 51–53, 64, 356, 359,

362, 364, 398, 399, 550
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Townes, C. H., 206
Transform-limited pulse, 355
Transistor, 40, 55, 56
Transit-time broadening, 446–448
Transmission coefficient, 122, 139, 144,

176–178, 189, 223, 227, 490, 495, 638,
645, 646

atmospheric, 638, 645, 646
sodium vapor, 122
see Fresnel formulas for reflection and

transmission
Transverse electromagnetic mode, see TEM,

TEM00

Transverse modes, 302, 303, 322, 529,
608–610, 616

and spatial coherence, 608, 609, 616
and divergence angle, 610

Transverse Laplacian, 282, 323
Trapped atoms, 683–690, 693–696, 732
Traveling wave, 8, 168–172, 177, 181, 183,

190, 192, 193, 230, 262
Triplet transition, 522
Tungsten filament, 92

spectrum compared to blackbody, 92
Tunneling ionization, 707

and circular polarization, 708
Turbulence

airplanes, 378
blood flow, 378
see Atmospheric turbulence

Tweezers, 689, 690
Twinkling of starlight, 377
Two-photon absorption, 492, 695, 731

in hydrogen, 695, 731
recoil, 731

Two-photon downconversion, 486, 487
Two-slit experiment, see Young two-slit

experiment
Two-state atoms, 403–440

see Optical Bloch equations, Maxwell-Bloch
equations

Tyndall, J., 376
blue-sky experiment, 376

Type I phase matching, 479
Type II phase matching, 479

Uniaxial crystal, 369, 399, 476–478, 484,
487, 495

negative 478, 484, 487, 495
positive, 399, 477, 478

Uniform-field approximation, 169, 175, 176,
181, 745

Unstable resonators, 206, 278, 321,
322, 764

and K parameter, 206, 764

Vacuum photodiode, 576, 580
Valence band, 11, 37, 38, 40, 43, 45,

49–51, 740
Valence electrons, 41
Van Cittert–Zernike theorem,

605–607
Van Heel, A. C. S., 364
Vapor pressure, 667
VCSEL, see Vertical cavity surface-emitting

laser
Velocimeter, 648
Velocity capture range, 673
Velocity of light, 21, 22, 96, 333–336
Verdet constant, 190
Vertical cavity surface-emitting laser (VCSEL),

752, 753
Vibration-to-translation transfer, 502
Vibration-to-vibration transfer, 502, 514
Vibrational constant, 31, 33
Vibrational spectra, 29
Visibility, 594, 601–604, 608, 609, 613,

615, 616, 620
Voigt profile, 108, 109, 131, 192
Voltage noise, 582, 792
Von Laue, M., 265
Von Neumann, J., 207

Water, 64, 68, 69, 363, 375, 397, 399, 557,
721, 722, 724

and living tissue, 721, 722, 724
absorption, 397, 557, 720, 722
absorption coefficient, 68
complex permittivity, 397

and microwave ovens, 397
Water-cooled mirrors, 227, 322
Wave mechanics, 403
Wave number, 29, 32, 336
Wave-particle duality, 561, 569, 625
Wavelength-division multiplexing,

750, 789
coarse, 789
dense, 789

White light, 53, 54, 67, 125, 369, 375, 635,
717, 718

coherence length, 635
coherence time, 635
interference fringes, 635
supercontinuum generation, 717
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Wide area network (WAN), 783
Wien spectrum, 87, 90
Wiener–Khintchine theorem,

599, 772
Wigner–Eckart theorem, 670
Work function, 565, 576,

577, 587

Xanthophyll, 720
129Xe, 726, 727

spin-polarized, 726, 727
see Magnetic resonance imaging

X-ray, 3, 10, 126, 265, 554, 704, 713,
718, 728

X-ray diffraction, 265

Young, T., 369, 376, 561, 568
Young two-slit experiment, 345, 455,

567–569, 586, 592–595, 604, 613,
616, 620, 635

and energy conservation, 586
and fringe visibility, 604
and spatial coherence, 592–595, 608, 609,

613, 616, 635

Zeeman effect, 99, 191
Zeeman shift, 450, 668, 685
Zeeman slower, 683, 684
Zeeman slowing, 683, 693
Zener effect, 48
Zero-point energy, 28, 30, 31
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