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Reviews and Comments

“The subject matter covered in this book can provide an excellent background for students in physics, as well as 
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Dr. W. Peng, Professor, Dalian University of Technology, China.
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N. Manjooran, International Expert in Energy & Global Director 
(CRM), Energy, Siemens AG, USA
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“This book is an excellent source for information on modern physics, and provides important insights on a wide 
range of topics including relativity, quantum mechanics, atomic and molecular structures, and nuclear physics. 
I expect the students to tremendously benefit from this reading experience.”

Dr. A. Ranjan, Assistant Professor, University of Oklahoma, USA.

“This book not only well explains physical theories, but also provides some interesting historical facts related to 
them. Reading the book will be really beneficial to students of engineering at any stage of their education.”

Dr. Mateusz Smietana, Professor,Warsaw University of Technology, Poland

“An understanding of physics, and in particular modern physics, provides the best conceptual framework for 
graduate level work in any applied science or engineering field.  As we design and structure materials and devices 
at ever decreasing dimensions, the effects of modern physics become inescapable.. Kaur and Pickrell provide an 
excellent text that in each chapter first outline objectives, then intertwine experimental physics history with clear 
concept explanations, equations, derivations, and example problems. Students engaged in internalizing the mate-
rial will no doubt be better prepared to someday make their own contributions to human kind’s advancement in 
science and technology.”

David Sherrer, President, Nuvotronics, LLC, USA
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fields and their dexterity in handling difficult subjects and making the same simple. Each chapter is conceived 
thoughtfully and interlaced with short descriptions of elite scientists who contributed immensely to research in 
physics. The system of providing questions and answers corresponding to each section of the chapter along with 
different categories of questions is highly innovative and unique. All these elements contributed towards a book 
that is easily readable and understandable. The authors succeeded in generating interest in the reader as he turns 
each page of the book making it captivating.” 

   Dr. Suresh M R, Scientist, ISRO, Thiruvananthapuram, India
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Preface

This book has emerged out of the notes made during our teaching of graduation and postgraduation 
classes, and from question papers of UGC examinations. We have prepared this text with the sole aim 
of providing a suitable book covering many topics common to various degree and postgraduate courses. 
Atomic physics is an indispensable study material for such courses, as it encompasses almost every aspect of 
physics, starting from classical to quantum mechanics. Irrespective of the areas in which the students plan 
to specialize, this subject helps in providing an insight and basic understanding into diverse branches of 
physics from which the authors conceived the idea of writing Modern Physics.

Target Audience

At the time of preparing this manuscript, the most important things taken into consideration were  language 
and the main dictum, “a good book is one which can be read by a student with minimum guidance from 
his/her instructor.” Great care has been taken to keep the text as simple as possible. Every derivation step 
has been solved and analyzed rationally along with supplementing illustrations and diagrams. The manu-
script begins with a thorough analysis of the subject in an easy-to-read style. It analyzes the basic concepts 
systematically and logically so that students can comprehend the subject with ease. Efforts have been made 
to present the subject matter in a simple and lucid style. This manuscript is designed creatively to serve as a 
textbook for undergraduate science and engineering students. Basically, it is a student-friendly book written 
in very simple language with step-by-step solutions of mathematical derivations.

Salient Features

The salient features of the book are the following:

•  Comprehensive coverage to Quantum Mechanics, Nuclear and Particle Physics, Thermal Properties, 
Semiconductors, Electrostatics and Electronics, Optics and Lasers 

•  Clear exposition of background concepts
•  Lucid, explanatory, and student-friendly language
•  Interesting and innovative pedagogical features that inculcate interest in the subject:

� Key terms—list of significant words and abbreviations
� 85 interesting facts—engaging and exciting facts within each chapter
� 500 solved examples—fully worked problems following stepwise methodologies
� 350 micro-assessment questions—topic-wise microquestions to assess conceptual understanding
� 360 critical thinking questions—questions honing skills to think critically about a situation
� 420 graded chapterwise questions—categorized into remember, understand, apply, and analyze
� 200 objective questions



xx  • PrefaCe

Chapter Organization

Divided into eighteen chapters, this book gives a clear and concise understanding of the relationship 
between macro- and microlevels of physical phenomena. 

Chapter 1 gives Einstein’s theory of relativity, and its after-effects like length contraction and time  dilation. 
Chapters 2 to 4 describe the origin of quantum mechanics and its applications to the  hydrogen-atom 
 problem and different potential wells. Chapter 5 deals with many of the successful and unsuccessful atomic 
models that describe the atomic and molecular structure of atoms, whereas Chapters 6 to 9 demonstrate 
nuclear structure and nuclear models, detectors, elementary particles, and particle accelerators. 

Chapter 10 emphasizes on charge and its properties along with fundamental description of electric 
field for different geometrical structures, electric potential, and the concept of polarization. The thermody-
namic variables as well as the formalism of classical and quantum approach for different states are given in 
Chapter 11. Chapters 12 and 13 cover the properties and theory of superconductors, basic structure of 
semiconductors and electronic devices made by different semiconductors. 

Chapter 14 deals with lasers and their fundamental principle, whereas Chapter 15 emphasizes on 
optoelectronic devices such as semiconductor laser diodes. Lattice structure and their types along with 
the packing of different atoms in crystals have been described in Chapter 16. Chapter 17 describes the   
properties of monoatomic and diatomic lattice, free-electron theory and Sommerfeld theory. Finally, 
Chapter 18 covers nanophysics and characterization techniques used to analyze the nanoparticles. 

Hence, all the chapters are connected in such a way that the flow of contents is maintained. For example, 
before understanding of fiber optics and various optoelectronic devices (Chapter 15), the authors have 
demonstrated the basic principles of electronics (Chapters 12 and 13) and optics (Chapter 14). This flow 
is required to understand every physical phenomenon along with their gradual emergence in the form of 
various theories and their significance in day-to-day applications. 

Every chapter is endowed with learning objectives, solved examples, summary, micro-assessment 
questions, critical thinking questions and graded questions, which are very helpful while preparing for 
competitive or professional examinations. Several interesting facts are embedded in each chapter, so that 
students can know some facts, not described as part of the text.

Online Learning Center

PowerPoint slides and overview of brief tutorials for every chapter have been provided on the Online 
Learning Center (OLC). In addition to this, some important brief lectures from Authors on their subject 
expertise have been given on the OLC. The OLC also has the model question papers, university pattern 
questions and links for additional resources

The facility can be availed by logging on to the following http://www.mhhe.com/kaur/mp1 or by 
 accessing the code given on the cover of the book.
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By the end of the twentieth century, a major revolution took place that shook the world: the formulation 
of Einstein’s is theory of relativity in 1905. Before the formulation of this theory, Maxwell’s work for 
the unification of electricity and magnetism, laws of thermodynamics, Newton’s law of motion as well 
as theory of gravitation laid a strong foundation for physics. But Einstein’s special theory of relativity 
redefined some of the imperative assumptions in the world of physical sciences.

1.1 Special Theory of Relativity

This theory is based on the following two basic assumptions:

 (i) The laws of physics have same validity in all inertial frames of reference. This is also known as 
principle of special relativity.

 (ii) The speed of light, c, is same in all directions for all inertial systems. This is also called principle 
of constancy of speed of light.

Practically, all the inertial frames are indistinguishable. But Einstein widened the horizon,  asserting 
that all the laws of physics must be covariant. Furthermore, none of the experiments has  determined 
whether inertial frame is in absolute motion or in absolute rest.
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Learning Objectives

 To understand the concept of “ether”

 To get insight of “special theory of relativity” and its postulates

 To understand the constancy of speed of light

 To learn that lorentz contraction and twin paradox are consequences of relativity

 To understand the importance of Galilean and lorentz transformations

 To get an overview of velocity addition rule

 To understand relativistic dynamics and relativistic kinematics

 To establish difference between inertial and non-inertial frames

 To obtain the relativistic mass, energy and momentum

 To understand simultaneous events

 Keywords: Michelson–Morley experiment, relativity, Lorentz transformations, Galilean transfor mations, 
twin paradox, simultaneity, Lorentz contraction, mass–energy equivalence, relativistic dynamics
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albert einstein was born on March 14, 1879 
in Ulm, Germany. he was one of the most 
renowned physicists and a Nobel laureate who 
gained worldwide fame due to his extraordinary 
theories of relativity. he was the backbone 
and pillar of physics. he lived with his family 
in Munich and had an electronic equipment 
store. einstein did not talk much till the age 
of 3 years. as he grew up, he developed an 
interest in nature and complicated theories of 
arithmetic. at the age of 12 years, einstein was 
aware of geometry. When einstein was 15 years 
old, he left Germany due to a constant failure 
in their business. he and his family settled in 
Milan where einstein spent a year with them. 
To survive, he had to make his own living. he 
did his secondary school from Switzerland and 
afterwards joined Swiss National polytechnic, 
which was located in Zurich. einstein used to 
bunk the classes and play violin, as he did not 
like the teaching method. he cleared his exams 
with the help of his classmate and graduated 
in 1900. 
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85 engaging and exciting facts are spread 
out in the text to enable students get a 
glimpse of the history of certain inventions 
and discoveries, and the biographies of 
pioneering scientists.

  

 

    

 
 

  
 

albert abraham Michelson was born 
on December 19, 1852 Strzelno, provinz 
posen, in the Kingdom of prussia, to a 
Jewish family. Michelson’s childhood was in 
the rough mining towns of Murphy’s camp, 
california and virginia city, Nevada. his 
father worked as a trader. after completing 
his high school education in San francisco, 
he went to annapolis as an appointee of 
president U.S. Grant.

albert abraham Michelson was the first 
american who was awarded a Nobel 
prize in physics for his optical precision 
instruments and the spectroscopic and 
metrological investigations carried out with 
their aid. he stepped up his career and did teaching as well as got research positions at the 
case School of applied Science, the Naval academy, clark University and University of chicago. 
Michelson executed his most successful experiment with the chemist edward W. Morley at 
cleveland. light waves were considered to travel in ether medium. The speed of light would 
have been different in each direction, if light source would have been moving through ether. 
in contrast, the Michelson–Morley experiment demonstrated equal time taken by two beams 
of light, which passed out and reflected back at right angles to each other. hence, the concept 
of stationary ether had to be discarded. he established the speed of light to be a fundamental 
constant using spectroscopic and metrological investigations along with Morley. Michelson with 
his colleague francis G. pease measured the diameter of super-giant star, Betelgeuse, using 
astronomical interferometer. Michelson won the copley Medal, the henry Draper Medal in 1916, 
and the Gold Medal of the royal astronomical Society in 1923. in addition, a crater on the Moon 
is also named after him. While working on a more refined measurement of the velocity of light in 

california, on May 9, 1931, Michelson left this world.

A.A. MICHELSON & E.W. MORLEY

Over 450 illustrations help clarify the 
concepts.



a Summary at the end of 
each chapter helps rein-
force the learning objec-
tives and summarize the 
concepts.

  

 

 
 

 
 

  

SUMMARY

The chapter deals with the Heisenberg’s uncertainty principle, de-Broglie hypothesis and Schrödinger 
formulation of wave equations. de-Broglie hypothesis states that the moving particles always have 
matter waves associated with them. These matter waves are also known as de-Broglie waves. Davisson 
and Germer performed the experiments to prove the presence of matter waves associated with elec-
tron. But, then it was found that waves do not travel as a single wave, rather as a wave packet. Many 
waves interfere with each other to form a wave packet. Wave packet travels with group velocity ( vg )  
and every individual wave travels with a phase velocity ( vp ). Furthermore, the relation of equivalence 
of group and phase velocity is established. But, it was well demonstrated by Heisenberg that the posi-
tion and momentum cannot be measured accurately simultaneously, that is, if position is measured 
with greater accuracy, then the momentum remains uncertain and vice versa. The product of uncer-
tainties of position and momentum are greater than or equal to Planck’s constant. The need of dif-
ferential equations was there, as exact location and momentum of particle could not be determined. 
Hence, the probabilistic approach is required. Hence, differential equation describes the motion of 
particles. Schrödinger used wave functions for the formulation of Schrödinger’s equation. Wave func-
tions are continuous, single-valued, and finite at every point in the space. The expectation values have 
been used to obtain uncertainty principle. The product of two wave functions satisfying Schwarz 
inequality has also been demonstrated. The bridge between classical and quantum mechanics is dem-
onstrated by Ehrenfest theorem. Eigen values and Eigen value equations have also been explained for 
different operators.

  

SOLVED PROBLEMS

Q. 1: The de-Broglie wavelength of an electron is 4 A
°

. Calculate its momentum.

Ans: l =
°

4 A

According to de-Broglie hypothesis,

l =
h

vm

mv = =
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×

−

−

h

l

6 63 10

4 10

34

10

.

p = ×
−1 65 10 24. kgm/s

Q. 2: The speed of a proton is 105 m/s . Calculate its de-Broglie wavelength.

Ans:
Velocity of proton = 105 m/s
Mass of proton = 1.67 × 10−27 kg
According to de Broglie relation

l =
h

mv
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×

× ×
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−

6 63 10

1 67 10 10
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Micro-Assessment Questions

 1. What is radioactivity?
 2. Which nuclei are considered as radioactive nuclides?
 3. What are a-particles?
 4. Give the description of radioactive particles.
 5. How does penetration power vary for a-, b-, and g- particles?
 6. Which radioactive particle exhibits highest ionizing power?
 7. g-rays are not deflected by electric or magnetic field. Explain.
 8. Which radioactive particles are deflected toward positive plate?
 9. What are b-particles?
 10. When is the atomic number of a nuclide increased by one unit?
 11. Give the units of radioactivity.
 12. Which properties are conserved during a-decay?
 13. What is disintegration energy?
 14. Write down the relation between range and energy of particle.
 15. Define the disintegration constant.
 16. Write down the relation between disintegration constant and number of atoms in substance.
  Give the relation between disintegration constant and range of particle.
  
  
  
  
  
  
  

500 fully worked-out Solved 
Examples with stepwise method-
ologies are given in the text to help 
reinforce the understanding of 
concepts and illustrate the way for 
solving problems.

350 Micro-Assessment Questions, 
distributed over the chapters, 
enable the student to assess con-
ceptual understanding through 
topicwise microquestions.



Graded Questions

 1.  Write in detail the principle, working, and construction for Van de Graaff generator. Which type 
of particles can be accelerated using Van de Graaff generator?

 2. Explain in detail the principle construction and working of cyclotron.
 3. Describe the principle, working, and construction of Cockcroft–Walton machine.
 4.  Write in detail the principle, working, and construction for the betatron. How is the problem of 

“loss of resonance” resolved?
 5.  Explain in detail the working of electron synchrotron. How does its working differ from proton 

synchrotron?
 6.  Describe the principle, working, and construction for synchrocyclotron. What is the frequency 

of particle revolution?
  

   

   

   

   

   

  

  

   

   

   

  

360 Critical Thinking Questions 
help students develop skills to 
critically analyze a situation and 
reach a solution.

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Critical Thinking Questions

 1. Give any two laws of probability.
 2. Calculate the percentage error in Sterling formula when n = 3.
 3. What do you understand by phase space?
 4. What should be the minimum size for a phase space cell accor

mechanics?
 5. Give the various microstates and macrostates for system with two distinguishable par
 6. Describe briefly the two main classifications for statistics.
 7. What are the assumptions for Bose–Einstein statistics?
 8. Explain how Fermi–Dirac statistics could be applied to electron gas?
 9. Give the derivation for Maxwell–Boltzmann statistics.
 10. What do you understand by photon gas?
 11. The identical gas molecules are treated distinguishable classically. Explain.
 12. Define cells for a compartment.
 13. What is the meaning and importance of “a priori probability”?
  
  
  
  
  
  

420 Graded Questions test the 
student’s understanding of the 
key concepts.

  
OBJECTIVE QUESTIONS

 1. Which is the electrostatic accelerator?

 (a) Van de Graaff generator (b) Cockcroft–Walton machine
 (c) Both (a) and (b) (d) none of these

 2. Which of the following is cyclic accelerator?

 (a) betatron (b) synchrocyclotron
 (c) synchrotron (d) all of these

 3. Van de Graaff Generator could accelerate particles up to.

 (a) 10 MeV (b) 5 MeV
 (c) 20 MeV (d) 50 MeV

  

    
    

  

  
  
  
  

  

  

  
  
  
  

  

    
    

  

    
    

200 Objective Questions 
(with Answers) are given 
in the book to help stu-
dents have a quick recap 
of important terms and 
concepts. 

  

  
  
  
  
  

  

  

  
  

  

  

   
 

  

  

  

  
  
  
  

Remember and Understand

 1. The macroscopic behavior of a system is identified by the compartments. Each compar
definite energy, momentum, velocity, and specific volume.

 2. Thermodynamic probability depends upon nature of particles. In other words, it tr
ticles to be distinguishable or indistinguishable.

 3. All the distinct arrangements of particles are termed macrostates for the particles.
 4. When the particle is at rest, only three position coordinates are requir

that is, x, y, z. But when the particle is moving, then momentum coordinates ar

Remember and Understand 
section at the end of each 
chapter further helps drill in the 
concepts.
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By the end of the twentieth century, a major revolution took place that shook the world: the formulation 
of Einstein’s is theory of relativity in 1905. Before the formulation of this theory, Maxwell’s work for 
the unification of electricity and magnetism, laws of thermodynamics, Newton’s law of motion as well 
as theory of gravitation laid a strong foundation for physics. But Einstein’s special theory of relativity 
redefined some of the imperative assumptions in the world of physical sciences.

1.1 Special Theory of Relativity

This theory is based on the following two basic assumptions:

 (i) The laws of physics have same validity in all inertial frames of reference. This is also known as 
principle of special relativity.

 (ii) The speed of light, c, is same in all directions for all inertial systems. This is also called principle 
of constancy of speed of light.

Practically, all the inertial frames are indistinguishable. But Einstein widened the horizon,  asserting 
that all the laws of physics must be covariant. Furthermore, none of the experiments has  determined 
whether inertial frame is in absolute motion or in absolute rest.
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Learning Objectives

 To understand the concept of “ether”

 To get insight of “special theory of relativity” and its postulates

 To understand the constancy of speed of light

 To learn that lorentz contraction and twin paradox are consequences of relativity

 To understand the importance of Galilean and lorentz transformations

 To get an overview of velocity addition rule

 To understand relativistic dynamics and relativistic kinematics

 To establish difference between inertial and non-inertial frames

 To obtain the relativistic mass, energy and momentum

 To understand simultaneous events

 Keywords: Michelson–Morley experiment, relativity, Lorentz transformations, Galilean transfor mations, 
twin paradox, simultaneity, Lorentz contraction, mass–energy equivalence, relativistic dynamics
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All the electromagnetic waves travel with a velocity, c = 3 × 108 m/s, and have both electric and  
magnetic field vectors perpendicular to each other as well as to the direction of propagation of wave. 
This speed of light is the zenith or upper limit for all waves and material particles as well as for trans-
mission. The Newtonian mechanics basically deals with low speeds, but it cannot describe the particles 
moving approximately with the speed of light. Although Newtonian mechanics can describe other 
important phenomena, it reveals that the velocity of a particle becomes 1.98c when accelerated by a 
potential four times greater than its original value. But, at the same time, it has been experimentally 
proven that the velocity of any particle in universe cannot exceed the velocity of light and is inde-
pendent of voltage applied. Hence, we can conclude that Newtonian approach is a limiting factor to 
Einstein’s approach. To support this notion, CERN particle-physics laboratory conducted an experi-
ment in 1964. They measured the velocity of g-rays emitted from unstable short-lived neutral pions 
to be 2.9977 × 108 m/s which is acceptable compared to velocity of light. Although the research used 
high-velocity source of neutral pions with a velocity of 0.99975c, it did not affect the velocity of g-rays.

This chapter basically deals with the transformations that occur when a particle moves from one 
frame to another in a specific coordinate system. This chapter is an attempt to collect the intellectual 
contribution made by Albert Einstein to the world of physics.

albert einstein was born on March 14, 1879 
in Ulm, Germany. he was one of the most 
renowned physicists and a Nobel laureate who 
gained worldwide fame due to his extraordinary 
theories of relativity. he was the backbone 
and pillar of physics. he lived with his family 
in Munich and had an electronic equipment 
store. einstein did not talk much till the age 
of 3 years. as he grew up, he developed an 
interest in nature and complicated theories of 
arithmetic. at the age of 12 years, einstein was 
aware of geometry. When einstein was 15 years 
old, he left Germany due to a constant failure 
in their business. he and his family settled in 
Milan where einstein spent a year with them. 
To survive, he had to make his own living. he 
did his secondary school from Switzerland and 
afterwards joined Swiss National polytechnic, 
which was located in Zurich. einstein used to 
bunk the classes and play violin, as he did not 
like the teaching method. he cleared his exams 
with the help of his classmate and graduated 
in 1900. his teachers did not consider einstein a good student. einstein married his classmate 
Mileva Maric in 1903. he had two sons with her but they later divorced. he was awarded 
doctorate in 1905 University of Zurich. his thesis was based on the different sizes and extent of 
molecules. in 1905, einstein’s paper was published on dynamics of bodies in motion. later on, 
this was known as the theory of relativity. einstein was capable of explaining physical actions and 
measures for varying inertial positions without assuming about the matter or radiation’s nature, 
or their interaction. But practically, einstein’s argument was not understood by any one and his 
work was not appreciated by others. The innovation in einstein’s postulates made it difficult for 
his colleagues to understand his work. einstein was supported by Max planck during his work.

ALBERT EINSTEIN
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1.2 Michelson–Morley Experiment

In 1887, American physicist A.A. Michelson and E.W. Morley conducted a famous experiment for 
detecting changes in speed of light due to ether medium.

When an observer moves towards a stationary light source, it should measure velocity greater than c.  
Similarly, if a light source or observer moves away then the velocity should be less than c. If c is the 
velocity of light and u is the velocity of the observer, then for the former case, it is c + u and for 
the latter it is c − u. For an observer, if light propagates at right angle, then the relative speed of the 
observer is c u2 2

− .
The validity of these assumptions was investigated by Michelson and Morley. The experimental 

tool used by them was Michelson interferometer as shown in Figure 1.1. M
1
 and M

2
 are two mirrors 

aligned perpendicular to each other, whereas mirror M
0
 splits the beams

This interferometer is based on interference patterns produced by visible light. Monochromatic 
light splits into two coherent beams. These split beams produce interference pattern after traveling 
through different paths and then recombining. The interference pattern constitutes alternative bright 
and dark fringes due to constructive or destructive interference, respectively. The formation of these 
beams is highly phase dependent, as any change in phase difference will cause a shift in the position of 
the interference fringes. The Michelson apparatus was mounted on retractable heavy base in order to 
make observations at different orientations.

Details of the Experiment
Let us assume that both the arms of interferometer have equal length, L. If we consider the beam 
moving parallel to ether wind, then the speed of beam is c − u, according to Newtonian mechanics. 
During its return journey, the velocity of beam should be c + u. Thus, if a beam moves from left to 

in 1907, einstein left his job at patent 
office and started working on the theory 
of relativity. einstein explained changes 
in the orbital movement of planets on 
the grounds on general theory of rela-
tivity. in 1919, einstein got worldwide 
fame when his theory was confirmed 
throughout the eclipse of the sun. in 
1921, einstein received Nobel prize in 
physics. einstein supported pacifism and 
Zionism movement, and many a times, 
he was attacked by Germans because 
of his continuous support for Zionists 
and pacifists. When hitler gained power, 
einstein left Germany and moved to the 
United States. he joined the institute of 
advanced Study at princeton, New Jersey. einstein left princeton on 18 april 18 18, 1955. The 
whole scientific community mourned over the death of this genius.
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right, that is, in a direction opposite to ether wind, then the time of travel is 
L

c u−
,  and accordingly, 

the time of travel from right to left is 
L

c u−
. The total time for a round trip is
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Consider the second case when the beam moves in perpendicular direction as shown in Figure 1.1. 

The speed of beam relative to earth is (c 2 - u 2)1/2 and the total time for a round trip is 
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The time difference between a horizontally and perpendicularly traveling beam is
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We can solve the expression using binomial expression.

That is, 1 1 2-( ) = - -x nx nx
n

...

and for x x nx
n

<< -( ) = -1 1 1

Figure 1.1 The Michelson interferometer used by Michelson–Morley.
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In this case, x
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Hence, the corresponding path difference before rotation is

∆ ∆= =c t
Lu

c

2

2

and after rotation is also 
Lu

c

2

2
.  Therefore, the total path difference is 

2 2

2

Lu

c
 and the corresponding 

fringe shift can be obtained by dividing by wavelength of light, l.
i.e. Shift of 1 fringe = change in path of 1 wavelength

 
Shift n

Lu

c
( ) =

2 2

2
l  

(4)

For Michelson experiment, L = 11 m, u = 3 × 104 m/s and l = 500 nm

 Shift n = 0.44 (5)

The sensitivity of Michelson interferometer was n = 0.01. These pioneer scientists repeated the experi-
ments many times but did not find any fringe shift even after setting the apparatus in different orien-
tations relative to the orbital motion of earth. Hence, the conclusion was that no luminiferous ether 
exists. A lot of efforts were made to prove these results, especially by Lorentz and Fitz Gerald. They 
assumed that the length of an object moving with speed u will contract along the direction of travel. 

The factor of contraction was 1
2

2
−

u

c
.  This contraction would further lead to contraction of one 

arm of the interferometer and hence result in no path difference. But, the following many new set of 
questions also need to be answered:

 1. If ether does not exist, what is the reference frame for velocity as they are relative quantities?
 2. How do Galilean transformations not reconcile with measurement of velocity of light? Even if 

flaw exists in them, the transformations are valid in everyday experience.
 3. What are the alternative correct transformations if Galilean transformations have flaws?
 4. How can we understand light waves? Sound waves always require material medium for their 

propagation unlike light waves. How can light waves carry energy without any medium?

Many of these questions were answered by A. Einstein when he set a special stage with his special 
theory of relativity.
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1.3 Galilean Transformations

To describe the position of an object in space, a coordinate system is required that defines every 
position for particles using its unique set of coordinates. The coordinate space system defines the 
reference frame. The reference frames without acceleration are called inertial frames of reference.

All laws of physics are valid in every inertial frame of reference according to the special theory of 
relativity. But depending on reference frame of the observer, they can see things differently, that is, the 
sequence of events can be different (Figure 1.2).

An event is something that happens independently w.r.t. reference frame. Suppose there are two 
reference frames, S and S′. Both frames are inertial and an event P has (x, y, z, t) set of coordinates 
w.r.t. S frame, whereas it has (x ′, y ′, z ′, t ′) set of coordinates w.r.t. reference frame S′. Frame S′ moves 
with speed u w.r.t. frame S (Figure 1.3).

It is important to establish the equivalence of a set of observations made in different reference frames. 
Such a procedure is called transformation. If the transformation of formulation made by an observer 
gives the same result as made by another observer, then the laws are invariant. The transformations 
that are in agreement with Newtonian conception of motion are called Galilean transformations. That 

albert abraham Michelson was born 
on December 19, 1852 Strzelno, provinz 
posen, in the Kingdom of prussia, to a 
Jewish family. Michelson’s childhood was in 
the rough mining towns of Murphy’s camp, 
california and virginia city, Nevada. his 
father worked as a trader. after completing 
his high school education in San francisco, 
he went to annapolis as an appointee of 
president U.S. Grant.

albert abraham Michelson was the first 
american who was awarded a Nobel 
prize in physics for his optical precision 
instruments and the spectroscopic and 
metrological investigations carried out with 
their aid. he stepped up his career and did teaching as well as got research positions at the 
case School of applied Science, the Naval academy, clark University and University of chicago. 
Michelson executed his most successful experiment with the chemist edward W. Morley at 
cleveland. light waves were considered to travel in ether medium. The speed of light would 
have been different in each direction, if light source would have been moving through ether. 
in contrast, the Michelson–Morley experiment demonstrated equal time taken by two beams 
of light, which passed out and reflected back at right angles to each other. hence, the concept 
of stationary ether had to be discarded. he established the speed of light to be a fundamental 
constant using spectroscopic and metrological investigations along with Morley. Michelson with 
his colleague francis G. pease measured the diameter of super-giant star, Betelgeuse, using 
astronomical interferometer. Michelson won the copley Medal, the henry Draper Medal in 1916, 
and the Gold Medal of the royal astronomical Society in 1923. in addition, a crater on the Moon 
is also named after him. While working on a more refined measurement of the velocity of light in 
pasadena, california, on May 9, 1931, Michelson left this world.

A.A. MICHELSON & E.W. MORLEY
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is the reason why a relation between (x, y, z, t) and (x ′, y ′, z ′, t ′) is required. The main concern is 
time. Time is an invariant quantity according to Newtonian mechanics. Hence, if both the observers 
in frame S and S′ used synchronized watches and recorded an event at the same instant, then

 t = t ′ (6)

Now for position coordinates, we have to find a relation. As x-coordinate is recorded to be greater for 
S frame than S′ frame, that is, the difference is ut. Hence,

 x = x ′ + ut (7)

No relative motion is observed for y and z. Hence

 y = y ′ (8)

 z = z ′ (9)

Z

Y

S

S′

X 10

Z′

Y′

u

Event

(P)

X′

Figure 1.3 Observer in S′ frame is moving with velocity u.

Z

Y

(x, y, z)

observer

X

Figure 1.2 An observer in a reference frame, which describes position as (x, y, z).
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These four equations constitute inverse Galilean transformations. Hence, we obtain systematic con-
version of position–time coordinates from one reference frame to other. Therefore, the Galilean 
 transformations can be summarized as

 

x x ut

y y

z z

t t

¢

¢

¢

¢

= -

=

=

=

ü

ý

ï
ï

þ

ï
ï

 

(10)

Born on february 15, 1564 in pisa, Galileo was an 
italian physicist, astronomer, mathematician and 
philosopher. he used refracting telescope for the 
first time and supported copernicanism. Galileo has 
been called the “father of modern observational 
astronomy”,” “father of modern physics”’. Sir isaac 
Newton used Galileo’s mathematical descriptions, 
“‘The law of inertia”’, as the foundation for his 
“first law of Motion”. Galileo studied motion 
of uniformly accelerated objects and kinematics. 
he was a professor of astronomy at University of pisa 
and taught conventional theory that the sun and all 
other planets revolved around the earth. later on, 
at the University of padua, he was influenced by the 
theory of Nicolaus copernicus that the earth and all 
the other planets revolved around the sun; in other 
words, he agreed with copernicus’s sun-centered or 
heliocentric theory. in 1615, Galileo was in big trouble 
with the roman catholic church for the support of 
heliocentric theory.
in february 1616, he was cleared of any offence 
and Galileo was warned to abandon his support for 
heliocentric theory. But his views were published in 
1932 in Dialogue concerning the Two chief World 
Systems, and he was found “‘vehemently suspect 
of heresy”’ and forced him to publicly withdraw his 
support for copernicus. he was sentenced to life 
imprisonment, but due to his old age, he was allowed 
to serve his term at his house. Galileo became blind 
at the age of 72 years due to damage done to his 
eyes by constant telescopic observations. actually, 
he was blinded by cataract and glaucoma. in 1642, 
Galileo died at arcetri and the same year isaac Newton was born to continue his findings.

GALILEO

Moon phase drawing by Galileo
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1.4 Galileo Velocity Addition Rule

According to Galilean transformation, the event was considered to be at rest. But if the event is also 
moving, then we have to evaluate the relations. According to Newtonian physics, v = dx/dt, hence dif-
ferentiating Equatios (10)

dx

dt

dx

dt
u

¢
= -

 v v ux x′ = −  
(11a)

dy

dt

dy

dt

¢
=

 
v vy y′ =  

(11b)

dz

dt

dz

dt

¢
=

 v vz z¢ =  (11c)

If Eqn. 11(a)–(c) are combined, then

 v ′ = v − u (12)

These results are known as classical velocity addition theorem, and it summarizes the transformations 
of velocities between the Galilean reference frames. Hence, like position, velocity is also relative and 
depends on the reference frame. If u = 0, then v = v ′; similarly, we can obtain the relation between 
accelerations from the two references frames S and S′.

Differentiate Equatios 11(a)–(c) w.r.t. time

dv

dt

dv

dt

du

dt

x x¢

= −  (u is constant)

 
ax x¢ = a

 
(12a)

dv

dt

dv

dt

y y¢

=

 
a ay y¢ =

 
(12b)

dv

dt

dv

dt
z z¢

=

 a az z¢ =  (12c)

Hence, according to Galilean transformations, acceleration is an invariant quantity. Mass is also 
invariant and the invariance of force automatically follows, that is, F = ma. If the velocity of an event 
is equal to the velocity of a reference frame, then v ′ = 0. Hence, we can summarize this concept as 
follows:
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 1. Position and velocity are relative measures, hence measurements in S and S′ will differ. Whereas 
measurements for time, mass and acceleration are same in all reference frames and these quanti-
ties are invariant.

 2. To convert (x, y, z, t) to (x ′, y ′, z ′, t ′), we need transformation equations.

1.5 Lorentz Transformations

In 1890, a Dutch physicist Lorentz worked on Maxwell’s equations to make them covariant. He gave 
an approach for inertial frames whether stationary or moving, so that the equations are equivalent and 
undistinguishable.

At higher velocities, Galilean velocities were no longer valid, that is, the accurate coordinate 
equations should be derived for the particles moving in the range 0 ≤ v ≤ c. Hence, Lorentz coor-
dinate transformations describe only such set of equations in the best way. Lorentz transformation 
relates the space–time coordinates for observers moving with relative speed v. Lorentz velocity trans-
formation is the set of equations relating velocity of particle in reference frame S, that is, (u

x
, u

y
, u

z
), 

to velocity in S′ frame u u ux y z¢ ¢ ¢, ,( ) (moving with speed v) (see Figure 1.3 for deriving). x′ and x 
can be related as

x ′ = x − vt

But if the coordinates are at t = t ′ = 0, then dependence can be given by (Figure 1.4)

 x ′ = G (x − vt) (13)

where G is a dimensionless factor depending on v/c such that G → 1 as v/c → 0.
The inverse Lorentz transformation can be written as

     x = G (x ′ + vt ′) (14)

This is in accordance with Einstein’s first postulate of relativity, which requires the criteria of fulfill-
ment of the same form of laws of physics in all reference frames. (Only the sign of v has changed)

By substituting Eqn. (13) in (14), we obtain

 
t G t

G

x

v
¢ = + -

æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
ú

1
1

2

 
(15)

Differentiating Eqs (13) and (15), we obtain

 
dx ′ = G (dx − vdt)

 
(16)

Newton wrote in his work principia in 1687, “all motions may be accelerated and retarded, but 
the flowing of absolute time is not liable to any change … the existence of things remain the 
same, whether the motions are swift or slow, or none at all”.
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(17)

As u
dx

dt
x′

′

′

= ,  dividing Eqn. (16) by (17)

 u
dx

dt

dx vdt

dt
G

dx

v
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 (18)

 u
dx

dt

dx

dt

vdt

dt

dt

dt G

dx

vdt
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u
dx

dt

u v
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u

v
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(20)

According to Einstein’s second postulate, the velocity of light is the constant and c for any observer 
i.e. u

x
 = c and u cx′ = .

This substitution in eqn. 20, leads to

 

c
c v

G

c

v

=
−

+ −











1

1
1

2

 

(21)

Figure 1.4 Orientation of S and S′.
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                                            i.e. 

  

G
v

c

=
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1
2
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(22)

Hence, Eqn. (17) is transformed as

 x ′ = g (x − vt) (23)

and similarly Eqn. (18) is transformed as

 x = g (x ′ + vt ′) (24)

For obtaining the transformation equation for time, substituting G to Eqn. (19)

 
t t

vx

c
¢ = -

é

ëê
ù

ûú
g

2

 
(25)

No motion is along y and z direction.
Hence, we can write:

 

y y

z z

¢

¢

=

=

ù

û
ú

 (26)

Summarizing all the equations:

 

x x vt

y y

z z

t t
vx
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(27)

Inverse transformation of an event happening in S′ frame can be obtained by replacing v with −v and 
changing prime to unprime or vice versa. This leads to

 

x x vt

y y

z z

t t
vx

c

= +( )
=

=

= +


















g

g
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′
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If we observe Eqs (27) and (28), we find that t and t  

′ are dependent on x and x  
′ unlike Galilean 

transformation in which t = t  ′. At low speeds, that is, v << c, the Lorentz transformations reduce to 
Galilean transformations.
For velocity transformations,
substitute the value of G in Eqn. (20):

 

u
u v

u v

c

x
x

x

′ =
−

−






1 2

 

(29)

Similarly, if the object possesses velocity along y and z directions, then the components in S′ are 
obtained as

 

u
dy

dt

u

u v

c

y

y

x

′
′

′
= =

−






g 1 2

 

(30)

 

and u
dz

dt

u

u v

c

z
z

x

′
′

′
= =

−






g 1 2

 (31)

If u
x
 and v are small, then for the non-relativistic case, we obtain Galilean velocity transformation 

equations as u u v u cx x x′ = − =. ,If  then ux′  also becomes c. Hence, we conclude that an object 
moving with speed c w.r.t. frame S also possesses the same velocity w.r.t. frame S′. In addition, the 
velocity of any object can never exceed velocity of light.

The inverse velocity transformations can be summarized as

u
u v

u v

c

u
u

u v

c

u
u

u v
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 (32)
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1.6 Relativity of Simultaneity and Time Dilation

Newtonian mechanics describes a universal time scale for all observers. Newton described the time 
to flow equally without relation to anything external. But, Einstein justified that the time inter-
val measurement is dependent on the reference frame in which measurement is made. Einstein 
ensured that in order to compare events at two places, time should be common, that is, synchro-
nize time. For example, if one wants to compare two events occurring at A and B points, then the 
clocks at A and B should read the same time. This will confirm whether the events at A and B 
occurred at the same time. Now, the question arises whether clocks situated in different inertial 
frames are synchronized. In other words, we need to define a common time for clocks in reference 
frames S and S′.

Einstein devised the thought experiment to elaborate this point in Figure 1.5. A boxcar moves 
with uniform velocity, and two lightning bolts strike the end of the boxcar as shown in Figure 1.5. 
The marks on the ground are labeled A and B, whereas those in the boxcar are labeled A′ and B′. 
Observer O is in between A and B, O′ is in between A′ and B′. Light signals are events recorded by 
both the observers.

For observer O, both the light signals arrive at the same time, that is, A and B occur simultane-
ously. But for observer O′, the events happen at different times. They can be explained in detail. 
If light reaches O, observer O′ already moves as illustrated in Figure 1.5(b), then the light signal from 
B′ has already swept past O′; but the light signal from A′ has not yet reached. Hence, observer O′ 
must find that lightning struck B′ first and then A′. Hence, this experiment demonstrates that for O, 
the events appear to be simultaneous and for O′ they are not.

hendrik antoon lorentz was born on July18, 1853 in 
arnhem, Gelderland, to a Dutch family. he was the son of 
Gerrit frederik lorentz, who was a well-off nurseryman, and 
Geertruida van Ginkel (mother). in 1862, his father married 
luberta hupkes after his mother’s death. he was a freethinker 
in religious matters despite being raised as a protestant. he 
attended the hogere Burger School in arnhem from 1866 to 
1869. he excelled in sciences, english, french and German. 
The theory of electromagnetism was the prime interest of 
lorentz. This explained the relationship of electricity, mag-
netism as well as light. he broadened the spectrum of his 
research, although his main focus was theoretical physics, 
hydrodynamics and general relativity. he shared the 1902 
Nobel prize in physics with pieter Zeeman for the discovery 
and theoretical explanation of the Zeeman effect. he worked 
on the transformation equations, which were used by albert 
einstein to describe space and time.
einstein wrote for lorentz:

The enormous significance of his work consisted therein, 
that it forms the basis for the theory of atoms and for the 
general and special theories of relativity. The special theory 
was a more detailed expose of those concepts which are found in lorentz’s research of 
1895. for me personally he meant more than all the others i have met on my life’s journey.

in January 1928, lorentz became seriously ill and died shortly after on february 4.

H.A. LORENTZ (RIGHT) 

WITH A. EINSTEIN
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Hence, the question arises in our mind, which observer is right? The answer is both are right 
in their own reference frames. Here, we can also say the principle of simultaneity the is not abso-
lute and depends on the observer’s state of motion. Hence, observers in different inertial sys-
tems measure  different time intervals on their respective clocks. Because of such differences, 
at large distances, an observer standing on earth can have different set of events in “current 
moment”. We can explain this effect with the help of “Andromeda Paradox”, commonly known as  
“Rietdijk–Potnam–Penrose” argument. The description given by Penrose is as follows:

Two people pass each other on street, and according to one of the two people, an Andromedean 
space fleet has already set off on its journey while to the other, the decision as to whether or not the 
journey will actually take place or has not been yet made. How can there still be some uncertainty as 
to  outcome of that decision? If to either person the decision has already been made, then surely there 
cannot be any uncertainly. The launching of the space fleet is an inevitability Pennose 1989.

For a moment, if we think that simultaneity of events occurring in different reference frames cannot 
be presumed, then Newton’s third law also cannot be applied. We can also illustrate the time differ-
ence between a pair of events in different inertial frames as follows:

Let us suppose that observers in reference frames S and S′ exhibit identical clocks for measuring 
an event occurring in S′ frame, that is, with x 

′, y 
′, z 

′ coordinates as shown in Figure 1.6. D ¢t0  is a 
 difference of t2¢  and t1¢  and is called proper time interval because an observer at rest can measure the 
sequences with a single clock. But for frames S, to measure both the events, two clocks are required. 
Hence, the observer O finds the coordinates to be (x

1
, y, z) and (x

2
, y, z). Thus, observer O requires 

two synchronized clocks.

Hence, ∆t t t0 2 1= − ,  for frame S (33a) 

 D ¢ ¢ ¢t t t0 2 1= - ,  for frame S′ (33b)

Figure 1.5  Lighting bolts striking both ends. (a) Events appear simultaneous to stationary observer 
at O; (b) events do not appear to be simultaneous for observer at O′.
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From Lorentz transformations
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Hence, the time interval for the observer moving w.r.t. clock is greater than the time interval for 
the observer at rest w.r.t. clock. This effect is called time dilation. In other words, a moving clock 
runs slower than a clock at rest by a factor of g. The phenomena of time dilation has been verified 
through various experiments. For example, muons have charge equal to that of electron and mass 
207 times that of electron. These unstable particles are produced at a height of several thousand 
metres above the surface of earth by the collision of cosmic radiations. Their average lifetime is 
2.2 ms (proper time), and their speed is approximately close to the speed of light; then it is expected 
that these particles should travel a distance of 650 m before coming to the surface of earth. This 
implies that no particle should reach the surface of earth, but experiments have shown quite a large 
number of muons reaching the surface of earth. This can be explained using time dilation. For an 
observer on earth, the time appears to be 2.2 ms, if v = 0.99c, g ≈ 7.1,  then the time appears to be 

Figure 1.6  Both the events occur at same coordinate for observer O′, but for O they occur at (x
1
, 

y, z) and (x
2
, y, z). Observer O in S needs two clocks to measure time difference, that 

is, Dt t t0 2 1= - .  But for S′, the events occurring at same point can be measured as 
D ¢ ¢ ¢t t t0 2 1= -  with a single clock.
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16 ms. Hence, the average distance travelled by a muon is 4,700 m and these are able to reach the 
surface of earth. Thus, the results of time dilation are in agreement with the experimental results.

cerN in Geneva conducted an experiment in 1976, in which muons were injected into large 
storage rings reaching speeds of about 0.9994c. electrons were produced by decaying of 
muons. The decay lifetime of muons was measured. The lifetime of moving muons was found 
to be 30 times higher than that of stationary muons, in perfect agreement with the theory of 
relativity.

1.7 Lorentz Contraction (Length Contraction)

In the previous sections, we have discussed that time is not absolute. In other words, we can say that 
the time interval between two events depend on the reference frame. In the same way, the measured 
distance also depends on the reference frame.

If we consider Galilean transformations, then the measured size for an object remains unaffected 
by the relative motion of observers. But for Lorentz transformation, length varies as time interval 
varies. To understand this concept, we consider a stick AB at rest w.r.t. frame S and moving w.r.t. 
frame S′ as shown in Figure 1.7.

The rod is parallel to X-axis and difference between AB gives actual length, L
0
.

According to reference frame S

 L
0
 = x

2
 − x

1
 (35)

and from reference frame S′

 
L x xo
¢ ¢ ¢= -2 1  (36)

Figure 1.7 The length of rod for S = x
2
 − x

1
 and for S′ = x

2′ − x
1′.
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Substitute x
2′ = g (x

2 
− ut)

or

and
in Eqn.

o

x x ut

x x ut

L x ut x

2 2

1 1

2

35
= +( )
= +( )







( )

= + −

g

g

g
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′ ′ 11′ ′−[ ]ut

 
L x xo = −( )g 2 1′ ′

 
(37)
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The dimensions of the rod are same in y and z directions because there is no motion along these direc-
tions. L

0
 is the proper length of the object. The proper length (like proper time) of an object is always 

measured by someone who is at rest w.r.t. the object. Hence, if the length of an object is measured 
from some moving reference frame, then the length appears to be small. This phenomena is called 
length contraction.

although muons are formed at a proper height of 6,000 m, the muons move towards earth at 

U = 0.998c, and hence the length appears to be contracted for them as L ′o 
L

o

g
 with a value of  

γ = 15.82. The height becomes L
o

6,000

15.82
379.2m.′ = =

1.8 Concept of Space–time (Minkowski Space)

Einstein proposed the special theory of relativity, but the modern approach to the theory depends on 
the concept of four-dimensional universe as proposed by Hermann Minkowski in 1908. He proposed 
that if things could be arranged in time, then universe becomes four dimensional. He also empha-
sized that Einstein’s discovery is a consequence of a four-dimensional universe. He used Pythagoras’ 
 theorem to relate space and time in four-dimensional space i.e.

 S2 = x2 + y2 + z2 + (ict)2 (39)

where x, y and z are displacements, c is constant and t is time spanned by space–time interval S. If we 
do a dimensional analysis, then it becomes

Meters = (Conversion constant) × Time

c has a value of 3 × 108 m/s. This transforms Eqn. (39) as

 S2 = x2 + y2 + z2 − (ct)2 (40)

If universe is four dimensional, then the space–time interval will be invariant. The constancy of veloc-
ity is also its consequence, as explained:



1.8   coNcepT of Space–TiMe (MiNKoWSKi  Space)  •  19
 (i) If an object is travellling at velocity c, then the space–time interval is 0.

 S2 = x2 + y2 + z2 − (ct)2 (41a)

 (ii) If an object moves along x-direction for t seconds with velocity v, then

 S2 2 2
= ( ) − ( )vt ct  (41b)

If v = c, then

 S2 = 0 (42)

Hence, we can say that if an object is traveling at c m/s, then all observers will measure the same  
velocity for it, no matter how fast the observers are moving. This universal constant “c” is the velocity 
of light. The second consequence of space–time demonstrates that clocks will appear to go slower on 
objects moving relative to observer.

To illustrate this, we can take the example of Jack and Jill. Let us assume that Jack and Jill are on 
separate planets moving away from each other. Jack draws a graph for Jill’s motion through space and 
time as demonstrated below (Figure 1.8): Jack and Jill are on planets and they think they are station-
ary and moving through time only. Both think the same way for each other.

Jack calculates Jill’s space–time as

 S2 = (vt)2 − (ct)2 (43)

whereas Jill calculates his space–time as

 S2 = (0t)2 − (cT)2 (44)

But as the space–time interval is invariant, that is,

− (cT)2 = (vt)2 − (ct)2

Jack’s
path

x

Jill’s
path as seen by Jack

Y

X

Z

Figure 1.8  Jill thinks he is moving through time only, but Jack thinks he is moving through both 
space and time.
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t
T

v

c

=

−1
2

2
 

(45)

Hence, T = 1 between two ticks of clocks that are in rest in Jill’s reference frame.
Great care must be taken while interpreting space–time diagrams. The general space–time  diagram 

is shown in Figure 1.9. Time is plotted on a vertical axis and space coordinates on a horizontal axis. 
World line represents the plot of position of an object w.r.t. time. Hence, an event is a point in space–
time and world line indicates a line of space–time. Line of simultaneity is the line parallel to x-axis, 
and it makes a difference in Galilean relativity and special relativity. In Galilean relativity, all events 
occur simultaneously on line of simultaneity.

Figure 1.9 Space–time diagram.

Time

Position

World line

Event

Future

Line of
simultaneity

Past

The slope of world line has significant meaning.

 
Velocity

Slope of world line
=

1

 
(46)

This is valid for “+ve” and “−ve” slopes. If an object changes its velocity, then the world line is curved 
and velocity is represented by tangent to curve.

In conclusion, the space time as interpreted by minkowski is: 
 The views of space and time which I wish to lay before you have spring from the soil of experimental 
physics, and therein lies their strength. They are radical. Henceforth time by itself and space by itself 
are doomed to fade away in mere shadows and only a union of two will preserve an independent reality. 
(Herman Minkowski, 1908, Assembly of German Natural Scientists and Physicians)

The motion of objects was provided by earth itself: from astronomical calculations, it was 
predicted to be 30,000 m/s. as this speed is 4 orders smaller than the velocity of light, the 
maximum difference expected in terrestrial measurements was 0.0002c.
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1.9 Twin Paradox: Doppler’s Relativistic Effect

Twin paradox was a consequence of time dilation. Suppose Jack and Jill are twins of 20 years 
of age; both carry identical clocks that have been synchronized. Suppose Jack starts his journey to 
planet A, which is 10 light years away from earth [1 light year = 9.46 × 1015 m]. The spaceship of 
Jack is moving with a velocity of 0.5c relative to Jill’s inertial frame. But then Jack decided to come 
back home. But during his journey, he found that many things have changed. Above all, he found 
the most astonishing fact that his brother Jill was 40 years old and he was only 34.6 years. Hence, 
the most interesting question is, which twin is younger and which one develops the sign of ageing? 
As Jack is traveling in spaceship, his motion may not be uniform. Therefore, his reference frame 
may not be regarded as an inertial frame of reference. Hence, we cannot apply the time dilation on 
Jack. But because Jill is in an inertial frame, he can apply the time dilation formula. Hence, he finds 
the age of Jack to be 34.6 years. But jack spends 17.3 years going to other planets and then coming 
back. Another important consequence is the shift in frequency for light emitted by atoms in motion. 
It is also known as Doppler effect, as we are familiar with the fact that the whistle of a train gets high 
pitched as it approaches the observer and vice versa. But Doppler effect is different for light waves. 
Light waves do not require any material medium for their propagation and it is hard to find out its 
relative motion w.r.t. an observer.

Let us consider a source of light wave at rest in frame S, emitting waves with wavelength l and 
frequency f (Figure 1.10).

The main objective is to determine the wavelength l′ and frequency f ′ of wave as observed by an 
observer in frame S′. Frame S′ is approaching with speed v towards a light source. If they approach 
each other, then we expect f ′ to be greater than f. Mathematically, we can explain it as

Between the wavefronts, the time of emission is T ′ as measured by S′.
The distance travelled by wave front is vT ′ and light source will advance with cT ′.
The distance between successive wavefronts is

 l¢ ¢ ¢= -cT vT  (47)

 

c

f
c v T

¢
¢= -( )
 

(48)

 
f

c

c v T
¢

¢
=

-( )  
(49a)

According to the time dilation T
0
 = gT  ′

0

Figure 1.10 Observer S′ measures the wavelength to be l′.

S′
λ′

O′

Observer
c

v

X′
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Here, T T

T
T

f
c

c v T

f

v
c

v
c

f

f

v
c

v
c

=

=

=
( )

-( )

=
- ( )
- ( )

=
+ ( )
-

g

g

g

¢

¢

¢

¢

¢

1

1

1

1

2

(( )
f

 (49b)

 

f

v
c

v
c

fobs source=
+ ( )

− ( )

1

1
 

(50)

This is relativistic Doppler shift formula, and it depends on the velocity v of inertial frame S′. If the 
objects recede from each other, then replace v by −v and hence Eqn. (50) becomes

 

f

v
c

v
c

fobs source=
- ( )
+ ( )

1

1
 

(51)

The red shift and blue shift of stars can be explained using Doppler shift. When shift of absorp-
tion lines occurs towards long wavelength, that is, towards red end of the spectrum, it is called red 
shift. Blue shift occurs when lines move toward short wavelength. Blue shift indicates that stars are 
approaching and red shift indicates that stars are receding. Edward Hubble explained that universe is 
expanding in accordance with Doppler effect.

1.10 Relativistic Mechanics

Like the relativistic kinematics, relativistic dynamics also propagated its roots. Einstein’s equivalence 
of mass and energy brought a revolution to dynamic world. We will discuss linear momentum, energy, 
mass and force independently in the following sections.

1.10.1 Linear Momentum
The classical definition of momentum is p = mv, where m is mass and v velocity of object. In relativ-
istic approach, where the speed of particles is approachable to velocity of light, the conservation of 
momentum does not follow. That is because in the inertial frames of reference, velocity differs accord-
ing to Lorentz transformations.
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But the laws of physics must be valid in all reference frames. Hence, there is a need of modification 

for the classical definition of momentum. In classical definition, the particle velocity is defined as the 
rate of change of displacement.

 
u

x

t
=
D

D 0  (52a)

Hence, Newtonian momentum can be written as

 
p m

x

t
Newton =

∆

∆ 0  (52b)

Equation (52b) does not take relativistic time; it just takes ∆t
0
 to be the time measured by the other 

observer. If we want to calculate relativistic momentum, then we have to take relativistic time into 
account as follows:

 
p m

x

t
relativistic =

∆

∆ 0′  (53)

According to time dilation, proper time and relativistic time are related as

∆ ∆

∆
∆

t t

t
t

0 0

0
0

=

=

g

g

′

′

Substituting in Eqn. (53), we obtain

 

p
x

t
p

p pclassical

relativistic

relativistic

m= =

=

g g

g

∆

∆ 0
Newontian

 

(54)

Here, g also has the same functional form of 
1

1 2 2−











u c/
 as that of Lorentz transformations except 

for the fact that in this case it contains u instead of v. Equation (54) implies the conservation of 
momentum irrespective of motion of inertial frames of reference.

1.10.2 Mass
If we rewrite Eqn. (54) as

 
p m urel rel=

 (55)

where

as
relm =

³

g

g

m m is the massof particle and  be the velocity, u

1;; hence, relm m³  
(56)
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Therefore, m
m

u

c

rel =

−1
2

2

Thus, mass varies according to the velocity of particle. Hence, for relativistic mechanics, mass is not 
an invariant quantity unlike momentum. As the velocity of the particle approaches velocity of light, 
the mass of particle rises asymptotically to infinity.

1.10.3 Force
According to Newton’s second law, force is defined as the rate of change of momentum.

 

F
dp

dt
=

 
(57a)

F
d mu

dt
ma=

( )
= ( )

g
g

F = g ma seems to be the expression, but both g and u are functions of time.

 
F mu

d

dt
m

du

dt
= +

g
g

 
(57b)

 
F mu

d

dt
m a= +

g
g

 
(57c)

If the particle moves at a constant speed u, then Eqn. (57c) becomes

 
F mu

d

dt
=

g

 
(58)

In other words, deriving acceleration directly from Newton’s second law is as follows:

F = m
rel.

a

 
a

F

m

F u
c

mrel

= =

−1
2

2

(using56)
 (59)

Hence, acceleration decreases as the velocity of the particle approaches velocity of light. In other 
words, we can also say that it is almost impossible to raise a particle from rest to speed of light.

1.10.4 Energy
In classical mechanics, the kinetic energy is described as follows:

 
K mu=

1

2
2

 
(60)

In relativistic regime, this equation also needs to be modified by taking relativistic effects into 
 consideration. Hence, we proceed as follows: kinetic energy can also be defined as work done by an 
internal force in increasing the speed of the particle:
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(61)

Now evaluating
dp

dt
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dt
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dt
m u
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dt

m du dt

u
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1

1

1
2
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(62)

Substituting (62) in (61)

W

m
du

dt
udt

u
c

dx

dt
u

u

=

æ
è
ç

ö
ø
÷

-( )
=é

ëê
ù
ûúò

1
2

2

3 2
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/

 

W m
udu

u
c

o

u

=
-( )ò

1
2

2

3 2/

 

(63)

 

W
mc

u
c

mc K=

−

− =

2

2

2

2

1
 

(64)

Equation (64) is obtained if we accelerate a particle from rest to some final velocity c. It is known 
that work done by the forces acting on a particle equals the change in kinetic energy of the particle.  
At u << c,Eqn. (64) becomes

                                                 

K mc
u

c
mc

K mc
u

c
mc

=

=

2 2

2 2

1

1
1

2

2

2

1 2

2

2

−








 −

+








 −

− /

 
(expanding using binomial expansion)

K mu=

1

2
2  

which is a classical result. The term mc2 is called rest mass energy of particle. From Eqn. (64),

K
mc

u c
mc=

1 /

2

2

2

−

−

2

K = g mc2 − mc2

K + mc2 = g mc2

 K + mc2 = E (65)
where E = g mc2 (66)
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Equation (66) is the famous Einstein’s mass energy equivalence. We have two relations: E = g mc2 and 
p = g mu; squaring and subtracting these equations lead to the following equation:

 E2 = p2c2 + (mc2)2 (67)

When the particle is at rest, that is, p = 0

E = mc2

which clearly implies that total energy is equal to rest mass energy. For particles with zero mass such 
as  photons, m = 0,

 E = pc (68)

Equation (68) implies the relation between energy and momentum for photons traveling at a speed of 
light. The energy of electrons or other subatomic particles is eV, as the particles are accelerated using 
a potential difference

1 eV = 1.6 × 10−19 J

Using this, we can calculate rest mass energy of electron as

m ce
2 31 8

14

9.11 10 kg 3 10 m/s

8.2 10 J

= × ×

= ×

−

−

( )( )
2

In eV, it becomes 0.511 MeV, which is the rest mass energy of electrons.

at the age of 26 years, albert einstein in his theory of relativity wrote:

The relativity arose from necessity, from serious and deep contradictions in old theory 
from which there seemed no escape. The strength of the new theory lies in the con-
sistency and simplicity with which it solves all these difficulties, using only a few very 
convincing assumptions.

1.11 Velocity Addition in Special Relativity

Consider an object moving relative to two observers S and S′. Then the components of velocity in S 
frame are

 
v

dx

dt
v

dy

dt
v

dz

dt
x y z= = =, ,

 
(69)

and for observer in S1 the components are

 
v

dx

dt
v

dy

dt
v

dz

dt
x y z¢

¢

¢

¢

¢
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¢

¢

¢

= = =, ,
 

(70)
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We have to obtain expressions for dx, dy, dz and dt. The Lorentz transformations are 

x x ut x x ut

y y y y

z z z z

t t
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t t
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Differentiating them, we obtain
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Now, substitute this set of differentials to obtain values of velocities:
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(71)

 

Similarly, the components vy¢ and vz¢ are obtained as follows:
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and
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Corresponding equations relative to observer S in terms of S′ are

 

v
v u

uv c
x

x

x
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+

1+
¢

/ 2

 (74)
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v
v

uv c
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z
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=
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¢

g / 2( )
 (76)

Equations (71)–(76) are velocity addition rules.

Mass shows two interesting properties: gravitational attraction and inertia. Gravitational force is 
given by GMm/R2 and inertial property is given by F = ma, where G is a constant. Newton gave 
the general theory of relativity to describe gravitational mass and inertial mass. he gave the 
following two postulates:

 (i) The laws of nature have same form for observers in all reference frames whether 
 accelerated or not.

 (ii) for any point near its vicinity, the gravitational field is equivalent to an accelerated 
reference frame in the absence of gravitational fields. This is also known as principle of 
equivalence.

SUMMARY

The chapter deals with the frames of reference and relative motion of objects. The frames can be 
inertial and non-inertial. The concept of “relativity” and “special theory of relativity” by Einstein is 
explained. The set of “Galilean Transformation equation” and “Lorentz transformation equations” 
have been derived. Michelson–Morley experiment demonstrated the absence of any material medium 
such as ether. Lorentz and Fitzgerald explained the negative results obtained from Michelson–Morley 
experiment. Einstein also explained the Michelson–Morley results and further he said that the light 
has constant velocity c in all frames of reference. The concept of “simultaneity” demonstrated that the 
two events occurring at the same time appear simultaneously to the observer. During relative motion, 

the length of object appears to be contracted by a factor of  
−  
 

2

2
1

u

c
, where u is the velocity of the 

object.
The chapter deals with the transformations when the particle moves from one frame of reference to 

other. Lorentz contractions and time dilations are explained under the relativistic motion of particle. 
The twin paradox, which is a consequence of time dilation, is explained according to which one of 
the twin is younger than the other. This further establishes the slow motion for moving frames. As a 
consequence of relativity, the relativistic dynamics and kinematics are also explained, which gave rise 
to relativistic energy, momentum and mass.
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SOLVED PROBLEMS

Q. 1: The length of paths in 11 m for two beams in Michelson–Morley experiment. The wavelength 
is 6,000Å. Calculate the velocity of earth w.r.t. other planet, if the expected fringe shift is 0.4 fringe.

Ans: The fringe shift is given by
2

2

2Lu
S

c λ
=

λ
−

= = × = = ×
7 8

11 , 6 10 , 0.4, 3 10 /L m m S c m s

( )
7

8 46 10 0.4
3 10  3.13 10 /

2 11
u m s

−
× ×

= × = ×
×

Q. 2: Show by Lorentz transformations that

2 2 2 2 2 2x c t x c t− = −′ ′

Ans: ( , , , )x y z t  are space–time coordinates in the inertial frame S and ( , , , )x y z t′ ′ ′ ′  are space–time 
coordinates for S′ frame of reference. S ′  is moving with uniform velocity u

�  w.r.t. S. According to 
Lorentz transformation equations

2 21 /

x ut
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v c

−
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−
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Subtracting (b) from (a), we obtain

    

2 2
2 2 2

2 2
2 2 2

2 2

1 1

1 /

u u
x c t

c c
x c t

u c

   
− − −   

   − =′ ′
−

2 2 2 2 2 2x c t x c t− = −′ ′  (c)

Hence, 2 2 2x c t−′ ′ is Lorentz invariant.

Q. 3: An observer A observes the separation between events to be 1,000 m and −

×
7

6 10 s. What should 
be the velocity of observer B moving w.r.t. A, so that the events appear to be simultaneous?

Ans: Let t be the time event in frame S for observer A and 1t ′  be the time of event in frame S′ . Let 
2
t  

be the time of event in frame S for observer B and 2t ′  for frame ′S .
Then
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Q. 4: How fast should a rocket be moving such that its length appears to be 90 percent of its original 
length?

Ans: According to length contraction

 
=

−

o 2

21

L
L

u
c

 

2

o o

90
1 0.9

100

L L
u c

L L

   
= − = =   

   

 1 0.9 0.1 .316u c c c= − = =

 .316 .u c=

Q. 5: What is the observed length for a rod measured by an observer at rest. When the rod moves 

along its length with velocity 
5

3
c?

Ans:

 
2

2o 1 uL L
c

= −

 
2

2

5

9
u
c
=

 = − =
o o

5 2
1
9 3

L L L

Hence, 
=

o

2

3
L L

Q. 6: Brian goes to another planet on a rocket moving with velocity 3
4
c . The distance between the 

planet and earth is 40 years. Brian’s twin brother Adam is on planet earth. What will be the age differ-
ence between Brian and Adam when he comes back to earth.

Ans: For Adam, the journey appears to be

= × × =
3

2 40 60 years
4

For Brian, the time interval is

 
 = − = −′   

2
2

2

3
1 60 1

4
ut t
c
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 = − = =′
9 60

60 1 7 15 7
16 4

t

 
=′ 39.68 yearst

Hence, Brian is younger to Adams.

Q. 7: The rest length of rod is 40 cm. Obtain the length of rod observed by an observer moving with 
velocity 0.1c.

Ans: 

 2

2o 1 uL L
c

= −

 
= −40 1 0.1L

 
= =40 0.9 37.94 cmL

Q. 8: A particle at rest has half-life of 19 ns. Obtain its half-life when it moves with speed 0.6c?

Ans:

 −
= ×′

9
19 10 st

 ( )

−×′
= = =

−−

9

2 2

2

19 10
( 0.6 )

1 0.61

t
t u c

u
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− −

× ×

= =

−

9 919 10 19 10

0.81 0.36
t

 
− −

= × = ×
9 823.75 10 2.375 10 st

Hence t  > t ′

Q. 9: A clock gives accurate time. At what speed it should be moved relative to an observer so that it 
loses 2 minutes in 24 hours?

Ans: The time is given to be = ×24 h 24 60

=′ 1440mt

After losing 2 minutes, it becomes

 
= + =1440 2 1442 mt
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             0.0527u c=

Q. 10: Two photons are traveling in opposite directions. Obtain the relative velocity between them.

Ans: The =xu c  and the velocity of second photon is c− . Hence, the speed of photon is

 
2

1

x
x

x

u v
u

vu

c

−
=′

−

 

( )
( )( )

2

2

2
1

x

c c c
u c

c c

c

− −
= = =′

−
−

Hence, the two photons move with relative velocity c.

Q. 11: Two electrons are moving opposite to each other with velocity 0.5c and 0.75c. Calculate their 
relative speed.

Ans: Here 0.5xu c=  and 0.75v c= −

Now, the relative speed is given by

( )
( )( )

2 2

0.5 0.75

0.5 0.75
1 1

x
x

x

c cu v
u

u v c c

c c

− −−
= =′

−
− −

   
1.25

1 0.375
x

c
u =′

+

  
1.25

1.375
x

c
u =′

  
0.909xu c=′
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Q. 12: An electron has kinetic energy 1.02 MeV. Find out its speed, provided the rest mass energy of 
electron is 0.51 MeV.

Ans: 2Total energy (E) KE mc= +

2
rel 1.02 0.51 MeVm c = +

 2
rel 1.53 MeVm c =  (a)

 Rest mass energy = 2 0.51 MeVmc =  (b)

Dividing Eqs (a) and (b), we obtain

3m m=
rel

According to relativistic equation:

 
rel 2

21

m
m

u
c

=

−

 2

2

3

1

m
m

u
c

=

−

 

2

2

8

9

u

c
=

 u = 0.94c.

Q. 13: What will be the ratio of mass to its rest mass when a particle moves with velocity 0.9c?

Ans:

 
rel 2

21

m
m

v
c

=

−

 ( )

rel

2

1

1 0.9

m

m
=

−

 
rel 1 1

0.43581 0.81

m

m
= =

−

 

rel 2.29.
m

m
=
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Q. 14: Find out the mean life of π +  mesons traveling with velocity −

×
8

2.8 10 m/s . The proper life 
time of mesons is −

×
8

2.5 10 m/s .

Ans:
 

=

−

′

2

2
1

t
t

u

c

 

−×
=

 ×
−  × 

8

8

8

2.5 10

2.5 10
1

3 10

t

 

−

−
×

= = ×

−

8
82.5 10

6.12 10 s
1 0.333

t

Q. 15: The life-time for µ-meson is −

×
6

2 10 s . If it travels with velocity 0.8c, then find out the dis-
tance which it will travel before decaying.

Ans: 
′

=

−
2

21

t
t

u
c

The distance travelled will be x t u= ′ , u = 0.8c and t = 2 × 10−6 s

 
−

× ×

=

−

6
2 10 0.8

1 0.64

c

x

 

−

× × × ×

= =

6 8
2 10 0.8 3 10

800m
0.6

x

Q. 16: Find out the total energy of proton at (a) rest and (b) when it is moving with velocity 
×

8
2.8 10 m/s .

Ans: (a) At rest, the total energy

 2E mc=
    (in non-relativistic regine)

 
( ) ( )

227 81.673 10 kg 3.0 10 m/sE −
= × × ×

 
27 16 21.673 10 9 10 kg m/sE −

= × × ×

 
11

19

1.673 10 9
eV

1.6 10
E

−

−

× ×
=

×

 89.41 10 eVE +

= ×

 941 MeVE =
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 (b) When it moves with velocity ×
8

2.8 10 m/s

 
82.8 10 m/su = ×

 

27

rel 2 28

2 8

1.673 10 kg

2.8 101 1
3 10

m
m

u

c

−×
= =

 ×− −  × 

 

27

rel

1.673 10 kg

1 0.87108
m

−

×

=

−

 
27

rel

1.673 10 kg

0.35905
m

−

×

=

 
27

rel 4.66 10 kgm −

= ×

Total energy = m
rel

c2

 
( )−

−

× × ×
=

×

2
27 8

19

4.66 10 3 10

eV
1.6 10

E

 
= ×

8
26.21 10 eVE

 
= 2621MeVE

Q. 17: The total energy of particle is thrice its rest energy. Obtain the speed of particle.

Ans: The total energy of particle is the sum of kinetic energy and heat energy 
o
E

Total = +
2Kinetic energy [ is rest mass]E mc m

Here 23E mc=

 2 23 KEmc mc= +

 ( )2 2 23 relmc m m c mc= − +

 2 2
rel3mc m c=

 
2

2

3

1

m
m

u
c

=

−

 
( )

1/22

23 1 1u
c

− =

 

( )
1/22

29 1 1u
c

− =

 
2

2

1
1

9
u
c

− =
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2

2

1 8
1

9 9
u
c
= − =

8 0.9429u c c= =

Q. 18: Prove that three-dimensional volume element dx dy dz is not invariant for Lorentz transforma-
tions, but the space–time volume dx dy dz dt is invariant under the Lorentz transformation.

Ans: Under Lorentz transformation, the proper length is given by

2

2
1

x
x

u

c

=′

−

Hence, 
2

2
1

dx
dx

u

c

=′

−

; whereas dy dy=′  and dz dz=′

Hence, dx dy dz dx dy dz≠′ ′ ′ , which indicates the non-invariance of volume element under Lorentz 
transformation.

Now the transformation for time is given by

2

21

t
t

u
c

′
=

−

  

1/22

21 udt dt
c

 = −′   

Now

( )= −′ ′ ′ ′

−

1/22

2
2

2

1

1

dx vdx dy dz dt dy dz dt
cv

c

=′ ′ ′ ′dx dy dz dt dxdydzdt

Hence, the four-dimensional volume element is invariant under Lorentz transformations.

Q. 19: Prove the invariance of 
 

−  

2

2

2

E
p

c
 under Lorentz transformation.

Ans:

2

2

.

1

rel

m
p m u u

u

c

= =

−
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( )

2 2
2

2

21

m u
p

u
c

=

−

 (a)

E is given by

   

2
2

rel 2

2
1

mc
E m c

u

c

= =

−

   

2 4
2

2

2
1

m c
E

u

c

=
 
− 

 

 ( )

2 2 2

2 2

21

E m c

c u
c

=

−

 (b)

Subtracting Eqn. (b) from (a)

      

( )
2 2

2 2 2

2 2

2
1

E m
p u c

c u

c

− = −
 
− 

 

 

2
2 2

22
2

2 2

2

1

1

u
m c

cE
p

c u

c

 
− 

 − =
 
− 

 
2

2 2 2

2
constant

E
p m c

c
− = − =

Hence, 
 

−  

2

2

2

E
p

c
 is invariant under Lorentz transformations.

Q. 20: Obtain the relation = +
2 2 2 4E p c m c  under the Lorentz invariance of scalar product of 

momentum vectors 
 
  

, , ,x y z

iE
p p p

c
.

Ans: We have obtained − =

2

2

2
constant

E
p

c

Where 2 2constant m c= −

2
2 2 2

2

E
p m c

c
− = −

2 2 2 2 4p c E m c− = −
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2 2 2 2 4E p c m c= +

2 2 2 4=E p c m c+

Q. 21: Give the increase in the mass of proton, when it is accelerated to KE of 400 MeV?

Ans: The kinetic energy for moving photon is

( )= −
2K relm m c

 
 
 = −
 

− 
 

2

2

2

1
K 1

1

mc
u

c

27mass of proton 1.67 10 kgm −

= = ×

Gain is mass is ( relm m− )

  
( )

2

21
rel

m
m m m

u
c

− = −

−

    
2

2

1
1

1

m
u
c

 
 

= − 
 −
 

  − = ×
2

K
relm m m

mc

  ( )

6 19

28

400 10 1.6 10

3 10
relm m

−
× × ×

− =
×

 
13

29

16

640 10
71.11 10 kg

9 10
relm m

−

−
×

− = = ×

×

 
31.711 10 kgrelm m −

− = ×

Q. 22: At what speed an electron should move so that its mass becomes equal to the rest mass of 
proton?

Ans: 
2

2
1

rel

m
m

u

c

=

−
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According to statement

Mass of electron  rest mass of proton=

2

2

Rest mass of  electron
Rest mass of  proton

1
u

c

=

−

 

−

−
×

= ×

−

31
27

2

2

9.1 10
1.6 10

1
u

c

 
−

−

−

×
− = = ×

×

2 31
4

2 27

9.1 10
1 5.43 10

16 10

u

c

 −

− = ×

2
8

2
1 69 10
u

c

 −

− × =

2
8

2
1 29.69 10

u

c

 
≈

2

2
1
u

c

 ≈u c

Hence, the electron should be moving with velocity of light.

Q. 23: No signal can travel faster than light. Prove it.

Ans:

 2
1

x
x

x

v v
v

v v

c

+′
=

′
+

If , thenxv v c= =′

 

+
= =

+
2

.
.

1
x

c c
v c

c c

c

Hence, the velocity of light can be added to any velocity to obtain the velocity of light.
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OBJECTIVE QUESTIONS

 1. An inertial frame is 

 (a) moving with uniform velocity or at rest (b) decelerated
 (c) accelerated (d) none of the above

 2. The presence/absence of ether using Michelson interferometer works on the principle of

 (a) interference (b) polarization
 (c) diffraction (d) dispersion

 3. The momentum for a photon of energy E is given by

 (a) 2/E c  (b) 4/E c
 (c) /E c  (d) 3/E c

 4. If the speed of light is c in all the directions for a given frame, then the frame is said to be

 (a) accelerated (b) decelerated
 (c) inertial (d) non-inertial

 5. Special theory of relativity states that

 (a) mass and time are relative
 (b) Newton’s laws are valid in all the inertial frames of reference
 (c) correspondence of laws hold good
 (d) none of the above

 6. The increase in kinetic energy is given by

 (a) ( ) 2
o /m m c−  (b) ( )−

2
om m c

 (c) 2
om c  (d) ( ) 2

om m c−

 7.  If two velocities v and c are added such that they are inclined at angle θ , then the velocity after 
addition is

 (a) /v c v c+ −  (b) c

 (c) cosvc θ  (d) 2 2 2 cosv c vc θ+ +

 8. Pair production phenomena requires minimum energy of

 (a) 13.6 MeV (b) 1.02 MeV
 (c) 15.4 MeV (d) 10.2 MeV

 9. The postulates of special theory of relativity are valid for

 (a) inertial frame
 (b) non-inertial frame
 (c) both Inertial and non-inertial frame
 (d) neither inertial, nor non-inertial
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 10. The rest mass of photon is

 (a) infinite (b) o2m
 (c) 0  (d) p/c

 11. Two photons approaching each other will have relative velocity of

 (a) c  (b) 2c

 (c) 
2

c
 (d) 2c

 12. The kinetic energy of particle is equal to rest mass energy at a velocity of

 (a) 3c  (b) 4c

 (c) 2c  (d) 3

2
c

 13. If a body moves with velocity of light, then its mass becomes

 (a) zero (b) twice
 (c) infinite (d) does not change

 14. The motion and velocity of starts is best explained by

 (a) Minkowski space (b) Lorentz transformation
 (c) Doppler effect (d) Galilean transformation

 15. A clock runs slow in

 (a) rest frame (b) inertial frame
 (c) moving frame (d) accelerated frame

 16. µ -meson decay provides an evidence for

 (a) energy relativity (b) Lorentz contraction
 (c) momentum relativity (d) time dilation

 17. Relativistic energy is given by

 (a) 3 2 2
op c m+  (b) pc

 (c) 2mv pc+  (d) 2 2 2 4
op c m c+

 18. Maxwell’s equations are not invariant for

 (a) Lorentz transformation (b) Galilean transformation
 (c) both of them (d) none of them

 19.  When one sibling among twins goes to moon and comes back (with relativistic velocities), then 
he will be

 (a) of the same age as his other sibling (b) become younger
 (c) get older (d) none of the above
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 20. Relativistic time is given by

 (a) 
2 21 /

t

u c

′

−

 (b) ( )2 21 /t u c−′

 (c) 
2

2 21 /

ux
t

c

u c

′
+′

−

 (d) t ′

 1. (c)

 2. (a)

 3. (c)

 4. (c)

 5. (b)

 6. (d)

 7. (b)

 8. (b)

 9. (a)

 10. (c)

 11. (a)

 12. (d)

 13. (c)

 14. (c)

 15. (c)

 16. (d)

 17. (d)

 18. (a)

 19. (b)

 20. (c)

ANSWERS
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Micro-Assessment Questions

 1. Describe the postulates of special theory of relativity.
 2. Explain time dilation and length contraction.
 3. What do you understand by twin paradox?
 4. Why the compensating glass plate is used in Michelson–Morley Experiment?
 5. Explain the space–time or Minkowski space.
 6. How does the mass vary with velocity? Explain.
 7. What do you understand by simultaneity?
 8. Show that the motion of body is identical in all inertial frames of reference.
 9. Why the compensating mirror is used in Michelson–Morley experiment?
 10. No signal can travel faster than velocity of light. Explain.

Critical Thinking Questions

 1.  For an inertial system S, an event is observed to take place at point A on the x-axis and 10−6 s later 
another event takes place at point B, 600 m further down. Find the magnitude and direction of 
the velocity of S′ w.r.t. S in which these two events appear simultaneous.

 2.  Show that Maxwell’s equations for the propagation of electromagnetic waves are Lorentz 
invariant.

 3.  A neutral K meson decays in flight via K  0 → p + + p  −. If the negative pion is produced at rest, 
calculate the kinetic energy of the positive pion. [mass of K  0 is 498 MeV/c2 and that of p ° is 140 
MeV/c2].

 4.  A particle decays into two particles of mass M1 and M2 with a release of energy Q. Calculate 
relativistically the energy carried by the decay products in the rest frame of the decaying 
particle.

 5.  If a rod is to appear shrunk by half along its direction of motion, at what speed should it travel?

 6.  A biker is moving with a speed of 0.600c past a stationary observer. If the rider tosses a coin in 
the forward direction with a speed of 0.400c with respect to himself, what is the speed of the coin 
as obtained by the stationary observer?

 7.  The radius of earth is 6,400 km and its orbital speed about the sun is 30 km−1. How much does 
earth’s diameter appear to be shortened to an observer on the sun, due to earth’s orbital motion?

 8. Establish Einstein’s mass–energy equivalence.
 9.  Derive the relativistic velocity addition theorem and show its consistency with Einstein’s second 

postulate.
 10. How can photons have momentum when they are massless particles?

 11. Describe Michelson–Morley experiment in detail along with the results.
 12.  Obtain kinetic energy of particle in relativistic terms. Show that at smaller velocities relativistic 

kinetic energy reduces to classical energy.
 13. For relativistic particles, obtain the relation between energy and momentum.
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 14. Obtain the total energy for 4 MeV electron.
 15. Obtain the kinetic energy for electron moving with 0.96 times the velocity of light.
 16. What is the total energy of proton and electron both with momentum 3 MeV/c?

Graded Questions

 1.  Ionized calcium atoms (in ionosphere) produce very strong absorption at 394 nm for a galaxy at 
rest with respect to the earth. For the galaxy Hydra, which is 200 million light years away, this 
absorption is shifted to 475 nm. Obtain the speed of Hydra with respect to earth?

 2.  A 130-MeV electron moves along the axis of an evacuated tube of length 4.5 m fixed to the labora-
tory frame. What length of the tube would be measured by the observer moving with the electron?

 3.  A man has a mass of 110 kg on earth. When he is in the space craft, an observer from the earth 
registers his mass as 118 kg. Obtain the speed of the space craft.

 4.  An observer on earth sees a spaceship at an altitude of 250 m moving downward toward the earth 
at 0.960c. What is the altitude of the spaceship as measured by an observer in the spaceship?

 5.  A spaceship moves with speed u = 0.6c and sends a radio signal from the station to earth. 
This signal is received on earth 1,800 s later. How long does the spaceship take to reach the earth 
according to the observers on earth?

 6.  The mean lifetime of muons at rest is 2.2 × 10−6 s. The observed mean lifetime of muons as 
measured in the laboratory is 6.6 × 10−6 s. Find

 (a) the effective mass of a muon at this speed when its rest mass is 207 MeV/c2

 (b) its kinetic energy
 (c) its momentum

 7. Calculate the energy that can be obtained from complete annihilation of 2.5 g of mass.
 8.  What is the speed of a proton whose kinetic energy equals its rest energy? Does the result depend 

on the mass of proton?
 9.  What is the speed of a particle when accelerated to 4.0 GeV when the particle is (a) proton (b) 

electron.
 10. What potential difference is required to accelerate an electron from rest to velocity 0.5c?
 11.  The period of a pendulum is measured to be 8.0 s in the rest frame of the pendulum. What is the 

period of the pendulum when measured by an observer moving at a speed of 0.99c with respect 
to the pendulum?

 12.  At what velocity does the relativistic kinetic energy differ from the classical energy by (a) 5% and 
(b) 10%?

 13.  Prove that if u/c < 1, the kinetic energy of a particle will be much less than its rest energy. Further, 
show that the relativistic expression reduces to the classical one for small velocities.

 14.  An electron has kinetic energy equal to its rest energy. Show that the energy of a photon that has 
the same momentum as this electron is given by Eg = 3E , where E = mc2.

 15.  Find the Doppler shift in wavelength of H line at 6,563 Å emitted by a star receding with a 
 relative velocity equal to velocity of light.

 16.  A neutrino of energy 3.5 GeV collides with an electron. Calculate the maximum momentum 
transfer to the electron.



46  • chapTer 1/relaTiviTy

 17.  A particle of mass M1 collides elastically with a target particle of mass M2 at relativistic energy. 
Show that the maximum angle at which M1 is scattered in the laboratory system is dependent 
only on the masses of particles provided M1 > M2.

 18.  Find the wavelength shift in the Doppler effect for the sodium line 589 nm emitted by a source 
moving in a circle with a constant speed 0.7c observed by a stationary person.

Remember and Understand

 (i)  The laws of physics have same validity in all inertial frames of reference. This is also known as 
principle of special relativity.

 (ii)  The speed of light, c, is same in all directions for all inertial system. This is also called principle 
of constancy of speed of light.

  Summarizing all the equations:
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 (iii)  Mass varies as the velocity of particle. Thus, for relativistic mechanics, mass is not an invariant 
quantity unlike momentum. As the velocity of the particle approaches velocity of light, the mass 
of particle rises asymptotically to infinity.

   Corresponding equations relative to observer S in terms of S′ are
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These are the velocity addition rules.
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Newton and Maxwell are the pillars of mechanics and electromagnetism, respectively. Classical mechanics 
was established by many great personalities such as Gibbs, Stefan, Boltzmann, Helmholtz, Lord Kelvin, 
Carnot, and Clausius. The following four Maxwell’s equations formed a strong base for the physics:

 E ds
q

. =∫
e0

�  (1)

 E .dl
d

dt
B=

−
∫

f
�  (2)

2

Quantum Mechanics—I

Introduction to Quantum Physics

Learning Objectives

ww To understand the thermal radiations and distribution of frequencies in continuous spectrum

ww To understand Prevost theory of exchanges

ww To get insight into blackbody radiations and blackbody spectrum

ww To obtain Stefan’s law and Wien’s law

ww To understand the distribution of intensity for blackbody radiations corresponding to different 
temperatures

ww To understand Planck’s hypothesis of discrete energy in terms of “photons”

ww To learn the Rayleigh–Jeans law and occurrence of ultraviolet catastrophe

ww To learn and understand photoelectric effect

ww To understand threshold frequency and work function for surface and deeper electrons

ww To get insight into photoelectric effect and Millikan’s experiment

ww To learn about stopping potential and its variation with frequency f

ww To learn about photon mass

ww To obtain the change in wavelength upon incidence of radiations on free electrons (Compton effect)

ww To understand the characteristic X-rays and continuous X-rays

ww To learn Moseley’s law

ww To understand X-ray crystallography in terms of Bragg’s reflection planes

 Keywords: quantum mechanics, thermal radiations, blackbody radiations, Planck’s hypothesis, 
photoelectric effect, Rayleigh–Jeans law, ultraviolet catastrophe, Compton effect
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 B ds. =∫ 0�
 (3)

 B dl I
d

dt
E. = +∫ m e m
f

0 0 0�  (4)

But the Maxwell’s equations and Newton’s laws could not be applied to an atom. In addition to this, 
the intensity of radiations that come out from the closed cavity could not be calculated using the 
Maxwell’s or Newton’s approach. Later on, Max Planck discovered a solution to this problem in 1900.

Further more, the efforts of Planck and Einstein led to the formulation of the quantum mechanics. 
Einstein explained photoelectric effect along with the quantization of energy. In the sections that follow, 
the main aim is to discuss the quantum theory of light and formulation of the quantum mechanics.

2.1 Thermal Radiations

Any object emits radiation at the cost of its energy, and if any object absorbs energy, then the energy 
of the object increases. Whenever an object emits radiation, two kinds of spectra arise: continuous 
and discrete. In continuous spectrum, the distribution of frequencies or wavelengths is continuous. 
The discrete spectrum consists of a discrete group of energies. The characteristics of an object and its 
temperature determine the electromagnetic radiations emitted or absorbed. Whenever a body emits or 
absorbs electromagnetic radiations by virtue of its temperature, then those electromagnetic radiations 
are termed as thermal/heat radiation.

Thomas Wedgewood noted the features of all heated objects. In 1792, he observed that all objects 
became red at the same temperature irrespective of their size/shape and chemical nature. In the same 
year, Pierre Prevost, a Swiss physicist, proposed that all the bodies emit heat at all times; at higher tem-
perature, the rate of emission is fast, whereas at lower temperature, the rate is small. Hence, the object 
will try to be in thermal equilibrium with all the surrounding objects, that is, the rate of absorption is 
equal to the rate of emission of radiations.

Prevost gave the theory of exchanges from which it can be concluded that good absorbers are 
good emitters and vice versa. This condition is very important to maintain thermal equilibrium.  
If an object does not lose energy (in the form of heat radiation), then it will continue to warm up even 
more than the surrounding temperature. But, usually in everyday experience, it is observed that the 
objects are neither lower nor higher than the surrounding temperatures.
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Figure 2.1 Emission spectra for an object at different temperatures.
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Figure 2.1 shows the emission spectra for glowing solids. It is observed that as the temperature of 
object increases, the wavelength shifts to lower wavelength side. Below 1,000 K, the wavelengths of 
emitted radiations fall in invisible infrared region. Radiations of lower wavelength start appearing in 
the spectrum with a rise in temperature. Moreover, with the rise in temperature, the color of objects 
also changes, that is, red → orange → yellow → white.

2.2 Blackbody Radiation

An object that absorbs all electromagnetic radiations falling on it and consequently appears black is 
called a blackbody. In general, everyday objects do not absorb all the light incident on them. Hence, it 
is difficult to find a perfect absorber or emitter of light. According to Gustav Kirchhoff, for any body 
in thermal equilibrium with radiation, the power absorbed is proportional to the power emitted as 
follows:

 
E J f T A= ( ),  (5)

where E is the power emitted per unit area per frequency for heated object, J (f, T) is a universal func-
tion dependent on frequency f and absolute temperature T of the object, and A is the absorption power. 
For blackbody radiation, the absorption power is 1 at all the frequencies. Hence, Eqn. (5) becomes

 
E J f T= ( , )  (6)

Therefore, we can say that if a blackbody is considered a perfect absorber, then it should also be a 
perfect emitter. Figure 2.2 shows the blackbody as a heated cavity with a small opening. If radiation 
falls on this hollow cavity, then it will be trapped inside. This cavity will also act as a perfect emitter of 
 radiation. If radiation is generated inside this cavity, then it will escape out of it.

If the hollow object with cavity is at constant temperature, then every point within the cavity is 
in thermal equilibrium with each other. The cavity will exhibit electromagnetic radiations with all 
wavelengths particular to that temperature irrespective of the material from which the cavity is made 
up of. In addition, the hollow cavity will be blackbody when viewed from outside.

After the understanding of blackbody radiation, the next important concept was proposed by the 
Austrian Physicist Josef Stefan in 1879. He postulated that the energy radiated per second per unit 
area of surface of the blackbody is directly proportional to the fourth power of absolute temperature 
of body, that is,

 E T= s
4  (7)

Incident radiation

Hollow object with cavity

Figure 2.2 Blackbody as a hollow object with small cavity.
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where E is energy per second per unit area of body, T is absolute temperature of body, and s  is 
 proportionality constant whose value is 5 672 10 8 2 4. .´

- -W m K  Equation (7) is also known as 

Stefan–Boltzmann’s law. It is clear from Figure 2.1 that as the absolute temperature of body increases, 
lmax  or the wavelength corresponding to maximum power emission shifts to lower wavelength side. 
A more general expression was given by German physicist Wilhelm Wien in 1893. According to the 
Wien, the absolute temperature of the blackbody is inversely proportional to lmax , that is,

 lmax .T = = ×
−C t mKonstan 0 29 10 2  (8)

Equation (8) is the well-known Wien’s law. Using Wien’s law, the temperature on the sun’s surface can 
be calculated by assuming lmax  to be 500 nm (blue-green light) as follows:

T =
0 29 10

500 10
5800

2

9

. ×

×

=

−

−

mK

m
K

This provides a good agreement with experimental and predicted results. Later on, Wien’s exponential 
law gave a more generalized form for energy per unit volume per unit frequency of the blackbody 
radiation. According to Wien’s exponential law,

 E Af e f T
=

3 −b /  (9)

where E is energy density, f is frequency, T is absolute temperature of the blackbody, and A and b are 
constants. Although Paschen found his experimental studies to be in good agreement with Wien’s 
study for a body heated upto 1,500 K, other physicists, that is, Lummer et al. and Rubens et al. found 
some discrepancies in the result.

According to Newton and Maxwell, the average energy of an oscillator, E
oscillator

, that is in thermal 
equilibrium with the surroundings is directly proportional to absolute temperature (T):

 E k Toscillat Bor =  (10)

where k
B
 is the constant of proportionality and its value is 1 38 10 23. ×

− J K/ .  k
B
 is also known as 

Boltzmann’s constant (Eqn. 10) and is based on the principle of the equipartition of energy. According 
to principle of equipartition of energy, all the oscillations within a system will exhibit same average 
energy. The particles, that is, atoms or molecules comprising the system, are treated as oscillators, 
which generate heat radiations. In other words, the particles also vibrate at a particular frequency 
corresponding to which they emit heat radiations. Although the principle of equipartition also states 
that inside a cavity every particle in thermal equilibrium should be allocated equal energy, most of this 
energy will be associated with higher frequencies. As a result, the cavity must have very high-frequency 
radiation. Anyhow, the blackbody radiations always pass maximum intensity within the middle range 
of frequencies, and not high frequencies such as X-rays. This distribution of heat radiations inside the 
cavity is also known as ultraviolet catastrophe according to which the system should proceed toward 
explosion due to high-frequency distribution. Figure 2.3 represents the distribution of intensity for 
blackbody radiation as a function of frequency for different temperatures. The area under the curve 
for classical prediction is infinite, whereas the area under the curve for experimental distribution is 
finite. Hence, the distribution according to classical theory is almost impractical.
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Figure 2.3 Distribution of intensity for blackbody radiation corresponding to different temperatures.

2.3 Quantum of Energy and Planck’s Hypothesis

In 1990, Max Planck, a German physicist, derived a function that could correctly explain blackbody 
radiations. Planck termed the submicroscopic electric charges inside the blackbody as resonators.  
In addition, he also assumed that the walls of the cavity are composed of billions of such resonators. 
These resonators were supposed to vibrate at different frequencies. Hence, the energy for every reso-
nator is not continuous but a discrete quantity, which is further composed of an integral number of 
finite equal parts.

Maxwell proposed that the oscillator can have any energy, and the amplitude is subject to change 
when the fraction of its energy is radiated out. But Planck gave a revolutionary hypothesis by assuming:

The total energy of resonator with frequency f is discrete and only be integral multiple of hf

In mathematical form, it could be written as follows:

 E hf hf hf nhfoscillator O= =, , , ,2 3 …  (11)

n = 0,1,2,3...

where h is a constant and its value is 6 63 1 34. ×
−0 Js; h is also known as Planck’s constant. Further, he 

also proposed that whenever a resonator loses/gains some energy, it is only in finite discrete amount 
known as quanta. Quanta is a small packet of energy directly proportional to resonator frequency, 
that is,

 DE hf=  (12)

All other energies are forbidden. This is illustrated in Figure 2.4, where all the energy levels are 
quantized. Based on this hypothesis, Planck was able to derive a mathematical functions to explain 
the intensity of blackbody radiation. The interpolation between Wien’s exponential law and Maxwell’s 
law lead to the formula as follows:

 
E

hf

c e hf k Toscillator =
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Using this equation, it is easy to explain no occurrence of ultraviolet catastrophe. At normal tempera-
ture, the radiations of high frequency possess hf greater than the average kinetic energy k

B
T. Hence, 

hf k>> BT  and

 

1

1

1

e e
e

hf k T hf k T

hf

/ /
/

B B

B

-

-

= »

k T  (14)

Substituting Eqn. (14) into Eqn. (13), we obtain the following:

 
E

hf

c
e hf k T

oscillator
/

=

-

8 3

3

p
B  (15)

Under such conditions, the probability of any resonator/oscillator acquiring energy to create such 
high-energy quantum is almost negligible. Hence, the heat radiations emitted by these radiations do 
not have high-frequency radiations.

At low frequencies, hf k T<< B

 
1

1

1

1 1e hf k T

k T

hfhf k T/ /B
B

B

- +( ) + -
» »  (16)

Substituting Eqn. (16) into Eqn. (13), we obtain the following:

 
E

hf

c

k T

hf

f

c
k Toscillator = =

8 83

3

2

3

p pB
B  (17)

This is classical regime result, and at low frequencies the energy appear to be continuous.

n = 4

n = 3

n = 2

n = 1

n = 0

E = 4hf

E = 3hf

E = 2hf

E = hf

E = 0

hf

hf

hf

hf

2hf

Figure 2.4  According to Planck, the allowed energy transitions are only with energy difference hf; 
other transitions are forbidden.
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2.4 Rayleigh–Jeans Law

The blackbody radiation energy/volume lying in frequency f and f df+  is given as the product of 
number of resonators/volume (N( f  )) in frequency range df and average energy E oscillator  per oscillator.

 
E f T df E N f df, ( )( ) = oscillator  

(18)

Usually, Rayleigh–Jeans Law describes the continuous distribution of energy whereas Planck’s formu-
lation is based on discrete energy. Rayleigh and Jeans explained that the electromagnetic radiations 
inside the cavity must be at constant temperature T, as they are in thermal equilibrium. They found 
that the average energy is independent of frequency, which is equal to k

B
T. i.e E k Toscillator = B

Rayleigh and Jeans considered the standing electromagnetic waves as oscillators. According to 
Maxwell–Boltzmann’s law, the probability of finding an oscillator or atom with energy E > E0  at 
temperature T is

 P P e E E k T
=

- -

0
0( )/ B  (19)

where P
0
 is the probability that the system possesses minimum energy. For discrete distribution of 

energies, the average energy is given by the following equation:

 
E

E E

E
=

S

S

. ( )

( )

P

P
 (20)

Max Planck was a german Physicist who 
made many contributions to theoretical 
physics. But primarily he is the originator 
of the quantum theory, which revolution-
ized our understanding for atomic and sub-
atomic processes. Planck was also awarded 
Nobel Prize in physics in 1918. Max karl Ernst 
ludwig Planck was born in kiel, germany, 
on April 23, 1858. He was very fond of music 
and was a very disciplined child in school. His 
teachers assisted him in elevating his inter-
est in physics and mathematics. He was influ-
enced by the law of conservation of energy. 
one of his famous lines are:

The outside world is something inde-
pendent from man, something absolute, and the quest for the laws which apply to this 
absolute appeared to me as the most sublime scientific pursuit in life.

Planck was appointed the professor of theoretical physics at the University of Berlin. He studied 
the distribution of energy w.r.t. wavelength. He developed Planck’s radiation formula by combin-
ing the formulae of Wien and Rayleigh. He gave the concept of quanta to the world of quantum 
mechanics. on december 14, 1900, he presented his theoretical explanation regarding quanta at 
a meeting of the Physikalische gesellschaft in Berlin. He demonstrated that energy can take only 
discrete values instead of continuous values. He defined energy for a resonator of frequency f is 
hf, where h is a universal constant: “h” is known as universal Planck’s constant.

MAX PLANCK
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For continuous distribution,Σ  must be replaced by ∫  with limits 0→∞.
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(21)

The density of modes can be calculated using free electron model and is

 
N f df

f

c
df( ) =

8 2
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 (22)

Using Eqs (18), (21), and (22), it becomes

 
E f T df

f

c
df( ), =

8 2
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k TB

 
(23)

or E T d k T d( )l l
p

l
l, =

8
4 B  (24)

Figure 2.5 clearly depicts the diverging behavior of energy density as l→ 0 , which is referred to as 
“ultraviolet catastrophe.” Hence, this theory fails to explain blackbody radiation.

Planck considered energy states of oscillators rather than the electromagnetic waves. Planck 
obtained the following formula:
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or E T d
hcd

ehc
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/
l l

p l

l
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, =
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8

15 k TB
 (26)

from Eqs (21) and (22), it is clear that at l→ →∞0 or f , ultraviolet catastrophe is avoided. 
Hence, Max Planck gave the concept of energy quantization, which laid a strong backbone for 
explaining blackbody radiations.

Wavelength (l)

Energy
density

Rayleigh–Jeans 
law

Figure 2.5  Energy density variations for Rayleigh–Jeans law depicting its failure.
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2.5 The Photoelectric Effect

Planck’s quantum hypothesis was quite successful in explaining the absorption and emission as 
 discrete processes, but still many researchers believed that radiation is propagated as wave. In 1905, 
Einstein published his revolutionary theory of photoelectric effect. Hertz found that on illuminating 
the poles in secondary detector, the sparks were readily induced. He called this effect as photoelectric 
effect. Subsequently, Hallwach, a German physicist, studied the response of gold leaf electroscope in 
visible and ultraviolet light. He made the following observations:

 1. Irrespective of the material of plate (zinc or iron), no response from positive-charge plate was 
observed with visible or ultraviolet radiation.

 2. Upon changing the intensity of radiation, no charge was lost by the positively charged plate.
 3. No response was observed by negative iron plate even after using intense beams of ultraviolet or 

visible radiations.
 4. Even with a weak ultraviolet radiation illuminating the negative zinc plate, the loss of negative 

charge was observed because the leaves of electroscope closed.
 5. The high-intense visible radiation did not exhibit any effect on negative zinc plate. Hence, 

Hallwach explained that ultraviolet radiations were able to supply the energy required by elec-
trons to set them free from tight bonds. Still some of the important questions could not be 
neglected and still needs to be addressed as follows:
 (a) Why the two metals exhibit different behavior?
 (b) Why did the iron plate not release any electrons even after irradiating with ultraviolet light?
 (c) Upon increasing the intensity of radiation, the amplitude should be increasing; hence, the 

frequency should not be a factor for the ejection of electrons.
The classical theory was unable to address these issues, hence a new theory should have been there to 
answer these questions. Later, Einstein in 1905 proposed his theory and used the Planck’s hypothesis 
of discrete quanta of energy. Einstein proposed that light consists of quanta of energy called photons 
and energy of each photon is given by the following equation:

 
E hfphoton =  

(27)

After the discovery of Planck’s constant, 
Planck defined physical quantities 
such as Planck length and Planck mass. 
Planck’s quantum theory was published 
in the Annalen der Physik. In addition, 
his work is summarized in two books 
Thermodynamik (Thermodynamics) and 
Theorie der Wärmestrahlung (Theory of 
Heat Radiation). Planck was also a phi-
losopher of science and he wrote in his 
autobiography  “A new scientific truth 
does not triumph by convincing its oppo-
nents and making them see the light, but 
rather because its opponents eventually 
die and a new generation grows up that 
is familiar with it.” He died on october 4, 1947 at the age of 89 in gottingen, West germany.
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where h is Planck’s constant and f is frequency of light radiation. When a photon strikes a metal 
surface, it will lose all its energy to the single electron. i.e. “one photon energy ↔  one electron 
energy.” The  electron will use this energy in the following two steps:

 1. First, the electron will break the bond with metal surface using the energy provided by photon.
 2. If still some surplus energy is available, then the electron will use it as kinetic energy (KE).

Summarizing it in mathematical form,

 
E Wphoton = +0 KE  (28)

where W
0
 is the minimum work done to release the electron from metal surface and is known as the 

work function of metal. Work function is the characteristic property of every metal. From Eqn. (28):

 

KE

KE

photon= −

= −

E W

hf W

0

0
 (29a)

If the wavelength of electron just takes out the electron, then KE = 0

and W hf= 0  (29b)

Hence, the Hallwachs experiment could be explained successfully using Einstein’s hypothesis as illus-
trated below:

 (a) No electron was liberated from the iron plate even with ultraviolet radiation because the work 
function of iron is greater than energy of photons (W hf0 > ). Hence, radiations of higher fre-
quency must be used to liberate the electrons from the iron surface.

 (b) Although visible light consists of a range of frequencies, no frequency was high enough to eject 
the electrons out of zinc or iron surface.

 (c) No accumulation of energy takes place as all the electrons are ejected at the same time as soon as 
the ultraviolet radiations fall on the zinc surface.

 (d) On increasing the intensity of radiation, only the number of photons in the radiation will 
increase, although still all the photons in the light possess same energy.

 (e) If a beam is more intense, then it will be able to eject more number of electrons from the metal. 
The electrons that are ejected from the top layers of the metal surface have higher KE. But the 
electrons that are ejected from the deep layers of metal have lower kinetic energies compared with 
the KE of surface-ejected electrons. Hence, all the photoelectrons do not possess the same KE.

Thus, Eqn. (29a) can be written as follows:
For surface electrons,

 KEmax min= −hf W  (30a)

For deeper electrons,

 KEmin max= −hf W  (30b)

By using the classical theory or Maxwellian equations, it was difficult to arrive at the concept of the 
photons. Taking into account the discrete nature of light, it was easy to explain “ultraviolet catastro-
phe and photoelectric effect.” Hence, the Planck’s hypothesis and Einstein’s postulate laid a strong 
backbone for quantum mechanics.

Further, Millikan designed an experiment in 1916, which validated Einstein’s equations and the 
value of Planck’s constant ( h = ×

−6 63 34. 10 Js ). He took a vacuum tube of glass known as photoelectric 
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diode tube and two electrodes were fixed into it; one metal was the emitter and other was collector. 
The schematic of Millikan’s apparatus used to investigate the Einstein’s photoelectric effect is shown 
in Figure 2.6.

The metal plate emits electrons when visible light falls on it. The collector collects these elec-
trons. Both the electrodes are connected to potentiometer such that the metal plate is kept at positive 
 potential and collector is at negative potential. When an electron is emitted from metal plate, it has 
to overcome the potential between two electrodes at the expense of its KE to reach negative collector 
plate. When the electrons reach negative collector, the ammeter gives the reading of electric current 
flowing through the circuit. When the potential is increased, only the most energetic electrons reach 
the collector. When the potential is raised to a maximum value, then no electron would be able to 
reach the collecter, leading to zero current. The value of potential at which the electric current is 
reduced to zero due to no flow of electrons from positive metal plate toward the collector plate is 
called stopping potential, Vo .

The incident radiation has frequency f and the stopping potential is Vo . For an electron to more 
from metal plate to collector plate through a potential V, the KE is given by

 KE = eV  (31a)

When stopping potential Vo  is applied, the electrons have to do maximum work given by the follow-
ing equation:

 KE omax = eV  (31b)

Substituting Eqn. (31b) into Eqn. (30a)

 eV hf Wo min= −  (32)

 
V

hf

e

W

e
o

min
= −  (33)

This relation (33) gives a straight line fitting according to y ax b= + , where y V= o , a
h

e
= , x f= ,  

and b
e

=

−Wmin .

Window
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e−

e−

V
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+ −

Figure 2.6 Photoelectric effect demonstration using Millikan’s experiment.
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Eqn. (33) predicts a linear relation between the frequency of incident radiation and stopping 
potential Vo  (Figure 2.7).

The point on x-axis (frequency axis), where the times cut, gives the value of minimum frequency 
known as threshold frequency, f o . Any light radiation falling on metal surface must possess this mini-
mum threshold frequency to eject out photoelectrons. The point on y-axis, where these extended lines 

cut, gives the intercept 
W

e
min ,  from which the minimum work function can be obtained.

Einstein was awarded doctorate in 1905 
from the University of Zurich for his thesis 
on the  different sizes and extent of mol-
ecules. Einstein published three impor-
tant theoretical documents based on the 
significance of physics during the twen-
tieth century. one of these papers was 
based on Brownian motion, which dis-
cussed motion of particles for any liquid. 
Einstein’s second publication discussed 
photoelectric effect, which described 
that light consists of definite packets 
of energy, which are termed as pho-
tons. Photon energy depends directly 
on radiation’s frequency and is given by 
E = hf, where E is defined as the radia-
tion’s energy, h is a constant defined as Planck’s constant, and f is defined as  radiation’s frequency. 
Einstein’s idea was rejected by everyone because it opposed the conventional idea stating that 
transfer of light energy is an ongoing process.

ALBERT EINSTEIN

Stopping
potential (Vo)

f04 f03 f02 f01

4

e
Wmin

3 12

Frequency, f.

Figure 2.7  Variation of stopping potential Vo  with frequency f. (Planck’s constant can be obtained 
from slope “h/e.”)
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2.6 The Concept of Photon Mass

According to electromagnetic theory, the light wave is continuous in nature; but the quantum theory 
postulates that light consists of quanta of energy in discrete packets. The energy of each photon is 
given by the following equation:

E hfphoton =

According to Eqn. (64) of Chapter 1, Special theory of Relativity, the total energy is given by the fol-
lowing expression:

 E p c m c2 2 2 2 4
= + o  (34)

where p is the linear momentum, c is the velocity of light in vacuum, and mo  is the rest mass of the 
particle. Photons are never at rest, hence practically, there is no rest mass for photon, i.e. mo = 0  for 
photon. Using rest mass mo = 0  for photons, Eqn. (34) becomes

 
E p cphoton p

22 2
=  [ pp = momentum of photon]

     
p

c
p

p
=

E
 (35)

Substitute E hfphoton = in Eqn. (35) and we get following relation
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hf
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(36)

The mass of photon (m
p
) can also be calculated using E m cphoton p=

2

 
and E hfphoton = , that is,

 
m

hf

c
p = 2

 (37)

An American physicist Robert Andrews experimentally proved Einstein’s theory. Einstein com-
prehended the nature of radiations that are electromagnetic. furthermore, it gave rise to the 
dual nature of light, that is, light can behave as both wave and particle. This theory too was 
comprehended by few scientists.

2.7 The Compton Effect

In 1923, Arthur Compton (1892–1962), an American physicist, set another landmark by confirming 
the quantum theory of light using the concept of conservation of linear momentum and energy. His 
experiment was based mainly on scattering of X-ray photons by free electrons. The classical electro-
magnetic theory demonstrates that if radiations are incident on free electrons, then they are scattered 
in all directions, although they do not undergo any frequency change. If there is no frequency change, 
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then it implies that the electrons have not taken any energy from incident radiation. But according to 
quantum hypothesis, all free electrons absorb some energy from the electromagnetic radiation.

If a beam of frequency f passes through a medium containing free electrons, then the transmitted 
light of some photons with frequency, f ′, is lower than incident photons, such that is, ′f f< .

This fact implies that while passing through the medium, the energy must have been absorbed 
by the free electrons. Hence, some interaction must have happened between free electrons and X-ray 
photons. This interaction is known as energy transfer within electron and photon (Figure 2.8).

According to Compton, X-ray photons collide elastically with free electrons of the medium. After 
collision, the electrons and photons are more in different directions. hf is the energy of incident 
photon and hf ′ is the energy of scattered photon. The difference in energy  corresponds to KE of 
electron, that is,

 KE h f f= − ′( )  (38a)

The rest mass energy of electron is m co
2 .  Hence, the total energy, Ee , of electron after collision is 

equal to

 E m c KEe o
2

Rest energy Energy from photon

= +
�

�  (38b)

From Eqs (38a) and (38b),

 
E m c h f fe o= + − ′( )2  (39)

Using Eqs (35) and (39) can be written as follows:

 
E m c c p pe o p p= + − ′( )2  (40a)

where pp  is the linear momentum of photon before collision and p¢  is the linear momentum of 
photon after collision.

The total energy of electron after collision can also be obtained using special theory of 
 relativity i.e.

 E m c c pe o e
2 2 4 2 2
= +  (40b)

e−

e−

q2

q1

y
hf ¢

X-ray photon (hf )

Figure 2.8 Elastic collision between a photon with energy hf and free electron.
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where mo  is the rest mass of electron and pe  is the linear momentum of electron after collision.
Combining Eqs (40a) and (40b), we get

 
m c c p p m c c po p p o e

2
2

2 4 2 2+ − ′( )



 = +  (41)

q1  = Scattering angle of photon
q2  = Scattering angle of electron or recoil angle of electron.

We can separate the momentum into components along x- and y-axes as shown in Figure 2.9.
Along x-axis

 
p p pp p e= ′ cos cosq q1 2+  (42a)

Along y-axis,

 
′ =p pp esin sinq q1 2  (42b)

Equation (42a) can be written as follows:

 
p p pp p e− ′ =cos cosq q1 2  (42c)

Squaring and adding Eqs (42b) and (42c), we obtain:

¢ + ¢ - ¢ = +p p p p p p pep p p p p e
2 2

1
2 2 2

1 1
2 2

2
2 2

22sin cos sin cosq q q q q+ cos

 
¢ - ¢p p p p pep p p p
2 2

1
22+ =cosq  (43)

Substituting Eqn. (43) in Eqn. (41), the following expression is obtained:

 

1 1 1 1
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Figure 2.9 Separation of momentum into components.
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From Eqn. (34)

l
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p p
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p p h

1

Hence, substituting into Eqn. (44), we get
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1 1cos  (45)

Hence, Compton effect predicted change in wavelength(Compton shift) observed when the X-ray photon 
passes through the medium. The change in wavelength depends on the scattering angle of photon.

While performing the experiment, Compton used graphite target because electrons in carbon are 
loosely held and can be treated as free electrons. He performed the experiment and found the differ-
ence between scattering angles of 45°, 90°, and 135°. He obtained the difference l lp p

¢
-  to be same 

as that predicted by Eqn. (45).

Further, l l lp p
¢
- = D  and 

∆l

lp

 is fractional change, which will be negligible for long wave-

lengths. Hence, the Compton effect is predominantly shown by short wave, that is, having short 
wavelength. Light particles such as electrons cause maximum Compton effect and higher mass of 
particle diminishes the Compton effect.

2.8 X-Rays

In 1895, German physicist Wilhelm Roentgen discovered X-rays. He found X-rays to be propagating 
in straight line without deflection in electric or magnetic fields. Moreover, they also exhibit ionization 
effect on the medium through which they propagate. The diffraction experiments indicate that their 
wavelength is almost 10 10− m  and frequency is between 10 1017 20Hz Hz− . X-rays are electromag-
netic radiations that show diffraction and polarization effect. The device used for X-ray production is 
shown in Figure 2.10.

The electrons are produced through heated cathode filament and are accelerated toward the metal 
target (anode) in vacuum tube. Electrons stop after hitting metal target and X-rays as well as heat is 
generated. Only a small fraction of KE of electrons (about 1 percent) is converted to X-rays and rest 
is converted to heat. Figure 2.11 shows the intensity spectra of X-ray radiation at various potentials.

From Figure 2.11, it is clear that below a minimum wavelength (cut-off wavelength) no radia-
tion is produced. The more the accelerating voltage, the less is the lmin . At low accelerating voltages, 
the spectrum is continuous, and as the accelerating voltage increases, some sharp peaks appear in the 
continuous spectrum. These peaks are known as characteristic peaks as they are characteristic of the 
material from which the anode target is made up.

Classical electromagnetic theory can explain the continuous spectrum. The continuous spectrum 
is produced on scattering of electrons from metal atoms during which only a part of electron’s energy 
is converted to electromagnetic radiation. Any decelerated charge would produce Bremsstrahlung or 
breaking radiations. Hence, when the electrons strike the target, they are also decelerated and may 
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produce continuous Bremsstrahlung radiation. But this theory could not explain the existence of 
lmin  or the dependence of lmin  on accelerating voltage.

But according to quantum theory of radiation, these features are explained as follows:

 (a) When the electrons are produced from the heated filament, they may undergo multiple colli-
sions and hence decelerate. These electrons, which undergo multiple collisions, are responsible 
for the production of heat in tube.

 (b) Some of the electrons that strike the target directly and lose all their energy in single collision pro-
duce X-rays. Hence, production of X-rays can also be regarded as reverse of photoelectric effect.

If an electron is accelerated by potential V, then the most energetic electron will produce energy.

 

e

e

e

V hf

hc
V

hc

V

=

=

=

max

min

min

l

l

 (46)

Hence, the minimum cut-off wavelength is inversely proportional to the accelerating voltage.

Target

X-ray
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e−
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+−

Figure 2.10 X-ray tube.
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Figure 2.11 X-ray intensity pattern as produced by molybdenum target for different potentials.
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2.9 Moseley’s Law

In 1913, Henry Moseley discovered that the X-ray wavelength is also dependent on the atomic 
number of the element. Moseley’s law describes the relationship between atomic number (2) and 
wavelength as

 l =
−( )

K

Z C
2  (47)

C  is constant C = 1  for K-lines

 C = 7 4.  for L-lines

 K = ×
−1 042 10 2.  for K-shell

 K = ×
−1 494 10 3.  for L-shell

Moseley’s Law can also be given in alternate form as

 

f

R

Z S

n
=

−

 (48)

where f is the frequency, R is Rydberg constant, Z is atomic number, S is screening constant, and  
n = 1, 2, 3. Figure 2.12 shows the Moseley plots for K L

a a
, , and M

a
 radiations.

Z

K
a
 lines

L
a
 lines

M
a
 lines

√
f

Rc

Figure 2.12 Moseley’s plot for K L
a a

, , and M
a

 lines of characteristic X-radiations.

2.10 X-Ray Crystallography

In 1912, William Bragg gave a simple method of analyzing the scattering of X-rays for crystal planes. 
The wave nature of X-rays was established by Max Von Laue, a German physicist, when he suggested 
that the crystals could be used as diffraction gratings for X-rays. He anticipated that the spacing between 
the atoms of crystals is of the order of wavelength of X-rays; hence, the diffraction patterns could be 
obtained. Every wave has a progressive wavefront, and whenever a wavefront is restricted by some object, 
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diffraction occurs depending on wavelength and size of the object. William Bragg and his son Lawrence 
Bragg considered two successive planes of atoms as shown in Figure 2.13 for diffraction studies.

B

d A C

Incident 1

Incident 2

Reflected 1

Reflected 2
θ

θθ

θ
Plane 1

Plane 2

D

Figure 2.13 Bragg’s scattering from the successive plane of atoms.

Atoms in planes 1 and 2 will scatter constructively if the path length between the waves is an inte-
gral multiple of wavelength ( l ). Therefore, from Figure 2.13

 
AB BC+ = nl  [n = 1,2,3…]

Now, AB BC= = d sinq

 n dl q= 2 sin  (49)

where n is the order of reflected beam, d is the interplanar spacing and q  is the glancing angle. 
Equation (49) is Bragg’s equation. Using this equation, the atomic positions can be determined in the 
crystal. If the wavelength of radiation is known, then the interplanar distances can be measured. The 
drawback of Bragg’s law is that it could be used only for regularly spaced atoms.

SUMMARY

Quantum mechanics laid a strong foundation in physics. Many scientists established classical 
mechanics after which Pauli, Schrödinger, Heisenberg, and de Broglie worked on quantum mechan-
ics. Hence, quantum mechanics is also called “boys’ mechanics.” Planck and Einstein led to the for-
mulation of quantum mechanics as Einstein could successfully explain the photoelectric effect using 
Planck’s quantization principle. The concept of thermal radiations and blackbody radiations could be 
explained. After understanding blackbody radiation, Stefan explained that energy emitted per second 
per unit area of blackbody radiation is directly proportional to the fourth power of temperature of 
body. Wien explained the relation between wavelength corresponding to maximum power emission 
and absolute temperature. Planck’s hypothesis is also explained in this chapter according to which 
energy exists only in discrete packets or quanta. In contrast, Rayleigh–Jeans law states that energy 
exists in continuous bundles. The results of “Rayleigh–Jeans” law led to “ultraviolet catastrophe” 
according to which energy density diverges as l→ 0 . The quantization of energy could successfully 
explain the photoelectric effect. Furthermore, the oil drop experiment by Millikan in 1916 validated 
the value of Planck’s constant h = ×( )−6 63 10 34. Js  and Einstein’s equations. It was found that photon 
rest mass is zero. In 1923, Compton used the conservation of linear momentum and energy to suc-
cessfully explain the scattering of X-ray photons by free electrons. This chapter also gives insight into 
X-rays and crystallography.
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SOLVED PROBLEMS

Q. 1: What is the limit (long wavelength) of Planck’s law for blackbody radiation?

Ans: E T d
hcd

ehc k T
l l

p l

l
l

,
/

( ) =
-( )

8

15 B
 (a)

For long wavelength limit, ehc k T/l B
<1. Hence,

 e
hc

T
hc k T/l

l

B

B

» +1
k

 (b)

Using result (b) in (a)

 E T d
hcd

hc

T

l l
p l

l
l

,( ) =
é

ë
ê

ù

û
ú

8

5

kB

 

 E T d
Td

l l
p l

l
,( ) =

8
4

kB  (c)

Equation (c) is also known as Rayleigh–Jeans law (which leads to ultraviolet catastrophe) as 

l→ 0.

Q. 2: What is the short wavelength limit of Planck’s law for blackbody radiations?

Ans: For Planck’s hypothesis of distribution of energy.

E T d
hcd

ehc k T
l l

p l

l
l

,
/

( ) =
-éë ùû

8

15 B

For short wavelengths, ehc k T/ .l B
>1  Hence, the factor 1 in denominator can be neglected.

E T d
hcd

ehc k T
l l

p l

l
l

,
/

( ) =
( )

8
5 B

This is also known as Wien’s law for distribution of energy.

Q. 3: Assume that sun behaves like a perfect blackbody of temperature 6,000 K. The radius of sun is 
7 108
× m . Find the rate of emission of energy from sun’s surface ( given erg/s/cm /K2 4

s = ´
-5 67 10 5. - ).

Ans: Stefan’s law states that E T= s
4

E = × × ( )−5 67 10 60005 4
.

E = ×7 38 1010 2. erg/s/cm

This represents the energy emitted per unit area per second.



SolvEd PRoBlEMS  •  69

To consider the whole surface, we will obtain the surface area, for sun, that is,

Area = 4 2
pR

Area cm= × ×( ) = ×4 7 10 6 18 1010 2 22 2
p .

Hence, the rate of emission of energy by the sun is

 E ET Area= ×

 ET = × × ×7 38 10 6 18 1010 22. .

 ET erg/s= ×4 56 1033.

Q. 4: If sun has temperature 6,000 K and behaves like a perfect blackbody, obtain the wavelengths 
of maximum energy density.

Ans: Wien’s displacement law states that

 lmT b=

where b = 0 29. cm k

 
lm =

b

T

 
lm cm=

0 29

6000

.

  lm

o

A= 4833

Q. 5: Obtain the temperature of sun’s surface, if each square centimeter of sun’s surface emits energy 
at a rate of 1 5 103. × cal/s/cm2  (s = ´

-5 67 10 5. erg/s/cm /K2 4- ).

Ans: According to Stefan’s law,

 E T= s
4

 

T
E4

=

s

 
T 4

3 2

5 4

1 5 10

5 67 10
=

×

×
−

.

.

cal/s/cm

erg/s/cm /k2

 
T 4

3 7 2

5

1 5 10 4 2 10

5 67 10
=

× × ×

×
−

. .

.

erg/s/cm

erg/s/cm /k2 4

 T 4 15 41 1 10= ×. K

 T = 5765 K



70  • CHAPTER 2/QUANTUM MECHANICS—I

Q. 6: The work function of a metal is 5 eV. Obtain the minimum wavelength, which is required to 
eject the electron from its surface. (given h = ×

−6 63 10 34. Js , c = ×3 108 m/s , 1 1 6 10 19eV J= ×
−. )

Ans: Work function eVo= =hf 5

 hf o J= × ×
−5 1 6 10 19.

 

hc

lo

= × ×
−5 1 6 10 19.

 
lo =

×
−

hc

8 10 19

 
lo =

× × ×

×

−

−

6 63 10 3 10

8 10

34 8

19

.

 
l
o

m= ×
−

2 486 10
7

.

 lo = 2486 A
o

Q. 7: If threshold wavelength for a metal is 5,000 A
o

, what would be the photoelectric work function 
for the metal?

Ans:

 lo m= ×
−5000 10 10

Work fu ion onct = hf

 
=

hc

lo

 
Wo =

× × ×

×

−

−

6 63 10 3 10

5000 10

34 8

10

.

 Wo J= ×
−3 978 10 19.

 

Wo eV=
×

×

−

−

3 978 10

1 6 10

19

19

.

.

 Wo eV= 2 486.
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Q. 8: Calculate the energy of photon with frequency 2000 103× cycles/s.

Ans: Energy is given by

 E hf=

 E = × × ×
−6 63 10 2000 1034 3.

 E = ×
−13260 10 31

 E = ×
−1 326 10 27. J

Q. 9: Find out the energy of photon with frequency 7,000A
o

.

Ans: Energy is given by

 
E hf

hc
= =

l

 
E =

× × ×

×

−

−

6 63 10 3 10

7000 10

34 8

10

.

 E = × × × ×
− −2 84 10 10 10 103 34 8 10.

 E = ×
−2 84 10 19. J

Q. 10: Caesium atom has work function of 1.8 eV. Obtain the threshold frequency required to 
remove photoelectrons from caesium surface.

Ans:

 Wo Work functionof caesium eV= = 1 8.

 = × ×
−1 8 1 6 10 19. . J

 W hfo o=

 
f

W

h
o

o
=

 
f o =

× ×

×

−

−

1 8 1 6 10

6 63 10

19

34

. .

.

 f o Hz= ×4 3 1014.
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Q. 11: Platinum has work function of 6.3 eV. What will be the longest wavelength required to eject 
the electrons from platinum surface?

Ans:

Work function Wo eV= 6 30.

 Wo J= × ×
−6 3 1 6 10 19. .

 
W h f

hc
o o

o

= =

l

 
lo

o

=

hc

W

 
lo =

× × ×

× ×

−

−

6 63 10 3 10

6 3 1 6 10

34 8

19

.

. .

 lo m= ×
−1 972 10 7.

 lo =1972 A
o

Q. 12: A photon of wavelength 2000 A
o

 ejects out electron from caesium metal with work function 
1.8 eV. Obtain the maximum kinetic energy of the ejected electron.

Ans:

 KEmax min= −hf W

 KE omax = −hf hf

 
KEmax min= −

hc

l
W

Here Wmin .=1 8 eV and = 2000l A
o

 
KE eVmax

.

.
.=

× × ×

× × ×

−

−

− −

6 63 10 3 10

2000 10 1 6 10
1 8

34 8

10 19

 = −[ ]6 206 1 8. . eV

 KE eVmax .= 4 406

Q. 13: Potassium has work function of 2 eV. A light of wavelength 4000 A
o

 falls on potassium. 
Obtain the kinetic energy for the most energetic electron.

Ans:

 KE omax = −hf hf

 hf Wo o eV= = 2

 
hf

hc
= =

× × ×

× × ×

−

− −

l

6 63 10 3 10

4000 10 1 6 10

34 8

10 19

.

.
eV
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hf = × × × ×

− −3 107 10 10 10 103 34 8 29. eV

 hf = 3 107. eV

 
KE eV eVmax . .= −( ) =3 107 2 1 107

Q. 14: Obtain the velocity of photoelectrons emitted when 4000 A
o

 falls on potassium (work  function 
= 2 eV).

Ans: As described in Question 13, the kinetic energy is obtained to be 1.107 eV.
Hence,

 KE eV=1 107.

 

1

2
1 107 1 6 102 19mv = × ×

−. . J

 
v 2

19

31

2 1 107 1 6 10

9 1 10
=

× × ×

×

−

−

. .

.

 
v 2

19 312 214 1 6 10 10

9 1
=

× × ×
−. .

.

 v2 120 3892 10= ´.

 v = ´0 6238 106.

 v = ´
-6 238 105 1. ms

Q. 15: The maximum speed of potassium photoelectrons is 103 m/s. Obtain the frequency of  incident 
radiation for potassium metal (work function for potassium is 2 eV).

Ans:

 Wo eV= 2

 KE omax = −hf W

 hf W= +KE omax

 
hf mv W= +

1

2
2

o

 
hf = × × × ( ) +

−1

2
9 1 10 10 231 6

. J eV

 
hf = × +

−
9 1

2
10 225.

J eV

 
hf =

×

× ×

+

−

−

9 1 10

2 1 6 10
2

25

19

.

.
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hf = × +( )−2 84 10 26. eV

 

f =
( )

×
−

2 00000284

6 63 10 34

.

.

eV

 
f =

× ×

×

−

−

2 2 1 6 10

6 63 10

19

34

. .

.

 f = ×0 483 1015.

 f = ×4 83 1014. Hz

Q. 16: Prove that during Compton scattering, the energy lost by a photon when it undergoes colli-
sion is given by

hf
a q

a q

1

1

1

1 1

-( )
+ -( )

é

ë
ê

ù

û
ú

c s

cos

o

where q
1

 is angle of scattering of photon and a =
hf

m co
2

.

Ans: The change in wavelength is given by relation:

 
′ −( ) = −( )l l q

1p p
o

h

cm
1 cos  (a)

The loss in energy is given by hf hf− ′,  where f is the frequency of photon and ′f  is the frequency 
of scattered photon.

Energy lost = hf hf− ′

 

= -

¢

h c h c

l lp p

 

=
¢ -

¢

æ

è
çç

ö

ø
÷÷

hc
pl l

l l

p

p p

 (b)

Substituting Eqn. (a) in Eqn. (b)

E gy lost o

o

ner =

hc
h

m c

h

m c

1

1

1

1

-( )
é

ë
ê

ù

û
ú

+ -( )
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ë
ê
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û
ú
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cos

q

l l qp p
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1
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hf
hf

m c h f

m c
o

o

2

1

2 1

1

1 1

cos

cos

q

q

Substitute
o

hf

m c 2
= a ,

 
and hence

Energy lost =
−( )

+ −( )








hf

a q

a q

1

1 1
1

1

cos

cos

Q. 17: The wavelength of incident photon is 2 A
o

. After it collides with electron the wavelength 
becomes 2.8 A

o
.  Obtain the energy of scattered electron.

Ans: Wavelength on incident and scattered photon is 2 and 2.8 A
o

, respectively.

Energy of scattered electron is = hf hf− ′

Energy
p p

= −
′













hc
1 1

l l

Energy = × × × −










−6 63 10 3 10
10

2

10

2 8
34 8

10 10

.
.

Energy = × ×
−





−19 89 10 10

2 8 2

5 6
26 10.

.

.

Energy = ×






−19 86 10

0 8

5 6
16.

.

.

Energy J= ×
−2 787 10 16.
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Q. 18: What should be the wavelength of incident photon, such that there is 2 percent increase in the 
wavelength of scattered photon at a scattering angle of 90°?

Ans: Given

 

∆l

lp

=
2

100
 (a)

l lp = 50∆

The Compton shift is given by

′ − = −( )l l qp p
o

h

m c
1 1cos

Dl q q= -( ) = °
h

m co

1 901 1cos

∆l = =
°h

m co

A0 0243.

Substituting Eqn. (b) in Eqn. (a)

lp A= ×
°

50 0 0243.

=
°

1 215. A

Q. 19: The wavelength of scattered radiation is 0.022 A
°

 (at an angle of 60° ). Calculate the wave-
length for incident radiation.

Ans:

′ − = −( )l l qp p
o

h

m c
1 1cos

q l1 60 0 022= ° ¢ =
°

p A.

l l qp p
o

= ′ − −( )
h

m c
1 1cos

lp = × − × − °( )− −0 022 10 0 0243 10 1 6010 10. . cos

lp = × − × ×
− −0 022 10 0 0243 10 0 510 10. . .

lp = −( ) × −0 022 0 012 10 10. .

lp = ×
−0 010 10 10.

lp A=
°

0 01.
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Q. 20: Obtain the change in wavelength for photon scattered through electron at 45°  and 30°.

Ans:
For q1 45= °

′ − = −( )l l qp p
o

h

m c
1 1cos

∆l = × − °( )−0 0243 10 1 4510. cos

∆l = × ×
−0 0243 10 0 29310. .

∆l = × ×
− −7 119 10 103 10.

∆l =
°

0 0071. A

For q1 30= °

′ − = − °( )l lp p
o

h

m c
1 30cos

∆l = × −( )−0 0243 10 1 0 86610. .

∆l = × ×
−0 0243 10 0 13410. .

∆l = × ×
− −3 256 10 103 10.

∆l =
°

0 0033. A

Q. 21: An X-ray tube is operating at 40 kV. Calculate shortest wavelength of X-rays produced.

Ans:

V = 40 kV

e h= × = ×
− −1 6 10 6 63 1019 34. .C, Js

  c = ´3 108 m/s

We know,

lmin =
hc

eV

lmin

.

.
=

× × ×

× × ×

−

−

6 62 10 3 10

1 6 10 40 1000

34 8

19

lmin .= × × ×
−0 310 10 10 1034 8 16

lmin .=
°

0 310 A
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Q.22: In a Coolidge tube, electrons bombarding the target produce X-rays of wavelength 5A
°

. 
Calculate the impact energy of electron.

Ans: As

lmin =
hc

eV

eV
hc

= =

lmin

KE

KE = =eV
hc

l

KE = =

× × ×

×

−

−

hc

l

6 63 10 3 10

5 10

34 8

10

.

KE = × ×
−3 97 10 1034 18.

KE J= ×
−3 97 10 16.

KE eV=
×

×

−

−

3 97 10

1 6 10

16

19

.

.

KE eV= ×2 48 103.

KE = 2 48. KeV

OBJECTIVE QUESTIONS

 1. Velocity of photon of ultraviolet light is

 (a) 2c (b) 3c
 (c) c (d) c/2

 2. Perfect emitter is

 (a) perfect absorber (b) insulator
 (c) dielectric (d) all of the above

 3. Stefan’s law gives the dependence of

 (a) energy and wavelength (b) energy and time
 (c) energy and velocity (d) energy and temperature

 4. According to Stefan’s law

 (a) E T= s
4  (b) E T= s / 4

 (c) E T= s  (d) E T= s /
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 5. The Wien’s displacement law states

 (a) lm /= b T  (b) lm = bT
 (c) lm T b=  (d) lm /b T=

 6. According to Planck’s quantum hypothesis, energy is

 (a) discrete (b) continuous
 (c) both discrete and continuous (d) neither discrete nor continuous

 7. The limiting case of Planck’s energy distribution is

 (a) Wien’s distribution law (b) Rayleigh–Jeans law
 (c) photoelectric effect (d) Stefan’s law

 8. According to ultraviolet catastrophe:

 (a) at l→ →0 0, E  (b) at l→∞ →∞, E
 (c) at l→ →∞0, E  (d) at l→∞ →, T 0

 9. Corpuscular nature of radiations could be proved by

 (a) interference (b) Compton effect
 (c) polarization (d) dispersion

 10. The velocity of photoelectrons depend on

 (a) frequency of incident light (b) intensity of incident light
 (c) both frequency and intensity (d) neither frequency nor intensity

 11. When intensity is doubled,

 (a) energy of electrons is doubled
 (b) number of photoelectrons are doubled
 (c) energy gets halved
 (d) velocity is four times

 12. Photoelectric effect is based on

 (a) conservation of energy (b) conservation of momentum
 (c) conservation of angular momentum (d) conservation of charge

 13. To explain photoelectric effect, the main condition is

 (a) light is having continuous nature (b) light has pulsating nature
 (c) none of these (d) light consists of quanta

 14. The dimension of Planck’s constant is same as

 (a) mass (b) angular momentum
 (c) Energy (d) charge
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 15. Compton shift depends on

 (a) angle of incidence (b) scattering angle of photon
 (c) recoil angle (d) all of the above

 16. The Compton shift is independent of

 (a) material of target (b) energy of incident radiation
 (c) recoil angle (d) all of the above

 17. The photo electron effect occurs for

 (a) free electrons (b) bound electrons
 (c) both (d) none of the above

 18. The photon mass is given by

 (a) hf c 2  (b) hc
 (c) hf  (d) hf c/ 2

 19. Characteristic X-rays are

 (a) emitted from cathode (b) emitted from anode
 (c) emitted from filament (d) all of the above

 20. Continuous X-rays are also known as

 (a) Bremsstrahlung rays (b) Compton radiations
 (c) discrete radiations (d) visible radiations

 1. (c)

 2. (a)

 3. (d)

 4. (a)

 5. (c)

 6. (a)

 7. (b)

 8. (c)

 9. (b)

 10. (a)

 11. (b)

 12. (a)

 13. (d)

 14. (b)

 15. (b)

 16. (d)

 17. (a)

 18. (d)

 19. (b)

 20. (a)

ANSWERS
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Micro-Assessment Questions

 1. What are the assumptions made by Planck for blackbody radiation?
 2.  An X-ray photon is scattered by an electron. What happens to the frequency of the scattered 

photon w.r.t. incident photon?
 3.  If the photoelectric effect occurs in a gaseous target rather than a solid, will photoelectrons be 

produced at all frequencies of the incident photon?
 4. How does the Compton effect differ from the photoelectric effect?
 5.  If the photoelectric effect is observed for one metal, will the effect be observed for another metal 

under the same conditions? Explain.
 6.  What are the assumptions made by Compton during scattering of a photon from an electron?
 7. What do you understand by Compton shift?
 8.  Why does the existence of a cut-off frequency in the photoelectric effect favour a particle theory 

for light rather than a wave theory?
 9. Explain Rayleigh–Jeans law.
 10. Is every photon responsible for the photoelectric effect or emission of an electron?
 11. Wave nature of matter is not apparent during daily observations. Explain.
 12. Explain the variation of kinetic energy of photoelectrons with frequency of light.
 13. What is work–function of material? Give its relation with the threshold frequency.
 14.  Why the electrons emitted from the metal surface have different velocities inspite of the fact that 

the incident light is monochromatic?
 15.  When the wavelength of incident light is decreased, how will the velocity of photoelectrons be 

change?
 16. Alkali metals are preferred photocathodes. Explain.

Critical Thinking Questions

 1. Which stars have the higher surface temperature. Red or blue?
 2. Explain that a perfect emitter is a perfect absorber.
 3. All objects radiate energy but we cannot see the objects in dark room. Explain?
 4. What is ultraviolet catastrophe?
 5. Explain the stopping potential.
 6. Derive Einstein’s photoelectric equation. How will it explain the photoelectric laws?
 7. How classical theory failed to explain the photoelectric equation?
 8.  Show that the wavelength change for scattered photons is independent of wavelength of incident 

radiation during Compton experiment.
 9. Which one possesses more energy electron or proton, both having same wavelength?
 10. What is the source of continuous X-rays?
 11. State and explain Moseley’s law.
 12. What is the difference between characteristic and continuous X-rays?
 13. What are X-rays diffraction and Bragg’s planes?
 14.  If a high-energy photon strikes the metal surface, then how will the kinetic energy for the photo-

electron vary?
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 15.  Calculate the energy of a photon whose frequency is (a) 80 GHz, (b) 30 GHz, and (c) 20 MHz. 
Express your answers in electron volts.

 16.  The temperature of human skin is approximately 35°C. What would be the peak wavelength for 
radiations emitted from skin?

Graded Questions

 1.  The photocurrent of a photocell is cut-off by a retarding potential of 3.92 V for radiation of 
wavelength 250 nm. Obtain the work function for the material.

 2.  Light of wavelength 200 nm is incident on a metallic surface. If the stopping potential for the 
photoelectric effect is 0.45 V, find (a) the maximum energy of the emitted electrons, (b) the work 
function, and (c) the cut-off wavelength.

 3.  X-rays with an energy of 200 keV undergo Compton scattering. If the scattered rays are detected 
at 60° relative to the incident rays, find (a) the Compton shift at this angle, (b) the energy of the 
scattered X-ray, and (c) the energy of the recoiling electron.

 4.  Find the energy of an X-ray photon that can impart a maximum energy of 30 keV to an electron 
by Compton collision.

 5.  A photon undergoing Compton scattering has an energy after scattering of 20 keV, and the elec-
tron recoils with an energy of 15 keV. (a) Find the wavelength of the incident photon, (b) Find 
the angle at which the photon is scattered, and (c) Find the angle at which the electron recoils.

 6.  A 2Å X-ray photon is deflected through 134° in a Compton scattering event. What is the recoil-
ing angle?

 7. Calculate the energy and momentum of a photon of wavelength 300 nm.
 8.  The work function for potassium is 2 eV. If light of wavelength 450 nm, incident on it find (a) 

the maximum kinetic energy of the photoelectrons and (b) the cut-off wavelength.
 9. Find out the shortest wavelength of X-rays produced for a tube operating at 55 kV.
 10.  The work-function of a metal is 3 eV. What should be its maximum wavelength so that photo-

electrons can be ejected from its surface.
 11. A metal has threshold voltage of 6,000 Å. Find out the work function and threshold frequency.
 12.  Caesium metal has a work function of 1.8 eV. Light radiation of wavelength 2,000 Å is incident 

on the metal. Find out the maximum possible kinetic energy of electrons ejected.
 13. What is the frequency of photon with energy 80 eV?
 14.  Find out the Compton shift for X-ray beam of wavelength 3 Å and scattered through an angle of 90°.

Remember and Understand

 1.  The energy in electromagnetic wave is carried in packets known as photons. The energy is given 
by E = hf and momentum is given by p = E/c.

 2.  According to Wien’s displacement law, the wavelength of maximum emittance is inversely pro-
portional to absolute temperature T. This is known as Wien’s displacement law.

 3.  According to photoelectric effect, threshold energy is required to eject electron out of metal sur-
face. Extra energy is imparted as the kinetic energy to electrons.

 4.  The Rayleigh–Jeans law could explain only the lower part of blackbody radiation. This predicted 
ultraviolet catastrophe at higher energy part.
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 5.  Planck’s law could explain the ultraviolet catastrophe and Rayleigh–Jeans law was a special case 
of it.

 6.  Continuous X-rays are produced due to Bremsstrahlung, whereas characteristic X-rays are pro-
duced due to photoelectric process.

 7.  According to Bragg’s law of X-ray diffraction, 2d sin q = nl, d is the interplanar spacing and l is 
the wavelength of incident X-rays.

 8.  In Compton shift, the wavelength shift is independent of nature of scattered. i.e. 

′ −( ) = −( )l l qp p
o

h

m c
1 1cos

 9. Photoelectric current increases with intensity of light.
 10.  Photoelectric effect is an instantaneous process and it only occurs for a definite threshold 

frequency.
 11.  The rest mass of photon is zero and it travels with velocity of light. Photons cannot be deflected 

by electric and magnetic field as they are electrically neutral.
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Electromagnetic radiations have dual characteristics: particle and wave. The particle characteristic of 
electromagnetic wave can be demonstrated by photoelectric and Compton effects, whereas the wave 
characteristic can be verified by the interference and diffraction. Hence, electromagnetic radiations 
can show particle and wave characteristics. Both the characteristics cannot be shown in a single 
experiment. de-Broglie proposed that due to symmetry in nature, light should also be exhibiting 
dual characteristics. Photon is associated with light wave; similarly, material particles such as electron, 
proton, etc., have matter waves associated with them. These matter waves are known as de-Broglie 
waves (different from electromagnetic waves).

3
Quantum Mechanics—II
Uncertainty Principle and 
Schrödinger Equations

Learning Objectives

 To study the matter waves and de-Broglie relation

 To obtain de-Broglie wavelength in terms of energy and temperature

 To understand Davisson and Germer experiment

 To understand phase velocity, group velocity, and particle velocity

 To get an insight into wave packet and group of waves

 To understand Heisenberg’s uncertainty principle of, i.e, position and momentum cannot be mea-
sured simultaneously

 To learn about differential equations and well-behaved wave functions

 To learn Schrödinger’s time-dependent and time-independent equations

 To understand the probabilistic approach

 To know about the expectation values and average values

 To obtain the Schwarz’s inequality, i.e, product of wave functions

 To learn that Ehrenfest theorem which bridges the gap between classical and quantum mechanics

 To learn about operators and their types

 To understand Eigen values, Eigen functions, and Eigen equations

 To know about Hermitian operators

 Keywords: de-Broglie waves, quantum mechanics, uncertainty principle, Schrödinger equations, 
wave function, orthonormality, Schwarz inequality, expectation values, orthogonality
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3.1 de-Broglie Hypothesis

de-Broglie hypothesis states that the wave–particle dualism is not only limited to radiations, but also 
valid for fundamental entities such as material particles. Hence, de-Broglie waves are associated with 
particles matter. The energy of photon is given by the following expression:

 E hf
hc

= =

l
 (1)

According to the principle of relativity, the energy is given by the following equation:

 
E c= ( )photon mass 2

 

 E mc=

2  (2)

From Eqs (1) and (2),
hc

mc
l
=

2

 
l =

h

mc
 (3)

For matter particle of mass m and velocity v, Eqn. (3) is given by

 l =
h

mv

 (4)

Equation (4) gives the de-Broglie wavelength for matter particle. de-Broglie wavelength is indepen-
dent of charge of particle. For the particle with heavy mass, the wavelength is small and vice versa.

3.2 de-Broglie Wavelength of Temperature and Potential

The kinetic energy of a particle with mass m and velocity v is given by

E mv=

1

2

2

    
[ p = mv]

 E
p

m
=

2

2

 (5)

 p mE= 2  (6)

From Eqs (4) and (6),

 
l =

h

mE2  
(7)

According to kinetic theory of gas, the kinetic energy for material particle is given by

 E k TB=

3

2
 (8)
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Using Eqs (7) and (8),

 l =
h

mk TB3

 (9)

Let the electron with charge e and mass m are under the effect of accelerating voltage V. During the 
process of acceleration, electron acquires velocity v and the kinetic energy of acceleration. Electron 
energy is given by

 E eV=  (10)

Put Eqn. (10) in Eqn. (7)

     l =
h

meV2

 (11)

and
 p meV= 2  (12)

Hence, the de-Broglie wavelength is given by

 
l = = =

h

mv

h

p

h

meV2  
(13)

l =
× × × × ×

−

− −

6 63 10

2 9 1 10 1 6 10

34

31 19

.

. .

×

V

 l =
12 27.

V
Å  (14)

3.3 Davisson and Germer Experiment

To predict the waves associated with electron, Davisson and Germer performed experiments in 1927.
Figure 3.1 shows the Davisson–Germer experimental setup. Electron gun (G) produces the  electron 
beam and F is the filament inside the electron gun. Due to thermionic emission, electrons are emitted 
from the filament. A is a set of plates with pinholes and B is the hole from which the narrow beam of 
electrons emerge out. These electrons have energy eV and are well collimated. When the high-tension 
voltage is varied, the velocity of electrons get changed. After the beam comes out through hole B, 
it falls on the nickel target and the electrons get scattered. These scattered electrons are collected by  
detector D. The detector D is movable such that the electrons from all directions can be measured. 
The electrons collected using a collector coin can be amplified and then measured using a galvanometer. 
The  detector D collects fast-moving electrons only. This whole arrangement is enclosed inside high 
vacuum. The apparatus operated in two modes as described below:
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Figure 3.1 The Davisson–Germer experimental setup.
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Figure 3.2 (a) Bragg’s Refelection, and (b) current versus voltage for oblique incidence.

1. Oblique Incidence

The angle of incidence is kept at 10° and the accelerating voltage is varied to vary elec-
tron’s wavelength. The electrons suffer Bragg’s reflection and satisfy the Bragg's condition 
(Figure 3.2(a))

 n dl q= 2 sin  (15)

where d is interplanar distance.
The characteristics between current and V  are shown in Figure 3.1(b). From Eqn. (15),

 
n∝

1

l
 (16)

Comparing (13) and (16),

n
meV

h
∝

2

n µ V( )
1
2  (17)

Equation (17) is validated from Figure 3.2(b), which indicates that order of Bragg’s reflection is 
 proportional to square root of accelerating potential.
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2. Normal Incidence

In this case, the electrons fall normally on the surface of target. The accelerating voltage was changed 
and graph was plotted between the current and angle between the incident beam and scattered beam. 
Figure 3.3 shows the plots at different accelerating voltages. It is observed that at a voltage of 40 V, no 
bump is there. A bump appears at voltage of 44 V and this bump gets very prominent at an accelerat-
ing voltage of 54 V. After 54 V, the bump starts decreasing with further increase in voltage. Hence, it is 
concluded that at 54 V the electron waves show constructive interferences at that voltage. According to 
Bragg’s diffraction, condition,

C
u

rr
e
n

t

φ

44 V

54 V

60 V

68 V

40 V

Figure 3.3  Variation of galvanometric current and co-latitude angle(f). [Co-lititude is the angle 
between incident ray and scattered beam entering the detector]

n dl q= 2 sin

From Figure 3.1,

q f q+ + = °180

 Hence, q f= ° = °65 50 54for at V

For n = 1

 l = °( )2 65d sin  (18)

For Ni crystal, d = 0 91. Å, hence Eqn. (18) becomes

 
l = × ×( ) ° =

−2 0 91 10 65 1 6510. sin . Å  (19)

At 54 V, the de Broglie wavelength is given by

l = = =

×
−

h

meV V2

12 27 12 27 10

54

10. .Å

l = 1 66. Å  
(20)

Hence, the theoretical and experimental results are in good agreement with each other.

3.4 Relation Between Momentum and Propagation Constant

de-Broglie explained the dual nature of matter, i.e., matter waves exhibit particle as well as wave 
nature. When the matter exhibits particle nature, it has localized position in space. But wave is not 
located at a particular position because wave is basically a function of position and time. The wave 
associated with a particle is given by (in x-direction)
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∂

∂

∂

∂

2
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2

2

1A x t

x v

A

t

,( )
=  (21)

A (x, t) represents the displacement of wave traveling with velocity v. For a wave to propagate, A (x, t) 
should always exist. For three-dimensional wave, Eqn. (21) is given by

 

∂

∂

∂

∂

2

2 2

2

2

1A x y z t

r v

A x y z t

t

, , , , , ,( )
=

( )  (22)

The matter wave is represented by y x y z t, , ,( ) . This wave function gives complete information of 
the matter wave y x y z t, , ,( )  as given by

 y r t Ce
i kx wt

,( ) = −( )  (23)

For a wave in x-direction, it is given by

 y x t Ce
i kx wt

,( ) =
−( )  (24)

In Eqn. (24), C is the constant and k is wave number/propagation constant. If at time t = 0, we  
have knowledge of y x t,( ) , then we can find out y x t,( )  at time t. One must take into account that 
electromagnetic wave may be represented by either the real part or imaginary part, but the matter waves 
have both the parts. Propagation constant and momentum can be related by the following relation:

l
p

l
= =

h

p
kand

2

Hence

                                                       
k

p

h
=

2p

 
p

h
k=

2p

p k
h

= =� �( )where
2p  (25)

3.5 Velocity of de-Broglie Wave and Need of Wave Packet

Let us suppose the particle is traveling with velocity; hence, one can assume the velocity of matter 
wave to be same as particle velocity. Let us take the de-Broglie wave velocity to be D, such that

 D f= l  (26)

We know, from Planck’s law

 E hf=  (27a)

[From Eqn. (3) l =
h

mc
]

and from Einstein’s mass–energy relation

 E mc=

2

 (27b)



3.6   wAvE AND GRoUP vEloCITy  •  91

From Eqn. (27a–b)

 
f

mc

h
=

2

 
(28)

Using Eqn. (28) and de-Broglie wavelength for mater wave [velocity = v] in Eqn. (26),

D
mc

h

h

mv
= ×

2

 
D

c

v
=

2

 (29)

Equation (29) implies that the velocity of matter wave is more than velocity of light, which is a con-
tradictory situation. Hence, Schrödinger postulated the concept of wave packet according to which 
moving particle is not associated with a single wave but with a group of waves. Such group of waves 
is called wave packet. According to Eqn. (29) the matter wave is extended infinitely in space. But the 
actual particle is represented by finite wave, i.e., the wave function associated with a particle should be 
zero everywhere except the position where particle exists (Figure 3.4).

Wave packet has a group of waves that travel with different speed. Many waves interfere to give 
rise to wave packet where amplitude is quite large in a small region of space. The probability of 
finding a particle varies directly as the amplitude. The probability of finding a particle is minimum, 
where the amplitude is small and vice versa.

3.6 Wave and Group Velocity

Till now, we have understood the following points regarding wave packet:

 (a) When many waves combine linearly, then they give rise to wave packet.
 (b) The wave packet is associated with localised partical.
 (c)  Many waves combine to form a wave packet; every wave has different wavelengths l =

h

mv
 

 corresponding to different velocity, hence different wave numbers also. When these waves are added 
together to form a single wave packet, the momentum of wave packet is uncertain.

 (d)  The velocity of every individual de Broglie wave is known as phase velocity of wave ( v
p
).

 (e)  The velocity with which the wave packet travels is known as group velocity ( v
g
) of packet.

Particle
l

∆x

Figure 3.4 Wave packet associated with particle.
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Mathematical Treatment

Let us take two waves represented by

 
y kx wt
1
= −( )A cos  (30a)

 
y k dk x w dw t
2
= +( ) − +( )( )A cos  (30b)

where dk and dw are small changes in wave number and angular velocity.
The resultant is given by

y y y= +
1 2

y kx wt k dk x w dw t= −( ) + +( ) − +( )  A cos cos

y
k dk x w dw t dk x dw t

=
+( ) − +( )









( ) − ( )







2

2 2
A cos

2 2
cos

where dk and dw are very small; hence, they are negligible compared with k and w, respectively.

 
y kx wt

dk
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t= −( ) −





2
2 2

A cos cos  (31)

In Eqn. (31), 
dk

2







  and 

dw

2







  are the modulation factors. This modulating wave number and angu-

lar frequency produce successive “wave groups.” The phase velocity is given by

 
v f

f
p = =l

p l

p

2
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v

w w

k
p =
( )

=
2p l/  

(32)

The group velocity v
g( )  is given by

 
v

dw

dk
g
=  (33)

Substituting Eqn. (32) in Eqn. (33)

v
d

dk
v k

g p
= ( )

v v
k dv

dk
g p

p

= +

 
(34)

Furthermore, k =
2p

l
 (35a)

 

dk
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p

l
= −

2
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2

2

p

l
l  (35b)
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Figure 3.5 Superposition of waves resulting in group wave.

Dividing Eqn. (35a) and Eqn. (35b),

 

k

dk d
= −

l

l
 (36)

Substituting Eqn. (36) in Eqn. (34),

 
v v

d
dv

g p p
= -

l

l
 (37)

Figure 3.5 depicts the modulated wave form for wave packet. The wave moves with group velocity v
g
 

and particle has velocity v
p
.

3.7 Equivalence of Group and Particle Velocity

The group velocity is given by v
dw

dk
g
=

 
v

dw dv

dk dv
g

/

/
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÷  (38)

As  w f= 2p
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The particle is supposed to move in relativistic regime and hence relativistic mass is taken with rest 
mass zero.
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Now, we have to find 
dk

dv
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Using Eqs. (39) and (40) in Eqn. (38),
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Hence, group velocity and phase velocity are the same. Therefore, the moving particle and wave 
packet travel with same velocity.

3.8 The Uncertainty Principle

The principle of uncertainty states that “The position and momentum of a particle cannot be mea-
sured precisely and simultaneously.” This relation was given by Werner Heisenberg. If ∆p

x
 is the 

uncertainty in momentum of particle and ∆x  is the uncertainty in position of particle, then

 ∆ ∆x p
x
≥ �  (42)

From Eqn. (42), we can say that the product of uncertainties in position and momentum is always 
greater than Planck’s constant. Momentum and position cannot be measured simultaneously. If we 
measure position with great certainty, then the momentum has large uncertainty. If ∆x = 0  or ∆p= 0
, then the other term is completely uncertain. Hence, uncertainty can be regarded as an inherent 
property of every natural object. For microscopic objects, the uncertainty principle holds good. But 
in macroscopic regime, it is no longer valid. Moreover, position can be measured with great accuracy 
and momentum can also be measured with certainty but not simultaneously. The uncertainty in y and 
z direction can be given by

∆ ∆y p
y
≥ �



3.8   THE UNCERTAINTy PRINCIPlE  •  95

and     ∆ ∆z p
z
≥ �

The general expression can be given by:

 ∆ ∆r p
r
≥ �  (43)

Proof of Heisenberg Uncertainty Principle

From Eqn. (31), the superposition of waves gives the resultant as

y kx wt
dk x dw t

= −( ) ( )
−
( )







2

2 2
A cos cos

Figure. 3.6 depicts the probability of finding the particle in between the nodes. The node can be 
formed if following condition is satisfied, that is,
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∆x  can be given by (Fig. 3.6)

 ∆x x x= −
2 1  (45a)

and x k t w n
2

2 3∆ ∆− = +( )p  (45b)

 x k t w n
1

2 1∆ ∆− = +( )p  
(45c)

Node 1

x1

Node 2

x2

Figure 3.6 Uncertainty of particle within the wave packet.
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Using (45b) and (45c) in (45a),
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Furthermore, by using k
p

h
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∆ ∆x p h. =  
or ∆ ∆x p. ≥ �  [h and x p � have same order]  (47)

This is the uncertainty principle with reference to a wave packet.

werner Heisenberg was a German physicist who was born in würzburg, 
Germany, in 1901. His father was a prominent secondary school teacher. 
He was a student of ludwig-Maximilians-Universität, München, and 
the Georg-August-Universität, Göttingen. He earned his doctorate in 
1923. He contributed significantly to particle physics, nuclear physics, 
and quantum field theory. He formulated quantum mechanics in terms 
of matrices. Hence, he developed quantum mechanics and its modern 
interpretation. one of the earliest breakthroughs to quantum mechanics 
was in 1925, when Heisenberg formulated the uncertainty principle. for 
this contribution, he was awarded the Nobel Prize for Physics in 1932 at 
a young age of 31 years. Heisenberg is widely considered as one of the 
most influential figures. WERNER 

HEISENBERG

3.9 Applications of Heisenberg Principle

Using Heisenberg uncertainty principle, the probable position or momenta of particle can be elucidated. 
Uncertainty principle can be used to extract lots of information for many systems as discussed below:

1. No Electron Within Nucleus

The size of atomic nucleus is of the order of 10 14−  m as determined by Rutherford’s gold foil 
 experiment. Hence, the uncertainty in position is given by

∆x =
−

10
14
m
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Using uncertainty principle,

∆ ∆x p = �

∆p =
×

× ×

−

−

6 63 10

2 3 14 10

34

14

.

.

∆p = ×
−1 048 10 20. kgm/s  (48)

The kinetic energy of particle is

E
p

m
=

2

2

Uncertainty in momentum represents minimum momentum of electron, hence

E eV=
´( )

´ ´
´
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-

- -

1 048 10

2 9 1 10
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1 6 10

20

31 19

.

. .

E = 370 MeV  (49)

Therefore, the electrons must possess at least energy of the order of 370 MeV, whereas the  electrons 
emitted out from the nucleus is only upto 3–4 MeV. This clearly validates the fact that the electrons 
cannot exist inside the nucleus.

2. Energy of Particle in a Box

Let the particle is contained in box (one-dimensional), such that its linear dimension is L. 
Hence, the uncertainty of particle can be given by dimension L as particle can lie anywhere in 
the box. Hence,

∆x L=  (50)
From uncertainty principle,

∆ ∆x p. = �

∆p
L

=
�

 
(51)

Again the kinetic energy can be written as

E
p

m
=

2

2
 (52)

From Eqs (51) and (52),

E
mL

=

�
2

2
2

 (53)

Equation (53) represents minimum zero point energy for a particle in box. Classically, the  minimum 
energy for particle in box is zero; but quantum mechanically, the minimum energy for a particle is 
never zero.
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3. Strength of Nuclear Force

The nuclear forces are short-range forces that exist inside the nucleus. The nuclear radius is of the 
order of Fermi = [10−15 m].

The kinetic energy is given by

E
p

m x m
x p= = ∆ ∆ =

2 2

2
2 2
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. . .

E = 9 6. MeV  (54)

Hence, binding energy of nuclear is of the order of 10 MeV.

4. Hydrogen Atom

Hydrogen atom consists of an electron around the nuclei. The radius of orbit is a and hence uncer-
tainty is given by

∆x a=  (55)
The total energy is given by following expression:

E = Kinetic energy + potential energy

[potential energy due to Coulomb field is 
−Ze

a

2

0
4pe

]

 
E

p

m

e

a
= −

2 2

0
2 4pe

 [For hydrogen atom, Z = 1]

E
m x

e

a
= 




−

1

2 4

2 2

0

�

∆ pe

E
ma

e

a
= −

�
2

2

2

0
2 4pe

 (56)

The radius of hydrogen atom can be obtained using equation 
dE

da
= 0 . ( minimum energy condition)

dE

da ma

e

a
=
−

+
�
2

3

2

0

2
4pe

Hence, using dE da/( ) = 0 ,

a

me

=

4pe
0

2

2

�
 (57)

Equation (57) gives the radius of first orbit of hydrogen when n = 1.
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Substituting Eqn. (57) in Eqn. (56),

E
me me

o o

= −

4

2 2 2

4

2 2 2
32 16p e p e� �

E
me

=

−

4

2 2 2
32p e

o
�

E =
− ×( ) ×( ) ( ) ×

× ( ) × ×( )

− −

−

9 1 10 1 6 10 3 14 4

32 3 14 8 85 10

31 19
4 2

2 12

. . .

. .
22

34
2

6 63 10. ×( )−

E = −13 6. eV  (58)

Equation (58) represents ground state energy of hydrogen atom.

5. Energy of Harmonic Oscillator

As per classical mechanics, the energy of oscillator is minimum at rest, i.e., E = 0. Oscillator is repre-
sented by mass m, which is attached to spring of constant k, when the oscillator is considered at rest 
than ∆x = 0 , and hence ∆p = ∞ , which is impossible as, energy will also be infinite. Hence, the oscil-
lator must be given quantum mechanical treatment as follows:

Energy of oscillator = kinetic energy + potential energy

E
p

m
kx= +

2

2

2

1

2
 (59)

E
p

m
k x= + ( )

∆
∆

2

2

2

1

2

E
m

x= 





+ ( )�

∆
∆

x
k

2

21

2

1

2

E
m x

mw x= +
�
2

2 2

2

1

2∆
∆

 
(60)

[w
k

m

2
= ⇒ k mw=

2 , where w is angular frequency]

To find the minimum energy of oscillator, 
dE

d x∆( )
= 0  must be satisfied

dE

d x m x
mw x

∆ ∆
∆

( )
=

−

( )
+ ( ) =

�
2

3

2
0

∆x
mw

= ±







�
1 2/

 (61)

Substituting Eqn. (61) in Eqn. (60)

E w= �  (62)

Equation (62) gives minimum energy of oscillator, which is same as obtained from Schrödinger equation.
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Heisenberg also formulated the neutron–proton model of the nucleus, 
the quantum theory of ferromagnetism, and the S-matrix theory of 
particle scattering. He has more than 600 original research papers, 
philosophical essays, and explanations for general audiences. His 
work is compiled in the nine volumes of the “Gesammelte werke.” 
During the years of the Hitler regime, Heisenberg preferred staying 
in Germany. He also contributed to the effort of scientific community 
on the applications of nuclear fission during world war II. Heisenberg 
helped in reconstructing west Germany’s nuclear and high-energy 
physics research programs. Throughout his career, he was appointed 
at various influential positions in Germany and abroad. He died on 
february 1, 1976, at the age of 74 years due to cancer of the kidneys 
and gall bladder. WERNER 

HEISENBERG

3.10 Differential Equations

Till now, we have seen that position and momentum cannot be measured simultaneously with 
precision. But according to Newtonian mechanics, under the effect of forces, motion, mass, 
force, and other physical entities of particle can be measured accurately. Rather than giving an 
exact location or exact value of some physical quantity, quantum mechanics defines the prob-
abilities. Conclusively, Newtonian approach is the limiting case of quantum mechanics. We 
need differential equation to describe the motion of particles. To describe the motion of the 
particle and its complete information, we need wave function y x t,( ) . By using wave  function, 
we need to formulate and solve the Schrödinger’s equation. Schrödinger equation gives the 
space–time behavior of partiale. If y r t,( )  represents the position of particle at time t, then the 
probability is given by (P):

P x t t= ( ) ( )y y, ,
*

x

P x t= ( )y ,
2

 
(63)

The generalized Eqn. (63) can be written as

P r t= ( )y ,
2

 (64a)

The probability can be normalized as

P r t r t r t r t d r, , , ,
*( ) = ( ) = ( ) ( ) =

-¥

¥

òy y y
2 3

1  (64b)

An appropriate constant is required to define a wave function. Then the wave function can be normal-
ized such that, we can obtain the value of constant. Wave function should be single valued and finite 
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at every point in space. The wave function and its first derivative is continuous. We will discuss the 
Schrödinger equation in the next section.

3.11 Time-Dependent Schrödinger Equation

The Schrödinger wave equation should have first- and second-order derivative of wave function in 
order to completely describe a wave function. The wave equation is different for a free particle and 
particle under the influence of force.

1. Schrödinger Equation for Free Particle

When we say free particle, it means no force is acting on the particle. Hence, F = 0. From Newton’s 
second law

F
dp

dt
=

p = constant
 (65a)

Hence, energy constantE
p

m
= =

2

2
 (65b)

The wave function can be given from Eqn. (24) as

y x t C e
i kx wt

,( ) = −( )  (65c)

The momentum in relation to propagation constant is

p k= �  (66)

Substituting Eqn. (66) in Eqn. (65b),

E
k

m
=

�
2 2

2

 
hf

k

m
=

�
2 2

2  
 [as E = hf  from Planck's hypothesies]

�
�

w
k

m
=

2 2

2  
(67)

We need to calculate w and k and then substitute in Eqn. (67).Differentiating Eqn. (65c) w.r.t. x,

∂

∂
= −( )y

x
ikC e

i kx wt  (68a)
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Again differentiating Eqn. (68a) w.r.t. x,

∂

∂
= = −−( )

2

2

2 2 2
1

y

x
i k C e i

i kx wt
( )

k
x

2

2

2

1
=
− ∂

∂y

y
 (68b)

Differentiate Eqn. (65c) w.r.t. time,

w
i

t
=

∂

∂y

y
 (68c)

Using Eqs (68b) and (68c) in Eqn. (67),

i
t m x

�
�∂

∂
=
− ∂

∂

y y
2 2

2
2

 (69)

Equation (69) represents the Schrödinger equation in one dimension for a free particle, which is 
under the effect of nil force.

2. Schrödinger Equation for a Particle Under Some Force

The total energy is not constant for a particle when it is under the influence of some external force. 
Then, energy E is the sum of potential and kinetic energy

E
p

m
V x= + ( )

2

2

Hence, Eqn. (67) becomes

�
�

w
k

m
V x= + ( )

2 2

2
 (70)

Using Eqs (68b) and (68c) in Eqn. (70)

i
t m x

V x�
�∂

∂





= −

∂
∂

+ ( )y y
y

2 2

2
2

 (71)

Equation (71) represents the Schrödinger equation is one dimension for a bound particle, y x t,( )  is 
the solution of Eqn. (71) and it describes the behavior of a particle.

The generalized Schrödinger equation can be written as

i
t m x y z

V x y z�
�∂

∂
= −

∂

∂
+
∂

∂
+
∂

∂









 + ( )y y y y

y

2 2

2

2

2

2

2
2

, ,  (72)
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Erwin Schrödinger was born in vienna on August 12, 1887. 
He was the single child of Rudolf Schrödinger who was from 
a Bavarian family settled in vienna. Schrodinger was a God-
gifted person who had multidisciplinary interests. He did 
Italian painting after finishing his chemistry studies. He also 
studied botany from which he published a series of papers 
on plant phylogeny. He also studied ancient grammar and 
German poetry. He was a student at the University of vienna 
from 1906 to 1910. During this time, he was deeply influ-
enced by fritz Hasenöhrl, who was Boltzmann’s successor. 
Schrödinger became a master of eigen value problems of 
quantum physics during these years. He along with his friend 
K.w.f. Kohlrausch assisted franz Exner. He also served as an 
artillery officer during world war II. He assisted Max wien in 
1920. Afterwards, he got many influential academic posi-
tions such as professor at Stuttgart and Breslau. He replaced 
von laue at University of Zurich and settled for almost six 
years. This was among his most fruitful period where was recognized for his work on thermody-
namics, specific heats of solids, physiological studies of color, and atomic spectra.

ERWIN SCHRÖDINGER

3.12 Time-Independent Schrödinger Equation

Usually potential energy is not a function of time t and it depends only on position coordinates. 
Hence, the variables used in Schrödinger Equation can be separated. Let us take y x t,( )  to be a prod-
uct of two functions, that is, y x( )  dependent only on position and T(t), which is function of time.

We know

y x t C e
i kx wt

,( ) = −( )

y x t C e e
ikx iwt

,( ) = ⋅ 
−

y x t C e e
ipx iEt

,( ) = ⋅










−

� �

 

(73)

( , )p k k p w
E

= =� �
�

/ and =

 
y x t x T t, . ( )( ) = ( ) ( ) j 74

where j x C e
px

( ) =
i

�  (75a)

and T t e
iEt( ) = − /�  (75b)
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Double differentiating Eqn. (74), w.r.t x,

∂ ( )
∂

= ( )
( )2

2

2

2

y x t

x
T t

d x

dx

, j
 (76)

Differentiating Eqn. (74) w.r.t. time t,

∂ ( )
∂

= ( )
y x t

t
x
dT

dt

,

j  (77)

Substituting Eqs (76) and (77) in Eqn. (71),

i x
dT

dt m
T t

d x

dx
V x T t x�

�
j

j
j( )æ

è
ç

ö
ø
÷ = - ( ) ( )é

ë
ê

ù

û
ú + ( ) ( ) ( )

2 2

2
2

i x
dT

dt m
T t

d x

dx
V x T t x�

�
j

j
j( ) = - ( )

( )
+ ( ) ( ) ( )

2 2

2
2

i

T t

dT

dt m x

d x

dx
V x

� �

( )
= -

( )

( )
+ ( )

2 2

2
2 j

j

i

T

dT

dt m

d

dx
V

� �
=
− 




+

2 2

2
2 j

j  (78)

The left-hand side (L.H.S.) of Eqn. (78) represents the time-dependent wave function and  right-hand 
side (R.H.S.) represents the position-dependent wave function only.

[From Eqn. (75b)],  T t e
iEt( ) = − /�

dT

dt

iE
T t=

−
( )

�

i

T

dT

dt
E

�
=

Hence, R.H.S. can be written as

 

−
+ =

�
2 2

2
2m

d

dx
V E

j

j
 (79)

where E is a constant.



3.12  T IME- INDEPENDENT SCHRÖDINGER EQUATIoN  •  105

+
+ −( ) =

�
2 2

2
2

0
m

d

dx
E V

j
j

 

d

dx

m
E V

2

2 2

2
0

j
j+ −( ) =

�
 (80)

Equation (80) is time-independent Schrödinger equation in one dimension as the equation is inde-
pendent of time. These wave equations represent stationary wave functions.

Note: For T t e
iEt( ) = − /� , 

Et

�
 is dimensionless, hence E has the dimension of energy and E is total 

energy of particle.

From Eqn. (74),

y x x e
iEt( ) = ( ) −

j
/�  (81)

Equation (80) represents a second-order linear and homogenous equation. Schrödinger equation can 
have n-solutions. Let y

n
 be the nth solution given by

y
n n

iE t
x t x e n,( ) = ( ) −

j
/�  (82)

The generalized solution can be given by

y y yx t c c,( ) = + +
1 1 2 2

�

y yx t c
n n

n

,( ) =
=

∞

∑
1

 (83)

y yx t c e
n n

iE t

n

n,( ) = −

=

∞

∑ /�

1

 (84)

Equation (84) shows that the sum or linear combinations of wave functions also satisfy Schrödinger 
equation. Hence, Eqn. (84) is superposition of wave functions.

Schrödinger made a great discovery in 1926, i.e. “Schrödinger’s wave equation.” He shared 
Nobel Prize with Dirac in 1933. This theory was an outcome of his belief that some eigen values 
should describe atomic spectra. He was not satisfied with Bohr’s theory. Schrödinger moved 
to Berlin as Planck’s successor in 1927. Schrödinger decided not to continue his research in 
Germany when Hitler came to power. Hence, he came to England with a fellowship at oxford. 
He was offered a permanent position at Princeton University in 1934, where he was invited to 
lecture. He refused that offer and accepted a position at the University of Graz in 1936. During 
1933, leaving Germany was an offense.
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Anyhow, he managed to 
escape to Italy, thereby to 
oxford and subsequently to 
University of Ghent. later, 
he moved to Institute for 
Advanced Studies in Dublin. 
He was appointed as Director 
of the School for Theoretical 
Physics there and then retired 
in 1955. He returned to an hon-
ored position in vienna after 
his retirement. He was also 
the author of the book What is 

Life? Schrödinger was more interested in wave nature of matter and generally disliked the dual 
nature, that is, waves and particles. Therefore, he was opposed by many other leading physi-
cists. He died on January 4, 1961, after a long illness and left the world with his achievements.

3.13 Expectation Values

When we take the average number of measurements of a physical quantity to define its space–time 
coordinates, it is known as expectation value of the quantity. Suppose, we perform n trials to measure 
a quantity, the expectation value of the quantity is the sum of individual quantities divided by number 

of trials. Probability is given as j x( )
2

or y r t,( )
2

 in more generalized form. It gives the probability 

of finding a particle at particular point of time. For a function F(r), the expectation value is given by

< ( ) > = ( ) ( ) ( )
−∞

∞

∫F r F r r t r t d ry y
*

, ,
3  (85)

The expectation value for position coordinate can be given by following demonstration:
Let the particle be found n

1
 times at position coordinate x y z t

1 1 1 1
, , ,( )  and n

2
 times with position 

coordinates x y z t
2 2 2 2
, , ,( ) , then the expectation value in x is given by

< >=
+ +

+ +
=
å

x
n x n x

n n n

x n

n

i i1 1 2 2

1 2 3

�

�+
 (86)

< > =
−∞

∞

∫x x
n

n
dx

i

[P
n

n
i

i
=  = probability of occurrence of x

i
]

< > =x x P x t dx,( )
−∞

∞

∫  (87)
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Equation (87) is the expectation value of x-coordinate at time t.

 
Similarly  < > =

and < > =

y y P y t dy

z z P z t dz

,

,

( )

( )













−∞

∞

−∞

∞

∫

∫

 (88)

The generalized form can be

< > =r r P r t d r,( )
−∞

∞

∫ 3

< > =
*

r r r t r t d ry y, ,( ) ( )
−∞

∞

∫ 3  (89)

The expectation value of momentum is given by

< > =
*

p x t p x t dxy y, ,( ) ( )
−∞

∞

∫  (90)

We know from Eqn. (73), y x t C e e
iEt ipx

,( ) = ⋅










−
−

� �

∂

∂
=

y y

x

ip

�

p i
x

y
y

= −
∂

∂
�  (91a)

Hence, the momentum operator is given by

p i
x

= −
∂

∂
�  (91b)

Using Eqn. (91b) in Eqn. (90),

< > = − ( ) ∂
∂




 ( )

−∞

∞

∫p i x t
x

x t dx� y y
*
, ,  (92)

Similarly, the value of energy can be obtained as follows:

< > = ( ) ( )
−∞

∞

∫E x t E x t dxy y
*
, ,  (93)

Differentiating w.r.t. time,

∂

∂
=
−y

y
t

iE

�

 (94)

E i
t

y
y

=
∂

∂
�
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Hence, the energy operator is given by

E i
t

=
∂

∂
�  (95)

Substituting Eqn. (95) in Eqn. (93),

< > = - ( ) ¶
¶
æ
è
ç

ö
ø
÷ ( )

-¥

¥

òE i x t
t

x t dx� YY YY*
, ,  (96)

Hence, the generalized form of expectation value of momentum and energy can be given by

 

< > = - ( ) ¶
¶

( )

< > = ( ) ¶
¶

( )

-¥

¥

-¥

¥

òp i r t
r

r t d r

E i r t
t

r t d r

�

�

yy yy

yy yy

*

*

, ,

, ,

3

3òò

ü

ý

ï
ï

þ

ï
ï

 (97)

3.14  Proof of Uncertainty Principle Using Expectation Values

After measuring and observing a physical system, when we elucidate some physical quantity out of 
it, then the physical quantity is said to be an observable. Classically, the observable is not affected by 
the measurement technique; but according to quantum mechanics, it depends on the device and the 
technique used. Let A be an observable, then its uncertainty is given by

∆A A A= < > − < > 
2 2

1 2/

 (98a)

where < = ( ) ( )∫A > A
2 2 3

y y
*
, ,r t r t d r  (98b)

Hence, the uncertainty in the measurement of observable A is given by the square root of difference 
of mean of square and square of mean of observable A. This is the precise definition of uncertainty 
principle, whereas the exact definition of uncertainty principle says that the positions and momentum 
of particle cannot be determined accurately simultaneously, i.e.,

∆ ∆x p ≥ �

We will have to arbitrarily assume some functions and three integrals as follows:

U a a d r

V a b d r

W b b d r

=

=

=













∫

∫

∫

*

*

*

3

3

3

 (99)

Let us take a parameter l , which assumes only real values such that

l l la b d r a b a b d r+ = +( ) +( )∫∫
2 3 3* *  (100)

Substituting Eqn. (99) in Eqn. (100),

l l la b d r U V V W+ = + +( ) +
⇓

∫
2 3 2 *

PostiveQuantity  (101)
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Therefore, R.H.S. should be satisfied for all l  values which leads to condition

UW V V≥ +( )
1

4

2
*  (102)

Substituting Eqn. (99) in Eqn. (102),

a a d r b b d r a b ab d r
* * *3 3 3 3

21

4
≥ +( )



∫∫∫  (103)

Let

and

a i
x

b ix

= −
∂

∂
=








�
j

j

 (104)

Then L.H.S of Eqn. (103) becomes

a a d r b b d r
x x

d r x d r

x

* *

*

*
.

3 3 2 3 2 3

2

=
∂

∂

∂

∂ ∫∫∫∫
< >

�
� �� ��

j j
j j

=
∂

∂

∂

∂∫∫∫ ∫�
2 2 3j j

j j

*

*
.

x x
dx dy dz x d r

=
∂

∂

∂

∂
< >∫∫∫�2 2j j

*

.
x x

dy dz dx x

= < >
∂

∂

∂

∂∫∫∫�
� �� ��

2 2x dy dz
x x

dx
j j

*

.

Solving the integral

= < >
∂

∂
−

∂

∂











−∞

∞

∫∫∫�
2 2

2

2
x dy dz

x x
dxj

j
j

j* *|

= − < >
∂

∂∫∫∫x
x
dx dy dz2 2

2

2
j

j
*
�

=< > −
∂
∂







⇓
( )

∫∫∫x
x

dx dy dz2 2

2

2

2

j
j*

�

momentum

=< >< >x p
2 2

 (105)

Similarly solving R.H.S. of eqn (103), the following relation is obtained:

a b ab d r d r
* * *+( ) = òò 3 3

�
��� ��
j j

 it represents probability

 (106)

Comparing Eqs (105), (103), and (106),

< >< >≥x p
2 2

2

4

�
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< >  < >  ≥x p
2

1 2
2

1 2

2
/ /

/�

∆ ∆x p. /≥ � 2  (107)

Equation (107) gives the uncertainty principle. One should understand that �  and � / 2  have same 
order of magnitude.

3.15 Schwarz Inequality

Consider two wave functions j
n
 and j

m
 such that their scalar product is given by

j j j j
n m n m
d r

*
,

3 = ( )∫  (108)

The wave function j
n
 and j

m
 are said to be orthogonal if their scalar product is zero, such that

j j
n m

d r n m
*

(
3

0= ≠∫ for )  (109)

When forϕ ϕ
n m

d r n m
*

( )
3

1= =∫  (110)

Equation (110) represents the orthonormality condition.
Schwarz inequality states that the absolute value of scalar product of state j

n
 and j

m
 is less than 

the product of norm of j
n
 and j

m
 individually.

j j j j
n m n m
, || || ||( ) ≤  (111)

where || ||j
n

 and || ||j
m

 are norms and are given by

|| || ,j j j
n n n
= ( )  and || || ,j j j

m m m
= ( )

The norm is real number, which is greater than or equal to zero. Hence, the norm of a wave  function 
is the positive square root of its scalar product. Consider j  to be a linear combination of j

n
 and j

m
 

such that

j j lj= +
n m

 (112)

( l  being a real number)
Take norm on both sides,

|| || || ||j j lj= +
n m

 (113a)

as || ||j ≥ 0 , hence || ||j lj
n m
+ ≥ 0

Squaring both sides,

|| ||j lj
n m
+ ≥

2 0  (113b)

Using Eqn. (110) when n = m,

j j
n n

dV
* =ò 1

In generalized form,

 
j j
*
dV =ò 1  (114)
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Hence, the norm of || ||j lj
n m
+  can be written as

j lj j lj
n m n m

dV+( ) +( ) ³ò
*

0

j j l j j l j j l j j
n n m n n m m m

dV dV dV dV
* * * *+ + + ³ò ò ò ò

2
0

|| || , , || ||j l j j l j j l j
n m n n m m

2 2 2 0+ ( ) + ( ) + ³

The scalar product satisfies the condition,

 
j j j j
n m m n
, ,

*

( ) = ( )  (115)

⇒ + + ( ) + ( )



 ≥|| || || || , ,
*

j l j l j j j j
n m n m n m

2 2 2 0

We will take only real part of the complex conjugate. Hence, the above equation can be written as

 
l j j l j j2 2 2 2 0|| || || || ,

m n n m
+ + ( ) ≥Re  (116)

Equation (116) has negative values for real roots and positive values for equal/imaginary roots. Hence, 
for imaginary roots, the condition b ac

2
4 0- £  should be satisfied.

\ 4 4
2 2 2Re , || || || ||j j j j

n m
( ) ≤ n m  

 
Re , || || || ||j j j j

n m
( ) ≤ n m

2 2

 
(117)

The maximum value of Re ,j j
n m

( )  is the modulus of scalar product, Hence,

 
| , | || |||| ||j j j j

n m
( ) ≤ n m  (118)

The relation (118) is known as Schwarz inequality.

3.16 Ehrenfest Theorem (Wave Packet Motion)

This theorem acts as a bridge between the classical and quantum mechanics. According to Ehrenfest 
theorem, “The particle for which the expectation values of physical dynamical quantities are involved, 
the classical and quantum mechanics yield same result.”

The formula for equations of motion is as follows:

 (i) 
md x

dt
px

< >
= < >  (119)

 (ii) 
d

dt
p

V

x
x< > = −

∂

∂







 (120)

where V is the potential energy of particle, when it is under the influence of force. Equation (119) can 
be proved as follows:
The expectation value of x for a time-dependent y x t,( )  state is given by

< > = ( ) ( )
−∞

∞

∫x x t x x t dxy y
*
, ,
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Differentiating both sides,

d

dt
x

d

dt
x t x x t dx< >= ( ) ( )

−∞

∞

∫ y y
*
, ,

 
d x

dt
x
t t

x dx
< >

=
∂

∂

∂

∂











−∞

∞

∫ y
y y

y
*

*

+  (121)

The Schrödinger equation and its complex conjugate is given by the following equation (time depen-
dent and under the influence of a force):

Time dependent Schrodinger equation⇒
∂

∂
=

∂

∂
−

y y
y

t

i

m x

i
V

�

�2

2

2
 (122)

Complex conjugate⇒
∂

∂
=
− ∂

∂
+

y y
y

* *
*

t

i

m x

i
V

�

�2

2

2
 (123)

Substituting Eqs (122–123) in Eqn. (121),

d x

dt

i

m
x
x x

x dx
< >

=
∂
∂

−
∂
∂





−∞

∞

∫
�

2

2

2

2

2
y

y y
y

*

*

 
d x

dt

i

m
x
x
dx

x
x dx

< >
=

∂

∂
−

∂

∂
( )











−∞

∞

−∞

∞

∫∫
�

2

2

2

2

2
y

y
y y

* *  (124)

In Eqn. (124), we have used the properties of Hermitian operator as follows:

A
B

A B
*

*

∂
∂

=
∂
∂








∫∫

2

2

2

2
x
dx

x
dx

After solving Eqn. (124),
d x

dt

i

m x
dx

< >
=
− ∂

∂−∞

∞

∫
�
y

y
*

d x

dt

i

m
i
x

dx
< >

= −
∂
∂







−∞

∞

∫ y y
*

�

� �� ��
Momentum operator

 

d x

dt

p

m
x< >

=

< >

 (Eq. 119)

Hence, this is the first equation of motion.
To prove Eqn. (120), we will use the expectation value of momentum:

< >= ( ) ∂

∂
( )

−∞

∞

∫p x t
i x

x t dxx y y
*
, ,
�

 
= ( ) ∂

∂
( )

−∞

∞

∫
�

i
x t

x
x t dxy y

*
, ,

 (125)
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Differentiating w.r.t. time,

∂ < >
∂

=
∂
∂

∂
∂
+
∂
∂ ∂






−∞

∞

∫
p

t i t x x t
dxx � y y y

y

*

*
.

2

 (126)

 
∂ < >
∂

= −
∂
∂

∂
∂
−

∂
∂ ∂






−∞

∞

∫
p

t
i

t x
i
x t

dxx
� �
y y

y
y

*

*
.

2

 (127)

Differentiating Eqn. (122) w.r.t x,

 
i
x t m x

V

x
�

�∂

∂ ∂
=
− ∂

∂
+
∂( )
∂

2 2 3

3
2

y y y
 (128a)

Equation. (123) can be written as

 
−
∂

∂
=
− ∂

∂
+i

t m x
V�

�y y
y

* *2 2

2
2  

(128b)

Substituting Eqns (128a) and (128b) in Eqn. (127),

d p

dt m x x x
dx V

x x
Vx< >

=
− ∂

∂
∂
∂
−

∂
∂







+
∂
∂
−

∂
∂
(�

2 2

2

2

3
2

y y
y

y
y

y
y y

*

* * * ))



−∞

∞

−∞

∞

∫∫ dx

d p

dt m x x x

V

x
dxx< >

=
− ∂

∂
∂
∂

−
∂
∂







−
∂
∂

−∞

∞

−∞

∞

∫
�
2 2

2
2

y y
y

y
y y

*

* *  (129)

The first term in Eqn. (129) tends to zero, because y  and 
∂

∂

y

x

 tend to zero as x→−∞  or ∞ . Hence,

d p

dt

V

x
dxx< >

= −
∂

∂−∞

∞

∫ y y
*

d p

dt

V

x
x< >
= − <

∂

∂
>

d p

dt
Fx
x

< >

= − < >  (130)

Equation (130) represents the second equation of motion. Hence, by using expectation values, the 
quantum and classical mechanics give same result.

3.17 Operators

The rules by means of which we can map elements A of a linear space on elements B of another linear 
space leading to an equation is called operators (Figure 3.7).

 B OA=  (131)

B = range of operator
A = domain of operator
O = operator
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A BO

Figure 3.7 Mapping of operators

An operator may also be defined as the mathematical term used for operating a function such that 
the original function transforms to another function. If A is operator applied to function f x( ) , 
then A x xf y( ) = ( ) , where y x( )  is the transformed function. If X is rotated about an axis and Y 
is obtained, then the relationship between X and Y is given by Y X=

ˆ

A , where ˆA  represents rotation 
operation. ˆA  has meaning in the domain of ˆA  only, that is, space within a set of vectors. The set of 
vectors Y defines the range of ˆA .

3.18 Different Types of Operators

This section describes the most commonly used operators:

3.18.1 Linear Operators
An operator is linear if it satisfies the following conditions:

 A U V AU AV+( ) = +  (132)

and AC CA= ( is constant)C  (133)

3.18.2 Identity Operators and Null Operators
When null or identity operator (I) is applied to a function, then the function remains unchanged after 
the operation, and is given by,

 IA AI A= =  (134)

The null operator makes the function zero. Thus, OA = 0 , where O is null operator.

3.18.3 Inverse Operators
When T is applied on any linear operators A and B, such that

 B TA=  (135)

 ⇒ =
−

A T B
1  (136)

then T −1  is the inverse operator. TA B=  is unique correspondence that could be proved as follows:
Consider TA B′ =  and TA B′′ =

T A A′ − ′′( ) = 0

′ = ′′A A  but T cannot be zero.
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3.18.4 Differential Operators
Consider any function f x( ). The expression d dx x/[ ] ( )f  consists of the operator d dx/[ ]  and the 
operand f x( ).

 d dx x x/[ ] ( ) = ′ ( )f f  (137)

where (d/dx) is called differential operator.

3.18.5 Singular and Nonsingular Point Operators
If the two operators A and B satisfy the following relation:

AB BA I= =

where I is the identity operator, then A and B are reciprocal to each other, that is, A B
−

=

1  and B A
−

=

1
.  

An operator for which a reciprocal exists is called nonsingular operator. If A TB= , then B T A=

−1 .  
Hence, T −1  is regarded as a nonsingular operator. If for non zero B, TB = 0 , then operator T has no 
reciprocal and hence it is singular, hence, the operator with no reciprocal is called singular operator. 
Moreover, inverse of a product of operators is the product of the inverse of operators in reverse order.

i. e. ABC ABC( )( ) =
−1
1  (138)

Now ABC C B A( ) =
− − − −1 1 1 1  (139)

3.19 Laws of Operators

Let us take X and Y to be two operators, such that they satisfy following rules:

 (i) X Y A XA YA+( ) = +

 (ii) XY A X YA( ) = ( )
 (iii) XY YX≠

 (iv) X Y X Y+ = +

Although addition is commutative, multiplication is not. When multiplication is commutative, that 
is, when XY YX= , then the operators X and Y are said to be commuting. For example, Let us take 
two operators X and Y:

X x Y d dx= =, /

Therefore, XY x x d dx xf f( ) = ( ) ( ) /  (140)

 
YX x d dx xf f( )  = ( ) × ( ) /  (141)

Therefore, XY YX≠ which shows that, X and Y do not commute.

3.19.1 Power of Linear Operators
Consider X is any linear operator.

Now X X.X.X
3
= , then 3 is the power of operator.

For X X.X X
n
= … , n is the power.
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3.20 Eigen Functions and Eigen Values

When the function satisfies the continuity conditions as well as boundary condition, it is said to be an 
eigen function. Let X be an operator, such that X x xf lf( ) = ( ) , where l  is a complex number and 
f x( )  is an eigen function, then l  is called eigen value of operator X. For example, let us take func-
tion cos 2x  and operator is −( )d dx

2 2
/ .

 
−( )( ) = ( )d dx x x

2 2
2 4 2/ cos cos  (142)

f x x( ) = cos 2  is an eigen function and l = 4  is the eigen value of operator d dx
2 2
/( ) .

But if operator X operates on a vector, then it yields different vector, that is, XV U= , some 
vectors satisfy the property of XV U= a a,  is the scalar operation. We can consider the vector V 
multiplied by a scalar. V is the eigen vector of X with eigen value a  and XV V= a  is the eigen value 
equation of X.

A linear operator may have several eigen values and eigen vectors.

i. e. XV V
k k k
= a  (143)

The eigen values may be continuous or discrete. An eigen vector can have only one eigen value. But 
many linearly independent eigen vectors may have same eigen values. Then the eigen value is said to 
be degenerate and number of linearly independent eigen vectors defines the degree of degeneracy.  
The set a

k{ }  of all the eigen values constitute the regime/spectrum of the operator X. Let us consider 
the eigen value equation.

 
−( ) ( ) = ( )d dx x E x

2 2
/ f f  (144)

For f fx x e
p( ) = ( ) ipx  and f−

−( ) =p
x e

ipx , the eigen value E remains the same and E is two-fold degen-
erate. Both the eigen vectors correspond to the same eigen value E.

3.21 Special Operators

3.21.1 Continuous and Bounded Operators
An operator X is continuous if XA XA

n{ }→ , for every Cauchy sequence of vector A
n{ }  converging 

to limit A. X is bounded for positive number “x” such that the inequality XA x A≤  exists corre-
sponding to every A in the domain of X. The norm is the smallest “x” value satisfying this criterion 
and is denoted by X . For XA XA X A A

n n
− = − → 0 , if X is bounded. Thus, XA XA

n
→ , for 

n→∞. Every operator that is defined for finite dimensions is bounded.

3.21.2 Positive Definite Operators
If X > 0  and X −

>
1
0 , then X is positive definite operator. The eigen values of a positive definite 

operator are positive.

If X Y> > 0 , then Y X
− −

> >
1 1

0

Now for X Y> ,

X X X Y
− −

>
1 1

X XX X YX
− − − −

>
1 1 1 1
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X YX
− −−  >
1 1
1 0

Hence 1− >
−

YX
1
0

Y X
− −

>
1 1

Now again for X Y>

Y X Y Y Y X Y Y
− − − − −

> ⇒ > =
1 1 1 1 1

1for

3.21.3 Commuting Operators
If X and Y are linear operators, which satisfy the same equation in eigen function y , then y  is called 
simultaneous eigen function of X and Y with Eigen values a  and b , respectively.

i. e. Xy ay=  (145)

and Yy by=  (146)

For example, consider a well-behaved function e5ix  and an operator −i d /dx( )  belonging to eigen 
value. Now,

- ( ) =i d dx e e
ix ix

/
5 5

5

Also ( ) =d dx e e
ix ix2 2 5 5
25/

Hence, operand e ix5  can be operated by two more operators. Such functions are called as simultane-
ous Eigen functions.

Consider the Eqn. (145),  Xy ay=

Multiplying on left by Y

 
Y X Yy ay aby( ) = =  (147)

Consider second equation Yy by=  and multiply by X on both sides

 
XY Xy by bay( ) = =  (148)

Subtracting Eqs (147) and (148),

 XY YX−[ ] =y 0  (149)

 
XY YX-[ ] =y y0  (150)

Hence, y  is eigen function of operator XY YX−[ ]  having eigen value zero. The mandatory condi-
tion for the two observables X and Y to be measured simultaneously is that X and Y should com-
mute. X Y XY YX,[ ] = −  is called the commutator and the operators, which satisfy the equation 
X Y,[ ] = 0 , are said to commute. If the two operators X and Y commute with each other and have 

simultaneous eigen function y , then Yy  is also eigen function of X, belonging to the same eigen 
value. This is proved as follows:

Suppose y  is an eigen function of X, that is,

 Xy ay=  (151)

If X and Y commute then XY YX=  (152)
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Multiplying Eqn. (151) by Y ,

 YX Y Yy ay a y= =  (153)

From Eqn. (152),

XY Y X Y Yy a y y a y= ⇒ ( ) = ( )

Hence Yy  is also an eigen function of X.

3.21.4 Hermitian Operators
If arbitrary vectors A and B lie in the domain of two linear operators X and Y, then X and Y are said to 
be adjoint of each other. The Hermitian operators are represented by

 
XA B A XB, ,( ) = ( )  (154)

Y is denoted by X X
+

.  is self-adjoint or Hermitian if X X=
+  and anti-Hermitian if X X= −

+

.  The 
expectation value of an operator (variable) represents the arithmetic means of the precise measure-
ment. If S is the Schrödinger operator associated with a dynamical variable z and if y  is a normalized 
wave function, then according to expectation results

 
< >S S dz dz S dz= ∫( ) ∫ ( ) = ∫y y y y y y* * */  (155)

( ∫ = y y* dz 1  orthonormality condition, y *  complex conjugate)
An operator S is said to be Hermitian if its expectation/average value is real or the imaginary factor 

is zero. If S is to be Hermitian, then ∫y y* S dz  must be real or

 Im ∫ =y y* S dz 0  (156)

⇒ +( ) =Let us take  is the real part,  is the imaginara ib x a ib, yy part

If then⇒ = = +( ) = −b x a a ib a ib0,
*

For real function, the complex conjugate of function ∫ = ∫ ( )y y y y*

*

S dz S dz . i.e, if b = 0 , then 
the function is equal to its complex conjugate, that is, ∫ = ∫ ( )y y y y*

*

S dz S dz . Let u and v be two 
normalizable and acceptable wave functions of z such that

 
∫ +( ) +( ) = ∫ +( ) +( )[ ] S

* * *
u v u v dz S u v u v dz  (157)

Upon solving, ò + ò + ò + òu S udz u Svdz v Sudz v Svdz
* * * *

 = ò + ò + ò + òS u udz S u vdz S v udz S v vdz
* * * * * * * *

As the complex conjugates are equal, hence

 ∫ − ∫ = ∫ − ∫u Svdz S v udz S u vdz v Sudz
* * * * * *  (158)

∫ − ∫ ( ) = ∫ − ∫u S v dz u Sv dz S u vdz S u v dz
* *

*
* * * * *

( )

If we put iv instead of v, then

 
∫ − ∫ = ∫ − ∫u Siv dz u Siv dz S u iv dz S u iv dz

** * * * * * *
( ) ( )  (159)
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 ò + ò = ò + òu Sv dz u Sv dz S u v dz S u v dz
* * * * * * * *

( ) ( )  (160)

Hence, ∫ = ∫u Sv dz S u v dz
* * *

  (complex conjugate is equal to function) (161)

Hence, when u and v are normalizable, we call them Hermitian, self-adjoint, or Hermitian real.
Properties

1. The eigen values of Hermitian operators are real. Let H be a Hermitian operator and let V be an 
eigen vector belonging to the eigen value a .

By definition HV V V HV, ,( ) = ( )  (162)

Also 
a aV V V V, ,

*

( ) = [ ]  (163)

a aV V V V, ,
*[ ] = [ ]

a a−( )( ) =*
,V V 0

 V V, ;
*( ) ≠ =0 a a  (164)

Let S be the Hermitian operator belonging to the Eigen value a . According to condition of Hermitian 
operator

∫ = ∫u S v dz S u v dz
* * *

If v u=

 ò = òu Sudz S u udz
* * *  (165)

According to eigen value equation

 Su u=a  (166)

Hence,

∫ = ∫u udz u udz
* * *

a a

a a∫ = ∫u udz u udz
* * *

 a a=
*  (167)

This verifies that every Hermitian operator gives real eigen values.

2. If same Hermitian operator operates on two eigen functions, then the functions will be orthogo-
nal functions. Let V

1
 and V

2
 be eigen vectors of H belonging to the eigen values a

1
 and a

2

 HV V HV V
1 1 1 2 2 2
= =a aand  (168)

Then V HV HV V
2 1 2 1
,[ ] = ( ),

V HV HV V
2 1 2 1

0,[ ] − ( ) =,

a a
1 2 1 2 2 1

0V V V V,[ ] − ( ) =,

Since a a
1 2

0−( ) ≠  (both a
1
 and a

2 
are real)

Hence, V V
2 1

0,( ) =
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V V
V V

V V

2 1 2 1

2 1

0

2

cos q

q p

=

= /  (169)

Hence, the functions are orthogonal functions.
Alternatively, Sy a y

1 1 1
=  (170)

and Sy a y
2 2 2
=  (171)

Scalar product of and is given asSy y1 2

 
y y y ay a y y a
2 1 2 1 1 2 1 1
, , , realS( ) = ( ) = ( ) −( )  (172)

Scalar product of and isSy y2 1

 
Sy y a y y a

2 1 2 2 1 2
, , real( ) = ( ) −( )  (173)

But S Sy y y y
2 1 2 1
, ,( ) = ( )  as S is Hermitian (174)

From Eqs (172)–(174),

a a y y
2 1 2 1

0−( )( ) =,

But a a
2 1

0− ≠

 
y y y y
2 1 2 1

0,
*( ) = ∫ =dz  (175)

Hence, y
2

 and y
1
 are mutually orthogonal functions.

3. The set of all eigen vectors that are bounded by Hermitian operators form a complete set of values. 
Eigen vectors form a basis for space because the Eigen vectors are orthogonal and can be normalized.

If H
1
 and H

2
 are commuting Hermitian operator, then H H

1 2
 is also Hermitian, which can be 

proved as follows:

When H
1
 is Hermitian, then

 
∫ = ∫ ( )u

* *
H H vdz u H H v dz
1 2 1 2

 (176)

 ∫ = ∫u H H v dz H u H vdz
* * *

1 2 1 2
 (177)

If H
2

 is also Hermitian, then

∫ = ∫u H H v dz H H u vdz
* * *

1 2 1 2

∫ = ∫ ( )u H H v dz H H u vdz
* * *

1 2 1 2

∫ = ∫ ( )u H H v dz H H u vdz
* * *

1 2 2 1

When H
1
 and H

2
 commute, then

 
H H H H H H
1 2 1 2 2 1

0 0,[ ] = −[ ] =⇒  (178)

∫ = ∫ ( )
∫ = ∫

u H H v dz H H u vdz

u Sv dz S u vdz

* * *

* * *

1 2 1 2

where S = H
1
H

2

Hence, H H
1 2

 is also Hermitian.
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3.21.5 Unitary Operators
A linear operator U is said to be unitary if under a similarity transformation, U preserves the Hermitian 
character for an operator. The condition for U to be unitary is

 
U X U UXU X X

− + − +( ) = = 
1 1

for hemitian character  (179)

Such that U X U U XU U XU
−

+
−

+
+ −( ) = ( ) =

1 1 1  (180)

Multiplying Eqn. (180) from left by U +  and right by U

 
U U XU U U UXU U

+ −
+

+ + −( ) =
1 1  (181)

X U U U U X
+ +( ) = ( )

as U U U U
+ −

+
−

+

( ) = ( )1 1
= 1  (182)

U U
+ −

=
1

UU UU
+ −

= =
1
1

Hence, UU U U
+ +

= = 1  (183)

Under the operation of U, a vector X is transformed into vector X¢. If two vectors X and Y are trans-
formed by the same unitary operator U, then following condition is satisfied:

 
X Y UX UY X Y´ ´( ) = ( ) = ( ), ,  (184)

The scalar product of vectors is preserved by the transformation of unitary operators. The norm of a 
vector is also unchanged under unitary transformation, that is, UX X=  and U is bounded U =1. 
Hermitian operators H corresponding to every unitary operator is defined as

 U i H= ( )exp S  (185)

where S is a parameter

 U i H i H U
+ + −
= ( ) = −( ) =exp expS S

1  (186)

Hence, Hermitian operator generates unitary transformation. In addition, the product of two or more 
unitary operators is also unitary. Eigen vectors belonging to different eigen values are also orthogonal. 
The eigen values are unimodular, that is, if UX X= =a athen 1 .

3.21.6 Momentum Operators
The relation between classical variables and quantum mechanical operator ( �/i( )▼) is momentum 
operator. The eigen value of momentum operator is defined by

 
P i d dxop / /y y ay= ( )( ) =�  (187)

�/ /i d dx( )( ) =y ay

 d i dxy y a/ /= ( )�  (188)
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Integrating Eqn. (188),

 lny a= +i x c/ ln�

ln / /y ac i x( ) = �

y
a

/c e
i x

=

/�

 y
a

= ce
i x /�  (189)

Here c = 1 2/ p�  (190)

 
y p= ( ) ( )

1 2/ f�
�

e p
i px/

 
a =[ ]/ fore p  (191)

3.21.7 Hamiltonian Operators
The expectation values of position and momentum are given by

 < > /x x dx dx= ∫ ∫y y y y
* *  (192)

and < > /p p dx dx= ∫ ∫y y y y
* *  (193)

p i d dxop → ( ) �/ /  is the momentum operator.
Schrödinger equation is given by

 
�
2 2 2
2/ /m d dx Vy y y( ) + = E  (194)

Classically, Hamiltonian H p m V= ( ) +2
2/  and quantum mechanically Hamiltonian is given by 

H p m Vop op /= ( ) +2 2

In three dimensions,  H m d dx d dy d dz V x y zop / / / / += −( ) + +  ( )�
2 2 2 2 2 2 22 , ,

 (195)

In one dimension H m d dx V xop / / +→ −( )( ) ( )�
2 2 22  (196)

in three dimensions p i id dx jd dy kd dzop / / / /→ ( ) + +( ) �  (197)

Or p iop /→ ( )�  ▼ (198)

Eigen values of Hamiltonian operator can be obtained by H E
op
y y= , where y  is an Eigen func-

tion and E is the Eigen value. The Eigen value of E is real. For imaginary value of E, y  would be 
divergent at either x = ∞  or x = −∞.

3.21.8 Reflection Operator
If we take an operator R, which obeys

 RA x R A x( ) = −( )−1  (199)

where A(x) is operator function of x, then R is called reflection operator. In terms of x, y, z and bracket 
notation coordinate system,

    
< = ( )−x y z R A R x y z R x y z A R x y zy y y y y y′ ′ ′ ′′ ′′ ′′ ′ ′ ′ ′′ ′′ ′, , , , , , , ,

1
> y y ′′( )( )

 
< ′ ′ ′ ′′ − ′′ ′′ = ′ − ′ ′( ) ′′ − ′′ ′′( )x y z A x y z x y z A x y zy y, , , , , , , ,> y y  (200)
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If A
y
= p

y
= momentum

 
− < ′ ′ ′ ′′ ′′ ′′ = ( ) ′ − ′′( ) ′ − ′′( ) ′ − ′′x y z A x y z i d dy x x y y z zy, , , , > /� d d d (( )  (201)

[d d d′ − ′′( ) ′ − ′′( ) ′ − ′′( )x x y y and z z

are Dirac-delta funtions which are equal to 1 for x'=x", y'=y" and z'=z"].

We conclude that R p R py y y y

−

=

1  (202)

Reflection operator Ry  do not change x or z components of momentum. Only y component is 
changed.

3.21.9 Parity Operator
The parity operator satisfies the relation py yx x( ) = −( ) , where p  is the parity operator. p - operator 
is a linear operator and it satisfies the following operations:

 (i) p y y py py
1 2 1 2
x( ) + ( )( ) = ( ) + ( )( )x x x

 (ii) p y y y y
1 2 1 2
x x x x( ) + ( )( ) = −( ) + −( )

 (iii) p y y pyc x c x c x( ) = −( ) = ( )
Properties

1. The eigen value of operator p  is given by

 py ly=  (203)

where l  is the eigen value of p . Again operating Eqn. (203) by p

 p y lpy lly l y y2 2
= = = =  (204)

 

sohere l

l

2
1

1

=

⇒ ±=  (205)

The eigen function corresponding to the eigen values l = ±1  of parity operator are

 (i) The even function y
e
, corresponding to l = +1

 y y
e e
x x( ) = + −( )  (206)

 (ii) The odd given function y
o

 correspond to the eigen value l = −1

 y y
o o
x x( ) = − −( )  (207)

2. p -operator is Hermitian
The scalar product of py  and f  function is given by

py f y f y f,
* *( ) = ò -( ) ( ) = ò ¢( ) - ¢( ) ¢ ¢ = -[ ]x x dx x x dx x x

Also, py f y f y pf, ,
*( ) = ( ) -( ) = ( )

-¥

+¥

ò x x dx
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Value of integral is unaffected by renaming the variable of integration. This relation shows that p  is 
also Hermitian operator.
3. The operator commuting with Hamiltonian is known as the Hamiltonian operator and is

 
H p m V x= ( ) + ( )2

2/  (208)

Let it be operated on a function f x( )

 
H x m d dx x x xf f f( ) = −( )( ) ( ) + ( ) ( )�

2 2 2
2/ / V  (209)

Then

p f p f p fH x m d dx x V x x( ) = −( ) ( ) ( ) + ( ) ( )�
2 2 2
2/ /

= −( )( ) −( ) + −( ) −( )�
2 2 2
2/ /m d dx x V x xf f

V x V x−( ) = ( ) 

= −( )( ) + −( )  −( )�
2 2 2
2/ /m d dx V x xf

= ( )H xpf

Hence, H H Hp p p−[ ] = [ ] =, 0  (210)

The eigen values of a Hermitian operator A are real, the Eigen kets of A corresponding to different 
eigen values are orthogonal.

SUMMARY

The chapter deals with the Heisenberg’s uncertainty principle, de-Broglie hypothesis and Schrödinger 
formulation of wave equations. de-Broglie hypothesis states that the moving particles always have 
matter waves associated with them. These matter waves are also known as de-Broglie waves. Davisson 
and Germer performed the experiments to prove the presence of matter waves associated with elec-
tron. But, then it was found that waves do not travel as a single wave, rather as a wave packet. Many 
waves interfere with each other to form a wave packet. Wave packet travels with group velocity ( v

g
)  

and every individual wave travels with a phase velocity ( v
p
). Furthermore, the relation of equivalence 

of group and phase velocity is established. But, it was well demonstrated by Heisenberg that the posi-
tion and momentum cannot be measured accurately simultaneously, that is, if position is measured 
with greater accuracy, then the momentum remains uncertain and vice versa. The product of uncer-
tainties of position and momentum are greater than or equal to Planck’s constant. The need of dif-
ferential equations was there, as exact location and momentum of particle could not be determined. 
Hence, the probabilistic approach is required. Hence, differential equation describes the motion of 
particles. Schrödinger used wave functions for the formulation of Schrödinger’s equation. Wave func-
tions are continuous, single-valued, and finite at every point in the space. The expectation values have 
been used to obtain uncertainty principle. The product of two wave functions satisfying Schwarz 
inequality has also been demonstrated. The bridge between classical and quantum mechanics is dem-
onstrated by Ehrenfest theorem. Eigen values and eigen value equations have also been explained for 
different operators.
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SOLVED PROBLEMS

Q. 1: The de-Broglie wavelength of an electron is 4 A
°

. Calculate its momentum.

Ans: l =
°

4 A

According to de-Broglie hypothesis,

l =
h

vm

mv = =

×

×

−

−

h

l

6 63 10

4 10

34

10

.

p = ×
−1 65 10 24. kgm/s

Q. 2: The speed of a proton is 105 m/s . Calculate its de-Broglie wavelength.

Ans:
Velocity of proton = 105 m/s
Mass of proton = 1.67 × 10−27 kg
According to de Broglie relation

l =
h

mv

l =
×

× ×

−

−

6 63 10

1 67 10 10

34

27 5

.

.

l =
×

= ×

−

−
6 63 10

1 67
3 97 10

2

2.

.
. m.

Q. 3: Calculate the de-Broglie wavelength of an electron if it has a velocity of 105 m/s .

Ans:
Mass m of electron = 9.1 × 10−31 kg

l =
h

mv

l =
×

× ×

= ×

−

−

−
6 63 10

9 1 10 10

6 63

9 1
10

34

31 5

8.

.

.

.

l = ×
−

7 28 10
9

. m

Q. 4: The mass of a material particle is 207 times the mass of an electron. Calculate its de Broglie 
wavelength if its velocity is 104 m/s .

Ans:
Mass = 207 × 9.1 × 10−31 kg
Velocity = 104 m/s
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According to de-Broglie hypothesis,

l =
h

mv

l =
×

× × ×

−

−

6 63 10

207 9 1 10 10

34

31 4

.

.

l = × × × ×
− − + −

3 51 10 10 10 10
3 34 31 4

.

l = × =
−

°

3 51 10 3 51
10

. .m A

Q. 5: An electron has been accelerated through a potential difference of 400 V. Calculate its  
de-Broglie wavelength.

Ans: The relation between de-Broglie wavelength and voltage is

l =
°12 27.

V
A

l = =
×

°12 27

200

12 27

10 1 41

. .

.
A

l = =
° °12 27

14 1
0 87

.

.
.A A

Q. 6: An electron microscope used 2 keV electrons. Find out its resolving power.

Ans:

l =
°12 27.

V
A

l = =

° °12 27

2000

12 27

44 72

. .

.
A A

l =
°

0 274. A

Q. 7: Calculate the energy of electrons (is eV) when its de-Broglie wavelength is 2 A
°

.

Ans:

l = =

h

mv

h

mE2

2 10
6 63 10

2 9 1 10

10

34

31
× =

×

× × ×

−

−

−

.

. E

2 10
6 63 10

18 2 10

10
2

34
2

31
×( ) =

×( )
× ×

−

−

−

.

. E

E =
×( )

× × ×

−

− −

6 63 10

4 10 18 2 10

34
2

20 31

.

.



SolvED PRoBlEMS  •  127

E =
×

×

= ×

−

−

−
43 95 10

72 8 10
0 603 10

68

51

17.

.
. J

E =
×

×

=

−

−

6 03 10

1 6 10
37 68

18

19

.

.
. eV

Q.8: What would be the energy of an electron if its wavelength is 4 2 10
4

. ×
−

m. ?

Ans:

l =
h

mE2

E
h

m
=

2

2
2 l

E =
×( )

× × × ×

−

− −

6 63 10

2 9 1 10 17 64 10

34
2

31 8

.

. .

E =
×

×

−

−

43 95 10

321 048 10

68

39

.

.

E = ×
−

0 1368 10
29

. J

E =
×

×

= ×

−

−

−
0 1368 10

1 6 10
0 0855 10

29

19

10.

.
.

E = ×
−

8 55 10
12

. eV

Q. 9: Calculate the de-Broglie wavelength of thermal neutrons at 25°C  (given the mass of neutron 
1 67 10 27. ×

− kg  and Boltzmann constant 8 6 10
5

. ×
−

eV/C ).

Ans:

l =
h

mE2

l =
= ° =h

mk T

T

B2

25 298C K

kB = ´
-

8 6 10
5

. eV/C

= ×
−

1 376 10
23

. J/C

l =
×

× × × × ×

−

− −

6 63 10

2 1 67 10 1 376 10 298

34

27 23

.

. .

l =
×

×

−

−

6 63 10

1369 56 10

34

50

.

.

l =
× ×

− +

6 63 10 10

37

34 25
.
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l = ×
−

0 179 10
9

.

l = ×
−

1 79 10
10

.

l =
°

1 79. A

Q. 10: The energy of proton is 104 eV . Calculate its de-Broglie wavelength and velocity.

Ans: The energy of proton is
1

2
10 10 1 6 102 4 4 19

mv = = × ×
−eV J.

v
2

19 4

27

2 1 6 10 10

1 67 10
=

× × ×

×

−

−

.

.

v
2

15

27

3 2 10

1 67 10
=

×

×

−

−

.

.

v
2 3 2

1 67
10= ×

+
.

.

12

v
2 12
1 91 10= ×.

v = × = ×1 91 10 1 38 10
12 6

. . m/s

The de-Broglie wavelength is given by

l = =

h

mv

h

mE2

l =
×

× × × × ×

−

− −

6 63 10

2 1 67 10 10 1 6 10

34

27 4 19

.

. .

l =
×

×

−

−

6 63 10

5 344 10

34

42

.

.

l =
×

×

= ×

−

−

−
6 63 10

2 31 10
2 86 10

34

21

13.

.
. m

Q. 11: Evaluate the group and phase velocity of electron whose de-Broglie wavelength is 1
°

. A.

Ans:

l =
−

10
10
m

Energy andmo entumE w p= =� m �k

E

p k
v= =

w

p

v
E

p

p m

p

p

m
p

/
= = =

2 2

2
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v
h

m
p =

2 l
 (using de Broglie’s theorem)

vp =
´

´ ´ ´

-

- -

6 63 10

2 9 1 10 10

34

31 10

.

.

vp = ´ ´
-0 364 10 1034 41.

vp m/s= ´ = ´0 364 10 3 64 107 6. .

Group velocity is equal to the particle velocity

v
p

m
vg p m/s= = = ´ ´2 2 3 64 106.

vg m/s= ´7 28 106.

Q. 12: A proton is moving with velocity 105 m/s  and located with an accuracy of 10 3−
cm . Calculate 

the fractional uncertainty in momentum.

Ans: According to Heisenberg uncertainty principle,

∆ ∆x p ≥ �

∆
∆

∆
p

x
≥

=
=








−

−

�

x

10

10

3

5

cm

m

∆p ≥
×

× ×

−

−

6 63 10

2 3 14 10

34

5

.

. m

∆p ≥ ×
−1 05 10 29. kgm/s

The fractional uncertainty in momentum is given by

∆ ∆p

p

p

mv
= =

×

× ×

−

−

1 05 10

1 67 10 10

29

27 5

.

.

∆p

p
= × ×

−
0 628 10 10

29 22
.

∆p

p
= × × = ×

− −
6 28 10 10 6 28 10

29 21 8
. .

Q. 13: An electron is correct up to 0.05 percent while moving with a velocity of 300 m/s. What 
should be the minimum accuracy for the location of particle?

Ans:

p mv=

= × × = ×
− −

9 1 10 300 27 3 10
31 29

. .
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= ×
−2 73 10 28. kgm/s

∆ ∆p m v=

∆
∆

p mv
v

v
p
v

v
= =

∆

∆p = × ×
−

2 73 10
0 05

100

28
.

.

∆p = ×
−

0 1365 10
30

.

∆p = ×
−1 365 10 31. kgm/s

According to uncertainty principle,

∆ ∆x p ≥ �

∆
∆

x
h

p
≥ ×
2

1

p

∆x ≥
×

× × ×

−

−

6 63 10

2 3 14 1 365 10

34

31

.

. .

∆x ≥ ×
−

0 77 10
3

. m

∆x = 0 77. mm

Q. 14: A bullet of 100 g mass is shot out with a velocity of 600 m/s  with an uncertainty of 0.01 
percent in momentum. What would be the accuracy of its position with which it will be located?

Ans:
Mass m = 100 g = 100 × 10−3 kg

m =
−10 1 kg

Momentum of bullet

p mv= = × =
−10 600 601 kgm/s

Uncertainty in momentum is given by

∆p = × = ×
−

0 01

100
60 60 10 4.

kgm/s

According to uncertainty principle,

∆ ∆x p ≥ �

∆
∆

x
p

≥
�

∆x ≥
×

× × ×

−

−

6 63 10

2 3 14 60 10

34

4

.

.

∆x ≥ × ×
−

0 0175 10 10
34 4

.
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∆x ≥ × ×
−

1 75 10 10
34 2

.

∆x ≥ ×
−

1 75 10
32

. m

Q. 15: Electron is confined to a box of dimension 10 10−
m. Obtain the minimum uncertainty in its 

velocity.

Ans: According to uncertainty principle,

∆ ∆x p ≥ �

∆
∆

∆p
x

x≥ =
−�

[ 10
10
m]

m v

x

∆
∆

≥
�

∆
∆

v

m x

≥ =
×

× × × ×

−

− −

� 6 63 10

9 1 10 10 2 3 14

34

31 10

.

. .

∆v =
× ×

× ×

−
6 63 10 10

9 1 2 3 14

34 41
.

. .

∆v =
×

× ×
=
×

×
6 63 10

9 1 2 3 14

0 728

2 3 14
10

7

7.

. .

.

.

∆v = ×0 116 10
7

.

∆v = ×1 16 10
6

. m/s

Q. 16: The one-dimensional wave function is given by j = −

ae
ax . Obtain the probability of 

 finding a particle between x
a

=

1
 and x

a

=

2
.

Ans: Probability is given by

P x x= ( ) ( )j j
*

P x dx x x dx( ) = ( ) ( )j j
*

P x dx ae ae dx
ax ax( ) =

− −

P x dx a e dx
ax( ) =
−

P P x dx a e dx
ax

a

a

a

a

= ( ) = -òò
1

2

1

2

/

/

/

/

P a e dx a
e

a

ax

a

a ax

a

a

= =
−











−
−

∫
1

2

1

2

/

/

/

/
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P e
ax

a

a

= −  
−

1

2

/

/

P e e
a
a

a
a= − −













− 




− 




2 1

P e e= − − 
− −2 1

P e e= − 
− −1 2

P e e= −

− −1 2

Q. 17: Normalize the wave function j x e
iax( ) = , where a is constant over the region a x a< < .

Ans: For normalization, we can calculate the wave function as

j j
*
x x dx

a

( ) ( ) =∫ 1

0

j jx Ne x Ne
iax iax( ) = ( ) = −*

Ne Ne dx
iax iax

a

− =∫ 1

0

N dx

a

2

0

1=∫

N x
a2

0
1=

N
a

2
1

=

N
a

=

1

Hence,
 

j x
a

e
iax( ) =

1

Q. 18: The wave function of a particle in one-dimensional box is given by

j

p

x
N

x

a
x a

( ) =







< <sin
2

0

0for

otherwise

Normalize the wave function.

Ans: The normalization condition is given by

j j
*
dx =

−∞

∞

∫ 1

j j j j j j
* * *
dx dx dx

a

a

+ + =
∞

−∞
∫∫∫ 0

0

0
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j j
*
dx

a

=∫ 1

0

N
x

a
dx

a

2 2

0

2
1sin

p

=∫

N x

a
dx

a2

0
2

1
4

1−





=∫ cos
p

N
x

x

a
dx

a

a2

0

0
2

4
1−









 =∫ cos

p

N
a

2

2
1( ) =

N
a

=

2

Hence, the wave function is given by

j
p

x

a

x

a

( ) =
2 2
sin

Q. 19: The wave function for a particle is given by j x e
x( ) = 2 . Find the probability of finding the 

particle between x = 4  and x = 6.

Ans: The probability is given by P dx= ∫j j*
4

6

P e dx
x= ∫ 4

4

6

P
e

e e

x

= = -( )
4

4

6

24 16

4

1

4

P
e e

=
−( )24 16

4

Q. 20: Prove that probability is real for given wave function Y x t,( ) .

Ans: Let Y x t,( )  be expressed as a complex quantity.

Y x t a ib,( ) = +

Hence, Y
*
,x t a ib( ) = −

Therefore, Y Yx t x t P a b, ,
*( ) ( ) = = + =

2 2
Real

Hence, probability is real.
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Q. 21: A particle is described by wave function j = 7x  for 0 1< <x . Obtain the average position 
of the particle.

Ans: The expectation value is given by

< > =
−∞

∞

∫x x dxj j
*

< > = ∫x x x x dx7 7

0

1

< > = ∫x x dx7
3

0

1

< > = = =x

x

7
4

7

4
1 75

4

0

1

.

Q.22: A particle is described by a wave function

Y x t

a

x, cos( ) =
2

2  for − < <a x a

Obtain the expectation value of momentum.

Ans:

< > = − ( ) ∂
∂

( )( )
−∞

∞

∫p i x t
x

x t dx� Y Y
*
, ,

< > = -
¶

¶

æ

è
ç

ö

ø
÷

-¥

¥

òp i
a

x
x a

x dx�
2

2
2

2cos cos

< > = +
−
∫p i

a
x x dx

a

a

�
2

2 2 2cos sin ( )

< > =
−
∫p

i

a
x dx

a

a
4

4
�
sin

< > = −

−

p
i

a

x

a

a
4 4

4

� cos

< > = − −( )p
i

a
a a

�
cos cos4 4

< > =p 0

Q.23: The wave function Y x t
a
e
i kx wt

,( ) = −( )1

3
 is given for a particle in interval (0,a ). Obtain the 

uncertainty in position.
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Ans:

< > =
−∞

∞
− − −∫x

a
e x

a
e dx

i kx wt i kx wt1

3

1

3

( ) ( )

< > = ∫x
a
x dx

a
1

3
0

< > =x

a

x

a

1

3 2

2

0

< > = −








x

a

a1

3 2
0

2

< > = × =x

a

a a1

3 2 6

2

< > =x

a

6

Q. 24: Let the particle be described by a wave function Y x t
L
e
ikx

,( ) =
2

 in interval (0, L). Obtain 
the uncertainty in momentum.

Ans:

< > = -
¶

¶

æ

è
ç

ö

ø
÷

-¥

¥
-

òp i
L
e

x L
e dxikx ikx

�
2 2

< > =
− −∫p
i

L
e e ik dxikx ikx

L
�2

0

( )

< > = òp
k

L
dx

L
2

0

�

< > =p k2�

Q. 25: Do 
∂

∂x
 and 

∂

∂t
 commute?

Ans: The operators commute, if

A B AB BA,[ ] = − = 0

Here A
x

=
∂

∂
 and B

t
=
∂

∂

A B g
x t

g, ,[ ] =
∂

∂

∂

∂







where g is g x t,( ) , that is, continuous function of x and t

A B g
x t t x

g,[ ] =
∂

∂

∂

∂

∂

∂

∂

∂






−
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=
∂

∂

∂

∂
−
∂

∂

∂

∂x

g

t t

g

x

=
∂

∂ ∂
−
∂

∂ ∂

2 2
g

x t

g

t x

As 
∂

∂ ∂
=
∂

∂ ∂

2 2
g

x t

g

t x

Hence, A B g,[ ] = 0

Therefore, A and B commute with each other.

Q. 26: Determine whether the wave function Y = +( )
Ae

ik x a  is an Eigen function of momentum 
 operator ˆp

x
.

Ans:

px = −
∂

∂
i
x

�

p Ae ik x a

x i
x

Y = −
∂

∂
( )+( )

�

p i Ae ikx

ik x a
Y = − ( )+( )

�

p i ikxY Y= − �

p kxY Y= �

Hence, it is an eigen function of momentum operator p
x
. The Eigen value is �k.

Q. 27: Prove that time-independent Schrödinger equation is an example of eigen value equation.

Ans:
d

dx

m
E V

2

2 2

2
0

j
j+ −( ) =

�

−
− −( ) =

�
2 2

2
2

0
m

d

dx
E V

j
j

−
−






=

�
2 2

2
2m

d

dx
V E

j
j j

−
+






=

�

� ��� ���

2 2

2
2m

d

dx
V E

H

j j

H Ej j=

Hence, it represents an eigen-value equation.
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OBJECTIVE QUESTIONS

 1. de-Broglie wavelength is independent of

 (a) mass (b) velocity
 (c) charge (d) all of these

 2. de-Broglie wave is related to temperature as

 (a) l =
h

mk TB2

 (b) l = ( )h mk TB2

 (c) l = m T/  (d) l =m mk TB/ 3

 3. The de-Broglie wavelength is given by

 (a) l =
°12 27.

mk TB

A  (b) l =
°6

3mk TB

A

 (c) l =
°12 27.

V
A  (d) l =

°10 89.

V
A

 4. In Davisson and Germer experiment, no bump was observed at

 (a) 54 V (b) 60 V
 (c) 44 V (d) 40 V

 5. The propagation constant k and momentum are related to each other by

 (a) p
k

=

�
 (b) p k= �

 (c) p mk=  (d) p
m

k
=

 6. Wave packet has group of waves that travel with

 (a) different speed (b) different directions
 (c) same speed (d) none of these

 7. The wave velocity of a particle is given by

 (a) wk  (b) wk

 (c) 
w

k
 (d) w k2 2

 8. Group velocity is

 (a) greater than particle velocity (b) less than particle velocity
 (c) equal to particle velocity (d) none of these
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 9. According to uncertainty principle, which two things cannot be measured simultaneously?

 (a) mass and velocity (b) position and charge
 (c) mass and charge (d) position and momentum

 10. Energy of particle in a box is given by

 (a) E mL= 2
2  (b) E

mL
=

�
2

2
2

 (c) E mL= �
2 2
2  (d) E L= 2

2
�

 11. The ground state energy of hydrogen atom is

 (a) 10.2 eV (b) 13.6 eV
 (c) 5.6 eV (d) 9 eV

 12. Minimum energy of oscillator is given by

 (a) �w  (b) 
1

�
w

 (c) L w�  (d) 0

 13. The wave function must be

 (a) single valued (b) finite
 (c) continuous (d) all of these

 14. The probability for a particle is represented by

 (a) j *  (b) j
 (c) j j* *  (d) j j*

 15. The probability can be normalized as

 (a) j jr t r t dv, ,
*( ) ( ) =

−∞

∞

∫ 0  (b) j jr t r t dv, ,( ) ( ) =
−∞

∞

∫ 1

 (c) j j
* *
, ,r t r t dv( ) ( ) =

−∞

∞

∫ 0 (d) j j
*
, ,r t r t dv( ) ( ) =

−∞

∞

∫ 1

 16. Free particle represents

 (a) no mass (b) no force
 (c) no charge (d) all of these

 17. The probability density of state is

 (a) imaginary (b) zero
 (c) real (d) fluctuates
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 18. The uncertainty principle is valid for

 (a) subatomic systems (b) large systems
 (c) both small and large (d) none of these

 19. The photon of wavelength l, has mass m is given by

 (a) 
h

c

l
 (b) 

h

cl

 (c) 0 (d) none of these

 20. In terms of expectation values, the uncertainty principle states

 (a) ∆A A A= < > − < > 
2 2

1 2/

 (b) ∆A A A= < > − < > 
2
1 2/

 (c) ∆A A A= < > − < > 
2

1 2/

 (d) none of these

 21. Which wave functions do not commute?

 (a) 
∂

∂

∂

∂x t

,  (b) x t,

 (c) p px y,  (d) p yy ,

 22. Which is a nonlinear operator?

 (a)  (b) x
 (c) exp  (d) d dx/

 1. (c)

 2. (a)

 3. (c)

 4. (d)

 5. (b)

 6. (c)

 7. (c)

 8. (c)

 9. (d)

 10. (b)

 11. (b)

 12. (a)

 13. (d)

 14. (d)

 15. (d)

 16. (b)

 17. (c)

 18. (c)

 19. (b)

 20. (a)

 21. (d)

 22. (a)

ANSWERS
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Micro-Assessment Questions

 1. What do you understand by dual nature of material particles?
 2. What are matter waves?
 3. How do matter waves differ from electromagnetic waves?
 4. What is a wave packet?
 5. Define group velocity for a wave packet.
 6. What is the difference between group and particle velocity?
 7. Explain uncertainty principle.
 8. What is a wave function?
 9. What do you understand by probability for a particle?
 10. Define the parameters that define whether a particle is free or bound.
 11. What is normalization of wave function?
 12. What do you understand by the orthogonality condition?
 13. Why the wave function needs normalization?
 14. When you say “a wave-function is well behaved,” what does it infer?
 15. Explain the conditions that a wave function should obey.
 16. What was the need for a wave function?
 17. Define the expectation value for an observable.
 18. How the behavior of particle is described using differential equation?
 19. What do you understand by single-valued function?
 20. What do you understand by observable?

Critical Thinking Questions

 1.  Show that the group velocity associated with the moving particle is equal to velocity of the  
particle itself.

 2. Derive the mathematical relation between group and particle velocity for a wave packet.
 3.  If matter has a wave nature, then why its wave-like character is not observable in our everyday 

life?
 4. Find out the de Broglie wavelength in terms of potential difference V.
 5. Discuss Davisson and Germer experiment for diffraction of electrons.
 6.  How does uncertainty principle exclude the possibility of existence of electrons inside the 

nucleus?
 7. Heisenberg uncertainty principle is important for microscopic objects. Explain.
 8. Calculate the binding energy of hydrogen using uncertainty principle.
 9. Explain the zero-point finite energy using uncertainty principle.
 10. Obtain the time-dependent Schrödinger wave equation for bound and free particle.
 11. Derive the time-independent Schrödinger wave equation in one dimension.
 12. Derive the expression for expectation value of position and momentum operators.
 13. State and derive the Ehrenfest theorem. Explain its physical significance.
 14. Obtain the Heisenberg uncertainty principle using Schwarz inequality.
 15. Why the de Broglie waves associated with cricket ball are not observable?
 16. Why the wave function and its derivative should be continuous everywhere?
 17. Why Schrödinger wave equation has first-order time derivative?



REMEMBER AND UNDERSTAND  •  141

 18.  An electron and a proton are accelerated from rest through the same potential difference. Which 
one has the longer wavelength?

 19.  Why is it impossible to measure the position and speed of a particle simultaneously with infinite 
accuracy?

Graded Questions

 1. Find out the de Broglie wavelength for electron with energy 1 V.
 2.  Find out the voltage that should be applied to electron source to produce electrons with wave-

length 0.6Å.
 3. Find out the momentum for neutron with de Broglie wavelength 1Å.
 4.  Find out the uncertainty in position of electron moving with speed 500 ms−1 having accuracy 

0.05 per cent.
 5.  Calculate the de Broglie wavelength for an electron with kinetic energy: (a) 100 eV and (b) 1,000 

keV.
 6.  The wavelength for sodium line is 5,890 Å. Find out the kinetic energy at which the electron will 

have same energy.
 7. Calculate the binding energy of hydrogen atom using uncertainty principle.
 8. Calculate the de Broglie wavelength for a proton moving with a speed of 106 m/s.
 9. Calculate the de Broglie wavelength of a 90-kg person who is running at a speed of 3.0 m/s.
 10.  Through what potential difference would an electron have to be accelerated to give it a de Broglie 

wavelength of 1Å?
 11.  A ball of mass 100 g moves with a speed of 20 m/s. If its speed is measured to an accuracy of 0.1 

per cent, what is the minimum uncertainty in its position?
 12.  A proton has a kinetic energy of 2.0 MeV. If its momentum is measured with an uncertainty of 

4.0 per cent, what is the minimum uncertainty in its position?
 13.  Calculate the wavelength in nm of electrons that have been accelerated from rest through a 

potential difference of 54 V.
 14. If y(x) = (A/(x2 + a2)), calculate the normalization constant A.
 15. State Ehrenfest’s theorem. Show that

( )

( )

a

b /

d x

dt

p

m

d p

dt
V x

x

x

< >
=
< >

< >
= < −∂ ∂ >

Remember and Understand

 1.  de-Broglie wavelength is independent of charge on the particle. Heavy particle has small 
wavelength.

 2. A particle is said to be free when it is under no force.
 3.  A wave function representing a wave packet describes a localized particle. The wave packet 

is superposition of many wavelets. Every wave has its own propagation constant and angular 
velocity.

 4. The group velocity of particle is equal to particle velocity.
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 5.  The wave function is continuous, single valued, finite, and well-behaved. The wave function 
must vanish at infinity.

 6. According to Heisenberg uncertainty principle

  
D D ³p x

x

�

2
, where yDp

x
 and Dx are the uncertainties in momentum and position, respectively.

 7. The probability for a particle to be found in interval dx is given by:

  
P x dx x t dx( ) ( , )= Ψ

2
, where y (x, t) represents the wave function defining the particle.

 8. The orthonormality condition states:

  
Ψ( , )x t dx

−∞

∞

∫ =
2

1.

 9.  When the wave function at time t = 0 is given, then the position of particle can be obtained at 
time t.

 10. The generalised time-dependent Schrodinger Equation is given by

  
i

t m x y z
V x y z�

�¶
¶
= -

¶
¶

+
¶
¶

+
¶
¶

é

ë
ê

ù

û
ú + ( )yy yy yy yy

yy
2 2

2

2

2

2

2
2

, ,

 11. The time-independent Schrodinger equation is given by

  

d

dx

m
E V

2

2 2

2
0

j
j+ −( ) =

�

 12. The exceptation value of momentum and energy are given by 

∆ ∆z p
z
≥ �

 13.  According to Schwarz's inequality, the absolute value of scalar product of state j
n
 and j

m
 is less 

then the product of form j
n
 and j

m

 14. The Ehrenfest Equations are given by

          (i) 
md x

dt
px

< >
= < >

         (ii) 
d

dt
p

V

x
x< > = −

∂

∂
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Till now, we have studied the time-dependent and time-independent Schrödinger equations. This 
chapter deals with the time-independent Schrödinger equations under the effect of different poten-
tials. These equations are very helpful to describe the motion of a particle.

4.1 Particle In Infinite Potential Well (1-D)

V(x) = 0

V(x)

x = 0

W1 W2

x = L

L

m

∞ ∞

Figure 4.1 The particle in a box (1-D)

4
Quantum Mechanics—III

Solutions of Schrödinger Equations 
and Hydrogen Problem

Learning Objectives

 to know about the behavior of Schrödinger equations under different potentials.

 to obtain the wave function of a particle in one-dimensional infinite potential well.

 to obtain the particle behavior in step potential for two cases, that is, when energy E is greater than 
step-potential V and when energy E is less than step-potential V.

 to understand the tunnel effect for finite potential barrier.

 to obtain the wave function for scattered and bound state.

 to calculate the hydrogen value problem in terms of azimuthal, angular, and radial wave functions.

 to analyze the 3-D harmonic oscillator and square-well potential.

 to apply separation of variables for solving hydrogen value problem.

 Keywords:   finite potential well, Step potential, Tunneling effect, 3-D harmonic oscillator, Hydrogen 
value problem, Radial equation, total quantum number, Spherical coordinates. azimuthal quantum 
number
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Consider a one-dimensional (1-D) (see Figure 4.1) box with dimensions extending from 0 < <x L . The 
walls of the well are taken to be rigid, so that when the particle collides with the walls, no loss of energy 
takes place (square well potential is equivalent to potential of closed box). The variation of potential for 
this well is given by

V x x L( ) = < <0 0for     (inside)

V x x x L( ) = ∞ < >for and0  (outside)

and W
1
 and W

2
 represent the walls of a closed box or well.

This problem can be analyzed with two treatments, classical and quantum-mechanical. Ideally, the 
particle of mass m inside the box moves under no force because potential inside the box is zero. But while 

moving, when the particle reaches boundary walls W
1
 and W

2
, the potential changes from 0 to ∞ .  

Hence, the particle experiences force F
dV

dx
= − , that is, the particles gets reflected back (as the force is 

in opposite direction). Hence, the particle keeps on moving within the walls W1  and W2 .

But the quantum mechanical picture portrays this motion of particle in box using Schrödinger 
equation as follows:

 

d

dx

m
E V x

2

2 2

2
0

j
j+ - ( )( ) =

h
 (1)

Equation (1) for particle inside the box can be written as V x( ) =éë ùû0 :

 

d

dx

m
E

2

2 2

2
0

j
j+ =

h
 (2)

We can substitute  2

2

2
m

k
E

h
=

 (3)

Hence, Eqn. (2) can be written as

 

d

d
k

2

2

2
0

j
j

x
+ =  (4)

Equation (4) has the general solutions

 j x A kx A kx( ) = +
1 2
sin cos  (5)

where A
1

 and A
2

 are arbitrary constants. Before solving Eqn. (4), we need to determine the 
boundary conditions first. The potential outside the box is almost infinite, hence the probability and 
wave function of particle outside the box and at the boundaries is almost zero.

 
j x x L( ) = =0 0at and  (6)

Apply Eqn. (6) in Eqn. (5)

j x A kx A kx x( ) = = + =0 0
1 2
sin cos [ ]at

0 0 0
1 2

= ( ) + ( )A Asin cos

 A
2
0=  (7)
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Therefore, the solution from Eqn. (5) becomes

 
j x A kx( ) =

1
sin  (8)

Using second boundary condition at x = L,

j x A k L( ) = ( ) =
1

0sin

A kL
1

0sin =

(A
1
 cannot be zero because otherwise both the constants will be zero leading to no particle inside 

the box)

sin kL = 0

 
kL n k

n

L
= ⇒p

p

=  (9)

where n > 0 or n = 1, 2, 3,…

From Eqs (3) and (9),

 
E

n

mL
n
=

2 2 2

2
2

p h  (10)

This Eqn. (10) represents energy of states for particle in box. Applying n = 1, 2, 3, …, the energy 
values obtained are depicted in Figure 4.2.

Ideally, the particle inside the box can take any arbitrary values. But quantum mechanically, it is 
not possible. The particles can take only some well-defined energy values, which are defined by n = 1, 
2, 3, …. Hence, in other words, the energy of particle is quantized and discrete. Figure 4.2 shows the 
energy levels corresponding to n = 1, 2, 3, and 4. This diagram is known as energy-level diagram. It is 

clear from Figure 4.2 that E
mL

n
=

p
2 2

2
2

h
 for n = 1.

This is the minimum energy of a particle in potential well. E
1

is also known as ground-state 
energy or zero-point energy.

Let us find out the value of constant A
1

 by using normalization.

n = 4 E4 = 16

E3 = 9

E2 = 4

E1 =

n = 3

n = 2

n = 1

p2

2mL2
= 16E1

p2

2mL2
= 9E1

p2

2mL2
= 4E1

p2

2mL2

h2

h2

h2

h2

Figure 4.2 Energy-level diagram
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From Eqn. (8)

j x A kx( ) =
1
sin

j
p

x A
n

L
x x L( ) = æ

è
ç

ö
ø
÷ < <

1
0sin for

For the particle outside the box, the wave functionj x( )  vanishes.
Applying normalization condition,

 j jx x dx( ) ( ) =
-¥

¥

ò *
1  (11)

j j j jx x dx x x dx( ) ( ) ( ) ( ) =
-¥

= ( )

¥

ò ò* *

0

outside the box0

0

1

1 244 344

j j j jx x dx x x dx

L

L

( ) ( ) + ( ) ( ) =ò ò
¥

= ( )

* *

0

0

1

outside the box

1 244 344

j jx x dx

L

( ) ( ) =ò *

0

1

A
n

L
x dx

L

1

2 2

0

1sin
p

ò =

A
n x

L
dx

L

1

2 2

0

0sin
p

ò =

 
A

L
1

2
=

 
(12)

Hence, using Eqn. (12), Eqn. (8) becomes

 
j

p
n
x

L

n x

L
( ) =

2
sin  (13)

Figure 4.3 gives the variation of wave function j
n
x( )  with x.

LO

j2 (x) 1st node

2nd node
3rd node

j1 (x)

Figure 4.3 The wave function in nth state has (n + 1) nodes of vibration
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4.2 Step Potential

Sometimes potential barriers are present for a particle. When we speak of potential barrier, it means 
the energy of particle is below zero or nearly zero everywhere except for some regions. The potential 
barrier has some height. The step potential has two cases as follows:

 (i) When energy E of particle is more than the potential barrier height.
 (ii) When energy E of particle is less than the potential barrier height.

Both the cases are discussed in the following sections:

4.2.1 Energy Greater than Potential Step
Figure 4.4 represents single potential step for particle of mass m. V

o
 is the height of potential bar-

rier at x < 0 and it is constant for x > 0. Hence, it can be summarized as

V x x( ) = < ®0 0 1for region

V x V x( ) = > ®o for region0 2

The total energy E of the incident particle is greater than V
o
, such that E V- >

o
0 . Classically, the 

particle can move freely in region 1, as V x( ) = 0. But at x = 0, a force F
dV

dx
=

−

 is experienced. This 

force is retarding in nature, which affects the moving particle, and the velocity of incident particle gets 
slowed down. Hence, no reflection takes place and the particle is transmitted to region 2, but with 
lower velocity compared to incident velocity. Hence, the classical viewpoint states that the particle 
is always transmitted in region 2. Quantum mechanically, the Schrödinger wave equation is used. 
 Time-independent wave equation is used as potential is independent of time.

d

dx

m
E V x

2

2 2

2
0

j
j+ − ( )( ) =

h  
[Eqn. (1)]

For x < 0 (region 1), the Schrödinger wave equation can be written as

d

dx

m
E

2

1

2 2 1

2
0

j
j+ =

h  
[V(x) = 0 for region 1]

 

d

x

2

1

2 1

2

1
0

j
j

d
k+ =  (14)

Incident
wave

Reflected
wave

Region 1 Region 2

Transmitted wave

V(x) = 0

V = Vo

x = 0

V(x) = Vo

V(x)

E

Figure 4.4 Representation of potential barrier when the energy E V>
o
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where k
mE

1

2

2

2
=

h
 (15)

The general solution for Eqn. (14) is given by

 j
1 1 2

1 1
= +

-

A e A e
ik x ik x  (16)

where A
1

 and A
2

 are arbitrary constants.
For x > 0 (region 2), the Schrödinger wave equation is given by

 

d

dx

m
E V

2

2

2 2 2

2
0

j
j+ −( ) =

h
o

 
[for region 2, V(x)=V

o
]

 

d

dx
k

2

2

2 2

2

2
0

j
j+ =  (17)

where k
m E V

2

2

2

2
=

−( )o
h

 (18)

The general solution for Eqn. (17) is given by

 j
2 1 2

2 2
= +

-

B B
ik x ik x
e e  (19)

For Eqs (16) and (19), the exponential terms can be described as follows:
(a) Equation (16): eik x1  → wave associated with incident particle in region 1
e 1
-ik x  → wave of reflected particle in region 1

(b) Equation (19): eik x2  → wave of transmitted particle in region 2
e 2
-ik x  → wave of reflected particle in region 2

There is no further potential barrier in region 2, hence no wave is associated with reflected particle 
in region 2. Therefore, e 2

-ik x  is 0, and Eqn. (19) is written as

 j
2
= B

ik x

1
e 2  (20)

For solving the Schrödinger equation, we need to have boundary conditions. At boundaries, the wave 
function and its first derivative is continuous. Hence, at boundary x = 0

 
j j
1 2
0 0( ) = ( )  (21a)

and

 

d

dx

d

dx
x x

j j
1

0

2

0= =

=
 (21b)

Using Eqs (16), (20), and (21a)

A A B
ik ik ik

1

0

2

0

1

0
1 1 2e e e+ =

-

 A A B
1 2 1
+ =  (22)

Using Eqs (16), (20), and (21b)

ik A A ik B
1 1 2 2 1

=-( )

 
A A

k

k
B

1 2 1
- =

2

1

 (23)
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Adding Eqs (22) and (23),

 B
k

k k
A

1

1

1 2

1

2
=

+

æ

è
ç

ö

ø
÷  (24)

Then we obtain A
2

 from Eqs (22) and (24)

 A
k k

k k
A

2

1 2

1 2

1
=

-

+

æ

è
ç

ö

ø
÷  (25)

Using Eqs (24) and (25) in Eqs (16) and (20),

 
j
1

1

1
1

1

=
e

e

I II

1 2

1 2A

A
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i x

i x
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1 2
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1 244 344  (26b)

From Eqn. (26(a)–(b)), the wave can be written as 

j
t

e- ®A
ik x

1

1  incident wave.   j
r

ik x
A
k k

k k
-

-

+

æ

è
ç
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ø
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1 2

1e reflected wave

j
t

2
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+
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è
ç

ö

ø
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k

k k
e
ik x

1

1

1 2

2 transmitted wave

We will define two important terms based on these results as follows:

 (i) Reflection coefficient: For a free particle, the probability density current is the product of the 
velocity of particle and its probability density. Let u

1
 be the velocity of particle in region 1

Hence, reflected probability density current

= u
r r1
j j
*

Incident probability density current

= u
i i1
j j
*

Reflection coefficient is the ratio of reflected probability density current to the incident  probability 
current density, that is,

 R
u

u

r

i i

=

1

1

j j

j j

*

r

*

 (27)
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 (28)
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Equation (28) gives the probability of reflection of incident particle. The reflection coefficient is zero 
only when k k

1 2
= . Otherwise, there is always some reflection at the potential barrier. Classical view-

point states that no reflection occurs.

 (ii) Transmission coefficient: We need transmitted probability density current for calculation of 
transmission coefficients.

    Transmitted probability density = u
2
j j
t

*

t

where u
2
® velocity of particle in region 2.

Transmission coefficient is defined as the ratio of transmitted probability density to incident 
probability density, that is,

 
T

u

u
=

2

1

j j

j j

t

*

t

i

*

i

 (29)

u
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k

m
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m
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1 2= = = =






h h
;

T
k m k k k A A

k m A A
ik x ik x
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2 1 1 2
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1 1

1 1 1

2

1 1

/ /(

/ e e

)
*
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T

k k

k k
=

4
1 2

1 2

2

+( )
 (30)

Transmission coefficient gives the probability of transmission of particle across potential barrier.
Equation (30) gives T < 1, but classical mechanics treats T = 1. If we add reflection and transmis-

sion coefficient, then

R T
k k

k k

k k

k k
+ =

-( )

+( )
+

+( )
1 2

2

1 2

2

1 2

1 2

2

4

 R T+ =1  (31)

4.2.2 Energy Less than Potential Step

Region 1

Incident Wave

Reflected Wave

Region 2

V(x) = Vo

V(x) = 0

x = 0

E

Figure 4.5 Potential step greater than energy E of particle
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Figure 4.5 represents the step barrier when energy of particle is less than barrier height, that is, 
E V- <

o
0 . The potential on the left of x = 0 vanishes and on the right is constant. It can be sum-

marized as

V x( ) = 0
  

for   x < 0 in region 1

V x V( ) =
o
  for   x > 0 in region 2

The classical analysis of Figure 4.5 gives the explanation as follows:

When the particle moves in region 1, there is no field on the particle. As it reaches the boundary at 
x = 0, it experiences force due to potential V

o
. The energy of incident particle is less than the potential 

barrier; hence, it is not able to penetrate the barrier and will remain in region 1. It will be reflected 
back as soon as it comes across the boundary. For the quantum mechanical treatment, we have to 
solve the Schrödinger equation

d

dx

m
E V

2

1

2 2 1

2
0

j
j+ -( ) =

h

for x < 0 (region 1 corresponds to zero potential)

 

d

dx

mE
2

1

2 2 1

2
0

j
j+ =

h
 (32)

where m = mass of incident particle.

 
k

mE
1

2

2

2
=

h
 (33)

The solution is given by

 j
1 1 2

1 1
= +

-

A e A e
ik x ik x  (34)

where A
1

 and A
2

 are arbitrary constants.
For x > 0 (region 2 corresponding to constant potential)

d

dx

m
E V

2

2

2 2 2

2
0

j
j+ -[ ] =

h
o

 

d

dx

m
V E

2

2

2 2 2

2
0

j
j- -[ ] =

h
o

 (35)

 

d

dx
k

2

2

2 2

2

2
0

j
j- =  (36)

where  k
m V E

2

2

2

2
=

-[ ]o

h

 (37)

The solution of Eqn. (36) is given by

 j
2 1 2

2 2
= +

- +

B B
k x k x

e e  (38)

as x tends toward infinity, ek x2  becomes infinite; hence, it violates the boundary condition that wave 
function is finite everywhere. Therefore ek x2  is neglected and eqn.38 is written as

 j
2 1

2
=

-

B
k x

e  (39)
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Before we could solve this equation, we have to use the boundary condition that the wave function 
and its derivative are continuous at boundary:

 i. e. j j
1 0 2 0x x= =

=  (40a)

 

d

dx

d

dx
x x

j j
1

0

2

0= =

=
 (40b)

Using Eqs (34), (39), and (40a),

 A A B
1 2 1
+ =  (41a)

Using Eqs (34), (39) and (40b),

ik A A B k
1 1 2 1 2

-( ) = -

 
A A i

k

k
B

1 2

2

1

1
- =

 (41b)

Adding Eqn. (41a) and (41b),

 B
i k A

ik k
1

1 1

1 2

2
=

-

æ

è
ç

ö

ø
÷  (42)

From Eqs (41a) and (42),

 A
i k k

i k k
A

2

1 2

1 2

1
=

+

-

æ

è
ç

ö

ø
÷  (43)

Substituting Eqs (42) and (43) in Eqs (34) and (39)

 

j
1 1 1

1 2

1 2

= e + e1 1

I

II

A A
i k k

i k k

ik x ik x

{
1 2444 3444

+

-

æ

è
ç

ö

ø
÷

-  (44)

 
j
2

1 1

1 2

2=
2

e
i k A

ik k

k x

-

-  (45)

Equation (44) is interpreted as

j
i
= eA

ik x

1

1
® incident wave part

j
r
= eA

ik k

ik k

ik x

1

1 2

1 2

1
+

-

é

ë
ê

ù

û
ú ®- reflected wave part

We can obtain reflection coefficient as obtained in previous section (Eqn. (27))

R
u

u

r r

i i

=

1

1

j j

j j

* *

* *
(where u

1
 is velocity of particle in region1)

R

A
ik k

ik k
A
ik k

ik k

A

ik x ik x

=

- +

- -

é

ë
ê

ù

û
ú

+

-

é

ë
ê

ù

û
ú

-
1

1 2

1 2

1

1 2

1 2

1

*
e e1 1

ee e 1-ik x ik x
A1

1

*

 R =1  (46)
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If we compare Eqs (45) and (46), we will obtain that the probability of transmission is zero, although 
some wave function do exist in region 2. The region x > 0 is classically forbidden, but still the prob-
ability of finding a particle in x > 0 may persist.

4.3 Finite Potential Barrier (Tunnel Effect)

Figure 4.6 shows a barrier potential of width L and a particle of mass m with energy E is incident on 
the potential. The energy E of particle is small than the potential such that E V- <

o
0 . The potential 

here can be divided into three parts as follows:

V x

x

V x L

x

( ) =
= < ®

= < < ®

= > ®

é

ë

0 0 1

0 2

0 0 3

for region

for region

for region

o

êê
ê
ê

ù

û

ú
ú
ú

Incident wave

Reflected
wave

Region 1

Region 2 Region 3

Transmitted
wave

x = 0 x = L

V(x) = Vo

V(x)

E

Figure 4.6 Finite potential barrier

The classical explanation states that the energy of particles is less than the potential V
o
. The particle 

moves freely in region 1, but as its energy is smaller than the potential V
o
, the particle is not able to 

cross the barrier potential and is reflected back at x = 0. We will use time-independent Schrödinger 
equation for quantum-mechanical treatment.

d

dx

m E V
2

1

2 2 1

2
0

j
j+

-( )
=

h

For x < 0, in region 1, the potential V x( ) = 0

d

dx

mE
2

1

2 2 1

2
0

j
j+ =

h

 

d

dx
k

2

1

2 1

2

1
0

j
j+ =

 (47)

where k
mE

1

2

2

2
=

h
 (48a)
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The solution of Eqn. (47) is given as

 j
1 1 2
= +

-

A A
ik x ik x
e e1 1  (48b)

A
1

 and A
2

 are arbitrary constants
0 < <x L , in region 2, the potential V x V( ) =

o

d

dx

m
E V

2

2

2 2 2

2
0

j
j+ -( ) =

h
o

d

dx

m
V E

2

2

2 2 2

2
0

j
j- -( ) =

h
o

 

d

dx
k

2

2

2 2

2

2
0

j
j- =

 (49)

where k
m
V E

2

2

2

2
= -( )æ
è
ç

ö
ø
÷

h
o

 (50a)

General solution of Eqn. (49) is given by

 j
2 1 2
= +

- +

B B
k x k x

e e2 2  (50b)

where B
1
 and B

2
 are arbitrary constants.

For x > 0, is region 3, the potential V x( ) = 0

d

dx

m
E V

2

3

2 2 3

2
0

j
j+ -( ) =

h
o

 

d

dx

mE
2

3

2 2 3

2
0

j
j+ =

h  
[Using Eqn. 48(a)]

 

d

dx
k

2

3

2 1

2

3
0

j
j+ =  (51)

The general solution of Eqn. (51) is given by

 j
3 1 2
= +

-

C C
ik x ik x
e e1 1  (52)

where C
1

 and C
2

 are arbitrary constants. For region 3, there is no further potential barrier. 
Therefore, there is no possibility of the reflection, hence C ik x

2

1e
-  is zero. Therefore, Eqn. (52) turns 

out to be

 j
3 1
=C

ik x
e 1  (53)

The boundary conditions that are used to solve these time-independent solutions is given by

 
j j
1 0 2 0x x= =

=  (54a)

 
j j
2 3x L x L= =

=

 
(54b)

 

d

dx

d

dx
x x

j j
1 2

= =

=
0 0

 (54c)
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d

dx

d

dx
x L x L

j j
2

= =

=

3  (54d)

Hence, the wave function and derivative of the wave function are continuous at the boundary using 
Eqs (48b), (50b), and (54a),

 A A B B
1 2 1 2
+ = +  (55)

Using Eqs (50b), (53), and (54b),

 B B C
k L k L ik L

1 2 1

2 2 1e e e
-

+ =  (56)

Using Eqs (48b), (50b), and (54c),

ik A ik A k B k B
1 1 1 2 2 1 2 2
- = - +

 
A A

ik

k
B B

1 2

2

1

1 2
- = -( )  (57)

Using Eqs (50b), (53), and (54d),

 
- + =

- -

B B
ik

k
C

k L k L ik L

1 2

1

2

1

2 2 1e e e  (58)

Adding Eqs (56) and (58),

 B C
ik

k

ik L

k L

2 1

1

2
2
1 2= +
é

ë
ê

ù

û
ú

-e
e

1

 (59)

Subtracting Eqs (56) and (58),

 B C
ik

k

ik L

k L

1 1

1

2
2
1= +
é

ë
ê

ù

û
ú

e
e

1

2  (60)

Adding Eqs (59) and (60) and subtracting Eqs (59) and (60),

 B B C h k L
ik

k
h k L

ik L

2 1 1 2

1

2

2
+ = ( ) - ( )

é

ë
ê

ù

û
úe 1 cos sin  (61)

[where cosh k L
k L k L

2

2
( ) =

+ -
e e2 2

 and sinh k L
e e
k L k L

2

2
( ) =

- -
2 2

]

 B B C h k L
ik

k
h k L

ik L

2 1 1 2

1

2

2
- = ( ) - ( )

é

ë
ê

ù

û
úe 1 sin cos  (62)

Use Eqs (61) and (55),

 A A C h k L
ik

k
h k L

ik L

1 2 1 2

1

2

2
+ = ( ) - ( )

é

ë
ê

ù

û
úe 1 cos sin  (63)

Use Eqs (62) and (57),

 A A C
ik

k
h k L h k L

ik L

1 2 1

2

1

2 2
- = ( ) + ( )

é

ë
ê

ù

û
úe 1 sin cos  (64)
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Adding Eqs (63) and (64) gives

 

A C h k L
i k

k

k

k
h k L

ik L

1 1 2

2

1

1

2

2
2

= -
é

ë
ê

ù

û
ú

é

ë
ê

ù

û
úe +1 cos ( ) sin ( )  (65)

and A
iC k

k

k

k
h k L

ik L

2

1 1

2

2

1

2

2
=
-

-
æ

è
ç

ö

ø
÷ ( )

é

ë
ê

ù

û
ú

e 1

sin

 

(66)

From Eqs (48b) and (53),

A

A

C

ik x

ik x

ik x

1

2

1

e incident wave

e reflected wave

e

1

1

1

i

r

= -

= -

=

-

j

j

ttransmitted wave
t

- j

As defined in previous sections, reflection coefficient and transmission coefficient can be described as 
follows:

Reflection coefficient, 
Reflected probability density cu

R =
rrrent

Incident probability density current

R
u

u
=

1

1

j j

j j

r

i

*

*

r

i

 R
A A

A A
=

2 2

1 1

*

*
 (67)

Using Eqs (65) and (66) in Eqn. (67),

 

R
k k h k L

h k L
k k

k k
h k L

=
+( ) ( )

( ) + -æ

è
ç

ö

ø
÷

2

2

1

2 2

2

2

2

2

2

1

2

1 2

2

2

sin

cos sin4 (( )
 (68)

Equation (68) gives the probability of reflection of particle. To determine transmission coefficient,

T =  
Transmitted probability density current

Incident probabillity density current

T
u

u
u u= =

3

1

3 1

j j

j j

t t

i i

*

*
(as )

 T
C C

A A
=

1 1

1 1

*

*
 (69)

Using Eqs (65) and (66) in Eqn. (69),

 

T

h k L
k k

k k
h k L

=

( ) + -é

ë
ê

ù

û
ú ( )

1

2

2

2

2

1

2

1 2

2

2

2
cos sin

2

 (70)
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Substituting cos sinh k L h k L
2

2

2

2
1( ) = + ( )  in (70)

 

T

k k

k k
h k L

=

+
+é

ë
ê

ù

û
ú ( )

1

1
2

2

1

2

1 2

2

2

2

2
sin

 (71)

Substituting Eqs (48a) and (50a) in Eqn. (71), the following result is obtained:

 

T

V

E V E
h

m V E
L

=

+
-( )

-( )

1

1
2

2

2o

o

o

4
sin

h

 (72)

Equation (72) shows that there is finite probability of penetration of particle into region 3 despite 
the fact that energy E of particle is less than V

o
. The probability of penetration of particle in region 3 

decreases if the width of the barrier gets thicker. This is known as tunneling effect. The emission of a
-particles from the nucleus is also an example of quantum mechanical tunneling. The kinetic energy 
of a -particles is very small compared with the potential wall of 25 MeV. The a -particles have to 
work and strike a lot with nuclear walls; but somehow, some of the a -particles may be able to tunnel 
out of nuclei.

f. Hund noticed the possibility of the tunneling phenomena in 
1927 while calculating ground-state splitting for a double-well 
potential known as “barrier penetration.” During 1927, l. 
nordheim applied the Schrödinger equation for calculating 
reflection coefficient of an electron when it comes across differ-
ent interfaces. He observed that even the electron with insuffi-
cient energy less than barrier was able to tunnel through the 
barrier. Hund observed the tunneling in bound state, whereas 
nordheim studied tunneling between continuum states. r.W. 
gurney, e.u. condon, and george gamow explained alpha 
decay of radioactive nuclei using the tunneling phenomenon.
the very first application of tunneling was an atomic clock, 
which was one of the earliest atomic clocks. this atomic clock 
was based on the tunneling of the nitrogen atom back and forth 
across the energy barrier in an ammonia (nH3) molecule. 
Scanning tunneling microscopy (Stm) is the foremost applica-
tion of tunneling. this technique accurately maps the surface 
and is used as a characterization technique for various materials 
because Stm gives high-resolution images of a material.  

F. HUND

4.4 Potential Well (Scattering and Bound State)

The potential well can be described by the following three different potential zones (Figure 4.7),  
that is,

= <

( ) = − < <

= >

0 0 1

0 2

0 3

for region

for region

for region

o

x

V x V x L

x L
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4.4.1 Bound State

The depth of the potential is V
o
. The particle is considered to be in bound state inside the potential 

well of depth V
o
. The energy of particle is E V<

o
. Ideally, E V-( )

o
 cannot be negative. The par-

ticle with E < 0 cannot enter regions 1 and 2. Hence, the particle will keep on moving within the 
potential well with a constant speed. To explain the behavior of particle quantum mechanically, the 
Schrödinger wave equation is used as

d

dx

m
E V x

2

2 2

2
0

j
j+ - ( )éë ùû =

h

In region x < 0, region 1 corresponds to zero potential

d

dx

m
E

2

1

2 2 1

2
0

j
j+ =

h
 

E E E W< = - = -0, ,hence

Tota

which implies that particle isbound to well

ll energy

  KE  PE

  negative energy

= +

=

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Region 1 Region 2 Region 3

V = 0 V = 0

x = 0 x = L

Vo

Figure 4.7 The states in potential well

d

dx

mW
2

1

2 2 1

2
0

j
j- =

h

d

dx
k

2

1

2 1

2

1
0

j
j- =  (73)

where k
mW

1

2

2

2
=

h
 (74)

The solution for Eqn. (73) is given by

 j
1 1 2
= +

-

A A
k x k x
e e1 1  (75)

as x®-¥ , the term A k x

2
e 1
-

® ¥ ; hence, this term is not valid and A
2

 should be zero.

 Therefore j
1 1
= e 1A

k x  (76)
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For 0 < x < L, the region 2, potential is −V
o

d

dx

m
E V

2

2

2 2 2

2
0

j
j+ +[ ] =

h
o

E W=-

d

dx

m
V W

2

2

2 2 2

2
0

j
j+ -[ ] =

h
o

 
d

dx
k

2

2

2 2

2

2
0

j
j+ =  (77)

Here k
m
V W

2

2

2

2
= -[ ]
h

o
 (78)

The solution for Eqn. (77) is

 j
2 1 2
= +

-

B B
ik x ik x
e e2 2  (79)

where B
1
 and B

2
 are arbitrary constants. For x > L, the region 3, potential is zero:

d

dx

m
E

2

3

2 2 3

2
0

j
j+ =

h

d

dx

mW
2

3

2 2 3

2
0

j
j− =

h
 [from Eqn. (74)]

d

dx
k

2

3

2 1

2

3
0

j
j- =

 
(80)

General solution of Eqn. (80) is given by

 j
3 1 2
= +

-

C C
k x k x
e e1 1  (81)

As x®¥ , C k x

1
e 1
®¥ . Therefore, C

1
= 0 and, Eqn. (81) can be written as

 j
3 2
=

-

C
k x

e 1  (82)

To determine the constants, we need to use the following boundary conditions:

j j
1 0 2 0x x= =

=  (83a)

j j
2 3x L x L= =

=  (83b)

d

dx

d

dx
x x

j j
1 2

= =

=
0 0

 (83c)

d

dx

d

dx
x L x L

j j
2 3

= =

=  (83d)

Hence, the wave functions and their derivation must be continuous at boundaries.



160  • cHaPter 4/Quantum mecHanicS—ii i

Using Eqs (76), (79), and (83a),

A B B
1 1 2
= +  (84)

Using Eqs (79), (82), and (83b),

B B C
ik L ik L k L

1 2 2

1e e e2 2
+ =

- -  (85)

Using Eqs (76), (79), and (83c),

B B
ik

k
A

1 2

1

2

1
- = -  (86)

Use Eqs (79), (82), and (83d),

B B
ik

k
C

ik L ik L k L

1 2

1

2

1

2 2 1e e e- =

- -  (87)

Adding Eqs (85) and (87)

2 e e2 1B C
ik

k

ik L ik L

1 2

1

2

1= +
é

ë
ê

ù

û
ú

-  (88)

Adding Eqs (84) and (86)

B
A ik

k
1

1 1

2
2
1= -
é

ë
ê

ù

û
ú  (89)

Subtracting Eqs (84) and (86)

B
A ik

k
2

1 1

2
2
1= +
é

ë
ê

ù

û
ú  (90)

Put Eqn. (89) in (88),

C
k ik

k ik
A

ik L k L

2

2 1

2 1

1

1=
-

+

é

ë
ê

ù

û
ú e e2  (91)

Subtracting Eqs (85) and (87), and substituting value of B
2 , 

we obtain 

C A
k ik

k ik

ik L k L

2 1

2 1

2 1

=
+

-

é

ë
ê

ù

û
ú

-
e e2 1  (92)

Equations (91) and (92) are the same, i.e.

k ik

k ik
A A

k ik

k ik

ik L k L ik L k2 1

2 1

1 1

2 1

2 1

2 1 2
−
+







=
+
−











−
e e e e 11

L

2 4
2

2

1

2

2 1 2 2
i k k k L i k k k L-( ) sin cos=

  

tank L
k k

k k
2

1 2

2

2

1

2

2
=

-  

(93)

2
2

2

2

1

2

1 2

cot k L
k k

k k
=

-



4.4   Potential Well (Scattering anD BounD State)  •  161

2
2

2

1

1

2

cot k L
k

k

k

k
= -

 (94)

Substituting Eqs (74) and (78) in Eqn. (94),

2
2

2

2
2

2

1 2
2

2

cot

/

m
V W L

m
V W

m
W

h

h

h

o

o

-( )é
ëê

ù
ûú
=

-( )

æ
è
ç

ö
ø
÷

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
úú

-
æ
è
ç

ö
ø
÷ -( )

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1 2

2

2

1 2

2

2

/ /

m
W

m
V W

h

h
o

 (95)

Equation (95) is the transcendental equation, which means the argument of cotangent can determine W. 
For obtaining energy of particle, the graphical method is used.

Put b g=
é

ë
ê

ù

û
ú = -

é

ë
ê

ù

û
ú

2
1

2

2

12 1 2

mV L

V

o

o

and
h

W
/

In Eqn. (95),

2

1

1

2

2

cot bg
g

g

g

g
( ) =

-
-

-

2
2 1

1

2

2
cot( ) (bg

g

g g
=

-

-  

(96)

Put g a= cos /2  (97)

In Eqn. (96),

cot cotbg a( ) =

bg a p= + n

bg p g= +
-

n 2
1

cos ( (98)

Solving Eqn. (98) requires two new parameters y and x, such that

y = bg  and x n= +
-

p g2
1

cos

Allowed values of g  can be obtained from the point of intersection as shown in Figure 4.8.

x or y

at n = 1

and b = 1   

x = 2 cos–1g

y = g
g

g

Figure 4.8 Variation of x or y vs g
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These obtained values of g  are then used in g = -
é

ë
ê

ù

û
ú1

1 2

W

V
o

/

, which gives energy values. Figure 4.8 

 demonstrates the values of g  for n = 1 and b  = 1 and only one g  value is obtained. As n increases 
the energy values also increase. Hence, the particle in well may take discrete value of energies.

4.4.2 Scattered Case
If energy E of particle is greater than zero, then the Schrödinger equations are written as for x < 0. 
Region 1, potential V x( ) = 0

d

dx
k

2

1

2 1

2

1
0

j
j+ =  (99)

k
mE

1

2

2

2
=

é

ëê
ù

ûúh

with solution

j
1 1 2
= +

-

A A
ik x ik x
e e1 1  (100)

For 0 < <x L , region 2, potential V x V( ) =
o

d

dx
k

2

2

2 2

2

2
0

j
j+ =  (101)

k
m E V

2

2

2

2
=

+( )é

ë
ê

ù

û
ú

o

h

with solution

j
2 1 2
= +

-

B B
ik x ik x
e e2 2  (102)

For x > L, region 3, potential V x( ) = 0

d

dx
k

2

3

2 1

2

3
0

j
j+ =  (103)

with solution

j
3 1 2
= +

-

C C
ik x ik x
e e1 1  (104)

Applying the boundary conditions Eqn. 83(a)–(d),

A A B B
1 2 1 2
+ = +  (105a)

ik A A ik B B
1 1 2 2 1 2

-( ) = -( )  (105b)

B B C C
ik L ik L ik L ik L

1 2 1 2

2 2 1 1e e e e+ = +
- -  (105c)

k B k B kC kC
ik L ik L ik L ik L

2 1 2 2 1 1 1 2

2 2 1 1e e e e- = -

- -  (105d)

For particle incident from left,

C
2
0=
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The transmission coefficient is obtained as Eqn. (71)

T
C

A

T
k k

k K k k k L

=

=
+ -( )

1

1

2

1

2

2

2

1

2

2

2

1

2

2

2 2

2

4

4 sin
 

(106)

[In this case k
m V E

2 2

2
=

+( )o

h
 but in Eqn. (50a), it was k

m V E

2 2

2
=

-( )o

h
]

From Eqn. (68), transmission coefficient can be obtained as

R
A

A

k k k L

k k k k k L
= =

-

+ -( )
2

1

2

1

2

2

2 2

2

1

2

2

2

1

2

2

2 2

24

( )sin

sin
 (107)

From Eqn. (106), maximum T of 1 is obtained for

sin sin

max

k L n

k
n

L
T

2

2 1

=

= =

p

p

for and  (108)

From Eqn. (106), minimum T is obtained for

sin sink L n

L
k

n

2

2

2 1
2

1 1

= +( )æ
è
ç

ö
ø
÷

=
+( )

p

p2

2
 (109)

The transmission increases with energy of incident particle.

4.5 Schrödinger Equation In Spherical Coordinates

Spherical coordinates helps in dealing the problem that involves spherical symmetric potential energy.
Let us write time independent Schrödinger equation for a partied mass, m:

 

 (110)

Before solving this equation further, we need to obtain the relation between Cartesian coordinates and 
spherical coordinates.
Spherical systems have three mutually perpendicular coordinates as given below:

 (a) Radial distance: This distance is from origin to the observation point A, and it varies from 0 to ∞.

∂

∂

∂

∂

∂

∂

2

2

2

2

2

2 2

2
0

j j j
j

x y z

m
+ + + − =

h
(E V)
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C

z

0

D
B

A

f

q

→

x

y

r

Figure 4.9 Relation between spherical and Cartesian coordinates.

 (b) Azimuthal angle: the angle between OB and OX is known as azimuthal angel (f ), and its value 
lie between 0 and 2p.

 (c) Zenith angle: the angle between OA and positive OZ is called zenith angle (q  ). Its value varies 
between 0 and p.

All these coordinates are shown in Figure 4.9
The projection of r on x-y plane is given by

 z = r cos f (111)

We obtain

 sin cosx r θ φ=  (112)

and 

 sin siny r θ φ=  (113)

Squaring and adding Eqs (111) through (113), we obtain

 
2 2 2 2
r x y z= + +  (114)

Dividing Eqn. (113) by Eqn. (112), we obtain

 
tan

y

x
φ =  (115)

From Eqn (112), we can write

 
cos

z

r

θ =  (116)

We have obtained the relations between spherical and Cartesian coordinate; therefore, we should 
obtain the partial derivative to be used in Eqn. (110). Hence, by chain rule we obtain

∂ϕ

∂

∂ϕ

∂

∂

∂

∂ϕ

∂

∂

∂

∂ϕ

∂

∂

∂x r x x x

= + +
r

q

q

f

f

From Eqn. (114), we obtain

 

r x

x r

∂
=

∂
 (117a)
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Substituting Eqn. (112) in Eqn. (117a), we get

 
sin cos

r

x

θ φ
∂
=

∂
 (117b)

Similarly, we obtain

 

cos cos

x r

θ θ φ∂
=

∂
 (117c)

and

 

sin

sinx r

φ φ

θ

∂
=

∂
 (117e)

Substituting Eqs (117c) through (117e) in Eqn. (117a), we obtain

 ϕ ϕ θ φ ϕ φ ϕ
θ φ

θ θ φ

∂ ∂ ∂ ∂
= + −

∂ ∂ ∂ ∂

cos cos sin
sin cos

sinx r r r

 (118)

Similarly, we obtain other partial derivations as follows:

 

ϕ ϕ θ φ ϕ ϕ ϕ
θ φ

θ θ φ

∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂

cos sin cos
sin sin

siny r r r
 (119)

and

 

sin
cos .

z r r

ϕ ϕ θ ϕ
θ

θ

∂ ∂ ∂
= −

∂ ∂ ∂
 (120)

After performing differentiation on Eqs (118) through (120), we obtain

 
ϕ ϕ θ φ ϕθ φ

θ
∂ ∂ ∂ ∂ ∂   = +   ∂ ∂ ∂ ∂ ∂   

2

2

cos cos
sin cos

x r x r x

sin

sinr x

φ
θ φ
∂ ∂ϕ −  ∂ ∂ 

 (121a)

 
2

2

cos cos
sin sin

y r y r y

ϕ ϕ θ φ ϕ
θ φ

θ
   ∂ ∂ ∂ ∂ ∂

= +   ∂ ∂ ∂ ∂ ∂   
cos

sinr y

φ
θ φ

 ∂ ∂ϕ
+  ∂ ∂ 

 (121b)

 
2 2

2

2 2

1
cos cos sin

z r r r

ϕ ϕ ϕ
θ θ θ

θ
∂ ∂ ∂ ∂ = −  ∂ ∂ ∂ ∂  2

sin sin
cos sin

r r r

θ ϕ ϕ ϕ
θ θ

θ θ θ
∂ ∂ ∂ ∂   − +    ∂ ∂ ∂ ∂ 

 (121c)

Add Eqs (121a) through c, also use Eqs (118) through (120), we obtain

 
2 2 2 2 2

2 2 2 2 2 2

2 1

x y z r r r r

ϕ ϕ ϕ ϕ ϕ ϕ

θ

∂ ∂ ∂ ∂ ∂ ∂
+ + = + +

∂ ∂ ∂ ∂ ∂ ∂

2

2 2 2 2

1 cot

sinr r

ϕ θ ϕ

θ φ θ

∂ ∂
+ +

∂ ∂
 (122)

Substituting Eqn. (122) in Eqn. (110), we obtain

 
2 2 2

2 2 2 2 2 2 2

2 1 cos 1

sinr r r r r r

ϕ ϕ ϕ θ ϕ ϕ

θ θ θ φ

∂ ∂ ∂ ∂ ∂
⇒ + + + + +
∂ ∂ ∂ ∂ ∂ 2

2
(E V) 0

m

+ − ϕ =
h

 (123)



166  • cHaPter 4/Quantum mecHanicS—ii i

Rewriting Eqn. (123),

 

2

2

2 2 2 2 2

1 1 1
sin

sin sin
r

r r r r r

ϕ
θ

θ θ θ θ
∂ ∂ ∂ ∂ϕ ∂ ϕ   ⇒ + +   ∂ ∂ ∂ ∂ ∂φ    2

2
(E V) 0

m

+ − ϕ =
h

 (124)

Equation 15 is regarded as the Schrödinger equation in spherical polar coordinates.

4.6  Schrödinger Equation for Spherical Symmetric Potential

The time-independent Schrödinger equation in spherical coordinates is

1 1 1
2

2

2 2 2

2

2
r r

r
r r r

∂

∂

∂

∂







+

∂

∂

∂

∂







+

∂

∂

j

q q
q
j

q q

j

fsin
sin

sin
++ − =
2

0
2

m
E V

h
( )j

 

[from Eqn. (124)]

Where j  is j fr, ,q( ) . As wavefunction j is dependent on three polar coordinator (fig. (4.10)), 
equation (124) can be separated in the three independent equations:

Let j q f Q q F fr R r, ,( ) = ( ) ( ) ( )

Now

¶

¶
=
¶

¶
[ ] =

¶

¶

¶

¶
=
¶

¶
[ ] =

¶

¶

¶

¶
=
¶

¶
[ ] =

¶

j
QF QF

j

q q
QF F

Q

q

j

f f
QF Q

F

r r
R

R

r

R R

R R
¶¶f  

(124b)

∂

∂
=

∂

∂

2

2

2

2

j

f
Q

F

f
R  (124d)

z p

x

y

r

x

y

f

q
→

Figure 4.10 Spherical polar coordinates

Substituting Eqs (124a) and (124b) and (124d) in Eqn. (124)

QQ QQF F

q q
q
q q

F

r

d

dr
r
dR

dr

R

r d

d

d

R

r

d

2

2

2 2 2

2é
ëê

ù
ûú
+

¶ é
ëê

ù
ûú
+

sin
sin

sin

Q
dd

m E V R

f

F
2 2

2
0+

-( )
=

QQ

h
 (124c)

[Here all the partial derivatives are converted to perfect full derivations, because they are dependent 
on one variable only] Dividing Eqn. (124c) by RQF

(124a)

(124c)
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1 1

2

2

2 2 2

2

Rr

d

dr
r
dR

dr r

d

d

d

d r

dé

ëê
ù

ûú
+ é

ëê
ù

ûú
+

Q q q
q
q q F

F

sin
sin

sin

Q 1

dd

m E V

f 2 2

2
0+

-( )
=

h
 (124d)

Multiply both sides by r 2 2
sin q  and rearrange terms

 

sin sin
sin si

2

2

2

2q q

q
q
qR

d

dr
r
dR

dr

d

d

d

d

m
E V r






+ 




+ −( )

Q

Q 2

h
nn
2

2

2

1
q
F

F

f
=
− d

d  

(125a)

L.H.S. of Eqn. (125a) is a function of a r and q where as R.H.S. is a function of f . Put this equal to 
constant m

l

2 .

 

-

=

1
2

2

2

F

F

f

d

d
m
l

 (125b)

 sin sin
sin si

2

2

2

22q q

q
q
qR

d

dr
r
dR

dr

d

d

d

d

m
E V r

é
ëê

ù
ûú
+ é

ëê
ù
ûú
+ -( )

QQ
QQ

h
nn
2 2
q =m

l
 (125c)

Let us solve Eqn. (125c). Divide (125c) by sin2 q

 

1 1 22

2

2

2

R

d

dr
r
dR

dr

d

d

d

d

mr
E V

m
lé

ëê
ù
ûú
+ é

ëê
ù
ûú
+ -[ ] =

QQ

QQ

sin
sin

sq q
q
q h iin

sin sin
sin

2

2

2

2

2

2

2 1

q

q q q
q

1

R

d

dr
r
dR

dr

m
r E V

m d

d

d
lé

ëê
ù
ûú
+ -[ ] = -
h QQ

QQQQ

dq

é
ëê

ù
ûú  (125d)

The L.H.S. of Eqn. (125d) is a function of r and R.H.S. is a function of q. Hence, put this equation 
equal to same constant l l +( )1  

 
m d

d

d

d
l l

l

2

2

1
1

sin sin
sin

q q q
q
q

- é
ëê

ù
ûú
= +( )

Q

Q
 (125e)

 

1 2
1

2

2

2

R

d

dr
r
dR

dr

m
r E V r l l

é
ëê

ù
ûú
+ - ( )éë ùû = +( )
h

 (125f )

[For spherical symmetric potential V = V(r)]

Rearrange Eqs (125b), (125c), and (125f ), and we obtaine following set of equations:

 d

d
ml

2

2

2
0

F

f
F+ =

 (126a)

   
1

1 0

2

2
sin

sin
sinq q

q
q q

d

d

d

d
l l

m
l

Q
Q

é
ëê

ù
ûú
+ +( ) -
é

ë
ê

ù

û
ú =  (126b)

 

1 2 1

2
0

2

2

2

2

2
r

d

dr
r
dR

dr

m
E V r

l l

mr
R

é
ëê

ù
ûú
+ - ( ) -

+( )é

ë
ê

ù

û
ú =

h

h
 (126c)

Hence, the Schrödinger equation is divided into three ordinary differential Eqs (126a), (126b), and (126c). 
Every equation is dependent on single variable. The solution of these equations gives the value of R, Q, 
and F. Equations (126a) and (126b) yield the solutions for all cases with spherical symmetric potential.
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4.6.1 Solutions of F  Equation
Take Eqn. (126a)

 

d

d
m
l

2

2

2 0 126
F

f
F+ = [from Eqn. a( )]

It has solution of form  F
f

=C
im
l

e  (127a)

where C is a constant. As f must be single valued, this means F  should have one value at a given 
point in space. Hence, F f( )  has same value at f = 0  and f p= 2 .

 

F F p

p p

p

0 2

1

2 2

0 2

2

( ) = ( )

=

=

+ =

C Ce

m i m

im im

i m

l l

l l

l

e

e

1

pp

cos sin  (127b)

Equating real part [as the imaginary part is 0]

cos 2 1pm
l
=

This condition is satisfied if m
l
= ± ± ±0 1 2 3, , , ,K  where m

l
 is the magnetic quantum number. As 

F  depends on m
l

2 , from (127a) 

F
f

m m

im

l l

lC= e

Normalizing Eqn. (127a) will field, C
m
l

=

1

2p

Hence
 

F
p

f

m

im

l

le=

1

2

  [m
l 
= 0 means no rotation, positive m

l
 

corresponds to anticlock wise rotation 
where as negative m

l
 represents 

clockwise rotation] (127c)

4.6.2 Solution of Θ  Equation
For hydrogen atom, Eqn. (126b) represents Θ  equation.

 

1
1 0

2

2sin
sin

sin
[

q q
q
q q

d

d

d

d
l l

m
lQé

ëê
ù
ûú
+ +( ) -
é

ë
ê
ê

ù

û
ú
ú
=Q from Eqn. (( ]126b)

Let us introduce new constant x to solve schrodinges is equation such that

 x = cosq  (128a)

 

dx

dq
q= - sin  (128b)

 

d

d

d

dx

dx

d

d

dx

Q Q Q

q q
q= = - sin  (128c)
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Multiplying both sides of Eqn. (128c) by sinq  to obtain

 
sin sinq

q
q

d

d

d

dx

Q Q
= -

2  (128d)

Differentiating w.r.t. q

d

d

d

d

d

d

d

dx

d

d

d

d

d

d

q
q
q q

q

q
q
q q

sin sin

sin

Q Q

Q

é
ëê

ù
ûú
= -é

ëê
ù
ûú

é
ëê

ù
ûú
=

2

ccos

sin cos

2

2

1

1

q

q
q
q

q

-( )é
ëê

ù
ûú

é
ëê

ù
ûú
= -( )é

ëê
ù

d

dx

d

d

d

d

d

dx

d

dx

Q

Q Q

ûûú
dx

dq

Use Eqs (128a) and (128b) in the above equations.

 
d

d

d

d

d

dx
x

d

dxq
q
q

qsin sin
Q Qé

ëê
ù
ûú
= - -( )é

ëê
ù
ûú

2
1  (128e)

Substitute Eqn. (128e) in Eqn. (126b)

 

-
-( )é

ëê
ù
ûú
+ +( ) -
æ

è
ç
ç

ö

ø
÷
÷
=

1
1 1 02

2

2sin
sin

sinq
q

q

q
Q

d

dx
x

d

dx
l l

m
l

[ussing Eqn. a( )]128

 
d

dx
x
d

dx
l l

m

x

l

1-( )é
ëê

ù
ûú
+ +( ) -

-

æ

è
ç
ç

ö

ø
÷
÷
=2

2

2
1

1
0

q
Q  (129)

Equation (129) reperesents associated Legendre’s differential equation. The solution of Eqn. (129) is 
called associated Legendre’s polynomials. Equation (129) clearly indicates that this equation depends 
on two quantum numbers l and m

l 
. The solutions are finite for all values of q  such that l should be an 

integer and l m
l

³ ]; l = 0 1 2 3, , , ,K  and is called orbital quantum number.
The acceptable solutions are

 
Q
lm lm l

m

l l

l
= B qP cos( )  (130)

where B
lm

l

l

l

l l m

l m
=

+ +( )
-( )

é

ë

ê
ê

ù

û

ú
ú

( ) !

!

2 1

2

and hence Eqn. (130) is

 

Q
lm

l

l

l

m

l

l

l l m

l m
P=

+ +( )
−( )

( )
( ) !

!
cos

2 1

2
q

 (131)

[P
l
 m

l (cos θ) is associated Legendre function]

where l should have allowed values l m m m
l l l

= , , ,+ +1 2K
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4.6.3 Solution of Radial Equation

Eqn. (126c) represents radial equation

 

1 1 2
0 12

2

2

2 2
r

d

dr
r
dR

dr

l l R

r

m
E V r R

é
ëê

ù
ûú
-

+( )
+ - ( )éë ùû =
h

[from Eqn. ( 66c)]

 
d R

dr r

dR

dr

l l

r

m
E V r R

2

2 2 2

2 1 2
0+ + -

+( )
+ - ( )éë ùû

é

ë
ê

ù

û
ú =

h
 (132a)

For a hydrogen-like atoms V r
Ze

r
( ) =

-( )2
 where Z is atomic number. Substitute it in Eqn. (132a)

 
d R

dr r

dR
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l l

r

m
E

mZe

r
R

2

2 2 2

2

2

2 1 2 2
0+ + -

+( )
+ +

é

ë
ê

ù

û
ú =

h h
 (132b)

Let E < 0 , so that electron is bound to the atom.

Put  a
2

2

2
=

- mE

h
 and g

a
=

mZe
2

2
h

 in Eqn. (118b)

 
d R

dr r

dR
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l l

r r
R

2

2 2

2
2 1 2

0+ + −
+( )

− +








 =a

ga
 (132c)

Let us now substitute b  such that b a= 2 r

 
dR

dr

dR

r

R
=
∂
⋅
∂

∂
=

∂

∂b

b
a
b

2  (132d)

From Eqn. (132d),
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d
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d

d
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d

d
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d
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2
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2
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=

b
a
b

b

a
b

 (132e)

Put Eqs (132d) and (132e) in Eqn. (132c) and dividing by

 
d R

d

dR

d

l l
R

2

2 2

2 1 1

4
0

b b b b

g

b
+ + −

+( )
+ −









 =  (132f )

The solution is R
Z

na

n l

n n l

e
Zr

na
L

Zr na
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=
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è
ç

ö

ø
÷

- -( )
+( ){ }
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è
ç
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-
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/ ll Zr
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+ æ

è
ç
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÷

1 2

o

 (132g)

We will derive Eqn. (132g) in hydrogen-like atoms (See Section 4.6).
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4.7 Hydrogen Atom

For hydrogen atom, the force between electron and proton is given by

F
e

r
=

2

2
4pe

o

And the potential energy corresponding to Coulomb’s force is given by

V
e

r
= -

2

4pe
o

We will take into account radial part. We have derived Eqn. (132f ) in the previous section

 

d R

d

dR

d

l l
R

2

2 2

2 1 1

4
0 132

b b b b

g

b
+ + -

+( )
+ -

é

ë
ê

ù

û
ú = [ ( )]from Eqn. f

Now, if b ®¥, then Eqn. (132f ) have asymptotic solutions where we neglect terms 
1

2b
 and 

1

2b
.

 
d R

d
R

2

2

1

4
0

b

b
b

( )
− ( ) =  (132h)

The solution of the above equation is

 
R b( ) = +

e
b /2  and R b b( ) = -

e
/2  (133a)

As b  may vary from 0 to ∞ , then e b /2  will increase as b increases, leading to an unacceptable wave 

function R eb( ) = = ¥éë ùû
¥/2 . Hence, the solution is given by

 
R A eb b b( ) = ( ) - /2  (133b)

A b( ) is another function of variable b . Now, we will obtain recursion formula.

4.7.1 Recursion Formula

From Eqn. (133b),

R A eb b b( ) = ( ) - /2

Substitute it in Eqn. (132f )

 A A
l l

A² + -
ì
í
î

ü
ý
þ
¢ +

- +( )
+ -

ì
í
î

ü
ý
þ
=

2
1

1 1
0

2b b

l

b b
 (134a)

where  ′ = ′′ =A
dA

d
A

d A

db b
and

2

2

The solution of A(b) can be written as

 
A b b b( ) = ( )Sr  (134b)
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where r b( )  is a power series in b  and can be written as

 

r b b b b b( ) = + + + + =
=

∞

∑a a a a a
K

K

K

0 1 2

2

3

3

0

L  (134c)

 
a
0
0¹[ ]

We obtain following result after differentiating (134b) written b

′( ) = ′( ) + ( )−
A S

S Sb b r b b r b1

For simplicity

 
¢ = ¢ +

-
A S

S Sb r b r1  (134d)

 
¢¢ = -( ) + ¢ + ¢¢- -
A S S S

S S S
1 2

2 1b r b r b r  (134e)

Substituting A A, ′ , and ′′A  in Eqn. (134a),

 

b r b r b r b r b r b r

b r g

S S S S S S

S

S S S S

S

+ + + +

+

′′ + ′ + −( ) + ′ + − ′

− + −

2 1 1 2

1

2 1 2 2

1(( ) − +( ) =+b r b rS S
l l

1
1 0  (135a)

Divide Eqn. (121a) by b S  and then rearrange the terms, we obtain

 
b r b b r b g r2

2 1 1 1 1 0′′ + +( ) −  ′ + − −( )  + +( ) − +( )  =S S S S l l  (135b)

Put b = 0  in Eqn. (135b), and the following result is obtained

 

S S l l

S S l l a

+( ) − +( ){ } =

+( ) − +( ){ } =

1 1 0

1 1 0
0

r  (as r = a
0
)
 (135c)

or
 S l=  (as a

0
 ≠ 0) (135d)

     
S l= - +( )1  (135e)

S should be equal to l to keep R(b) finite, hence Eqn. (135b) becomes 

 
br b r g r¢¢ + +( ) -éë ùû ¢ + - -( ) =2 1 1 0l l  (136a)

Diffrentiating Eqn. (134c) w.r.t. b the following result is obtained.

 

′ = + + + =
−

=

∞

∑r b b ba a a ia
i

i

i

1 2 3

2 1

1

2 3 L  (136b)
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¥
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i

i

i

1
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1  (136c)

 

¢¢ = + + + = -( )

= +( ) +( )

-

=

¥

=

år b b b

b

2 6 12 1

1 2

2 3 4
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a a a a i i

a i i

i

i

i

i

i

i

L

+2

00

¥

å  (136d)
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Put Eqs (134c), (136c), and (136d) in Eqn. (136a)

 

a i i l

a i l a
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+1
l

+( ) +( ) + +( ) -{ }

+( ) + - -{ } =

+

=
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1
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b g b 00
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1

0
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i

i

i

i

i

i

a i i

a i l a

=

¥

=

¥

+

=

¥

åå

å +( ) +( ) -

+( ) + +( )

+2

+1

+1

b

b
++1
+1i l a

i

i

i

iii

( ) + - -( ) =
=

¥

=

¥

=

¥

ååå b g b1 0

000

 (137b)

The coefficient of powers of b  must vanish to satisfy Eqn. (137b). Hence the coefficient of b i  
should be equated to zero separately.

a i i a i l a i a
i i i i+1 +1

+1 +1 l( ) - + +( ) ( ) + - -( ) =2 1 1 0g
 (137c)

or

 

a l i i i l i a

a
i l

i l

i i

i

+1

+1

+1 +1

+1

+1

2 2 1 0

2

+( )( ) + ( ){ } + - - -( ) =

=
+ -

( ) +

g

g

ii
a
i

+( )2
 (137e)

Equation (137e) is called recursion formula. For different values of g and l, A b( )  consists of infinite 
series of terms. Hence, the wavefunction is not satisfactory. The series shows diverging behaviour, 
i.e. r increases as b increases. Hence, some restrictions should be introduced to find a satisfactory 
wavefunction.

4.7.2 Energy Values for the Hydrogen Atom
If we set a

i+
=

1
0 , then from Eqn. (137e)

 i l+ + − =1 0g  [The series will break after b
k
.]

 g = + + =i l n1  (138a)

Here i is called radial quantum number and n is called the total quantum number that can have values 
1, 2, 3, …

Now

 

g
a

g

2

2 2 4

4 2

2 2 4

4

2

2

2 2 4

2

2 4
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= =
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=
−

= −

m Z e m Z e

Em

m Z e
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E
mZ e

n

h
h

h

h

22
2 2
h g

 (138b)

If Z = 1  for hydrogen atom,

 

E
me

n
= -

4

2 2
2h g

 (138c)

[i can be integer or zero]  (137a)

(137d)
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4.7.3 Radial Wave Function and Complete Wavefunction

Substitute g = n  in Eqn. (136a)

 
br b r r′′ + +( ) −{ } ′ + − −( ) =2 1 1 0l n l  (138d)

Put  2 1l + =s  (138e)

and n l N+ =  (138f )

Substituting Eqs (138e) and (138f ) in Eqn. (138d), we obtain

 br s b r s r¢¢ + + -{ } ¢ + -( ) =1 0N  (139a)

The solution of this equation is given by Laguerre polynomial multiplied by a constant, that is, 

 
r b b2( ) = ( )+

+
C L
nl n

l

1

1  (139b)

The value of C
nl
 is obtained after normalization and laguerre polynomial is given by

 L
n l

n l i l i i
n l

l

i i

i

n l

+

2 +1 b
b

( ) =
-( ) +( ){ }
- - -( ) + +[ ]

+

=

- - 1

1 2 1

1 2

0

!

! ! !

11

å  (139c)

Thus, the total wave function can be given as follows:

 
R r e C e L
nl

l

nl

l

n l

n l( ) = ( ) = ( )- -b b b/ /2 2b r b b
+

2 +  (139d)

The normalization condition is given by

 R r R r r dr( ) ( ) =
¥

ò * 2

0

1   [ r 2  converts the  
length dr into volume.] (139e)
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g
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mZe r

n
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[ ( ]from Eqn. a)

 (140a)

   

b
p

b
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é

ë
ê

ù

û
ú

=

2 2 4

2 1

2

2

2 2

2

0

r

n

mZe Zr

n
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h

Zr

n a

h

. ( (140b)

where

 
a

h

me
0

2

2 2
4

=

p

 (140c)



4.7   HyDrogen atom  •  175

a
0
 is know as Bohr’s radius. Hence from Eqn. (140b), we obtain

 r
na

Z
=

b
0

2
 (140d)

Differentiating Eqn. (140d), we obtain

 
dr

na

Z
d=

0

2
b  (140e)

Substitute R r R r r( ) ( ), ,
* , and dr in Eqn. (139e),

C e L
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Z
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n l2 2 2
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é
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ù
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é
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ù
ûú

=ò bb b b b

That is,
After solving the above equation, the following result is obtained

 

C
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3

2 2
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æ
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ö
ø
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èè
ç
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ø
÷

- -( )
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3
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!
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 (140f )

Put C
nl
 in Eqn. (139d),

 

R r
Z
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n n l

e
Zr

na
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−( )2 1
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The first two radial functions are

  

R r
Z

a
e
Zr a

10

0

3 2

2 0( ) =
æ

è
ç

ö

ø
÷

-

/

/

and R r
Z

a

Zr

a
20

0

3 2

0

2( ) =
æ

è
ç

ö

ø
÷ -
æ

è
ç

ö

ø

/

2
÷÷
-
e
Zr a/ 0

Similarly, we can obtain radial equations for different n and l values.
Hence, the complete wavefunction for hydrogen-like atom is given as follows:

 
j q f q F f
nlm nl m ll l

r R r, ,( ) = ( ) ( ) ( )Q  (142)
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!
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l lecosq

p
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 (143)

Equation (143) represents complete solution.

4.8 Spherical Harmonics

The product of F
ml

 and Θ
m ll

 is known as spherical harmonic and the harmonic function is denoted 
by Y

l

ml q f,( )

 
Y
l

m

m m l

l

l l

q f F,( ) = Θ  (144a)

 

Y e
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ml l lq f
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q
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( ) !
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+ −( )
+( )

( )
1

2

2 1

2
 (144b)

4.9 Three-Dimensional Harmonic Oscillator

4.9.1 In Rectangular Coordinates
A 3-D harmonic oscillator represents a particle experiencing force along x, y, and z axes such that

 
V r k x k y k zx y z( ) = + +

1

2

1

2

1

2

2 2 2  (145a)

where − − −k x k y k zx y z, ,  are the complete components of force along the x, y, and z axes, respectively. 

k k kx y z, ,  are the force constants in respective directions. The SWE for this system is
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∂
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∂
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∂
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2

2

2

2

2

2 2

2
0
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m
E V r

h
 (145b)

Substitute Eqn. (145a) in Eqn. (145b)

 

∂

∂
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∂
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Put a b b b= = = =

2

2

2

2

2

2

2

2

mE mk mk mk
x

x
y

y

z
z

h h h h
, ,

Substitute a b b b, , ,
x y z

2 2 2  in Eqn. (145c)
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0
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 (145d)
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Let j x y z X x Y y Z z, ,( ) = ( ) ( ) ( )  (146a)

From Eqn. (145a) and Eqn. (145d),

YZ
X

x
XZ

Y

y
XY

Z

z
x y z XYZx y z

∂

∂
+

∂

∂
+

∂

∂
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2 2 2 2 2 2
a b b b = 00

Divide the above equation by XYZ and convert it into full derivative
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The above condition is possible only when each factor is equal to a constant. such that the following 
conditions are satisfied:
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x x
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Z

d Z
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z
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-

é

ë
ê

ù

û
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where  a a a a= + +
x y z

 (146f )

Rearranging Eqs (146c) through (146e), we obtain

 

d X

dx
x X

x x

2

2
+ −( ) =a b 2 2

0  (147a)

 

d Y
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y Yy y

2

2
+ −( ) =a b 2 2

0  (147b)

 

d Z
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z Z

z z

2

2
+ −( ) =a b 2 2

0  (147c)

The eigenvalues and eigenfunctions are listed below for Eqs (147a) through (147c)

For Eqn. (147a)

 
E n w
x x x
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è
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ö

ø
÷
1

2
h  (148a)
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n

x
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û
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b
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2
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For Eqn. (147b),
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For Eqn. (147c),
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÷
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b
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Complete wave function can be given by

 

j b b b
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 (151)

where the normalizing factor has the value
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The energy of 3-D harmonic oscillator is given by
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For the isotropic oscillator, w w w
x y z
= =  and b b b

x y z
= = .

Hence, from Eqn. (153a)
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where n n n n
x y z

= + +  is the total quantum number. The n
x
, n

y
 and n

z
 must satisfy eqn (153b)

The energy for the system depends on the sum of the quantum numbers, therefore all the 
energy levels for the isotropic oscillator, are degenerate and the degree of degeneracy is given by  
1

2
1 2n n+( ) +( ). The energy levels and degree of degeneracy for 3-D isotropic harmonic oscillator are 

shown in Figure 4.11.
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4.9.2 In Spherical Coordinates
In spherical coordinates, the time independent SWE is given by
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for V(r) = (1/2) kr2

The solution of Eqn. (154) is given by (in terms of spherical harmonics)
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From Eqn. (132a), the radial equation is given by (in terms of spherical harmonics)
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The solution for Eqn. (155b) is given as
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Figure 4.11 Energy-level diagram for 3-D oscillator 
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Put R
dR

dr

d R

dr
, ,

2

2
 in Eqn. (155b), and we will obtain
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Eqn. (156c) becomes 
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As done in Eqs (134c), (136c), and (136d) by power series, we will proceed
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Put Eqs (157b), (157c), and (157d) in Eqn. (157a)
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Comparing the coefficient of r S-2 , (put U = 0), we obtain
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Again comparing the coefficients of r S U+  on both the sides of Eqn. (158),
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Eqn. (159b) is known as recurrence relation. The condition  a
U +
=

2
0  should be satisfied for accept-

able solution:
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The energy eigenvalues are obtained exactly in correlation with rectangular coordinates

 
j q f
nlm n

r

nl l

m

l l
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where C
nl

 is a normalization constant.

SUMMARY

Chapter 3 provided an insight of matterwaves, as well as time dependent/independent Schrödinger 
wave equations. This chapter gives a description of behavior of Schrödinger equations under dif-
ferent potentials. Under the potential effects, the Schrödinger equation has been given classical 
and quantum-mechanical treatment. The wave function of a particle has been described in one-
dimensional infinite potential well. Ideally, the minimum energy of a particle is zero. Inside the 
box, the particle can take any value. But quantum-mechanically there is always some minimum 
value of energy that is not zero. This value of energy is known as zero-point energy and is given 
by p 2 2 2

2h / mL . Under the steppotential, the energy E of a particle may be more than the poten-
tial barrier height or can be less than barrier height. For a finite potential barrier, there is tunnel 
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effect. Ideally, the particle with energy E less than barrier height cannot penetrate the barrier. 
Quantum-mechanically there is always a finite probability of penetration of particle into the bar-
rier region. This effect is known as tunneling effect. Potential has been described for scattered and 
bound state. Hydrogen value problem has been described using radial, azimuthal, and angular 
wave function. The analysis of 3-D Harmonic oscillator has also been discussed. The hydrogen 
value solution has been obtained using separation of variables in polar coordinates.

SOLVED PROBLEMS

Q.1: Obtain the lowest energy for an electron in one-dimensional force free region of width 6Α
°

.

Ans:         Energy E
n

mL
n
=

2 2 2

2
2

p h

For lowest energy, n = 1

 

E
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1

2 2

22
=
p h

 

L

m
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31
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9 1 10

= ´
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2
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6 63 10
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.

 
E
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E
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19

1 677 10= ´
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Q.2: Find out the energy of an electron having wavelength 2Α
°

 for n = 4.

Ans: E
n h

mL
n
=

2 2

2
8

E
4

2 34
2

31 10
2

4 6 63 10

8 9 1 10 2 10

=
( ) ´ ´( )
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E
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E
1
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703 36 10

291 2 10
=

´

´

-

-

.

.

 E4
172 415 10= ´
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Q.3: Obtain the momentum of an electron having wavelength 5Α
°

 for n = 3.

Ans: E
p

m
n

n
=

2

2

p mEn n

2
2=

p
mn h

mL
n
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2 2
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5 10
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10
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p
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0 994 10
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n
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-9 94 10 25. kgm/s

Q.4: A particle of mass 10 4- kg  and speed 10 5-
m/s  inside a cubical box of dimension 10 6-

m. If, it 
is one-dimensional square-well potential, obtain the value of n.

Ans:  Energy E
n h

mL
n
=

2 2

2
8

Also the kinetic energy =
1

2

2
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2 8

2

2 2

2
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n h
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Here, v L m= = =

- - -10 10 105 6 4m/s m kg, ,

n =

´ ´ ´

´

- - -

-

2 10 10 10

6 63 10

4 5 6

34
.

n =

´ ´
-

2 10 10

6 63

15 34

.

n = ´0 301 10
19

.

n = ´3 01 10
18

.

n = ´3 10
18

Q.5 For one-dimensional rigid box, obtain the expectation value for kinetic energy in nth quantum 
state.

Ans: The wavefunction is given by the following expression:
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< >=E
n L

mL

2 2 2
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Q.6: Obtain the expectation value of particle in ground state when the particle is confined inside the 
infinite square-potential well.
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For ground state, n = 1
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Q.7: Obtain the barrier penetration factor for electrons through a barrier of thickness 3Α
°

, width of 
15 eV, and the given the kinetic energy of electrons is 10 eV.
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Ans: The barrier penetration factor is given by the following equation:
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Q.8: The transmission probability is given by 60 percent, what should be the ratio 
E

V
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 which is 
required for a one-dimensional step potential?
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o  are given by the following equation:
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Q.9: Obtain the condition when particle travels through barrier without any reflection.
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In addition, the propagation constant is related to de-Broglie wavelength as follows:
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Hence, the barrier length must be equal to half-integral number of de-Broglie wavelength.

Q.10: Normalize the wave function f
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OBJECTIVE QUESTIONS

 1. Energy of a particle in 1-D box of width L varies as

 (a) E na
2  (b) E

n
a
1

2

 (c) E na  (d) E
n

a
1

 2. The zero-point energy for 1-D closed box is

 (a) 
h

mL

2

2
2

 (b) h mL
2 2
2( )

 (c) 
h

mL

2

2
8

 (d) h mL/ 8

 3. The normalization constant for 1-D closed box is

 (a) 2L  (b) 
2

L

 (c) 
2

L
 (d) 2L
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 4. The boundary conditions states

 (a) Wave function is discontinuous.
 (b) Derivative of wave function is discontinuous.
 (c) Wave function and its derivative are continuous.
 (d) Both wave function and its derivative are discontinuous.

 5. Probability density current is defined as the

 (a) sum of probability density and current.
 (b) product of velocity of particle and its probability density.
 (c) product of current and probability density.
 (d) sum of current and probability density.

 6. For a step potential, the value of k
2
 is

 (a) 2
2

m/h  (b) 2
2

mh

 (c) 
2

2

mE

h
 (d) None of the above

 7. For step potential, the value of K
2
 is given by

 (a) 
2

2

m E V-( )o
h

 (b) 
2

2

mV
o

h

 (c) 
2

2

mE

h
 (d) 0

 8. For step potential, eiK x1  represents

 (a) reflected wave (b) incident wave
 (c) transmitted wave (d) None of the above

 9. For step potential, the reflection coefficient is

 (a) 
1

1

2

− k

k
 (b) 

k k

k k

1 2

1 2

2

-

+

æ

è
ç
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ø
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 (c) 
k k

k

2 1

2

-

 (d) 0

 10. The transmission coefficient for step potential is

 (a) 
4
1 1

1 2

k k

k k−
 (b) 

4
1 1

2

1 2

k k

k k

( )
−

 (c) 
2
1 2

1 2

k k

k k+
 (d) 

4
1 2

1 2

2

k k

k k−( )



 11. For step potential when energy is less than step height,

 (a) T =1  (b) T =
1

2

 (c) R = 0  (d) R =1

 12. According to tunnel effect,

 (a) there is 100 percent probability to penetrate the barrier.
 (b) there is zero probability to penetrate the barrier.
 (c) there is 100 percent probability for reflection.
 (d) There is finite probability for penetration of potential barrier.

 13. For the bound state of potential well, K
2
 is given by

 (a) 
2

2

m
V E

h
o
-( )  (b) 

2

2

m
V W

h
o
-( )

 (c) 
2

2

m V W
o
-( )

h
 (d) 0

 14. According to transcendental equation,

 (a) W can be obtained from argument of sine
 (b) W can be obtained from argument of cotangent
 (c) E can be obtained from W.
 (d) K

1
 can be obtained from argument of cosecant

 15. For bound state, the parameter y is given by

 (a) a
2

 (b) a
3

 (c) gb  (d) np g+

 16. For scattered case of potential well,

 (a) T
max

.= 0 25  (b) T
max

.= 0 5

 (c) T
max

.= 0 75  (d) T
max
=1

 17. T
min

 for scattered state is given by

 (a) 
4
1

2

2

2

1

2

2

2
2

k k

k k+( )
 (b) 

2
1

2

2

2

1 2

2

k k

k k−( )

 (c) 1 (d) 
k k

k k

1 2

1 2
4

 18. The total energy of hydrogen atom depends on

 (a) l and m
l
 (b) n

 (c) n and l (d) l
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 19. The degeneracy for first excited state of hydrogen is

 (a) 2 (b) 6
 (c) 1 (d) 4

 20. The wave function of hydrogen is dependent on

 (a) n, l, and m (b) n
 (c) l (d) m

 1. (a)

 2. (c)

 3. (b)

 4. (c)

 5. (b)

 6. (c)

 7. (a)

 8. (b)

 9. (b)

 10. (d)

 11. (d)

 12. (d)

 13. (a)

 14. (b)

 15. (c)

 16. (d)

 17. (a)

 18. (b)

 19. (d)

 20. (a)

ANSWERS
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Micro-Assessment Questions

 1. What is tunneling effect?
 2. What do you understand by zero-point energy?
 3. What will be the energy of a particle in a box for n = 3?
 4. Explain the meaning of degeneracy.
 5. Write the boundary conditions for step potential.
 6. Explain the term “reflection coefficient.”
 7. What do you understand by transmission coefficient?
 8. Write down the transcendental equation for bound state.
 9. What is separation of variables?
 10. Write down ground state of hydrogen atom.
 11. Give the range of spherical polar coordinates.
 12. How many degrees of freedom does hydrogen atom have?
 13. Give the relation between spherical polar coordinates and Cartesian coordinates.
 14. Give the physical significance of principal quantum number.

Critical Thinking Questions

 1. What are the various laws for operators?
 2. Write down an eigenvalue equation. Explain eigenfunctions and eigenvalues.
 3. What is the physical significance of zero-point energy?
 4. Obtain the energy levels for particle inside a box of finite width.
 5.  Consider a particle of step height V

o
 such that it is less than energy E. Calculate the reflection 

coefficient.
 6.  Calculate the reflection and transmission coefficient when energy E is greater than V

o
.

 7. Show that energy levels are discrete and does not follow a continuum for a particle inside a box.
 8.  Use Schrödinger wave equation to explain the tunneling phenomena. How does it differ from 

the classical explanation?
 9.  What do you understand by scattered state of potential well? Obtain the minimum and maxi-

mum transmission in this case.
 10. Show that for the bound state of a potential well; the particle can take only discrete energy values.

Graded Questions

 1. State the Schrödinger equation in three dimensions for hydrogen problem.
 2. Prove that operator d/dx is non-Hermitian.
 3. Obtain the energy levels after solving the radial equation for hydrogen atom.
 4. State the azimuthal component for hydrogen atom problem and determine its solution.
 5. Solve Schrödinger equation for three-dimensional harmonic oscillator in spherical coordinates.
 6. Show that the average value of 1/r is 1/a

o
 in ground state and normalized wave function.

 7.  Find the expectation value of kinetic energy, potential energy, and total energy of hydrogen atom 

in the ground state. Take y
p

0

0

0

3
1 2

=

( )

-
e

a

r /

/
, where a

0
 = Bohr’s radius..
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 8. Consider the time-independent Schrödinger equation in three dimensions 
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 (a)  Write y q j y q j( , , ) ( ) ( , )r r Y
r

=  as a separable solution and split Schrödinger’s equation 
into two independent differential equations: one depending on r and the other depending 
on q and j.

 (b) Further separate the angular equation into q and j parts.
 9.  For a particle in cubic box of dimension L, prove that the normalizing factor is A = (2/L)3/2. How 

will the result change if the box has different edge lengths L1, L2, and L3?
 10.  An electron moves in a cube with side length of 0.1 nm. Find the values for the energy of (a) the 

ground state and (b) the first excited state of the electron.
 11.  Calculate the average potential and kinetic energies for the electron in the ground state of 

hydrogen.
 12. Prove that the nth energy level of an atom has degeneracy equal to n2.

Remember and Understand
 1.  There is some minimum energy in the ground state of a particle inside a box, which is known as 

zero-point energy.
 2. Classically, the particle inside the box can have any arbitrary value of energy.
 3.  Reflection coefficient is the ratio of reflected probability density current to incident probability 

density current.
 4.  Transmission coefficient is the ratio of transmitted probability density current to incident prob-

ability density current.
 5. When energy of a particle is greater than the potential step, then R + T = 1.
 6.  When the particle has energy less than potential barrier, then classically there is no penetration 

inside the region 3, but quantum mechanically the particle always have finite probability of tun-
neling and can go over another region. This is known as tunneling phenomena.



5.1   Thomson and RuTheRfoRd models  •  195

By the end of the twentieth century, many phenomena such as photoelectric effect, Compton effect, 
blackbody radiation, and wave particle duality were explained successfully. But the absorption and 
emission spectra were still to be addressed. In this chapter, we will discuss various models that helped 
in interpreting the atomic structure.

5.1 Thomson and Rutherford Models

The first model that could show some picture of atom was given by J.J. Thomson (1904). His model 
was named as “Thomson pudding model.” He postulated the following points:

5

Atomic and Molecular Structures

Learning Objectives

 To study the Thomson’s model of atomic structure

 To understand the failures of Thomson’s model and hence rise of Rutherford’s model

 To study the failure of Rutherford’s model

 To understand the postulates of Bohr’s model

 To learn the interpretation of spectra by Bohr’s model

 To learn about the correspondence principle stating that when quantum number approaches infinity, 
quantum mechanics turns to classical regime

 To analyze sommerfeld model

 To understand the results of vector atom model

 To learn the orbital and spin magnetic moment along with gyromagnetic ratio

 To gain insight into ls coupling, fine structure, and multielectron system

 To learn the splitting of spectral lines in the presence of magnetic field (Zeeman effect)

 To differentiate between anomalous and normal Zeeman effect

 To understand the splitting of spectral lines in the presence of electric field (stark effect)

 Keywords: Bohr model, Rutherford model, spectral lines, spin–orbit interaction, LS coupling, JJ 
coupling, Zeeman effect, Stark effect
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 (i) Atom on the whole is electrically neutral.
 (ii) Positive charges are uniformly distributed inside an atom whereas the electrons are positioned as 

rotating ring corpuscles defined by Thomson.

This model considers that electrons are free to move within the cloud of positive charges. Electrons 
were also considered to rotate in rings. The energy spectra was supposed to be due to difference of 
these electron rings. But this model failed to describe the spectrum of multi-electron atoms. Hence, 
there was a need to correct atomic model as this model could not explain the precise wavelength pat-
terns being emitted by some elements.

In 1911, Ernest Rutherford, scientist from New Zealand, was doing some experiments on radio-
activity. He proved that when atoms emit certain radiations, they are converted to an element of 
different composition. Hence, his further investigations led him to probe that the nucleus is a dense 
mass of positive charges concentrated inside the atom. He bombarded a -particles ( 2

4He ) on a thin 
gold foil. Gold foil has high malleability, due to which it could be beaten into thin foils. The scattered 
a -particles were observed on ZnS screen. ZnS screen produces scintillations (flash of light) when  
a -particles strike on it. Coulomb’s repulsive force was responsible for the scattering of a -particles, 
that is, the repulsion between positive charge of a -particles and gold target as shown in Figure 5.1.

Rutherford made the following observations:

 (i) Many of the a -particles were not deflected and they passed without any deviation. This indi-
cated that atom is having lots of empty space inside it.

 (ii) Some of the atoms suffered small deflections.
 (iii) Some atoms suffered very large deflections.
 (iv) A few atoms were even scattered in backward direction.

sir Joseph John Thomson  
was born to scottish book-
seller in 1856 in Cheetham 
hill near manchester, 
england. he won a schol-
arship to Trinity College, 
Cambridge, in 1876. he 
received his Ba in 1880 in 
mathematics and ma in 
1883. J.J. Thomson was 
appointed the master of 
Trinity College, Cambridge, in 1918 and he remained there until his death on august 30, 1940, at the 
age of 83 years. Thomson was buried in Westminster abbey (close to the grave of isaac newton).

J.J. Thomson was appointed as a fellow of the Royal society in 1865. his favorite student 
ernst Rutherford later succeeded him in 1919. Thomson was a successor to lord Rayleigh as 
Cavendish Professor of experimental Physics. The early theoretical work of Thomson helped 
broadening the electromagnetic theories of James Clerk maxwell.

sir Joseph John Thomson was an english physicist who stormed the world of nuclear physics 
with his 1897 discovery of the electron, as well as isotopes. he invented mass spectrometer and 
received the nobel Prize for Physics in 1906. he was knighted two years later in 1908.
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All these deflections were explained by Rutherford as follows: He proposed that atom consists of 
a tiny nucleus that contains all the positive charge of atom and electrons are arranged around that 
nucleus. The undeflected a -particle was due to large empty spaces inside the atom as shown in 
Figure 5.2. The a -atoms that had direct head-on collision with gold nucleus suffered backward 180° 
deflection due to strong coulombic repulsions. The a -particles that passed through the atom at a dis-
tance from nucleus went undeflected. The atoms that passed at a very small distance from the nucleus  
suffered very large deflections. Rutherford obtained the following formula:

 
N

d
=

( )Cn Ze e

r m v

2 2

2 2 2 4 2sin q /
 (1)

where
C total number of a -particles reaching the screen
n number of atoms/volume in fail
Ze nuclear charge of Au atom
d the thickness of gold foil
r distance from scattered

Source

Slit
Screen

ZnS
Gold
target

Figure 5.1 Rutherford’s scattering experiment set-up.

−

−

−

−

−

+
−

a

a

a

a

Small deflections

Backward
deflections

Undeflected atoms

Large
deflections

Figure 5.2 Deflection of a -atoms while passing through gold atom.
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v velocity of particles
q scattering angle
N number of a -particles that are scattered through angle q.
Rutherford model gave a satisfactory explanation regarding structure and distribution of charges 

inside the atom. But the main drawback of this model was stability of atom. If we consider an atom 
having two positive and two negative charges, and they are separated by distance r from each other, 
then the force of attraction between them is given by 2e / r .2 2  The force of repulsion between the 
electrons is given by e / 4r .2 2  This leads to the conclusion that the force of attraction is eight times 
higher than the force of repulsion. Hence, on account of high force of attraction, the electrons will 
start falling on the nucleus (Figure 5.3). This would ultimately lead to the collapse of atomic structure. 
Furthermore, Rutherford assumed that the electrons may revolve around the nucleus, where the cen-
trifugal force could balance the excess electrostatic attraction. But the electromagnetic theory says that 
any accelerated charge would produce electromagnetic radiations continuously. Hence, the atoms will 
keep on losing energy continuously, as all the electrons will be moving emitting electromagnetic radia-
tions. Ultimately, the electron will fall inside the nucleus, following a spiral path. The frequency of 
orbiting electron will increase continuously. Therefore, the stability of atom cannot be defined using 
Rutherford’s model.

in 1898, Rutherford went to 
work with henri Becquerel, 
a scientist researching on 
the process of radioactivity. 
Becquerel first discovered 
radioactivity and performed 
the first a-scattering experi-
ment while studying the pas-
sage of a-particles through 
magnetic fields. Rutherford 
proved one of Becquerel’s 
theories to be wrong and did 
no’t get along well. at mcGill, 
Rutherford was accompanied 
by a young chemist, frederick 
soddy, and they investigated 
three groups of radioactive 
elements–—radium, actinium, 
and thorium. in 1902, they 
concluded radioactivity to be a course of action during which atoms of one element sponta-
neously disintegrate into atoms of a completely different element, though the new element 
also remained radioactive. however, this view was not accepted by contemporary chemists who 
strongly believed that matter can neither be destroyed nor created.

ERNEST RUTHERFORD

Electron

+

Figure 5.3 Collapsing of electron into nucleus.
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5.2 Bohr’s Model

In 1913, Niels Bohr applied quantum theory to Rutherford model to solve the stability problem 
of atom. This model was quite successful in explaining the spectral lines of atoms. Bohr made an 
assumption that the angular momentum was quantized. This implies that electrons define their posi-
tion in certain orbits. These electrons are characterized by particular quantum number. His theory 
comprised of following basic postulates:

 (i) Electrons revolve in certain orbits which are stationary states. Electrons revolve in these station-
ary orbits without radiating energy.

 (ii) The energy is lost by electron only when it jumps from higher level to lower level.

 (iii) The angular momentum of electrons revolving in stationary orbits is given by 
nh

2p
.

Consider an electrons of charge e revolving around nuclei of charge Ze. The Coulomb force is given 
by (Figure 5.4)

 
Fe =

1

4

2

2
peo

Ze

r
 (2)

The force that is required to keep the electron in orbit is centrifugal force and is given by

F
mv

r
c =

2

 (3)

(where “v” is the velocity of revolving electron)
In equilibrium,

F Fe c=

1

4

2

2

2
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r
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r
=
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Ze

v

r

e−

FcFe

Figure 5.4 Atom as visualized by Bohr.
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v
e Z

mr
=

4peo

 (4)

For hydrogen atom, Z = 1, r = 0.529 Å

v =
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. . . .

 v = ×2 18 106. /m s  (5)

The velocity of electron is less than the velocity of light and hence the electron moves in nonrelativis-
tic regime. We can also obtain the value of velocity from angular momentum equation.

We know L
nh

=

2p  
(n is principal quantum number)

Also L mvr=  

Hence mvr
nh

=

2p

v
nh

mr
=

2p  
(6)

From Eqs (4) and (6)
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Put e
o
 = 8.85 × 10-12 C2/Nm2, m = 9.1 × 10-31 kg, e = 1.6 × 10-19 C and h = 6.63 × 10-34 Js in Eqn. (8)

ao m= ×
−0 529 10 10.  (9)

For atoms with atomic number Z,

r
n a

Z
=

2
o  (10)

Hence, radius r is directly proportional to n2. 0.529Å is the radius of first orbit of hydrogen atom and 
is known as Bohr’s radius. We can calculate the total energy of the system as follows:
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Total energy = kinetic energy + potential energy

Total energy = −
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2
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From Eqs (7) and (11),
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n h
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2p 2 4
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where En  is the total energy of nth orbit. As the principal quantum number increases, the energy 
decreases. But as Eqn. (12) has negative sign, it implies that the energy increases for outer levels. 
Hence, for n = 1, and atomic number Z,
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h
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2
= −

p
2 4 2

2
 (13)

where n =1 is the level having minimum energy. Hence, En
 is the energy that should be supplied to 

the atom to get the electron separated from the atom. Thus, En also signifies that the binding energy 
or the attractive energy between the nucleus and electron.

Bohr’s atomic model was not successful at first. 
after a period of about 10 years, “success” was 
achieved with the hydrogen atom. Bohr’s atomic 
model attributes a planetary motion to electrons, 
which means that electrons move around the 
nucleus in defined circular orbits. But according  
to modern view, the electron distribution around 
the nucleus of an atom is described by a probabil-
ity distribution. hence, the “electron clouds” give 
rise to discrete circular orbits.

NIELS BOHR
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5.3 Interpretation of Spectra using Bohr’s Model

The atomic spectra are considered to be very complex. If electric current is passed through gas, then 
discrete emission spectra is obtained. But for solid/liquid, the spectrum is continuous. Wavelength in 
the spectrum are separated using diffraction gratings. The spectral lines emitted can be grouped into 
principal, sharp, diffuse, and fundamental series. Several investigators, especially Balmer, Rydberg, 
Paschan, and Ritz, gave empirical relations to define these spectral lines.

In 1885, Balmer outlined a relationship for the emission lines obtained for hydrogen. He obtained 
the following relation:

 
1 2

2 2
l
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−









B

m

m n
  (14)

where B is constant with value 3 64 10 7. ×
− m  and m is greater than n.

In 1988, Johannes Rydberg generalized the Balmer equation as follows:
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 (n = 3, 4, 5, 6, 7,…)
where RH is the Rydberg constant and the value of R is 109,737 cm−1.

In 1908, Walter Ritz along with Rydberg provided a Rydberg–Ritz combination principle. This prin-
ciple states that the spectral lines of elements including frequencies are either the difference or sum of two 
other lines. For optical and X-ray region, this principle maintained its accuracy. In the previous section, 
it was proved that outer levels are of high energy and innermost levels have lower energy. Electron loses 
energy only when it jumps from higher level to lower level. Let E1 be the energy of level with principal 
quantum number n1 and E2 be the energy of level with principal quantum number n2. This implies that

E E hf2 1− =

Equation (12) in previous section is given as
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Converting (16) to wavenumbers,
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In Eqn. (17), 
2p 2 4 4

3

mZ c

ch
 is constant with value 109,738 cm−1, which is in agreement with the value 

obtained for Rydberg constant. Hence, Bohr’s model could successfully explain the stability of atom. 
Along with this, the model successfully explained the origin of different spectral lines. The following 
is a list of different series, which arise due to different transitions:

 (i) Lyman Series
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 (ii) Balmer Series
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 (iii) Paschen Series
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 (iv) Brackett Series
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 (v) Pfund Series
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All these series are depicted in Figure 5.5.

Lymann

Balmer

Pfund

Brackett

Paschen

n = 4

n = 5

n = 6

n = 7

n = 3

n = 2

n = 1

Figure 5.5 Hydrogen spectrum indicating different transitions.



204  • ChaPTeR 5/aTomiC and moleCulaR sTRuCTuRes

5.4 Correspondence Principle

This principle was put forward by Niels Bohr in 1913. He argued that this principle is replacement 
of old quantum theory by the new quantum theory. The old quantum theory was given as an interim 
theory between newtonian mechanics and electrodynamics. But certain empirical relations, especially 
related to atomic spectra, could not be explained on the basis of old quantum theory. The old quan-
tum theory was subsequently replaced by Heisenberg and Schrodinger when they developed matrix 
representation and wave mechanics, respectively.

The classical model states that the orbital frequency of electron and spectral line is same. For large 
principal quantum numbers, this frequency could be same; but at low quantum numbers, there is 
considerable difference between two frequencies.

According to Bohr theory, the orbital frequency is given as
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(after using radius from Eqn. (7))
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where R is Rydberg constant
From Eqn. (17), the frequency is
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Hence, it can be concluded that at very large quantum numbers (n

1
 and n

2
), which are separated 

by unity, the frequency of spectral line becomes equal to the orbital frequency (classical fre-
quency). Hence, in the limit of large quantum numbers quantum mechanics yield the result of 
classical mechanics.

Quantum mechanics usually is applied on a microscopic regime, whereas classical mechanics is apt on 
a macroscopic regime. The limit at which quantum and classical physics unite is called  correspondence 
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limit. Hence, the correspondence principle states that “The behavior of atom tends asymptotically from 
quantum to classical region for large quantum numbers.”

Bohr stated that

“The aim of regarding the quantum theory as a rational generalisation of classical theories led to the 
formulation of so-called correspondence principle. The utilization of this principle for the interpreta-
tion of spectroscopic results was based on a symbolical application of classical electrodynamics, in 
which the individual transition processes were each associated with a harmonic in the motion of 
atomic particle to be expected according to ordinary mechanics.”

5.5 Sommerfeld Model

Bohr atomic model explained many things successfully but could not explain successfully the fine lines 
in the spectra. Each spectral line was accompanied by many fine spectral lines. Then, Sommerfeld 
modified Bohr’s theory in 1915 by introducing the following two main postulates:

 (i) The electron revolves around the nucleus in elliptical path with nucleus at one of loci of ellipse.
 (ii) The electron possesses different velocity at different points of ellipse.

Elliptical orbit for hydrogen atom as described by Sommerfeld is shown in Figure 5.6.
The above-mentioned model is explained in detail as follows: Sommerfeld assumed that the electrons 

revolve around nucleus in the same way the planets revolve around the sun. Hence, polar coordinates are 
used to explain position of electrons: r and f are used to describe the position, where r is radius vector 
and f is vectorial angle which the radius vector makes a major elliptical axis. 

�

v  is the tangential velocity 
of electron. This tangential velocity can be resolved into the following two components:

 (i) Radial velocity → It is along the radius vector and its magnitude is given by dr dt/ .
 (ii) Transverse velocity → It is perpendicular to the radius vector and its magnitude is given by 

r
d

dt
.
f





.

Circular and elliptical orbits satisfy the quantum conditions. Hence, Sommerfeld assumed that these 
elliptical orbits will also satisfy angular momentum condition as follows:

 
p dr n hr r=
�ò  (21a)
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Figure 5.6 Elliptical orbit for hydrogen atom.
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nr and nf are related to the principal quantum number by the following equation:

 n n n= +r f  (21c)

where n
r
 is radial quantum number and n

f
 is azimuthal quantum number. Now, the total energy of 

the system is given by sum of potential and kinetic energy. Here, the kinetic energy is contributed by 
two parts, that is, radial and angular. Hence, we can write
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The quantum numbers and eccentricity (e) are related to each other by the following relation:
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The following conditions have been deduced on the basis of Eqn. (23):

 (i) n
f
 cannot be zero. If n

f
 = 0, then the ellipse becomes a straight line that passes through the 

nucleus.
 (ii) n

f
 is never greater than n. If n

f
 >> n, then this implies b to be greater than a, which is impossible.

 (iii) At n nf = , b is equal to a, and hence the orbit changes from ellipse to circle. Eccentricity also 
becomes 0 for this condition.

 (iv) There can only be a limited number of elliptical orbits, which have different eccentricities.
 (v) The orbits with same n are degenerate orbits. They may have different shapes due to differ-

ent eccentricities, but same energy. For example, for n = 3, the degenerate levels are shown in 
Figure 5.7.

3s

3p

3p

Figure 5.7 Degenerate orbits of n = 3 of hydrogen atom.
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The velocity of electron, which moves in elliptical orbit, is different at different positions, that is, 
the velocity of electron is minimum when it is far from the nucleus, and it is maximum when it is 
near to the nucleus. But according to Einstein’s theory of relativity, the mass varies with the varia-
tion of velocity. This theory also considers that the mass effect is very predominant in the regime 
of high velocities. If mass variation is taken into account, then instead of ellipse, the electron path 
comes out to be rosette. Sommerfeld showed that the relativistic equation that described the path 
of electron is
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Equation (24a) represents the path of electron as an ellipse whose major axis processes slowly in the 
plane of ellipse about an axis passing through nucleus. The total energy of system is given by
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a  is also called fine-structure constant. From Eqn. (25), it is clear that energy depends on n and nf. 
Therefore, relativistic approach leads to splitting of energy level En into n-levels. These levels differ 
slightly from each other as the relativistic mass correction is quite small in magnitude. Hence, this 
splitting of fine levels gives rise to fine-structure splitting. Figure 5.8 illustrates the fine structure of 
H
a
 lines.
However, the fine structure of hydrogen could be explained using Sommerfeld theory. But explain-

ing the spectra of multi-electron system was still complicated process. No idea could be obtained 
regarding the spectral intensities using Sommerfeld model.

33

32

31

22

21

Figure 5.8 Fine structure for H
a
 lines (For given value of n, nf  has only n values).
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5.6 Vector Atom Model

The orbital angular momentum for an atomic electron can be interpreted in terms of vector 
model. The precession of angular momentum vector about a direction in space is as shown in 
Figure 5.9(a).

l is orbital quantum number and it represents the quantization of orbital angular momentum L.
l can have values from 0, 1, 2,…, n − 1, where n is principal quantum number.

Hence, L
��

 is not fixed in space and changes continuously making same angle with direction of applied 
magnetic field. In other words, there is magnetic moment associated with orbital angular momentum 
in some external field. We are familiar that when magnetic moment is placed in magnetic field B, it 
experiences torque t. For static case, this torque will orient the magnetic moment along the direction 
of magnetic field, B

��

, as it orients in low-energy configuration. But, when the magnetic moment rises 
due to motion of electron around the nucleus, then magnetic moment of electron is directly pro-
portional to angular momentum (Moving electron is a source of current and hence magnetic field). 
Hence, the torque is produced, which tends to change angular momentum in such a way that it is 
in precession with the direction of magnetic field. This precession is called Larmor precession. There 
is a characteristic frequency associated with this precession known as Larmor frequency. L has three 
components and only one component can be along the magnetic field. This process is called space 
quantization, as the angular momentum vector takes specific values due to specific orientations. Let 
us suppose that B is along the z-direction, then the component of L along the z-direction is Lz  and its 

L

l(l + 1)

z

=

→

√L
→

ml h

 h

Figure 5.9(a) Precession of angular momentum about z-direction.

O

2

−

−

 h

 h

 h

2 h

Figure 5.9(b) Space quantization describing the allowed orientations for l = 2.
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value is L mz = l� , (ml = ±0, l), where ml  is magnetic quantum number. Directions of Lx and Ly keep 
on changing continuously and hence give average value of zero.

The possible ml  values lie between + −l land ; hence, the total possible orientations are 2 l +1. 
For l = 2, ml  has value + + − −2 1 0 1 2, , , ,  and total angular momentum is

L l l= +( ) =1 6� �

Figure 5.9(b) shows the space quantization for l = 2.
Hence, there are five orientations for l = 2, such that the total magnitude is 6 �.

In 1925, S. Goudsmit and G. Uhlenbeck proposed that electrons have an intrinsic angular 
momentum or spin angular momentum which give rise to magnetic field. In 1929, Dirac confirmed 
the nature of electron spin using relativistic quantum mechanics. s is used to denote the spin angular 
momentum of electron. S is the magnitude of spin angular momentum and is given by the following 
equation:

 
S s s= +( )1 �  (27)

Like orbital momentum, the electron spin is also quantized and the quantum number m
s
 describes 

the space quantization of electron. m
s
 can have 2s + 1 orientations. For s =

1

2
, ms = +

1

2
 and −

1

2
 as 

shown in Figure 5.10.
If magnetic field is along z-axis, then component S

z
 is along the direction of field and is given by

 S msz = �  (28)

Sz = ±
�

2

5.7 Orbital and Spin Magnetic Moment (m
l
)

Let us consider an electron with mass m and charge − e revolving with velocity v around the nucleus as 
shown in fig. 5.11. The radius of circular orbit is r. Whenever an electron revolves around in a loop, it 
generates current and current is always associated with magnetic fields. The current in loop is given by

I
e

t

ev

r
= − = −

2p

/2

ms = −1/2
−   /2

ms = 1/2 h

 h

Figure 5.10 Space quantization for electron spin.
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Orbital magnetic moment is given by

m
p

pl IA
ev

r
r= = − ×

2
2

ml

evr
= −

2

ml

e mvr

m

eL

m
L mvr= − = − =

2 2
( )∵

 
ml

eL

m
= -

2  
(29)

The “−” sign signifies that orbital magnetic moment and angular momentum are in opposite direc-
tions. The above expression is according to classical mechanics, but quantum mechanics introduces a 
factor gl  (Landau’s factor) and Eqn. 29 becomes

 
m
��

��

l = − g
eL

m
l 2

 (30a)

 m
�� �

l = −
+( )

g
e l l

m
l

1

2

 (30b)

 
m m
��

l B= − +( )g l ll 1  (30c)

where mB =
e

m

�

2
 is Bohr magneton having value of 9 24 10 24 2. ×

− Am .

The z-component of orbital magnetic moment is given by

 
ml

leL

m

em

m
( ) = - = -

z

z

2 2

�
 (31)

Equation (31) clearly depicts the quantization of angular magnetic moment.
Similarly, by using quantum theory, we can obtain spin magnetic moment

m
��

�

�s = − = − +( )
2

2

2

2
1

eS

m

e

m
s s

= − +( )g
e

m
s ss

�

2
1

 
= - +( )g s ss mB 1

 
(32)

I

r

v

e−
→

Figure 5.11 Electron revolving around nucleus.
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Collectively, we can summarize as

( ) ( )i ii
2

2

z
zm m

m m

l s

l
l

s
s

eL

m

e

m
S

em

m

e m

m

( ) = - ( ) =

( ) = - ( ) = -

z z

z z

2 2

2 2

� �

= ± = ±
e

m

�

2
mB

(iii) ivg gl s= ( ) =1 2

(v) vim ml l s sg
eL

m
g

eS

m
= − ( ) = −

�� �

2 2

5.8 LS Coupling and Fine Structure

An electron has both spin and orbital angular momentum. The total angular moments ( J
��

) is the 
vector sum of these two moments. This is also known as spin–orbit coupling. This coupling is 
basically due to interaction of two magnetic moments, that is, spin magnetic moment and orbital 
magnetic moment. This interaction actually explains the fine-structure of lines as it causes the split-
ting of lines.

The total angular momentum is given by following expression:

 J L S
�� �� �

= +  (33a)

Like spin and orbital angular momentum, the total angular momentum is also quantized and is given by

 
J j j
��

�= +( )1  [where j is total angular momentum quantum number] (33b)

J
��

 can also have certain orientations, and its component along the direction of magnetic field is given by

           
J mjz = �   ( m

j
 total magnetic quantum number) (33c)

mj  can also take 2 1j +( )  values and varies from − j  to + j. If we consider only the z-components, 
then they also follow vector addition rule like Eqn. (33a).

J L S
�� �� �

z z z= ±

m m mj l s� � �= ±

 
m m mj l s= ±  (33d)

Hence   j l s= ±  (33e)

When L
��

 and S
�

 interact, they exert torque on each other as shown in Figure 5.12. Electron revolves 
around the field of nucleus along with rotation on its own axis. Hence, the interaction between the 
two fields gives rise to spin–orbit coupling whose magnitude depends on magnitude of field.

The nucleus of atom is in motion and has charge Ze , and electron is at rest around the nucleus. 
The mass of electron is m and charge e, the radius of circular orbit is r, and velocity of electron is 0. 
As the moving nucleus could be interpreted as a current loop, hence, the current is given by
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I

Z
= =

e

t

Zev

r2p
 (34)

The magnetic field due to current loop is given by

 B
I

r

Zev

r
o

o o
= =

m m

p2 4 2  (35)

Remember Bo  is not the external applied field, but is the internal magnetic field due to the motion 
of nucleus.

Converting Eqn. (35) to vector form (only tangential component of velocity contribute)

B
r

r v

r
o

o=
×( )m

p4 2

� �

�

B
Ze

mr
r mvo

o= ×( )
m

p4 3

� � ��

 
B

Ze

mr
Lo

o
=

m

p4 3

��

  
(36a)

Using   c =
1

m eo o

 
B

ZeL

mc r
o

o

=

��

4 2 3
pe

 (36b)

If we place the dipole of moment m
��

s  in external magnetic field B
��

, then the potential energy of dipole 
is given as:

S

L

J
B
→

→

→

→

Figure 5.12  L
��

 and S
�

 process around total angular momentum J
��

 and J
��

 processes around magnetic 
field B

��

.
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PE = = −E Bsm
�� ��

.

Using this relation to calculate the spin–orbit interaction energy when the dipole is under the influ-
ence of internal magnetic fields, that is,

 PE = = -E Bsm . int

��

. (36c)

E
Ze

mc r
Ls= −m

pe

�� ��

.
4 2 3

o

 
E g S

Ze

mc r
Ls= +

m

pe

B

o�

� ��
.
4 2 3  [using Eqn. (32)]

E
g Ze

mc r
S Ls

=

+

⋅

m

pe

B

o4 2 3
�

� ��

Substituting mB =
e

m

�

2
 and g s = 2  in above equation.

 
E

Ze S L

m c r
=

⋅

2

2 2 34

� ��

peo

 (36d)

This equation is obtained when the nucleus is moving and electron is at rest. Therefore, the 
 electron is under the effect of spin motion only (no orbital motion).

By using similar mathematical calculations, when electron is moving and nucleus is at rest, follow-
ing relation is obtaing

E
Ze

m c r
S L= ⋅

2

2 2 38peo

� ��

  (37)

E
Ze

m c r

J L S

J L S

J J L S

J L

=
− −









= +

⋅ = +( )
=

2

2 2 3

2 2 2
2

2
8 2peo

� �� �

� � �� �

22 2 2+ +

















S S L

� ��

.

E
Ze

m c r
j j l l s s= +( ) − +( ) − +( ) 

2 2

2 2 316
1 1 1

�

peo  
(38)

Hence, Eqn. (38) represents the spin–orbit interaction energy.
Before we proceed further to obtain total magnetic moment of an electron, we should know about 

the spectroscopic notation of energy level, that is,

 
n l j

s2 1+  (39a)

where
n → principal quantum number
l → orbital quantum number
2s + 1 → spin multiplicity
j → total angular momentum quantum number

For example, take electron in second level or 2s level then n l= =2 0 1, ,



214  • ChaPTeR 5/aTomiC and moleCulaR sTRuCTuRes

s =éë
ù
û

1
2

 

( ) ,i First termn l S

j l s

= =

= ±

= ±

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

2 0 2 0 1
2

1
2

1
2

2

(ii) n l P P= =2 1 2 21
2

3
2

2 2, ,
  

Second term

When the spin–orbit interaction is absent, then all the levels are of same energy or we can say, energy 
levels are degenerate.

Now, we will proceed further to find out the total magnetic moment for electron. Figure 5.13 
shows the schematic of angular momentum and their direction.

As L
��

 and S
�

 process around J
��

, the component that is along J
��

 will contribute to the magnetic 
moment. The components that are perpendicular to J

��

 will given an average value of zero.
Hence, the magnetic moment along m j  is given as

m m mj l s

� �� ��� ���

= +

= − −

g L g Sl sm mB B

��

�

�

�

 
m

m
j L S
� ��

�

�� �
= - +éë

ù
û

B 2
 

(40)

 
m

m
q qj L S= - +[ ]B

�
cos cos1 22

  
(41)

J

S

L

ms

ml

mj

Figure 5.13 Schematic vector diagram showing total angular momentum L, S, and all magnetic moments.
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where q1  and q2  are the angles, which L
��

 and S
�

 make with J
��

, respectively.

Let us solve two terms of Eqn. (41).

Solving for 

We know

1L

J L S

S L J

cosq
�� �� �

� �� ��

= +

= -

Squaring both sides

 

S L J L J

L
L J S

J

2 2 2

1

1

2 2 2

2

2

= + -

=
+ -

cos

cos

q

q

  

(42a)

Similarly,   S
J S L

J
cosq2

2 2 2

2
=

+ −
  (42b)

Substituting Eqn. 42(a)–(b) into Eqn. (41)

m
m

j
B L J S

J

J S L

J
= −

+ −
+

+ −









�

2 2 2 2 2 2

2

m
m

j
B L J S J S L

J
= −

+ − + + −









�

2 2 2 2 2 22 2 2

2

 m
m

j = −
+ −









B

�

3

2

2 2 2J S L

J
 (43)

The term inside the bracket for Eqn. (43) is taken to be g times the total angular momentum  
vector.

J g
J S L

J
. =

+ −3

2

2 2 2

g
J S L

J

J S L

J
=

+ −
= +

+ −









3

2
1

2

2 2 2

2

2 2 2

2

 

g
j j s s l l

j j
= +

+( ) + +( ) - +( )
+( )

é

ë
ê

ù

û
ú1

1 1 1

2 1
  

(44)

g in Eqn. (44) is Lande g-splitting factor.
Equation (43) can be written as

 
m

m

j = −
B

�

��
g J  (45a)

 
m mj = − +( )B  g j j 1  (45b)
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5.9 LS Coupling For Multi-electron System

For multi-electron system, the total angular momentum J
��

 is sum total of all individual orbital angular 
momenta. All the orbital angular momenta L

i
 couple together to form total orbital angular momentum L; 

similarly, the spin of all individual atoms, that is, Si  unite together to produce single spin angular momen-
tum S. Then, both L and S give rise to total angular momentum J via spin–orbit coupling. We can illustrate 
it through the following example. Let us take two electrons with l1 = 2  and l2 = 3 . Then, the following 
combinations occur:

 (i) L will take value from l l1 2+  to l l1 2- , that is, 5, 4, 3, 2, 1.
 (ii) S will have values 0 and 1.
 (iii) J will have values from L S-  to L S+ .

Hence, for S = 0, J = 1, 2, 3, 4, 5, and
  for S = 1, J = 0, 1, 2, 3, 4, 5, 6.

The LS coupling could be commonly seen in light elements, but for heavier atoms, the nuclear 
charge is quite high and LS coupling no longer holds good. Then individual total angular momen-
tum of electron J

i
 adds together to form total angular momentum of atom. This is referred to as JJ 

coupling. Hence,

J L Si i i= +  for individual electron

J J= å i  for whole atom

5.10 Zeeman Effect (Normal)

Atomic spectra is influenced by electric and magnetic field, and this phenomena was observed by 
Zeeman in 1896 and Stark in 1913 respectively.

Zeeman in 1896 found that upon applying magnetic field, the spectral lines are split into mul-
tiplets. This phenomenon of splitting the spectral lines under the influence of external applied  
magnetic field is called Zeeman effect. The experimental set-up used by Zeeman is shown in Figure 
5.14(a). Sodium lamp or Hg source could be used as a source of atomic spectra and it is placed 
between strong magnets.

The spectral lines could be observed in parallel as well as perpendicular direction using some pow-
erful high resolving power spectroscope. The angular velocity (w) of electron moving in circular orbit 
of radius r and velocity v is given by

 
w

v

r
=  (46)

Then the centripetal force experienced by electron is given by

 
F

mv

r
mrwc = =

2
2  (47a)

When magnetic field B is applied on the electron, then electron also experiences force Bev. The direction 
of this force depends on the direction of electron. If the force is centripetal, that is, inward direction and 
the electron is in anticlockwise direction, then the total force on electron is given by (Figure 5.14(b))

 F F Bev m w w r= + = +( )c D
2  (47b)
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Dw is the small change in angular frequency due to the force produced by magnetic field.

mrw Bev mw r m w r mwr w

Bev mr w mwr w

2 2 2

2

2

2

+ = + +

= +

∆

∆

∆

∆

Neglecting the terms with Dw2

Bev mwr w= 2 ∆

Bev mv w= 2 ∆

Be m w= 2 D

Dw
Be

m
=

2

2
2

p ∆f
Be

m
=

 
Df

Be

m
=

4p   
(47c)

This force will cause the acceleration of electrons.
When the magnetic field causes centrifugal action, that is, the direction of force is in outward 

direction, then the force is given by

Magnetic pole Source

Spectroscope

Voltage

Figure 5.14(a) Experimental set-up for Zeeman effect.

Figure 5.14(b) Electron revolving in anti clockwise direction.

F
c

w

e−
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∆f

eB

m
= −

4p
 (47d)

Combining Eqn. 47(c)–(d),

 
∆f

eB

m
= ±

4p
 (48)

Hence, the frequency of spectral line changes by Df . We can conclude:

 (i) If the electron is in anticlockwise direction, then the force increases on electron, which acceler-
ate its motion to f fo + D .

 (ii) If the electron is in clockwise direction, then the force decreases and the motion of electron 
decelerates to f o - Df . 

We can demonstrate the Zeeman effect using Figure 5.15. In the absence of magnetic field, the 
line of frequency is the exact difference of energy of upper and lower energy.

E2

El

fo

l = 2

l = 1

hfo

Figure 5.15(a) Frequency line in the absence of Zeeman effect.

2

−2

1

1

ml

 = −1, 0, 1

−1

−1

0

0

∆ml

eB
4pm

fo − fo
eB

4pm
fo +

Figure 5.15(b) Zeeman effect in the presence of magnetic field. The transitions showing Dml = - +1 0 1, , .
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E E hf2 1- = o

But, when the magnetic field is tuned on, the splitting of energy levels takes place ( 2 1l +  levels) 
(Figure 5.15(b)).

We know from Eqn. (29)

ml

eL

m
= −

2

For the component of L along z-direction, that is,

mz z= - = -

e

m
L

em

m
l

2 2

�

The interaction of atom with applied magnetic field depends on the orientation of magnetic 
moment when an atom is placed inside magnetic field B, and it gives rise to torque (τ)

 

t m

t m q

= ´

=

�� ��

B

B sin
 (49a)

This torque will tend to rotate the atoms. If dW is the work done to reorient the moment against the 
torque experimented due to applied force, then it is given by the following expression:

 dW d= ×t q  (49b)

where dq  is the angular displacement produced by torque.

dW B d= ×m q qsin

This work done is stored in the form of potential energy.

 − ⋅dE B d= m q qsin  (49c)

After integration and mathemetical calculations,

∆ −E B= ⋅m

∆E
eL

m
B= − ⋅

2

 
∆E

eL

m
B= −

z

2
 [Only the z component will contribute]

 
DE

em B

m
l

= -
�

2
 [from Eqn. (47c)]

 ∆ ∆E m wl= �  (49d)

Equation (49d) represents the energy shift of spectral lines, that is, the energies of levels E1  and E2  
get modified when the atom is under the influence of magnetic field. Let E

11
 and E

22
 be the modified 

energy levels, such that

 
E E E E

e m B

m
l

11 1 1

1

2
= + = +∆

�
 (50a)
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E E E E

e m B

m
l

22 2 2

2

2
= + = +∆

�
 (50b)

Subtracting Eqn. (50a) from Eqn. (50b)

E E hf E E
e B

m
m ml l22 11 2 1

2 1

2
− = = − + −( )

�

 
f f

eB

m
ml= +0 4p
∆  (51)

Allowed transitions are only with Dml = ±0 1,
Hence, the following transitions are allowed

 (i) Dm

f f

=

=

0 (Original frequency)

o
 (52a)

 (ii) ∆

∆

m

f f
eB

m
f f

= −

= − = −

1

4o o
p

 
(52b)

 (iii) ∆

∆

m

f f
eB

m
f f

= +

= + = +

1

4o o
p

 
(52c)

5.11 Anomalous Zeeman Effect

When the atom is under a strong magnetic field, it gives rise to normal Zeeman effect. But, when 
the atom is under the influence of weak magnetic field, it gives rise to multiple lines, that is, the  
spectral line splits into a number of lines. This effect is known as anomalous Zeeman effect. Section 
5.8 describes about the Larmor precession. The resultant total angular momentum is given by the 
vector addition of orbital angular momentum and spin angular momentum, that is, J L S= + . Both 
L and S have precession around J.

From Section 5.8, it is clear that ml  and ms  are opposite to L
��

 and S
�

, respectively. This is due 
to the negative charge on electron. m ml s,  also have precession around J, whereas m j  cannot have 

precession around J due to unequal values of 
ml

L
 and 

ms

L
.

Equation (45b) describes the value of m j  as

m mj g j j= − +( )B 1

where g
j j s s l l

j j
= +

+( ) + +( ) - +( )

+( )
1

1 1 1

2 1
 (53)

As derived in the previous section, according to (49c), the energy is given by

∆E B= − ⋅m
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Here, it can be written as

∆E Bj= − ⋅m

∆E g j j B= − ⋅ +( )mB 1

∆E g B
j j

=
+( )

mB

1

�
�

 
m

J
j =






�

 
∆E g B m j= mB  (54)

The allowed transition levels are mj = ±0, 1 and total angular momentum J splits for 2 1j +( )  
levels. Figure 5.16 illustrates the anomalous Zeeman effect for sodium D1  and D2  lines.
The allowed transitions are these for which Dl = ±1 and ∆m j = ±0 1, . Hence, according to this rule, 

D1  has four splittings and D2  has six splittings, 3
2

1
2→ −( ).

5.12 Stark Effect

In 1913, Stark observed the splitting of spectral lines in an electric field. He observed the splitting 
of Balmer line in hydrogen spectrum. He used a strong electric field of 105 V/cm . Every line was 
split into many component lines. The number of lines varied as H H Hg b a> > . Hence, the lines 
increased with higher parent line. Another observation was the linearly polarized s electric component 
perpendicular to the field. On the contrary, the p components were polarized parallel to the field. The 
wave number difference between parent line and component line is proportional to the magnitude of 
electric field. This was directly proportional to electric field up to a field strength of 107 V/m  and was 
linear in nature. But as the magnitude of electric field was increased, the difference of parent line and 
component line was no longer linear in nature.

3/2

mj

−3/2

1/2
−1/2

1/2
−1/2

1/2

2p3/2

2p1/2

(b)(a)

2s1/2

D1

D2

−1/2

Figure 5.16  Anomalous Zeeman effect (a) in the absence of magnetic field and (b) in the presence 
of magnetic field.
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The Stark effect is responsible for broadening of spectral lines due to charged particle. The split-
ting of lines is not symmetric in case of stark effect unlike Zeeman effect.

SUMMARY

This chapter deals with the interpretation of atomic structure using different models: Thomson gave 
pudding model, following which Rutherford performed gold foil experiment. But Rutherford model 
could not explain the energy spectrum. Later, Bohr postulated that energy is radiated only when 
electron jumps from higher orbit to lower orbit. Hydrogen spectra could be explained using Bohr’s 
model, but the multi-electron system could not be explained. Furthermore, the correspondence 
principle demonstrated that at higher quantum numbers, quantum mechanics tends toward clas-
sical regime. Sommerfeld modified Bohr’s theory in 1955 by postulating that the electrons revolve 
around nucleus in elliptical orbit. Moreover, electron different velocity at different parts of ellipse 
vector atom model interpreted orbital angular momentum in terms of vector model along with the 
space quantization. There are orbital and spin angular momentum for an atom. The total angular 
momentum (J) is defined as the vector sum of spin and orbital angular momentum. The splitting of 
spectral lines could be explained on the basis of spin–orbit coupling. The spectroscopic notation of 
every level is given in terms of term value, that is, n l j

s2 1+ . Lande’s g-factor is also explained in terms 
of angular momentum (spin, orbital, and total). The total angular momentum is also explained for 
a multielectron system. The influence of magnetic field as spectral lines and the frequency shift was 
studied using Zeeman effect, whereas the influence of electric field on spectral lines was studied using 
Stark effect.

SOLVED PROBLEMS

Q. 1: Obtain the radius for third orbit of electron in hydrogen atom (given m = ×
−9 1 10 31. kg  and 

h = ×
−6 63 10 34. Js , charge e = ´

-1 6 10 19. C ).

Ans: Radius r
n h

mZe
n =
e

p

o
2 2

2

For hydrogen, Z =1 and given n = 3

r3

12 34 2

31 19 2

8 85 10 9 6 63 10

3 14 9 1 10 1 6 10
=

´ ´ ´ ´( )
´ ´ ´ ´( )

- -

- -

. .

. . .

r3

12 68

31 38

3501 16 10 10

73 149 10 10
=

´ ´

´ ´

- -

- -

.

.
Þ =

´

´

-

-
r3

80

69

3501 16 10

73 149 10

.

.

r3
1147 86 10= ´
-.

r3
104 78 10= ´
-. m

r3 4 78=
°

. A
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Q. 2: Obtain the radius for hydrogen atom for second orbit.

Ans: Radius r
n h

mZe
n =
e

p

o
2 2

2

For n = 2

r2

12 34 2

31 19 2

8 85 10 4 6 63 10

3 14 9 1 10 1 6 10
=

´ ´ ´ ´( )
´ ´ ´ ´( )

- -

- -

. .

. . .

r2

80

69

1556 07 10

73 149 10
=

´

´

-

-

.

.

r2
11 1021 27 10 2 127 10= ´ Þ ´
- -. .m m

Q. 3: The first member of hydrogen Balmer series has wavelength of 6563 A.
°

 Obtain the wavelength 
of second member.

Ans:

 

1 1

2

1

31
2 2

l
= −







R  (a)

 

1 1

2

1

42
2 2

l
= −







R  (b)

Dividing Eqn. (a) by (b),

l

l

2

1

20

27
=

l2

20 6563

27
4860 2=

´
=

° °

A A.

Q.4: Obtain the shortest wavelength for principal series of Hydrogen atom.

Ans: E hf
n

= =

13 6
2

.

For principal series, the electrons should jump from p to n =1.
Hence, E hf= =13 6. eV

hc

l
= 13 6. eV

l =
× × ×

× ×

−

−

6 63 10 3 10

13 6 1 6 10

34 8

19

.

. .

l = ×
−914 10 10 m

l =
°

914 A

Q.5: For Balmer series of hydrogen, the wavelength of first member is given as 6563 A
° . Obtain the 

wavelength for second member of Lyman series for same spectrum.



224  • ChaPTeR 5/aTomiC and moleCulaR sTRuCTuRes

Ans: For Balmer series,

1 1

2

1

31
2 2

l
= −







R  (a)

For Lyman series (second member)

1 1

1

1

32
2 2

l
= −







R  (b)

Dividing Eqs (a) and (b)

l

l

2

1

5

36
8

9

5

36

9

8

5

32
= = × =

l l2 1

5

32

5

32
6563= × = ×

l2 1025 46=
°

. A

Q.6: The Balmer series wavelength for first member is 6563 A
° . Obtain the wavelength for first  

member of Paschen series in same spectrum.

Ans: For Balmer series,

1 1

2

1

31
2 2

l
= −







R  (a)

For Paschen series (first member)

1 1

3

1

42
2 2

l
= −







R  (b)

Dividing Eqs (a) and (b),

l

l

2

1

5

36
7

144

5

36

144

7
= = ×

l2

5

36

144

7
6563= ´ ´

°

A

l2 18751 42=
°

. A

Q. 7: What will be the energy required to excite an electron from the ground state of hydrogen to 
third level?
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Ans: The energy of electron in nth orbit is given by

E
n

n = -
13 6

2

.

En1

13 6

12
= −

.
 and En3

13 6

32
= -

.

Hence, energy required = E En n3 1
-

E = - +
13 6

3

13 6

12 2

. .

E =
- +é

ëê
ù

ûú
13 6

1 9

9
.

E = ´ =13 6
8

9
12 08. . eV

Q. 8: For an atom with charge Ze, an electron revolves around the nucleus. 28.4 eV energy 
is required for an electron to jump from second orbit to third orbit. Obtain the atomic number 
of atom.

Ans:             E En n3 2
28 4- = .

28 4 13 6
1

2

1

3
2

2 2
. .= × −







Z

28 4

13 6

5

36
2.

.
=







Z

Z 2 28 4 36

13 6 5
=

×

×

.

.

Z ≈ 4

Q. 9: What would be the energy required to remove the electron from first Bohr’s orbit to infinity 
for helium atom?

Ans: Z = 2 for helium

E E Z∞ − = × −
∞







1

2
2 2

13 6
1

1

1
.

E E
¥
- = ´ =1 13 4 4 53 6. . eV

Q. 10: What will be the wavelength of electromagnetic radiation required to take out an electron 
from second Bohr’s orbit to ∞  for Beryllium atom?

Ans: Z = 4

E E Z∞ − = × −
∞







2

2
2 2

13 6
1

2

1
.
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E E
¥
- = ´2 13 6 4. eV

E E hf
¥
- = =2 54 4. eV

hc

l
= × ×

−54 4 1 6 10 19. . J

l =
× × ×

× ×

−

−

6 63 10 3 10

54 4 1 6 10

34 8

19

.

. .

l = × ×
−0 228 10 1026 19.

l = ×
−0 228 10 7.

l =
°

228 A

Q.11: For hydrogen, an electron is in 2p state. Obtain the magnitude of orbital angular momentum 
and possible z-components of orbital angular momentum L

��

.

Ans: The magnitude of orbital angular momentum is

L l l= +( )1 �

For p state, l =1

L = 2�

To obtain the possible z-component,

L mz l= �

and m can have values - +1 0 1, ,

Hence, Lz = -� �, ,0

Q. 12: If an electron is in 4d level for hydrogen, calculate the magnitude of orbital angular momen-
tum along with its possible angular momentum and along with its possible z-components?

Ans: L l l l= +( ) =1 2� [ ]

L = +( ) =2 2 1 6� �

L = 6�

The possible z-components are

L m mz l l= = + + - -[ ]� 2 1 0 1 2, , , ,

Lz = - -2 0 2� � � �, , , ,
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Q. 13: For a p-electron for one-electron atom, obtain L, S, and J.

Ans: For a p-electron,
l =1  and s = 1

2

Now j can be obtained in the following two ways:

 (i) j l s= + = + =1 1
2

3
2

 (ii) j l s= - = - =1 1
2

1
2

Hence,  L l l= +( )1 �

= +( ) =1 1 1 2� �

L = 2�

S s s= +( ) = +( ) =1 1
3

2
1

2
1

2� � �

S =
3

2
�

J j j= +( )1 �

For j J= = +( ) =3
2

3
2

3
2 1

15

2
, � �

For j J= = +( ) =1
2

1
2

1
2 1

3

2
, � �

Q. 14: For a d-electron, obtain the values of L, S, and J.

Ans: For a d-electron

l s= =2 1
2and

The values of j can be given in the following two ways:

 (i) j l s= + = + =2 1
2

5
2

 (ii) j l s= - = - =2 1
2

3
2

L l l= +( ) =1 6� �

S s s= +( ) =1
3

2
� �

J j j= +( )1 �
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For  j J= = +
æ

è
ç

ö

ø
÷ =

5

2

5

2

5

2
1

35

2
, � �

and  j J= = +
æ

è
ç

ö

ø
÷ =

3

2

3

2

3

2
1

15

2
, � �

Q.15: For an electron in p3
2
 state, obtain the values of mj  and J z .

Ans: l = 1  for p-state
and j s= =

3
2

1
2,

The values of mj  are 3
2

1
2

1
2

3
2, , ,-

-

and J mz j= �

J z =
- -3

2
1

2
1

2
3

2� � � �, , ,

Q.16: Obtain the orbital states for n s= =3 1
2,

Ans: n = 3  determines l = 0 1 2, ,

Case I: l s= ( )0 -state

 s = 1
2

 
j l s s= + = Þ1

2
23 1

2

Case II: l s= =1 1
2,

 j l s= ± = 3
2

1
2,

 
3 33

2
1

2

2 2p p,

Case III: l s= =2 1
2,

 j l s= ± = 5
2

3
2,

 
3 35

2
3

2

2 2d d,

Orbital state: n l sj
s2 1 2 1+

+[ ]is known as spin multiplicity

Q. 17: For two electrons with same l = 2  and s = 1
2 , what would be the possible values for quantum 

number L and spin quantum number S ?

Ans: l1 2=  and l2 2=  for both electrons

Hence, L l l l l l l= + + - -1 2 1 2 1 21, , ,…

L = 4 3 2 0, , ,

s1
1

2=  and s2
1

2=  for both electrons
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S s s s s s s= + + - -1 2 1 2 1 21, , ,…

S =1 0,

Q.18: What would be the total quantum number J for two electrons with same l =1  and s = 1
2 ?

Ans: l l1 2 1= =

L = 2 1 0, ,

s s1 2
1

2= =

S =1 0,

The allowed value for J are as follows:

 (i) L S= =2 1,

  
J L S L S L S= + + - -, , ,1…

  J = 3 2 1, ,

 (ii) L S= =2 0,

  J = 2

 (iii) L S= =1 1,

  J = 2 1 0, ,

 (iv) L S= =1 0,

  J =1

 (v) L S= =0 1,

  J =1

 (vi) L S= =0 0,

  J = 0.

Q.19: Two electrons have different values of orbital quantum number l1 1=  and l2 2= . What will 
be the values of L S, ?

Ans:  l1 1=  and l2 2=

L l l l l l l= + + - -1 2 1 2 1 21, , ,…

L = 3 2 1, ,

s s1 2
1

2= =

S =1 0,

Q.20: What would be the total quantum number J for electron with l1 1=  and l2 3= ?

Ans:  l1 1=  and l2 3=

L = 4 3 2, ,
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For s s1 2
1

2= =  
S = 1, 0

J can have the following values:

 (i) L = 4,  S =1

  
J j j j j j j= + + - -1 2 1 2 1 21, , ,…

  J = 5 4 3, ,

 (ii) L S= =4 0,

  J = 4

 (iii) L S= =3 1,

  J = 4 3 2, ,

 (iv) L S= =3 0,

  J = 3

 (v) L S= =2 1,

  J = 3 2 1, ,

 (vi) L S= =2 0,

  J =2

Q.21: Obtain the orbital states (term values) for electrons with l1 1=  and l2 2= .

Ans:  l l1 21 2= =and

L = 3 2 1, ,

s s1 2
1

2= =

S =1 0,

The possible values of J are

 (i) L S= =3 1,

  J = 4 3 2, ,

 Term values: 3
4 3 2F , ,

 (ii) L S= =3 0,

  J = 3

 Term values: 1
3F

 (iii) L S= =2 1,

  J = 3 2 1, ,

 Term values: 3
3 2 1D , ,
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 (iv) L S= =2 0,

  J = 2

 Term values: 1
2D

 (v) L S= =1 1,

  J = 2 1 0, ,

 Term values: 3
2 1 0P , ,

 (vi) L S= =1 0,

  J =1

 Term values: 1
1P

Q. 22: Is state 2
3

2
s  possible or not?

Ans:  l s= + =0 1 2and 2

s = 1
2

Hence,  j l s= + = 1
2  

Therefore, 2
3

2
s  cannot exist; but 2

1
2

s  can exist.

Q. 23: Calculate Lande’s splitting factor for l s= =1 1
2and .

Ans:  l s= =1 1
2,

j l s= ± = 3
2

1
2,

g j
j s s l l

j j
j = +

+( ) + +( ) - +( )

+( )
1

1 1 1

2 1

For j = 3
2 ,

g 3
2

1

3

2

3

2
1

1

2

1

2
1 1 1

2
3

2

3

2
1

= +
+æ

è
ç

ö
ø
÷ + +æ

è
ç

ö
ø
÷ - +( )

´ +æ
è
ç

ö
ø
÷

æ

è

ç
ç
ç
ç

ö

øø

÷
÷
÷
÷

g 3
2

1

15

4

3

4
2

15
= +

+ -
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

g 3
2

1

18

4
2

15
1

10

4 15
= +

-
æ

è

ç
ç
ç

ö

ø

÷
÷
÷
= +

´
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g 3
2

1
10

60

7

6
1 16= + = = .

For j = 1
2 ,

g 1
2

1

1

2

1

2
1

1

2

1

2
1 1 1

2
1

2

1

2
1

= +
+æ

è
ç

ö
ø
÷ + +æ

è
ç

ö
ø
÷ - +( )

´ +æ
è
ç

ö
ø
÷

æ

è

ç
ç
ç
ç

ö

øø

÷
÷
÷
÷

g 1
2

1

3

2
2

3

2

= +
-

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

g 1
2

1
1

2

2

3
= + - ´

æ

è
ç

ö

ø
÷

g 1
2

1
1

3

2

3
0 66= - = = .

Hence,

g 3
2

1 16= .

g 1
2

0 66= .

Q. 24: The spectral lines are separated by 0.04 nm. Obtain the magnitude of magnetic field required 
to a line of 422.7 nm in order to resolve the triplets? (given e m/ C/kg= ´1 76 1011. )

Ans:  df
eB

m
= ±

4p

f
c

=

l

df
c

d= −

l
l

2

− = ±
c

d
eB

ml
l

p
2 4

d
c

eB

m
l

l

p
= ±

2

4
where dl  is Zeeman shift.

Here, d
c

eB

m
l

l

p
=

2

4

B
d c m

=

l

l

p
2

4

3
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B
d c

e m
=

( )

l

l

p
2

4

/

l = 422 7. nm

dl = ×
−0 04 10 9. m

e m/ C/kg= ×1 76 1011.

B =
´ ´ ´ ´ ´

´( ) ´ ´( )

-

-

0 04 10 4 3 14 3 10

422 7 10 1 76 10

9 8

9 2 11

. .

. .

B =
´

´ ´

-

-

1 5072 10

314468 51 10 10

1

18 11

.

.

B =
´ ´

-1 5072 10 10

314468 51

1 7.

.

B =
´1 5072 10

314468 51

6.

.

B =
1507200

31446851

B = 4 79. T

Q. 25: If magnetic field of 1T is applied and Zeeman separation of 0.0116 nm is observed for 500 
nm spectral line, obtain charge/mass ratio for electron.

Ans:  B d= = =1 0 0116 500T, nm, and nml l.

d
c

e

m
Bl

l

p
=

2

4
.

e

m

d c

B





=

( )l

l

p
2

4

e

m

æ
è
ç
ö
ø
÷ = ( )

´
´ ´ ´0 0116

500

3 10 4 3 14

12

8. .

e

m





= ×1 754 1011. C/kg

OBJECTIVE QUESTIONS

 1. According to Thomson’s pudding model

 (a) neutrons are uniformly distributed (b) atom is charged
 (c) positive charge is uniformly distributed (d) all of the above
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 2. Thomson model failed because

 (a) it could not explain energy spectra
 (b) it could not explain the wavelength pattern
 (c) it could not explain multi-electron system
 (d) all of the above

 3. Rutherford used the following particle for gold foil experiment:

 (a) Hydrogen (b) Helium
 (c) Carbon (d) Nitrogen

 4. The undeflected a -particles were due to

 (a) empty space inside atom (b) direct head-on collision
 (c) due to magnetic field (d) none of the above

 5. According to Bohr’s model,

 (a) energy is lost when electron moves in shell
 (b) energy is lost even if electron is stationary
 (c) energy is lost when electron jumps from one orbit to another
 (d) energy is gained when electron is stationary

 6. For Z =1 and r =
°

1 129. A , the velocity of electron is

 (a) 2 13 108. × m/s  (b) 0

 (c) 3 148 105. ´ m/s  (d) ≈ c

 7. The radius of first orbit for hydrogen is

 (a) 0 42. A
°

 (b) 1 2. A
°

 (c) 0 63. A
°

 (d) 0.529 A
°

 8. The energy of an electron in orbit is proportional to

 (a) 1
n  (b) n2

 (c) n3  (d) 1
2n

 9. Value of Rydberg constant is

 (a) 102 535 1. cm-  (b) 109737 1cm-

 (c) 1097 37 1. cm-  (d) 10973 7 1. cm-

 10. For Brackett Series, the transition occurs from n to

 (a) 4 (b) 3
 (c) 2 (d) 1
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 11. According to correspondence principle, the frequency is given by

 (a) 2Rc  (b) 
2

3

Rc

n

 (c) 
2 2

3

R c

n
 (d) 2 3Rc n

 12. At what value of n, the frequency of spectral line tends to the orbital frequency?

 (a) 1 (b) 10
 (c) ∞  (d) 0

 13. According to Sommerfeld atomic model, the velocity

 (a) changes (b) remains same
 (c) zero (d) is infinite

 14. The fine structure constant is given by

 (a) 200 (b) 
1

200

 (c) 137 (d) 
1

137

 15. The magnitude of L is given by

 (a) l l +( )1 �  (b) l l +( )1 �

 (c) 2 1l +( )�  (d) 2 1l +( )�

 16. If magnetic field is along z-direction, then Sz is given by

 (a) ms +( )1  (b) ms�

 (c) 
ms

�
 (d) ms

2
�

 17. The value of Bohr magneton ( mB =
e

m

�

2
) is given by

 (a) 8 10 10 2
´

- Am  (b) 9 26 10 10 2. ´
- Am

 (c) 9 24 10 24 2. ´
- Am  (d) 9 24 10 14 2. ´

- Am

 18. The value of gl  and g s  is

 (a) 1, 2 (b) 2, 1
 (c) 0, 2 (d) 2, 0

 19. The total angular momentum j is given by

 (a) j l
s=  (b) s

l

 (c) l s±  (d) 2s l+
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 20. Term-value is represented by

 (a) n L s
j
2 1+  (b) n J s

l
2 1+

 (c) n S j
l2 1+  (d) n Lj

s2 1+

 21. The Lande’s g-factor is given by

 (a) 
j j s s l l

j j

+( ) − +( ) + +( )

+( )

1 1 1

2 1

 (b) 1
1 1 1

2 1
+

+( ) + +( ) − +( )
+( )











j j s s l l

j j

 (c) 1
1 1 1

2 1
−

+( ) + +( ) − +( )
+( )











j j s s l l

j j

 (d) 2 1 1 1j j l l s s+( ) − +( ) + +( )

 22. The frequency shift in Zeeman effect is given by

 (a) 
eB

m4p
 (b) 

4pm

eB

 (c) eB  (d) eB m4p

 1. (c)

 2. (d)

 3. (b)

 4. (a)

 5. (c)

 6. (a)

 7. (d)

 8. (d)

 9. (b)

 10. (a)

 11. (b)

 12. (c)

 13. (a)

 14. (d)

 15. (b)

 16. (b)

 17. (c)

 18. (a)

 19. (c)

 20. (d)

 21. (b)

 22. (a)

ANSWERS
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Micro-Assessment Questions

 1. How do we know that a photon has a spin of 1?
 2. For a one-electron atom or ion, spin–orbit coupling splits all states except s-states into doublets. 

Why are s-states exceptions to this rule?
 3. Give the postulates of Thomson’s model.
 4. Why Rutherford model was not a success?
 5. What is the total angular momentum for an atom?
 6. Why was the concept of electron spin introduced?
 7. What is correspondence principle?
 8. What do you understand by symmetric functions?
 9. Describe antisymmetric wave functions.
 10. Comment on the angular momentum conservation for orbits.
 11. What are the postulates of Bohr’s model.
 12. What do you understand by Zeeman effect? How it differs from anomalous Zeeman effect?
 13. Give the significance of Lande g-factor.
 14. Explain LS coupling. Also explain the term value.
 15. What do you understand by Larmor precession?
 16. Why Zeeman effect occur in the nuclei with even number of electrons?
 17. What do you understand by quantization of angular momentum?

Critical Thinking Questions

 1. What do you understand by binding energy of an electron?
 2. Find out the expression for Bohr’s radius.
 3. Categorize the spectral lines in different series according to principal quantum number.
 4. Obtain the Rydberg empirical formula for spectral lines in optical spectra.
 5. Explain Bohr’s correspondence principle. Show that at high quantum numbers, the behavior of 

atoms follows classical trend.
 6. What do you understand by stationary state? Does it infer the particle at rest in that state?
 7. Compare old and new quantum theory.
 8. Calculate the velocity of electron in Bohr’s 4th orbit.
 9. Calculate the wavelength of Balmer series line originating from 4th shell to 2nd shell.
 10. How the shortcomings of Rutherford’s model are overcome by Bohr’s model?
 11. Derive the expression for Zeeman shift.
 12. Derive an expression for Rydberg constant.
 13. Describe the splitting of spectral lines for sodium atom using Zeeman effect.
 14. Describe the spin–orbit interaction and obtain the interaction energy.
 15. Explain the splitting of spectral lines in the presence of electric field.
 16. Give the mathematical proof for Bohr’s correspondence principle.
 17. What is the value for spin magnetic moment of free electron?
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Graded Questions

 1. Calculate the energy required to eject an electron from 2nd shell of the hydrogen atom.
 2. Calculate the radius of 4th Bohr orbit of hydrogen atom along with the energy of electron in that 

orbit.
 3. The Balmer series of hydrogen correspond to wavelength of 6563 × 10−10 m. Find out the wave-

length for first line of Lyman series.
 4. Discuss LS and JJ coupling in detail. Which one holds for lighter particles?
 5. Calculate the wavelength of first line in Paschen series and Paschen series limit (R

H
 = 1.097 × 

107/m).
 6. Derive the expression for Larmor frequency for an atom with magnetic moment μ, under the 

influence of external magnetic field H.
 7. Compute Zeeman components for 2D

3/2
 to 2P

1/2
.

 8. Derive the expression for Lande g-factor. Using it, explain anomalous Zeeman effect.
 9. Calculate the Lande g-factor for an atom with single (a) p electron and (b) d electron.
 10. Find out the possible values of L, S, and J under LS coupling for l

1
 = 1 and l

2
 = 3.

 11. Show that the term values for pd configuration is same for JJ and LS coupling.
 12. Derive the spin–orbit coupling for one-electron system.
 13. Derive the expression for total magnetic moment of atomic electron.
 14. Why the spin and orbital angular momenta show coupling?
 15. Calculate the energy between Zeeman levels corresponding to m

l
 = 0, +1, when the atom is under 

the influence of 3 T magnetic field.
 16. When sodium is in 2P

3/2
 state and is placed in magnetic field of 1.5T, the levels split into four 

levels. Calculate the energy difference between these levels.

Remember and Understand

 1. Electrons revolve the nucleus in orbits having a set size and energy.
 2. The energy of the orbit is related to its size. The smallest orbit possesses lowest energy. Radiation 

is absorbed or emitted when an electron jumps from one orbit to another.
 3. Bohr model violates the Heisenberg uncertainty principle because it assumes electrons to have 

known values for both radius and orbit.
 4. Bohr model provides an incorrect value for the ground state orbital angular momentum and it 

cannot predict the spectra of larger atoms. It does not predict the relative intensities of spectral 
lines.

 5. Bohr model fails in explaining fine structure and hyperfine structure in spectral lines. It does not 
explain the Zeeman effect or Stark effect.

 6. For multi-electron atoms, when the spin–orbit coupling is weak, it can be presumed that the 
orbital angular momenta of the individual electrons add to form a resultant orbital angular 
momentum L.

 7. For heavier elements with larger nuclear charge, the spin–orbit interactions become as strong as 
the interactions between individual spins or orbital angular momenta. For such cases, the spin 
and orbital angular momenta of individual electrons tend to couple to form individual angular 
momenta.
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 8. Pieter Zeeman observed that the splitting of spectral lines in the presence of magnetic field is 
attributed to the interaction between the magnetic field and the magnetic dipole moment asso-
ciated with the orbital angular momentum. However, in the absence of the magnetic field, the 
hydrogen energies depend only on the principal quantum number n.

 9. The splitting of atomic spectral lines as a result of an externally applied electric field was discov-
ered by Stark and is called the Stark effect. The splitting of spectral lines is not symmetric like 
that of the Zeeman effect.

 10. Zeeman effect gives frequency shift by Df. given by

D
p

f =
eB

m4

 11. The land-g factor is given by

g =
+
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2
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Matter in the universe is composed of atoms. The atoms further combine to form molecules. The 
basic structure of an atom consists of electrons, protons, and neutrons. Electrons are present in the 
 outermost shells and neutrons and protons are present inside the nucleus. Hence, nucleus can be 
 considered as the smallest entity that encloses elementary particles, that is, neutron and proton. 
The role of nucleus and the various phenomena related to it will be studied in detail in this chapter, as 
nucleus is the smallest but a very complex entity.

6

Nuclear Physics — I
Nuclei and Nuclear Models

Learning Objectives

 To understand the components of nuclear and nuclear density

 To learn atomic mass unit as special unit to measure mass

 To understand the behavior of nuclear forces as short range, spin dependent, charge independent, 
and strongest forces

 To understand the various components of tensor forces

 To gain insight into electric quadrupole moment

 To understand Wigner, Barlett, Majorana, and Heisenberg force as exchange forces

 To learn and understand Yukawa theory and its postulates

 To learn about various nuclear models

 To understand the tensor and exchange forces

 To understand the liquid drop model where the nuclei are considered to be incompressible liquid 
drop of high density

 To obtain the semi-empirical Weizsacker’s formula

 To explain nuclear fission on the basis of liquid drop model

 To learn the merits and demerits of liquid drop model

 To understand the concept of “magic numbers”

 To learn about shell model, where nucleon is assumed as a particle moving in potential well

 To gain insight into spin–orbit coupling demonstrating stretch and jackknife case

 To discuss the success of shell model

 To learn why shell model failed

 Keywords: Nucleus, neutrons, meson-theory, exchange forces, magic numbers, liquid drop model, 
shell model, nuclear forces, spin dependence, electric quadrupole
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Nuclear physics deals with the study of microscopic phenomena inside nucleus, along with the 
behavior and characteristic of nucleus. The origin of research on matter started in 4 BC. Furthermore, 
with the help of Mendeleev Periodic table, the systematic study of matter was done. Rutherford, 
Marie Curie, Geiger, Marsden, Thomson, etc., are the common names associated with nuclear and 
atomic physics. Thomson and Rutherford performed studies to determine individual nature of 
atoms. Atomic physics deals with the study of individual atoms. Atomic physics and chemistry are 
the  foundation of nuclear physics. Furthermore, nuclear physics helped to gain insight into particle 
 physics, that is, study of elementary particles such as electron, proton, and neutron.

6.1 Components of Nucleus

Thomson described the atom to be like a plum pudding. Anyhow Rutherford’s gold foil experiment deter-
mined lots of empty space inside the atom and positive charge centered at one point. The entity in which 
all the protons (positive charges) are present is called nucleus; electrons are present outside this positive core. 
Bohr specified that the electrons revolve around the nucleus in fixed orbits. He also concluded that the 
revolving electrons lose energy whenever they jump from higher orbit to lower orbit. Hence, the elemen-
tary particles play a vital role in determining the properties of nucleus. Some properties are listed below.

6.1.1 Nucleus
It contains neutrons and protons:

              Neutron Proton
Charge 0 1.6 × 10−19 C
Mass 1.67 × 10−27 kg 1.67 × 10−27 kg

Size of nucleus = 10−14 m
Size of atom = 10−10 m

The impact parameter can be given by
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E
=

2
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where E represents energy of incident particle, Z is the atomic number
The nuclear density can be calculated as
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Ernest Rutherford was an English physicist who is credited 
with discovering the nucleus in the early 1900s. Rutherford’s 
gold foil experiment is a well-known experiment in which he 

bombarded α-particles onto a thin sheet of gold foil. This 
experiment was done at the University of Manchester. Most 

of the α-particles passed through the atom and some of them 
got deflected. He concluded a large empty space within 
the atom. He discovered that the atom consists of positive 
mass known as nucleus, which is concentrated at the center. 
He further postulated that nucleus contained a particle with 
a positive charge known as “proton” from the Greek word 
“protos,” meaning “first.” Every element is characterized by 
different number of protons in their nuclei. Hence, hydrogen 
nucleus is the fundamental nuclei consisting of one proton. 
Before the discovery of nucleus, it was believed that positive 
and  negative charges were distributed evenly throughout the 
atom. Ernest Rutherford also did extensive experimentation 
to explore radioactivity. He studied radioactivity along with 
Marie and Pierre Curie and Henri Becquerel. During his career in atomic physics, Rutherford 
taught many famous physicists.

ERNEST RUTHERFORD

6.1.2 Electrons
Following are the properties of electron:

Mass of electron = 9.1 × 10−31 kg
Charge of electron = −1.6 × 10−19 C

We should now calculate atomic density. From Eqn. (2), it is clear that nuclear density is almost 
 independent of mass number A. The atomic radius is four orders bigger than nuclear radius, hence

 Atomic density kg m5 3
=

×

( )
= ×

2 29 10

10
2 29 10

17

4 3

.
.  (3)

Figure 6.1 shows the variation of nuclear density with nuclear radius. It is concluded that the density 
(nuclear) is almost constant everywhere except the surface. The density on surface is less than the 
density at center due to the phenomena of surface tension.

Note:
*Free neutron is unstable and decays through weak interaction,

n p e→ + +
−

ne

where t
½
 = 12 min (4)

n e = antineutrino

*Bound neutron is stable.
*Free proton is stable whereas bound proton is unstable. Bound proton decays as

 p e n® + +
+

ne  ne = neutrino[ ]  (5)
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6.2 Mass of Nucleus

When we talk about atomic mass, it is sum of mass of neutrons, protons, and electrons. The elec-
trons possess very small atomic mass, hence their mass is almost negligible in comparison to protons 
as well as neutrons. In other words, we can take atomic mass to be “nuclear mass.” For calculating 
nucleus mass, subtraction of electronic mass from atomic mass is important. The masses are measured 

in terms of special unit, that is, atomic mass unit or a.m.u., which is defined as the 
1

12
th of mass of 

single carbon atom 6
12C( )  (according to general conference on weight and measures held in 1960). 

Twelve grams of carbon correspond to 1 mole atoms of carbon ( .1 6 023 1023mole atoms)= × .

1
1

12

12

6 023 10
1 66 10

23

27 a.m.u. kg= ×

×

= ×
−

.
.

Nuclear
density

Center Nuclear radius

Figure 6.1 Nuclear radius versus nuclear density.

In 1897, the experiments of Dr J.J. Thomson 
led to the discovery of the basic building 
block of matter, that is, electron. Thomson 
was  working with currents of electricity inside 
empty glass tubes at the Cavendish Laboratory 
at Cambridge University. Along with it, he was 
also investigating the cathode rays. He found 
the mysterious particles in cathode rays to be 
very smaller than the size of atomic nucleus. He 
coined the term corpuscles for these particles. 
It was believed that the atom is the most fun-
damental and indivisible unit of matter. Hence, 
the scientific  community was astonished to 
imagine more smaller particle occupying some 
position inside the atom. Thomson did strenu-
ous experimental work to prove the existence 
of these fundamental particles (corpuscles) and to avoid confusion. He concluded the cathode 
rays to be made up of electrons, which are negatively charged particles. These electrons are 
indeed fundamental parts of every atom.

J.J. THOMSON
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Corresponding to 1 a.m.u., the energy is given by relation E = mc2

 Energy eV in 1 a.m.u.
kg m s

=
×( ) × ×( )

×

−

−

1 66 10 3 10

1 6 10

27 8

19

.

.
 (6a)

 1 a.m.u. = 931 MeV (6b)

The mass defect for nuclues is given by Dm = (Zm
p
 + Nm

n 
- M) a.m.u where m

p
, m

n
, and M represent 

mass of proton, mass of neutron, and mass of atom respectively. Furthermore, the packing fraction can 
be obtained by  dividing mass defect with the total number of nucleons. Z is the atomic number and N 
is the number of neutrons for an atom.

James Chadwick was an English physicist working with Rutherford. 
In 1932, while working with Rutherford, he detected neutrons and 
measured their mass. He bombarded the  neutrons onto a block of 
paraffin wax. The paraffin wax had high  concentration of hydrogen, 
which made it rich in protons. Upon collision of neutrons with pro-
tons present in the wax, some  protons were knocked out. Chadwick 
detected the protons and calculated their energy and mass. He 
further used principles of energy and momentum conservation to 
obtain the mass of the neutrons. He obtained the mass of neutrons 
to be slightly more than that of a proton.

JAMES CHADWICK

6.3 Nuclear Forces

Inside nucleus, neutrons and protons exist and electrons revolve around the nucleus. Proton is posi-
tively charged, although neutron is a  neutral particle. A question arises: If so many protons coexist 
inside the nucleus, then the  electrostatic  repulsive forces must be there. Despite strong electrostatic 
repulsive force, the nucleus behaves as a strong and stable entity. Hence, some other force must be coex-
isting, which binds the nucleus together. Obviously, these forces must be more strong than Coulomb’s 
forces and gravitational forces. These strong forces that exist inside the nucleus and bind the proton 
and neutron together are know as nuclear force. Following are the properties of nuclear forces:

 (i) Strongest forces: The nuclear forces are 100 times more stronger than the electrostatic 
Coulombs’ repulsive force and 1038 times more stronger than the gravitational forces. Indeed, 
the nuclear forces can be regarded as the strongest forces present in nature.

 (ii) Charge independent: Neutrons and protons inside the nucleus interact with each other. The fol-
lowing interactions occur within a nucleus: neutron–neutron, proton–proton, and neutron–proton. 
These interactions are independent of the electric charge on the nucleons (neutrons and protons are 
collectively known as nucleons). Hence, n–n, n–p, and p–p interactions posses the same nature. We 
can illustrate it with the help of an example, that is, consider tritium, 

1
H3 and 

2
He3 nuclei,

For tritium, number of protons = 1 = number of neutrons in helium
For helium, number of protons = 2 = number of neutrons in tritium

  The binding energy of tritium (
1
H3) is 8.49 MeV, whereas the isotope of helium (

2
He3)  possesses 

binding energy of 7.72 MeV. Comparing both the binding energies, it is clear that tritium has 
higher and strong attractive force inside the nucleus. The lower binding energy in 

2
He3 could 
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be due to repulsive force existing between the p–p pair. In lower atomic mass nuclei, n–p pair 
is the preferred one. As the atomic mass increases, the number of neutrons also increases and it 
leads to n–n pairing. Hence, n–n forces could also lead to stable nuclei. We can approximate the 
magnitude of these forces to be same.

 (iii) Short range: Figure 6.2 shows nuclear forces exist within certain range. They do not extend 
upto large distances. The distance between nucleons should be comparable to the size of 
nucleons for nuclear forces to exist. The range of nuclear forces is approximately 2.2 fm 
and the forces drop to almost negligible value at a distance of 4.2 fm (1 Fermi = 10−15 m). 
The maximum forces of attraction between nucleons exist at a distance of 1.5 × 10−15 m. 
If the distance is decreased beyond this, then the nuclear attractive force also decreases. At 
a distance of 0.5 fm, the nuclear attractive force becomes zero. If the distance is decreased 
below 0.5 fm, then instead of attractive force, the repulsive forms within nucleons come 
into action. This repulsive force also plays a very important role, as it stabilizes the nucleus 
by preventing the collapse of nucleons. At long distances, the nuclear forces are almost zero. 
Moreover, electrons are totally immune from the nuclear forces, that is, they do not feel the 
influence of nuclear forces on them.

 (iv) Spin-dependent and saturated: The nucleons with same spin have stronger force of  attraction 
than the nucleons with antiparallel spin. Nucleon can satisfy certain coordinate number with 
its neighbors, that is, there is defined number of bonds that nucleons can make with each 
other. For atomic number greater than 40 MeV, average binding energy per nucleon is con-
stant. This indicates that the nuclear forces are saturated. If nucleons have interacted with 
every nucleon, then the binding energy would have been quite large. Hence, the nuclear forces 
are saturated forces.

 (v) Non-central: The forces that donot act along the line joining the centers of nucleons are known 
as non-central forces. The nuclear forces do not act along the line that joins the centers of two 
nucleons. Hence, nuclear forces are regarded as non-central forces. The nuclear forces have 
tensor components that give non-central character to them. Under the effect of tensor forces 
the angular momentum component is no longer conserved.

Force of
attraction

Maximum stability point

Force of
repulsion

Internucleon distance

F

r1

r0 →

Figure 6.2 Variation of force with internucleon distance.
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 (vi) Exchange character: The nuclear forces exhibit exchange character. The nucleons keep on 
exchanging π-mesons between them(discussed in Meson Theory, Section 6.7).

We will proceed to the theory of nuclear forces, but we should have an understanding of tensor forces 
and exchange forces first. The following sections describe these forces.

6.4 Tensor Forces

The total magnetic moment is the sum of magnetic moment due to spin and orbital motion of the parti-
cle for a two-electron system. With l = 0, the possible spin states can be s = 1 or 0. When l = 0, it signifies 
no contribution of orbital momentum. Let us elaborate this concept with the help of  neutron problem.

The wave function of deuteron is described by the following equation:

 j j j= +a as s d d  (7)

Equation 7 gives the wave function divided in two parts ϕ
s
 corresponds to s state, that is, l = 0 and 

ϕ
d
 corresponds to wave function representing l = 2 state or d-state a

s
 and a

d
 are scattering constants, 

which describe extent of scattering. In d-state, the nucleus is distorted in shape and the nuclear force 
is noncentral. The new force is known as tensor forces that satisfy the following points:

 1. It depends on orientation of spin w.r.t. the line that joins nucleons.
 2. It depends on distance r (within the nucleons).

The spin orientations are regarded as s1

���

 and s 2

� ��

. These spin orientations are also responsible for 
quadrupole moment (deviation from spherical symmetry). The equation of potential under the effect 
of tensor forces is given by

 V r V r V r V r Sl l l( ) = ( ) + ( ) + ( )
1 2 3

s s1 2 12

��� � ��

.  (8)

where V rl1
( )  is the potential of particle 1 and V rl2

( )  is the potential of particle 2. Both the potentials 

are dependent on orbital momentum, and charge. s1

���

 and s 2

� ��

 are spin orientations that are given in 

the form of spin matrices. S
12

 is the tensor operator; Vl3
 gives the interaction potential between the 

particles 1 and 2.
S

12
 is derived as follows:

 
S

r r

r
12 2

3
1 2

1 2
=
( )( )

-
s s

s s
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�� ��. .
.  (9)

where 
3

1 2

2

s s

�� � �� �

. .r r

r

( )( )
 indicates that the interaction is dependent on the spin angles. The second 

term s s

�� ��

1 2
,  in Eqn. (9) is subtracted from the spin-dependent term in order to make average of S

12
 zero 

along all the directions. Individually, Pauli spin matrices are not invariant but s s

�� ��

1 2
and is invariant.  

In contrast, s
�� �

1
.r( )  and s

�� �

2
.r( )  are invariant to rotation but not to inversion.

The potential in Eqn. (8) can be interpreted as the sum of three terms. The first term V rl1
( )  

 represents central force. V rl2
( )  is the spin-dependent central force. s s1 2

��� � ��

.  is 3 for singlet state and 
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1 for triplet state. The third term V r Sl3
( ) 12

 represents the interaction potential term that depends on 

the angles that the spins make with the line that joins two particles and the internuclear separation. 
Therefore, S

12
 is the most important term that represents non-central character of forces. S

12
 is a scalar 

quantity and hence potential V r( )  is also scalar.

6.5 Shape of Nucleus (Electric Quadrupole Moment)

The shape of nucleus is not spherical. The nucleus gets deviated from the spherical symmetry, and this 
deviation is given by electric quadrupole moment. Suppose a charge distribution of Ze with volume 

charge density r ¢( )r
��

 is at a distance ′r
��

 from origin (Figure 6.3 ). To study the effect of electric field at 

a point P from Q, the potential can be written as

 

dV
dq

d
′ =

1

4peo

   [where dq is small charge corresponding to volume dV] (10)

To obtain the total potential, we will have to integrate Eqn. (10),
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Use the cosine formula in Figure 6.3.
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Binomial expansion states that
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Applying binomial expansion to Eqn.13, we obtain
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In Eqn. (15), we have neglected higher order terms and substituted Eqn. (15) in Eqn. (12).
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From Eqs (16) and (17), it can be concluded that
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From Eqn. (16), it is clear that as r increases, the potential decreases. Hence, it represents a converg-
ing series. Due to quadrupole moment, the symmetry of nucleus gets changed to oblate ellipsoid or 
prolate ellipsoid as shown in Figure 6.4 (a)–(b).

The distortion in spherical symmetry may be attributed to the nonuniform charge distribution 
in the nucleus. When nucleus is treated as an ellipsoid, then quadrupole moment Q

3
 (Q

1
 represent 

monopole and Q
2
 is dipole moment), is given by

o x

r

d
P

Q

r ′

y

z

Volume
element dV

(Observation point)

→

→

Figure 6.3 Charge distribution and multipole expansions.
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 Q Z b a
3

2

5
2 2

= −( )  (18)

As shown in Figure 6.4(a), b > a makes Q positive. For Figure 6.4(b), b < a, hence quadrupole 
moment Q is negative. For b = a, the quadrupole moment vanishes and the shape of nucleus is 
spherical. Quadrupole moment plays a vital role during the theory of nuclear models especially 
collective model. Q also defines the extent of deviation from spherical symmetry, nucleus size as 
well as nuclear charge.

6.6 Exchange Forces

We have discussed that the nuclear density is of the order of 1017 kg/m3. This density is almost  constant 
for all the nuclei. The binding energy of nuclei with mass number greater than 40 is almost saturated. 
The saturated binding energy is almost 8 MeV for nuclei. Nuclear forces act between pair of nucleons. 
The neighboring nucleons do not influence the force between other pair of nucleons. The nature of 
nucleons, that is, whether they are p or n, do not influence nuclear forces. Nuclear forces are attractive 
in nature and velocity independent.

The saturation of nuclear forces was explained by Heisenberg in 1932. Quantum mechanics was 
introduced in the twentieth century. With the introduction of quantum mechanics, many ques-
tions could be explained. Up to the nineteenth century, the concept of fields in space around an 
object could be generated. The interaction of an object with another object under the influence of 
some field was also studied in the nineteenth century. Quantum mechanics describes the exchange 
of energy in discrete packets known as quanta. Hence, quantum mechanics describe the energy to 
be discrete rather than continuous. Therefore, when one object emits field quanta, the second object 
may absorb the field quanta. Hence, the two objects can exchange field indirectly without establish-
ing any field around its vicinity.

The neutron and proton inside the nuclear are under effect of such fields. For example, a proton 
may emit some exchange particle. If the emitted exchange particle is in the vicinity of neutron, then 
the neutron may absorb it after exerting force on it. After some time the neutron may emit the particle 
that later on is absorbed by the proton. Hence, such cycle of absorption and emission of exchange 
particles continues. These exchange particles are known as mesons. Basically, mesons are of two types: 
π+ and π− which can be obtained through following reaction mechanisms:

2b

(a) (b)

2a 2a

2b

Figure 6.4 (a) Elongated prolate ellipsoid (b > a) and (b) flattened oblate ellipsoid (a > b).
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n p® +
-

p

 p n® +
+

p  (19)

The forces between nucleons, which involve exchange of particles, are know as exchange forces. 
Exchange forces are of the following types:

 (i) Wigner force: Alternatively, this force is known as no exchange force. The wave equation for 
central force for two bodies is given by the following equation:
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M
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( ) = ( ) ( )j s j s, ,w  (20)

  M is the reduced mass for two-body problem. The spin(s) and space (r) coordinates are not 
exchanged under the effect of these forces:

 (ii) Barlett force: Under the influence of Bartlett force, only the spin coordinates are exchanged 
and not the position coordinates, for two nucleons. Hence, these forces are known as spin 
exchange forces.
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  The eigenvalue of P
s

���

 is given by (−1)s + 1 and P
s

 is the Bartlett exchange operator. Consider the 
wave equation under Bartlett force,
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  From Eqn. (22), the wave function is said to be antisymmetric if s = 0. The wave function is said 
to symmetric if s = 1. For symmetric wave function, the force between nucleons is attractive.

 (iii) Majorana force: Majorana force changes the position coordinates leaving spin coordinates 
same. These forces are also known as position exchange forces. Pr

���

 is the Majorana exchange 
operator and it operates in as follows:
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  The Eigen value of Pr

���

 is (−1)l. Consider the wave equation under Majorana force:
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( ) = − ( )j s j s, ( ) , M( )  (24)

  If l is even, then the wave function is symmetric and nucleons in system attract each other. 
When l is negative, then the wave function is anti-symmetric and nucleons repel each other.

 (iv) Heisenberg force: Both the spin and space coordinates get exchanged under the effect of 
Heisenberg forces. Hence, Heisenberg force is also known as spin–space exchange force. P r

��

s  is 
the Heisenberg operator and the equation of operation is given by
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 P r r r rr

�� � �� � �� � �� � ��

s j s s j s s1 1 2 2 2 2 1 1
, , , , , ,      ( ) = ( )  (25)

The Eigen value of P r

��

s  is (−1)l + s + 1.
The equation under Heisenberg force is given by

 

�
2

2 1
1

M
E r V r r

l s∇ +





( ) = −( ) ( ) ( )+ +
j s j s, ,H  (26)

When l + s is even, the wave function is anti-symmetric and repulsive force exists between the  nucleons. 
When l + s is odd, the wave function is symmetric and nucleons attract each other. The relation 
between exchange operators is given by

 P P Pr r

�� �� ��

s s=  (27)

and P P Pr r

�� �� ��

s s( ) = ( ) = ( ) =
2 2 2

1 (28)

The exchange potential can also be expressed in terms of exchange operator as given below:

 
V V r V r P V r P V r Pr rexch w M B H= ( ) + ( ) + ( ) + ( )

s s
 (29)

Note:
During isotopic spin formalism the proton and neutron are considered as different quantum states of 
nucleon.

6.7 Yukawa Theory—Theory of Nuclear Forces

Nucleus has a size of 10−14 m and it holds nucleons together. Neutrons are natural but protons are 
positively charged. Hence, a question arises: How can a nucleus be so stable despite the fact that 
positive charges repel each other. Protons carry positive charge and hence one can expect electrostatic 
repulsive force—But along with the electrostatic repulsive force, there exists gravitational attractive 
force, which is due to the mass of protons.

Earlier, it was believed that due to the presence of gravitational attractive force the nucleus is 
stable. But after the magnitude of forces was calculated, the magnitude of Coulomb’s repulsive force 
was obtained to be almost 1036 times the gravitational attractive force. Heisenberg suggested the 
presence of exchange forces. But the theory of beta-decay proved the magnitude of exchange forces 
to be extremely small. A new force named as nuclear force was postulated, which was considered the 
strongest force of nature, that is, almost 102 times more than the electrostatic force. These forces are 
different in nature than weak, Coulomb, and gravitational forces.

Basically, the attractive force between the two particles is considered to be due to exchange of some 
particles or common field. For example, gravitons are considered as exchange particles of gravitational 
force. If we consider the case of electrostatic force, then for some molecule and electric field surround-
ing it, some proton or electron may be the exchange particle, that is, if the molecule is Cl2

- , then the 

exchange particle is proton and if the molecule is H2
+ , then electron is exchange particle. In 1935, a 

Japanese scientist Yukawa proposed the origin of nuclear forces to be due to some exchange particles, 
which have some rest mass. The virtual particles were coined as “mesons.” The mass of these particles 
were found to be 270 times as that of electrons. Mesons are supposed to have negative and positive 
charge. Neutral mesons also do exist. This theory is known as Yukawa theory of nuclear forces. The 
Yukawa theory has the following postulates:
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 1. Mesons can be neutral (p °) or carry some negative or positive charge.
 2. Meson clouds are supposed to be the reason behind different nature of neutron and proton. 

All nucleons are supposed to consist of identical core, which is surrounded by a pulsating 
cloud of p-mesons. The meson cloud is shown in Figure 6.5.

 3. The protons and neutrons keep on exchanging mesons, which results in attractive force between 
them. π° are responsible for attraction between proton–proton and neutron–neutron.
e.g.

n p® +
-

p

n p+ →
+

p

p n®
++p

p n+ ®
-

p

n n+ → ′p°

p p+ → ′p°

 When proton or neutron absorbs π°, they are converted to different state and soon they come 
back to their original state.

 4. It is postulated that the nucleons absorb and emit pions all the time. But at the same time, 
the question arises why all the protons and neutrons are found with same masses. Here the 
Heisenberg uncertainty principle comes into action. According to Heisenberg uncertainty 
 principle, two simultaneous quantities cannot be measured accurately. Hence, if a nucleon emits 
meson with no mass, then the law of conservation of mass and energy is violated, although the 
violation is temporary. In other words, the nucleon should absorb some other pion quickly, so 
that the mass change is difficult to detect.

 5. If the meson is supposed to travel with velocity of light, then the distance traveled by it in time 
is known as range of pion exchange force.

According to uncertainty principle,

∆ ∆ ≈
∆

∆









E t

E

t
 �

isuncertainty in energy

isuncertainty in time

 

∆ =
∆
= [ ]t E m c

m�
�

p

p2
ismassof meson  (30)

Neutron

Core

Proton

Meson cloud

Figure 6.5 Pulsating meson cloud around nucleons.
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Hence, Range = R = cDt = 
�

m c
c

p

is velocity of meson[ ]  (31)

The range of Yukawa force is obtained to be almost 2 × 10−15 m.
From Eqn. (31),

 m
π
 = 200 m

e
   [m

e
 is mass of electron] (32)

During the discovery of meson, scientists had to face some problems. The meson is not a very stable 
particle. The average life time of charge meson is about 10−8 s and for neutral meson is 10−16 s. This 
very small life time of neutral meson made the detection of meson difficult. Moreover, emission of 
meson requires large amount of energy.

Note: Nuclear potential is given by V
g e

r

r

=

-

-2 m

where  m p
=

m c

�
 (33)

and g is the strength of source.

Coulomb potential =

-1

4peo

Ze

r
 (34)

From Eqn. (33) and (34), it is clear that the nuclear potential decreases very rapidly compared with 
Coulomb’s potential. The exponential factor e−mr in Eqn. (33) causes the rapid decrease in potential. When  

r =
1

m
, then the potential varies in similar fashion as that of Coulomb’s potential.

The meson theory had certain drawbacks like lack of explanation for spin dependence and 
exchange nature of force, etc. Then it was modified by taking isospin and tensoral character of wave 
functions into consideration. The coupling constant between the nucleons was also considered.

Yukawa Hideki was born on January 23, 1907, in 
Tokyo, Japan. He received Nobel Prize for Physics 
for research on the theory of elementary particles 
in 1949. Yukawa graduated from kyoto Imperial 
University in 1929 and joined lectureship there. In 
1933, he moved to osaka Imperial University and 
got his doctorate in 1938. from 1939 to 1950, he 
worked as professor of theoretical physics in kyoto 
Imperial University, at the Institute for Advanced 
Study in Princeton, and at Columbia University. 
While he was working as a lecturer at osaka 
Imperial University, he predicted the existence 
of mesons, which have masses between those of 
the electron and the proton. His hypothesis was 
 supported by American physicists in 1937 and 
his theory became very famous as meson theory. 
After the  development of meson theory, he worked on comprehensive theory of elementary 
particles. Then he was the director of the Research Institute for fundamental Physics in kyoto 
from 1953 to 1970. He died on September 8, 1981.

YUKAWA HIDEKI
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6.8 Nuclear Models

Till now, we have studied the nucleus and its properties. The exchange forces and nuclear forces 
have been discussed, but still some questions remain unanswered, for example, how the protons and 
neutrons are arranged inside the nucleus, what is the reason behind the constant binding energy for 
atomic mass greater than 40, why some nucleus such as 2, 8, 20, 28, 50, and 82 exhibit higher  stability 
than other nuclei. Later on, it was found that during the radio activity studies, the nuclei  emitted a, 
b, and g  radiations. Hence, it was also of prime concern why some nuclei emit a, b, and g radiations 
despite the fact that these particles are not present inside the nucleus. To answer these questions, many 
models were proposed that could explain the reason behind these questions. The following section 
describes these models. Every model has some assumptions. No model can explain all the properties 
and has some drawbacks. Models compare the theoretical observations with experimental observa-
tions. A nuclear model is said to be successful if it can predict these properties that are experimentally 
measurable. With the help of nuclear models, the nuclear interaction involving strong interactions 
can be studied. In addition, the scattering of nucleons could be studied, which gives rise to collective 
potential. The two most common models are shell model and liquid drop model.

The shell model assumes independent motion of nucleons whereas the liquid drop model consid-
ers the dependent motion of nucleons, that is, the nucleons possess strong interaction and coupling 
among themselves.

6.8.1 Liquid Drop Model
The binding energy is defined as the energy that holds nucleons together. The binding energy of 
 nucleons is proportional to the number of nucleons. This condition has been interpreted analogous 
to molecules in liquid drop, that is, the molecules are considered to be nucleons and liquid drop is 
nucleus. The volume of drop is proportional to the number of molecules present in it in the same way 

the volume of nucleus is dependent on number of nucleons Volume of nucleus o= ( )é
ëê

ù
ûú

4

3

1 3 3
p R A / .

The molecule in liquid is free to move keeping a fixed intermolecular distance. The analogy of nucleons 
with solid is not possible because the vibrations of nucleons around the mean position become too large 
that the nucleus cannot be regarded stable. But if we consider the nucleus to be analogous to liquid drop, 
then no such problem is posed because the density of liquid drop is constant and independent of size and 
shape of liquid drop. This condition exactly represents the nucleus. Nuclear density is also independent of 
size and shape of nucleus. The following are certain assumptions in liquid drop model:

 (i) The nucleus behaves like an incompressible liquid drop of high density.
 (ii) The density of nucleus does not depend on size and shape of nucleus just similar to liquid 

 density, which is independent of size and shape of liquid drop.
 (iii) Liquid drop exhibits surface tension force. This surface tension force is analogous to the 

nuclear force between nucleons. The liquid drop is spherical due to property of surface tension. 
In  equilibrium state, the shape of nuclei is spherically symmetric due to nuclear forces.

 (iv) Nucleus splits into nucleons when sufficient amount of energy is supplied. This situation is 
similar to the evaporation of liquid drop.

 (v) The molecules inside liquid move within a spherical enclosure. Similarly, the nucleons move 
within nuclear potential, which is a also spherical.
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 (vi) Liquid drops condense when small drops coalesce together. Similarly, when a nucleus absorbs 
any bombarding particle, it forms compound nucleus.

 (vii) The molecules inside liquid drop exhibit thermal vibrations. Similarly, the nuclei do possess 
internal energy.

All these points could be understood with the help of semiempirical formula (Weizsacker formula) as 
demonstrated below.

If r is the number of protons and N is number of neutrons, then the mass of nucleus is given by

 M Zm Nm E /c 2
NUC p n= + -   [Z = no of electrons/protons] (35)

Where M
NUC

 = mass of nucleus, m
p
 → mass of proton, m

n
 = mass of neutron, and E = binding energy 

of nucleons. The binding energy in Eqn. (35) is not one single term. Rather, it is a combination of  different 
terms. In general, five types of binding energies contribute to the net binding energy, which are given by

 
E E E E E E= + + + +

V S C a p  (36)

The significance and contribution of these individual terms is as follows:

 (i) Volume effect: There is a finite number of nucleons with which a single nucleon can bond. 
In other words, there is only a certain number of neighbors for a nucleon. As stated earlier, the 
volume of nucleus is given by

 
Volume  - atomic masso= = ( ) [ ]

4

3

4

3

3 1 3 3
p pR R A A/

 Volume o=

4

3

3
pR A

 Volume ∝ A (37)
  Hence, the volume energy term (E

v 
) varies directly as A

E Av ∝

 E a Av v=  (38)

 a av v> 0 Usually  14 1 15 29 MeV≈ −[ ]. .

  The term E
v
 is also known as exchange energy term.

 (ii) Surface effect: Nucleon is considered to be spherical in shape. From Figure 6.6 , it is clear that 
the nucleons are surrounded by equal number of nucleons. It is clear that the nucleons that 
lie in the interior of nucleus are surrounded by nucleons from all sides; but when it comes 
to surface nucleons, they do not have same number of nucleons from all sides. The interior 
nucleons experience higher attractive force from all sides. By contrast, the surface nucleons 
experience less force. This can also be interpreted in terms of binding energy, i.e. surface 
nucleons have less binding energy as compared with interior nucleons. Hence, the total 
binding energy is overestimated, which needs to be corrected.

  The surface area is of nucleus given by

 Surface area = 4πR2, where R is radius of nuclei
 Surface area = 4π(R

o
A1/3)2 = 4πR

o
2A2/3

 Surface area ∝ A2/3 (39)
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  This is extra contribution, hence it should be deducted from total energy. Therefore, surface 
energy term (E

s 
) is given by

 E As
2/3

∝  (40)

E a As s = -

2 3/

 [Usually a
s
 ≈ 13 − 15.76 MeV]

  For light nuclei, this surface energy term is more significant due to large number of nucleons on 
the surface. The spherical symmetry has least surface energy, therefore it is the preferred  symmetry. 
Therefore, the natural tendency of the system like nucleus is to attain the spherical symmetry.

 (iii) Coulomb effect: Nuclei is having protons, and these protons are positively charged. Hence, 
there is interprotonic Coulomb repulsive forces. These repulsive forces tend to decrease the 
binding energy of nucleus. Suppose W is work done to pack Z protons together from infinity 
into the segregated state, that is, from free state to a bound state. This work done is stored as the 
Coulomb energy of nucleus. This work is done against the repulsive forces to keep the nucleons 
together. The charge density for charge distribution of Ze is given by

 

r

p p

= =

Ze

R

Ze

R A
4

3

4

3
3 3

o

 (41)

  Consider a shell of radius r with charge dq and thickness dr (Figure 6.7).
  Then

 

Volume
charge

density
=

 Charge = volume × density

dq r dr= ´4 2
p density

 

dq
Ze

R A
r dr=

( )
×

4
3

4
3

2

p

p

o

 (42)

 

dq
Ze

R A
r dr=

3
3

2

o

Nucleons

Surface nucleons

Figure 6.6 Interior nucleons experience force from all direction.
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  The work done in bringing charge dq from infinity to radius is

dW = V dq [V is the potential due to charge dq]

 dW
r

dq=






charge

o4pe

 

dW
r

dq=
×





volume density

o4pe
 

[from Eqn. (42)]
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×
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 (43)

 

dW
Z e r dr

R A
=

3

4

2 2 4

6 2
peo o

 (44)

  Upon integrating from o to radius R,

dW
Z e

R A
= −

3

5 4

2 2

1 3
peo o

/

  
Ec c = dW a

Z

A
= -

2

1 3/
 (45)

 [Usually ac = 0.69 MeV]
 (iv) Asymmetry term: The stable nuclei have Z N

A
= =

2
, that is, equal number of protons and 

neutrons. Usually neutrons and protons pair up. With the increase in atomic mass, the repul-
sive forces increase much faster than the attractive nuclear force. As A increases the neutrons 
increase more than the protons to maintain stability. Therefore, the heavier nuclei possess more 
number of neutrons (N > Z). Such nuclei are asymmetric Hence,

 excess number of Neutrons is (N − Z ) (46a)
 A = (N + Z )
 N = (A − Z ) (46b)

  Using Eqn. (46b) in (46a),
 excess neutrons = A − 2Z (47)

r

dq

r+dr

Figure 6.7 Spherical shell carrying charge dq.
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  The asymmetry energy term is

 
E a

A Z

A
a a= -

-( )2
2

 (48)

  Due to excess number of neutrons, the asymmetry energy term should be deducted,

(a
a
 ≈ 19 MeV)

 (v) Pairing term: In nuclei, pairing may take place between neutron–neutron, proton–proton, and 
neutron—proton. The pairing term is due to the proton–proton and neutron–neutron pairing. 
Experimentally, it is proved that even–even nuclei are more stable than odd–odd nuclei. The 
“odd–even” and “even–odd” nuclei possess intermediate stability. Hence, the nuclei with even A 
are more stable than the nuclei with odd A. Hence, the nuclei with A = 2, 8, 12, 16, 20, 48, etc., 
are more stable. Odd–odd nuclei may have unpaired neutron or unpaired proton. Such nuclei 
have low binding energy. The pairing energy is taken to be

 1. zero for “odd–even” and “even–odd” nuclei
 2. positive for “even–even” nuclei
 3. negative for “odd–odd” nuclei

The pairing energy is given by

 
E a Ap p=

-3 4/  (49)

[a
p
 ≈ 35 MeV]

The total energy is the sum of all these terms:

 
E E + E + E + E + E= v s c a p

 
E a A a A a

Z

A

a A Z

A

a

A
= - - -

-( )
±( )v s c

a p2 3
2

1 3

2

3 4

2
0/

/ /
,  (50)

Equation (50) is known as the semiempirical mass formula. Constants are predicted by fitting the 
known masses. The masses and binding energies of many stable nuclei have been predicted by this relation.

6.8.2 Explanation of Nuclear Fission
The nuclear fission could be explained on the basis of liquid drop model. The following steps explain 
the sequential fission process:

STEP 1:

 Nucleusn
 Þ  High-energy neutron collides with nucleus.
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STEP 2:

 
High
energy
nucleus

 Þ   The binding energy of nucleus increases, and 
compound nucleus is formed.

STEP 3:

 

Ellipsoidal
shape

 Þ   The increased energy distorts the spherical shape 
and the nucleus may attain ellipsoidal shape.

STEP 4:

 

(Dumb-bell
shape)

 Þ   There is competition between surface tension and 
excitation energy of compound nucleus. The 
excitation energy tends to distort the spherical 
symmetry of nucleus, but the surface tension 
tends to bring back the original spherical shape 
of nucleus.

STEP 5:

 

Critical stage

 Þ   The critical stage is reached only when the surface 
tension force fails to bring back the nucleus in 
spherical shape, that is, the magnitude of excitation 
energy increases more than the surface tension.

STEP 6:

 

Neutrons

Nucleus I Nucleus II

 Þ   After the magnitude of oscillations increases, 
the fission of nuclei occurs resulting in break-
down of parent nuclei into daughter nuclei 
along with emission of three neutrons.

Production of critical stage requires some critical or threshold energy so that the nuclei cannot regain 
its original spherical shape. Bohr and Wheeler gave a detailed explanation on nuclear fission with the 
help of Legendre polynomial expansion:

 

r R
l l

l

= + ( )
é

ë
ê

ù

û
ú

¥

å1 a qP cos
=0

 (51)

where R → radius of spherical nucleus, r is the deformation radius, a
l
 is defomation parameter, and 

P
l 
(cos q) is Legendre’s polynomial.
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The center of mass of drop is assumed to be the same, hence the deformative parameter a
o
 = a = 0.

 
r R= + ( ) +éë ùû1

2
a qP2 cos �  (52)

Surface energy is given by 

Surface energy (SE) = surface tension (T) × area of spherical drop (R)

 SE = E
s
 = T × 4πR2 (53)

The deformation radius (Figure 6.8 ) of nucleus with radius R is r.

E T rs 4= ´ p
2

 
E T Rs 4= ´ + ( ) +éë ùûp a q

2 2

1
2 2
P cos �  (54)

Solving Legendre’s polynomial [R = R
o
A1/3],

E R A T R A Ts o
2/3

o
2/3= + +
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ûú
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D = +
é

ëê
ù

ûú
E Es s

sphere 2

5
2

2
a �

where spheres s sD = - ( )E E E

Similarly, the Coulomb energy for spherical drop is given by

 

E
Z e

R
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5 4
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(56)

For deformed nuclei, R → r
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 (57)

r

o

o

R

Figure 6.8 Change of radius from R to r upon deformation.
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Solving Eqn. (57),

E E Ec c csphere sphere= ( ) - ( ) +é
ëê

ù
ûú

1

5
2

2
a �

 
DE Ec c sphere= - ( ) +é
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ù
ûú

1
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2

2
a �

 
(58)

DE E Ec c c sphere= - ( )éë ùû

The total energy is given by

D D DE E E= s c+

 
DE E E= sphere spheres c

1

5
22

2
a ( ) - ( )éë ùû  (59)

Equation (59) gives rise to the following two conditions:

(i) DE < 0, then for this case

E
c
 (sphere) > 2E

s
 (sphere)

Hence, Coulomb energy is greater than the surface energy. This condition is required for nuclear fission.

3

5 4
2 4

2 2
2Z e
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pe
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2

45>  (60)

Equation (60) is the condition for nuclear fission. The critical parameter is given by

 

x =
E

E
c

s

(sphere)

sphere2 ( )
 (61)

x  < 1 represents stable nucleus and x  > 1 represents that the nucleus that can undergo fission.

The threshold energy is given by

E R Tfcritical = 4 2p x( )

 E A fcritical  MeV= 17 8 2 3. ( )/ x  (62)

x  ≈ 1 represents small deformation in the nuclei. Figure 6.9  represents how the uranium nuclei 
undergo fission process. For U235, the threshold critical energy is 5.5 MeV and the excitation energy 
is 6.6 MeV. Therefore, fission occurs easily. The pairing term in semi-empirical mass formula con-
tributes to the difference in excitation energy of U235 and U239. A general graphical representation 
indicating nuclear stability is indicated in Figure 6.10. The table nuclei have equal no of protons and 
neutrons.
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6.8.3 Merits and Demerits of Liquid Drop Model

(i) Merits: The atomic masses and binding energy can be predicted accurately. This model could 
give an idea about collective model and Bohr’s theory of compound nucleus. α and β emission 
properties could also be predicted.

(ii) Demerits: This model could not describe the actual excited states. The calculation of excited 
state requires the deformation of spherical shape to oscillating sphere. The model describes Z/A 
ratio, but many other points could not be explained. The most important point is the quantum 
character of nucleon and classical character of molecules of liquid. This could be explained as fol-
lows: The molecules in liquid posses KE of 0.1 eV, which correspond to de-Broglie wavelength, 
of, 5 × 10−11 m. Indeed, this is very small than the intermolecular distance. The KE of nucleons 
is 10 MeV and de-Broglie wavelength l = 6 × 10−15 m. This l = 6 × 10−15 m is of the order of 
internucleon distance. Hence, they are in contrast to each other.

No fission

Requires 6.8 MeV energy
to undergo fission

This stage acquire 5.9
MeV energy that is still
below critical energy

+

Neutron of K .E. zero

U238

U238

Figure 6.9 Fission process for U238.

No. of 

neutron

(N)

No. of 

Protons (Z)

20

N = Z

N > Z

Figure 6.10 Graph indicating nuclear stability.

(ii) DE >0: For this condition 2E
s
 (sphere) > E

c
 (sphere) which indicates stable nuclei and hence no fission.
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6.9 Shell Model

Shell model explained the “magic numbers.” It is one of the successful models. Liquid drop model 
could not explain the existence of magic numbers. Moreover, liquid drop model provided no evidence 
of quantum-controlled nuclear shells. Furthermore, it was not clear whether the quantum numbers 
such as n, l, s, and j could be applied to nucleons.

The most striking features of shell model is the explanation of magic nuclei. Certain nuclei 
exhibit more stable characteristics compared with others. These nuclei have either N or Z equal 
to (2, 8, 20, 28, 50, 82, 126). Liquid drop model could not explain the behavior of these nuclei. 
In addition, the shell model also explained the inequivalence of protons and neutrons, although 
liquid drop mode treats them to be equivalent. Many properties such as spin, magnetic moment, 
and energy levels could be explained using shell model. Shell model assumes nucleon as a particle 
moving in potential well. The potential well is produced by all nucleons. Every nucleon inside the 
nucleus observes almost same rotation. Hence, the nucleons are considered to move independent of 
each other in the potential well created by them. Before we discuss the shell model, the closed shell 
structure of nuclei should be discussed. As electrons fill the atom in a systematic pattern, similarly, 
we expect the filling of nuclear shells systematically. The protons and neutrons also fill the shells 
according to Pauli exclusion principle. Let us see how potential varies for nuclei and why the need 
of spin orbit coupling is required:

 (i) Potential: Let us consider the average potential to be “square-well” potential. The coulombic 
repulsion between the nucleons must be ignored so that the nucleons observe equal potential. 
Second assumption assumes each energy state to occupy maximum four nucleons. Two nucleons 
are protons with opposite spins and other two are neutrons (with opposite spins). The shell 
potential has been approximated as Woods–Saxon potential.
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where V
o
 = 1 MeV, x = 0.65 × 10−15 m, and R = 1.25 A1/3

As the distance increases the nuclear force diminishes but the coulombic potential comes into 
action. For calculating the nuclear orbits time-dependent Schrödinger equation is solved for a 
particle in potential well, as given below:

 
∇ + −[ ] =

2

2

2
0j j

m
E V r

�
( )  (64)

When Eqn. (64) was solved, it was observed that the nucleons are characterized by n, l, and m
l
 but 

the sequence of magic numbers obtained was not the same. Hence, further correction on Eqn. (64) 
was applied by M.G. Mayer and J.H.D. Jensen. They applied spin–orbit interaction as an important 
factor to analyze the sequence of magic numbers.
 (ii) Spin–orbit coupling: Atom has interaction among the orbital and spin angular momentum 

of nucleons. Spin–orbit interaction is proportional to L
��

. S
�

, where L
��

 is total angular momen-
tum and S

�

 is the total spin angular momentum. The total angular momentum is the sum of 
orbital angular momentum and spin angular momentum.

J L S
�� �� �

= +
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Spin–orbit interaction is almost 20 times more stronger than the individual spin or orbital interac-
tion. This interaction is also inverted in nature, which means positive L

��

. S
�

 corresponds to decrease 
in energy (Figure 6.11).
The vector J can combine with spin in two possible ways, that is,

 J L S
�� �� �

= ±  (65)
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Figure 6.11 LS coupling (left side without coupling and right side with coupling).
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Two sublevels are formed corresponding to s = ± 1
2

 
j l j l= + = -1

2
1

2,   (66)

(2j+l ) nucleons could be accommodated in every sublevel (Figure 6.12 ). Higher value of l represents 
higher splitting of levels. The coupling can result in the following two cases:

 (i) When l and s are parallel, the angular momentum is j = l + s = l + ½. The levels with higher value 
of j represent lightly bound nucleons. These nucleons lies in lower level, that is, higher j values 
means lower levels are occupied first. This case is also known as stretch case.

 (ii) When l and s are antiparallel, the angular momentum is j = l − s = l − ½. These levels have lower 
j value. This case is known as Jack-knife case.

Haxel, Mayer, and Jensen concluded that “ Nucleons are subjected to strong spin–orbit interac-
tions. These strong interactions couple their own spin and orbital angular momentum, which is also 

known as JJ coupling. Parallel L
��

 and S
�

 decrease the energy and vice versa. Hence, parallel L
��

 and S
�

 
represent lower energy state, which is more stable. A gap between the levels is proportional to l-value. 
The splitting between degenerate levels is wider and wider with increasing l-value.

Magnetic field is also associated with moving nucleon, which give rise to interaction 
energy W Bs= -m

��

.

We know that

 < >l s
� �

.  = 
j j l l s s( ) ( ) ( )+ - + - +1 1 1

2
 (67)

Mayer and Jensen also suggested spin–orbit interaction must be added to the centrally symmetric 
potential in order to obtain magic numbers. The energy shift can be written as

 
∆ = +( ) = − ( ) ( )∫E j l l r f r dr1

2
1

2
2

jnl  (68a)

 
∆ = −( ) = +( ) ( ) ( )∫E j l l r f r dr1

2
1

2 1 2
jnl  (68b)

where f(r) is a potential function.

Parallel case
stretch case, j = l + 1/2

Antiparallel case
jack-knife case, j = l − s

l l

s

s

(a) (b)

Figure 6.12  Spin and angular momentum can interact in two ways: (a) stretch case and (b) 
Jack-knife case.
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6.10 Discussion on Magic Numbers/Success of Shell Model

Shell model gives a clear-cut explanation for the existence of energy shells inside the nucleus and 
magic numbers. The following points explain the existence of magic numbers:

 (i) The nuclides with magic numbers are more abundant in nature and possess high stability. 
For example, relative abundance of barium, strontium, and lead is more than other elements.

 (ii) The nuclides with the neutron number equal to one of the magic number have most stable 
isotones. For example, when N = 50, the number of isotones is 6, whereas for N = 49 and 
51, the number of is atomes is 1. Similarly, the magic number nuclei also have more stable 
isotopes. If either number of proton or neutron is equal to magic number, then the nuclei is 
doubly magic nuclei if both proton and neutron numbers are magic numbers, for example, 

2
4He , 8

16O , 82
208Pb . The magic number nuclei with number of protons equal to 50 have 

10 isotopes; whereas for Z = 49 or 51, the number of isotopes is 2. The binding energy of 
magic number nuclei is high, as can be seen from Figure 6.13. Obviously, this is due to 
increased stability of magic number nuclei.

 (iii) A neutron can be captured by a nucleus to form a compound nucleus. The factor that decides 
the capturing tendency of nuclei is effective cross-sectional area. The magic nuclei have very 
low effective cross-sectional area, which indicates no vacancy for additional neutrons as the 
shells are closed due to stability of nuclei; for example, the magic nuclei with Z = 50 have cross-
sectional area of 0.64 mb (millibarn), whereas Z = 49 and 51 have cross-sectional area of 19 and 
6.4 mb, respectively.

 (iv) Krypton 51
87 Kr( )  and Xenon 54

137 Xe( )  contain one extra nucleon above the magic number. This 
extra nucleon is emitted spontaneously as it possesses very small binding energy. This goes in 
accordance with the shell model.

 (v) Whenever a nucleus emits a or b particle, the mass number changes. It has been observed 
experimentally that whenever the parent nuclei emits a or b particle, such that the daughter 
nuclei is a magic number, the energy of a and b particles is quite large, for example, polonium, 

84
212Po , has 128 neutrons. When it emits a -particles it has N = 126, which is a magic number. 

These a-particles are very energetic.

4020

He

A

c
o

Binding
energy/A

60 80 100 120

Figure 6.13 Binding energy variation versus the atomic mass.
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6.11 Failure of Shell Model

 1. The value of total angular momentum for some nuclides could not be obtained, for example, 
sodium, manganese, selenium, etc.

 2. 1
2H , 13

6Li , 5
10B , 7

14N , etc., are very stable nuclei. But these are odd–odd nuclei. The shell 
model could not explain the reason behind it.

SUMMARY

This chapter deals with the study of nucleus and its properties. The nuclear density and atomic den-
sity have been obtained for the atom. Nuclear forces have been described as the strongest forces within 
the nucleons that are short range, charge independent, spin dependent, noncentral, and saturated 
in nature. The tensor forces are responsible for distorting the nucleus from its spherical shape. s1

���

 
and s 2

� ��

 are spin orientation represented in the form of spin matrices. It is also shown that due to 
quadrupole moment, the symmetry of nucleus gets changed to oblate ellipsoid or prolate ellipsoid. 
Furthermore, exchange forces are explained for the nucleus under the effect of which the nucleons 
exchange particles known as meson particles (p +  and p − ). There are four types of exchange forces: 
Wigner, Barlett, Majorana, and Heisenberg. The Yukawa theory of nuclear forces has been explained, 
which demonstrates the stability of nuclei despite the fact that charged particles do exhibit elec-
trostatic repulsion. This chapter dealt with two important models to interpret the nuclear behav-
ior; liquid drop model considered the nuclei as an incompressible liquid drop of high density. The 
biding energy is given as the sum of five individual binding energies yielding semiempirical formula. 
This model could explain the nuclear fission but failed to explain the quantum character of nucleon. 
Hence, shell model was proposed, which could explain the existence of magic numbers and the issues 
that could not be addressed by liquid drop model.

SOLVED PROBLEMS

Q. 1: Calculate the nuclear and atomic density (given R fo =1 2. ).

Ans: Nuclear density
Mass

Volume
= =

M

R
4

3
3

p

r

p p

=

( )
=

M

R A

M

R A
4

3

4

3
1

3

3 3
o o

 

Nuclear mass massof nucleon

number of nucleons

= ´é

ë
ê

ù

û
ú

r

p

=

× ×

= ×

−

−
1 67 10

4

3

1 2 10
27

3

15.
[ . ]

A

R A
R

o

o m

r = ×2 29 1017. kg/m3
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For atomic density, we have to consider the point that atomic radius is four orders higher than 
nuclear radius. Therefore,

Atomic density =
´

( )

2 29 10

10

17

4 3

.

Atomic density kg/m3
= ´2 29 105.

Q. 2: Obtain the energy of 1 a.m.u. in MeV.

Ans: Velocity of light m/sc = ´3 108

Massof proton kg= ´
-1 67 10 27.

According to Einstein’s relation,

E mc=

2

E = ´ ´ ´( )-1 67 10 3 1027 8 2
.  J

E =
´ ´ ´( )

´

-

-

1 67 10 3 10

1 6 10

27 8 2

13

.

.
MeV

E = 931 MeV.

Q. 3: What would be the energy equivalent of 1 g in 1 kWh?

Ans: 1 36 105kWh J= ´

Also, 
E mc m

c

= =

= ´

-2 3

8

10

3 10

[ kg

m/s]

E = ´ ´
-10 9 103 16

E = ´9 1013 J

Energy equivalence of g

kWh

1

9 10

36 10
2 5 10

13

5

7
=

´

´

= ´.
.

Q. 4: What would be the radii for N 14  nucleus, if Ro fm=1 2. ?

Ans: R R A A R= = =o o fm
1

3 14 1 2[ , . ]

R = ´ ( )1 2 14
1

3.

R = ´ =1 2 2 41 2 89. . . fm

Q. 5: Obtain the radius for Pb206  nucleus for Ro fm=1 2. .

Ans: R R A A R= = =o o fm
1

3 206 1 2[ , . ]

R = ´ ( )1 2 206
1

3.

R = 7 08. fm
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Q. 6:  A nucleus with A = 235 splits into two fragments with mass numbers in ratio 2:1. Find the radii 

of new nuclei and distance between the nucleons.

Ans: A = 235
Hence, A1  and A2  are the new mass numbers such that

A1 235
1

3
= ´

and fm]oA R2 235
2

3
1 2= × =[ .

R R A R1 1

1
3

1
3235

3
= =

é

ëê
ù

ûú
o o

R1 5 13= . fm

Similarly R R A R2 2

1
3

1
3

235
2

3
= = ´

é

ëê
ù

ûú
o o

R2 1 2 5 39= ´. .

R2 6 46= . fm

Hence, the radii of the nuclei are 5.13 and 6.46 fm. The separation distance between the nuclei 
is given by

R R R= +1 2

R = +5 13 6 46. .

R =11 59. fm

Q. 7: Obtain the binding energy for 26
56Fe . Also, calculate binding energy/nucleon.

Ans: Given mp =1 007825. a.m.u.

mn =1 008665. a.m.u.

Massof Fe nuclei = a.m.u.55 934939.

Binding energy of nuclei p n nucleus= + − Zm Nm M c 2

Here Z A= =26 56,

N A Z= - = 30

Binding energy of nuclei = ´ + ´( ) -26 1 007825 30 1 008665 55 934939. . .ééë ùû ´931 MeV

Binding energy of nuclei MeV= 492 2.

Hence, binding energy MeV= 492 2.

Binding energy per nucleon
Binding energy

Number of nucleons
=

= »

492 2

56
8 8

.
. MeV
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Q. 8: Obtain the binding energy of a nucleon for a -nucleus.

Ans:
Binding energy p n= + -éë ùûZm Nm M c 2

a nucleus He, 2
4

A Z N A Z= = = - =4 2 2, and

Binding energy p n= + -éë ùû2 2 2m m M c

The Mass M of 2
4He  is 4.00 2603 a.m.u.

m mp n= =1 007825 1 008665. .

Binding energy = ( ) + ( ) -éë ùû2 1 007825 2 1 008665 4 002603 2. . . c

Binding energy MeV= ( )´0 030377 931.

Binding energy MeV= 28 3.

New binding energy/nucleon
Binding energy

Number of nucleons
=

Binding energy
MeV

A
= =

28 3

4
7 075

.
.

Q. 9: Obtain the rest mass energy of an electron.

Ans: E m c= o
2

For electron, mo kg= ´
-9 1 10 31.

c = ´3 108 m/s
E m c= o

2

E = ´ ´ ´( )-9 1 10 3 1031 8 2
. J

E =
´ ´ ´

´

-

-

9 1 10 9 10

1 6 10

31 16

13

.

.
MeV

E = 0 511. MeV

Q. 10: Obtain the binding energy and packing fraction for deuteron nucleus.

Given: Mass of deutron a.m.u.= 2 013553.

Mass of proton a.m.u.=1 007825.

Mass of neutron a.m.u.=1 008665.

Ans: Mass defect p n= + -éë ùû =Z m Nm M mD

For deuteron, 1
2H , A = 2 , Z =1, and N =1

Dm = + -( )1 007825 1 008665 2 013553. . . a.m.u.

D =m 0 002937. a.m.u.
Binding energy = Mass defect 931 MeV×



272  • CHAPTER 6/NUCLEAR PHYSICS—I

= ´0 002937 931. MeV

= 2 73. MeV

Packing fraction
Mass defect

Number of nucleons
= =

=

0 002937

2

0 001

.

. 44685 a.m.u.

Q. 11: What is the packing fraction for 28
64Ni  with mass 63.928 a.m.u.?

Ans: Mass defect is given by

Dm Z m N m M= + -éë ùûp n a.m.u.

For 28
64 64 28 36Ni and, , ,A Z N= = =

Given a.m.u.pm =1 007825.

mn a.m.u.=1 008665.

M = 63 928. a.m.u.

Dm = ( ) + ( ) -éë ùû28 1 007825 36 1 008665 63 928. . .

Dm = + -[ ]28 2191 36 31194 63 928. . . a.m.u.

Dm = 0 60304. a.m.u.

Packing fraction =
Massdefect

Number of nucleons
=

0.60304a.m.u.

64

Packing fraction = 0.0094225 a.m.u.

Q. 12: For Neon, 10
20Ne , the binding energy is given by 160 64. MeV . Obtain the atomic mass  

for 10
20Ne

Ans:
Given a.m.u.pm =1 007825.

mn a.m.u.=1 008665.

Binding energy MeV=160 64.

Binding energy
MeV

a.m.u.
p n= + -éë ùû ´Z m N m M 931

Z A N= = =10 20 10, ,

160 64 10 1 007825 10 1 008665 931. . .MeV
MeV

a.m.u.
= ( ) + ( ) -éë ùû ´M

160 64

931
10 07825 10 08665

1.
. .= + −[ ]M

a.m.u.

0 1726 20 165
1

. .= -[ ]M
a.m.u.

0 1726 20 165. .= -M
M =19 9924. a.m.u.
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OBJECTIVE QUESTIONS

 1. Size of nucleus and atom is, respectively,

 (a) 10 1014 12- -, m  (b) 10 1012 14- -, m

 (c) 10 1010 8- -, m  (d) 10 108 10- -, m

 2. The atomic density is approximately

 (a) 2 29 1017. ´ kg/m3  (b) 2 29 1015. ´ kg/m3

 (c) 2 29 105. ´ kg/m3  (d) 2 29 1010. ´ kg/m3

 3. The free neutron

 (a) decays through weak interaction (b) has life-time of 12 minutes.

 (c) is unstable (d) all of the above

 4. 1 a.m.u. equals

 (a) 0.511 MeV (b) 931 MeV

 (c) 511 MeV (d) 0.931 MeV

 5. Nuclear forces are  times stronger than the gravitational force.

 (a) 1036  (b) 1014

 (c) 1038  (d) 10

 6. The maximum force of attraction between nucleus exists at a distance of .

 (a) 1 5 10 15. ´ - m  (b) 1 5 10 10. ´ - m

 (c) 1 10 10
´

- m  (d) 1 5 10 20. ´ - m

 7. The noncentral character of nucleus is due to

 (a) electrostatic force (b) weak interaction

 (c) tensor component (d) all of the above

 8. The tensor forces are

 (a) dependent on r (b) independent of r
 (c) independent of spin (d) none of the above

 9. For quadrupole moment, when b a> , is

 (a) circular (b) flattened oblate ellipsoid
 (c) spherical (d) elongated prolate ellipsoid

 10. For quadrupole moment, when a > b, is

 (a) spherical (b) flattened oblate ellipsoid
 (c) circular (d) elongated prolate ellipsoid
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 11. The quadrupole moment is given by

 (a) 
2

3

2 2Z b a-( )  (b) 
2

5

2 2Z b a-( )

 (c) 
3

2

2 2Z b a-( )  (d) 2 2 2Z b a-( )

 12. For Barlett forces acting on nuclei

 (a) position coordinates are exchanged
 (b) position and spin coordinates are exchanged
 (c) neither spin nor position coordinates are exchanged
 (d) spin coordinates are exchanged

 13. For Majorana forces acting on nuclei

 (a) position coordinates are exchanged
 (b) position and spin coordinates are exchanged
 (c) neither spin nor position coordinates are exchanged
 (d) spin coordinates are exchanged

 14. For Heisenberg forces acting on nuclei

 (a) position coordinates are exchanged
 (b) position and spin coordinates are exchanged
 (c) neither spin nor position coordinates are exchanged
 (d) spin coordinates are exchanged

 15. The range of Yukawa force is

 (a) 1Α
°

 (b) 1 nm
 (c) 1 fm  (d) 1 pm

 16. Meson theory could not explain

 (a) spin dependence (b) exchange character of forces
 (c) none of these (d) both (a) and (b)

 17. According to liquid drop model

 (a) nuclei is incompressible liquid drop of high density
 (b) liquid drop have surface tension force
 (c) the molecules inside liquid drop Posen thermal vibrations
 (d) all of the above

 18. The value of av  is volume energy term is

 (a) ≈10 MeV  (b) 14 15- MeV

 (c) ≈ 30 MeV  (d) < 5 MeV
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 19. In Coulomb energy, ac
 is equal to

 (a) 1 MeV (b) 2 MeV
 (c) 0.69 MeV (d) 10 MeV

 20. The condition required for nuclear fission is

 (a) 
Z

A

2

45>  (b) 
A

Z 2
45>

 (c) 
Z

A
³ 30  (d) 

Z

A
> 45

 21. The magic numbers are

 (a) 2, 8, 20, 28, 50 (b) 121, 119, 117
 (c) 1, 3, 5, 7 (d) none of the above

 22. Shell model could explain

 (a) magnetic moment (b) spin
 (c) energy (d) all of the above

 23. For stretch case in LS coupling

 (a) j l s= -  (b) j l s= +

 (c) j l s= ±  (d) j = 0

 24. For Jack-knife case in LS coupling

 (a) j l s= +  (b) j l s= ±

 (c) j l s= −  (d) j l> / 2

 25. Shell model could not explain

 (a) total spin (b) total energy
 (c) magic numbers (d) total angular momentum

ANSWERS

1. (a)
2. (c)
3. (d)
4. (b)
5. (c)
6. (a)
7. (c)

 8. (a)
 9. (d)
10. (b)
11. (b)
12. (d)
13. (a)
14. (b)

15. (c)
16. (d)
17. (d)
18. (b)
19. (c)
20. (a)
21. (a)

22. (d)
23. (b)
24. (c)
25. (d)
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Microassessment Questions

 1. What is atomic mass unit?
 2. Write down the energy associated with 1 a.m.u.
 3. What are the constituents of nucleus?
 4. Explain whether proton is stable or not.
 5. Is free or bound neutron stable? Explain.
 6. Give the size of atom and nuclei.
 7. What do you understand by nuclear charge?
 8. Explain binding energy of a nucleus.
 9. Calculate energy of electron in MeV.
 10. Describe the noncentral behavior of nuclear forces.
 11. Atomic binding energy is smaller than nuclear binding energy. Explain.
 12. Write down the relation between mass number and nuclear radius.
 13. What is electric quadrupole moment?
 14. What are nuclear forces?
 15. Why nuclear models are necessary?
 16. What are magic numbers?
 17. Krypton and xenon emit nucleon easily. Why?
 18. What do you understand by meson clouds?
 19. Obtain the range of Yukawa force.
 20. What do you understand by short-range forces?
 21. Find out the nuclear density for U235.
 22. Calculate the binding energy for a-particle in joules.

Critical Thinking Questions

 1. What are the forces that exist within the nucleons?
 2. How do nuclear forces differ from gravitational and electrostatic forces?
 3. Write short note on nuclear density.
 4. Do nuclear forces depend on charge of neutron and proton?
 5. Explain the saturation of nuclear forces.
 6. What are the tensor forces? On which factors do they depend?
 7. Explain exchange forces.
 8. Write down the basic forces, which exist in nature.
 9. How do Majorana forces differ from Heisenberg force?
 10. Describe the four types of exchange forces.
 11. Give the wave equation under the effect of Barlett forces.
 12. Why stable nuclei have more neutrons than the protons?
 13. How does binding energy affect the stability of nucleus?
 14. What is Wigner force? Why is it known as no exchange force?
 15. What are the drawbacks of meson theory?
 16. Write down the assumptions made using liquid drop model.
 17. Atom is considered as incompressible liquid. Explain.
 18. Write down the merits and demerits of liquid drop model.
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 19. How does asymmetry and pairing effect the nuclear stability?
 20. Why even–even nuclei are more common than odd–odd nuclei?
 21. Explain spin–orbit coupling. How would you explain stretch and jackknife case?
 22. Give the variation of binding energy versus atomic mass indicating stability of magic nuclei.
 23. Why are lighter nuclei stable than heavier nuclei?
 24. What is the theoretical basis of shell model?
 25. What do you understand by isotopes and isotones?

Graded Questions

 1. Show that due to quadrupole moment the symmetry of nucleus gets changed.
 2. State and explain Yukawa’s meson theory.
 3. Write down the postulates of meson theory.
 4. State and explain all the postulates of liquid drop model.
 5. Derive the semi-empirical mass formula indicating the significance of each term.
 6. How could nuclear fission be explained on the basis of liquid drop model?
 7.  Explain critical parameter using Bohr and Wheeler theory. Show the variation indicating the 

nuclear stability.
 8. Explain shell model in detail using potential and spin–orbit coupling.
 9. Give the schematic energy level diagram upto nucleon number 126.
 10. What are the limitations of shell model?
 11. Discuss briefly the experimental evidence for existence of magic numbers.
 12. Write down the achievements of shell models.
 13.  How does shell model differ from liquid drop model? How shell model succeeds in explaining 

the existence of shell model?
 14. Discuss the contribution of Meyer and Jensen to shell model.

Remember and Understand

 1. Atoms were thought to be indivisible particles.
 2. Nucleus is made up of neutrons and protons, whereas electrons orbit around the nucleus.
 3.  The nuclear density is almost constant everywhere except at the surface. The surface density is 

less than the density at the center.
 4. Free neutron is unstable, whereas free proton is stable.
 5.  The nuclear masses are measured in terms of atomic mass unit. 1 atomic mass unit is defined as 

the 1/12th of mass of single carbon atom.
 6.  Nuclear forces are the strongest forces in nature. These forces are charge independent and spin 

dependent. These forces are also saturated and exhibit exchange character.
 7.  The nucleus is not spherical and gets distorted, which could be due to the non-uniform charge 

distribution in the nucleus.
 8. There are four types of exchange forces, that is, Wigner, Barlett, Heisenberg, and Majorana forces.
 9. Meson theory explains the existence of nuclear forces.
 10.  The interaction between nucleons can be studied using different nuclear models. The two impor-

tant models are shell model and liquid drop model.
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 11.  Liquid drop model treats atomic nucleus as a drop of liquid. This model was successful in 
explaining radioactivity, fission, and nuclear stability but could not explain the existence of 
magic numbers.

 12. The time-dependent Schrödinger wave equation was solved using interaction potential.
 13.  Shell model explains the existence of magic numbers. Magic numbers represent the closed shells 

of protons and neutrons.

 14. The Weizsacker’s formula is given by E a A a A a
Z

A

a A Z

A

a

A
= - - -

-( )
±( )v s c

a p2 3
2

1 3

2

3 4

2
0/

/ /
,

 15. The potential due to quadrupole moment is V
r

r r3

0
3

21

4
3 1= ′ ′ −∫pe

r q( ) ( cos )dV
��

 16. The quadrupole moment Q
3
 is given by Q3

2 22

5
= -Z (b a )

 17. The potential under the effect of tensor forces is given by V r V r V r V r Sl l l( ) = ( ) + ( ) + ( )
1 2 3

s s1 2 12

��� � ��

.
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Learning Objectives

 To understand the phenomena of disintegration of heavy nuclei into smaller nuclei, that is, 
radioactivity

 To study the emis sion of a -, b -, and g  -rays from radioactive nuclei

 To get insight into laws of radioactivity

 To know about units of measurement of radioactivity

 To understand Geiger–Nuttal law, that is, most energetic a -particles are emitted by shortest lived 
nuclides

 To learn the Gamow’s theory of a -decay considering particle in nuclear potential barrier under 
constant motion

 To understand the b -decay with the help of negatron emission, positron emission, and electron 
capture

 To learn about Fermi’s theory of b -decay and conservation of energy and angular momentum dur-
ing the process

 To get insight into g  -decay using multipole expansions

 To learn and understand the phenomena of internal pair creation and internal conversion

 To understand the importance of detection of particles using radiation detectors

 To study the principle, working, and theory of ionization chamber

 To learn the principle, working, and theory of proportional counter

 To understand the principle and working of Scintillation counter

 To understand the behavior of ionization current versus voltage

The most important contribution of “modern physics” is the discovery of “radioactivity” by a French 
scientist Henri Becquerel in 1896. He observed a particular property for the uranium salt. He found 
that photographic plate gets affected by some kind of radiations emitted. These radiations were 
termed Becquerel rays. Later on, it was found that not only uranium emitted these kinds of radia-
tions, but many other elements too emitted these radiations, for example, radium, actinium, thorium, 
etc. Hence, such materials are said to be radioactive.

7
Nuclear Physics — II
Decay Process and Radiation 
Detectors

 Keywords: Radioactivity, a-decay, b-decay, g -decay, internal conversion, radiation detectors, Geiger 
Muller counters, scintillation counters, proportional counters, Ionization counters
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7.1 Radioactivity

The phenomena of disintegration of heavy nuclei into smaller nuclei in the absence of any external 
force is called radioactivity. The elements endowed with this property are called radioactive elements. 
The nuclei of radioactive elements are unstable. The elements with atomic number greater than 82 
are radioactive. There is nuclear force acting within the nucleus, which holds the nucleons together. 
Despite the fact that the nuclear force maintains stability, some nuclei do emit radiations. Temperature, 
pressure, etc., do not affect radioactivity. After Becquerel discovered radioactivity, Rutherford in 1899 
confirmed the emission of two types of radioactivity, that is, a - and b -rays. In 1909, g  -rays were 
discovered as neutral radiations with very high penetration power. a - and b -rays consist of particles, 
hence they are not necessarily considered as corpuscles.

Antoine Henri Becquerel was born on December 15, 1852, in Paris. 
His family consisted of scholars and scientists. He won the Nobel 
Prize in Physics in 1903 for discovering radioactivity. His father, 
Alexander Edmond Becquerel, was a professor of Applied Physics. 
Alexander did his research on phosphorescence and solar radiation.
Henri joined the Polytechnic in 1872 and became a professor of 
Applied Physics. His initial research was on optics and the rotation 
of plane-polarized light by magnetic fields. He then studied phos-
phorescent crystals under infrared illumination and absorption of 
light in those crystals. Becquerel got his doctorate in 1888 from the 
Faculty of Sciences of Paris.

Becquerel investigated any connection between X-rays and 
naturally occurring phosphorescence. He found that the plate was 
discovered to be fogged, when uranium salts were placed near to a photographic plate cov-
ered with opaque paper. All uranium atoms exhibited this property (later on this property was 
known as radioactivity). Furthermore, Becquerel demonstrated that the rays emitted from ura-
nium atoms ionized the gases. These rays could be deflected using electric and magnetic fields 
unlike X-rays. He worked on different radioactive stones, so he developed many skin problems. 
Becquerel also did extensive studies of the physical properties of ozone, cobalt, and nickel. The 
basic unit of radioactivity used in the international system of radiation units is “Becquerel.”

Besides being a Nobel Laureate, Becquerel was a member of the Academe des Sciences de 
France, Accademia dei Lincei, and the Royal Academy of Berlin. He was appointed as an Officer 
of the Legion of Honour. He died in 1908 in Brittany and is still remembered by the entire world.

7.1.1 Description of a -, b-, and g -Rays

A small hole is drilled inside a block of lead and the radioactive material is placed at the bottom of the 
hole. These radiations are studied under the effect of electric and magnetic fields (Figure 7.1(a)–(b)).

As can be seen from Figure 7.1(a), the a -rays get deflected toward the negative plate and the 
b -rays get deflected toward the positive plate. Under the influence of magnetic field (Figure 7.1(b)), 
a - and b -rays get deflected, whereas g  -rays did not deflect toward any electric plate and magnetic 
field. Hence, the following conclusions are drawn:

 (i) The a -particles get deflected toward negative plate, hence they are positively charged particles  
( 2

4He ).

A.H. BECQUEREL
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 (ii) The b -particles get deflected toward positive plate, hence they are negatively charged particles 
(electrons).

 (iii) g  -rays did not get deflected along any plate, hence they are stream of neutral particles.

Marie Curie was born on November 7, 1867, in Warsaw. She was the youngest 
daughter and her childhood was difficult as her mother and sister passed away. 
Her primary education was from local school though her father taught her 
mathematics and physics. She left Warsaw at the age of 24 years and moved 
to Paris for higher education. Marie Curie was a chemist and a physicist. She 
met Pierre Curie in 1894 who was an instructor in the School of Physics and 
Chemistry. They got close to each other due to their common interests and 
got married. Curie was very much inspired from the work of Henri Becquerel 
on radioactivity and she decided to study uranium rays for her thesis. She 
was the first person in the scientific history to receive two Nobel Prizes in 
different fields of science, that is, chemistry and physics. The Royal Swedish 
Academy of Sciences honored Pierre Curie and Marie Curie in 1903 with the 
Nobel Prize in Physics. Marie Curie gave the theory of radioactivity, radioactive  isotopes, and the 
discovery of polonium and radium. Pierre Curie died in 1906 and she took his place as professor of 
General Physics in the Faculty of Sciences. She continued to develop methods for obtaining pure 
radium from radioactive residues and was successful in 1910 in doing so. She was also appointed 
as the director at the Curie Laboratory in the Radium Institute of the University of Paris. In 1911, 
she was awarded with second Nobel Prize, but this time in Chemistry for her work in the field of 
radioactivity. The great scientist Marie Curie died due to aplastic anemia on July 4, 1934, at the 
Sancellemoz Sanatorium in Passy, in Haute-Savoie.

+ + + + + + + + +

− − − − − − − −

Radioactive
sample

Lead
block

a − rays

a

g − rays

g − rays

b − rays

b

(a)

(b)

Radioactive
sample

Lead
block

Magnetic fied

Figure 7.1  Deflection of a - and b -rays under the effect of (a) electric field and (b) magnetic field.

MARIE CURIE
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Table 7.1 Comparison of a -, b -, and g  -rays and their properties

a -rays b -rays g -rays

Charge It is equivalent to that of 
Helium Charge is 1 6 10 19. × − C

Charge is zero

Velocity 1 4 10

2 1 10

7

7

.

.

×

×

m/s

m/s

Can go upto 99% of 
velocity of light

3 108
´ m/s

Penetration power Very small Large Very large

Ionizing power Large ionizing power 1

100
 times that

of a-particles

Very small

Fluorescence Can produce fluorescence Can cause fluorescence Can cause 
fluorescence

Deflection Deflected by electric and 
magnetic field

Deflected by electric and 
magnetic fields

Are not deflected 
by any field

Scattering power Get scattered while passing 
through mica, gold foil, etc.

Scattered through the 
matter

Scattered from 
crystals

7.2 Laws of Radioactivity

Soddy and Fajan stated the following laws which are known as laws of radioactivity:

 (i) During radioactive transformation, a - or b -particles are emitted. Both the particles are not 
emitted together.

 (ii) After emission of a -particle, the atomic number is reduced by 2 units and atomic mass is 
reduced by 4 units. Hence, the nuclei has a position that is shifted by two groups on the left.

For example,

Z

A

Z

A
X Y He

2 2
→ +

−

−4 4

 (1)

For example,

92
235

2 90
lU He Th

nuclei DaugherParent( ) ( )

® +
-

4 23

a

 (2)

 (iii) When a nuclei emits b -particle, the atomic number is increased by 1 unit. The daughter nuclei 
position gets shifted by one group on the right.

That is,

Z
A

Z
AX Y1 1→ +

+ −
b 0  (3)

90
234

Parent nuclei
1 91

4

Daugher nuclei

Th Pa
( )

-
( )

® +b 0 23  (4)
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7.3 Units of Radioactivity

The radioactivity is described as atoms disintegrating per unit time. The unit of radioactivity is given 
by curie, which is activity of 1 g of radium. Curie can be defined as the activity of radioactivity mate-
rial that produces 3 7 1010. ´  disintegrations/sec. Due to the confusion over the units, Rutherford is 
given as a unit of radioactivity. Rutherford is defined as the activity of radioactive material that pro-
duces 106  disintegrations/sec. Hence,

1 3 7 10

1 10

10

6

curie disintegrations/sec

Rutherford disintegr

= ´

=

.

aations/sec

7.4 Radioactive Decays (a, b, and g Decays)

The radioactive decay is defined as the process when nucleus disintegrates by emitting a , b , or g  
radiations or when the nucleus captures an electron from the atomic shell. All the three decays have 
been discussed in following sections.

7.4.1 Alpha Decay
a -particles can be detected by cloud chambers, scintillation counters, nuclear emulsions, and ion-
ization chamber. For measuring energy of a -particles, techniques such as spectrography, deflection 
method, calorimetric measurements, and range measurements are used. Nucleons comprise of neu-
trons and protons. The protons have repulsive force within them which is proportional to Z 2 (Z is the 
atomic number). The binding energy inside the nucleons is proportional to atomic mass (A). When 
the number of nucleons increases, the electrostatic repulsion dominates over the attractive nuclear 
forces within the nucleons. Hence, mostly for nuclei with Z > 82 , a decay occurs in order to reduce 
the number of nucleons which helps in stabilizing the nuclei. Here, the main concern is why a -parti-
cle is emitted despite any other nuclear particles such as deuterium and tritium. It can be explained as 
follows: The nucleus of a -particle is made up of 2 neutrons and 2 protons. The nuclei of a -particle 
have very high binding energy. The disintegration energy Q is given by

Q M M M c= − +( ) i f a

2  (5)

where M i  is mass of initial parent nuclei

M f  is mass of final daughter nuclei

M
a

 is mass of the a -particle emitted

When the particle is formed inside nucleus, the kinetic energy is sufficient to make a -particle free 
from the nuclei. The a -decay makes the nuclei energetically and structurally stable. For example, 
uranium nuclei ( 92

238U ) becomes stable due to loss of 5.4 MeV of energy after releasing a -particle. 
Furthermore, if 2

3He  or proton is emitted from the nuclei, then 9.6 and 6.1 MeV energy is required, 
respectively and is difficult to attain. However, the kinetic energy of a -particle is a bit different from 
the disintegration energy and given by the following relation:

K.E ≈
−A

A
Q

4
 (6)

This difference in KE and Q can be explained as follows:

 (i) The nucleus gets recoiled by taking small amount of kinetic energy in order to conserve energy 
and momentum.
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 (ii) The linear momentum is conserved during a -decay. As initially the nuclei is at rest, hence ini-
tial momentum is zero. If final daughter nuclei have velocity vf  and alpha nucleus (mass M

a
) 

have velocity v
a

, then according to conservation of linear momentum,

0 = +M v M vf f a a

M v M vf f = − a a
 (7)

Therefore, final daughter nuclei and alpha nuclei move opposite to each other.
 (iii) The mass energy is also conserved during the process of a -emission. Let E

a
 be the energy 

of ejection of a -particle and Ef  be the kinetic energy of final daughter nuclei. Then, the total 
energy of initial parent nuclei can be written as

M c M c M c E Ei f f
2 2 2
= + + +

a a
 (8)

Comparing Eqs (5) and (8),

Q E E= +f a

Q M v M v= +
1

2

1

2
2 2

f f a a
 (9)

Using Eqn. (7) in Eqn. (9),

Q M v M
M v

M
= +

( )

( )

1

2

1

2
2

2

2a a

a a

f

f

Q M v
M v

M
= +

1

2

1

2
2

2 2

a a

a a

f

Q M v
M

M
= +











1

2
12

a a

a

f

 (10)

Q E
M

M
= +









a

a1
f

 (11)

From Eqn. (11), it is clear that the disintegration energy of nuclei is more than energy of alpha 
particle.
 (iv) The total charge and number of nucleons also remain conserved for a -emission process as  

demonstrated below:

92
238

2
4

90
234U He Th

Total charge
 92

Total nucleons
 238

Total 

® +

ccharge
92

Total nucleons
 238

 

1. Geiger–Nuttall Law
In 1911, Geiger–Nuttall correlated the empirical facts regarding a -emission as Geiger–Nuttall law. 
During their studies on a -particles, they found that the most energetic a -particles are emitted by 
shortest lived nuclides having high value of decay constant. Similarly, least energetic a -particles 
are emitted by longest lived nuclides. It was found that the a -particle range from 4.06 to 9 MeV. 
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a -particles have a range which is defined as the critical distance traveled by a -particle before getting 
absorbed. The relation between range and energy of particle is given by

R E= 0 318 3 2. /  (12)

The relation between disintegration constant (l) and number of atoms is given by

N N e t
=

-

o
l  (13)

N → number of atoms in substance after time t

N
o
 → number of atoms in substance at t = 0

l is defined as the ratio of amount of substance disintegrating/time to the amount of substance  
present. The relation between disintegration constant l and range R of a -particles is given by

log logl = +A B R  (14)

(range is in cm and standard air) A and B are constants. B is the slope of line and A is the intercept 
(Figure 7.2). To understand Figure 7.2, we should have an understanding of uranium, thorium, and 
actinium series. When a radioactive element emits a - or b -particle, it gets transformed to new element 
(daughter nuclide). If the daughter nuclide is also radioactive, then it will also disintegrate. This pro-
cess will continue until and unless a stable state is reached this constitute a series which involve the step 
by step disintegration of parent nuclei to daughter nuclei by emitting radioactive particles. For ura-
nium series ( 92

238U ), the end product is Pb206  with a half-life of 4 5 109. ´  years. For thorium series, 

90
232Th  is the parent nuclei and end product is Pb208  with a half-life of 4 5 1010. ´  years. For actinium 

series, 92
235U  is parent nuclei and Pb207  is the daughter nuclei with a half-life of 7 1 108. ´  years.

From Figure 7.2, it is clear that the slope of all the series is almost same. From Eqn. (12), it can be 
written as follows:

R E∝
3

2

log logR E∝

logl = +C C E1 2 log  (15)

Equation (15) describes the relation between disintegration constant (l) and energy (E). It is clear 
from Eqn. (15) that high energetic particle have high disintegration constant and vice versa.

Unan
ium se

rie
s

Thoriu
m se

rie
s

Acti
nium se

rie
s

log10  R

log10 l

Figure 7.2  Plot of disintegration constant with range of a-particles.
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2. Gamow’s Theory of a-Decay

Before, we proceed further, there are certain assumptions to be made during the process of a-decay. 
First, a-particle exists as an entity within heavy nucleus. There is nuclear potential barrier inside 
which the particle is in constant motion. There is definite probability of tunneling of particle through 
the potential barrier (height Vo ).

From Figure 7.3, we consider a potential barrier of width. The potential distribution is given by

= < ( )

= < < ( )

= > ( )

0 0 1

2

0 0 3

for Region

for 0 Region

for Region

o

x

V V x L

x

The energy E of particle is less than V E V<[ ] .

We will use Schrödinger equation to solve this problem:

i.e.,  
d

dx

m
E V

2

2 2

2
0

j
j+ -( ) =

�
      [j is wavefunction describing the position of particle] (16)

For x < 0 , potential V = 0  in region 1

d

dx

mE2
1

2 2 1

2
0

j
j+ =

�

d

dx
k

2
1

2 1
2

1 0
j

j+ =  (17)

where k
mE

1 2

2
=

�
 (18)

The solution of Eqn. (17) is given by

j

a a

1 1 2= +
−A Aik x ik xe e1 1

Incident -particle Reflected -particl

�

ee

���

 (19)

For 0 < <x L , potential V V= o  in region 2.

d

dx

m
E V

2
2

2 2 2

2
0

j
j+ -( ) =

�
o

d

dx

m
V E

2
2

2 2 2

2
0

j
j- -( ) =

�
o

Region 2 Region 3Region 1

 V = 0  V = 0

X = 0 X = L

 V = Vo

Vo

Figure 7.3 One-dimensional potential barrier.
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d

dx
k

2
2

2 2
2

2 0
j

j− =
 (20)

where k
m

V E2 2

2
= −( )

�
o

 (21)

The solution of Eqn. (20) is given by

j2 1 2= +
−B Bk x k xe e2 2

Refracted wave
through potential barrier

R

�

eeflected wave
through the potential barrier
in region 3

���

 (22)

For x > 0, potential V = 0 in region 3.

d

dx

mE2
3

2 2 3

2
0

j
j+ =

�

d

dx
k

2
3

2 1
2

3 0
j

j+ =

 (23)
The solution of Eqn. (23) is given by

j3 1 2= +
−C Cik x ik xe e+

Transmitted wave Reflected wave

1 1

��� ���

 (24)

As there is no further potential barrier after region 3, C ik x
2e

1−  is zero because there can be no reflection.

j3 1=C ik xe 1  (25)

To determine the constants, we have to use boundary conditions as follows:

j j1 0 2 0x x= =

=  (26a)

j j2 3x L x L= =

=  (26b)

d

dx

d

dx
x x

j j1 2
= =

=0 0  (26c)

d

dx

d

dx
x L x L

j j
2 3

= =

=  (26d)

Using Eqs (19), (22), and (26a),

A A B B1 2 1 2+ = +  (27)

Using Eqs (19), (22), and (26c),

ik A A k B B1 1 2 2 1 2−( ) = −( )  (28)

Using Eqs (22), (25), and (26b),

B B Ck L k L ik L
1 2 1

2 2e e e 1
+ =

−  (29)

Using Eqs (22), (28), and (26d),

k B B ik Ck L k L ik L
2 1 2 1 1

2 2 1e e e−( ) =−  (30)
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Adding and subtracting Eqs (29) and (30), 

After adding ⇒ B
C ik

k
ik L k L

1
1 1

22
11 2= +










−e e  (31)

After subtracting ⇒  B
C ik

k
ik L k L

2
1 1

22
1= −








e e1 2  (32)

Substituting Eqs (31) and (32) in Eqs (27) and (28), we obtain

A A C h k L
ik

h k Lik L
1 2 1 2

1
2

2
+ = ( ) − ( )





e 1 cos sin  (33)

and

A A C h k L
ik

k
h k Lik L

1 2 1 2
2

1

2− = ( ) + ( )








e 1 cos sin  (34)

Adding and subtracting Eqs (33) and (34),

After adding ⇒  A C h k L
i k

k

k

k
h k Lik L

1 1 2
1

2

2
2

= ( ) + −








 ( )









e 1 2

1

cos sin  (35)

and

After subtracting ⇒  A
iC k

k

k

k
h k Lik L

2
1 1

2

2

1

2
2

= − +






( )








e 1 sin  (36)

We can define transmission coefficients as the ratio of transmission probability current density to the 
incident probability current density.

Probability current density = velocity of particle ́  probability 

[where v is the velocity of particle]

 

T
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v
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j j

j j

3 3
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T
k k

k k
h k L
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+
+
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1

1 2
2

1
2

1 2

2

2
2

2
sin

 (37)

Substituting Eqs (18) and (21),

T
V

E V E
h

m V E
L

=

+
−( )

−( )
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1
4

22
2

2
o

o
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�

Using binomial expansion 1 1
1

2
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+x nx

n nn
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�

T
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1
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Neglecting 1

T
E

V

E

V
k L= −











−16
1 2 2

o o

e  (38)

Disintegration constant and transmission coefficient are same, that is,

l = −










−16
1 2 2

E

V

E

V
k L

o o

e  (39)

Taking log on both sides:

log logl = −
















−

16
1 2 2

E
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V
k L

o o

 (40)

As E V< o , E

Vo

 can be neglected

log logl =






−
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log logl =
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16

�
m V E L

E

V
o

o

 (41)

Equation (41) can predict finite probability of tunneling of a -particles through nuclear potential. 
The emission of a -particles can be explained with Gamow’s theory.
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7.4.2 b-Decay
During b -decay, the atomic number changes by one unit and atomic mass remains unchanged.  
b -particles get deflected by positive plate. The b -decay can occur through three processes, that 
is, emission of positron ( b + decay), emission of electron ( b - decay), or capture of orbital electron  
(k-capture). All the three processes are described below.

1. b- -decay (Negatron Emission)

When electrons are emitted by nucleus in order to achieve stabilization, it is known as electron/ 
negatron emission or b -decay. The main question arises, how can nucleus emit an electron, when 
electron is revolving in outer shells. This is explained as follows:

 (i) Neutron is converted to proton by the process

n p e® +
-  (42)

The electron that is formed during Eqn. (42) gets released immediately from the nucleus.
 (ii) According to Eqn. (42), the law of conservation of angular momentum and energy are violated. 

Hence, Pauli proposed the concept of neutrines, which is a neutral particle of zero rest mass and 
spin 1

2 . Hence, Eqn. (42) is modified as

n p e→ + +
−

n  (43)

n  is called antineutrino.

The generalized equation is given by

Z
A

Z
A eX Y+1 1

0
→ + +

−
n  (44)

George Antonovich Gamow was born on March 4, 1904, Odessa, 
Russian Empire. He was a physicist as well as cosmetologist. Gamow 
went to Leningrad University, where he briefly met A.A. Friedmann 
who was a mathematician and cosmologist. Friedmann suggested 
that the universe should be expanding to which Gamow did not agree 
much. Gamow started working on quantum theory and genetic theory 
especially on deoxyribonucleic acid (DNA). He developed quantum 
theory of radioactivity, which provided the first successful explanation 
of the behavior of radioactive elements. This  achievement of Gamow 
earned him a fellowship at the Copenhagen Institute of Theoretical 
Physics in 1928. He worked on  theoretical nuclear physics. He pro-
posed the famous “liquid drop” model of atomic nuclei. This model is 
the backbone of many modern theories of nuclear fission and fusion. 
In collaboration with F. Houtermans and R. Atkinson, he developed 
a theory, which could describe the rates of thermonuclear reactions 
inside the core of stars. Gamow emigrated from the Soviet Union in 1934 to Washington. He 
was appointed as the professor of physics at George Washington University. There he met with 
Edward Teller and then they collaborated with each other. They developed the theory of b -decay 
in 1936. Gamow also tried to interpret stellar evolution using theories of nuclear reactions. He 
found from his work on stellar evolution that the Sun’s energy results from thermonuclear pro-
cesses. He died on August 19, 1968, leaving his genius ideas behind.

GEORGE GAMOW 
AND ACTRESS ANN 

BLYTHE
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For electron emission to take place, the rest mass of initial parent nucleus is greater than the rest mass 
of final daughter nuclei. When the parent nucleus is at rest, the kinetic energy is zero. According to 
law of conservation of energy

M c M c E m c Ei f f e e
2 2 2
= + + +  (45)

The disintegration energy Q is given by

 = kinetic energy of products − kinetic energy of reactants

Q E E

Q M M m

= +( ) -

= - -( )

f e

i f e

0

 (46)

For b-decay, Q > 0 , which states

 M M mi f e> +  (47)

2. b + decay (Positron Emission)

In contrast to b -  decay, the positron is emitted from nuclei to achieve higher stability. This is usually 
the case when the nuclei is proton rich, then the protons are converted to neutrons by the following 
mechanism:

 p n e® + +
+

n  (48)

where n (neutrino) is emitted to conserve energy as well as momentum. The generalized equation is 
given by the following equation:

 Z
A

Z
A eX Y1 1

0
® + +

- +
n  (49)

+1
0e  and -1

0e  share the same perspectives except the type of charge they carry, that is, positron is a 
positively charged electron. Similar to negatron emission, the positron emission takes place only when 
the mass of parent nuclei is more than the mass of daughter nuclei.

3. Electron Capture
The electron capture process is competitive to positron emission. In the case of electron capture, 
Coulomb barrier tends to prevent emission of positron. Hence, the nucleus captures orbital electron 
to stabilize itself. Upon the absorption of orbital electron, the proton gets converted to neutron and 
atomic number gets decreased by one group (to left). Neutrino is emitted during the process. For 
heavier element, the orbital electrons are closer to the nucleus because of small radii. Hence, the 
heavier elements exhibit more electron capture than positron emission. After the electron is captured 
by nucleus, vacancy is created in the orbit. To fill this vacancy, electrons from higher shells jump to 
the vacant positions to fill empty space. During this transition, the characteristic X-rays are emitted. 
Therefore, electron capture process is accompanied by the emission of X-rays.

The equation for electron capture is

 p e n® + +
-

n  (50)

The generalized equation is same as that of positron emission. Moreover, similar to other b -decay 
processes, the mass of initial parent nuclei is more than the final daughter nuclei.
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4. Fermi Theory of b-Decay
Using Pauli’s neutrino hypothesis, Fermi formulated the theory of b -decay in 1934. This theory takes 
into account the following certain assumptions:

 (i) During the process of b -decay, energy and angular momentum are conserved.
 (ii) Whenever a neutron is converted to proton, antineutrino is emitted. Whereas during the 

 conversion of proton to neutron, neutrino is emitted. The neutrino has zero rest mass.
 (iii) The b -decay is taken analogous with the emission of electromagnetic radiations by an atom. 

As electromagnetic radiations have a field surrounding them, similarly there is electron  neutron 
field in b -decay process. The nucleons have strong nuclear force field, but the electron– neutron 
field is weak compared with nucleons.

 (iv) The coupling constants are very small, hence time-dependent perturbation theory is used.
 (v) Nuclear parity does not change during b -decay. The calculations are made in nonrelativistic 

regime as the nucleons have velocity of c
10. The negatrons, positrons, neutrinos, and antineu-

trinos are produced at the time of emission.

During the process of b -decay, proton can get converted to neutron (positron emission) and neutron 
can get converted to proton (negatron emission). During these decay processes, neutrino or antineu-
trino are formed in order to conserve momentum and energy. To find out the probability of transition 
of nucleon from initial to final state, we will use perturbation theory as follows:

 
P dp = ∫

2p
j j

�
f i
*H dV

dN

dT

2

 (51)

where j i  and jf  are the wave functions of initial and final states, respectively. H is the interaction 
energy operator that represents the interaction between electron neutrino field and nucleon. Basically, 

H is the backbone of Fermi theory. 
dN

dT
 represents energy density of final states (statistical factor). We 

can write Eqn. (51) as

 
P dp H

dN

dT
=

2 2p

�
if  (52)

where  H H dV
if f i
= ∫j j

*  (53)

is called interaction matrix element.
Let us explain it with the help of decay scheme

p n e→ + +
+1

0
n

Wave function of final products = =j j j jb nf n  (54)

where  jn  wave function of neutron

jb  wave function of positron

j
n

 wave function of neutrino

The wave function is treated as plane wave because due to first approximation, the distortion of wave 
function of positron or electron due to nuclear charge is neglected. Hence, the wave function can be 
normalized as follows:
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j jb b
* dV

VV

=
→







∫ 1

0

 volume occupied by 

free particle wave

The jb  is obtained as

 
j
n n
= ⋅







1

V

i
p rexp

�
 (55)

where 
1

V
 is normalization constant and pb  is momentum of b-particle. Similar case is applied for 

neutrino as it interacts very weakly with matter.
Therefore,

 
j
n n
= − ⋅







1

V

i
p rexp

�
 (56)

where p
n

 is momenta of neutrino. The reason behind assumption of plane waveform is to neglect 
the possible interaction of b -particle and neutrino with nucleus. Another constant “G” is used, which 
is known as “Fermi coupling constant.” This constant determines the strength of coupling because 
the form of interaction operator H is unknown. G has value of 0 9 10 4 3. ´ - MeV fm  and is analogous 
to electron charge. The equations are symmetrical if we replace j

n
 by j

n

*  because absorption of 

 antineutrino and emission of neutrino is equivalent. Therefore, Eqn. (53) can be written as follows:

H G H dVif f i=  ∫ j j
*

H G H dVif f i=  ∫ j j j jb n

* * *

          
H G M dVnif i=  ∫ j j j jb n

* *  (57)

M is dimensionless matrix element.
Now, from Eqs (55) and (56),

j jb n b n
* exp . exp .=







−






1 1

V

i
p r

V

i
p r

� �

 j jb n b n
* exp .= − + 







1

V

i
p p r

�
 (58)

 j jb n b n b n
* . .= − +  − + 





 +







1

1
1

2 2V

i
p p r p p r

� �
�  (59)

We can approximate

p p m cn b≈ ≈ o
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p r p r m c r
n o o o o

� � �
» » »

b 1

100

p p rn +( )
»

b o

�

1

50

Hence, we can ignore all the higher order terms and Eqn. (59) can be written as

 
j jb

*
n
=

1

V
 (60)

Substituting Eqn. (60) in Eqn. (57),

H G
V

M dVnif i= 



∫ j j

* 1

H
G

V
M dVnif i= ∫j j

*

H
G

V
Mif if=  (61)

where  M M dVnif i= ∫j j
*   (62)

M if  is the overlap integral between the wave function of final and initial nuclei. M if

2
1≈  is the  

maximum value.

7.4.3 g  -Decay
g  -rays are electromagnetic radiations with electric and magnetic component perpendicular to each 
other as well as direction of propagation of wave. g  -rays are produced during nuclear transition as 
X-rays are produced by atomic transitions. One of the following processes is involved for the nuclear 
transition, that is, g -ray emission, internal pair creation, and internal conversion. The energies of 
 transition can be given by the difference between nuclear levels.

g -rays are produced by electrons in X-ray tubes, synchrotrons, accelerators, and betatrons. The 
energy spectrum produced is continuous in nature. During nuclear transitions, g -radiation may be 
emitted as a prompt radiation along with the formation of a - or b -particle. Geiger–Müller coun-
ters (GM counters), scintillation counters, and portioned counters are used for detection of l -rays.  
g  -rays also blacken the photographic emulsion. g  -rays discolor the transparent solids. We will discuss 
the processes in nuclear transition as follows.

1. Multipole Radiations (g -Emission)
The parent nucleus disintegrates to daughter nuclei by emitting a - or b -particles. Sometimes, the 
daughter nuclei is still in an excited state and it comes to ground state by emitting g  -radiation (or 
em radiation). Various factors determine emission of g  -radiations. The g  -rays can be categorized as 
follows:

 (i) Electric g  -rays, which are due to changes or reorientation of electric charges in the nucleus.
 (ii) Magnetic g  -rays, which are due to reorientation of magnetic poles or changes in current 

 distribution of nuclei.
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To obtain emission and absorption of light, the quantum analysis of light is done (by using quantum 
theory of light). The nucleus radius R is considered to be smaller than the wavelength of radiation, 
that is,

 R < l  (63a)

l

R
>1

 

�
�

R
> =



1 2

l
p

order remains same

c

f R2p
>1

c

wR
>1

�

�

�c

wR

c

ER
> Þ >1 1

 
E

c

R
E< Þ <

�
20 MeV (63b)

Hence, during g  -emission, the photons produced are less than energy 20 MeV. For further analysis, 
we will use Maxwell’s equation for uniform isotropic lossless media (source-free region).
i.e., r = 0

Hence, the Maxwell equations can be written as

 
∇ × = −

∂

∂
E

B

t  ( )faraday’s law
 (64a)

 
∇ × =

∂

∂
B

E

t
m eo o

 
( )Ampere’s law  (64b)

 ∇⋅ =E 0  (Gauss’s law)  (64c)

 ∇ ⋅ =B 0 N ( )0 No monopoles  (64d)

The electric and magnetic field have sinusoidal dependence on position as well as time. The field 
equations can be written as

 
E r t E r E riwt iwt, *( ) = ( ) + ( )-e e  (65a)

 
B r t B r B riwt iwt, *( ) = ( ) + ( )-e e  (65b)

Equations 64(a)–(b) can be solved using Eqs (65a) and (65b).
[if we consider no reflection, hence E iwt*e = 0 ]

 Ñ´ = -B iw Em eo o  (66)

and

 Ñ´ =E iwB  (67)
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Take curl on Eqn. (67),

Ñ´Ñ´ = Ñ´( )E iw B

∇ ×∇ × = −[ ]E iw Eiw m eo o

Ñ´Ñ´ =E w E2
m eo o

 ∇ ×∇ × −  =k E2 0 6 (68)

where  k w2 2
= m eo o  (69)

Similarly, taking curl on both sides of Eqn. (66),

 
∇ ×∇ × −  =k B2 0  (70)

∇ ×∇− k2  is operator whose value is given by the spherical harmonics and Bessel function. We can 

rewrite Eqn. (66) as

E
B

iw
=
Ñ´

-  o om e

E is changed to Ee and B to Be because these fields are electric multipole fields and B does not have 
any radial component.

 

E
B

iw
e

e

o o 
=
∇ ×

− m e
 (71a)

 
E

iw
A L j kr Ye

L LMe

o o

=
−

∇ × ( ) ( ) 
1

m e
q f,  (71b)

where 
 

Be
e

constant angular momentum Bessel function

= ( ) (A L j kr YL LM q f, ))
spherical harmonic

 (71c)

For magnetic multipole fields, no radial component of E exists and we can write Eqn. (67) as

 

B
E

iw

B
A L j kr Y

iw

L LM

m
m

m

m

=
∇ ×

=
∇ × ( ) ( ) q f,

 (72a)

where E jLm
m

constant angular momentum Bessel function

= ( ) (A L kr YLM q f, ))
spherical harmonic

 (72b)

Normalization condition is applied to find out the constants.

The magnetic field energy density is given by 
1

2 0

2

m
B dV∫  and electric field energy density is 

given by 
1

2

2
eo E dV∫ .
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1

2 2

2

mo

=B dV
w ck� �
=∫  (72c)

[electromagnetic radiation contains half energy due to electric field and half due to magnetic field]

 
B dV

ck2

2
=∫
mo�  (73)

Using Eqn. (71c) in Eqn. (73),

 

B dV A j kr r dr LY LY d

d

L LM LM

r
2 2 2 2

0

0

2= ( ) ( ) ( )òòò e
*

sinp q q

W
� �� ��  (74)

d dΩ = =2p q qsin solid angle, r0 radius of sphere®

 j kr r dr
k

kr
r l

drL

r r

( ) = −
+( )







∫ ∫

2 2

2

0

2

0

1 1

2

0 0

cos  (75a)

[because Bessel function j kr

kr
r l

kr
L ( ) =

-
+( )æ

è
ç

ö

ø
÷cos

1

2

Equation (75a) is given by

 

j kr r dr
r

k
L

r

( ) =∫
2 2 0

2

0
2

0

 (75b)

L is angular momentum and is regarded as Hamiltonian. Hence,

 Volume = =dV r d dr d2 sinq q f  (75c)

Hence, the integral yields following results:

 
Y L Y dLM LM

* 2 21Ω = +( )∫ L L �  (75d)

Substituting Eqs (75b) and (75d) in Eqn. (74),

 

A
r

k
L L

ck

A
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r L L

e o

e o

2
0

2

2

2
3

0

2
1

2

1
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+( )
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�

m

m
 (76)

Similar to electric multipole field, the magnetic multipole radiation constant is given by

 

A
ck

r L L
m

o

2
3

0 1
=

+( )e �
 (77)
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Using Eqs (76) and (77) in Eqn. (71b) and (72a),

 

E LM i
ck

r L L
L j kr YL LMe

o

( ) =
+( )

é

ë
ê

ù

û
ú Ñ´ ( ) ( )

e � 0 1
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q f,  (78)

and B LM i
ck

r L L
L j kr YL LMe

o( ) = -
+( )

é

ë
ê

ù

û
ú Ñ´ ( ) ( )m

�
0

1

1
2

q f,   (79)

Similarly, Em and Be can be obtained as follows:

E LM
iw

A L j kr YL LMm

o o

m from Eqn. b( ) = -
Ñ´ ( ) ( )éë ùû

1
71

m e
q f, [ ( )]

The only difference lies in constant, that is, Am
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Bm can be written as

 

iw

B k
c

r L
Lm

o

o

( ) =
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� 1
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(81)

The parity for these fields can be written as
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Complete set of equations is formed by the multipole expansions. The fields can be expanded in terms 
of multipoles. The expansion of electric and magnetic field is given by

 

B r C B C B
m

L

L

( ) = +[ ]
=−=

∞

∑∑ e e m m

11

 (82a)

and

 

E r C E C E
m

L

L

( ) = [ ]
=-=

¥

åå e e m m+
11

 (82b)
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where Ce  and Cm  are amplitudes of electric and magnetic 2L  poles, respectively. The amplitudes 
are usually dependent on boundary conditions and strength of source.

2 Internal Pair Creation
Excited nucleus may produce electron–positron pair if energy of transition is more than 1.022 
MeV rather than ejection of K-shell electron. The pair production takes place in Coulomb’s field of 
nucleus. Moreover, momentum is conserved for the generated pair and nucleus.

The process of pair production is independent of atomic number Z. The probability of pair 
 production is greatest at the distance from nucleus of order of Z /137

2
( )  times radius of K-shell. 

Visually, it is of importance for low atomic number nucleus.

3 Internal Conversion
Atom exists in the excited state; similarly, nucleus exhibits quantized excited energy states. When the 
nucleus is excited, it may jump back to lower energy state. This transition of nucleus from excited 
state to ground state is accompanied by g  -ray emission. In some of the cases, the nucleus may return 
to ground state by giving its energy to orbital electron revolving around the nucleus (similar to pho-
toelectric effect). Some excited states may remain in that excited state for several hours. These excited 
states are unstable intermediate states and are known as metastable states. We call a long-lived nucleus 
to be an “isomer.” Isomers differ only in energy content. For example, 38

87Sr * have a half-life of 2.8 h 
compared with ground state of 38

87Sr .
The g  -ray is internally converted to an electron and this process is known as internal conversion. 

While the excited nucleus returns from excited to ground state, it may follow many steps and g  -ray 
photon is released. Only those nuclear transitions are allowed, which follow conservation of energy and 
momentum. These rules are known as selection rules. The kinetic energy for the conversion  electron is

 
E E E E= -( ) -i f B  (83)

where Ei ®  Energy of initial level

Ef ®  Energy of final level

EB ®  Binding energy

In 1932, Taylor and Mott gave the total transition probability from nuclear state 1 to nuclear state 2 
as follows:

 
P P P= +e g  (84)

where Pe ®  partial decay constant for electron emission

P
g
→  partial decay constant for gamma emission

 

a

g

=

P

P
e

 (85)

a  is the conversion coefficient and is given by the ratio of two partial decay constants. There is other 
explanation for a , that is,

 

a

g

= =

n

n

te number of converion electrons emitted for time 

numbber of -rays emitted for time g t
 (86)
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For each g-ray energy with definite value, there are many conversion lines that are due to ejection of 
electrons from different atomic shells. Hence, we can write:

 
a a a a

g

=

+ + +

= + + +

n n n

n

K L M

K L M

...
...  (87)

where aK, aL, aM, etc., are partial conversion coefficients. These constants do not give information 
of nuclear structure but can be used to determine parity change of nuclear transitions.

7.5 Radiation Detectors

We have studied a , b , g , and other types of radiations. Now we should know how we can detect them 
for the study of nuclear phenomenon, radioactivity, and radiation research tools. The detectors can detect 
the particles and their nature. All the detectors are based on the principle of ionization. The uncharged 
particles or radiations such as X-rays and g -rays, etc., are also detected by some detectors as these radia-
tions can impart energy to ionized matter. For the working of detectors, the collection and separation of 
ion pairs is necessary otherwise they will recombine. In solids, the ionization is produced; where as in the 
case of gas and photographic emulsions, the tracks of particles are visible. Ionization chamber, Geiger-
Muller (GM) counter, and proportional counter fall under the category of gas detectors. Scintillation 
counters are based on fluorescence. Bubble chamber, spark chamber, cloud chamber, and nuclear emul-
sions are also known as “track chambers.” Crystals are used in semiconductor detectors. Optical energy 
can be measured using Cerenkov detectors. We will discuss these detectors in the following sections.

7.5.1 Ionization Chamber

1. Principle
Ionization chamber is based on the principle that charged particles suffer from elastic collisions when 
they pass through gas. When these ions drift in an electric field, the potential induced on electrode 
can be measured. Ionization varies according to nature and velocity of particle.

Otto Hahn was born in 1879 to a rich entrepreneur Heinrich Hahn 
in Frankfurt, Germany. His father wanted him to pursue his career in 
architecture but he wanted to study chemistry and mineralogy. He 
received his doctorate from the University of Marburg in 1901 in 
organic chemistry. He pioneered the fields of radiochemistry as well 
as radioactivity and is known as “the father of nuclear chemistry.” 
Hahn was an influential citizen of the Federal Republic of Germany 
who was against the use of nuclear weapons after World War II and 
Jewish persecution by the Nazis. Hahn joined University College of 
London in 1904 (where he discovered radiothorium) and continued his 
research in nuclear chemistry at McGill University in Montreal (where 
he discovered radioactinium, a radioactive isotope of thorium).

He joined as a lecturer in the University of Berlin, Germany, in 
1907. The most astonishing  discovery of Hahn and Fritz Strassmann, 
a fellow chemist, was the barium production when uranium atoms 
were bombarded with neutrons. This was a legendary discovery, 
which helped indirectly to develop atomic bomb. Hahn was awarded the Nobel Prize in 1944. In 
1946, Otto Hahn joined the Kaiser Wilhelm Society and was the last president of the institution. 
Along with that, he was the founding president of the Max Planck Society (MPG), from 1948 to 
1960. Hahn died on July 28, 1968, at the age of 89 years.

OTTO HAHN WITH HIS 
STUDENT
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Figure 7.4 Ionization counter.

2. Constructions

A cylindrical tube is filled with argon gas and two electrodes as shown in Figure 7.4. The cylinder is 
maintained at negative potential w.r.t. positive central wire. The ends have mica windows. When a 
particle enters through the mica window, it ionizes the gas and separates the ions; some ions recom-
bine on account of small potential difference. At load R, output voltage is obtained. The output volt-
age depends on the number of ion pairs that are formed per unit length of tube. In addition to specific 
ionization (number of ion pairs/length), the output voltage depends on tube radius, that is, separation 
between the electrodes.
That is,

 

Potential( )V
n

=

charge of  pairs of ions

chamber capatitance
 (88)

The saturation condition is given by

 
I

d

dt
C

dV

dt
sat = = [ ]

V
C, Where is capacitance  (89)

3. Working

The output of ionization chamber is in the form of more or less continuous stream, rather than 
pulsated output. As the cylinder is at negative potential, the positive ions move toward cylinder and 
negative ions move toward the central electrode. Under no electric field, the ions may recombine, but 
when electric field is applied the electrons drift with drift velocity of 106 m/s . The ions move slowly 
as they have higher mass compared with electrons. As the voltage is increased, the ionization current 
also increases and then becomes almost constant as shown in Figure 7.5.

When applied voltage <V1 , the probability of ion recombination is more. Above V1 , the applied 
voltage is strong enough to prevent recombination. The ions are collected at their respective  electrodes. 
The constant region of current in Figure 7.5 is called as saturation current (Eqn. 89).

The ionization current can be measured by the charge that is collected at capacitor using Eqn. 
(89). a-particle produces strong pulses compared with b- or g -rays, because the ionizing power of 
a -particles is highest. For ionization counter, almost 35 eV of energy is required to produce ion pair. 
“RC” is the response time of counter. There is one major drawback of ionization counter, that is, the 
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chamber has to wait for milliseconds after the detection of one particle so that it can be ready for other 
particle. The operating voltage for this counter is 10–200 V.

7.5.2 Proportional Counter

1. Principle
Proportional counter is same as that of ionization counter except the operational voltage. It is based 
on the principle that when sufficiently large potential difference is applied between the central wire 
and cylinder, primary ions are produced. These primary ions collide with other atoms of gas and 
produce secondary ions. The secondary ionization depends on the geometry of apparatus and applied 
voltage V (generally operating voltage is 200–800V).

2. Construction
About 20 cm long hollow cylinder with 2 cm diameter is used with a fine tungsten wire of 0.1 mm 
diameter as shown in fig. 7.6. The wire is treated as anode as it is at positive potential. The metallic cyl-
inder serves as a cathode. The anode is connected to load. The cylinder is filled with argon as its atoms 
prefer to be in metastable states for longer durations. When the excited states return to ground state, 
the energy is released producing discharges. Usually combination of argon (90 percent) and methane  
(10  percent) is used in the counter. Methane is used in order to quicken the de-excitation process 
through  collisions. Thin windows of aluminum or mica are used.

3. Working
The gas multiplication factor depends on anode diameter, applied voltage, cathode radius, and nature 
of filling gas. The anode and cathode are arranged in co-axial arrangement. r1  is the radius of anode 
and r2  is radius of cathode. Hence, the electric field is given by

 

E
V

x
r

r

=
æ

è
ç
ö

ø
÷loge

2

1

 (90)

where x is the distance at which field strength is to be measured. When x = r
1 
, maximum electric field 

is produced, which causes avalanches. When incident radiation passes through the window, the gas is 
ionized and the ions get separated due to applied field. The electrons move toward central anode wire 
and ions drift slowly toward the body of cylinder. The motion of these heavy ions decides the pulse 
voltage developed at the central wire.

Ionisation
current

Applied voltage

Saturation current

V

V1

Figure 7.5 Applied voltage and ionization current.
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Initially the pulse is very high as the ions are in strong electric field. Then later on, the positive ions 
drift in weak field and hence the pulse is also affected. For the proportional counter, the pulse shape 
is given as in Figure 7.7.

Cathode
20 cm

Incident

radiation

Window

Gas

Central anode (0.1mm)

x

V

R

Figure 7.6 Proportional counter.

Time (in sec)

Potential

Figure 7.7 Voltage versus time for proportional counter.

The rise time of pulse in proportional counter is shorter compared with ionization chamber which 
makes, it better. Neutrons can also be detected using proportional counter despite the fact that neutral 
neutrons do not ionize the gas. When an atomic nucleus absorbs the neutron, some charged par-
ticle or gamma rays are emitted which can be detected. b-rays, fast protons, and mesons can also be 
detected using proportional counter.

7.5.3 Geiger-Muller (GM) Counter
For this counter, the collected charge is no longer proportional to the ionization. The gas has  complete 
avalanche or breakdown of gas. The energy of incident particles does not contribute to the electric 
pulse generated inside the counter.

1. Principle

When a charge particle passes through a gas, the gas ionizes. As the electrons are under high potential, 
they get accelerated and enhance further ionization. During this process, large number of electrons 
are produced.
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2. Construction:

The cylindrical metallic envelope is cathode and tungsten wire is anode (Figure 7.8). Anode at the 
end is connected to a glass head. The main function of glass bead is to avoid the corona discharge. 
Usually, the corona discharge is produced at sharp points of conductors. a - and b-particles enter 
through the thin window of mica. Argon, neon, or helium may be used as the filler gas in the tube. 
The GM counter operates at high voltage of 900–1300V. GM counter cannot distinguish the 
source of ions.

3. Working

When a single charge particle enters a GM tube, a bunch of electrons are produced through ioniza-
tion. The electrons drift toward central anode. During this process, these primary electrons produce 
further ionization and is known as secondary ionization.

The density of electrons is very high at that stage and current pulse is produced across R.  
These current pulses are counted by the counting device. Hence, for each pulse recorded, there is one 
incident particle. After few microseconds, the gas discharge stops due to accumulation of positive 
charges. The electric field gets reduced to such a level that no more ionization can happen. The pulse 
height is independent of energy and nature of particle because even a single incident particle can start 
an avalanche.

4. Quenching:
The positive ions produced have larger masses and hence small accelerations. Virtually, they are sta-
tionary. These positive ions tend to move toward the cylindrical cathode. Some positive ions may 
release electrons upon striking the cathode surface, which may give rise to another avalanche. This 
avalanche should be stopped because one avalanche will be counted twice otherwise. The positive 
ions around central wire should be eliminated and the process of elimination of positive charges is 
known as quenching. The quenching method used is external quenching method and self-quenching. 
In external quenching method, a very large series resistance is used so that during large current, volt-
age drop can occur at R. This technique takes large time interval to detect another particle. Hence, 
the counter is insensitive for some duration, which is called dead time of GM counter (Figure 7.9). 
Sometimes, an electronic circuit is employed to remove the current so that dead time can be reduced. 
Recovery time is the time after which the original pulse is restored.

Internal quenching/self-quenching methods are most commonly used methods these days. In this 
method, some polyatomic gas such as ethyl alcohol is used upto 10 percent in concentration. Ethyl 
alcohol prevents the release of electrons when positive ion strikes the cathode surface. Hence, the  

+−

V

C

Insulating
plug

Tungsten anode

Cathode

Mica
window

Glass
bead

R

Output pulse

Figure 7.8 GM counter.
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avalanche due to positive ion is stopped and the counter reads only one avalanche. Ethyl alcohol is 
used at 1 cm of Hg. Halogens such as Br2  or Cl2  can also be used as quenching agents at 0.01 cm of 
Hg. Halogen counters have infinite lifetime as the halogen ions recombine themselves.

When the voltage is increased above 103 V  (Geiger region), the quenching action is almost incom-
plete. The count rate is also invalid because the avalanches are not counted correctly. The counter fol-
lows continuous discharge, if the voltage is raised further. This may cause damage to the tube. These 
GM counters have good counting capability with a and b particles, but poor with g  -radiations. GM 
counters have high pulse, which is independent of nature and energy of incident ions. But uncharged 
particles cannot be detected using GM counter and amplifier or counter is required.

7.5.5 Ionization Current and Voltage Characteristics (Collective Diagram)
When a radiation enters the chamber produces pulse signal, which depends on voltage between anode 
and cathode. Different particles (a or b, etc.) have different pulse heights. The variation of pulse 
height with applied voltage for particle is divided into six different regions as below Figure 7.10
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Threshold
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Counter gets ready.Resolving time

Dead
time

Recovery
time

Figure 7.9 Dead time and recovery time of GM counter.
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Figure 7.10 The diagram showing the operating regions for all the counters.
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Region 1: Recombination Region
In this region, the voltage is not strong enough to keep the ions separated and hence ions and  electrons 
recombine.
Region 2: Ionization Region
As the voltage increases, the recombination of ions is decreased and all the ions are collected at respec-
tive electrodes. The pulse height is independent of the applied voltage in this region. Hence, it is 
known as  saturation region. But pulse height depends on the energy of incident particle. Particles 
with different atomic numbers can be detected in these chambers.
Region 3: Proportional Region
This is the region of gas multiplication. In this region, the voltage is high to accelerate primary 
 electrons, so that they can produce secondary electrons. Hence, a cumulative process sets in producing 
avalanche of electrons (known as Townsend avalanche) and the charge collected at anode is large. The 
gas multiplication factor (number of ion pairs formed by collision between electrons while  traveling 
toward anode) depends on particle energy. The pulse height depends on the ionization caused by 
initial particle.
Region 4: Limited Proportionality
When the applied voltage increases, the pulse height increases but is independent of ionization 
 produced by initial incident particle. This region is not of much use for any applications.
Region 5: Geiger–Müller Region
In this region, very large pulse height is obtained, which is independent of energy and initial  ionization 
of particle. It is a very sensitive region. The counter operated in this region is called Geiger–Müller 
region and even a single ion pair produces a very large pulse.
Region 6: Continuous Region
In this region, multiple pulses are obtained, and the counter gives continuous discharge.

7.5.6 Scintillation Counter
When a -particles strike some materials such as zinc sulfide, scintillations/light flashes are produced. 
A low-power microscope is used to measure the individual flashes.  Marshall, Coltman, and Kollman 
introduced photomultiplier tube to count the scintillation produced.

1. Principle
Whenever radiations fall on a fluorescent material, light flashes or scintillations are produced. These 
scintillations can be detected with photomultiplier tube.

Secondary
electron

Photo cathode

Photo multiplier tube

100-V 300-V 500-V

Final
signal

(Collected at
amplifier)

Dynodes

Cathode

400-V200-V
Photon

Scintillator

Figure 7.11 Scintillation counter.
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2. Construction
The scintillation counter used a scintillating material/phosphor in either solid or liquid form. A  photo 
multiplier tube is used, which detects the light flashes (fig. 7.11). Amplifier circuit is used, which count the  
electrical impulses. When particle passes through the scintillator atom, the atoms get excited. When 
the excited scintillator atoms return to ground state, photons are emitted. The intensity of light 
depends on the energy lost by incident charged particle. Cesium iodide is the common used  phosphor 
for a-particles and protons. To produce maximum effects, thallium is added to the phosphor  material. 
Sodium iodide with thallium is also used as a scintillator. The photomultiplier tube amplifies the 
output of photoelectrons when they come from a cathode. Then with the help of dynodes the signal 
is amplified by successive emission of secondary electrons. The process is rapid and dependent on the 
sensitivity of photo cathode. The height of output pulse is dependent on energy lost in the scintilla-
tion by incident particle. The potential at first dynode is small and hence the electrons emitted from 
first dynode are now very energetic. As the electron reaches second dynode, the electrons get more and 
more accelerated. This process continues and then the last dynode has highest output, which can be 
collected. The photomultiplier tube has high vacuum. The electrons have less than 10 6- sec  between 
them and can be dedected by scintillation counter.

3. Working
When the ionizing radiation enters the scintillator, short flashes of light are produced. These light 
photons are absorbed by photocathode and photoelectrons are emitted. Inter dynode voltages acceler-
ate these photoelectrons. The electron multiplication takes place at every dynode, and with increasing 
voltage the electrons get accelerated. The output at the last dynode is collected by the amplifier. Then, 
the amplified output is provided to discriminator, which reduces the noise levels. The resolving power 
of counter is very high and dead time is very small.

SUMMARY

This chapter deals with the phenomena of radioactivity and emission of a -, b-, and g- radiations 
from the radioactive nuclei. Soddy and Fajan stated that during radioactive transformation, 
either a- or b-rays are emitted. Furthermore, it was explained that nuclei with Z >82 disintegrate  
a -particles in order to stabilize it. Kinetic energy and disintegration energy have a difference that 
could be explained on the basis of conservation of energy and momentum. The Geiger–Nuttal law 
demonstrated that the most energetic a -particles are emitted by shortest lived nuclides and vice 
versa. a -decay was also explained by Gamow’s theory and it considered a-particle under the nuclear 
potential barrier (height Vo ). It was explained that b-decay could take place through three processes, 
that is, negatron emission, positron emission, and electron capture. In negatron and positron emis-
sion, the mass of parent nuclei must be greater than the mass of daughter nuclei. Electron capture is 
 competitive to positron emission. Coulomb barrier tends to prevent positron emission. Fermi theory 
of b-decay assumed b-decay analogous to emission of electromagnetic radiations by an atom. g-decay 
was explained using multipole expansions. g-radiation may be emitted promptly along with the  
a - and b-radiations. Radioactive detectors are used to detect the radiations. For the working of detec-
tors, collection and separation of ion pairs is necessary to avoid the recombination. Gas detectors such 
as ionization chamber, Geiger–Müller counter, and proportional counter. Scintillation counters are 
based on the phenomena of florescence.
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SOLVED PROBLEMS

Q.1: Obtain the energy available for b -decay in the following process:

57
136

56
136

1
0La Ba

positron

® +

( )
+ e

(Given massof barium a.m.u.=135 904350.

massof lanthanum a.m.u.=135 907380. )

Ans: The mass defect contributes to the kinetic energy of positron particle. Hence,

D DE m c= . 2

DE = -[ ]´135 907380 135 904350 931. . MeV

DE » 2 865. MeV

Q.2: Obtain the minimum kinetic energy required to initiate the reaction

p n e+ → +
+

n *
1

0

Ans: Antineutrino, neutron, and positron have kinetic energy T
n*

, Tn, and Tb+, respectively.

For the antineutrino to initiate the reaction with minimum energy, the kinetic energy for product 
neutron and positron will be zero.
Hence, from the reaction

p n e+ → +
+

n
*

1
0

We can write energy equation as

T m c T m c T m cp n nn b b* + = +( ) + +( )2 2 2

Here  T Tn = =b 0

T m m c m cn pn b* = +( ) -2 2

mp =1 007825.

m m cn = =1 008665 0 512. .b

T
n* . . .= ´ + - ´[ ]1 008665 931 0 51 1 007825 931 MeV

T
n* . . .= + -[ ]939 067 0 51 938 285 MeV

T
n* .=1 292 MeV
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Q.3: Obtain the value of KE in terms of Q-value of reaction.

Z
A

Z
AB C He® +

-

-

2
4

2
4

Ans: Z
AB  is parent nucleus, whereas Z

A
-

-

2
4C  and 2

4He  are daughter nuclei.

If Z
AB  is at rest, then according to momentum conservation principle,

momentum of Z
A

-

-

=2
4

2
4C momentum of He

The kinetic energy is given by T
p

m
=

2

2

Hence, T
p

m
C

C

C

=

2

2
 (a)

and T
p

m
He

He

He

=

2

2
 (b)

Dividing Eqs (a) and (b)
T

T

m

m
p pC

He

He

C

C Heas= =[ ]

 

T

T A
C

He

=

-

4

4
 (c)

The Q value of reaction is given by

Q T T
A

T T= + =

-

+C He He He

4

4

 Q
AT

A
=

-

æ

è
ç

ö

ø
÷

He

4
 (d)

Q.4: Obtain the energy for and a-particle, which is liberated during the following reaction:

84
210

82
206

2
4Po Pb He® +

(Given m
a
= 4 00260. a.m.u .

mPo a.m.u= 209 98287. .

mPb a.m.u= 205 97447. .)

Ans: The energy is given by

E m m mm c= − −( )Po Pb He
2

E = - -[ ] ´209 98287 205 97447 4 00260 931. . . a.m.u.
MeV

a.m.u.
E = ´0 0058 931. a.m.u.

MeV

a.m.u.

E = 5 39. MeV



310  • CHAPTER 7/NUCLEAR PHYSICS—II

Q.5: The kinetic energy of a -particles during the decay of 84
210Po  to 82

206Pb  is measured to be 5.39 
MeV. Obtain the “Q” value for this reaction.

Ans: KE ≈
−





A

A

4
Q

Q =
−







A

A 4
KE

Q = ×

210

206
5 39. MeV

Q ≈ 5 49. MeV

Q.6: Obtain the energy for a -particle in the following reaction:

94
236

92
232

2
4Pu U He® +

(Given  mHe a.m.u= 4 00260. .

mPu a.m.u.= 236 046071.

 m
U
 = 232.046071 a.m.u.)

Ans: The energy is given by

E m m m c= - -( )Pu U He
2

E = - -[ ] ´236 046071 232 0371 4 00260
931

. . . a.m.u.
MeV

a.m.u.

E = ´0 00637 931. a.m.u.
MeV

a.m.u.

E = 5 39. MeV

Hence, the a -particles have energy of 5.93 MeV after disintegration of plutonium to uranium.

Q.7: Obtain the Q-value of reaction when plutonium 94
236Pu  decays to 92

232U  with the emission of 
a-particle with energy 5.93 MeV.

Ans: The Q -value equation is

KE =
−





A

A

4
.Q

Q =
−







A

A 4
. KE

Here, A = 236  and KE MeV= 5 93.

Q = ×

236

232
5 39. MeV

Q = 6 032. MeV
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Q.8: In an ionization chamber, 6 106
´  ion pairs/12 MeV of energy are produced. Obtain the pulse 

height if capacitance is 30 pF.

Ans:
Total charge = ne

Pulse height corresponds to voltage, which is developed after charge/ion pairs are produced.
Hence,

Voltage V
C

ne

C
= =

q

C = ´
-30 10 12 F

V =

´ ´ ´

´

=

´
-

-

-

-

6 10 1 6 10

30 10

0 32 10

10

6 19

12

13

12

. .

V = 0 032. V

Q.9: What would be the kinetic energy of a -particle if 35 eV of energy is spent in producing one pair 
inside the ionization chamber, provided 1 5 105. ´  ion pairs are produced?

Ans:

Kinetic energy of particle
energy spent

ion pair
ion pairs produce= ´ dd 

KE eV= ´ ´35 1 5 105.

KE MeV= 5 25.

Q.10: What would be the maximum voltage required for a proportional counter if its cylinder size is 
1.5 cm and wire size is 0.005 cm?

[Given Maximum radial field V/cm=105 ]

Ans:

E
V

x
r

r

=
æ

è
ç
ö

ø
÷loge

2

1

r1 ® radius of anode (wire radius)

r2 ® radius of cathode (cylinder radius)

Usually x r= 1

V E r
r

r
= ´

æ

è
ç
ö

ø
÷1

2

1

loge

V = ´ ( )´ é
ëê

ù
ûú

10 0 005
1 5

0 005

5 . log
.

.
e
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V = ´ ´10 0 005 2 4775 . .

V = ´10 0 012385 .

V =1238 V

Q.11: Calculate the life-time for proportional counter if it works for 4 h/day at a rate of 2000 counts/min? 
Given the guaranteed life counts are 109 .

Ans: Let total life-time = t years
Hence, the total counts must be equal to the number of counts that are guaranteed.

t ´ ´ ´ ´ =4 365 60 2000 109

t = 5 707. years

Q.12: Obtain the average current for GM counter if it collects 108  electrons/discharge with a 
 counting rate of 700 counts/min.

Ans:  Counting rate counts/min= 700

Total electrons collected/min = ´ = ´700 10 7 108 10 / min

Change/min in the circuit C/min= ´ ´ ´
-7 10 1 6 1010 19.

Average current =
´ ´ ´

-7 10 1 6 10

60

10 19.

= ´
-0 186 10 9.

I = ´
-1 86 10 10. A

OBJECTIVE QUESTIONS

 1. The elements with atomic number greater than are radioactive.

 (a) 50 (b) 90
 (c) 82 (d) 70

 2. X-rays are

 (a) “−ve” charged radiations (b) neutral radiations
 (c) neutral radiations (d) none of the above

 3. Radioactivity takes place under

 (a) force (b) pressure
 (c) temperature (d) no force
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 4. a -rays get deflected toward

 (a) positive plate (b) negative plate
 (c) undeflected (d) both positive and negative

 5. b-rays are deflected toward

 (a) positive plate (b) negative plate
 (c) undeflected (d) both positive and negative

 6. Velocity of b-particles can be

 (a) ≈ c  (b) ≈ c/2
 (c) 0 99. c  (d) 2c

 7. The ionization power of b-particles is

 (a) 
1

100
of a -particle (b) 

1

10
 of a-particle

 (c) same as a -particle (d) 10 times of a-particle

 8. Which of the following can cause fluorescence?

 (a) a-rays (b) b-rays

 (c) g-rays (d) all of them

 9. According to Soddy and Fajan

 (a) both a- and b-rays are emitted during radioactive decay
 (b) only a-rays are emitted; no b-rays are emitted
 (c) only b-rays are emitted; No a -rays are emitted
 (d) either a- or b-particle is emitted

 10. 1 curie is equal to

 (a) 3 7 108. ´ disintegrations/sec  (b) 3 7 1010. ´ disintegrations/sec
 (c) 3 7 1012. ´ disintegrations/sec  (d) 3 7 106. ´ disintegrations/sec

 11. 1 Rutherford is equal to

 (a) 106 disintegrations/sec  (b) 108 disintegrations/sec
 (c) 104 disintegrations/sec  (d) 1010 disintegrations/sec

 12. The relation of KE and disintegration energy (q ) for a-particle is given by

 (a) KE =
−

A

A 4
Q  (b) KE =

−

A

A 2
Q

 (c) KE =
−A

A

4
Q  (d) KE =

−

−

A

A

2

4
Q
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 13. Disintegration energy of nuclei is  than the energy of a-particle.

 (a) more (b) less
 (c) equal (d) none of the above

 14. Energy and range are related to each other as

 (a) E R= 0 318 3 2. /  (b) R E= 0 5 3 2. /

 (c) R E= 0 318 5 2. /  (d) R E= 0 318 3 2. /

 15. Disintegration constant l  and range R of a-particles is given as

 (a) log logl = +A B R  (b) log logR A B= + l

 (c) log logR B= l  (d) l = +A BR 2

 16. According to Gamow’s theory, there is  probability of tunneling.

 (a) No (b) 100%
 (c) finite (d) infinite

 17. During b -decay

 (a) atomic mass is unchanged
 (b) atomic number changes by one unit
 (c) the b-decay can happen through three processes
 (d) all of the above

 18.  For electron emission to take place, the rest mass of parent nuclei should  than the rest 
mass of daughter nuclei.

 (a) less (b) greater
 (c) equal (d) none of the above

 19. Coulomb barrier prevents emission of positron in case of

 (a) positron emission (b) electron capture
 (c) negatron emission (d) all of the above

 20. Electron capture is accompanied by the emission of

 (a) X-rays (b) g -rays
 (c) UV-rays (d) visible rays

 21. For Fermi theory of b-decay, coupling constants are

 (a) kept to very small (b) kept to be very large
 (c) kept almost equal (d) zero

 22. The value of “Fermi-Coupling constant” is

 (a) 0 07 10 4 3. ´
- MeV fm  (b) 0 9 10 4 3. ´ - MeV fm

 (c) 1 9 10 5 3. ´ - MeV fm  (d) 0 2 10 4 3. ´ - MeV fm
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 23. Which process is involved for the nuclear transitions?

 (a) g-ray emission (b) internal pair creation
 (c) internal conversion (d) all of the above

 24. During g-emission, the photons produced have energy less than

 (a) 100 MeV (b) 80 MeV
 (c) 20 MeV (d) 50 MeV

 25. The probability of pair production is highest at a distance from nucleus of order of

 (a) 
Z

137
times radius  (b) 

137

Z
times radius

 (c) 
Z

137

2






times radius  (d) 10 times radius

 26. The conversion coefficient a  is given by

 (a) 
P

Pe

g
 (b) 

P

Pe

g

2

 (c) P Peg
.  (d) 

P

P
e

g

 27. For ionization counters,  energy is required to produce ion pair.

 (a) 35 eV (b) 10 eV
 (c) 25 eV (d) 20 eV

 28. For proportional counter, the metallic cylinder serve as

 (a) anode (b) earth
 (c) cathode (d) none of the above

 29. The electric field for proportional counter is given by

 (a) E
V

x
r

r

=
æ

è
ç
ö

ø
÷loge

1

2

 (b) E
V

x
r

r

=
æ

è
ç
ö

ø
÷loge

2

1

 (c) E V
r

r
=

æ

è
ç
ö

ø
÷loge

1

2

 (d) E V
r

r
=

æ

è
ç
ö

ø
÷loge

2

1

 30. For proportional counter, following gases are used:

 (a) argon and methane (b) neon and methane
 (c) methane and oxygen (d) krypton and methane

 31. GM Counter operates at

 (a) 800–1000V (b) 600–1000V
 (c) 900–1300V (d) 1300–1500V
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 32. For self-quenching/internal quenching,

 (a) ethyl alcohol can be used (b) bromine can be used
 (c) chlorine can be used (d) all of the above

 33. In continuous region of voltage–pulse characteristics

 (a) multiple pulses are obtained (b) no pulse is obtained
 (c) two pulses are obtained (d) none of the above

 34. Which is most common phosphor for a- particles and protons?

 (a) cesium chloride (b) cesium fluoride
 (c) cesium iodide (d) cesium bromide

 35. With the help of dynodes, the signal is amplified (yes/no).

 1. (c)

 2. (c)

 3. (d)

 4. (b)

 5. (a)

 6. (c)

 7. (a)

 8. (d)

 9. (d)

 10. (b)

 11. (a)

 12. (c)

 13. (b)

 14. (d)

 15. (a)

 16. (c)

 17. (d)

 18. (b)

 19. (b)

 20. (a)

 21. (a)

 22. (b)

 23. (d)

 24. (c)

 25. (c)

 26. (d)

 27. (a)

 28. (c)

 29. (b)

 30. (a)

 31. (c)

 32. (d)

 33. (a)

 34. (c)

 35. Yes.

ANSWERS
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Micro-Assessment Questions

 1. What is radioactivity?
 2. Which nuclei are considered as radioactive nuclides?
 3. What are a-particles?
 4. Give the description of radioactive particles.
 5. How does penetration power vary for a-, b-, and g- particles?
 6. Which radioactive particle exhibits highest ionizing power?
 7. g-rays are not deflected by electric or magnetic field. Explain.
 8. Which radioactive particles are deflected toward positive plate?
 9. What are b-particles?
 10. When is the atomic number of a nuclide increased by one unit?
 11. Give the units of radioactivity.
 12. Which properties are conserved during a-decay?
 13. What is disintegration energy?
 14. Write down the relation between range and energy of particle.
 15. Define the disintegration constant.
 16. Write down the relation between disintegration constant and number of atoms in substance.
 17. Give the relation between disintegration constant and range of particle.
 18. What do you understand by electron capture?
 19. Explain the phenomena of internal conversion.
 20. Which condition is necessary for negatron emission?
 21. What is positron emission?
 22. What are radiation detectors?
 23. Why is the detection of particles necessary?
 24. What do you understand by scintillators?
 25. Explain the dead time and recovery time for a Geiger–Müller counter.
 26. Explain the term “avalanche.”

Critical Thinking Questions

 1. Give the properties for a-radiations.
 2. List the major characteristics for b- and g-radiations.
 3. State and explain the laws of radioactivity.
 4. Define 1 curie and Rutherford.
 5. Give the relation for the disintegration energy with the masses of nuclides.
 6. Why a-emission occurs despite deuterium or tritium emission in certain nuclei?
 7. Explain how does momentum conservation happens for a-decay?
 8. The mass-energy is conserved during a-decay. Explain.
 9. Explain the plot of disintegration constant versus range of a-particle.
 10. What is Geiger–Nuttall law?
 11. What do you understand by uranium series?
 12. Write the differences between actinium and thorium series.
 13. Write down the conditions for a-decay.
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 14. Are the b-particles different from the orbital electrons?
 15. What is b-decay?
 16. What do you understand by negatron emission?
 17. Why neutrino emission is associated with negatron emission?
 18. Is electron capture competitive to positron emission? Justify.
 19. Explain the importance of Fermi coupling constant.
 20. Describe the equations for expansion of electric and magnetic fields.
 21. Write down the multipole expansions for g-emission.
 22. Explain internal pair creation. Does it depend on atomic number?
 23. Describe the basic principle of working for radiation detectors.
 24. Give the principle of ionization chamber.
 25. How does proportional counter work?
 26. What are the limitations of Geiger–Müller counter?

Graded Questions

 1.  Correlate the empirical facts for a-decay using Geiger–Nuttall law. Derive the relation between 
disintegration constant and energy E.

 2.  Discuss the Gamow’s theory for a-decay. Also, obtain the expression for probability of emission 
of a-particle per second.

 3.  Derive the transmission coefficient for a-decay. Also, explain the probability of tunneling of 
a-particle.

 4. Write down the three processes through which the b-decay may occur.
 5. State and explain the Fermi theory of b-decay. What is the necessity of neutrino emission?
 6.  What do you understand by g-decay? Explain the g-emission process using the concept of  

multipole radiations.
 7. Describe the principle and working of ionization chamber.
 8. Write a note on principle, construction, and working of proportional counters.
 9.  What is a scintillation counter? Explain its principle and working. In addition, list down its 

advantages and disadvantages.
 10.  What is the principle of Geiger–Müller counter? How does it work? Which type of particles can 

be detected using it?
 11.  Describe the variation of pulse height with applied voltage. Depict the importance of various 

regions in the graph.

Remember and Understand

 1.  Radioactivity is disintegration of heavy nuclei into smaller nuclei in the absence of any external 
force. The elements with atomic number greater than 82 are radioactive in nature.

 2. a-, b-, or g-rays are emitted during the process of radioactivity.
 3.  When the a- or b-particles are emitted from radioactive nuclei, the atomic number of nuclei 

changes whereas g-emission does not change the atomic number or atomic mass of nuclide.
 4.  During the process of a-decay, energy and momentum are conserved. Hence, the daughter 

nuclei recoils.
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 5.  According to Geiger–Nuttall law, the least energetic particles are emitted by longest lived 
nuclides.

 6. Negatron emission is emission of electrons to stabilize the nuclei.
 7.  For negatron emission, the rest mass of parent nuclei should be greater than the daughter nuclei. 

The antineutrino is emitted along with negatron to conserve the angular momentum.
 8.  When the positive electron/positron is emitted from the nuclei, it is known as positron emission. 

Neutrino is also emitted along with it to conserve angular momentum.
 9. During electron capture, Coulomb barrier prohibits the positron emission.
 10.  Fermi theory assumes the b-decay analogous to the emission of electromagnetic radiations by an 

atom.
 11. g-radiations are produced by nuclear transitions like X-rays are produced by atomic transitions.
 12. When the g-ray is internally converted to an electron, this process is known as internal conversion.
 13.  For the working of detectors, the separation and collection of ion pairs is necessary, otherwise 

they will recombine.
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The discovery of electron was a revolutionary step by J.J. Thomson. He determined their charge to 
mass ratio as well. Rutherford discovered the positive nucleus because atom on whole was neutral, and 
hence the compensating particle for electron was required. Rutherford model was further improvised 
by Bohr, when he discovered that the electrons revolve around the nucleus just like the planets revolve 
around the sun. Moreover, the electrons possess quantized angular moment and energy, which will 
be lost or gained only when the electrons jump from one orbit to another. As helium atom was 
found to be four times heavier than hydrogen and lithium was seven times heavier than hydrogen. 

8
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Hence, the existence of some third elementary particle was quite probable. This mystery was solved by 
Chadwick, when he discovered Neutron. The discovery of electron, proton, and neutron was within 
the classical period, which was from 1897 to 1932. The Planck’s photon was also discovered in 1900 
while explaining the black-body spectrum for the radiations emitted by wet object. The discovery of 
“photon” helped Einstein to explain photoelectric effect. The discovery of photon put a revolution-
ary aspect forward as the Newton’s corpuscular theory got the setback. But in 1923, A.H. Compton 
found the shift of wavelength (Compton shift) when the light is scattered by the atoms of target. 
Hence, Compton effect treated light as a particle with energy E hf=  and zero rest mass.

This particle is photon and is represented by g . Then came the era from 1934 to 1947 during 
which the mesons were discovered. The mesons were discovered to define the stability of nucleus 
and hence nuclear forces. The concept of mesons was proposed by Yukawa in 1934. Meson’s mass 
is 1 6/  times of proton mass. “Meson” means “middle weight.” Electron is known as Lepton indicat-
ing it is lightweight and protons/neutrons fall under the category of Baryons, which means “heavy.” 
Yukawa meson “p” is produced in upper atmosphere which disintegrates quickly. In 1937, Anderson 
and Neddermeyer found that cosmic rays have some more lighter particles than the Yukawa “p” 
mesons. Then, Powell also conducted his independent studies, and he found that cosmic rays have 
p-meson/pion and μ-meson/muon. With the discovery of these particles, the dualism of Dirac’s equa-
tion brought new results. According to the dualism of Dirac’s equation, for every particle, there must 
be a corresponding antiparticle having same mass but opposite charge as that of particle. Anderson 
discovered positron which is a positively charged electron and can be regarded as an antielectron. 
Neutral particles such as g-photons are their own antiparticles. Neutrons are also neutral particle, but 
it is not antiparticle of itself. The other quantum numbers for neutron are different. These quantum 
numbers are different for neutron and its antiparticle (antineutron).

Carl D. Anderson was born in New york City. His father was swedish 
immigrant. He graduated from Caltech in 1930 in physics and engi-
neering. He started his investigations into the world of cosmic rays 
under the supervision of Robert A. Millikan. He got very interest-
ing results in his cloud chamber photographs, that is, particle tracks 
could be seen. He explained that these tracks have been created by 
a particle with an electron-like particle having the same mass as that 
of electron but opposite electrical charge. Paul Dirac’s theoretical 
prediction of the existence of the positron also got validation due to 
this discovery. Anderson was the first to detect the particles in cosmic 
rays. Anderson and Victor Hess shared the Nobel Prize in Physics in 
1936 for producing positron–electron pairs by bombarding gamma 
rays produced by the natural radioactive nuclide thorium into other 
materials. CARL D. ANDERSON

8.1 Introduction to Particle Physics

Before starting with particle physics, the elementary particles should be well understood and dis-
cussed. Usually, we understand “elementary” as the entity that cannot be disintegrated into smaller 
subentities. But at the same time, neutron and proton are regarded as elementary particles despite the 
fact that they are made up of other small particles. We will define elementary particles as those par-
ticles whose lifetime is larger than 10–24 sec, i.e., nuclear lifetime. In addition to this, the elementary 
particles have well-defined spacetime properties and nucleon number (N n p= + = 0 1or ). We will 
classify the elementary particles as follows.
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8.1.1 Classification of Elementary Particles
The elementary particles can be classified as follows:

Elementary Particles

Fermions Bosons

(1/2 integral
multiple of h)

(Integral
multiple of h)

Spin statistics play a vital role in determining the nature of a particle. In 1940, Pauli correlated the 
spin angular momentum with particle state. The particles that have integral spin ( 0 1 2 3, , , ,� � �� ) 
are known as bosons.

In addition to this, the Bose–Einstein statistics is symmetric, that is,

 
j jx z t x y z t, , , , , ,y( )→ − − −( )  (1)

where j x y z t, , ,( )  is the wavefunction associated with the particle.
The second category of particles is called fermions. Fermions have half integral spin and their 

wavefunction is antisymmetric, that is,

 
j jx y z t x y z t, , , , , ,( )→ − − − −( )  (2)

Electrons, mesons, etc., are fermions, whereas photons and gravitons fall under the category of bosons. 
The wavefunction can be further divided into spacial and spin part as follows:

 j j j= ( ) ( )1 2  (3)

where j 1( )  is the spacial part and j 2( )  is the spin-part. When the space coordinates are changed, 
then the factor −( )1

l
 is introduced, where l is orbital angular momentum number. When l is odd, 

then j 1( )  is antisymmetric and vice versa. In terms of spin part j 2( ), the wavefunction is symmet-
ric, when the spins of two particles are parallel. When the spins of particles are antiparallel, then the 
spin wavefunction is negative. Hence, we can say the following:

 (i) For bosons, both the spin and spatial part are either symmetric or antisymmetric.
 (ii) For fermions, either the spin part is antisymmetric or the spatial part is antisymmetric.

For fermions, one particle can be accommodated in one quantum state.

8.2 Classification of Bosons

Bosons can be classified as massive and mass-less particles as follows:

We will discuss these particles one by one below.

Massive particles (Mesons)  Massless particles

Bosons

KaonsEtaonsPion Graviton (2h) Photon (1h)
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8.2.1 Mass-Less Particle
Mass-less particles include gravitons and photons. Gravitons are the quantum of gravitational field 
and have 2�  angular momentum. Photons are quantum of light radiations with zero rest mass. The 
energy of photon is given by hf , and it travels with velocity of light. The angular momentum of 
photon is 1�.

8.2.2 Massive Particles (Mesons)
These are strong interacting bosons with zero or integral spins. There are seven types of mesons, and 
these are discussed below.

1. p -Mesons (p  Pions) 
They carry 0�  angular momentum. They do not have any spin and exist in neutral, positive, and 
negative states. The decay modes are given by following reaction:

 

p m n g

p m n g

p g g

+ +

− −

→ + +

→ + +

→ +

u

u

0

 [m
e
 = mass of electron  

= 9.1 × 10-31 kg]

where m+ −/  are mesons and nu  are neutrinos. The mass of p 0  is 264me  and mean life is 7 10 17
×

− sec. 
The mass of p −  and p +  is 273me  with mean life of 1 82 10 8. ×

− sec . Neutral pion is its own antiparticle, 
and it is unstable in nature.

2. Kaons (K) 
They have 0�  angular momentum. They are of three types i.e. K+, K-, K0. They are heavy mesons as 
their mass is almost 970 times the mass of electron. It has following decay modes:

 

K

K

K e

K

u

u

e

+ +

- +

+ +

+ +

® +

® + +

® + +

® +

m n

m n p

n p

p p

0

0

0

 

n m

n

u

e

 is -neutrino and

 is electron-neutrino











The average lifetime of the above reactions is almost 1 2 10 8. × − sec . The neutral pion follows the fol-
lowing decay mode.

K

K

0

0 0 0

→ +

→ +

+

p p

p p

-

The average lifetime of decay for neutral kaons is almost 10−10 sec . Decay mode for K 0  is given by

K e

K e

0 0

0 0

® + +

® + +

-

-

p n

p n
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The average lifetime of decay is 10−10 sec.
The negative kaon decays as follows:

K - -

® +p p
0

The average lifetime of negative kaon is 1 2 10 8. × − sec. Neutral pion is heavier than negative and posi-
tive kaons. The mass of neutral pion is 975 mass of electron (me ) and K + -/  mass is 967 me.

3. Eta-Mesons (h ) 
They also possess 0�  spin. It is neutral particle h0 , and hence its own antiparticle. It is the heaviest 
particle among all the bosons, that is, 1074me . Its decay mode is

h p p p

h g g

h p p p

h p g g

h g

0

0

0

0

0

® + +

® +

® + +

® + +

®

- +

0 0 0

0

0

2

The average lifetime of decay for eta mesons is almost 10−16 sec .

8.3 Classification of Fermions

Fermions can be classified as follows:

Fermions

Antineutrino

Muons Neutrino

Cascade

(≡)(Λ) (Σ) (Ω)

Anti
proton

Anti
neutron

ProtonOmegaSigmaLambda

Hyperons Nucleons

Neutron

Electron

BaryonsLeptons

Fermions can be classified mainly into leptons and baryons as discussed below.
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8.3.1 Leptons

They possess 
1

2
�  spin angular momentum. Their mass is less than the mass of nucleons and pions. 

They are subjected to electromagnetic and weak interactions. The general elaborated classification is 
given as follows:

AntimuonMuonPositronElectron

Leptons

m− m+e+e−

e−e−

ne
nm nmne

AntineutrinoNeutrino

µ−Neutrino µ−antineutrino

Members of this group are discussed below.

1. Electrons (e) 
The electrons have mass 9 1 10 31. × − kg  positron is positive electron. The electrons have charge 
− ×

−1 6 10 19. C , whereas the positron has charge + ×
−1 6 10 19. C . Electrons are stable particles. They 

have half spin angular momentum of �2 .

2. Muons (
 
m) 

There are two types of muons, that is, positive muon and negative muon. The mass of muons is 207 
times the mass of electrons. The charge of muon is ± ×

−1 6 10 19. C  depending upon whether it is posi-
tive muon (m+) or negative muon (m −). The muons are unstable particles. The half-life for muons is 
almost 2 2 10 6. × − sec .

The decay modes for muon is given by

m n n

m n n

m

m

+ −

− −

→ + +

→ + +

e

e

e

e

3. Neutrinos and Antineutrinos (n )
In 1930, Pauli proposed the existence of neutrinos to conserve angular momentum, energy, and spin 
during the process of b − decay. Neutrinos do not have rest mass and are neutral particles. Neutrinos 
are stable particle that move with the velocity of light. Neutrinos are of two types, that is, electron 
neutrino and m neutrino. The antiparticles of neutrinos are antineutrinos, and they are not very stable 
particles.

8.3.2 Baryons
The baryons are fermions and possess half-integral spins. They include the particles with mass equal 
to or greater than nucleons. The baryons that have mass equal to the mass of proton and neutron are 
known as nucleons. The baryons with mass greater than nucleons are known as hyperons.
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Cascade
particle

Omega
particle

Sigma
particle

Lambda
particle

Hyperons

Baryons

AntineutronNeutron

Nucleons

Proton Antiproton

1. Nucleons 
Nucleus consist of neutron and protons. The mass of proton and neutron is the same, that is, 
1 67 10 27. ´

- kg. Neutrons are neutral particles; whereas, protons have a charge equal to antielectron 
or 1 6 10 19. × − C. The spin of nucleons is �2 . The nucleons have same lifetime of 10−23 sec  within the 
nucleus. Free neutron and bound proton are unstable. They follow the following decay modes:

Inside the nucleus
p n

n p

→ +

→ +

+

−

p

p

Outside the nucleus
n p e

p n e

e

e

→ + +

→ + +

−

+

n

n

Free neutrons have a lifetime of 933 seconds.

2. Hyperons 
The mass of hyperons is more than the nucleons. There are four types of hyperons as explained below:

 (a) Lambda particles (Λ0 )
  The spin of lambda particles is �2  and the mass is 2180me . The decay modes are given by

Λ

Λ

0 0

0

→ +

→ +
−

n

p

p

p

  The lifetime of lambda particles is 2 1 10 10. × − sec . The antiparticle of lambda particle is Λ0 .

 (b) Cascade particles (Ξ )
  The cascade particle is Ξ−  and Ξ0 . The mass of negative and neutral cascade particle is 2582me  

and 2570me , respectively. The decay modes are given by following reactions:

Ξ Λ
0 0 0
→ + p

Ξ Λ→ +
−0
p
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  The lifetime of neutral cascade particle is 1 2 10 10. × − sec , whereas the lifetime of negative  cascade 
particle is 1 1 10 20. × − sec . Cascade particles are also known as Xi hyperon. (Their charge is 
1 6 10 19. ´ - C.)

 (c) Sigma particle (Σ )
  Sigma hyperons have �2  angular momentum. There are three sigma particles, that is, positive, 

negative, and neutral. The mass of positive sigma particle (∑+ ) is 2325me  and that of negative 
sigma particle (∑− ) is 2338me . Neutral sigma particle (∑0 ) is 2320me . The decay reactions 
are given by

å ® +

å ® +

å ® +

å ® +

+

+ +

- -

p

n

n

n

p

p

p

g

0

0

  The lifetime of ∑+  is 6 10 11
×

− sec  and ∑−  is 10 10− sec . Neutral sigma particles have a lifetime 
of 10 11−  sec. ∑+  and ∑−  are antiparticle of each other. The charge of ∑+ −/  is ± ×

−1 6 10 19. C

 (d) Omega hyperon (W)
  These fermions have charge as that of electron. For W+, the charge is 1 6 10 19. × − C  and for W- 

the charge is − ×
−1 6 10 19. C . The omega hyperons have a spin angular momentum of 

3

2
� . The 

mass of W- is 3286me  and W+ is 3276me . The decay modes are given by

Ω

Ω

− −

− −

→ +

→ +

Ξ

Λ

0

0

p

K

  The average lifetime is 1 1 10 10. × − sec .

seth Neddermeyer was born in Richmond, Michigan, on september 
16, 1907. He studied from stanford University and graduated at the 
California institute of Technology in 1935 under the supervision of 
Carl D. Anderson. in 1936, Neddermeyer and Anderson discovered 
the negatively charged subatomic particle called “muon.” At first, 
Anderson and Neddermeyer believed that they had seen the pion, 
which Hideki yukawa postulated in his meson theory. later on, they 
found that it was not the yukawa pion. J. Robert oppenheimer 
from the National Bureau of standards appointed Neddermeyer to 
work on the Manhattan Project. Neddermeyer was a group leader 
in the ordnance Division for implosion experimentation, although 
oppenheimer was full of doubts for the implosion method. 
However, in January 1944, Neddermeyer was demoted to senior 
technical advisor, as he could not implement his idea even after 
struggling with it. Neddermeyer taught at the University of Washington, until his death in 1988. 
United states Department of Energy awarded him with Enrico fermi award in 1982.

SETH NEDDERMEYER
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8.4 Other General Classifications

The elementary particles can also be classified on the basis of interactions between particles. The 
interactions between particles depend upon the quanta exchange. Every force has its own quanta 
through which the forces are transmitted. The second classification is based on the stability of par-
ticles, that is, lifetime. First, we will discuss the particles on basis of interaction.

8.4.1 Fundamental Interactions
There are four types of fundamental interactions between particles as discussed below:

1. Gravitational Interaction
Gravitational interaction depends on inertia and hence mass. These interactions are attractive in 
nature and follow the inverse square law, which means the force between two bodies varies as inverse 
of square of distance between them. These interactions are very weak in nature. The quanta of gravi-
tational field are gravitons which have spin 2�  and zero rest mass. Gravitational interaction is central 
in nature, as it acts along the line joining two bodies. The strength of gravitation is given by a constant 
Gm  (Cavendish gravitational constant).

Gm = ×
−6 7 10 11 2 2. Nm /kg

There is another dimensional interaction constant given by

g G
M

c
m m=









 = × −

2
395 82 10

�
.

Where M is the mass of nucleon, c is velocity of light and �  is Dirac constant. The gravitons have a 
characteristic time of 10−16 sec.

2. Electromagnetic Interaction
These interactions are based on the nature of charge. These forces can be attractive (between opposite 
charges) and can be repulsive (between same charges). The quanta of electromagnetic interaction are 
photon. These are long-range interactions that follow inverse square law. Like gravitational interac-
tion, these are also central in nature. The coupling constant is ge  given by

g
e

c
e = ≈

2 1

137�
(C.G.S)

These interactions have characteristic time of 10−20 sec . The pair production from gamma rays is the 
process that involves electromagnetic interaction. The interaction between positive charged nucleus 
and negative charged orbiting electrons is also electromagnetic in nature.

3. Weak Interactions
These interactions are due to W + , W − , and Z 0  bosons. These are short-range interactions 
which don’t obey inverse square law. The weak interactions are involved during decay processes. 
The characteristic time of decay is 10−10 sec . The constant for weak interaction is gw , which is 
given by

g G
hc

h

Mc
w w= 













 ≈ ×
−

−2

2 4

71
5 10
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4. Strong Interactions
These are the strongest interactions that exist within the nuclei. These are short-range interactions 
and charge independent. They do not obey inverse square law. The quanta of these interactions are 
mesons, which are exchange particles. These interactions overcome the strong repulsions between 
nucleons of same charge. These interactions are spin dependent. The interaction constant is given by 
constant g s , as follows:

g
m M

c
s ≈
( )

≈ ×
−/2

4
8 10

2

2

2

p�

m → pion rest mass and M is nucleon rest mass.
g s → is known as pion–nucleon coupling constant. The characteristic time of weak interactions 

is 10−23 sec .
To sum up with, the force and range for the above-mentioned forces is given by

Range Gravitational EM Strong Weak

i.e., : : 10 m : 10 m

> > >

¥ ¥
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è
ç

ö
- -5 17

øø
÷

Force Strong EM Weak Gravitational

i.e.,

> > >

> > >

æ
- - -1 10 10 103 14 39
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ç
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ø
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8.4.2 Classification on the Basis of Stability

Nucleons

Elementary Particles

Baryons

Hadrons

Hyperons

Mesons

LeptonsPhotonsGravitons

This classification has been familiar to us as we have discussed them in Sections 8.2 and 8.3. Here 
we have new collective set of particles, which is known as hadrons. Hadrons are collective group of 
mesons and baryons.

8.5 Parity and Angular Momentum

Parity represents the mirror image or space reflection. If wavefunction changes sign upon inversion of 
space coordinates, then it is said to odd parity. If the wavefunction does not change sign upon space 
coordinates, then it is said to have even parity. Parity is also related to angular momentum as −( )1

l
 is 

the factor that decides the factor (l is angular momentum). The factor −( )1
l
 could be obtained for 

hydrogen atom problem. We know that, the solution to hydrogen value problem (Chapter 4) is given by

 
j q f q fr R r Yl, , ,( ) = ( ) ( )m

l  (4)
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or  
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l
 is magnetic quantum number]

When the parity is applied, then the above equation can be written as (after ratio of p ) follows:
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For a composite system, parity is multiplicative in nature. For example, Let P be the system with 
P P Pa b c, , ,…  parities for the units inside the system, then total parity is given by

 Parity = P P Pa b c…  (6)

8.6 Parity Conservation

The condition for two operators A and B to be commuting is given by

AB BA A B−[ ] = [ ] =0 0or ,

Let us suppose that the Hamiltonian H for a system P-commute with parity operator P, such that

 

HP PH

HP PH

− =

=

0

 (7)

Let the wavefunction j r( )  be the eigenfunction of parity operator such that

 H r E rj j( ) = ( )  (8)

Operating with parity P on both sides,

 

PH r PE r

HP r EP r P r

j j

j j j j

( ) = ( )

( ) = ( ) =

[ sing ( ) and ( )]

[where ( )

u Eqs 7 8

¢¢

¢ ¢

( )]r

H r E rj j( ) = ( )  (9)

If the state is degenerate with energy E, then j r( )  and j ¢ r( )  can have the same energy. If j r( )  and 
j ¢ r( )  are non-degenerate, then they have different energies in their own states.
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According to parity conservation, if the following reaction occurs, then

x y x y+ ® +¢ ¢

Then the parity for reactants is given by

 P P x P y P| | | |reactants relative motion>= > > >  (10)

and for  P P x P y P| | | |products relative motion>= > > >¢ ¢

The | Prelative motion >  is affected by parity, and hence a factor −( )1
l
 is introduced for reactants and 

-( )1
l ¢

 for products, such that

 
-( ) > >= > > -( )1 1

l l
P x P y P x P y| | | |¢ ¢

¢

 
(11)

where l is relative angular momentum between x and y, and l ¢  is relative angular momentum between 
x¢  and y¢. Parity of neutron, proton, and deuteron is assumed to be positive.
Note: Tau-Theta Puzzle
As per the parity conservation law, for all atomic and nuclear processes, parity should be conserved. 
But this is not the same for mesons, that is, q-meson and t-meson. This can be explained as follows:

q p p

t p p p

+ +

+ + + −

→ +

→ + +

odd parity even parity

odd parity odd pari

0

tty

Hence, q +  and t +  are charged mesons with odd parity, which end in states of different parities. This 
is known as t q−  puzzle.

Tsung-Dao lee was studied at Kweichow province of China in 1943. lee moved to Kunming 
due to sino-Japanese War. in Kunming, he attended the National southwest University. During 
the course of his studies, he met another student Chen-Ning yang. Both of them received fel-
lowships to study in the United states in 1946. yang had been with Enrico fermi from Columbia 
to the University of Chicago, whereas lee only had the choice of University of Chicago. only 
University of Chicago in the United states then allowed an undergraduate to work toward the 
PhD without the intermediate degrees. Both of them became very good friends then.
 yang was not very good in experimental physics. He got his doctoral thesis under the supervi-
sion of Edward Teller. lee did his doctoral thesis under fermi. fermi gave advice to yang on his 
career, which he ignored a bit:

As a young man, work on practical problems; do not worry about things of fundamen-
tal importance.

 lee and yang worked together at the institute for Advanced study in Princeton. J. Robert 
oppenheimer regarded lee as “one of the most brilliant theoretical physicists then known.” 
lee and yang’s work solved the mystery of the theta-tau puzzle.
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8.7 Mass Determination Techniques for Particles

To determine the mass of particles, we will use following three techniques:

 1. m-mesic method
 2. Kinematic method
 3. Trajectory method

These techniques are discussed as below.

8.7.1 m-Mesic Method
When nuclei is bombarded with high-energy particles, the p +  or p −  mesons are emitted from the 
target nuclei. The p +  mesons decay to muons as follow:

p m n n

n n

m

m

+ +

+

→ + +

↓

+ +

I

II

e

ee

In the first step, muon is produced along with neutrinos. The muon further decays to electron,  
m-neutrinos, and electron antineutrino. The lifetime for p +  meson is 0 022. secm  and for m+  muon 
is 2 15. secm . Mesons are heavy electrons ( 207me); and when they travel through matter, then they 
lose energy by ionization and excitation processes. The m−  mesons may be captured by Bohr orbits 
if the thermal energy of m− -muons is high.

When the energy of muons is small, then they are scattered rather than being absorbed. The m−

-muons that are absorbed by Bohr’s orbit will fall down to states of lower energy by radiative transi-
tions. Prior to radiative transitions, nonradiative transitions will take place via collisions. During the 
radiative transitions, mesonic atom would give characteristic X-rays. The radius of mesonic atom is 
smaller than the atom as follows:

 
Bohr radius or

n

mZe
=

2 2

2

� e

p

 (12)

Hence,   r
Z

a
1

 (13)

Z Zmeson atom>

Hence,  r rmeson Bohr atom<  (14)
The energy released is given by

 

E mZ
n n

= -
é

ë
ê

ù

û
ú

1

2

1 12 2

1
2

2
2

a  (15)

[a =
1

137
, and energy of transition can be obtained]

From Eqs (12) and (15), the mass of mesons can be obtained.
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8.7.2 Kinematic Techniques
In kinematic techniques, the principle of conservation of momentum and energy is used, that is,

Initial momentum = Final momentum
Initial energy = final energy

We will explain it using Powell experiment. In 1947, Powell studied the decay of p + -meson, that is,

p m n
m

+ +

® +

We can find pion mass using kinematic methods. To start with, let us assume pion at rest, then m c
p
+

2  
is rest mass energy of pion. Using conservation of momentum

 

Momentum of momentum of momentum of p m n
m

n
m m

+ +
= ( ) +

= ++0 p p  (16)

 p p
m nm
+
= −  (17)

Using conservation of energy,

Energy of energy of energy of p m n
m

p m m

+ +
= +

= +( )+ + +m c p c m c2 2 2 4
11 2

2 2 4
1 2

2 2 2 4
1 2

2 2 4

/ /

/

+ +( )

− +( ) = ++ + +

p c m c

m c p c m c p c m c

n n

p m m n n

m m

m m
(( )

1 2/

Squaring both sides and using Eqn. (17) p p
m nm
+ =





2 2 ,

 

m c m c m c p c m c m c

m m m

p m p m m n

p m n

m

m

+ + + + +

+ +

+ − +( ) =

+ −

2 4 2 4 2 2 2 2 4
1 2

2 4

2 2

2
/

22 2 2 2 2 4
1 2

2 2 2
2

2

2

2

4

( ) = +( )

+ −( )
= +

+ + +

+ +

+

+

c m p c m c

m m m

m
p m

p m m

p m n

p

m

m

/

mm
+

2 2c  (18)

 Using m c m c
m nm
+
= =

2 24 2 0. MeV     and  (19)

Þ

p

m

m

m

+

+

=

2

2
4 2.

 Þ p
m
+
= 29 8. MeV  (20)

Using Eqs (19) and (20) in Eqn. (18),

 
m c
p
+
=

2 139 3. MeV  (21)

Hence, the mass for elementary particle meson is obtained.
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8.7.3 Trajectory Method
From the relation p mv= , it is clear that to determine mass, we need to know momentum and 
velocity. Momentum and velocity are influenced by external conditions; hence, these quantities are 
extrinsic quantities. Mass do not depend upon the external conditions, and hence mass is an intrinsic 
quantity. Trajectory method can determine the mass of charged particles provided the extrinsic con-
ditions of temperature, density and pressure are kept constant. In trajectory method, we will deter-
mine, mass, velocity, and energy to obtain mass.

1. Determination of Momentum
If the particle is moving with velocity “v” under the influence of strong magnetic field B, then the 
particle experiences force. This force makes the particle to move in circular path (radius r).

The condition for particle of charge e to move in circular orbit of radius r is that the magnetic 
force should be equal to the centripetal force, that is,

 

mv

r
e B v

mv

r
B ev

mv

r
B ev

2

2

2

= ×





=

=

→ →

 sin

when the velocity is 

q

[
ttangential to charge]

mv Ber

p Ber

=
=  (22)

Hence, momentum can be obtained from magnetic field, charge, and radius.

2. Determination of Velocity
The time can be determined using time-of-flight technique between two detectors (Figure 8.1).
If particle enters detector D1, then the time ( t1 ) should be noted down. Then, when the particle 
enters D2, then time t2  is noted down. Let “L” be the distance between two detectors. The velocity 
can be given by

 Velocity
2 1

=

−

=

L

t t

L

t
 (23)

(D1)

Detector

1

Detector

2

(D2)

t1

L

t2

Figure 8.1 Time of flight technique

When environment of detectors change, then the measurements are affected.
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3. Determination of Energy
When charged particles pass through matter, then the excitation as well as ionization of medium takes 

place. During this process, the energy loss occurs, and this is given by −
dE

dx
. The formula for −

dE

dx
 

is given by Bethe and Block in 1933 as follow:

 − =






dE

dx

Z e Z

m v
N

mv

Ie

4 22 4

2

22

p ′
ln  (24)

where I is the ionization potential, N is the number of particles velocity, Z is the atomic number of 
charged particle, and Z ′  is the atomic number of absorbing medium. me  is mass of electrons and v 
is the velocity of particle. The range of particle is given by

 R dx
E

= ∫
0

 (25)

Range is the total distance covered by the particle before it comes rest:

 

⇒ 

R
dx

dE
dE

dE

dx
dE

R E

R R E

E

E

= − = − −







=

=

∫ ∫
−0 1

0

0

0 318
3

2

3
2

.

 (26)

If we know the range, then energy of particle can be calculated.

8.8 Intrinsic Quantum Numbers

Every particle is associated with certain quantum numbers. These quantum numbers describe the 
particle completely. Along with s l j m m ms l j, , , , ,  quantum numbers, there are additional quantum 
numbers described below, which are used for elementary particles.

8.8.1 Lepton Number (L)
Leptons are “lightweight” particles. Konopinski and Mahmoud introduced lepton number “L”. The 
leptons are electron ( e − ), muon ( m− ), electron–neutrino (ne ), and muon–neutrino (n

m
). The anti-

leptons include positron ( e + ), antimuon ( m+ ), antielectron neutrino (n e ), and antimuon neutrino 

(nm ). Following are the rules for lepton number:

 (i) L = −1  for antileptons e e
+ +( ), , ,m n nm

 (ii) L = +1  for leptons e e
− −( ), , ,m n n

m

 (iii) L = 0  for all other particles

Until and unless the lepton number conservation is not satisfied, the decay modes are not satisfied. 
Leptons are created and destroyed during particle–antiparticle pairs.
For example,

g

g

® +

-

ù

û
ú =

® + ù

û
ú ¹

- +

-

å

å

e e

L
L

p e

L
L

i

i

0 1 1

0 0 1

constant

constant
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g ® + ù

û
ú =å

p p

L
Li

0 0 0
constant

8.8.2 Baryon Number (B)
The electric charge Q should be conserved during a decay as follows:

p e→ + 


 =

+

∑
g

Q
Q

1 1 0
conserved

But this decay mode does not exist despite the fact that charge is conserved. Then Stückelberg sug-
gested the concept of baryon number (B). Baryon numbers include nucleons hyperons and their 
antiparticles. Baryon number has following rules:

 (i) B = −1  for antiproton and antineutron and antihyperons

p n, , , ,S X W
- - -

( )
 (ii) B = +1  for protons, neutrons, and hyperons
 (iii) B = 0  for leptons, photons, and mesons

For example,
+

+ +

− −

→ +
=

→ +
=

→ +

∑
∑

∑ ∑

∑

p

B
B

e

B
B

n

B

i

i

p

n

p

0

0

1 1 0

1 1 0 0

constant

+
constant

Λ

11 1 0

1 1 0

0 0

B

n

B
B

i

i

=

→ +
=

∑

∑

constant

constantΛ p

+

∑ , −

∑ , and Λ0 are also called strange particles. Nuclei also consist of nucleons, that is, protons and 
neutrons. Hence, baryon number B is identical to the mass number. When one or more nucleons of a 
nuclei are replaced by hyperons, then the nuclei is said to be hypernuclei.

8.8.3 Isospin (I)
Before starting for isospin, it should be clear that iso-spin is represented only in iso-spin frame. Heisenberg 
observed that the mass of protons and neutrons is same, and both particles have same spin of �2 . 

This is the case when there is no electromagnetic interaction. But, in the presence of electromagnetic 
interactions, the masses are difference due to coulomb forces. In other words, the nucleons can be writ-
ten as a part of column matrix:

p n=







↑








 ↓

1

0

0

1
and =

up spinor down spinor
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Isospin vector I is not in ordinary space and has components I I1 2, , and I3  in isospin space. In 
isospin space, the proton and neutron are not treated as two particles, but two states of the same 
particle. Hence, proton and neutron are isospin-up and isospin-down states of the nucleon. There are 
2 1I +  orientations corresponding to I. The third component I3  distinguishes between the nucleons, 

because I3

1

2
=

−

 for neutron and I3

1

2
=  for proton. For the hadron families, many members have 

almost similar mass but different charges. For pion, I =1, and hence 2I + =1 3  states
when I3 1= , it is p + -meson

   I3 1= − , it is p − -meson, and

   I3 0= , it is neutral meson
Table 8.1  gives the spin and isospin for baryons and mesons.

Table 8.1 Spin and isospin of particles

Elementary 
Particle

Spin Isospin

I I
3

p 1
2

1
2

+
1

2

n 1
2

−

1
2

+

∑

1
2 1

1

0
∑ 0

−

∑ −1

Λ
0

1
2

0 0

Ξ
0

1
2

+ 1
2

Ξ
−

−

1
2

Ω
−

 
3

2
0 0

h
0

0

0 0

K +

1
2

+
1

2

K 0
−

1
2

p
+

1
+1

p
0 0
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8.8.4 Hypercharge (Y)
Hypercharge is given as twice the average charge (Q ) of members of the group

 Y Q= 2  (27)

Hypercharge is also given by

 
Y I Q= −( ) 









2 3

3

Q  is charge and 

I  is isospin component
 (28)

For π-mesons, the average charge is zero, which gives zero hypercharge.

8.8.5 Strangeness (S) (Gell-Mann and Nishijima Reaction)
In 1947, Rochester and Butter found V-shaped particles. One of the decay modes was given as follows:

p K+ → +
−
p Λ

0 0

The lifetime for decay is almost 10 10−  sec. The cross-section is of the order of millibarn for this reac-
tion. Cross-section of order of millibarn represents strong interactions. In contrast to this, the decay 
lifetime of 10 10−  sec is characteristic for weak interactions. Conclusively, we can say that the kaons 
and hyperons are produced by strong interaction and decayed by weak interactions. A. Pais proposed 
that these V-particles are produced in pairs. Due to their strange behavior, these particles are known 
as strange particles. According to Pais, the strange particles are always produced in pairs via strong 
interactions, and then decayed via weak interactions.

Gell-Mann and Nishijima introduced quantum number known as “strange quantum number,” 
which is additive in nature. The strange quantum number is given by the following equation:

 S Y B= −  (29)

[using Eqn. (28)]

 
S I B= −( ) −2 Q 3  (30)

Like hyper charge, strangeness is conserved in strong interactions.
The following points are important:

 (i) S = 0  for nucleons and pions
 (ii) ΣS  = constant for strong as well as electromagnetic radiations
 (iii) ΣS  = not constant for weak interactions.

Hence, “strangeness” represents broken symmetry because it displays different behaviors during 
strong and weak interactions. Table 8.2  lists the hypercharge and strangeness for particles. It is 
important to note that for em interactions, isospin is not conserved, whereas for weak interac-
tions, strangeness and parity are not conserved. All the quantum numbers are conserved for strong 
(hadronic interactions).
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Table 8.2 Baryon number, strangeness, hypercharges, and average charge for  different particles

Particle Baryon No. Strangeness (S) Hypercharges (Y) Average Charge

Photon 0 0 0 0

Kaon 0 1 1 ½

Pion 0 0 0 0

Nucleon 1 0 1 ½

Sigma 1 −1 0 0

Lambda 1 −1 0 0

Cascade 1 −2 −1 −½

Omega 1 −3 −2 −1

Murray Gell-Mann was born in New york City on september 15, 
1929. He did his Bsc at yale University in 1948, and graduated in 
1951 at the Massachusetts institute of Technology. He became a 
member of the institute for Advanced study in 1952. He worked 
as an instructor at the University of Chicago during 1952–1953. 
in 1954, he developed the strangeness theory and the eightfold 
way theory while he was appointed as an associate professor. He 
became professor in 1956, and his inclination was more toward 
the theory of weak interactions. in 1959, he received the Dannie 
Heineman Prize of the American Physical society. Currently, he 
is a member of the National Academy of sciences and fellow of  
American Physical society. MURRAY GELL-MANN

8.9 Conservation Principles

Following are the conservation laws that should hold good during the decay process.

 1. The total charge Q should remain constant for decay reaction. Many researchers proposed the 
concept of decay of electron as follows:

e − → +

→ +

n g

electron neutrino photon

The momentum, spin, and energy for this reaction is conserved; hence, the reaction is feasible. If 
electron comes out of shell, then the electron from higher shell should have jumped to fill the vacancy 
created by electron. These could have given rise to characteristic X-rays. But no X-rays were observed 
during the decay process. Hence, the decay is not feasible, which is due to non-conservation of charge. 
For a reaction or decay to occur,

Q =∑ 0

Millikan’s oil drop experiment proved that charge is quantized, that is, Q = ±ne, where n is the 
number of charges. n is also said to be charge number. The charge number should also should also be 
conserved during a reaction, that is,
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For e.g. 

i.e.

 U V X Y

n n n nu v x y

+ → +

+ = + (31)

Charge is conserved; it can be proved with the help of symmetry principles. Let us assume that 
eigenstate je  represents state of charge e. Then, the Schrödinger equation is given by the following 
equation:

 
i
d

dt
He

e�
j

j=  (32)

Q is the charge operator and H is the Hamiltonian. Usually, Hamiltonian represents total energy. If 
charge is conserved, then it should satisfy commuter relation:

 
H ,Q[ ] = 0  (33)

Hence, the Hamiltonian and Q should have simultaneous set of eigenfunctions:

 Qj je eq=  (34)

q represents eigenvalue of operator Q. We will use Gauge transformation of first kind, that is,

 j j
e

e
i

ee′

=
Q  (35)

where e  the is real parameter and e ieQ represents the transformation factor. Gauge invariance states 
that the je  and j ¢e  should satisfy the Schrödinger equation, Hence, from Eqn. (32),

i
d

dt
H

i
d

dt
e H e

i e

e
e

i
e

i
e

i

�

�

�

j
j

j j
e e

e

′
′=

( ) = ( ) ( ) 
Q Q

Q

use Eqn. 35

dd

dt
Hee i

e

j
j

e= Q

Applying e i− eQ  from both sides,

 
i
d

dt
e Hee i i

e�
j

j
e e

=

− Q Q  (36)

From Eqs (32) and (36),

 H e Hei i
=

− e eQ Q  (37)
Using binomial expansion,

 

H i H i

H H i H i H H

= -( ) +( )

= - + + +

1 1
2

e e

e e e

Q Q

Q Q Q Q .......
neglecting highher-order terms
� ��������

H H i H H

H H i H

i H

= + -[ ]

= + [ ]

[ ] =

e

e

e

Q Q

Q

Q

,

, 0

HH ,Q[ ] = 0  (38)
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Hence, the charge is conserved, and it is well demonstrated from the gauge invariance. We can sum 
up the conclusions as follows:

 1. The total energy should remain constant
 2. The linear and angular momentum should be conserved.
 3. The total baryon number and lepton number are conserved.
 4. The isospin and hypercharge should be conserved.

Example

p p+ → + +
− +

p p p
0

Charge Q p p p- p+ p0 Conserved

1 −1 −1 1 0

Spin ½ −½ 0 0 0 Conserved

B 1 −1 0 0 0 Conserved

S 0 0 0 0 0 Conserved

L 0 0 0 0 0 Conserved

Parity −( )1
l

−( )1
l

Conserved

Isospin ½ −½ 0 0 0 Conserved

Hence, this decay mode is feasible.

8.10 Quarks and Quark Model

As has been indicated from the evidences that the matter consists of fundamental particles that are 

known as quarks. Quarks are supposed to carry fractional charges such as ±
2

3
| |e  and ±

1

3
| |e . There 

are six different quarks given below:

 (i) u—(up quark)— 2
3 e( )  (antiquark −u )

 (ii) d—(down quark)— -( )1
3 e  (antiquark − d )

 (iii) s—(strange quark)— -( )1
3 e  (antiquark s )

 (iv) c—(charm quark)— 2
3 e( )  (antiquark c )

 (v) b—(bottom-quark)— -( )1
3 e  (antiquark b )

 (vi) t—(top quark)— +( )2
3 e  (antiquark t )

Each quark has a baryon number 1
3 ; and for antiquark, it is − 1

3 . Three quarks are required to make 
baryons, and antibaryons have three antiquarks. All the quarks and antiquarks have a spin of 1

2 . In addi-
tion to this, the quarks are given colors. The quarks have three basic colors: red, green, and blue; whereas 
antiquarks have antired (cyan), antigreen (magenta), and antiblue (yellow). For making a baryon, all the 
quarks are of different colors. Apart from these, the following are the imported properties of quarks:

 1. Hadrons prefer to have strong interactions. These interactions are due to quarks. Quarks 
exchange the particles named “gluons” that move with speed of light and are mass-less particles. 
Gluon contains color as well as anticolor.
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 2. Quantum chromodynamics is an important aspect of particle physics, which explains the inter-
action among quarks.

 3. Mesons are colorless as it consists of quark with color and anticolor. Neutron has one u quark 
and two d quarks. Proton has two u quarks and one d quark.

u d d

u d d

u u d

u u

( )( )( ) →

( )( )( ) →

( )( )( ) →

( )

neutron

antineutron

proton

(( )( ) →d antiproton

 4. Strange quark has S = 1 and antiquark has S = +1. All other quarks have S = 0.
 5. Charm quark has charm C = +1.
 6. The composition of some hadrons in terms of quarks is given in Table 8.3 :

Table 8.3 Composition of Hadrons

Hadron Quark Charge Spin B S

h
0 udd − − + =1

3
1

3
2

3 0 ↑↓↓ = 1
2 1 0

Ω
− sss - - - = -

1
3

1
3

1
3 1 ↑↑↑ = 3

2 1 −3

p
+ ud 2

3
1

3 1+ = ↑↓ = 0 0 0

K + us 2
3

1
3 1+ = ↑↓ = 0 0 1

p+ uud 2
3

2
3

1
3 1+ − = ↑↑↓ = 1

2 1 0

 7. The quarks can also be represented by column matrices (as proposed by Gell-Mann)

a b c=

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

=

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

=

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1

0

0

0

1

0

0

0

1

, ,  and  

The quark a and b have isospin doublet ( I = 1
2 ) and c quark is singlet (I = 0 ).

Unitary matrix (Uij ) can be used to interchange the matrix.

q U qi ij j
j

=
=

∑
1

3

Three properties of quarks are charm, color, and flavor. In 1864, Dr Glashow proposed the “charm” 
quark. For all the quarks, Pauli’s exclusion principle should be obeyed; but for nucleons, it is violated. 
That is why the proposal of different colors came into existence, when W. Greenberg proposed color of 
quarks. When we say a quark is “green,” it means that it has 1 green color unit and 0 red and blue color 
unit. Hence, individual quarks have colors, but the elementary particles are neutrals, for example, had-
rons are composed of three quarks: red, green, and blue. Either all the colors are in the same amount, 
or the total amount of colors is zero. The quarks with their quantum properties are given in Table 8.4 :
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Table 8.4 Quantum properties of quarks

Quark Mass Charge Spin Isospin B S b T

Up 330 m
e

2
3 e �

2
1

2
1

2
1

3 0 0 0 0

down 330 m
e

−

1
3 e �

2
1

2 −

1
2

1
3 0 0 0 0

Strange 500 m
e

−

1
3 e �

2 0 0 1
3 −1 0 0 0

Charm 1 6 2. GeV/e 2
3 e �

2 0 0 1
3 0 1 0 0

Bottom 4 9 2. GeV/c −

1
3 e �

2 0 0 1
3 0 0 1 0

top 20 2GeV/c 2
3 e �

2 0 0 1
3 0 0 0 1

C −

SUMMARY

The chapter described the elementary particles as the entities that cannot be disintegrated into smaller 
subentities. The wavefunction for a particle is given by the spin and spatial part. For bosons, both the 
spin and spatial part are either symmetric or antisymmetric. For fermions, either the spin part or spatial 
part is antisymmetric. Bosons can be classified as massive particles and mass-less particles. Fermions are 
leptons and baryons. Baryons can further be classified as hyperons and nucleons. Leptons possess �2  
spin angular momentum. The mass of hyperons is more than the nucleons. Lambda, sigma, omega, and 
cascade particles fall under the category of hyperons. On the basis of fundamental interactions, the par-
ticles can be classified under gravitational interactions: electromagnetic interactions, weak interactions, 
and strong interactions. On the basis of stability, the elementary particles can be classified as gravitons, 
photons, leptons, and hardons. It is explained that parity represents the mirror image or space reflection. 
For a composite system, parity is multiplicative in nature. According to tau-theta puzzle, the q +  and t +  
are charge mesons with odd parity ending in states of different parities. Mass determination techniques 
for particles include m -mesic methods: kinematic method and trajectory method. Intrinsic quantum 
numbers such as s l j m ms l, , , , , and mj  describe the particle completely. Other intrinsic quantum num-
bers include lepton number, baryon number, isospin, hypercharge, and strangeness. According to quark 
model, the matter consists of quarks. Quarks are supposed to carry fractional charge.

SOLVED PROBLEMS

Q. 1: What would be the energy that is required to annihilate proton and antiproton?

Ans: After annihilation, the reaction becomes

p p m cp+ →
* .2 2

Energy required ≈ 2 2m cp

≈ ×2 931 MeV

≈1 862. MeV

≈1 862. BeV
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Q. 2: Obtain whether the following reactions are allowed or not:

 (i) p
+ +

+ +n K→
0 K

 (ii) p p
−
+ → +p 0 0

Λ

Ans: (i) p + +

+ → +n K K0

π + + n → K 0 + K +

Q 1 0 0 1 ∆Q = 0
B 0 1 0 0 ∆B = 0
S 0 0 1 1 ∆S ≠1

Hence, this reaction is forbidden.
(ii) p p

−
+ → +p 0 0

Λ

π - + P → π  0 + Λ0

Q -1 1 0 0 DQ = 0
B  0 1 1 0 ∆B = 0
S  0 0 -1 1 ∆S = 0

Hence, this reaction is allowed.

Q. 3: Is p p K+ → +
+ +
Σ  forbidden or allowed?

Ans: p p K+ → +
+ +
Σ

p + p → ∑+ + K+

Q 1 1 1 1 DQ = 0
B 1 1 1 0 ∆B ≠ 0
S 0 0 -1 1 ∆S = 0

Hence, this reaction is forbidden and will not take place.

Q. 4: Given examples of two strong and two electromagnetic interactions.

Ans: The examples of strong interactions are the following:

p p
−

+ → +p n0

p
−
+ → +p KΛ

0 0

These interactions involve the short-range forces and hadrons.
The examples of electromagnetic interactions are as follows:

p g g
0
→ +

Σ Λ
0 0
→ + g

These involve emission or absorption of photons.
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Q. 5: Is p e→ +
+

g  feasible or not?

Ans:

p → e+ + γ

Q 1  1 0 ∆Q = 0

B 1  0 0 ∆B ≠ 0
L 0 −1 0 ∆L ≠ 0

Hence, it is not feasible.

Q. 6: Is p − + → +p Σ
0
ν  allowed or forbidden?

Ans:

π - + p → ∑0 + ν

Q −1 1 0 0 ∆Q = 0
B 0 1 1 0 ∆B = 0
S 0 0 −1 0 ∆S ≠ 0

I3
-1

2
1

2
0 0 ∆I3 0=

Hence, the reaction is forbidden.

Q. 7: For the electromagnetic decay,p g g
0
→ + ,how will I and I3  behave?

Ans:

π  0 → γ + γ

I 1 0 0 ∆I ≠ 0
I3 0 0 0 ∆I3 0=

Hence, the component I3  is conserved but not the isotopic spin I.

Q. 8: Obtain whether strangeness and baryon number of the following decay is conserved or not.

p p p+ → + +
+

Λ Σ
0

Ans:

p p p+ → + +
+

Λ Σ
0

B 1 1 1 1 1 ∆B = 0
S 0 0 0 −1 −1 ∆S ≠ 0

Hence, neither Baryon number nor the strangeness is conserved in the above reaction.
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Q. 9: Obtain whether isospin is conserved for the following decays:

 (i) p p n p+ → + +
+

p

 (ii) p p n+ → + +
+

Λ Σ
0

Ans: (i) p p n p

I I

+ ® + +

- ù

ûú
=

+
p

3 3

1

2

1

2

1

2

1

2
1 0   D

Hence, the isospin is conserved.
(ii) p p p

I I

+ → + +




≠

+Λ Σ

∆

0

3 3

1

2

1

2

1

2
0 1 0   

Hence, isospin is not conserved.

Q. 10: What are weak interactions? Given examples.

Ans: Weak interactions involve leptonic decay of nonstrange and strange particles. Neither parity nor 
strangeness is conserved in them. Examples are the following:

K 0
→ +

+ −

p p

Ξ Λ
− −
→ +

0
p

Λ
0
→ +

−p p

OBJECTIVE QUESTIONS

 1. The lifetime of elementary particles is greater than

 (a) 10 30− sec  (b) 10 24− sec
 (c) 10 18− sec  (d) 10 10− sec

 2. Fermions have a spin of

 (a) 
1

2
�  (b) 

3

4
�

 (c) �  (d) 0

 3. Bosons have a spin of

 (a) 
1

2
�  (b) 

3

4
�

 (c) �  (d) 0

 4. Wavefunction for femions is

 (a) symmetric (b) antisymmetric
 (c) can be symmetric and antisymmetric (d) all of the above
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 5. Wavefunction for bosons is

 (a) antisymmetric
 (b) can be a symmetric and antisymmetric
 (c) symmetric
 (d) All of the above

 6. Massive particles or mesons are

 (a) pion (b) etaons
 (c) kaons (d) All of the above

 7. Mass-less bosons are

 (a) graviton (b) photon
 (c) Both (a) and (b) (d) None of these

 8. Mass of neutral pion is

 (a) 264me  (b) 274me

 (c) 290me  (d) 300me

 9. The mean life of neutral pion is

 (a) 10 16− sec  (b) 3 10 15
×

− sec
 (c) 7 10 10

×
− sec  (d) 7 10 17

×
− sec

 10. The mass of charged pions (p −  and p + ) is

 (a) 280me  (b) 273me

 (c) 260me  (d) 300me

 11. The mass of neutral and charged kaons is ____, respectively

 (a) 975 967m me e,  (b) 967 975m me e,
 (c) 980 990m me e,  (d) 1000 970m me e,

 12. K + +

® +p p
0  has an average lifetime of

 (a) 1 8 10 6. sec×
−  (b) 2 10 7

×
− sec

 (c) 1 2 10 8. sec×
−  (d) 1 5 10 6. sec×

−

 13. K e
0 0
® + +

-

p n  has an average lifetime of

 (a) 10 8− sec  (b) 10 10− sec
 (c) 10 14− sec  (d) 10 15− sec

 14. Eta-mesons (h ) have a mass of

 (a) 1000me  (b) 1200me

 (c) 800me  (d) 1074me
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 15. Electrons and muons fall under

 (a) baryons (b) nucleons
 (c) hyperons (d) leptons

 16. Muons have a mass of

 (a) 210me  (b) 207me

 (c) 250me  (d) 267me

 17. Lambda and sigma particles are

 (a) baryons (b) nucleons
 (c) hyperons (d) leptons

 18. Free neutron and bound proton are unstable. (Yes/No)

 19. Free neutrons have a lifetime of

 (a) 940 sec (b) 900 sec
 (c) 933 sec (d) 1000 sec

 20. The mass of lambda particle is

 (a) 2180me  (b) 2600me

 (c) 1000me  (d) 270me

 21. The mass of cascade particles is

 (a) 1000me  (b) 1500me

 (c) 2083me  (d) 2582me

 22. Ξ Λ
0 0 0
→ + p  have a lifetime of

 (a) 10 8− sec  (b) 10 10− sec
 (c) 10 15− sec  (d) 10 18− sec

 23. Neutral sigma particles 0∑( )  have a mass of

 (a) 2320me  (b) 2500me

 (c) 207 me  (d) 290me

 24. The decay reactions for +

∑  are

 (a) +

∑ → +p p
0  (b) + +

∑ → +n p

 (c) Both (a) and (b) (d) None of the above

 25. The decay modes of neutral lambda are

 (a) Λ0
→ +

−p p  (b) Λ0 0
→ +n p

 (c) Both (a) and (b) (d) None of the above
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 26. +

∑  and −

∑  are antiparticle of each other. (Yes/No)

 27. The mass of W+  is

 (a) 3200me  (b) 3276me

 (c) 207me  (d) 100me

 28. The magnitude of gravitational interaction force is

 (a) 5 82 10 39. ×
−  (b) 2 10 34

×
−

 (c) 9 10 18
×

−  (d) 6 7 10 11. × −

 29. The coupling constant is given by ( ge )

 (a) 137 (b) 150

 (c) 
1

150
 (d) 

1

137

 30. g s  is the pion–nucleon coupling constant of value

 (a) 10 4−  (b) 8 10 2
×

−

 (c) 10 7−  (d) 3 10 4
×

−

 31. Parity is related to angular momentum as follows:

 (a) −( )1
l
 (b) −( )2

l

 (c) −( )
+

1
2l i

 (d) −( )
+

2
2 1l

 32. Kinematic techniques of mass determination uses

 (a) conservation of energy (b) conservation of momentum
 (c) both (a) and (b) (d) neither (a) nor (b)

 33. m c
p
+

2
 is obtained to be

 (a) 931 MeV (b) 530 MeV
 (c) 139.3 MeV (d) 253 MeV

 34. For e + , m+ , and n e , the Lepton number is

 (a) 0 (b) -1
 (c) +1 (d) 2

 35. g → +
−p p  has ∆Li  of

 (a) +1 (b) zero
 (c) -1 (d) 2

 36. The proton can be written as

 (a) 
1

1








  (b) 

0

1
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 (c) 
1

2

1








  (d) 

1

0










 37. The neutron can be written as

 (a) 
0

1








  (b) 

1

1










 (c) 
1

0






 (d) 
1

2

0






 38. Hyperchange (Y ) is related to isospin as

 (a) Y = -Q I3  (b) Y = -2 3Q I

 (c) Y Q I= -( )2 3  (d) Y I= 2 3

 39. Strange quark has a charge of

 (a) 
2

3
e  (b) 

−1

3
e

 (c) 
3

5
e  (d) 

1

2
e

 40. The hadron p+  has a quark combination of

 (a) uud (b) udd
 (c) sss (d) ud

ANSWERS

 1. (b)
 2. (a)
 3. (c)
 4. (b)
 5. (c)
 6. (d)
 7. (c)
 8. (a)
 9. (d)
10. (b)

11. (a)
12. (c)
13. (b)
14. (d)
15. (d)
16. (b)
17. (c)
18. Yes
19. (c)
20. (a)

21. (d)
22. (b)
23. (a)
24. (c)
25. (c)
26. Yes
27. (b)
28. (a)
29. (d)
30. (b)

31. (a)
32. (c)
33. (c)
34. (b)
35. (b)
36. (d)
37. (a)
38. (c)
39. (b)
40. (a)
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Microassessment Questions

 1. What are mesons?
 2. Why are mesons known as middle-weight particles?
 3. What are elementary particles?
 4. Give the basic classification for elementary particles.
 5. What are fermions?
 6. How do fermions differ from bosons?
 7. What do you understand by symmetric and antisymmetric wavefunctions?
 8. Explain the spin and spatial part of wavefunction.
 9. What are mass-less particles? Give examples.
 10. What are kaons?
 11. Give the decay mode for neutral kaons.
 12. Which is the heaviest particle among all the bosons?
 13. What are neutrinos and antineutrinos?
 14. Explain (a) leptons (b) baryons.
 15. Why are muons unstable particles?
 16. What are nucleons?
 17. Give the four types of hyperons.
 18. Define lambda particles.
 19. What is the decay mode followed for neutral lambda particle?
 20. Define the quanta for electromagnetic interaction.
 21. Give the value of pion–nucleon coupling constant.
 22. Write down the relation of weak interaction constant and its value.
 23. What are strange particles?
 24. What are quarks? Write the quark combination for proton.
 25. What are gluons and chromodynamics?

Critical Thinking Questions

 1. What are gravitons? How do they differ from photons?
 2. Give the classification of mesons/massive particles.
 3. What are p-mesons? Give the decay modes given for positive and negative p-mesons.
 4. Write down the decay modes for charged kaons.
 5. What is the decay lifetime for eta-mesons? Also write down the decay modes.
 6. How do sigma and omega particles differ from each other?
 7. Write down two main classifications for fermions.
 8. Write down the general characteristics of leptons.
 9. Write down the decay modes for muons.
 10. Give the decay modes for proton inside and outside the nuclei.
 11. Write down the decay mode for neutron inside and outside the nuclei.
 12. What are cascade particles? How do they decay into neutral lambda and mesons particles?
 13. Write down the characteristics for positive and negative sigma particles.
 14. What are lifetimes for lambda and cascade particles?
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 15. Show the decay mode for omega hyperon along with its lifetime.
 16. What is the difference between gravitational interaction and electromagnetic interaction?
 17. What are weak interactions? Write down their characteristics.
 18. Which type of interactions exist within the nucleus? Justify that they are the strongest interactions.
 19. How do force and range vary for all forces of nature?
 20. Explain the parity and angular momentum for elementary particles.
 21. How is the parity conserved for elementary particles?
 22. What is tau-theta puzzle?
 23. How can kinematic methods be used to measure the mass of particles?
 24. What are intrinsic quantum numbers?
 25. What is a lepton number? Write down the rules for lepton numbers.
 26. What are baryon numbers? Give the rules followed by them.
 27. Explain hypercharge and strangeness of particles.
 28. Explain the Gell-Mann Nishijima concept of strangeness.
 29. Write down three properties of quarks. Are quarks colored?

Graded Questions

 1. Explain in detail the classification and subclassification of fermions.
 2. Classify the elementary particles on the basis of interactions.
 3. Classify the elementary particles on the basis of stability.
 4. How can mass be determined for elementary particles? Explain all of the methods in detail.
 5. Explain the trajectory method to determine the mass of particles.
 6. Why is the concept of isospin necessary? Give the spin and isospin of all the nucleons and kaons.
 7. List and explain all the conservation principles that should hold good during decay processes.
 8. Explain in detail the quark model and its postulates.

Remember and Understand

 1.  Most of the particle is unknown before 1930, and cosmic rays were known to be the source of 
elementary particles.

 2. Gravitons and photons are mass-less boson particles with integral spin.
 3.  Elementary particles are the smallest entities that cannot be further disintegrated into smaller 

subentities.
 4.  For bosons, both the spatial and spin particles are symmetric or antisymmetric. For fermions, 

either of them is symmetric or antisymmetric.
 5. Kaons are heavy mesons with mass almost equal to 970 times the mass of electron.
 6. Eta-mesons are the heaviest of all the bosons, that is, 1,074 times the mass of electrons.
 7. Muons are heavy electrons with mass 207 times than that of electrons.
 8. The mass of hyperons is more than the nucleons.
 9.  Nuclear interactions are the strongest interactions, whereas gravitational interactions possess 

highest range.
 10.  Parity gives the mirror image or reflection of wavefunction. For a composite system, parity is 

multiplicative in nature.
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 11. Kinematic, trajectory, and mesic methods are used to determine the mass of elementary particles.
 12.  Isospin vector is not in the ordinary state; it is in isospin space. Proton and neutron can be dif-

ferentiated on the basis of up and down state of spinor.
 13. Hypercharge defines twice the average charge on the members of group.
 14.  The strange particles are always produced in pair via strong interactions and then decay via weak 

particles.
 15.  The total energy, charge, angular/linear momentum, lepton number, baryon number, isospin, 

and hypercharge are conserved during decay processes.
 16. Quarks are supposed to carry fractional charges such as ±(2/3) e and ±(1/3) e.
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In previous chapters, we have studied about the phenomena of radioactivity. In the process of 
 radioactivity, a , b , and g -rays are emitted. These radioactive particles can be further used to disin-
tegrate other atomic nuclei. For this purpose, the elementary particles need to be accelerated to suit-
able energies. The particles are accelerated by suitable devices known as particle accelerators. Particle 
accelerators are specially designed machines that are used to accelerate the elementary particles to 
desired energy range. Both heavier and lighter nuclei can be used to accelerate the particles. Protons, 
neutrons, deuterons, electrons, etc., are accelerated using particle accelerators. In addition to these par-
ticles carbon, neon, oxygen, and beryllium, etc., are also accelerated. For high-energy particle physics, 
particle accelerators play an imperative role. This chapter deals with basic particle accelerators and their 
working principles. There are some requirements that should be satisfied for every particle accelerator. 
Every accelerator requires a suitable source of particles. The source of particle should have negligible energy 
spread, high efficiency and exhibit rich output (well collimated). Usually, the particles sources include spark 
 discharge sources, electron oscillation sources, hot and cold cathode sources, and magnetic ion sources.

9

Particle Accelerators

Learning Objectives

VV To learn about the need of particle accelerators

VV To understand the potential and circular orbit of accelerators

VV To know about positive-charge accelerators such that Van de Graaff generator and cyclotron

VV To know about the Cockcroft–Walton machine as voltage multiplier

VV To understand the principle, construction, and working of betatron as an electron accelerator

VV To get an insight of focused magnetic field, Lorentz magnetic field, and Lorentz force while dealing 
with the accelerators

VV To understand the principle, construction, and working of electron synchrotron

VV To learn the principle, construction, and working of proton synchrotron

VV To understand the construction and working principle of linear accelerators (LINACS)

VV To know about the construction, working, and principle of synchrocyclotron

VV To understand the principle, construction, and working of linear accelerators

 Keywords: Van de Graaff generator, cyclotron, betatron, synchrotron, electron synchrotron, 
 synchro cyclotron, LINAC, radio-frequency oscillator, dees, betatron condition
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Once these ions are obtained, then they should be introduced to the defined accelerator using 
proper accelerating voltage. Once the particle enters the accelerator, then it is under electric/magnetic 
field and traverses an orbit of radius r and velocity v. The particles are accelerated up to the desired 
energy. Subsequently, when the desired energy level for the particle is obtained, then the particles 
are extracted out of the accelerator. The accelerators can work on continuous or pulsed fields. The 
accelerators should have energy stability and coherence along with good beam intensity. The accelera-
tor should exhibit good particle collimation. In some of the accelerators, the particles are accelerated 
using constant potential difference. Such accelerators fall under the category of electrostatic accelera-
tors, for example, Van de Graaff generator and Cockcroft–Walton machine. The electrostatic accel-
erators can give an output of particles with 4–6 MeV energy. When particles form closed-path again 
and again, then they get accelerated. The accelerators that work on closed-path orbits and yield high 
energy particles are known as cyclic accelerators, for example, cyclotron, betatron, and synchrotron.

9.1 Van De Graaff Generator

Van de Graaff developed an electrostatic accelerator in 1881, which could accelerate particles up to 
energy 10 MeV.

1. Principle

 (i) It is based on the principle that sharp pointed surfaces have large charge densities, that is,

s

p

=

q

r4 2

For sharp points, r → 0, and hence theoretically the charge density →∞.

 (ii) If small conducting charged shell of radius r
1
, is located inside a charged and conducting shell of 

radius r2, then the charge q1 will move from shell A to shell B if both the shells are connected to each 
other (with key K) (Figure 9.1). Hence, the charge tends to move to outer the surface of spherical 

shell and does not reside inside the conductor. This leads to increase of the potential of outer surface.

In actual practice the maximum potential on the outer shell does not go infinite because their is elec-
tric breakdown of air which surrounds the shell.

2. Construction
Two combs C1 and C2 are provided with sharp point ends (Figure 9.2). C1 is maintained at 5 20− kV 

w.r.t. ground. S is large hollow sphere that is mounted on two pillars D1 and D2. There are two fric-

tionless pulleys P1 and P2 over which a well-insulated belt (B) passes over. C1 is spray comb and C2 is 

collector comb. There is discharge tube I which contains positive ions to be accelerated so that they 
can hit the target (T). The discharge tube is made up of porcelain glass.

q
2

r
2

r
1
q
1

A
B

K

Figure 9.1 Demonstration of charge on hollow conductor.
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The discharge tube is highly evacuated in order to avoid any discharge inside the tube. The whole 

apparatus is inside gas tight steel chamber W. Their could be methane, freon CCl F2 2( ), air, or nitro-
gen inside the chamber.

3. Working
Electric motor M makes a well-insulated belt B rotate over two pulleys P1 and P2. Metallic comb C1 

(Spray comb) is charged to high positive potential. Due to corona discharge action on its sharp points, 

the spray comb C1 gives its positive charge to belt. The moving belt carries the charge to collector 

comb C2. Due to induction, “-ve” charge appears on the pointed ends of the comb and in turn “+ve” 
charge builds up at the base of the C

2
 comb. This charge gets transferred to the outer shell S. As the 

belt moves continuously, hence the charge on outer shell gets accumulated, which is turn raises the 
potential of outer shell as follows:

If q is charge accumulated over a spherical shell of radius “r”, then potential (V) is

V
q

r
=

4peo

+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

− +

+

+

+

+

HT

P1

P2

C1

C2

D2D1
B

I

M

T

S

W

Ion source

Figure 9.2 Schematic sketch of Van de Graaff generator.
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While the charge continues to increase on the spherical shell, the ionization leakage also increases. 
Hence, the leakage is prevented by steel tank W. The charged particles inside the discharge tube T are 
at high potential. They get accelerated downward and hit the target after coming out of discharge tube.

Mathematical analysis can be given as follows:
Capacity C for spherical shell = 4peor  if r is the radius of spherical shell.
Hence, potential

       V
q

C
=  (1)

Rate at which potential is build up on the shell is given by the following equation:

         

dV

dt C

dq

dt

i

C
= =

1
 (2)

i is charging current that is usually composed of many components as follows:

         
i i i i i= + + +p l s c  (3)

ip  = current due to positive ion source

il  = leakage current along the discharge tube

is   = is the current due to stray/secondary electrons that strike the wall

ic  =  current due to breakdown condition as a result of excess potential at surfaces. It is also known 
as corona current.

If the “S” is made negative, then electrons can also be accelerated. These days, particles up to “20 
MeV” energy can be produced using Van de Graaff generator.

Robert Jemison Van de Graaff earned his Bachelor of 
Science and Master of Science in 1922 and 1923, respec-
tively, from the University of Alabama. Van-de Graaff 
was awarded PhD in 1928 form Queen’s College, Oxford 
where he was a Rhodes fellow. It was Oxford where he 
first conceived the idea of high-voltage generator. He was 
influenced by Rutherford’s challenge to produce highly 
accelerated particles for nuclear disintegrations. He 
returned to United States in 1929, where he constructed 
the first working model of the generator while working as a 
National Research fellow at Princeton University under 
the supervision of Karl Taylor Compton. Compton also 
worked on electrostatic generator as designed by Lord 
Kelvin. But this electrostatic generator dripped charged 
water; hence, he thought of exceeding electric field in 
order to overcome the gravity. He worked as a research 
associate at the Massachusetts Institute of Technology, VAN DE GRAAFF (LEFT SIDE)



9.2   THE CyCLOTRON  •  359

9.2 The Cyclotron

Cyclotron is a device used to accelerate positively charged particles such as 2
4He , protons, and deu-

terons. These charged particles are further used for the purpose of nuclear disintegrations. Cyclotron 
was discovered by E.O. Lawrence and M.S. Livingstone in 1934.

1. Principle
It is based on the principle of crossfields, that is, electric and magnetic field should be perpendicular 
to each other. When a positively charged particle is moved again and again in high-frequency electric 
field and perpendicular magnetic field, then the particles are accelerated to the desired energy level.

2. Construction
It consists of two hollow metallic chambers D1 and D2 which are D-shaped and known as dees as 
shown in Fig. 9.3. These two dees are separated by small gap between which a positive charge is 
placed. These dees are connected to high-frequency oscillator that is of magnitude 107 Hz. This HF 
oscillator provides high electric field along the gap of dees. The dees D1 and D2 are enclosed inside 
a box chamber, which is almost at 10 3− mm of mercury pressure. These dees are inside the poles of 
strong electromagnet, which provide perpendicular magnetic field of almost 1.5 T.

3. Working
If dee D1 is at positive potential and a positive particle is present inside the gap of dees, then the 
particle will get accelerated toward the “-ve” potential dee D2. Inside the hollow dee D2, there is no 

D1 (107Hz)Magnetic
field
(1.5.T) HF

input

Target
T

WD2

Figure 9.3 Schematic of cyclotron.

where he continued his work on accelerating the charged par-
ticles. During World War II, he was appointed as the Director 
of MIT’s high-voltage radiographic project. He was the chief 
of physics of High Voltage Engineering Corporation after  
the war.
The sphere of Van de Graaff generator holds considerable amount 
of charge before arc discharge occurs. When we touch the Van de 
Graaff generator, it releases charge into our body. As the hairs get 
similar charge, they are repelled from each other.
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electric field. Only magnetic field will act on the particles that are inside dee D2. This magnetic field 
provides necessary centripetal force for a particle to move in circular path, which is given as follows:

Let m be the mass of particle to be accelerated, B is the magnetic field, v is the velocity of particle, 
q is the charge of particle, and r is the radius of semicircular path traversed by particle.

The Lorentz force acting on particle, when the magnetic field is perpendicular to its motion is 
given by the following equation:

        

�

�

�

F q B

F q B

F q B

= ´( )
=

=

v

v

v

sinq

 (4)

This force (Eqn. (4)) provides the centripetal fore, hence

        

q B
mv

r

r
mv

qB

v =

=

2

 
(5)

The particle will traverse a semicircular path of radius r inside dee D2 and will eventually return to 
the gap between the dees at the time when polarities of dees are reversed; that is, now the dee D1 is at 
negative potential and dee D2  is at positive potential. The time required by particle to complete one 
semicircle is given by the following equation:

t
r

v
r

v

t
r

v

= =

=

1

2
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Now the particle will enter dee D1  and again a semicircle is traversed. As can be noted from Eqn. (6), 
the time taken to reach in between the dees is independent of the radius. Hence, the particle reaches 
in between the gap after sometime. This process is repeated till the particle reaches the periphery of 
the dee. Then the particle is deflected by a plate, and it comes out through a window to hit the target. 
The cyclotron frequency is given by following expression:

Let T be the time period taken by charged particle, hence

         

T t
m

Bq
= =2

2p
 (7)

Hence, the frequency of revolution is given by the following equation:

[also known as magnetic resonance frequency] 
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Equation (8) gives the cyclotron frequency. The angular frequency for cyclotron is given by the fol-
lowing equation:

          
w p= =2 f

Bq

m
 (9)

Similarly, the maximum energy gained by the particles is given by the following equation:
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from Eqn.

The maximum energy is gained by the particle, when it reaches the periphery of dees, and it is given 
by the following equation:
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Cyclotron can accelerate the particles through electric field only and not by magnetic field. Magnetic 
field only deflects the semicircular path for the particles inside the dees. Cyclotron cannot handle/
accelerate negative as well as neutral particles. Electrons cannot be accelerated on account of their 
smaller masses. Due to small mass of electrons, they attain very large energy in small intervals of time, 
and hence go out of step very quickly. Ions cannot have large velocities comparable to velocity of light 
inside the cyclotron, because as per following relativistic relation,
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Hence, when v c≈ , then the particle is of infinite mass. Hence w becomes
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Hence, when v increases, then w decreases and ion will spend more time to traverse the semicircu-
lar path inside the dee. This will lead to late arrival of particle inside the gap and hence cannot be 

accelerated due to time lag. This is also known as “lack of resonance.” Hence, the factor B
v

c
1

2

2

1 2

−






/

 

should be kept constant. Hence, the magnetic field should be increased such that the product remains 
unchanged.
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9.3 The Cockcroft–Walton Machine

The Cockcroft–Walton machine is used as voltage multiplier circuit to get high potential difference.

Principle
According to the principle of Cockcroft–Walton machine, it states that a number of capacitors 
connected in parallel are charged and then discharged in series when the voltage across them is equal 

to the sum of voltages on every individual capacitor.

Construction:
Number of capacitors C Cn1�  having equal capacitance are joined together with rectifiers R Rn1� . 
With the help of rectifiers, the current can pass only in one direction (Figure 9.4). A step-up transformer 
T is used. With the help of step-up transformer, an output voltage of up to 100 keV can be obtained. X 
is earthed is order to keep the potential at a fixed value. Transformer helps in charging the parallel plate 
capacitors and then discharged in series. This discharge voltage is further used to accelerate the particles.
Working:
Alternating current is applied across the primary coil of transformer. During the “-ve” half cycle, A 
becomes negative and w.r.t. point X and the rectifier R, gets forward biased and capacitor C2  is charged 
to potential Vin . There still exists potential difference between point X and A. The potential difference 
between X and A is +Vin  after the capacitor is charged. Before charging of capacitor, the potential dif-
ference was −Vin . During the “+ve” half cycle, A becomes positive and hence R1  gets reverse biased 
due to which the rectifier do not conduct. Therefore, during “-ve” half cycle, the potential difference 
between A and C becomes “O” and during “+ve” half cycle, the potential difference between A and 
C is 2Vin . When R2  is conducting then C1  is charged. These cycles are repeated until the capacitors 
are charged, and hence the potential difference along the capacitor becomes 2Vin. Hence, potential 

The cyclotron is very strong particle 
accelerator, which was first devised by 
Ernest Orlando Lawrence. Lawrence was 
born in South Dakota on August 8, 1901. 
In 1925, he completed his PhD from yale. 
He joined the University of California at 
Berkeley in 1928, where he served for his 
whole life. He was awarded the Nobel 
Prize in 1939 for his invention of cyclotron.
He worked with Milton Stanley Livingston 
at the University of California at Berkeley 
to build cyclotrons. Milton Stanley 
Livingston was born in Wisconsin, on 
May 25, 1905. He chose the PhD topic as 
suggested by Lawrence when he came to 
Berkley in 1930. Livingston’s worked on 
the experimental verification of whether 
applied voltage could lead to large final 
energy of moving ions for his thesis. Livingston worked much on the hardware.

At the age of 57, Lawrence died on August 27, 1958, and Livingstone died in 1986. The 
Radiation Laboratory was officially renamed as the Lawrence Radiation Laboratory in Lawrence’s 
honor.

E.O.LAWRENCE (LEFT) & 
M.S. LIVINGSTONE (RIGHT)
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 difference between X and F becomes 4Vin . If two rectifiers and two capacitors are joined, then this 
arrangement is known as voltage doubler. This arrangement is also known as cascade multiplier as 
“voltage” is multiplied in the arrangement.

If n capacitors are connected via n rectifiers with Vin  as input voltage, then the output is given as 
follows:

      

V nV
f C

n n
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out in= − + +
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9

4 2
3 2  (14)

  f → frequency of transformer
C → capacitance of every capacitor

The ripple voltage is
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 I ® current
C cannot be kept very large. But if we increase the frequency of source, then the ripple voltage 
increases. High voltage is obtained between X and Y, which is used to accelerate the charged par-
ticles. Using this device, particles cannot be accelerated above 5 MeV energy. The capacitors used 
should be able to withstand high tension. There are many chances of insulation breakdown for this 
device.

9.4 Betatron

Till now, we have focused on accelerating the “+ve” charged particles. But for producing high energy 
X-rays and triggering reactions, we require beam of high energy electrons. Betatron is basically used 
to “accelerate” negative charged particles. The cyclotron had a problem named “out of resonance,” 
but this has been overcome in betatron. Hence, betatron does not imply any variation in mass with 
velocity.
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R3

R4

R5
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C6
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Vin Vout

X
T

D

B

High
voltage

EF
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Figure 9.4 Schematic of Cockcroft–Walton machine.
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1. Principle
Betatron works on the principle of electromagnetic induction. According to it, an alternating current 
in the primary coil of a transformer induces a similar current in secondary coil. The primary current 
produces a magnetic field which induces “potential” in the secondary windings. We can consider the 
secondary coil of transformer to be moving cloud of electrons in circular orbit due to magnetic field 
in doughnut-shaped chamber.

2. Construction
A betatron consists of electromagnet pole pieces. This electromagnet works of high voltage A.C. 
input. The doughnut chambers are arranged in the pole pieces as shown in Figure 9.5(a). The elec-
tromagnet produces strong magnetic field at the center of doughnut vacuum chamber (around O in  
Figure 9.5(b)).

The electron revolves in circular orbit in the doughnut-shaped vacuum chamber. The magnetic 
flux f associated with orbit changes continuously changes with time. Hence, electrons gain energy 
by the process of magnetic induction. In cyclotron, the magnetic field always increases the radius of 
orbiting particle. But in betatron, the transverse magnetic field makes the electrons move in constant 
orbit. The magnetic field provides the necessary centripetal force, so that electrons move in circular 
orbit. The magnetic lines of force should be convex outwardly for proper magnetic focusing.

The doughnut chamber is also coated with a silver layer from inside. There should be no 
 accumulation of electrons. Moreover, the generation of eddy currents should be minimized by keeping 

S-pole

Doughnut

Figure 9.5 (a) Pole pieces for the betatron (doughnut shaped).

r

e−

O

T

Orbit of electrons

X-rays

Connected
to vaccum

pump

Electrons

(Connected to
electron gun)

Figure 9.5 (b) Schematic of betatron chamber.
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the conductivity of layer to be very small. The eddy currents hinder the operating condition of beta-
tron as they tend to distort the magnetic condition.

3. Working
An electron gun is used to inject the electrons into vacuum chamber. The electron gun consists of 
a heating filament as electron emitter. The injection of electrons is done when the magnetic field is 
rising during the first quarter of the alternating cycle as shown in Figure 9.6.

The electrons get accelerated during the rising magnetic field due to increasing potential within 
the doughnut. Even after increasing kinetic energy of electrons, the electrons orbit in the same orbit 
of radius r. Then the magnetic field starts decreasing after passing through a maximum. Then the elec-
trons start decelerating as the direction of e.m.f. starts getting reversed. To avoid this effect, the elec-
trons are removed at peak magnitude of magnetic field (point A). These ejected high energy electrons 
can strike target T to produce X-rays that emerge out of the apparatus. To remove electrons from the 
orbit, a current of large amplitude is sent through auxiliary coil that abruptly changes the magnetic 
field. The theory behind the working of betatron can be demonstrated using Faraday’s law. According 
to Faraday’s law of electromagnetic induction, the induced e.m.f. due to changing current/magnetic 
flux linked with a coil is given by the following equation:

       
E

d

dt
=

fB  (16)

fB is the magnetic flux which is perpendicular to the plane of circuit

During one revolution, the work done on an electron is given by the following equation:

      
W q

d

dt
=

fB  (17)

Where q is the charge of electron, the force acting on an electron during one revolution is given by 
the following equation:

F =
Work done

Distance travelled during one revolution

B

O

Time

Electron
injection

Electron
ejection (A)

Figure 9.6  The alternating cycle of magnetic field demonstrating the injection and ejection of 
electrons.
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We also know that when magnetic field is acting on the charged particle, then it gives rise to Lorentz 
force:

F v B
��

�
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= q ×( )

F q B= v sinq

Here, the magnetic field is perpendicular to the velocity of electrons, hence

      F q B= v  (19)

This Lorentz force provides the required centripetal force as follows:
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According to Newton’s second law of motion, the rate of change of momentum is given by the 
following equation:
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Equation (22) is known as flux condition. This condition states that the flux fB linked with a coil 
must change at a rate twice the rate if the magnetic field is uniform throughout the orbit in given time 
interval. This relation holds good in the relativistic and nonrelativistic regime.
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From Eqn. (22), we can write

      
2 2 2. . .

d

dt
R B

d

dt
R Bp p( ) = ( )o  (23)

Hence,

       B Bo = 2  (24)

Equation (24) is known as betatron condition. Hence, the magnetic field must be shaped such that the 
average magnetic field (B

o
) over the total space enclosed by orbit is equal to twice the magnetic field at 

orbit. The betatron performance is also limited by some factors. For example, the acceleration of particles 
becomes very difficult after achieving the relativistic speeds. Secondly, electrons are negatively charged. 
After their acceleration, the electrons always radiate energy in the form of electromagnetic waves.

The kinetic energy of electrons is also fixed when the energy lost by electrons in the form of 
electromagnetic radiations becomes equal to energy gained by electrons during their acceleration, 
then there is no further rise in the kinetic energy of electrons. The betatron usually requires a source 
of 60 Hz. Betatron has very bulky electromagnet. In the United States, General Electric labs have 
produced 100 MeV electrons magnet approximately 130 tons and the maximum magnetic field  
≈0.4 T . This betatron was used during World War II as an intense source of penetrating X-rays.

D.W. Kerst was born on November 1, 1912. Kerst made very impor-
tant contributions to the field of nuclear physics specially particle 
accelerators. He worked on betatron, which is the milestone for 
high energy particle physics. He was a very strong, hard-working 
and dedicated mentor as he supervised 33 students for their PhD 
degrees in the betatron group at the University of Illinois. In addi-
tion to this, he supervised 42 students for their doctorates in the 
plasma group at the University of Wisconsin within 17 years. He 
published the pioneer work based on the first theoretical analy-
sis of betatron oscillations with Robert Serber in 1941. He died on 
August 19, 1993, at the age of 81 and the community lost one of its 
most influential physicists.

D.W. KERST

9.5 Electron Synchrotron

Betatron has very bulky electromagnet, which also increases its costs. Hence, source of radio-frequency 
was used along with ring-shaped magnet. Hence, synchrotron uses the increasing magnetic induction 
B for an orbit of constant radius. The radio-frequency is synchronized with the electron frequency.

1. Construction
Like betatron, synchrotron also uses doughnut-shaped vacuum chamber in A.C. magnetic field. The 
weight of the magnet is considerably reduced in synchrotron. Figure 9.7(a) shows the vacuum cham-
ber inside C-shaped magnet. Like other accelerators, the magnetic focusing is required, that is, the 
pole faces are constructed to provide maximum field at center.

The vacuum chamber is coated with silver from inside to avoid any hindrance in the operation of 
synchrotron due to eddy current (a gap is kept within the coating) (Figure 9.7(b)). Across, this gap 
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radio-frequency oscillator is used during a proper time. When radio-frequency is applied across the 
gaps, then the electrons get accelerated every time it crosses the gap (also known as resonance cavity). 
There are steel bars inside the doughnut, which gets supersaturated easily. These are provided so that 
the variation of magnetic field takes place only for electron orbit. These bars are of high permeability.

2. Working
With the help of electron gun, electrons are injected into the vacuum chamber with energy range 
of up to 100 keV. After the electrons are accelerated to high energy, then the electrons may attain 
velocity comparable to that of light. The bars play a very important role. Once the steel bars get 
saturated, they no longer obey Faraday’s law of electromagnetic induction. Hence, no induced e.m.f. 
is produced. Hence, it will no longer works as betatron. Now, the chamber works in “synchrotron 
mechanism.” As the electron gains relativistic speed, the mass of electron becomes relativistic and 
magnetic field also increases. With proper adjustment of frequency at which resonator operates, all 
the electrons can be kept in phase. The electrons gain energy after every revolution. The magnetic 
field and orbit radius decide the energy of electrons. After the electrons gain maximum energy, radio-
frequency oscillator is turned off and larger current is sent through auxiliary coils so that the electrons 
change their orbit radius due to unstable magnetic flux. These electrons then strike the target from 
the inner edge of doughnut chamber. The target releases highly energetic X-rays, when electrons strike 
the target. The electrons can attain energy up to 330 MeV by synchrotron action and 7–8 MeV by 
betatron action. The limit of energy can further be increased if the synchrotron is divided into race-
type chamber tracks.

Connected
to

vacuum
pump

RF oscillator

Bars

Electron orbit

Electron
(Connected to
electron gun)r

e−

T

O

X-rays

Silver coating

Figure 9.7 (b) The electron synchrotron.

SN Daugnut-shaped
accelerator

Figure 9.7 (a) The ring magnet.
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The energy of electron with rest mass mo is given by the following equation:
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Hence, if we increase the magnetic field, then the energy also increases. We can also obtain the fre-
quency of revolution (when the electron is at relativistic speeds):
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Cyclotron and betatron usually are low energy accelerating machines, whereas synchrotrons are high 
energy machines. MIT (USA) has a synchrotron with 50 ton magnet, which can accelerate electrons 
up to 330 MeV. If certain radiation losses occur, then the kinetic energy may drop as per Schwinger’s 
formula (1949):
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9.6 Proton Synchrotron

With the help of cyclotron, protons can be accelerated up to 10 MeV of energy. But in order to accel-
erate the particles beyond this value, the proton synchrotron was invented. Proton synchrotron can 
be used to accelerate deuterons, alpha particles in addition to protons. Using proton–synchrotron, 
protons can be accelerated up to 10 GeV energy.

1. Construction
The doughnut vacuum chamber for synchrotron is made up of steel (Figure 9.8a). There are four 
quadrants that produce magnetic field perpendicular to vacuum chamber. The magnetic field increases 
with time, but the radius of “+ve” charged particle is maintained constant. The doughnut chamber is 
kept inside the ring as shown in Figure 9.8(b).

≈
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2. Working
Using a linear accelerator such as Van de Graaff generator, the protons are accelerated toward the 
doughnut chamber. Hence, initially the “+ve” particle such as proton can be accelerated up to 10 
MeV. These particles are injected when the magnetic field is small. These electrons then come under 
the influence of radio-frequency oscillator. Moreover, the magnetic field is also increased to keep the 

electrons in circular orbit of constant radius. In order to avoid any losses due to scattering, the pressure 

inside the doughnut tube is kept almost 10 6- mm of Hg. As proton completes its revolution, it almost 

gains an impulse of 1 kV/turn, which increases its energy as well as frequency. Hence to maintain the 
phase stability the frequency of radio-frequency oscillator is also increased in order to synchronize it 
with the frequency of proton. The range up to which protons can be accelerated is higher than the 

range of electrons. Hence for proton synchrotron, the radio-frequency adjustments are made quickly. 

The protons of very high energy »( )10 BeV  can be obtained using proton synchrotron. This could 

be attributed to the fact that the radiation losses for protons are smaller than the losses for electron. 

Vacuum pipe

Electron orbit

RF oscillator
cavity

Target

Injection
of proton
(From any

linear accelerator)

Figure 9.8 (a) Schematic of proton synchrotron.

Flux lines

Magnetic coil

Daughnut chamber

Figure 9.8 (b ) Magnet used in proton synchrotron.
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When the protons are accelerated to maximum energy levels, then the radio-frequency is distorted, 
so that the radius of orbit changes. After the proton gets out of its track, it will strike the target. 
Theoretically, we could write down the frequency of revolution of positive particle to be
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When synchrotron is used to accelerate particles up to 6 BeV, it is also known as betatron. For the 
proton acceleration of up to 30 GeV, cosmotron are used. Using cosmotrons, nuclear reactions involv-
ing energy of cosmic rays are studied. Brookhaven National Laboratory (USA) has such cosmotron, 
which was built in 1953.

9.7 Synchrocyclotron

As we have studied for cyclotrons that the variation of mass occurs for the ions of accelerator, which 
further leads to the problem of “loss of resonance.” This problem has been overcome by the use of 
synchrocyclotrons. They are also known as frequency-modulated cyclotrons because the frequency 
is varied.
1. Construction

Synchrocyclotron consists of only one dee, which is placed inside the poles of an electromagnet as 
shown in Figure 9.9. The pole pieces should be shaped to provide magnetic focusing, that is, field 
decreases outward from the center. The pressure inside the chamber is kept to be 10 6- cm of Hg. 

Pole
piece

N

Pole
piece

S

Dee

Emergent
beam

Power supply

Target

Figure 9.9 Schematic of synchrocyclotron.
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High potential is applied across the dee. As compared to cyclotron, the peak value of voltage is quite 
low ≈25 kV. The ions make almost 105 revolutions inside the dee. There is only one dee inside the 
vacuum chamber, so that their can be enough space for the ion source and target. Like cyclotron, the 
path of the particle is spiral and the ion source is also similar. But still there are some differences; that 
is for cyclotron, the magnetic field is constant, whereas for synchrocyclotron it decreases. Cyclotron 
also keeps the frequency to be constant, whereas for synchrocyclotron it varies. The synchrocyclotron 
may use the magnetic field, which decreases from 1.5 to 1.43 T (Berkley). The Berkley synchrocy-
clotron is of 400 tons producing the a -particles of almost 380 MeV and deuterons of 190 MeV. The 
oscillator frequency varies from 11.5 to 9.8 MHz. The frequency is kept at 11.5 MHz during the 
injection stage; whereas during the ejection stage, it is kept to be 9.8 MHz. The resonance of the ion 
and the radiofrequency field is usually maintained by decreasing the frequency. In synchrocyclotron, 
the particle completes 105 revolutions before ejection. The frequency of revolution for ions is given by 
the following equation:
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Using synchrocyclotron, the electrons cannot be accelerated as well as the output beam current is also 
very small.

9.8 Linear Accelerators (Linac)

In linear accelerators, the particles are charged in steady steps. Alvarez et al. in 1945 accelerated the 
protons to 32 MeV using Linacs.

1. Principle
The linear accelerator works on the principle that under an electric field (alternating), the particle is 
accelerated during (+ve) half cycle and retarded during (_ve) half cycle. Moreover, no electric field 
exists inside hollow conductor moves with uniform velocity.
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Figure 9.10 Schematic of linear accelerators.

2. Construction
A linear accelerator consists of cylindrical metallic tubes 1 … n (Figure 9.10). Their axes are along 
the straight line. The length of cylinders is increasing, that is, the first cylinder is shortest, second is 
of larger in length than the first third cylinder is larger in length than the second, and so on. The odd 
cylinders are connected to one terminal and even cylinders are connected to other terminal. Both 
terminals are connected to high-frequency oscillator of almost 107 Hz  frequency. These cylinders are 
inside evacuated glass chamber. When one set of cylinders get negative, then the second set of cylin-
ders is positive. In next half-cycle, the polarity is reversed and the beam of ions enter the tube along 
the axis.

3. Working
When the ions enter the tube, then the ions are accelerated only after crossing the gap between the 
cylinders. Each tube has constant potential; hence, electrons cannot be accelerated within these 
tubes. If positive charge q enters the accelerator, such that first cylinder is positive, then the second 
will be negative, The positive ion will get accelerated in between the gap of first and second cylin-
der. The accelerated ion will now travel through second cylinder with seed faster than it had during 
travelling through first cylinder. As the length of second cylinder is longer; hence, the ion will reach 
in the same time to reach in between the gap between second and third cylinder. In the meantime, 
the polarity gets reversed, that is, the second cylinder will become positive and third will become 
negative. The ion will again get accelerated in between the gap between second and third cylinder. 
To keep the ions in phase, the cylinders are made longer in order to compensate for the increasing 
speed of electrons, that is,

     

t = =

cylinder length

speed of ion
constant  (32)

Hence, after passing through every gap, the ion gets accelerated. While passing the tube (which is at 
constant potential), it moves at constant velocity.

Theoretically, we can conclude as follows:
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Let charge q have mass m and V is the potential difference between successive tubes. The velocity of 

charge; while entering nth cylinder is vn , then the kinetic energy of ion is 
1

2
2mvn . The energy picked 

up by ion after passing through cylinder is qV. For n such gaps, the energy is nqV. 

Hence,
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This equation fails for relativistic velocities, that is, when v ≈ c. The velocity of ions depends on n .  

For example, for the third cylinder, the velocity will become 3 . During half cycle, the ions travel the 
distance equal to the length of tube and gap between the cylinders. Hence,
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Hence, L varies as n  and velocity vn  also varies as n , which implies phase stability. Earlier linear 
accelerators were used to accelerate the protons only, but these days electrons can also be accelerated. 
Linacs provide a very well-collimated beam of charged particles. Their drawback is their large length, 
due to which more number of cylinders are required.

SUMMARY

This chapter deals with the particle accelerators. Some accelerators such as Van de Graaff generator 
and Cockcroft–Walton machines use constant potential difference to accelerate the particles. The 
output of such oscillators is in the range 4–6 MeV. The accelerators that work on closed-path orbits 
yielding high energy particles are known as cyclic accelerators, for example, betatrons, synchrotrons, 
and cyclotrons. Van de Graaff generators and cyclotrons cannot accelerate electrons. The electrons on 
account of their small size gain velocity very quickly and get out of phase cyclotrons accelerate elec-
trons through electric field only, whereas magnetic fields deflect the semicircular path for electrons. 

To avoid any lack of resonance, factor B
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 should be kept constant. In Cockcroft–Walton 

machine, capacitors connected in parallel are charged and discharged in series. Using it, particles 
cannot be accelerated above 5 MeV, as there are many chances for insulation breakups. To accelerate 
negative charges such as “electrons,” betatrons and synchrotrons are used. Betatrons produce high 
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energy X-rays that could trigger further nuclear reactions. No variation of mass with velocity occurs in 
betatrons; hence, there is no “back of resonance.” Betatrons work on the principle of electromagnetic 
induction. In betatron, the transverse magnetic field makes the electron to move in constant orbits by 
providing necessary centripetal force.

Betatron has advantage of very bulky electromagnet. Hence, synchrotrons were introduced which 
used radiofrequency oscillators and ring-shaped magnet. Cyclotrons and betatrons are low-energy-
accelerating machines, whereas synchrotrons are high energy accelerating machines. Particles up to 
6 BeV are accelerated using betatron and up to 30 GeV, cosmotrons are used. The synchrocyclotron 
uses the variation in frequency to avoid and lack of resonance. Unlike cyclotron, the magnetic field 
in synchrocyclotron decreases. But synchrocyclotron cannot accelerate electrons and output yield is 
also very small. Linear accelerators use hollow cylinders of increasing lengths. One set of cylinders is 
positively charged and other set is negatively charged. The particle accelerator in between the gaps of 
hollow cylinders to keep the ions in phase; the cylinders are made longer to compensate for increasing 
velocity of ions. LINACS provide very well collimated beam of charge.

SOLVED PROBLEMS

Q. 1: What should be RF frequency for cyclotron, if B =1500  Gauss used for cyclotron.
Ans:

f
Bq

m
=

2p

B = = ´
-1500 1 500 10 4G T.

q = ´
-1 6 10 19. C

m = ´
-1 6 10 27. kg

f =
´ ´ ´

´ ´ ´

- -

-

1500 10 1 6 10

2 3 14 1 6 10

4 19

27

.

. .

f = ´ ´
-238 85 10 1023 27.

f = ´238 85 104.

f = 2 39. MHz

Q.2: What is the period of rotation of deuteron inside a cyclotron? When is it under a magnetic field 
of 3 2Wb/m ?

Ans:

T
m

Bq
=

2p

B = =3 32Wb/m T
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q m= ´ = ´
- -1 6 10 3 3 1019 27. .C; kg

T =
´ ´ ´

´ ´

-

-

2 3 14 3 3 10

3 1 6 10

27

19

. .

.

T = ´
-4 3175 10 8. sec

Q.3: A cyclotron with RF frequency 2 MHz is used accelerate the (i) protons and (ii) deuterons.  
If the radius of dee is 50 cm, obtain the magnetic field in tesla for both the particles.

Ans: We know that

f
qB

m
=

2p

 (i) For proton,   m = ´
-1 67 10 27. kg

q = ´
-1 6 10 19. C

f = ´2 106 Hz

f
B

=

´ ´

´ ´ ´

-

-

1 6 10

2 3 14 1 67 10

19

27

.

. .

B =
´ ´ ´ ´

-

-

2 3 14 10 10 2

10

27 6

19

.

B = ´ ´
- +12 56 10 1021 19.

B = ´ =
-12 56 10 12562. . T

 (ii) For deuteron, m = ´
-3 3 10 27. kg

B
mf

q
=

2p

B =
´ ´ ´ ´ ´

´

-

-

2 3 14 3 3 10 2 10

1 6 10

27 6

19

. .

.

B = ´ ´
-25 905 10 1021 19. T

B = ´
-25 905 10 2. T

B = 0 259. T
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Q.4: The radius of the dees is 45 cm and magnetic field is 3000 G. What would be velocity and 
energy of the protons?
Ans:

r = =45 0 45cm m.

B = = ´
-3000 3000 10 4G T

m = ´
-1 67 10 27. kg

q = ´
-1 6 10 19. C

We know that

v
Bqr

m
=

v =
× × × ×

×

− −

−

3000 10 1 6 10 0 45

1 67 10

4 19

27

. .

.

v = × ×
−1293 41 10 1023 27.

v = ×1293 41 104.

v = ×1 29 107. m/sec

Then energy is given by

E mv=

1

2

2

E = ´ ´ ´ ´( )-1

2
1 67 10 1 29 1027 7 2
. .

E = ´ ´
-1 389 10 1027 14.

E = ´
-1 389 10 13. J

E =
´

´

-

-

1 389 10

1 6 10

13

19

.

.
eV

E = 0 86. MeV

Q. 5: What would be the frequency applied to the dees of cyclotron, which accelerate deuterons 
when flux density is 2.5 Weber/m2.

Ans:

f
Bq

m

B

=

= =

2

2 5 2 52

p

. .Wb/m T
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m q

f

= ´ = ´

=

´ ´

- -3 3 10 1 6 10

2 5 1 6

27 19. , .

. .

kg C

110

2 3 14 3 3 10

0 193 10

19 3 10

19 3

19

27

8

6

-

-

´ ´ ´

= ´

= ´

=

. .

.

.

.

f

f

f

Hz

MHz

Q. 6: The magnetic field for a cyclotron is 2 T. The extraction radius is 0.8 m. Obtain the frequency 
and energy for the radiofrequency and accelerated protons, respectively.

Ans:

B

r m

=

= = ´
-

2

0 8 1 67 10 27

T

m, kg. .

The frequency,

f
Bq

m

f

f

f

=

=

´ ´

´ ´ ´

= ´

=

-

-

2

2 1 6 10

2 3 14 1 67 10

0 305 10

30 5

19

27

8

p

.

. .

.

.

Hz

MHzz

Energy

E
B q r

m

E

E

=

=
´ ´( ) ´ ( )

´ ´

= ´

-

-

-

2 2 2

19 2 2

27

38

2

4 1 6 10 0 8

2 1 67 10

19 62 10

. .

.

. ´́

= ´

=
´

´

= ´

=

-

-

-

10

19 62 10

19 62 10

1 6 10

12 26 10

27

11

11

19

8

J

J

eV

E

E

E

E

.

.

.

.

00 12. MeV
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OBJECTIVE QUESTIONS

 1. Which is the electrostatic accelerator?

 (a) Van de Graaff generator (b) Cockcroft–Walton machine
 (c) Both (a) and (b) (d) none of these

 2. Which of the following is cyclic accelerator?

 (a) betatron (b) synchrocyclotron
 (c) synchrotron (d) all of these

 3. Van de Graaff Generator could accelerate particles up to.

 (a) 10 MeV (b) 5 MeV
 (c) 20 MeV (d) 50 MeV

 4. Following gas can be present inside Van de Graaff generator.

 (a) methane (b) CO2

 (c) H2
 (d) fluorine

 5. Corona current is due to

 (a) positive ion source
 (b) breakdown due to excess potential at surface
 (c) due to stray/secondary electrons
 (d) leakage current along discharge tube

 6. Cyclotron can accelerate deuterons, protons, and a -particles. (True/False)

 7. For the operation of cyclotron,

 (a) only electric field is required
 (b) only magnetic field is required
 (c) electric and magnetic field are parallel
 (d) electric and magnetic field are perpendicular

 8. The high frequency used in cyclotron may use frequency up to:

 (a) 107 Hz (b) 105 Hz
 (c) 1010 Hz (d) 10 Hz

 9. The electromagnets of cyclotron may have magnetic field up to

 (a) 2 T (b) 1.5 T
 (c) 9 T (d) 0.5 T
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 10. For cyclotron, the radius of the orbit is given by

 (a) 
Bq

mv
 (b) 

Bqm

v

 (c) 
mv

Bq
 (d) Bqmv

 11. The time required by particle to complete one revolution in cyclotron is

 (a) 
Bq

mp
 (b) 

m

Bq

p

 (c) 
mB

q

p

 (d) 
Bq

mv

 12. The maximum energy gained by particles in cyclotron is

 (a) 
2m

Bqr
 (b) 

Bqr

m2

 (c) 
B q r

m

2 2 2

2
 (d) 

mv

Bq

 13. Cyclotron cannot accelerate

 (a) deuterons (b) alpha particles
 (c) protons (d) electrons

 14. Which of the following accelerate the particles in cyclotron?

 (a) Electric field (b) Magnetic field
 (c) Both (a) and (b) (d) None of these

 15. Which of the following deflects the particle in cyclotron?

 (a) Electric field (b) Magnetic field
 (c) None of these (d) Both (a) and (b)

 16. Which factor should be kept constant to avoid resonance lagging?

 (a) 
B

v c1 2 2
− /

 (b) B v c1 2 2
−( )/

 (c) B
v

c
1

2

2

1 2

−






+ /

 (d) 
B

v c1 2 2
−( )/

 17. For Cockcroft–Walton machine, the capacitors are charged and discharged in _______

 (a) parallel (b) series
 (c) can be parallel or series (d) cannot be discharged
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 18. The ripple voltage for Cockcroft–Walton machine in

 (a) 
I f C.( )

16
 (b) 

16

2

f C

I n n

. .

+( )

 (c) 
I n n

f C

+( )2

16 . .
 (d) I n f C16 . .( )

 19. Using Cockcroft–Walton machine, the particles cannot be accelerated above

 (a) 5 MeV (b) 8 MeV
 (c) 10 MeV (d) 1 MeV

 20. Betatron works on the principle of

 (a) Superposition (b) Ampere’s law
 (c) electromagnetic induction (d) self-induction

 21. In betatron, the electron moves in orbit

 (a) of constant radius (b) of variables radius

 (c) of radius as (r 2) (d) of radius as 
1
2r

 22. For magnetic focusing, the magnetic field is

 (a) concave inward (b) convex outward
 (c) radial (d) longitudinal

 23. In betatron, the electrons are injected during

 (a) decreasing magnetic field (b) peak magnetic field
 (c) increasing magnetic field  (d) O magnetic field

 24. The flux condition for betatron is

 (a) 
d

dt

d

dt
R B

f
pB = ( )4 2  (b) 

d

dt

d

dt
R B

f
pB = ( )2

 (c) 
d

dt

d

dt
R B

f
pE = ( )2  (d) 

d

dt

d

dt
R B

f
pB = ( )2 2

 25. General Electric labs have produced electrons up to

 (a) 100 MeV (b) 10 MeV
 (c) 50 MeV (d) 5 MeV

 26. Electro synchrotron uses flux bars for

 (a) resonance (b) magnetic field
 (c) supersaturating (d) stability
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 27. The vacuum chamber are coated with silver to

 (a) avoid any insulation (b) avoid eddy currents
 (c) increase the conductivity (d) none of these

 28. Synchrotrons are low-energy-accelerating machines. (True/False)

 29. The frequency of revolution for synchrotron is

 (a) 
c

r2p
 (b) 

cr

2p

 (c) 
2pr

c
 (d) 

2p

cr

 30. The energy of particle is synchrotron is

 (a) 
qBr

c
 (b) 

c

qBr

 (c) qBrc  (d) 
qB

rc

 31. Using proton synchrotron, the protons can be accelerated up to

 (a) 5 MeV (b) 10 GeV
 (c) 10 MeV (d) 1 BeV

 32. For proton acceleration up to 30 GeV, which of the following is used?

 (a) Cyclotron (b) Betatron
 (c) Betatron (d) Cosmotron

 33. In synchrocyclotron, the frequency is

 (a) varied (b) kept constant
 (c) varies as q2 (d) varies as r 2

 34. In synchrocyclotron, after completion of one revolution, the electron gains impulse of

 (a) 10 kV/turn (b) 1 kV/turn
 (c) 5 kV/turn (d) 10 V/turn

 35. For LINAC, the velocity is proportional to

 (a) n (b) n2

 (c) n  (d) 
1

n

 36. For LINACs, the distance travelled by ion depends on

 (a) n (b) n

 (c) n2 (d) 
1

2n
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 1. (c)

 2. (d)

 3. (a)

 4. (a)

 5. (b)

 6. True

 7. (d)

 8. (a)

 9. (b)

 10. (c)

 11. (b)

 12. (c)

 13. (d)

 14. (a)

 15. (b)

 16. (c)

 17. (b)

 18. (c)

 19. (a)

 20. (c)

 21. (a)

 22. (b)

 23. (c)

 24. (d)

 25. (a)

 26. (c)

 27. (b)

 28. False

 29. (a)

 30. (c)

 31. (b)

 32. (d)

 33. (a)

 34. (b)

 35. (c)

 36. (b)

ANSWERS
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Micro-Assessment Questions

 1. What are particle accelerators?
 2. What is the difference between cyclic and electrostatic accelerator?
 3. Write the conditions that the ion source must satisfy for a particle accelerator.
 4. Write the conditions for an ideal accelerator.
 5. Write down the principle of Van de Graaff generator.
 6. What do you understand by corona discharge?
 7. Which gases are used inside a Van de Graaff chamber?
 8. What do you understand by breakdown current?
 9. What is loss of resonance for cyclotron?
 10. What is Cockcroft–Walton machine?
 11. What is the ripple voltage for Cockcroft–Walton machine?
 12. What is betatron?
 13. What is synchrotron? How does it differ from synchrocyclotron?
 14. What is the disadvantage of cyclotron?
 15. What is the advantage of using betatron?
 16. What is the difference between Van de Graaff generator and LINAC?
 17. What is the principle of betatron?
 18.  Explain the betatron condition for the betatron.
 19. What is the advantage of synchrotron over betatron?
 20. List the low-energy and high-energy particle accelerators.
 21. Explain the linear accelerators (LINAC).
 22. List the disadvantage of synchrocyclotron.

Critical Thinking Questions

 1. Give the principle of cyclotron in brief. What is the role of magnetic field in cyclotron?
 2. Explain the construction of Van de Graaff generator in detail.
 3. What are the various currents that are present in Van de Graaff generator?
 4.  Derive the energy of particle when it is accelerated under the effect of electric and magnetic field 

in the cyclotron.
 5. Explain the consequences when heavy ions are used in cyclotron.
 6. What is the difference between cyclotron and betatron?
 7. What is the principle of Cockcroft–Walton machine?
 8.  With the help of diagram, explain the injection and ejection point for betatron w.r.t. magnetic field.
 9. Derive the flux condition linked with the betatron.
 10. Which factors limit the performance of betatron?
 11. Explain the role of flux bars in synchrotron.
 12. Why doughnut chamber is coated with silver from inside?
 13. Explain the working of synchrotron.
 14. Describe the importance of RF oscillators in accelerators.
 15. What is the disadvantage of linear accelerators?



Graded Questions

 1.  Write in detail the principle, working, and construction for Van de Graaff generator. Which type 
of particles can be accelerated using Van de Graaff generator?

 2. Explain in detail the principle construction and working of cyclotron.
 3. Describe the principle, working, and construction of Cockcroft–Walton machine.
 4.  Write in detail the principle, working, and construction for the betatron. How is the problem of 

“loss of resonance” resolved?
 5.  Explain in detail the working of electron synchrotron. How does its working differ from proton 

synchrotron?
 6.  Describe the principle, working, and construction for synchrocyclotron. What is the frequency 

of particle revolution?
 7. What are linear accelerators? Give its detailed principle and working.

Remember and Understand

 1.  The accelerators should have energy stability and coherence along with good beam intensity. The 
accelerators should also exhibit good particle collimation.

 2.  Accelerators fall in two categories: electrostatic accelerators in which the particles are accelerated 
by constant potential difference and cyclic accelerators in which particles form closed path again 
and again.

 3.  The Van de Graaff generator is based on the principle of harp pointed surfaces and zero charge 
inside hollow conductor.

 4.  Van de Graaff generator can only accelerate positive particles up to 10 MeV. Cyclotron is also 
used to accelerate positively charged particles that are further used for nuclear disintegration.

 5.  Cyclotron can accelerate the particles through electric field only. The purpose of magnetic field 
in cyclotron is to deflect the particles in semicircular path inside the dees.

 6. The time period (T) taken by a charged particle in cyclotron is given by the following equation:

T t
m

Bq
= =2

2p

 7. The maximum energy gained by a particle inside the cyclotron is given by the following equation:

E
q B

m
rmax max=

æ

è
ç

ö

ø
÷

2 2
2

2

 8.  Electrons can be accelerated by cyclotron due their smaller mass. Electrons gain energy very 
quickly in small intervals of time and hence go out of step very quickly.

 9.  Cockcroft–Walton machine uses voltage multiplier circuits to get high potential difference. The 
capacitors are connected in parallel, which are charged and discharged in series. This accelerator 
can accelerate particles up to 5 MeV.

 10.  For producing high energy X-rays and triggering reactions, we require energetic beam of elec-
trons which are negatively charged particles. Betatron is used to accelerate negative-charged 
particles, and it works on the principle of electromagnetic induction.

REMEMBER AND UNDERSTAND  •  385
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 11.  The particles of energy 100 MeV can be produced by betatron. In betatron, the transverse 
magnetic field makes the electrons move in constant orbit.

 12. The magnetic lines of force should be convex outwardly for proper magnetic focusing.
 13.  In betatrons the electrons are injected when the magnetic field is rising because the electrons get 

accelerated due to increase in potential within the doughnut.
 14. The flux condition for betatron is given by the following equation:

d

dt

d

dt
r B

f
pB = ( )2 2

 15.  In synchrotrons, the bulky electromagnet is replaced with a source of radiofrequency. It can 
accelerate both positive and negative particles. Although protons can be accelerated using cyclotron, 
but to accelerate the particles up to 10 GeV energy, proton synchrotrons are used.

 16.  The problem of loss of resonance has been overcome by the use of sychrocyclotron, which uses 
variation in frequency. Before ejection, ions revolve for 105 revolutions and the frequency is given 
by the following equation:

f
Bqc

m c
=

+( )

2

22p K.E. o

 17.  The linear accelerators work on the principle that the particle gets accelerated during positive 
half cycle and retarded during negative half cycle under an electric field.
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In day-to-day routine, we deal with many electromagnetic devices. These devices are based on the 
phenomena exhibited by charges and magnetic field. We have studied about static charges in our 
 previous classes. In this chapter, we will also deal with moving charges. Moving charges give rise to 
 magnetic field and changing magnetic field generates electricity. The branch of physics that deals with 
electricity and magnetism is known as electromagnetism. It is very important to have thorough know-
ledge of Maxwell equations to understand electromagnetism. Before we understand these mathe-
matical equations, we should be able to grab the importance and relevance of terms such as “gradient,” 
“divergence,” and “curl.” In addition, we should understand scalar and vector fields.

10
Electrostatics

Learning Objectives

VV To learn about scalar and vector fields

VV To understand the significance of gradient, divergence, and curl

VV To understand the concept of charge and its properties

VV To drive Coulomb’s law in terms of position vectors

VV To define the dielectric constant and coulomb

VV To learn how Newton’s third law holds good during electrostatic interactions.

VV To get insight into electric field, source, and test charge

VV To understand the importance of electric field lines and their properties

VV To learn the difference between discrete and continuous charge distribution

VV To derive electric field for different charge distributions like line charge, over a circular ring and disc, 
and due to two infinite charged plane sheet

VV To understand the Gauss theorem as a bridge between electric flux and charge

VV To learn about the electric potential and potential difference

VV To understand the potential for continuous charge distributions

VV To learn about dielectrics, dielectric polarization, and displacement vector

VV To understand different types of polarization, that is, electronic polarizability, ionic polarization, 
orientation polarization, and space–charge polarization

 Keywords: Coulomb’s law, Gauss’s law, electric charge, potential, polarization, law of superposition, 
electric field, test and source charge, dielectric strength
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10.1 Scalar and Vector Fields

Every physical entity has a region surrounding it, which is of interest. For example, the body of mass 
m has a gravitational field around it and a body with charge q has electric field around it. Hence, the 
region that surrounds the entity and is of interest is called field. When the physical quantity is given 
as a function of position in well-defined space, it is known as point function. When the scalar point 
 function is associated with a field, then the field is said to be scalar field. The scalar function is single-
valued continuous function and is given by f x y z, ,( ) .

When vector function is associated with the region or field, the field is said to be vector field. The 
vector function is also single-valued continuous function and is given by A x y z

��

, ,( ) .

10.2 Gradient And Its Significance

Let f x y z, ,( )  be scalar point function such that it is continuously differentiable. Mathematically, the 
gradient is defined by

 ∇ =
∂

∂
+
∂

∂
+
∂

∂
f

f f fˆ ˆ ˆi
x

j
y

k
z

 (1)

where “∇ ” is “grad” or “nabla” operator. î , ĵ , and k̂  are unit vectors along x-, y-, and z-direction.  
“Ñ ” is given by

 Ñ =
¶

¶
+
¶
+

¶

¶

æ

è
ç

ö

ø
÷

ˆ ˆ ˆi
x

j
y

k
z

¶
 (2)

¶f
¶x , ¶ ¶

f
y , and ¶ ¶

f
z  are partial derivatives of scalar function w.r.t. x, y, and z. f  is a scalar quantity, 

but Ñf  is a vector quantity as indicated from Eqn. (1). Let S
1
 and S

2
 be level surfaces as shown in 

Figure 10.1 [by level surface, we mean that the value of temperature or any other physical entity is 
constant over it].

Let A and B be at a distance dr. For surfaces S1  and S2, the scalar functions have value f  and 
f f+ d , respectively. Let AC dn=  be the normal to surface S1 . B and C will have same value of scalar 

function because the surface is taken to be leveled. Scalar function f  charges as 
¶

¶

f

n
 along AC.

A

C

f + df

f

j

dn

Surface 1

S1

Surface 2

S2

dr B

Figure 10.1 Two surfaces with different scalar functions.
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In DABC

dn

dr
= cosf

 dn dr= cosf  (3)

We can also write Eqn. (3) in terms of unit vector n̂

 
dn n dr= ˆ .  (4)

Equation (4) indicates that the rate of increase of f  at A is greatest in the direction of unit vector n̂  

and is given by 
∂

∂

f

n
. Therefore,

 [from Eqn,(4)]

 d
n
dn

n
n dr drf

f f
=

∂

∂
=

∂

∂
ˆ. ˆ ˆ ˆ[where ]

���

= + +dxi dyj dzk  (5)

Now Ñf.dr is given by

( )f f f
f

æ ö¶ ¶ ¶
Ñ = + + + +ç ÷

¶ ¶ ¶è ø

ˆ ˆˆ ˆ ˆ ˆ. .dr i j k dx i dy j dx k
x y z

∇ =
∂

∂
+
∂

∂
+
∂

∂
f

f f f
.dr

x
dx

y
dy

z
dz

 Ñ =f f.dr d  (6)

Comparing Eqs (5) and (6),

 
∇ =

∂

∂
f

f

n
n̂  (7)

Equation (7) indicates that gradient of a scalar function f  represents the vector with magnitude equal 
to maximum rate of change of scalar function along the normal to level surface. When a vector field 
is derived from the gradient of a scalar field, the field is said to be conservative or lamellar field. For 
example, the electric field E is derived from gradient of potential such that

 E V i
x

j
y

k
z

= -Ñ = -
¶
+

¶
+
¶

¶

é

ë
ê

ù

û
ú

ˆ ˆ ˆ¶ ¶V V V
 (8)

From Eqn. (8), E is the lamellar or conservative field and V is the potential.

10.3 Divergence and its Significance

The divergence can only be performed for a vector point function. Consider A
��

 to be a vector  function 

with position coordinates A A i A j A kx y z

��

= + +
ˆ ˆ ˆ . Then the divergence of A

��

 can be given by

Div. ( )æ ö¶ ¶ ¶
= Ñ = + + + +ç ÷

¶ ¶ ¶è ø

�� ��

ˆ ˆˆ ˆ ˆ ˆ. . x y zA A i j k A i A j A k
x y z

 

∇ =
∂

∂
+
∂

∂
+
∂

∂









.A

A

x

A

y

A

z
x y z

��

 (9)
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It should be noted from Eqn. (9) that A
��

 is a vector quantity, whereas Ñ.A
��

 gives scalar quantity.

Ñ.A
��

 can have the following three cases:

 (i) Ñ.A
��

 can be positive. When divergence of vector field is positive, the vector quantity represents 
a source.

 (ii) Ñ.A
��

 can be negative. When divergence of vector field is negative, the vector field represents a 
sink.

 (iii) Ñ.A
��

 can be zero. When the divergence of vector field is zero, the vector field is said to be 
 solenoidal. In other words, flux in that region is zero. A solenoidal vector field does not  represent 
either source or sink.

In other terms, divergence of vector A
��

 can also be given as

 
Ñ =

ò
.

.
A

A ds

V

��

�� ���

�

D
 (10)

R.H.S. of Eqn. (10) represents the flux density of vector A
��

 over surface S, which encloses volume V.

10.4 Curl and its Significance

Curl is also performed on a vector field A
��

. The curl for vector A
��

 is given by

Curl A A i
x

j
y
k
z

A i A j A kx y z

�� ��

= Ñ´ =
¶
¶
+

¶
¶
+

¶
¶

æ

è
ç

ö

ø
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ˆ ˆ ˆ

 (11)

The curl is also given in terms of line integral, that is,

 

ˆ.A ds n
A

s
Ñ´ =

D

ò
�� ���

�� �� �
 (12)

Hence, curl can be defined as the line integral of vector field A
��

 per unit area.

If curl of vector field A
��

 is zero, then the field is said to be irrotational, that is,

 Ñ´ =

�� ��

A 0  (13)

Following are important identities of gradient, divergence and curl:

 (i) ) .Ñ Ñ( ) = Ñ

=
¶

+
¶
¶

+
¶
¶

æ

è
ç

ö

ø
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f f

f

2

2

2

2

2

2

2

¶
x y z

 (14)

“Ñ2 ” is known as the “Laplacian operator.”

 (ii) Ñ´ Ñ( ) =f 0  (15a)

Hence curl of gradient is zero.
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 (iii) Ñ´ Ñ´( ) = Ñ Ñ( ) -ÑA A A. 2  (15b)

 (iv) Ñ Ñ´( ) =. A 0  (15c)
Divergence of curl is zero

 (v)  Ñ( ) =òòò òò. .A dV A ds
s

 (15d)

Equation (15d) is Gauss divergence theorem, which states that the volume integral of  divergence 
of vector A

��

 over volume V is equal to surface integral of A
��

 bounded by surface S.

 (vi) Ñ´( ) = òòò A ds A dl
s

.
�

 (15e)

Equation (15e) is known as Stoke’s theorem, which states that surface integral of vector field A
��

 
over any surface s is equal to line integral of A

��

 over a closed contour.

10.5 Charge

Charge is the property of body that causes attraction or repulsion. This property is acquired when 
the bodies rub against each other. The bodies get charged after rubbing against each other and they 
may attract or repel each other. The charges are of two types, positive and negative. The distance 
between charges describes whether they are point charges. By point charges, we mean that the dis-
tance r between the charges is much larger than the dimensions of charges. The charges can mutually 
influence or exert forces on each other, which is known as electrostatic interaction. If the charges are 
moving, the interaction is said to be electromagnetic interaction.

10.6 Coulomb’s Law

Let q1  and q2  be two point charges with r1
�

 and r2

��

 be the position vectors, respectively (Figure 10.2).

The Coulomb’s law states that the force between two charges is

 (i) directly proportional to product of charges

 F q q
µ 1 2  (16)

 (ii) inversely proportional to the square of distance between the charges
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Figure 10.2 Charges showing Coulomb’s interaction.
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Combining Eqs (16) and (17),

F
q q

r
µ

1 2
2

 
F K

q q

r
=

1 2
2

 (18)

where K is the constant of proportionality. F is known as Coulomb’s force which has following 
properties:

 (i) This force is repulsive for the charges of same polarity and attractive for the charges with oppo-
site polarity.

 (ii) The Coulomb force acts along the line joining the two charges. Hence, Coulomb forces are 
central in nature.

Let F21

� ��

 be the force on charge q2  due to charge q1. Let F12

� ��

 be the force on charge q due  
to charge q2. Forces F

��

12  and F
��

21  are given by following cases:

 (i) F12  for charges with same polarity (Figure 10.3(a))

 

F K
q q

r r
12

1 2

1 2

2=

-

� ��

 (19)

 (ii) F12  for charges with opposite polarity (Figure 10.3(b))
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r r
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1 2
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 (iii) F21  for charges with same polarity (Figure 10.3(c))
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r r
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 (iv) F
21

 for charges with opposite polarity (Figure 10.3(d))
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 Figure 10.3(a) Figure 10.3(b)
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If we have to find out F21

� ��

, then we have to multiply unit vector with F21. The unit vector is given by

 

n̂
r r

r r
=

-( )
-

1 2

1 2

� ��

� ��  (23)

As =

���

21 21
ˆ.F F n

 

F
K q q r r

r r
21

1 2 1 2

1 2

3

� ��
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=
-( )

-
 (24)

We will define charge and constant of proportionality K in the following sections:
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Figure 10.3 Coulomb’s force for different polarities of charges.

Charles-Augustin de Coulomb was an eminent 
french physicist who formulated the famous 
Coulomb’s law. The law deals with the electrostatic 
interaction between electrically charged particles 
and “coulomb,” si unit of electric charge, was 
named after him. The Coulomb’s law was formulated 
as a consequence of Coulomb’s efforts to study the 
law of electrical repulsions put forward by English 
scientist Joseph Priestley. He also devised sensitive 
apparatus in order to evaluate the electrical forces. 
The device was torsion balance that could measure 
very small charges and hence experimentally esti-
mate the force of attraction or repulsion between 
two charged bodies. Then he issued out his theories 
in 1785–1789.

Coulomb was born to a wealthy family in 
Angouleme, france. His father Henri Coulomb 
was an inspector of the Royal fields in montpellier. 
later on, the family moved to Paris, where Coulomb studied mathematics at the famous Collège 
des Quatre-Nations. in 1759, he attended military school of mézières. He graduated from Ecole 
du Génie at mézières in 1761. After his formal studies at the Royal school of Engineering, he 
embarked on a long career within the military Engineering Corps. Coulomb worked as a military 
engineer in the west indies for almost nine years. His duties were hectic and forced him to make 

CHARLES-AUGUSTIN DE COULOMB
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10.6.1 Coulomb as Unit of Charge
The SI unit of charge is Coulomb. The current is given by

Current =
charge

time
I

q

t
( )

( )
( )

 
1 ampere =

1 Coulomb

1 sec
 (25)

One Coulomb is defined as the amount of charge that passes through any section of wire per second 
carrying current of unit current.

10.6.2 Proportionality Constant (K)
K depends on the medium between charges as well as system of units chosen and is given by

 
K =

1

4 0pe
 (26)

where e0  is the absolute permittivity of free space.

The value of e0
12 28 854 10= ´
-. C /Nm2 .

The value of K = ´9 109 Nm /C2 2 in SI and the value of K =1  in c.g.s.

Let q q q1 2= =  and r r m1 2 1
� ��

− = .

Let F = ´9 109 N , Eqn. (24) can be written as

 q q2 1 1= Þ = ±  (27)

Hence, one coulomb is defined as the amount of charge, which will attract/repel similar or opposite 
charge respectively, when placed at a distance 1 m apart from each other in vacuum with a force of 
9 109
´ N.

From Eqs (20) and (22), when we take forces between opposite charges, then

 F F12 21

� �� � ��

= -  (28)

Similar is the case for force between charges with same polarity. Hence, Coulomb’s force obeys 
Newton’s third law of motion.

several necessary moves over time. A particularly long stay in the west indies left his health in 
a deteriorated state. Then he came back to france with a bad state of health and never fully 
recovered. Coulomb lived in blois during the french Revolution and carried out his scientific 
research. in 1777, Coulomb was awarded part of the Academy’s grand prize for a paper dis-
cussing the magnetic compass. in 1781, he received prize for a groundbreaking examination of 
friction. He also formulated the inverse square law of attraction and repulsion of unlike and like 
magnetic poles, which further laid out the foundation for the mathematical theory of magnetic 
forces formulated by french mathematician siméon-Denis Poisson. He was appointed as an 
inspector of public instruction in 1802. His health worsened day by day and he died on August 
23, 1806, in Paris at the age of 70 years. Posthumously, he was honored by the adoption of an si 
unit of electric charge “coulomb” bearing his name. 
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Following are the points about the charge:

 1. Charge is a conserved quantity, which will not change with time for an isolated system.
 2. Charge can be added and subtracted like ordinary numbers. Hence, charge is a scalar quantity.
 3. Charge is quantized as the total charge of body and is given by discrete values. Total charge q is 

given by

 q ne= ±  (29)

Hence, total charge can be expressed as integral multiple of smallest unit of charge e. n can take inte-
gral values only and cannot take any fractional value.

Andre marie Ampère was the famous french 
 physicist and mathematician who is mainly 
known for giving fundamental basis of 
 electrodynamics. He was the first person who 
demonstrated the  generation of magnetic 
field when two parallel wires are charged with 
electricity. He invented the astatic needle, 
which is a significant component of the astatic 
galvanometer.
 Andre marie was born on January 20, 1775, 
in lyon, france. He was the son of Jean-
Jacques Ampère who was a local govern-
ment official and an affluent businessman. At 
a very young age, Ampère spent most of his 
time reading in the library of his family home. 
while reading, he developed an  interest for 
philosophy, history, geography,    literature, and 
above all natural sciences. His father was a 
support and motivation for him. He used to 
give him latin  lessons and encouraged him to 
pursue his passion for mathematics.
 During 1820, the Danish physicist, H.C. 
oersted accidentally discovered that by a 
voltaic current, magnetic needle shows move-
ment. This phenomenon established was the 
background of relationship between electricity and magnetism. Ampère was very much influ-
enced by oersted’s discovery. He performed systematic series of experiments in order to eluci-
date the exact nature of the relationship between electric current-flow and magnetism. He also 
emphasized on the behavior of electric currents in various types of conductors. furthermore, 
he demonstrated from his experiments that two parallel wires carrying electric currents mag-
netically attract each other if the currents are in the same direction and repel if the currents are 
in opposite directions. Then, Ampère formulated his famous law of electromagnetism, which 
is known as Ampère’s law. This law gives the mathematical description of the magnetic force 
between two electrical currents. After a week of oersted’s discovery, his findings were reported 
in the Académie des sciences, which laid a solid foundation of electrodynamics. Ampère died on 
June 10, 1836, at marseille and was buried in the Cimetière de montmartre, Paris. Posthumously, 
The si unit of measurement of electric current was named as Ampere.

ANDRE MARIE AMPÈRE
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10.7 Electric Field

Electric field is the inherent space property of charge by virtue of which the surroundings of source 
charge (q) is modified, so that incoming test charge q0  experiences a force on it. Hence, electric field 
is the space around the vicinity of charge. The source charge produces electric field and test charge 
experiences force on it when it comes in the field region of source charge.

Mathematically, electric field ( E
��

) is given by force experienced by test charge ( F
��

) per unit test 
charge ( q0 ).
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 (30)

In Figure 10.4, we have fixed source charge q located at position vector r
�

. r0

��

 is the position vector of 
test charge q0 . The force F

��

 on test charge is given by
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From Eqn. (31), it is clear that the direction of electric field is always from source to test charge. 
Moreover, source charge contributes to electric field. When the source charge is at origin, r

�

= 0
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Figure 10.4 Electric field between test and source change.
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 E

q

r
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=

4 0 0
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pe

 (32)

From Eqn. (30), it should be noted that test charge q0  tends to zero, which means the magnitude 
of test charge should be very small. The small test charge will not displace source charge and hence 
accurate value of electric field is obtained. If the source charge is fixed, then the magnitude of test is 
immaterial and Eqn. (30) is given by

 
E

F

q
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��

=

0

 (33)

10.8 Principle of Superposition

Let us take n charges q q qn1 2, , ,…  with respective position vectors r r rn1 2

� ��

…

��

, , , . Let q be the test 
charge on which we want to determine the force as well as electric field. Then according to principle 
of superposition “for a group of charges, the force on any charge is the vector sum of individual forces 
exerted on it due to all other charges.” Hence, we can write

 F F F Fn

�� ��� ���

�

���

= + + +1 2  (34)

All forces are independent of each other.
Let Fn  be the force between charge qn  and q (Fig. 10.5). Then Eqn. (34) can be given as
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Figure 10.5 Group of n charges and their position vectors.
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If charge q lies at origin, then Eqn. (37) can be written as
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The electric field can be given as force per unit test charge q. Equation (37) can be written as
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For the charge q lying at origin, Eqn. (39) can be written for electric field as
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10.9 Electric Lines of Force

An electric line of force is defined as the path along which unit positive charge will tend to move, 
when it is free (under no force). The intensity of electric field is represented by the density of field 
lines. Electric field lines have the following properties:

 1. Lines of force are normal to surface of body where they originate or terminate (Fig. 10.6).
 2. There is no line of force inside the conductor. Hence, electric field lines are not closed curves.

+
−

(a) (b)

Figure 10.6 Electric field lines for positive and negative charge.
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 3. Lines of force start from positive charge and terminate at negative charge.
 4. The electric lines of force have the same direction as that of electric field.
 5. Lines of force never intersect each other. When the lines intersect, at the point of intersection 

two tangents can be drawn, which gives two directions of electric field at the same point. This is 
quite contradictory.

 6. The lines of force moving in the same direction repel each other and moving in opposite direc-
tion attract each other.

10.10 Continuous Charge Distribution

Till now, we have obtained the force and electric field due to discrete charge distribution. When 
the charges are distributed in an entire surface, within a volume or along a length, we have to use 
 continuous charge distribution. Following are three kind of distributions:

1. Line Charge Distribution
For line charge distribution, the charge is spread all along the length (can be wire). Let q be the total 
charge distributed along the whole length PQ  of wire (Figure 10.7). Then dq is the charge for small 
length dl of wire PQ . Then line charge density is given by

 
l =

dq

dl
 (41)

Then, the electric field becomes
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l  is constant only if the charge is distributed uniformly over a length.
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Figure 10.7 Line charge distribution.
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2. Surface Charge Distribution
For surface charge distribution, the charge is continuously distributed over an entire surface. Let q be 
the total charge distributed on surfaces (Figure 10.8). Then dq is small charge for small area ds, such 
that surface charge density is given by

 
s =

dq

ds
 (43)

The electric field can be written as
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For uniform charge distribution, s  is constant for entire surface.
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Figure 10.8 Surface charge distribution.

3. Volume Charge Distribution
For volume charge distribution, the charge is distributed inside whole volume. Let q be the total 
charge distributed inside a volume (Figure 10.9). Then dq be small charges for small volume dV, such 
that volume charge density is given by

 
r =

dq

dV
 (45)
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Figure 10.9 Volume charge distribution.
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The electric field can be written as
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pe4 0
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Like line and surface charge distributions, volume charge density r is constant for homogenous 
uniform distribution. In the following sections, we will find electric field in different geometries such 
as line, ring, sheets, etc.

10.10.1 Uniformly Charged Infinite Wire
Let us take an infinite wire along y-axis (Figure 10.10). Take a small part PQ of length dl such that it 
has charge dq [q is distributed along whole length of infinite wire].
Then,

 l =
dq

dl
 (47)
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Figure 10.10 Uniformly charged infinite wire.
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The electric field due to infinite long wire is along x-axis and inversely proportional to the distance.

10.10.2 Uniformly Charged Ring
Let ( r0 ) be the radius of charged ring. Let PQ  be the small arc over which charge dq is distributed 
(Figure 10.11). Then,

l =
dq

dr

 dq dr= l  (49)

Using the relation angle =
arc

radius
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Let A be the observation point with coordinates ( 0 0, ,z ), such that the position vector of A is r
�

. Hence,
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The electric field is given by
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Figure 10.11 Uniformly charged ring.
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Equation (52) can be written as
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l  can also be given as l
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Hence, if the ring is in x–y plane, then the electric field should be along z-direction.
Special Case: This case can be applied to circular disc also (Fig. 10.12). We consider a disc with radius 
r1  and r2  (outer edge). We consider a small elementary ring of thickness dr

1
. The area of the ring is 

2 1 1p r dr . The surface charge density can be given by
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Figure 10.12 Circular disc.



404  • CHAPTER 10/ElECTRosTATiCs

 s s p= =dq ds r dr2 51 1  (57)

From Eqn. (56),
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Hence, again the electric field is in z-direction. If z z= , then Eqn. (59) is given by
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 (60)

Equation (60) indicates that when z tends to infinity, electric field decreases.
When z = 0 ,

 
E =

s

e2 0

 (61)

When z z= - , Eqn. (59) becomes

 

E
z

z r
= − +

+















s

e2
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0
2

2
2

 (62)

Hence, the center acts as a point of discontinuity and electric field can take sudden jump on either side.
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When r2 ®¥ , disc behaves as an infinite sheet of charge (Figure 10.13). Two cases arise when 
r2 ®¥  i.e.

 (i) When z z=

 
E k
��

=

s

e2 0

ˆ  (63a)

 (ii) When z z= -

 
E k
��

=

-s

e2 0

ˆ  (63b)

Hence, the electric field is no longer dependent on the distance between the observation point and 
source charge. Across the boundary, the electric field jumps from negative to positive.

10.10.3 Field Due to Two Infinite Charge Plane Sheet
Let X and Y be two plane sheets (Fig. 10.14) separated by “d.” X has surface charge density “s ” and 
Y has surface charge density of “ -s .”

We will find electric field at three points as follows:

 (i) For point A

We have E kx

� ��

=

-s

e2 0

ˆ

Similarly,  E ky

� ��

= -
-æ

è
ç

ö

ø
÷

s

e2 0

ˆ

+
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+

+
+

+

+
E = s/2e0 E = s/2e0
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Figure 10.13 Infinite sheet.
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Figure 10.14 Two infinite plane sheets separated by distance d.
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Hence,  E
k

k
��

=
-

+ =
s

e

s

e

ˆ
ˆ

2 2
0

0 0

 (64a)

 (ii) For point B, we have

 E
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x
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e

ˆ

2 0
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 (iii) For point C, we have

 E kx

� ��

= +
s

e2 0

ˆ

Similarly, E ky

� ��

= -

s

e2 0

ˆ

 
E E Ex y

��

= + = 0  (64c)

Hence, the electric field exists only between the parallel plates and is independent of the distance.

10.11 Gauss Theorem

The density of field lines around the charge describes the intensity of field. We will define electric flux 
density (D). The electric field E at a distance r is given by

 E
q

r
r

��

=

1

4 0
2

pe

ˆ  (65)

 e0 24
E

q r

r

��

=

ˆ

p

 (66)

 D
q r

r

���

=

ˆ

4 2
p

 (67)

Here Þ =D E
��� ��

e0  is known as displacement density.

 E ds cos q

E

ds

q

S

Figure 10.15 Flux over a surface.



10.11  GAuss THEoREm  •  407
Let ds be the small area over a sphere (Figure 10.15). Then the number of lines passing through 

small area ds is

d E dsf =
�� ���

.

Hence, the total flux is given by (for a closed surface)

 
f f= =∫ ∫∫d E ds

s

�� ���

� .  (68)

If for a spherical surface with radius r and enclosing charge q as shown in Figure 10.16, then electric 
field is given by (magnitude only)

E
q

r
=

4 0
2

pe

From Eqn. (68)

f q= òò E ds cos
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When electric field and 

area vector are in samee

 direction then q =
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ê
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pe
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q r

r

( )4

4
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0
2�

 
f

e
=

q

0

 (69a)

Hence,  E ds
q�� ���

� .∫∫ =
e0

 (69b)

According to Gauss theorem, “The total electric flux emanating out of a closed surface is 
1

0e
 times 

the total charge (q) enclosed inside the surface.” Other alternative definition is “The surface integral 

of electric field over a closed surface is 
1

0e
 times the total charge (q) enclosed inside the surface.”

The flux is outward for positive charge and inward for negative charge. The flux is only due to the 
charges that are enclosed inside a surface. The charges outside the closed surface do not contribute to 
the electric flux.

10.11.1 Deduction of Coulomb’s Law
Let us take a Gaussian surface enclosing charge q and r is the radius as shown in Figure 10.17. As E 
and ds (area vector) are radial, hence Gauss’s law is given by

q

r

Figure 10.16 Spherical surface enclosing charge q.



408  • CHAPTER 10/ElECTRosTATiCs

E ds
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for radial electric field,
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=ò e0
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4 0
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 (70)

Hence, Coulomb’s law can be obtained from Gauss’s law.

10.11.2 Differential Form of Coulomb’s Law
Consider a surface S enclosing charge q (Figure 10.18). Let ds

���

 be a small part on entire surface S. The 
area vector ds

���

 is normal to the surface, such that it makes an angle q  with the electric field. For a 
volume charge distribution,

 
r =

é

ë
ê

ùdq

dV

where is the small volume 

enclosing charge 

dV  

dq ûû
ú  (71a)

From Eqn. (69b)

 
E ds

q�� ���

� . =ò
e0

 (71b)
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Figure 10.17 Surface enclosing charge q.
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Figure 10.18 Small surface showing area vector and electric field.
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From Eqn. (10)

Ñ =
ò�� ��

�� ���

�.
.

A
A ds

VD

Ñ( ) = ò
�� �� �� ���

�. .A V A dsD

For total volume, the flux emanating can be written as

 
Ñ( ) = òòòò
�� �� �� ���

�. .A dV A ds
v

 (71c)

Using Eqn. (71c) in Eqn. (71b), we can write

 
Ñ( ) =òòò .E dV

q
v e0

 (72)

From Eqn. (71a), we write

 
q dV

v
= òòò r  (73)

Using Eqn. (73) in Eqn. (72)

Ñ( ) =òòò òòò
�� ��

.E dV dV
v v
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e0
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è
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ø
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�� ��

.E dV
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r

e0

0

As the volume cannot be zero, the term in bracket is zero:

 
Ñ =

�� ��

.E r

e0
 (74)

Equation (74) is known as the differential form of Gauss’s Law.

Carl friedrich Gauss was born on April 30, 
1777, in brunswick, Germany, to a very poor 
family. His father was a gardener and brick 
layer. His mother put lot of efforts to educate 
him. The Duke of brunswick observed the com-
puting and mathematical skills when Gauss was 
only 14 years old. After meeting Gauss, the 
Duke was so impressed that he financially sup-
ported him to continue his studies at Caroline 
College. He further financed Coulomb’s stay at 
the brunswick Collegium Carolinum, Hanover. 
Gauss attended the university of Göttingen 
from 1795 to 1798; afterwards he got his doc-
torate in 1799 at the university of Helmstedt. 
At the end of his college years, Gauss made a 
magnificent discovery of finding a regular poly-
gon with 17 sides, which could be drawn using 
just a compass and straight edge. Gauss was 
immensely happy and proud of his discovery. He decided to give up his intention to study lan-
guages and turned to mathematics.

CARL FRIEDRICH GAUSS
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10.12 Electrostatic Potential

Electrostatic potential is defined as the amount of work done in bringing a unit positive charge from 
infinity to an observation point. Electric field is zero at infinity. Mathematically, the potential is written 
by following expression:

 
V E dl

A

= −
∞∫
�� ���

.  (75)

Hence, potential can be defined as the line integral of electric field. Similarly, we can find out the 
potential difference between two points. Let a charge q is moved through distance dl, from point A 
to B. Suppose F is the force on the charge that is equal to electrostatic force qE , the work done is 
given by

dW F dl= −

�� ���

.

dW q E dl= −

�� ���

.

[the charge is to be moved against the electrostatic force]

W q E dlAB
A

B

= −∫
�� ���

.

W

q
E dlAB

A

B

= −∫
�� ���

.

 W

q
V V E dlAB

B A
A

B

= − = −∫
�� ���

.  (76)

Equation (76) represents the work done in moving a charge from point A to B. The potential differ-
ence is defined as the amount of work done in moving unit charge from one point to another point.

We will define 1V now. From Eqn. (76)

 

1 Joule

1 Coulomb
=1 Volt  (77)

 in 1807, Gauss was appointed as the director 
of the Göttingen observatory. He worked hard to 
establish the laboratory; furthermore, his hard work 
of six years with wilhelm weber led to the inven-
tion of primitive telegraph device, which could send 
messages over a distance of 1,500 m. Carl friedrich 
Gauss wrote more than 300 papers, mostly in latin 
and made calculations of the orbits of the aster-
oids Ceres and Pallas. He won the Copley medal in 
1838. He died on february 23, 1855, in Göttingen, 
Germany, at the age of 77 years. STATUE OF WEBER AND GAUSS
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The potential difference is said to be 1Volt when 1 Joule of work is done in moving 1 Coulomb 
charge from one point to another. We can express electric field in terms of potential V.

Let  V a E dl
a

( ) = −∫
�� ���

.
0

 (78a)

and  V b E dl
b

( ) = −∫
�� ���

.
0

 (78b)

Potential difference becomes [subtract Eqs (78b) and (78a)]

 
V b V a E dl

a

b

( ) − ( ) = −∫
�� ���

.  (79)

From Eqn. (6) [fundamental gradient equation]

 dV V dl= Ñ .  (80a)

Substituting Eqn. (80a) in Eqn. (79),

∇ = −∫∫ V dl E dl
a

b

a

b

. .
�� ���

Hence,  E V
��

= −∇  (80b)

Hence, electric field can be expressed as the gradient of the potential. Hence, when potential is known 
then the electric field can be calculated. Potential also obeys superposition principle, that is,

 V V V V= + +1 2 �� n  (81)

as potential is scalar in nature; hence, Eqn. (81) gives the ordinary sum, it is not the vector sum.

10.13 Potential for Continuous Charge Distribution

Potential can be given by

V r E dr
r

( ) = −
∞
∫
�� ���

.

Hence, for E
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2

pe

, the above equation can be evaluated as r
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∞
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( ) =

1

4 0pe
 (82)
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Equation (82) represents the potential at a point due to point charge q. For a group of n charges, Eqn. 
(82) is written as

 
V r

q

r
i

ii

n

( ) =
=

å
1

4 0 1pe

 (83)

For continuous charge distribution, the potential can be given by

 (i) Line charge distribution

As electric field  E
dl

r
= ò

1

4

82
0

2
pe

l

[ ( )]from Eqn.

Similarly,  V r
dl

r
( ) = ò

1

4 0pe

l
 (84a)

 (ii) Surface charge distribution

 
V r
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r
( ) = ò

1

4 0pe

s
 (84b)

 (iii) Volume charge distribution

 
V r

d

r
( ) = ò

1

4 0pe

r V
 (84c)

10.14 Dielectrics

Dielectric materials are nonconducting materials that exhibit polarization under the effect of electric 
field. When the dielectric materials are kept under the influence of electric field, the charge inside 
their body gets separated and material exhibits dipole moment. Hence, dielectrics store charge inside 
them. A good dielectric material is a good insulator also. An insulator material has low conductivity 
and dielectric materials have high dielectric constant. Greater dielectric constant helps in storing large 
amount of energy. The dielectric constant is defined as

 Dielectric constant
Capacitance of capacitor with dielectric mat

=

eerial

Capacitance of same capacitor when dielectric is replaced by vvacuum
 (85)

 
K

C

C
=

0

 (86)

Dielectric constant is defined as the ratio of capacitance of capacitor with dielectric material to the 
capacitance of same capacitor when the dielectric medium is replaced by vacuum. Capacitance is the 
ability of a capacitor to store charge.
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Figure 10.19 (a) Nonpolar molecule (b) Polar molecule

10.14.1 Dielectric Polarization
The molecules are said to be nonpolar when the center of gravity of positive and negative charges 
coincide with each other. For example, H , N2 2 , and O2  are nonpolar molecules as shown in Figure 
10.19(a).

When the nonpolar molecule is kept inside the electric field, the charge separation occurs, that is, 
positive and negative charges are separated by some distance d as shown in Figure 10.19(b). Hence, 
the molecule is induced with electric dipole moment. We can treat nonpolar molecule as an electric 
dipole in the presence of electric field. When electric field is removed, the polar molecule returns to 
its original re-orientation. Conclusively, when the center of gravity of positive and negative charges is 
separated by some distance, it is said to be polar molecule.

If the molecule is inherently polar, that is, polar even in the absence of electric field, then there is 
no net dipole moment on the dielectric. Under the influence of electric field, the dipoles orient along 
the direction of electric field and is yielded net dipole moment.

The electric polarization P
��

 of a material is defined as the electric dipole moment of material per 
unit volume, such that

 P N p
�� ��

=  (87)

where N is number of atoms/molecules per unit volume and p
��

 is induced dipole moment, which is 
proportional to electric field. Hence,

p E
�� ��

µ

 p E
�� ��

=a  (88)

a  is defined as the molecular polarizability for the dielectric. Figure 10.20 represents the polarization 
of dielectric.

When electric field is applied to the dielectric, the stretching of molecule occurs. This stretching 
of the atoms of dielectric material under the influence of electric field is called dielectric polarization.  
The charges that are displaced are known as polarization charges. We will find out the relation between 
polarization and surface charge density as follows:

P =
dipole moment

volume of dielecrics
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P
��

=

charge thickness

area thickness

´

´

 P
qd

Ad
i i

��

= = =s s[ ]induced charge density  (89)

Hence, the polarization P is equal to surface density of induced charge for a homogenous isotropic dielectric.

10.14.2 Displacement Vector
Displacement vector is given by D

���

. There are two types of electric field in the dielectric, that is, external 
applied field E0  and induced field due to induced charges Ei  as shown in Figure 10.21.

Then the net electric field in the dielectric is given by

E E E i

�� �� ��

= −0

E i
��

= -

s

e

s

e0 0

e s s0 E i

��

= -

 e s0 89E P
�� ��

= − [ ( )]from Eqn.  (90)

Furthermore

e0 E D P
�� ��� ��

= -

 D E P
��� �� ��

= +e0  (91)

where D
���

 is an auxiliary vector with magnitude equal to surface charge density of free charges. Hence, 
we can say that E

��

 consists of free and bound charges where D
���

 is only dependent on free charge 
 density. From Eqn. (90), we can write

 P E
�� ��

= -s e s0 [ = ]D  (92a)
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Figure 10.20 Dielectric polarization.
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We know that dielectric constant K re( )  is defined as

er K
E

E
= =

0

 
E

r r

= =
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e

s

e e
E

s

e

0

0
0

0

=

 
(between the plates of capacitor) (92b)

Using Eqn. (92b) in Eqn. (92a),

P E E

P E

r
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�� ��

= -

= -( )

e e e

e e

0 0

01

 
P

E
r e

��

��

e
e c

0

1= - = = electric susceptibility

 Hence, e cr e= +1  (92c)

10.15 Types of Polarization

Under the effect of electric field, the charge distribution can get distorted and hence give rise to 
induced polarization. If the molecule is already polar in nature, then the field aligns the randomly 
oriented dipoles. There are four main types of polarization.

10.15.1 Electronic Polarization
When the center of gravity of positive and negative charges gets separated, the atom starts behaving 
like a dipole. Hence, shifting of electron cloud from the positively charged nucleus results in net dipole 
moment. The dipole moment is given by

 p qde =  (93a)

For Eqs (87) and (88), we write electronic polarization as ( Pe

���

)

 P N E
�� ��

e e= a  (93b)
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Figure 10.21 Two types of electric field in dielectric (t is the thickness of dielectric).
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ae  is the electronic polarizability, which is independent of temperature. Furthermore, the dielectric 
constant can be written as (Eqn. (92c))

e cr e= +1

e

e
r

P

E
= +1

0

e

���

��

 
e

a

e
r

N
= +1

0

e  (94)

Usually, monoatomic gases exhibit electronic polarizability. Hence, the dielectric constant for a mono-
atomic gas is a function of moleculer density (number of molecules/volume) and electronic polarizability.

10.15.2 Ionic Polarization
When electric field is applied to materials, such that anions and cations get separated by a distance 
giving rise to net dipole moment, then it is known as ionic polarization. pi  is the ionic dipole moment. 

if Pi

��

 is the ionic polarization, then

 P N Ei i

�� ��

= a  (95)

where a i  is ionic polarization. Usually ionic polarizability is 10 times less than the electronic polariz-
ability. The ionic  polarizability is given by

 
a i = +

é

ë
ê

ù

û
ú

q

w m m

2

2
1 2

1 1
 (96)

where w is optical phonon frequency, q is charge of ion, m1  and m2  are masses of ions in even number 
and odd number planes, respectively.

10.15.3 Orientation Polarization
Some materials such as CH Cl, H O3 2 , etc., possess permanent dipole moment. When these materials 
are kept under the electric field, the randomly oriented dipoles orient themselves along the direction 
of electric field (Figure 10.22). This is known as orientation polarization. Orientation polarizations 
have an inverse relation with temperature. With increasing temperature, the orientation gets distorted 
and hence the orientation polarization decreases. The orientation polarizability is given by

 
a0

2

3
=

p

kB

 (97)

No field Electric field

(a) (b)

Figure 10.22 Orientation polarization.
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where kB  is the Boltzmann’s constant. The orientation polarization is given by

 
P

Np E

k T
0

2

3
=

B

 (98)

Hence, orientation polarization has inverse relationship with temperature.

10.15.4 Space–Charge Polarization
Space–charge polarization is most common for multiphase materials. When multiphase materials are 
under the influence of electric field, the accumulation of charges takes place at the electrodes or inter 
phases. When field is applied, the ions get diffused over some appreciable distance. This gives rise to 
redistribution of charges (Figure 10.23).
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Figure 10.23 Space–charge polarization ( Ps )

For single-phase dielectric, there is no space–charge polarization and total polarization is given by

 P P P P= + +e i o  (99a)

For multiphase dielectrics, there is space–charge polarization and hence total polarization is given by

 P P P P P= + + +e i o s  (99b)

michael faraday was born on september 22, 1791, in 
Newington butts, london. faraday was born in a poor 
family and his father James was a blacksmith. He could 
not enjoy the luxuries and had to self-educate himself. 
He became friends with a local bookbinder and book-
seller George Riebau, where he found himself in love 
with books. He studied inventions and discoveries of 
eminent scientists and authors where he developed an 
interest in science, especially in electricity. furthermore, 
he began to attend lectures of different famous chem-
ists to gain and learn. He also applied for a job under his 
chemistry lecturer Humphry Davy, who later appointed 
him as Chemical Assistant at the Royal institution in 
1813. while working under Davy, faraday discovered 
two new carbon chlorides and produced several new 
kinds of optical glasses. in 1821, faraday married sarah 
barnard whom he met at the sandemanian church. 
After Davy’s retirement in 1827, faraday replaced him 
as lecturer of chemistry at the Royal institution. MICHAEL FARADAY
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SUMMARY

This chapter introduced scalar and vector fields. Scalar function was used to evaluate the gradient and 
vector function is used to find curl and divergence. When divergence is zero, the field is solenoidal, 
whereas when curl of vector is zero, it is known as irrotational. Charge is also understood as a prop-
erty of body causing attraction or repulsion. Using the charges and distance between them, Coulomb 
provided concept of electrostatic force of attraction or repulsion. Coulomb force is regarded as conser-
vative force as it follows inverse square law. It also follows Newton’s third law of motion and superpo-
sition force. Electric field is regarded as the modification of surroundings of source charge, such that 
test charge feels the force. Electric lines of force determine the direction of force. The electric field for 
uniformly charged infinite wire varies inversely as the distance between point of observation and source 
charge. Fields due to infinite charged sheets is independent of the distance. Gauss theorem demon-

strated that the surface integral of electric field over a closed surface is 
1

0e
 times, the charge enclosed 

within the surface. Electric potential is also given by negative gradient of potential. Dielectric materials  
are regarded as nonconducting materials exhibiting polarization under the effect of electric-field. 
The polarization of dielectric depends directly on the electric field. Polarization can be divided in 
four categories: electronic polarization, ionic polarization, orientation polarization, and space–charge 
polarization.

SOLVED EXAMPLES

Q.1: If f = +2 52 3y z x y , obtain the value of grad f  at (1, 1, 2).

Ans:  Ñ =
¶

¶
+
¶

¶
+
¶

¶
f

f f fˆ ˆ ˆi
x

j
y

k
z

Here,
 
f = +2 52 3y z x y

¶

¶
=

f

x
x y15 2

 faraday is best known for his contributions to electricity and magnetism. in 1821, he was 
inspired by the work of Hans Christian who was a Danish physicist and chemist. He started his 
experimentations regarding the conversion of electrical energy into motive force and finally suc-
ceeded in devising the electric motor. in 1831, faraday constructed the first electric dynamo 
and discovered the induction of electric currents. in 1839, he established that electrostatic force 
consists of a field of curved lines. He made other discoveries such as the faraday effect, the pro-
cess of diamagnetism, and faraday cage. His famous books are the Experimental Researches 
in Electricity and the Chemical History of the Candle. He also received a Doctor of Civil law 
degree in 1832 by the university of oxford. The british government granted him a pension and a 
house in Hampton Court for his great contribution to science, where he spent the rest of his life 
after his retirement in 1858. The great british scientist’s soul departed from this world on August 
25, 1867, leaving the scientific community in shock.
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¶

¶
= +

f

y
yz x4 5 3

¶

¶
=

f

z
y2 2

Ñ = ( ) + +( ) + ( )f ˆ ˆ ˆi x y j yz x k y15 4 5 22 3 2

Substitute x = 1, y = 1, z = 2

Ñ = + +f 15 13 2ˆ ˆ ˆi j k

Q.2: If f = - +6 82 2xy y z xz , obtain grad f  at(-2, 1, 2).

Ans:  f = - +6 82 2xy y z xz

¶

¶
= +

¶

¶
= -

f f

x
y z

y
x yz6 8 6 2 2

¶

¶
= - +

f

z
y z x2 82

Ñ =
¶

¶
+
¶

¶
+
¶

¶
f

f f fˆ ˆ ˆi
x

j
y

k
z

Ñ = +( ) + -( ) + - +( )f ˆ ˆ ˆi y z j x yz k y z x6 8 6 2 2 82 2

For points (−2, 1, 2)

Ñ = - -f 22 20 20ˆ ˆ ˆi j k

Q.3: If A x i xyj y z k
��

= - +2 3 52 2 2ˆ ˆ ˆ , obtain the divergence of A
��

 at (1, -2, 1).

Ans:     
� �

Ñ =
¶

¶
+
¶

¶
+
¶

¶
.A

A

y

A

y

A

z
x y z

Le 
�

A x i xy j y z k= - +2 3 52 2 2ˆ ˆ ˆ

� �

Ñ =
¶

¶
( ) +

¶

¶
-( ) +

¶

¶
( ).A

x
x

y
xy

z
y z2 3 52 2 2

A x A xy A y zx y z= = - =2 3 52 2 2, ,

� �

Ñ = - +.A x x y z4 3 10 2
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At x y= = -1 2, , and z =1
� �

∇ = ( ) − ( ) + −( ) ( ).A 4 1 3 1 10 2 1
2

� �

∇ = − +.A 4 3 40
� �

∇ =.A 41

Q.4: Given 
�

A e i y e j x z kx x
= + +

- -2 6 22 2ˆ ˆ ˆ , obtain its divergence.

Ans:    
�

A e i y e j x z kx x
= + +

- -2 6 22 2ˆ ˆ ˆ

A e A y e A x zx
x

y
x

z= = =

- -2 6 22 2, ,

¶

¶
= -

¶

¶
= =

- -A

x
e

A

y
ye A xx x y x

z2 12 2 2, ,

� �

Ñ =
¶

¶
+
¶

¶
+
¶

¶
.A

A

x

A

y

A

z
x y z

� �

Ñ = - + +
- -.A e ye xx x2 12 2 2

Q.5: Obtain the curl for position vector 
�

r .

Ans: 
�

r xi yj zk= + +
ˆ ˆ ˆ

�

�

Ñ´ = ¶
¶

¶
¶

¶
¶r

i j k

x y z

x y z

=
¶

¶
-
¶

¶

é

ë
ê

ù

û
ú -

¶

¶
-
¶

¶

é

ëê
ù

ûú
+

¶

¶
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ë
ê

ù

û
ú

ˆ ˆ ˆi
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y

y

z
j

z

x

x

z
k

y

x

x

y

= -[ ] - -[ ] + -[ ]ˆ ˆ ˆi j k0 0 0 0 0 0

= 0

Q.6: Obtain the curl for r rn �  and 
�

r

r 3

æ

è
ç
ö

ø
÷ , where 

�

r  is position vector.

Ans: 
�

r xi yj zk= + +
ˆ ˆ ˆ

r x y z= + +( )2 2 2 1 2/

r x y zn n
= + +( )2 2 2 2/
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Hence,

 (i)  ( ) é ù= + + + +ë û
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/2
2 2 2 ˆˆ ˆ

nnr r x y z xi yj zk

( ) ( ) ( )= + + + + + + + +
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 (ii) For  
�

r
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Q.7: Obtain the values a, b, and c  if the field is irrotational.
�

A y x az i bx y z j x z cy k= + +( ) + + -( ) + - +( )2 6 2 2ˆ ˆ ˆ

Ans: For irrotational fields,
� �
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Q.8: Obtain the force between charges q1

82 10= ´
- C  and q2 6=  Cm  separated 20 cm apart in 

vacuum.

Ans: F
q q

r
=

1

4 0

1 2
2

pe

q q r1
8

2
62 10 6 10 20 0 2= ´ = ´ = =

- -C C and cm m, , .

F =
´ ´ ´ ´ ´

( )

- -9 10 2 10 6 10

0 2

9 8 6

2
.

F =
´

-108 10

0 04

5

.

F =
´

= ´

-

-
108 10

4
27 10

3
3 N

Q.9: What will be the magnitude of force between two charges of equal magnitude 2mC  separated 
by a distance of 10 cm in kerosene oil (K for kerosene = 2).

Ans: q q c1 2
62 10= = ´
-

r = 0 1. m

F

F
Kvac

med

=

F
F

K
med

vac
=

We will calculate Fvac  first as follows:

Fvac =
´ ´ ´

-9 10 4 10

0 01

9 12

.

Fvac = ´ ´
-36 10 1003

Fvac N= 3 6.

In kerosene, the force changes to

F
F

K
med

vac N= = =

3 6

2
1 8

.
.

Hence, Fmed N=1 8.
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Q.10: The charges for +1 Cm  are placed on the vertices of equilateral triangle of side 10 cm. Obtain 
the magnitude and direction of resultant force on one charge due to other charges.

10 cm 10 cm

FCA FBA

F

A

B C

( +1 µC )

( 1 µC )( 1 µC )

30° 30°

60°60°

10 cm

Ans: The resultant force is F  which is obtained from FBA  and FCA .

F
K q q

r
F

K q q

r
BA

B A
CA

C Aand= =

2 2

FBA =
´ ´ ( )
( )

-9 10 10

0 1

9 6 2

2
.

FBA =
´ ´ ´

-9 10 10 100

1

9 12

FBA N= 0 9.

Similarly, FCA N= 0 9.
The resultant force F is given by

F F F F F= + +1
2

2
2

1 22 cosq

The present case

 F F F1 2= = BA
 [q is angle between  

F
��

BA and F
��

CA ]
F F F F= + +BA BA BA

2 2 22 cosq

F F= ´ ´2 2BA cosq

F = ´ ´ °2 0 9 30. cos

F = ´ =1 8
3

2
0 9 3. .

F = ´0 9 1 73. .

F =1 557. N
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Q.11: A charge of magnitude +2 Cµ  is placed in between two charges of magnitude +4 Cµ  and 
+6 Cµ . If r1 0 2= . m  and r2 0 4= . m , obtain the force on charge of magnitude +2 Cµ .

+4 µC +2 µC +6 µC

A

r1 = 0.2 m r1 = 0.4 m

B C

Ans: 

F
K q q

r
BA = =

´ ´ ´ ´

( )

-

1 2

1
2

9 12

2

9 10 4 2 10

0 2.

FBA =
´ ´

-72 10 100

4

3

 FBA N=1 8.  (a)

F
K q q

r
CB =

2 3

2
2

FCB =
´ ´ ´ ´

( )

-9 10 2 6 10

0 4

9 12

2
.

=

´ ´
-108 10 100

16

3

= ´
-6 75 10 1.

 FCB N= 0 675.  (b)

As FBA  and FCA  will be directed opposite to each other, the net magnitude is given by

F F F

F

= -

= - =

BA CB

N1 8 0 675 1 125. . .

Q.12: What is the magnitude of electric field between two charges of magnitude −4mC  and 12mC  
separated by a distance of 0.3 m?

Ans:  E
q

r
=

1

4 0
2

pe

Here, q =12mC  as source charge is higher in magnitude than the test charge.

Therefore, E =
´ ´ ´

( )

-12 10 9 10

0 3

9 9

2
.

E = ´ =12 100 1200 N/m
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Q.13: Calculate the magnitude and direction of electric field at point P 2 6 3, ,−( )  due to charge of 
magnitude 4mC  at point Q 0 0 0, ,( ) when placed in vacuum.

Ans: The vector 
�

r  is given by

 
�

r i j k= - +2 6 3ˆ ˆ ˆ  (a)
�

r = + + =4 36 9 7

 

ˆ
ˆ ˆ ˆ

n
r

r

i j k
= =

- +
�

�

2 6 3

7
 (b)

�

�

E
q

r
n=

1

4 0
2

pe

ˆ

�

E
i j k

=
´ ´ ´

´
- +æ

è
ç
ç

ö

ø
÷
÷

-9 10 4 10

49

2 6 3

7

9 6 ˆ ˆ ˆ

( )= ´ ´ - +
�

3 ˆˆ ˆ0.104 10 2 6 3E i j k

�

E i j k= - +( )104 2 6 3ˆ ˆ ˆ

�

E i j k= - +208 624 312ˆ ˆ ˆ V/m

Q.14: The electric potential V at any point is given by

V y x y x= +( ) +3 22 2 1 2 2/

Obtain the Cartesian coordinates of the electric field intensity at that point.

Ans: 
�

E V= -Ñ

E i E j E k i
x

j
y

k
z

Vx x z
ˆ ˆ ˆ ˆ ˆ ˆ+ +( ) = - ¶

¶
+

¶
¶
+

¶
¶

æ

è
ç

ö

ø
÷

E
V

x
x = -

¶

¶

= -
¶

¶
+( ) +( )

x
y x y x3 22 2 1 2 2/

= - +( ) ( ) +é
ëê

ù
ûú

-3

2
2 42 2 1 2

y x y x x
/

Hence,  E x xy x yx = - - +( )
-

4 3 2 2 1 2/
 (a)

E
V

y
y = -

¶

¶
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E

y
y x y xy = -

¶
¶

+( ) +é
ë

ù
û

3 22 2 1 2 2/

= - +( ) - +( ) ( )
-

3
3

2
22 2 1 2 2 2 1 2

x y y x y y
/ /

 
E x y y x yy = - +( ) - +( )

-

3 32 2 1 2 2 2 2 1 2/ /
 (b)

Similarly, E
V

z

E
z

y x y x

E

z

z

z

= -
¶
¶

= -
¶
¶

+( ) +é
ëê

ù
ûú

=

3 2

0

2 2 1 2 2/

 (c)

Q.15: Obtain the electric potential for a point (2, 3, 1) where potential is specified by

V x yz x y= - +3 9 42 2 2 2

Ans: 
�

E V
x

i
y

j
x

k V= -Ñ = -
¶

¶
+
¶

¶
+
¶

¶

æ

è
ç

ö

ø
÷

ˆ ˆ ˆ

�

E
V

x
i

V

y
j

V

z
k= -

¶

¶
+
¶

¶
+
¶

¶

æ

è
ç

ö

ø
÷

ˆ ˆ ˆ

�

E x xy i z x y j k yz= - +( ) + - +( ) + -( )é
ë

ù
û6 8 9 8 182 2 2ˆ ˆ ˆ

Hence, 
�

E  at x y= =2 3, , and z =1

�

E i j k= - +( ) + - +( ) + -( )é
ë

ù
û12 144 9 96 54ˆ ˆ ˆ

�

E i j k= - + -156 87 54ˆ ˆ ˆ

Q.16: A crystal is kept under an electric field of 2000V/m and the polarization is 2 8 10 8 2. ´ - C/m . 
Obtain the permittivity for the crystal.

Ans: 

�

P

E
r

e

e

0

1= -

e

e
r

P

E
= +1

0

�

er = +
´

´ ´

-

-
1

2 8 10

8 85 10 2000

8

12

.

.

= + =1 1 58 2 58. .
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Q.17: Obtain the atomic polarizability of argon when its susceptibility is 4 35 10 4. ´
-  at S.T.P. and n 

is 2 7 1025 3. ´ atom/m .

Ans:  
� ��

P N p=  and 
�

�

p E=a

 
� �

P N E= a  (a)

Also,  
� �

P Er= -( )e e1 0  (b)

Comparing Eqs (a) and (b),

N ra e e= -( )1 0

a

e e

=
-( )0 1r

N

a =
´ ´ -( )

´

- -8 85 10 4 35 10 1

2 7 10

12 4

25

. .

.

a » ´
-1 428 10 40 2. Fm

Q.18: Obtain the polarizability of argon atom ( er =1 0024.  and n = ´2 7 1025 3. atoms/m ).

Ans:     P Er

�� �

= -( )e e0 1

Also,  P N E
�� �

= a

Hence, N ra e e= -( )0 1

a

e e

=
-( )0 1r

N

a =
´ -( )

´

-8 85 10 1 0024 1

2 7 10

12

25

. .

.

a = ´
-7 86 10 40 2. Fm

Q.19: For a parallel plate capacitor of area 5 2 10 3 2. ´ - m  whose place is separated by distance 10 3- m  
under the application of 20V potential. If material inside capacitor has relative dielectric constant 4, 
then obtain the displacement vector 

�

D  and polarization 
�

P .

Ans:     
� �

D E= e

Here, we have to obtain e  and 
�

E .

e e e= = ´ ´ = ´
- -

0
12 114 8 85 10 3 54 10r . . F/m

�

E =
Potential applied

Distancebetween the plates

�

E = = ´
-

20

10
2 10

3
4 V

m
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Here,

C/m

� �

�

D E

D

=

= ´ ´ ´

= ´

-

-

e

3 54 10 2 10

7 08 10

11 4

7 2

.

.

Similarly, the polarization can be obtained on
� � �

D E P= +e0

P D E
�� � �

= - e0

= ´ - ´( ) ´( )- -7 08 10 8 85 10 2 107 12 4. .

P
��

= ´ - ´
- -7 08 10 17 7 107 8. .

P
��

= -( )´ = ´- -7 08 1 78 10 5 30 107 7 2. . . C/m

Q.20: The susceptibility for a material is given by 0 97. . Obtain the relative dielectric constant and 
e for the material.

Ans: e cr e= + = +1 1 0 97.

er =1 97.

e
e

e

e e er r= Þ =

0
0

e = ´ ´
-8 85 10 1 9712. .

e = ´
-1 74 10 11. F/m

OBJECTIVE QUESTIONS

 1. Nabla can be represented as

 (a) Ñ  (b) D
 (c) d  (d) q

 2. In terms of Cartesian coordinates, Ñ  can be shown as

 (a) 
¶

¶
+
¶

¶

2

2

2

2x
i

z
kˆ ˆ  (b) 

¶

¶
+
¶

¶
+
¶

¶x y z

 (c) 
¶

¶
+
¶

¶
+
¶

¶x
i

y
j

z
kˆ ˆ ˆ  (d) 

¶

¶ ¶ ¶

2 x

x y z

 3. Ñf  is a ___________ quantity.

 (a) scalar (b) vector
 (c) tensor (d) complex
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 4. The rate of increase of f  is given by

 (a) 
¶

¶

2

2

f

n
 (b) ¶ ¶f n

 (c) 
¶

¶

n

f
 (d) 

¶

¶

f

n

 5. Divergence of a vector is _____ quantity.

 (a) scalar (b) vector
 (c) tensor (d) complex

 6. Positive divergence represents

 (a) sink (b) source
 (c) solenoidal (d) irrotational

 7. Negative divergence represents

 (a) solenoidal (b) irrotational
 (c) sink (d) source

 8. Solenoidal field represents

 (a) 
� �

Ñ´ =A 0  (b) 
� �

Ñ =.A 0

 (c) 
� �

Ñ = -.A 1  (d) 
� �

Ñ =.A 1

 9. Irrotational field is represented by

 (a) 
� �

Ñ´ =A 0  (b) 
� �

Ñ =.A 0

 (c) 
� �

Ñ = -.A 1  (d) 
� �

Ñ =.A 1

 10. 
� �

Ñ´ Ñ( )f  yields value of

 (a) 1 (b) 0

 (c) -x 2  (d) -1

 11. 
� �

Ñ Ñ´( )A  yields value of

 (a) 1 (b) –1
 (c) 0 (d) 2

 12. Coulomb’s law is dependent on distance “r” as

 (a) 
1

r
 (b) r

 (c) r 2  (d) 
1
2r
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 13. Coulomb force varies as

 (a) q q1 2  (b) 
q

q
1

2

 (c) 
q

q
2

1

 (d) 
1

1 2q q

 14. Coulomb forces are

 (a) conservative (b) central
 (c) both (a) and (b) (d) neither (a) nor (b)

 15. 1 Coulomb is given by

 (a) 1 1amp ´ sec  (b) 1 1amp/ sec

 (c) 1 2amp sec  (d) 1 2amp sec

 16. The value of e0  is given by

 (a) 9 109
´ Nm /C2 2  (b) 8 85 10 12. ´

- C /Nm2 2

 (c) 1 (d) 0.5

 17. Value of proportionality constant k is given by

 (a) 1 (b) 8 85 10 12. ´
- Nm /c2 2

 (c) 12 10 12
´

- C /m2 2  (d) 9 109
´ Nm /c2 2

 18. According to the quantization of charge,

 (a) q
n

e
= ±  (b) q

e

n
= ±

 (c) q ne= ±  (d) q
n

e= ±

2

 19. The test charge should be small in magnitude than the source charge. (yes/no)

 20. The electric field is given by

 (a) 

�

F

q0

 (b) 
�

F q0

 (c) 
2

0

�

F

q
 (d) 

�

F

V

 21. Which of the following is true for electric field lines?

 (a) No force line exists within the conductor
 (b) They start from positive charge
 (c) They do not intersect each other
 (d) All of the above
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 22. For a uniformly charged wire, the electric field varies w.r.t. distance (r) as

 (a) 
1

r
 (b) 

1
2r

 (c) r  (d) r 2

 23. For a uniformly charged ring, the electric field is given by

 (a) 
�

E
qz k

z r
=

+( )

1

4 0
2

0
2 3 2

pe

ˆ

/  (b) 
�

E
qz k

z r
=

+( )

1

4 0
2

0
2 3 2

pe

ˆ

/

 (c) 
�

E
q q

r
=

1

4 0

1 2
2

pe

 (d) 
�

E
i

x
=

l

pe

ˆ

4 0

 24. When r2 ®¥ , and the disc behaves as an infinite sheet of charge, 
�

E  field is given by

 (a) 0 (b) 
s

e0

 (c) 
s

e2 0

 (d) 1

 25. According to Gauss theorem.

 (a) E ds q. =ò e0�
 (b) E ds

q
. =ò

e0
�

 (c) E dl
q

. =ò
e0

�
 (d) E ds q. /=ò e0�

 26. The differential form of Gauss’s law is

 (a) 
� �

Ñ =.E
q

e0

 (b) 
� �

Ñ =.E
r

e0

 (c) Ñ =
2

0

E
q

e

 (d) Ñ =
2

0

E
r

e

 27. Electric field can be expressed as

 (a) -ÑV  (b) ÑV

 (c) 
1

ÑV
 (d) Ñ2V

 28. The potential for a charge “q” is given by

 (a) V
q

r
=

1

4 0

2

2
pe

 (b) V
q

r
=

1

4 0

2

pe

 (c) V
q

r
=

1

4 0pe
 (d) V

q

r
=

1

4 0
2

pe
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 29. The electric polarization 

�

P  of material is proportional to

 (a) 
�

p  (b) 
�

E
 (c) both (d) none of these

 30. For a homogenous isotropic dielectric, the polarization is

 (a) greater than surface density of induced charge
 (b) less than surface density of induced charge
 (c) equal to surface density of induced charge
 (d) neither equal nor greater/less

 31. Displacement vector is related to polarization as

 (a) 
�

�

��D
E

P
=

e0  (b) 
� ��

D E P= +e0

 (c) 
� � ��

D E P= -e0  (d) 
�

��

�D
P

E
=

e0

 32. er  is related to susceptibility as

 (a) e cr e= +1  (b) e cr e= -1

 (c) e cr e=

2  (d) e
c

r

e

=

1

 1. (a)

 2. (c)

 3. (b)

 4. (d)

 5. (a)

 6. (b)

 7. (c)

 8. (b)

 9. (a)

 10. (b)

 11. (c)

 12. (d)

 13. (a)

 14. (c)

 15. (a)

 16. (b)

 17. (d)

 18. (c)

 19. Yes

 20. (a)

 21. (d)

 22. (a)

 23. (b)

 24 (c)

 25. (d)

 26. (b)

 27. (a)

 28. (c)

 29. (c)

 30. (c)

 31. (b)

 32. (a)

Answers
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Micro-Assessment Questions

 1. What are scalar and vector fields?
 2. Give the similarities between Newton’s law of universal gravitation and Coulomb’s law.
 3. Give the differences between Newton’s law of universal gravitation and Coulomb’s law.
 4.  An uncharged metallic sphere suspended from a thread is attracted to a charged rubber rod. After 

it touches the rod, the sphere experiences a repulsion. Why?
 5.  A student from India is studying in the United States of America. He experiences static shocks 

extensively during the winters unlike his country. Explain.
 6. What are point functions?
 7. What is nabla or grad operator?
 8. Is gradient a scalar or vector quantity?
 9. What do you understand by single-valued continuous functions?
 10. Electric field is lamellar in nature. Explain.
 11. Give the expression for divergence of vector A.
 12. Is divergence a scalar or vector quantity?
 13. List the difference between gradient and divergence.
 14. What is solenoidal field?
 15. What is the significance of positive divergence?
 16. What do you understand by irrotational field?
 17. Write down the expression for Laplacian operator.
 18. Explain Gauss divergence theorem.
 19. Explain Stoke’s theorem.
 20. What is the meaning of “charge”?
 21. Explain the dielectric constant.
 22. On what factors do dielectric constant depend?
 23. Define 1V as electric potential.
 24. What is polarization?
 25. What do you understand by space-charge polarization?

Critical Thinking Questions

 1. What do you understand by gradient? Give its physical significance.
 2. Explain divergence along with its physical significance.
 3. What do you infer from the negative divergence?
 4. Give the expression for curl of vector quantity A? Is curl vector or scalar quantity?
 5. State and explain Coulomb’s law.
 6. Coulomb’s forces are central in nature. Explain.
 7. Show that Coulomb’s forces obey Newton’s third law.
 8. What is charge? Define its unit.
 9. Give important postulates about charge.
 10. Describe the quantization of charge.
 11. Why the magnitude of test charge is kept small?
 12. Write down the mathematical expression of electric field in terms of position vectors.
 13. Describe principle of superposition. Are the forces independent of each other or not?
 14. Why the electric lines of force do not intersect?
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 15. What is the difference between continuous and discrete charge distribution?
 16.  The electric field inside a hollow, uniformly charged sphere is zero. Does this infer that the 

potential is zero inside the sphere?
 17. Obtain the electric field for infinite charged plane sheet.
 18. Show that electric filed exists only between the plane sheets and is zero outside it.
 19. What is Gauss’s law?
 20. What are dielectric materials? How they differ from insulators?
 21. What is the difference between dielectric strength and the dielectric constant?
 22. Show that polarization is equal to surface charge density of induced charges.
 23. Obtain the relation between electric susceptibility and dielectric constant.
 24.  Why a water molecule is permanently polarized? Which molecules have no permanent 

polarization?
 25. How does electronic and ionic polarization differ from each other?
 26. What do you understand by orientation polarization?

Graded Questions

 1. Define electric field? What is test and source charge?
 2. Describe electric lines of force? Give their properties.
 3.  What is continuous charge distribution? Differentiate between linear, surface, and volume charge 

distributions.
 4.  Show that the electric charge distribution for uniformly charged infinite wire is inversely propor-

tional to distance from the source.
 5.  Derive the expression for electric field for uniformly charged ring. How can the electric field for 

circular disc be treated as the special case?
 6.  Show that for circular disc, the center acts as point of discontinuity and electric field takes sudden 

jump.
 7. State and prove Gauss’s law. Deduce Coulomb’s law from Gauss’s law.
 8. Obtain the differential form of Gauss’s law using Gauss divergence form.
 9. Define electric potential and potential difference. Express electric field as the gradient of potential.
 10. Write down the potential for continuous charge distributions.
 11. What do you understand by dielectric polarization? Explain using the schematic diagram.
 12. What is displacement vector? How does it depend on polarization vector?
 13. Write in detail the different types of polarizations.
 14. What is the magnitude of the electric force between two protons separated by 2 × 10−15 m?

Remember and Understand

 1. The vector field is said to be solenoidal when its divergence is zero.
 2. The field is said to be irrotational when its curl is zero.
 3. The bodies showing the properties of attraction and repulsion are charged bodies.
 4.  One coulomb is defined as the amount of charge passing per second through any section of wire 

carrying a current of 1Å.
 5.  Principle of superposition and Coulomb’s law are basic properties of electrostatics. Both deal 

with forces between charges at rest.
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 6.  Electric field is the space property due to which the charge modifies its surroundings in such a 
way that the incoming test charge will experience force on it.

 7.  The magnitude of test charge should be small so that it should not affect position of source 
charge.

 8.  Theoretically, the space of electric field extends upto infinity. A point charge that produces elec-
tric field is called source charge and the point charge used to detect electric field is called test 
charge.

 9.  Consider a single fixed point charge or source q located at the position vector r1
��

. Let r
�

 be the 
position vector of the observation point p. Place a test charge q

0
 at the point p.

F
q q r r

r r

E
F

q

q r r

r r

o

��

�
��

�
��

��

��

�
��

�

=
-( )

-

= =
-( )
-

1

4

4

1

1
3

1

1

pe

pe

o

o o

��� 3

 10.  The electric line of force describes the path along which unit positive charge would travel when 
it is free.

 11.  The strength of field lines is determined by the density of field lines around the charge. Electric 
flux is defined as the number of electrical lines of force crossing through an area in a direction 
perpendicular to that area and is denoted by f.

 12.  Dielectric materials are nonconducting materials that exhibit polarization under the effect of 
electric field.

 13.  The center of gravity of positive and negative charges coincides for polar molecules, whereas for 
nonpolar molecules they do not coincide.

 14. The electric field due to infinite long were along x-axis is given by:

�

E
i

x
=

l

pe

ˆ

4 0

 15. The field between two infinite charge plane sheet is independent of distance and is given by s

e0

.

 16.  According to Gauss theorum, the total electric flux emanating out of a closed surface is 1

0e

 times 
total charge q enclosed inside the surface i.e.

E ds
q�� ���

� . ò =
e0

 17. The dispalcement vector D
���

and polarization P
��

 are related as

D E P
��� �� ��

= +e0

 18. The relation between dielectric constatnt and susceptibility is 

K e= +1 c
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Thermodynamics is dependent on microscopic as well as macroscopic properties of system. Statistical 
physics basically bridges the gap between microscopic and macroscopic properties of  system. Using 
statistical physics, we can discuss whether the particles obey quantum or classical physics. But before 
we proceed for classical or quantum approach, we should be aware of phase space, probability, and 
states (micro/macro). These are discussed in the sections that follow.

11

Statistical Physics

Learning Objectives

 To understand the probability, microstates, and macrostates

 To learn about arrangements of particles in boxes, and hence thermodynamic probability

 To understand the concept of phase space, that is, position and velocity space

 To get insight on the classification of statistics in classical and quantum regime

 To understand the Maxwell–Boltzmann statistics for ideal gas system where the collisions are con-
sidered to be elastic and noninteracting

 To understand about the most probable velocity, root-mean-square velocity and average velocity

 To learn about Bose–Einstein and Fermi–Dirac statistics

 To understand the occupation index and its significance

 To learn about Fermi energy

 To apply Bose–Einstein statistics to the photon gas where number of photons is not constant

 Application of Fermi–Dirac statistics to the electron gas

 Understanding the classical and quantum approach to obtain specific heat of solids

 To learn about Dulong–Petit’s law, which indicates that specific heat of solids is independent of 
temperature

 To understand the Einstein’s theory of specific heat

 To learn that at high temperatures, the specific heat is same as derived by Dulong–Petit’s law

 Keywords: probability, classical mechanics, quantum mechanics, Maxwell–Boltzmann statistics, 
Bose–Einstein and Fermi–Dirac Statistics, electron gas, photon gas
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11.1 Probability and States

When we toss a coin, the probability of a head or tail coming up is 
1

2
. It can be understood as the 

ratio of number of ways leading to favorable way to total outcomes. The probability of getting head 

or tail are two independent events. When three coins are tossed simultaneous, and when the probabil-
ity of head coming up has to be calculated, then it is given as P P P P= 1 2 3

. . .  P P P1 2 3, , and  represent  

individual probabilities for every coin. Then P can be written as P = × × =

1

2

1

2

1

2

1

8
. Hence for simul-

taneous events, probability can be given by multiplicative law.
Let us consider two apartments that are identically equal and similar to each other such that all 

the physical properties are equal. Let us distribute three particles in these two compartments. As the 
compartments are same, the a priori probability for particles go in any compartment is equal. All 
the possible arrangements of distribution of particles in two compartments are called microstates. 
Macrostate is usually defined by (n

1
, n

2
), where n

1
 is the number of particle in the first compartment 

and n
2
 is the number of particle in the second compartment. All the macrostates and microstates for 

the distribution of three particles in two equal-size compartment are given in Table 11.1. For three 
particles in two compartments, the total numbers of possible outcomes are eight.

Table 11.1 All possible macrostates and microstates

Microstates
Macrostates Frequency (W) Probability

Compartment 1 Compartment 2

(1, 2, 3) – (3, 0) 1 1/8

(1, 2) (3)

(2, 3) (1) (2, 1) 3 3/8

(3, 1) (2)

(3) (1, 2)

(2) (1, 3) (1, 2) 3 3/8

(1) (2, 3)

– (1, 2, 3) (0, 3) 1 1/8

All eight possible macrostates have equal possibility of occurrence. Frequency of occurrence is defined 
as the total number of microstates for a given macrostate. This frequency highly depends on whether 
the particle is distinguishable or indistinguishable. This is the case when particles have to be distrib-
uted in two compartments. Let n be the total number of particles. Let n

1
 and n

2
 be  particles in two 

compartments such that (n
1
 + n

2
 = n). Total number of possible arrangement is n!. For  compartment 

1, n
1
 could be arranged in n

1
! ways and n

2
 could be arranged in n

2
! ways. Hence, the thermodynamic 

probability is given by

            W n n
n

n n
1 2

1 2

,
! !

( ) =
!

 (1)

 
Totalmeaningful ways

!

!
=

=

∑
n

nii

k

1

 (2)
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Equation (2) specifies n number of particles is k compartments. Let g
k
 is the number of cells in kth 

compartment. It can be written as g Gi

i

k

=

∑ =
1

, G is the total number of cells.

If n
i
 particle could be arranged in g

i
 cells, the total number of ways could be g

i
. All other particles 

could also be arranged in g
i
 ways. Hence, n

i
 particles could be arranged in gi

i

k
ni

=

∑
1

 ways. Hence, we can 

summarise as

For  k→ compartments

n1�nk → total particles in respective compartments

i.e., n
1
 in 1, n

2
 in 2, and n

k
 in k.

g gk1� → number of cells in respective compartments

i.e., g
1
 in 1, g

2
 in 2, and g

k
 in k.

Hence, the probability could be written as follows:

     W n n n
g

n
nk

i

n

ii

k i

1
1

�( ) =
( )

=

∏! !
 (3)

11.2 Concept of Phase Space

For static systems, only position coordinates are required to define the position of atoms. But for 
dynamic system, the particles are in motion; hence, they have velocity coordinates in addition to 
 position coordinate. Hence, for a moving particle, (x, y, z) are position coordinates and (v

x
, v

y
, v

z
) are 

velocity coordinates. Therefore, a total of six coordinates are required to define the particle, that is,  
(x, y, z, v

x
, v

y
, v

z
). These six coordinates constitute the phase space.

The volume of position space is dV, that is, dV = dx ∙ dy ∙ dz, and the volume of momentum space 
is dΓ , that is, dΓ  = dp

x
 ∙ dp

y
 ∙ dp

z

The volume of cell in phase space is d dV dt = ⋅ Γ

 d dV dt = ⋅ Γ  (4)

Further,

 d dV d ht = ⋅ =Γ
3 ( )say  (5)

The dimension of h is mass × velocity2 × sec according to classical mechanics. Classical mechanics do 
not put any restriction on the h; but according to quantum mechanics,

dx dp hx. ≥ , h is Planck’s constant with value 6.634 × 10−34 Js

Hence, the volume of phase space cell can never be smaller than h3.

     
d dx dy dz dp dp hy zt = ≥. . . . 3 (6)
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11.3 Statistics

Statistics could be classified into two categories: classical statistics and quantum statistics (see Figure 11.1).
Usually for quantum statistics, minimum cell size is defined. Moreover, the number of cells is small 
than number of particles. This leads to multiple occupancy of cell, and hence the particles cannot be 
distinguished. But for classical statistics, there is no restriction on the minimum volume of cell and 
hence there can be number of cells. The number of cells could be greater than the number of particles. 
The cells can be labeled, and hence which particle is in which cell can be easily determined. This 
makes the particles to be distinguished on the basis of cell numbers. When the number of particles is 
very small, that is, at low concentration of particles, the quantum statistics can be treated as classical 
statistics. We will discuss both the statistics in sections that follow.

Statistics

Quantum statisticsClassical statistics

1. Particles are distinguishable. 1. Particles are indistinguishable.
2. The size of phase space cell could be as small as possible. 2. The phase space cell possesses a minimum volume h3.
3. Energy could be continuous. 3. Energy is discrete only.

Figure 11.1 Classification of statistics

11.4 Classical Statistics (Maxwell–Boltzmann Statistics)

In 1800, three physicists, that is, J.C. Maxwell, L. Boltzmann, and J.W. Gibbs, gave the satisfactory 
explanation of thermodynamics. Clausius explained that there is range of molecular speeds for all gas 
molecules. The speed of gas molecules depends on temperature. Maxwell was very much inspired 

Maxwell gave a new insight toward understanding the theo-
ries. Maxwell had high interest in geometry. He wrote his 
findings about ovals and double foci ellipses at a very young 
age of 15 years. Maxwell’s father was aware of his son’s cali-
ber. Hence, he presented the findings to a Professor Forbes 
who taught at Edinburgh Royal Society. Professor Forbes was 
amazed at the findings from such a young boy having very 
less experience, although some studies were reported also. 
Maxwell formulated mathematical models that answered all 
the questions, and hence no question was left. He further used 
statistics to explain the matter’s behavior using projected laws. 
This laid the foundation to modern physics. This law was the 
main reason behind the relativity theory of Einstein. Maxwell 
calculated the exact velocity of molecule of gas using experi-
mentations. He found that faster molecule generates more 
heat, which meant that speed and heat evolved were directly 
proportional to each other. The experiment showed heat as a 
particle property, which could control the particles’ movement.

J.C. CLARK WITH LADY 
CLARK
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from Clausius, and he calculated average molecular speed, dispersion, and most probable speed  
for these particles. Further, in 1872, Boltzmann wished to describe the time evolution for the gas 
toward Maxwellian distribution. For this purpose, Boltzmann used time-dependent speed distribu-
tion function and kinetic equations. Boltzmann committed suicide in 1908, when he was subjected 
to criticism over his theory and its acceptance. But Yale Professor, J.W. Gibbs, quietly established 
statistical mechanics, and his work was not recognized during his lifetime. This section emphasizes on 
Maxwell–Boltzmann theory. For an ideal gas, the concentration is small, and hence classical mechan-
ics applies well. The collisions among gas molecule are considered to be elastic and non interacting. 
These collisions will not affect the interactions within system.

Let us consider ideal gas in volume V with n molecules. These molecules collide against the wall as 
well as among each other. Due to these collisions, the energy or momentum can change, but it remains 
conserved for the system. Let E be the total energy of system. Let for k compartments, the range  
of energy is from 0 to E

k
. Hence, the energy can be divided as E

1
, E

2
, …, E

k
. The particles are from  

0 to n
k
, that is, n

1
, n

2
, …, n

k
 particles are distributed in k compartments. The number of particles may 

belong to E
1
, E

2
, E

k
 energy. All the possible arrangements possess different energies, but only a certain 

arrangement corresponds to most probable state. Hence, it is important to find out the most probable 
state as it represents the actual energy distribution under equilibrium state. Let g

1
, g

2
, …, g

k
 be the 

number of cells corresponding to interval 1, 2, 3, …, k.
The thermodynamic probability is given by Eqn. (3) as follows:

W n n n n
g

n
k

i

n

ii

k i

1 2 !, , ,
!

�( ) =
( )

=

∏
1

Take natural logarithms on both the sides:

i.e.    ln ln lnW n n g ni i

i

k

i

i

k

= + −
= =

∑ ∑!  ln !
1 1

Here, we have to use Sterling’s formula, that is, when n is extremely large, then lnn n n n! ln= −

   ln ln lnW n n n n g n n ni i

i

k

i i i

i

k

= − + − ( ) −( )









= =
∑ ∑ ln 

1 1

ln ln lnW n n n n g n n ni i

i

k

i i

i

k

= − + − −










= =
∑ ∑ ln 

1 1

ln ln lnW n n n g n ni i

i

k

i i

i

k

= + −
= =

∑ ∑ ln 
1 1

W represents the most probable state; hence, the maximum value is expected for it, or d (ln W ) = 0.  
In addition to this, n and g

i
 are constant for system, but n

i
 can vary from cell to cell.

d W dn g
n

n
dn dn ni i

i

i

i

i

k

i

k

i i

i

k

ln( ) = + − −
== =

∑∑ ∑0
11 1

ln ln

0 = + −( ) =
=

∑0 0
1

dn g ni

i

k

i iln ln
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⇒ −( ) =

=

∑ ln lng n dni i i

i

k

1

0  (7)

For an ideal isolated system, n is total particles and E is total energy and following conditions must 
be fulfilled:

    
dn dni

i

k

= =
=

∑ 0
1

 (8a)

                
dE E dn E E n E n E ni i

i

k

= = = + +
=

∑ 0
1

1 1 2 2 3 3,  (8b)

Multiply Eqn. (8a) by −a and Eqn. (8b) by −b and add both of them to Eqn. (7).

ln lng n dn dn E dni i i

i

k

i i

i

k

i

k

i−( ) − − =
= ==

∑ ∑∑ a b
1 11

0

    
ln lng n E dni i i

i

k

i− − −( ) =
=

∑ a b
1

0 (9)

Since dn
i
 ≠ 0; hence for this equation to hold good, the bracketed term should be zero.

ln lng n Ei i i- - - =a b 0

ln
g

n
Ei

i

i= +a b

g

n
ei

i

Ei
=

+a b

n
g

i
i

Ei
=

+ea b
 (10)

Equation (10) is Maxwell–Boltzmann energy distributions law rewriting Eqn. (10):

     n g e ei i
Ei

=

- -a b  (11)

Where e Ei−b  = Boltzmann factor and e E

i

k

i−

=

∑
b

1

 is called partition function. We have to evaluate a and b 

constants, as they are not known yet. We have to make following assumptions:

 (i) The energy interval lies b/w E and E + dE.
 (ii) The number of particles lying in energy interval E −





1

2
 and E +





1

2
 is n(E  ).

Equation (11) can be written as follows:

     n E g E e e E( ) = ( ) − −a b  (12a)
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In terms of momentum,

E
p

m
=











2

2

Hence,
 
n p g p e e

p

m( ) = ( ) −
−

a
b 2

2  (12b)

n p p( ) ® -æ
è
ç

ö
ø
÷ number of paticles in momentum internal  t

1

2
oo +

 number of cells in phase space

p

g p

1

2
æ
è
ç

ö
ø
÷

( ) ®

é

ë

ê
ê
ê

ù

û

ú
ú
úú

If the molecules lie between momentum interval band p + dp, then for interval dp, Eqn. (12b) 
becomes

     
n p dp g p e e dpp m( ) = ( ) − −a b 2 2/  (12c)

Total phase volume for interval p to p + dp is given by g p dp h d( ) = ∫3
t

g p dp
h

d
h

dx dy dz dp dp dpx y z( ) = =∫ ∫∫∫∫∫∫
1 1

3 3
t

               
g p dp

h
V dp dp dpx y z( ) = ∫∫∫

1
3

 (12d)

As shown in Figure 11.2, the volume enclosed between two spheres of radii p and p + dp is given by 
the following equation:

d p dpΓ = 4 2
p

Hence, Eqn. (12a) becomes

     
g p dp

p dp V

h
( ) =

⋅4 2

3

p

 (12e)

Substituting Eqn. (12e) in Eqn. (12c),

     
n p dp

Vp dp

h
e e

p

m( ) = ⋅ ⋅
− −4 2

3
2

2

p a
b

 (13)

For calculating total number of molecules, we have to integrate Eqn. (13), that is,

     
n p dp n

o
( ) =∫

pmax

 (14a)

Any particle/molecule having momentum greater than 0 is outside the limit, that is, for p > p
max

,  
n(p) = 0. Hence, we can use limit (upper) to be∞ .

n n p dp
o

= ( )∫
∞
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n
Vp dp

h
e e

o

p m= ∫ − −4 2

3
22p a b

∞

 /

n
V e

h
p e dp

o

p m=
−

−∫
4

3
2 22p a

b

∞
/

n
V e

h m
=

( )

é

ë
ê
ê

ù

û
ú
ú

-4 1

4 2
3 3 2

p p
a

b /
/

 

Using standard intergral, =x e dxax

o

2
3 2

2 1

4
-

ò
é

ë
ê

ù

û
ú

¥
p

a /

n
V e

h m
=

( )

é

ë
ê
ê

ù

û
ú
ú

-4 1

4 2
3 3 2

p p
a

b /
/

e
nh

V m

- =
æ

è
ç

ö

ø
÷

a b

p

3 3 2

2

/

 (14b)

Substituting Eqn. (14b) in Eqn. (13),

n p dp
Vp

h

nh

V m
e dpp m( ) = ⋅ 





⋅−4

2

2

3

3 3 2
22p b

p
b

/
/

       
n p dp n

m
p e dpp m( ) = æ

è
ç

ö
ø
÷

-4
2

3 2
2 22

p
b

p

b

/
/  (15)

Using Eqn. (15), further relation could be obtained using energy.

i.e.    p mE2 2=

     
dp

m

E
dE=

2
 (16a)

yo

x

p
p+dp

Figure 11.2 Momentum space for particles
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Substituting Eqn. (16a) in Eqn. (12e),

    
g E dE

V

h
m E dE( ) = ×

4 2
3

3 2 1 2p / /  (16b)

Substituting Eqn. (16a) in Eqn. (15), and we obtain

    
n E dE

n
E e dEE( ) = -2 3 2

p
b b/  (17)

For evaluating b, we have to take into consideration average kinetic energy, that is, average KE = 3/2 
k

B
T. This is valid for any system at thermal equilibrium and is known as law of equipartition of energy. 

Total energy of system for n particles is given by

′ = ( ) =∫E E n E dE nk T
o

B

∞ 3

2
 

[k
B
 is Boltzmann’s constant]

3

2

2 3 2nk T E
n

E e dEB

o

E= ×ò
-

¥

p
b b/

3

2

2 3 2
3 2nk T

n
E e dEB

o

E= ò
-b

p

b
/

/
¥

 Standard integral x e dx
a a

o

ax3 2
2

3

4
/

¥

ò
- =

é

ë
ê

ù

û
ú

p

3

2

2 3

4

3

2

3 2

2
nk T

n n
B =

é

ë
ê

ù

û
ú =

b

p b

p

b b

/

           
b =

1

k TB

 (18a)

Substituting this value in Eqn. (17), we get

    

n E dE
n

k T
E e dE

B

E k TB( ) =
( )

-2
3 2

p

p
/

/  (18b)

Similarly, we can find out n(p)dp also as follows:

    

n p dp
n

mk T
p e dp

B

p mk TB( ) =
( )

-2
3 2

2 22p

p
/

/  (18c)

The number of molecules/particles having speeds within range v and v + dv is given by the follow-
ing equation;

    

n v dv
n m v e dv

k T

mv k T

B

B

( ) =
( )

( )

-2
3 2 2 2

3 2

2

p

p

/ /

/  (18d)

Equation (18d) is Maxwell–Boltzmann’s law for distribution of velocity.
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We have calculated all fundamental distributions, and they can be listed as follows:

    

n p dp
n

mk T
p e dp

n E dE
n

k T
E e

B

P mk T

B

E

B( ) =
( )

( ) =
( )

-

-

2

2

3 2
2 2

3 2

2p

p

p

p

/

/

/
/kk T

mv

k T

B

B

B

dE

n v dv
n m v e

k T
dv( ) =

( )

-

2 3 2 2 2

3 2

2

p

p

/

/

 (19)

Now, the further objective is to calculator the most probable speed. Figure 11.3 is the plot that gives 
the distribution of velocity as a function of fraction of molecules (  f   ) lying in unit velocity interval 

around v, that is, f
n v

n
=
( )

.

The maximum value of velocity is most probable speed (v
mp

), and hence the condition 
∂

∂

f

v
= 0  

holds well for it.
From Eqn. (19),

n v dv
n m v e dv

k T

mv k T

B

B

( ) =
( )

( )

−2
3 2 2 2

3 2

2

p

p

/

f
n v

n

m v e

k T

mv k T

B

B

=
( )
=

( )

( )

−2
3 2 2 2

3 2

2

p

p

/

f C v e mv k TB
=

−2 22 /  (20)

C is a constant with value 
2 3 2

3 2

p

p

m

k TB( )
 for given temperature.

vmp v

(fraction of
molecules)

velocity (v )

f

T1

T1 < T2

T2

vrms

Figure 11.3 Velocity distribution of molecules at different temperatures
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Taking derivation of f w.r.t. v and putting it equal to zero, we obtain most probable speed (mps),

     
v

k T

m
B

mp =
2

 (21)

The average speed could be obtained as follows:

v
vn v dv

n v dv
o

o

=
( )

( )∫
∫ ∞
∞

                 
v

k T

m
B

=

8

p

 (22)

[For obtaining Eqn. (22), the standard integral is used, that is, x e dx
a

ax

o

3
2

2 1

2
− =∫

∞

.]

Root-mean-square velocity is given by

v v
n

v n v dv
o

rms = ( ) = ( )∫
2 1 2

21/ ∞

v
k T

m
B

rms =
3

 (23)

From Eqs (20)–(23), we obtain the ratios as follows:

v

v
rms

mp

≈1 22.  and 
v

vmp

≈1 13.

Hence, following two points are concluded:

 (i) Root-mean-square velocity is 22 percent greater than most probable speed for given temperature.
 (ii) Average speed is 13 percent greater than mps for given temperature.

ludwig Boltzmann was born in Vienna on February 20, 1844. 
His father was a tax official. He obtained his PhD degree in 1866 
at the University of Vienna. Boltzmann made contributions to 
statistical mechanics. Along with it, he made detailed calcula-
tions in the kinetic theory of gases. He was probably the first 
person to get an insight and understanding of Maxwell’s the-
ory of electromagnetism, and he wrote a two-volume treatise. 
Boltzmann worked on black-body radiation using Stefan’s law, 
which was later termed by Hendrik Antoon lorentz as “a true 
pearl of theoretical physics.” wilhelm ostwald vocally criticized 
his work on statistical mechanics and other contemporaries, 
who disregarded atoms and physical science exclusively based 
on energy conditions. They could not understand the statistical 
nature of Boltzmann’s ideas and theories. ludwig Boltzmann got 
very much demoralized due to the harsh and blunt criticism of 
his work. At the age of 62 years, he hanged himself to death on 
September 5, 1906, at Duino, italy.

LUDWIG BOLTZMANN



448  • CHAPTER 11/STATiSTiCAl PHySiCS

11.5 Quantum Statistics (BE and FD Statistics)

We have seen that MB distribution is valid when the average particle distance d is quite large as com-
pared to uncertainty in particle position, that is,

      d x>> ∆  (24a)

We know from equipartition theory that at thermal equilibrium temperature T, p = 0 and p
2
 = 

3

2

k TB  

if we take momentum for one degree of freedom, then

p k T
2 1

2
= B

Hence, ∆p p p mk Tx x x= − =
2 2

B

We know from Heisenberg’s uncertainty principle that

D Dx px ³
�

2

D x
mk T

³
�

2 B

 (24b)

Put d
N

V
= 





1
3

, where N is number of particles and V   is volume for Eqn. (24a)

�

2

1 3

mk T

V

NB

<<
æ
èç

ö
ø÷

/

        

N

V mk T

�
3

3 2
8

1
B( )

<</  (24c)

Hence, MB statistics holds good for low concentration of particles as is evident from Eqn. (24c). 
When N is large, then we shift to quantum approach, where multiple occupancy is valid. Two types of 
 quantum approaches have been given as illustrated in Figure 11.4.

Quantum statistics

Bose–Einstein distribution Fermi–Dirac distribution

Particles have integral spin (�). Particles have half-integral spin �/2.
Particles obeying BE distribution are bosons. Particles obeying FD distributions are fermions.
Examples include photons and alpha particles; for photon, S = 1,  
and for 

2
He4, S = 0.

Examples include are electrons, proton, and neutrons, and 
is S = �/2.

More than one particle can occupy/quantum state. Only one particle/quantum state.

Figure 11.4 Distribution of quantum statistics.
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11.6 Bose–Einstein Statistics

Consider a system with n-identical particles in k number of compartments. Each compartment has many 
cells with minimum h3 volume. Let us suppose for k–compartment, g

k
 be the total number of cells, and 

n
k
 is number of particles to be distributed in g

k
 cells. Bosons/particles have multiple occupancy; hence, 

one cell can be occupied by more than one particle.
The total number of objects in jth compartment is n gj j+ −( )1 . Hence, g j −( )1  partitions are 

separating them total number of particles are n, for jth compartments, n
j
 particles are present, and 

total number of arrangements can be given by n
j !. The partitions could be arranged in g j −( )1 ! ways 

as demonstrated in Figure 11.5. All of these arrangements do not affect the distribution. Hence, the 
number of different arrangement for jth compartment is

n g

n g

j j

j j

+ −( )
( ) −( )

1

1

!

! !

For all the k compartment, all different arrangements could be given as follows:

    

W n n n
n g

n g
k

j j

j jj

k

1 2
1

1

1
, , ,

!

! !
�( ) =

+ −( )
( ) −( )=

∏  (25)

Taking natural logarithm and differentiating it [ g
j
 and n are constant]:

d W n g n dnj j j

j

k

jln ln ln( ) = + −( ) −( )
=

∑ 1
1

nj >>1, hence 1 could be neglected.

d W n g n dnj j j

j

k

jln ln ln( ) = +( ) −( )
=

∑
1

 

Also d lnW( ) = 0  at thermal equilibrium:

 
ln lnn g n dnj j j

j =1

k

j+ − =( )( )∑ 0  (26a)

As discussed in Section 11.5, using Lagrange’s multipliers condition, we obtain

dnj∑ = 0 (26b)

     
E dnj j∑ = 0 (26c)

Multiply Eqn. (26b) by −a and Eqn. (26c) by −b and adding to Eqn. (26a).

k compartment

Figure 11.5 Particle in cell and partitions
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ln lnn g n E dnj j j j

j

k

j+( ) −( ) − −



 =

=
∑ a b
 1

0

As dn
j
 could not be zero, only the bracket part is zero:

ln lnn g n Ej j j j+( ) - = +a b

     

ln
n g

n k T
E

j j

j B

j

+( )
= +a

1
 as b =











1

k TB

n g

n
e

j j

j

k T
E

B
j+

=

+a
1

1+ =

+g

n
e

j

j

E

k T

j

B

a

g

n
e

j

j

E

kT

j

= -

+a

1

n
g

e e

j

j

E

kT

j
=

-

a 1
For ith compartment, we can write

     
n

g

e e
i

i

E kTi
=

-

a / 1
 (27)

Equation (27) is the Bose–Einstein distribution junction

Satyendra nath Bose presented several papers in theoretical 
physics and pure mathematics along with Saha. in 1924, Bose 
wrote a paper deriving Planck’s quantum radiation law without 
any reference to classical physics. He used novel way of count-
ing states with identical particles. He was working as a Reader at 
the Physics Department of the University of Dhaka at that time. 
This paper originated very important field of quantum statistics. 
This paper was not accepted at once for publication. Saha sent 
the article directly to Albert Einstein in Germany. Einstein, found 
the paper to be of great importance, and he translated it into 
German. He submitted the paper on Bose’s behalf to the pres-
tigious zeitschrift für Physik. As a result of this recognition, Bose 
could work for two years in European x-ray and crystallography 
laboratories. During this time, he worked with louis de Broglie, 
Marie Curie, and Einstein. S.N.BOSE
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11.7 Fermi–Dirac Statistics

The particles that obey Pauli exclusion principle also obey Fermi–Dirac statistics. Hence, the multiple occu-
pancy of cells is completely ruled out. Let n particles be distributed in k compartments. Let E

1
, E

2
 …E

k
  

be the energy corresponding to 1, 2, 3, …, k compartment. Let n
1
, n

2
, …, n

k
 be the number of par-

ticles corresponding to 1, 2, 3, …, k compartments, g
j
 be the number of cells corresponding to jth 

compartment. In Fermi–Dirac distribution, g
j
 > n

j
 and (g

j
 − n

j
) cells are vacant. g

j
 cells can be arranged 

in g
j
! ways, but all the particles are indistinguishable, and hence n

j
! are meaningless. (g

j
 − n

j
)! arrange-

ment are also meaningless as they are empty cells.
Total number of different ways of arranging particles is

g

g n n

j

j j j

!

! !−( )

The thermodynamic probability is given by (for all the macrostates)

    

W n n n
g

g n n
k

j

j j jj

k

1 2
1

, , ,
!

! !
…( ) =

−( )=

∏  (28a)

Taking natural logarithm and differentiating it, applying the condition d(ln W  ) = 0 and n and g
j
 are 

constant.

    
d W g n n dnj j j

j

jln ln ln( ) = −( ) − ( )( )∑  (28b)

 
⇒ −( ) −( ) =∑ ln lng n n dnj j j

j

j 0  (28c)

Usually, dnj∑ = 0 and E dnj j∑ = 0 as per Lagrange’s multiplier method (as discussed in Sections 

11.5 and 11.6).

ln lng n n E dnj j j j

j

j−( ) − − −( ) =∑ a b 0

As dnj ≠ 0, hence equating the bracket to zero.

ln lng n n Ej j j j−( ) −( ) − − =a b 0

ln
g n

n
E

j j

j

j

−( )
= +a b

g n

n
e

j j

j

E

k T

j

B
−

=

+a

 b =










1

k TB
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g

n
e e

j

j

E k Tj B
− =1 a

g

n
e e

j

j

E k Tj B
− = +1 1a

n
g

e e
j

j

E k Tj B
=

+
a 1

For ith compartment,

     
n

g

e e
j

j

E k Tj B
=

+
a 1

 (29)

Equation (29) is called Fermi–Dirac distribution.

Conclusively, we can say

    

MB statistics

BE statistics

FD s

n
g

e e

n
g

e e

i
i

E k T

i
i

E k T

i B

i B

=

=
−

a

a 1

ttatistics n
g

e e
i

i

E k Ti B
=

+











a 1

 (30)

n

g
i

i

 = occupation index, which is less than or equal to 1 for FD. It is ≥ 1 for BE statistics.

Fermi’s historic and unique accom-
plishments caused him to be 
recognized as one of the great 
scientists of the twentieth century. 
Enrico Fermi was born in Rome, 
italy, on September 29, 1901, to 
Alberto Fermi (a Chief inspector of 
the Ministry of Communications) 
and mother ida de Gattis (school 
teacher). His primary education 
was from a local school. Fermi’s 
aptitude and interest for physics and mathematics was highly encouraged by one of his father’s 
friends Adolfo Amidei. Adolfo gave him several books on physics and mathematics.
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11.8 Application of FD Statistics

The free electron model of metals demonstrates that metals have sea of free electrons into which the 
ions are immersed. These free electrons are responsible for high conductivities of metals. But these free 
electrons collide among themselves, as well as fixed ions. In other words, it is known as an electron 
gas. Fermi–Dirac statistics could be applied to find the energy distribution of electron sea.

Let n number of electrons be enclosed inside a conductor volume V, and the total energy of 
 electrons is E. From Eqn. (30), the energy distribution for these electrons could be given as follows:

n
g

e e
j

j

E k Tj B
=

+
a 1

For a continuous range of energy from E to E + dE:

     
n E dE

g E dE

e e
E k Tj B

( ) =
( )

+
a 1

 (31a)

In Section 11.4, Eqn. (12e), we found out

g p dp
Vp dp

h
( ) =

4 2

3

p

We are taking the case of electron gas, and electrons exist in two spin states, that is, S = +
1

2
 and 

S = −
1

2
. 

Fermi joined the Scuola normale Superiore in Pisa in 1918 
where he spent four years and got his PhD in physics under the 
guidance of Professor Puccianti in 1922. Under italian Government 
scholarship, he spent few months with Professor Max Born in 
Göttingen. in 1924, he got Rockefeller Fellowship, and he moved 
to leyden to work with P. Ehrenfest. Fermi discovered the statis-
tical laws in 1926, nowadays known as the Fermi statistics. From 
1927 to 1938, Fermi was the professor of theoretical physics at 
the University of Rome. in 1934, Fermi carried out his experiments 
during which he bombarded a variety of elements with neutrons. 
Further, he discovered that slow-moving neutrons were quite 
effective in producing radioactive atoms. He was not aware of the 
fact that he split the uranium atom into different atoms. in 1938, 
Fermi won the nobel Prize for Physics for his work on nuclear pro-
cesses. He was employed as the professor of physics at Columbia 
University, new york, during 1939 where he continued until 1942. 
He accepted professorship at the institute for nuclear Studies at the University of Chicago in 
1946. He worked in this institute uptil his death. He died of cancer at the University of Chicago on 
november 28, 1954.

E. FERMI
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Hence, g( p)dp becomes

     
g p dp

Vp dp

h
( ) =

8 2

3

p

 (31b)

We know that energy and momentum are related to each other by E p m=

2 2/  . Hence, Eqn. (31b) 
could be written as follows:

 
g E dE

V m E dE

h
( ) =

8 2 3 2 1 2

3

p
/ /

 (31c)

Substituting Eqn. (31c) in Eqn. (31a),

 
n E dE

V m

h

E dE

e e E k TB
( )

/ /

 =

+

8 2

1

3 2

3

1 2
p p

a

 (32)

Equation (32) is FD distribution for electron gas. As the temperature (T ) of system is decreased, the 
energy also decreases. Upon cooling a system, the electron will occupy lower states. This implies that  
at absolute zero, that is, T = 0 K, all the lower energy states are occupied. Along with that, Pauli’s 
exclusion principle is obeyed, according to which one energy state will contain only one electron. 
Hence, the entire n electrons are accommodated in different energy states. But above certain energy 
level, all the energy levels are vacant. This marks the Fermi level. Hence, the Fermi level corresponds 
to level above which all the levels are empty, and the energy E

F
 corresponding to Fermi level is called 

Fermi energy.
At T = 0 K, n(E) dE = 0 from Eqn. (32), also we have to put a = −

E

k TB

F .

Hence, we obtain n E dE
V m

h

E dE

e
E E k TB

( )
/ /

/
 

F
=

+
−( )

8 2

1

3 2

3

1 2
p

 (33)

n E

g E e
E E k TB

( )

( ) /
=

+
−( )

1

1F

At T = 0 K,
n E

g E

( )

( )
=1

 n E g E( ) ( )=  (34a)

But at T = 0 K, for E > E
F
,

n E

g E

( )

( )
= 0

or n E( ) =0 (34b)

Hence, above Fermi level, all energy levels are empty at absolute zero. Let us find total number of elec-
tions up to Fermi level, that is,
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n g E dE
Vm E

h
o

E

= ( ) =

é

ë

ê
ê
ê

ù

û

ú
ú
ú

ò
F F2

3

8 2
3

2
3 2

3

p
/

3

2
8 23 3 2 3 2nh Vm E= p

/ /
F

E
nh

Vm
F

3 2
3

3 2

3

2 8 2
/

/
=

´ p

E
h

m

n

V
F =

é

ëê
ù

ûú

2 2 3

2

3

8p

/

 (35)

n
V( )  represents the concentration of electrons. Eqn. (35) portrays that Fermi energy is  independent 

of shape and size of material, and it is constant for particular metal.

The average energy at 0 K, and for E < E
F
 is given by

   
E

E n E dE

n

E nE E dE

n
o

E

o

E

= =

æ

è
ç

ö

ø
÷ò ò

-( ) / /
F F

F

3

2
3 2 1 2

 [using Eqs (33) and (35)]

E E dE E
o

E

= =ò
3

2

3

2
3 2/

F

F

E E=

3

5 F (36)

Hence, average energy is 0.6 times the Fermi energy.

Paul Adrien Maurice Dirac was an English theoretical 
physicist and mathematician who is widely regarded 
to be one of the founders of quantum mechanics and 
quantum electrodynamics. noted for his 1928 relativistic 
quantum theory of the electron, and for predicting of the 
existence of antiparticles, Dirac shared the 1933 nobel 
Prize for Physics with Erwin Schrödinger.

Paul Dirac is known as one of the greatest physicists in 
history. His contributions laid the backbone for quantum 
mechanics and quantum electrodynamics. Dirac was the 
first physicist to formulate quantum electrodynamics. in 
addition to this, he also discovered the magnetic monopole 
solutions. He formulated quantum field theory after rework-
ing on his own Dirac equation. The work described the existence of annihilation of matter–antimatter. 

P.A.M. DIRAC
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11.9 Application of BE Statistics

11.9.1 Photon Gas
We have gone through the Planck’s approach of black-body radiations. Now this section emphasizes 
on quantum approach to discuss black-body radiation. The electromagnetic radiations carry energy 

is discrete packets also known as photons. The energy of photon is hf and momentum is 
hf

c
. If we 

take a hollow cavity, such that large number of photons is there, then we can use BE statistics to 
evaluate energy distribution, BE is applicable on integral spin particles; hence, it is valid for photon 
gas. Photons are subject to creation and destruction; hence, their number is not constant, that is, 

dni∑ ≠ 0 . Hence, the Lagrange multiplier a cannot be considered and only b is valid. Therefore, the 

BE statistics can be written as Eqn. (30).

     
n

g

e
j

j

E k Tj b
=

-

/
1

 (37a)

In terms of frequency, the relation Eqn. (37a) could be written down as follows:

    
n f

g f

e

g f

eE k T hf k TB B
( ) =

( )
-
=

( )
-1 1

 (37b)

For calculating the function g( f   ), we need to calculate g(p) dp [as obtained in Eqn. (8)]. From Eqn. 
(12e), the g( p) dp is given as follows:

g p dp
Vp dp

h
( ) =

4 2

3

p

Photons also have two states of polarization, that is, “left handed and right handed.” Hence, the pho-
tons are distinguishable on the basis of their polarization state that yields above relation to be

     
g p dp =

Vp dp

h
( )

8
3

p
2

 (38)

Now p
hf

c
=  ⇒ =dp

h

c
df

Paul was born on August 8, 1902, in Bristol, England. Dirac’s father used to teach French and was 
an immigrant from Saint-Maurice, Switzerland. Paul attended the Bishop Road Primary School. 
later on, he went to Merchant Venturers’ Technical College where his father was a French teacher. 
Dirac obtained his degree in electrical engineering from University of Bristol in 1921. in 1923, Dirac 
joined the University of Cambridge as a research student, where he further worked on unpublished 
hypothesis of Heisenberg’s quantum mechanics.

in 1932, Dirac was made lucasian professor of mathematics at the University of Cambridge 
where he taught for almost 37 years and did his independent research. Paul Dirac died on october 
20, 1984, in Tallahassee, Florida, at the age of 82.
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Therefore, Eqn. (38) could be written as follows:

 
g f df

V

h

h f

c

h

c
df

V f df

c
( ) = =

8 8
3

2 2

2

2

3

p p

 (39)

Substituting Eqn. (39) in Eqn. (37b), we get

    
n f df

V f df

c ehf k TB
( ) = ×

−

8 1

1

2

3

p  (40a)

The energy density b/w ( f and f + df )) is given by following equation:

    
E f df

hf n f df

V

h f df

c ehf k TB
( ) = =

−( )
( ) 8

1

3

3

p

 (40b)

Equation (40b) is Planck’s law for black-body radiation.
Equation (40b) can be written in terms of wavelength as follows:

 
E d

hc d

ehc k TB

l l
p

l

l

l
( ) =

−( )
8

15
 (41)

Equation (41) turns to Rayleigh–Leans law in low-temperature regime, that is, hf >> k
B
T

    
E d

hc k T

hc
d

f k Tdf

c
B Bl l

p

l

l
l

p( ) = 





=
8 8

5

2

3  (42)

Equation (42) is regarded as ferrous Rayleigh–Jeans law.

11.9.2 Specific Heat of Solids (Classical and Quantum Approach)
Specific heat of a substance is the ratio of differential thermal energy dE for a mole of substance to the 
differential increase in temperature, that is,

      
C

dE

dT
=  (43)

C has units of cal/mole/K. For obtaining specific heat, we need to calculate E, that is, internal ther-
mal energy of solid, as a function of temperature T. The variation of specific heat vs. temperature for 
solids is shown in Figure 11.6.

T

3R

T 3
Specific
heat

Figure 11.6 Variation of specific heat with temperature
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Quantum approachClassical approach

Specific heat

(Dulong Petit’s law) (Einstein’s law)

Figure 11.7 Classification of theories to calculate specific heat

From Figure 11.6, it is clear that specific heat tends to zero at absolute zero. At high temperatures, the 
specific heat varies as T 3 and then approaches almost a constant value of 3R, where R is universal gas 
constant. There are basically two approaches for calculating specific heat as demonstrated in following 
section and also Figure 11.7.

11.9.2.1 Dulong and Petit Law
This model assumes the solid to be a collection of atoms that are vibrating, independently having 
equal force constant. Each atom is represented as three one-dimensional harmonic oscillator. The 
particle is executing the simple harmonic motion with same frequency but different amplitudes. If the 
total number of atoms is N, then the total energy of solid is N times average energy of each atomic 
oscillator. Let the particle be simple harmonic oscillator; hence, it will obey Hook’s law as differential 
equation of motion:

i.e. Along z-direction, K is the force constant z is displacement and m is mean.

     

d z

dt

k

m
z

2

2
0+ 




=  (44)

[where F kz=  ⇒ = +ma kz  ⇒ =
+

⇒w z
k

m
z2  w

k

m
2
=
+

]

The total energy of system is sum of potential and kinetic energy,

i.e. E = KE PE+

E
p

m
F dzz= + ⋅∫

2

2

E
p

m
kz dz

p

m

mw zz

z

z= + −( ) = +∫
2

0
2 2 2

2 2 2
 (45)

The average energy could be given as follows:

 

E

E dN

dN

o

o

=
∫

∫

∞

∞  (46a)
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For calculating Eqn. (46a), we should bear the following points in mind:

 (i) Although the atomic oscillators have same frequency, the amplitude is different; hence, energies 
are different.

 (ii) dN is the number of oscillators whose energy lie between energy interval E and E + dE.

 (iii) The dN oscillators are proportional to Boltzmann’s exponential factor e
E

k T
−










B

.

E

Ee dE

e dE

E k T

E k T

=
∫

∫

−

−

0

0

∞

∞

B

B

E

p

m
mw z dEz

p

m

mw z
k Tz

=
+





∫

− +






















2
2 2

0

2 2

2

2 2 2
∞

exp

e

B

xxp
− +




















∫

p

m

mw z

z
k Tz

dE

2 2 2

2

0

B
∞

E
m

p e

e

m
z

p

mk T
dp

p

mk T
dp

z
z

z
z

= +−

−










−










−

∫

∫

1

2
2 2

2

2

2

2

∞

∞

∞

∞

B

B

w

22

2 2

2

2 2

2 2

z e

e

m z

k T
dz

m z

k T
dz

−







−







−

−

∫
∫

w

w

B

B

∞

∞
∞

∞

Potential energy     Kinetic energy

E
k T k T

k T= + =
B B

B2 2
 (46b)

[Equation (46b) has been calculated using special integral x e dx
a

ax

o

2
3 2

2 1

4
−∫ =

∞

∞
p

/
 or simple integral 

could also be used.]
As per assumption, every oscillator possesses three degrees of freedom, hence

     E N E N k T= =3 3A A B         (NA
 is Avogadro’s number) (46c)

and    C
dE

dT
N k R= = =3 3A B

 (46d)

     C = ×( )3 1 99. Kcal/Kmol K (46e)

     C = ( )5 97. Kcal/Kmol K  (46f )

↓ ↓
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Equation (46d) is Dulong–Petit’s law. This law shows independence of temperature. But the law is 
no longer valid for lighter elements and higher temperatures. The specific heat of solids drops to zero 
at absolute zero, which could not be explained on the basis of Dulong–Petit’s law. Hence, this law was 
to be modified. Then Einstein gave quantum approach, which explained everything.

11.9.2.2 Einstein’s Theory of Specific Heat
In 1907, Einstein assumed the oscillators to be 3N

A
 independent harmonic oscillators vibrating with 

frequency f. Classical theory assumed the energy to be continuous, but Einstein’s quantum approach 
assumed the energy to be in discrete packets. He used Planck’s formula, that is, E = nhf = n�w.
The average energy for dN oscillators in energy range E and E + dE is given by the following equation:

     

E
E dN

dN
=
∑
∑

 (47)

     

E
nhf e

e

E k T

E k T
=













∑
∑

−( )

−( )

B

B

     

E
hf e e

e e

hf k T hf k T

hf k T hf k T
=

+ + 

+ + + 

− −

− −

B B

B B

2

1

2

2

�

�

     
E hf

d

dx
e ehf k T hf k T= + + + 







− −log 1 2B B

�

     
E hf

d

dx e hf k T
=

−















−

log
1

1 B

     
E hf

d

dx
e

hf k T= − −( )











−( )log log1 1 B

     
E

hf

ehf k T
=

−

B 1
 (48)

The total energy is given by the following equation:

 
E N E

N hf

ehf k T
= =

−

3
3

1A
A

B



SUMMARy  •  461

C
dE

dT

d

dT

N hf

e

N k
hf

k T
e

hf k T

hf

= 




=

−





=





3

1

3
2

A

A B
B

B/

/kk T

hf k Te

B

B/ − 1
2

 

C R
hf

k T

e

e

hf k T

hf k T
=





 −( )















3
1

2

2
B

B

B

/

/

 (49a)

The following cases may arise:

 (i) For low temperatures hf > > k
B
T

 
C R

hf

k T
e hf k T=







−3

2

B

B/  (50)

Relation (50) clearly demonstrates that as the temperature decreases the specific heat drops 
 exponentially and at absolute zero C → 0.
 (ii) At high temperatures, hf << k

B
T

 C R
hf

k T

hf

k T

hf

k T

=






+






+ −






3

1

1 1

2

2
B

B

B

 [as T as large]

 
C R

hf

k T
R= +






≈3 1 3

B
 (51)

Hence, at high temperatures, the specific heat is same as derived by classical Dulong–Petit’s law.

SUMMARY

This unit deals with the probability and states. Probability is the ratio of number of ways leading to 
favorable way to total outcomes. For independent events, the probability is multiplicative in nature. 
The thermodynamic probability deals with the possible microstates in the macrostate. The concept of 
phase space deals with position coordinates x y z, ,( ) and velocity coordinate v v vx y z, ,( )  for the moving 
particle. The statistics is divided into classical and quantum statistics. In classical statistics, the particles 
are distinguishable with continuous energy and small-phase space cell. Maxwell–Boltzmann statistics 
follow classical mechanics. According to quantum mechanics, the particles are indistinguishable with 
discrete energy and minimum phase space volume h3. Bose–Einstein and Fermi–Dirac statistics follow 
the quantum statistics. Using Maxwell–Boltzmann statistics, the most probable, root-mean-square 
and average velocity have been obtained. Root-mean-square velocity is 22 percent greater than most 
probable speed for given temperature, whereas average speed is 13 percent greater than the most prob-
able speed for given temperature. FD statistics have been applied to free electron model of metals. 
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The free electrons are responsible for high conductivities of metals. When the temperature of system 
decreases, the energy also decreases and upon cooling, the electrons occupy lower states. Bose–Einstein 
statistics has been applied to photon gas. As photons are subject to creation and destruction, hence 
their number is not constant. Specific heat of solids has been calculated using classical (Dulong and 
Petit law) and quantum (Einstein’s theory of specific heat) approach.

SOLVED PROBLEMS

Q.1: Two six-faced dice are thrown together obtain the probability that face 4 comes up in both.

Ans: These dices are independent of each other, hence the events are considered independent.

The probability for 4 to come is 
1

6
.

The total probability for two dices will become

= × =

1

6

1

6

1

36

Q.2: How could four distinguishable particles be arranged in three compartments?

Ans: The distributions could be given as follows:

[0, 0, 4] [4, 0, 0] [0, 4, 0]
[0, 1, 3] [0, 3, 1] [3, 1, 0]
[1, 0, 3] [1, 3, 0] [3, 0, 1]
[0, 2, 2] [2, 0, 2] [2, 2, 0]
[1, 1, 2] [1, 2, 1] [2, 1, 1]

The number of arrangements is given by thermodynamic probability, according to which

W n n n
n

n n n
k

k

1 2
1 2

,
!

! ! !
�

�

( ) =

Here, n = 4

For W 0 4 0
4

0 0 4
1, ,

!

! ! !
( ) = =

W 3 1 0
4

3 1 0
4, ,

!

! ! !
( ) = =

W 0 2 2
4

0 2 2
6, ,

!

! ! !
( ) = =

W 1 1 2
4

1 1 2
12, ,

!

! ! !
( ) = =

[Note: In the above thermodynamic probability, only one representative is taken, that is, 

W W W0 2 2 2 0 2 2 2 0, , , , , ,( ) = ( ) = ( ). For all these arrangements W  is 6.]
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Total number of possible arrangements become

= × + × + × + ×3 1 4 6 3 6 3 12

= + + +3 24 18 36

= 81

Q.3: A card is drawn from well-shuffled back. Obtain the probability of the card to be either a king 
or queen.

Ans: The total number of kings and queens are 8 for a back of card.
Total number of cards are 52.

Hence, the P (for either king or queen) =
8

52
.

Q.4: If a coin is tossed, what would be the probability of tail not coming up?

Ans: Total number of outcomes are 2.

For head/tail, the probability is 
1

2
.

Hence, the probability for tail not coming up is = − =1
1

2

1

2
.

Q.5: Two coins are tossed simultaneously. Obtain the probability for heads to be coming up in both 
coins.

Ans: For two coins, the total number of ways is given by 4.

i.e.    H H T T H T T H, , , , , , ,( ) ( ) ( ) ( )

Hence, the probability for heads coming up in both coins is 
1

4
.

Q.6: A pair of six-faced dice is thrown simultaneously. Obtain the probability for which the sum of 
numbers showing up is 6?

Ans: There are 36 ways in which the outcome can come.

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)
(1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2)
(1, 3) (2, 3) (3, 3) (4, 3) (5, 3) (6, 3)
(1, 4) (2, 4) (3, 4) (4, 4) (5, 4) (6, 4)
(1, 5) (2, 5) (3, 5) (4, 5) (5, 5) (6, 5)
(1, 6) (2, 6) (3, 6) (4, 6) (5, 6) (6, 6)

There are five ways in which the dices can show up 6, that is,

(5, 1) (4, 2) (3, 3) (2, 4) (1, 5)

Hence, the probability =
5

36
.



464  • CHAPTER 11/STATiSTiCAl PHySiCS

Q.7: Obtain the percentage error in Stirling formula if (i) n = 5 and (ii) n = 6

Ans: (i) According to Stirling’s formula,

log ! loge en n n n= −

for n = 5

log ! log . log .e e5 120 2 303 120 4 78810= ( ) = × ( ) =

According to Stirling formula,

log ! loge en = −5 5 5

= 3 048.

Hence, the error comes out to be

     = −4 788 3 048. .

     =1 74.

% error in Stirling’s formula = ×

1 74

4 788
100

.

.

= 36 34. %

 (ii) For n = 6,

    log ! log !e en = 6

= × ( )2 303 610. log !

= × ( )2 303 72010. log

= 6 5804.

According to Stirling’s formula,

log ! loge en n n n= −

= × × ( ) −6 2 303 6 610. log

= × × −6 2 303 0 778 6. .

= 4 752.

Hence, error comes out to be

= −6 5804 4 752. .

=1 8284.

% error is equal to
= ×

1 8284

6 5804
100

.

.

% error = 27 78. %
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Q.8: For nitrogen gas at NTP, obtain the most probable and rms velocity.

Ans: For nitrogen, the mass is given by

    
Mass (

Molecular weight

Avogadro s number
m) =

’

     
Mass ( gmm)

.
.=

×

= ×
−

28

6 023 10
4 66 10

23
23

Here, T kB= = ×
−273 1 38 10 16K ergs/K, .

v
k T

m
B

mp =
2

=

× × ×

×

−

−

2 1 38 10 273

4 66 10

16

23

.

.

= ×161 69 107.

= × = ×1616 9 10 40 2 106 3. .

= ×4 02 104. cm/sec

v
k T

m
B

rms =
3

=

× × ×

×

−

−

3 1 38 10 273

4 66 10

16

23

.

.

= ×242 53 107.

= ×2425 3 106.

= ×49 247 103.

= ×4 92 104. cm/sec

Q.9: What would be the temperature, where average speed of hydrogen gas molecular is double the 
average speed of oxygen at 300 K.

Ans: The average velocity is given by

v
k T

m
B

avg =
8

p
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where k
B
 is Boltzmann’s constant and T is absolute temperature.

Let the mass of hydrogen atom is M and of oxygen is m.
For average speed of oxygen at T = 300 K

v
k

m
B

avg Oxygen
( ) =

( )8 300

p

and v
k T

M
B

avg Hydrogen
( ) =

8

p

According to the given condition,

 
v vavg Hydrogen avg Oxygen
( ) = ( )2

8
2

8 300k T

M

k

m
B B

p p

=
( )

8
4

8 300k T

M

k

m
B B

p p

=
×





T

M m
=

×4 300

T
M

m
=

× ×4 300

T =
× ×4 300 2

32

T = °75 K

Q.10: Obtain the average velocity and root-mean-square velocity for hydrogen atom at 27°C.

Ans: T = ° =27 300C K

kB = ×
−1 38 10 16. ergs/k

N = ×6 1023 mol/mole

m =
Molecular weight

Avogadro number

m =
×

= ×
−

2

6 023 10
3 3 10

23
24

.
. gm

We will obtain average velocity first.

v
k T

m
B

avg =
8

p
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=

× × ×

× ×

−

−

8 1 38 10 300

3 3 10 3 14

16

24

.

. .

= ×
+319 629 10 8.

= ×17 878 104.

= ×1 78 105. cm/sec

Now for root-mean-square velocity,

v
k T

m
B

rms =
3

Vrms =
× × ×

×

−

−

3 1 38 10 300

3 3 10

16

24

.

.

= ×376 36 108.

= × = ×19 4 10 1 94 104 5. . cm/sec

Q.11: What would be the probability that the speed of hydrogen molecule at 300 K lies between 148 
and 149 m/sec.

Ans: The probability of molecule possessing speed between v  and v dv+  is given by

n v dv
nm v e dv

k T

mv k T

B

B

( ) =
( )

−2 3 2 2 2

3 2

2

p

p

/ /

/

Mass of Hydrogen
Molecular mass

Avogadro number
=

=

×

= ×
−

2

6 10
3 3 10

23
24. gm

kB = ×
−1 38 10 23. J/K

T = 300 K

v = 148 m/sec

dv = − =149 148 1 m/sec
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The probability is given by the following relation:

   

P v dv
m v e dv

k T

mv k T

B

B

( ) =
( )

−2 3 2 2 2

3 2

2

p

p

/ /

/

   
P v dv( ) = × ×

×
× × ×






(

−

−1 41 3 14
3 3 10

3 14 1 38 10 300
148

24

23

3 2

. .
.

. .

/

)) ×
−

× ×( )
× × ×











−

−2

3 3 10 148

2 1 38 10 300

24 2

23

1e

.

.

   
P v dv e( ) = × × ×( ) ×

− − − ×( )−4 4274 2 538 10 10 219043 1 3 2 87 298 10 1

. .
/ .

   
P v dv e( ) = × ×( ) × ×( ) ×− − −96977 76 1 593 10 2 538 102 4 8 7298. . . .

   P v dv( ) = × × × ×
− −96977 76 4 043 10 1 6169 106 4. . .

   P v dv( ) = ×
−633955 9042 10 10.

               P v dv( ) = ×
−6 339 10 5.

Q.12: Calculate the most probable speed for oxygen molecule at NTP, given that kB = ×
−1 38 10 16. ergs/K  

and Avogadro’s number N( ) = ×6 023 1023. .

Ans: The most probable speed is given by

 

v
k T

m

T

B
mp

K

=

=

2

273

and Mass
Molecular mass

Avogadro number
m( ) =

 
=

×

= ×
−

32

6 023 10
5 312 10

23
23

.
. gm

vmp =
× × ×

×

−

−

2 1 38 10 273

5 312 10

16

23

.

.

 

vmp =
×753 48 10

5 312

7.

.

vmp = ×141 84 107.

vmp = ×1418 4 106.

vmp cm/sec= × = ×37 66 10 3 76 103 4. .
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Q.13: Calculate the different arrangements for 7 indistinguishable particles among 4 cells with a 
priori probability for Bose–Einstein statistics.

Ans: For BE statistics, the distinct arrangements could be given by

=
+ −( )

−( )

n g

n g

j j

j j

1

1

!

! !

Here, nj = 7  and g j = 4

=
+ −( )

−( )
=

7 4 1

7 4 1

10

7 3

!

! !

!

! !

=

× × ×

=

× ×

×

= × ×

10 9 8 7

7 3

10 9 8

3 2
5 3 8

!

! !

= 120

Hence, there are 120 different arrangements for 7 particles in four cells.

Q.14: For the particles obeying BE statistics, 7 particles are arranged in 2 compartments. The first 
compartment has 8 cells and the second compartment has 9 cells of equal size. Obtain the microstates 
for macrostate (3, 4).

Ans: In this case,
g1 8=  and g2 9=

n1 3=  and n2 4=

The thermodynamic probability is given by

W n n
n g

n g

n g

n g
1 2

1 1

1 1

2 2

2 2

1

1

1

1
,

!

! !

!

! !
( ) =

+ −( )
−( )

×
+ −( )

−( )

=
+ −( )

−( )
×

+ −( )

−( )

8 3 1

3 8 1

9 4 1

4 9 1

!

! !

!

! !

= ×

10

3 7

12

4 8

!

! !

!

! !

=

× × ×

×

× × × ×10 9 8 7

3 7

12 11 10 9 8

4 8

!

! !

!

! !

=

× ×

×

×

× × ×

× × ×

10 9 8

3 2

12 11 10 9

4 3 2 1

= × × × × ×5 3 8 11 5 9

= 59 400,

Hence, the thermodynamic probability is given by 59,400.
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Q.15: Calculate the different arrangements for 5 particles among 6 cells with a priori probability for 
Fermi–Dirac statistics.

Ans: For FD statistics, the arrangements are given by

g

g n n

j

j j j

!

! !−( )
Here g j = 6  and nj = 5

Here, the number of arrangements is 
6

1 5

!

! !

= =

6

1 5
6

!

! !

Hence, there are six different arrangements.

Q.16: For particles obeying FD statistics, 6 particles are arranged in two compartments. The first 
compartment has 7 cells and the second compartment has 8 cells, all of equal size. Obtain the 
 microstates for macrostate (2, 4).

Ans: Here, g1 7=  and g2 8=

n1 2=  and n2 4=

Hence, the thermodynamic probability is given by

W n n
g n

g

g n n
1 2

1

1 1 1

2

2 2 2

,
g !

!n !

!

! !
( ) =

−( )
×

−( )

= ×

7

5 2

8

4 4

!

! !

!

! !

=

× ×

× ×

×

× × × ×

× × × ×

7 6 5

2 1 5

8 7 6 5 4

4 3 2 1 4

!

!

!

!

= × × × ×7 3 7 5 2

= 1470

Hence, there are 1470 different microstates for 6 particles in two cells (with a priori probability).

Q.17: Calculate the number of modes in a body of volume 50 cc in the wavelength range 5890 5896− Å.

Ans: For, the frequency range f  and f df+ , the number of modes are given by

8 2

3

pf

c
df

f
c

=

l
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df
c

d= −

l
l

2

Hence, the number of modes in range l and l l+ d  is given by

8
4

l

l
ld

Here, l = 5890Å and dl = 6Å

Number of modes in 50 cc ≈ ×( )−50 10 6 3m

=
× × ×

×( )
× ×

−

−

−8 3 14 6 10

5890 10 4
50 10

10

10

6.

=

×

×

−

−

7536 10

1 20354 10 10

16

15 40.

=

×

×

−

−

7536 10

1 2035 10

16

25.

= ×6261 74 109.

= ×6 26 1012.

Q.18: 40 Fermi particles are distributed in three compartments having energy 2E, E, −E Obtain the 
energy of macrostate (20, 5, 15).

Ans: Total energy of macrostate is given by

E n Ej j

j

k

=
=

∑
1

For k = 3, with energy 2E , E , and −E .

E n E n E n E= + +1 1 2 2 3 3

= × + × + × −( )20 2 5 15E E E

= + =40 5 15E E E

= 30E

Q.19: Obtain the Fermi energy for silver metal. Given density of silver = 10 5 3. gm/cm  and atomic 
weight is 1.08 gm. Silver atom has 1 free electron / atom

Ans: The Fermi energy, E
h

m

n

V
F =








2 2 3

8

3

p

/

m = ×
−9 1 10 31. kg



472  • CHAPTER 11/STATiSTiCAl PHySiCS

Volume
mass

density
m= =

×

108

10 5 106
3

.

EF =
×( )

× ×

× ×

×











−

−

6 63 10

8 9 1 10

3 10 5 10

3 14 108

34 2

31

6 2 3.

.

.

.

/

EF J= ×
−8 78 10 19.

In eV, we get

EF eV=

×

×

=

−

−

8 78 10

1 6 10
5 48

19

19

.

.
.

Q.20: The Fermi velocity of an electron is 7 3 105. × m/sec for cesium atom. Also obtain the Fermi 
energy of cesium metal.

Ans: The Fermi energy is given by

E mvF F=

1

2
2

= × × × ×
−

1

2
9 1 10 7 3 1031 5. .

= ×
−2 41 10 19. J

In eV,         EF eV=

×

×

−

−

2 41 10

1 6 10

19

19

.

.

= 1 506. eV

According to the Fermi temperature,

k T EB F F=

T
E

kB

F
F

=

TF =
× ×

×

−

−

1 506 1 6 10

1 38 10

19

23

. .

.

= ×1 748 104. K

OBJECTIVE QUESTIONS

 1. The probability for two independent events with probability P1 and P2 is

 (a) 
P

P
1

2

 (b) 
P

P
2

1

 (c) P P1 2+  (d) P P1 2.
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 2. Frequency of occurrence is defined as total number of ________ for a given macrostate.

 (a) particles (b) microstates
 (c) cells (d) compartments

 3. The thermodynamic probability for n number of particles in k compartments is

 (a) 
n

n
k  (b) 

n

nk

 (c) 
n

nii

k !

!=

∏
1

 (d) 
n

ni

!

!
∑

 4. The probability for the distribution of n particles in g k compartments is

 (a) n
g

n

i

n

ii

k i

!
!

( )
=

∏
1

 (b) 
g

n
i

ii

k

!=

∏
1

 (c) n gi

n

i

k
i! ( )

=

∏
1

 (d) 
n

g
i

ii

k !

=

∏
1

 5. Phase space is constituted by

 (a) 8 coordinates (b) 6 coordinates
 (c) 3 coordinate (d) 9 coordinates

 6. The volume dc of phase space is given by

 (a) dV d. G  (b) 
dV

dG

 (c) dV d+ G  (d) 
d

dV

G

 7. In classical mechanics, the dimension of h is

 (a) erg. sec. (b) mass velocity× ×
2 sec

 (c) both of them (d) none of these

 8. According to quantum mechanics, the volume of phase space is

 (a) ≤ h3 (b) ≤ h2

 (c) > h (d) ≥ h3

 9. Classical mechanics assumes the energy to be

 (a) discrete (b) continuous
 (c) impackets (d) all of these
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 10. In quantum mechanics, the particles are

 (a) distinguishable (b) indistinguishable
 (c) of the same mass (d) of the same velocity

 11. According to Sterling’s formula when n is extremely large, then

 (a) ln ! lnn n n n= −  (b) ln ln !n n n=

 (c) n n n n= −ln 2 (d) ln ! ln ! !n n n n= −

 12. The MB energy distribution law is given by

 (a) n g ei i
Ei= ( )+a b  (b) n g ei i

Ei
=

b

 (c) n g ei i
Ei= ( )− −a b  (d) g n ei i

Ei= ( )− −a b

 13. The Boltzmann factor is given by

 (a) e Eib  (b) e Eib
∑

 (c) e Ei−b  (d) e Ei−

∑
b

 14. The partition function is given by

 (a) e Eib  (b) e Ei−

∑
b

 (c) e Ei−b  (d) e Eib
∑

 15. The factor e −a in MB statistics is given by

 (a) 
n

V m

b

p2

1 2






/

 (b) 
nh

V

m3 3 2
2p

b







/

 (c) 
nh

V

m3 1 2
2p

b







/

 (d) 
nh

V m

3 3 2

2

b

p







/

 16. The value of b  is given by

 (a) k TB
2  (b) k TB

 (c) 
1

k TB

 (d) 
1

2k TB

 17. The most probable velocity is given by

 (a) 
2k T

m
B  (b) 

8k T

m
B

p

 (c) 
3k T

m
B  (d) v
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 18. The root-mean-square velocity is given by

 (a) 
2k T

m
B  (b) 

3k T

m
B

 (c) 
8k T

m
B

p

 (d) 
k T

m
B

 19. The ratio of rms and most probable velocity is

 (a) 1.22 (b) 1.13
 (c) 1.45 (d) 1.52

 20. In BE statistics, the number of different arrangements is given by

 (a) 
n

n g

j

j j

!

!( ) −( )1
 (b) 

n g

n g

j j

j j

! !

!

−( )
+ −( )

1

1

 (c) 
n

g n

j

j j

!

!−( )
 (d) 

n g

n g

j j

j j

+ −( )
−( )

1

1

!

! !

 21. The Bose–Einstein distribution function is given by

 (a) n
g

e e
i

j

E j
=

a b
 (b) n

g

e e
j

j

E j
=

+
a b

1

 (c) n
g

e e
j

j

E j
=

−

a b
1

 (d) g
n

e e
j

j

E j
=

−

a b
1

 22. The Thermodynamic probability for FD statistics is

 (a) 
g

g n

j

j j

!

!−( )
 (b) 

g

g n

j

j j j

!

!n !−( )

 (c) g g nj j j! !−( )  (d) g j !

 23. The Fermi–Dirac distribution is given by

 (a) n
g

e e
j

j

E j
=

+
a b

1
 (b) n

g

e e
j

j

E j
=

−

a b
1

 (c) n
g

e e
j

j

E j
=

a b
 (d)   g

n

e e
j

j

E j
=

+
a b

1

 24. The Fermi energy is given by

 (a) 
h

m

V

n

2 2 3

2

8

3

p





/

 (b) 
2 8

32

1 2
m

h

V

n

p





/

 (c) 
h

m

n

V

2 2 3

2

3

8p






/

 (d) 
3

8

2 3
n

Vp







/
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 25. The average energy at 0K is given by

 (a) 
1

4
EF (b) 

3

5
EF

 (c) 
1

2
EF (d) 0

 26. According to Dulong and Petit’s law, the Cv  is

 (a) 5R (b) 3R
 (c) 2R (d) R

 27. According to Einstein’s theory of solids, at low temperatures the specific heat is

 (a) 3

2

R
hf

k TB







 (b) 3R
hf

k T
e hf k T

B

B






− /

 (c) 3

2

R
hf

k T
e

hf

k T

B

B






−

 (d) 0

ANSWERS

 1. (d)

 2. (b)

 3. (c)

 4. (a)

 5. (b)

 6. (a)

 7. (c)

 8. (d)

 9. (b)

 10. (b)

 11. (a)

 12. (c)

 13. (c)

 14. (b)

 15. (d)

 16. (c)

 17. (a)

 18. (b)

19. (a)

20. (d)

 21. (c)

 22. (b)

 23. (a)

 24. (c)

 25. (b)

 26. (b)

 27. (c)



CRiTiCAl THinKinG QUESTionS  •  477

Micro-assessment Questions

 1. What are the basic assumptions of Fermi–Dirac statistics?
 2. Explain the thermodynamic probability.
 3. What is difference between microstate and macrostate?
 4. How will you define cells in compartments?
 5. What are fermions?
 6. Describe the bosons with examples.
 7. Which particles obey Pauli exclusion principle?
 8. What do you understand by constraints on system?
 9. What do you understand by most probable state for a system?
 10. Which factor describes the distribution of molecular speeds for ideal gas?
 11. Define momentum space. How does it differ from phase space?
 12. What are fermions?
 13. What are bosons?
 14. How did the concept of phase space come into existence?
 15. What is partition function?
 16. What is Boltzmann factor?
 17. What is the main application for FD statistics?
 18. What is Rayleigh–Jeans law?
 19. What is specific heat of solid?

Critical Thinking Questions

 1. Give any two laws of probability.
 2. Calculate the percentage error in Sterling formula when n = 3.
 3. What do you understand by phase space?
 4. What should be the minimum size for a phase space cell according to quantum and classical 

mechanics?
 5. Give the various microstates and macrostates for system with two distinguishable particles.
 6. Describe briefly the two main classifications for statistics.
 7. What are the assumptions for Bose–Einstein statistics?
 8. Explain how Fermi–Dirac statistics could be applied to electron gas?
 9. Give the derivation for Maxwell–Boltzmann statistics.
 10. What do you understand by photon gas?
 11. The identical gas molecules are treated distinguishable classically. Explain.
 12. Define cells for a compartment.
 13. What is the meaning and importance of “a priori probability”?
 14. What is the difference between BE and FD statistics?
 15. Why hydrogen escapes the earth atmosphere and oxygen cannot?
 16. Discuss the distribution of three particles in two boxes classically and quantum mechanically.
 17. Explain the common approach for dealing with MB, BE, and FD statistics.
 18. State and explain the Maxwell–Boltzmann statistics for the distribution of molecular speeds.
 19. Give the distribution of three particles in three boxes according to MB, BE, and FD statistics.
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 20. Obtain the expression for phase space cells in the kinetic energy interval E and E + dE.
 21. Prove that for MB distribution, β = 1/k

B
T.

 22. Show that MB distribution holds good for low concentration of particles.
 23. How does MB and BE distribution differ from each other?
 24. What do you understand by Dulong and Petit law?

Graded Questions

 1. Assuming that low-energy neutrons are in thermal equilibrium with the surroundings without absorp-
tion and that the Maxwellian distribution for velocities is valid, deduce their energy distribution.

 2. Show that for Maxwellian distribution of velocities of gas molecules, the root mean square of 
speed < v

rms
 > = (3 k

B
T/m)1/2.

 3. Show that the average speed of gas molecule < v
avg

 > = 8 k
B
T/πm.

 4. Show that the most probable speed of the gas molecules v
p
 = (2 k

B
T/m)1/2. Also show that the 

ratio v
p
:< v

avg
 >:< v

rms
 >:: 2 8 3: :/p .

 5. Assuming that the hydrogen molecules have a root-mean-square speed of 1,270 m/s at 300 K, 
calculate the rms at 600 K.

 6. Calculate the fraction of the oxygen molecule with velocities between 199 m/s and 201 m/s at 
27°C.

 7. In the quantum theory of black-body radiation, Planck assumed that the oscillators are allowed to 
have energy, 0, E, 2E, …. Show that the mean energy of the oscillator is E

avg
 = E/[exp(E/k

B
T) − 1] 

where E = hf.
 8. A black-body has its cavity of cubical shape. Determine the number of modes of vibration per 

unit volume in the wavelength region 4,990–5,010 A.
 9. Estimate the temperature of the earth, assuming that it is in radiation equilibrium with the sun 

(assume the radius of sun R = 7 × 108 m, the earth–sun distance r = 1.5 × 1011 m, the temperature 
of solar surface T = 5,800 K).

 10. The mass of the sun is 2 × 1031 kg, its radius 7 × 108 m, and its effective surface temperature 
5,700 K. Then

  (a) obtain the mass of the sun lost per second by radiation.
  (b) obtain the time necessary for the mass of the sun to diminish by 1 percent.
 11. Prove that the specific heat is constant and is independent of temperature.
 12. State and explain Einstein theory of specific heat. Show that at high temperatures, the specific 

heat is same as derived by Dulong and Petit’s law.

Remember and Understand

 1. The macroscopic behavior of a system is identified by the compartments. Each compartment has 
definite energy, momentum, velocity, and specific volume.

 2. Thermodynamic probability depends upon nature of particles. In other words, it treats the par-
ticles to be distinguishable or indistinguishable.

 3. All the distinct arrangements of particles are termed macrostates for the particles.
 4. When the particle is at rest, only three position coordinates are required to define the particle, 

that is, x, y, z. But when the particle is moving, then momentum coordinates are also taken 
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into account due to velocity. Hence, six coordinates are required to define the particle. This six-
dimensional space is termed as phase space.

 5. The phase space can be divided into small compartments (k). Further, the particles are divided 
into these compartments.

 6. The state with maximum thermodynamic probability corresponds to most probable macrostate.
 7. The statistics are categorized into classical and quantum. Maxwell–Boltzmann statistics is classi-

cal and treats particles as distinguishable. Quantum statistics is further classified as Bose–Einstein 
and Fermi–Dirac, and both of them treat particles as indistinguishable.

 8. At low-density limit and high-temperature limit, the quantum statistics become identical to clas-
sical mechanics.

 9. The Dulong–Petit law states that the specific heat is independent of temperature.





     

H. Kamerlingh Onnes was the first to liquefy helium, and he discovered the phenomena of 
superconductivity in 1911. He observed how resistance varies with temperature for mercury. At 
a temperature of 4.15 K, the resistance of mercury falls down sharply and reached almost zero as  
shown in the Figure 12.1. The temperature at which the resistance abruptly falls to zero (in the 
absence of magnetic field) is called critical temperature.

 12

Superconductors and 
Semiconductors

Learning Objectives

 To understand the phenomena of superconductivity

 To learn about the critical field and Meissner effect

 To learn about the classification of superconductors into type I and type II

 To learn about the properties of superconductors, that is, entropy, heat capacity, energy gap, and 
thermal conductivity

 To study about the isotope effect

 To gain insight over flux quantization and thermodynamics of superconducting transitions

 To understand the Bardeen, Cooper, and Schrieffer theory for the explanation of superconductivity

 To understand the classification of materials into conductors, insulators, and semiconductors

 To know about intrinsic and extrinsic semiconductors

 To learn about different dopings in semiconductors, that is, p-type and n-type semiconductors

 To understand about the forward biasing and reverse biasing of p–n junction diode

 To know about junction diode as a half- and full-wave rectifier

 To know about zener diode as a voltage regulator

 To gain insight into the transistors and its components, that is, base, collector, and emitter.

 To understand the working of p–n–p and n–p–n transistors

 To lean about the input characteristics of n–p–n and p–n–p transistors in common base and com-
mon emitter configurations

 To understand the working of a transistor as an amplifier

 To learn about voltage and power gain in common base and common emitter configurations

Keywords: superconductor, Meissner effect, Silsbee effect, soft and hard superconductors, BCS theory, 
semiconductors, p–n junction diode, forward biasing and reverse biasing, rectifiers, transistors, amplifiers
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Hence, the phenomena in which the resistivity of conductor approaches zero, when the temperature 
of conductor is reduced below critical temperature, is called superconductivity, and the materials that 
exhibit this property are known as superconductors.

Many elements in the periodic table—intermetallic compounds, semiconductor, and other alloys—
show the phenomena of superconductivity. Many thallium cuperates have critical temperature of 125 K. 
The alloys of niobium (Nb) and germanium (Ge) have critical temperature of 23.2 K. Y–Ba–Cu–O 
system have the critical temperature of 90 K. The superconductors whose critical temperature is greater 
that 25 K are known as high-temperature superconductors. Many superconductors have been obtained, 
which have transition temperature of almost 138 K, and they have composition Hg–Ba–Ca–Cu–O.

12.1 The Critical Field

Superconductivity gets destroyed when strong magnetic field is applied to superconductors. The 
superconductor behaves as normal conductor. The magnetic field at which the superconductor starts 
behaving as normal conductor is known as critical field, and it is denoted by H

c
. The following equa-

tion gives the relation between critical field and critical temperature:

 

H H
T

T
c o

c

= −














1

2

 (1)

H
o
 is the critical field at 0 K, and it is material property of every element. High value of T

c
 represents 

low value of H
c
. At T = T

c
, H

c
 becomes zero.

The curve between H
c
 and T is a parabolic curve (Figure. 12.2). Beyond the boundary of parabola, 

the material behaves as normal conductor; and inside the boundary, it is superconducting.

Norm
al

conducto
r

Superconductor

Temperature
R

es
is

ta
n

ce

Tc = 4.15 K

Figure 12.1 Variation of resistance with temperature.

Pb

TaTi

InHc

Temperature (K)

(Gauss)

Figure 12.2 H
c
–T curves for superconductors.
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Onnes found that the superconductivity gets destroyed when the current exceeds the critical 
value. At the same time, current is also the cause of magnetic field [B = μ

o
 I/2πr]. Hence, these 

two  phenomena are interrelated. According to Silsbee, the superconductivity gets destroyed by the 
 magnetic field associated with current rather than the current itself.

12.2 Meissner Effect (Flux Exclusion)

In 1933, Meissner and Ochsenfeld found that if a superconductor is cooled below the critical 
 temperature in magnetic field, then the magnetic field lines are pushed out of the superconductor. 
This phenomenon is called the Meissner effect (Figure 12.3). For the Meissner effect, the sample 
should be free from strain and impurities. In case the sample contains some impurities, then the 
flux may remain trapped inside the specimen. Perfect superconductors behave as perfect diamagnet. 
Meissner effect could be attained in either of the following two ways:

 (i) T
c
 is reached first, and then the magnetic field is applied.

 (ii) The magnetic field is applied, and then the sample is cooled up to critical temperature(T
c
).

Mathematically, the explanation could be given as follows:
As there is no field inside the superconductor,

 B H M= +( ) =mo 0              
(M is the magnetization  

       and H is magnetic field) (2)

 H M= −  (3)

Magnetic susceptibility is given by the following equation:

 
c =

M

H
 (4)

 
c = −1  (5)

Equation (5) signifies the perfect diamagnetic substances. But, it is contradictory to Maxwell’s 
equations.
From Ohm’s Law,

 J E=s  (6a)

For superconductor, charge density r = 0 , and hence E = 0.

Normal

Cooling

Sample
Field lines

Field lines

Sample

Superconducting state

Figure 12.3 Meissner effect indicating the exclusion of field lines from the superconductor.
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Therefore, from Maxwell’s equation,

 
∇× =

−
E

d B

dt

��

 (6b)

dB

dt
= 0

 B = constant  (6c)

This equation signifies that for a perfect superconductor, the magnetic field is constant even if it is 
cooled below transition temperature. Hence, according to Maxwell equation, the magnetic field is 
not expelled, but it is constant inside the superconductor. Therefore, E = 0 and B = 0 are mutually 
independent of each other.

12.3 Type-I and Type-II Superconductors

There are two groups of superconductors as shown in Figure 12.4(a)–(b). These two types are discussed 
as follows:

 1. Type-I Superconductors (Soft)
Figure 12.4(a) represents type-I superconductors. They follow Meissner’s effect, and they are perfect 
diamagnets. The flux is completely excluded from their body. Moreover, these are also pure specimens 
(impure specimens may have some flux trapped inside them). The critical field is very low for these 
samples. Hence, they do not have much technical applications.

 2. Type-II Superconductors (Hard)
Figure 12.4(b) represents type-II superconductors. These superconductors do not have very sharp 
value of critical field H

c
. These superconductors do not follow Meissner’s effect strictly. Below H

c1
, 

the specimen is diamagnetic, that is, no magnetic field lines exist inside the body. H
c1

 is also known 
as lower critical field. At fields H > H

c1
, the field lines penetrate inside the specimen that increases up 

to H = H
c2

. H
c2

 is the upper critical field. Large field is required to destroy the superconductivity of 
specimen. Hence, these superconductors are called hard superconductors. For these superconductors, 
magnetization does not vanish abruptly. It vanishes gradually unlike soft superconductors. Type-II 
superconductors can be divided into three regions:

Type I

Type II

4πM 4πM

Hc Hc
Hc2Hc1

Super-
conducting

state

IIIIII

H H

Normal
state

Figure 12.4 Magnetization curve for (a) Type-I and (b) Type-II superconductors.
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 (i) Region I: It is the superconducting state (H < H
c1

).
 (ii) Region II: It is the vortex/intermediate state (H

c1
 < H < H

c2
).

 (iii) Region III: It is the normal state (H > H
c2

).

These superconductors have many practical applications, for example, high field magnets for particle 
accelerators and magnetic levitation trains.

12.4 Properties of Superconductors

The following are some of the important properties of superconductor.

12.4.1 Entropy and Heat Capacity
For superconductors, the entropy decreases sharply as the temperature decreases below critical 
 temperatures (Figure. 12.5). Entropy represents the randomness and disorder of the system. Hence, 
decrease in entropy indicates decreased randomness or increased order of the system. Therefore, super-
conducting state is more ordered than the normal state. In normal state, there are many thermally 
excited electrons. These electrons get ordered in the superconducting state. In type-I superconductors, 
the length of the order of 10−6 m has been obtained and this length is called coherence length.

The specific heat consists of two components, that is,

 C C C AT A T= + = +e l 1 2
3  (7)

Equation (7) indicates the contribution of specific heat from electrons and lattice. A
1
 and A

2
 are 

constants. The changes in specific heat of specimen occur due to the change in C
e
. The electronic 

specific heat varies with temperature as follows:

 
C

k T
e

B

∝exp −
∆







  (8)

∆ = 1.4 k
B
T

c
  and  k 

B  
is Boltzmann’s constant. ∆  is also known as energy gap parameter. Figure 12.6(a)–(b)  

represents variation of C

T
 vs T 2 and 

C

AT
e

c1
 vs 

T

T
c .

Normal
conductor

Temperature

E
n
tr
o
p
y

Tc

Superconductor

Figure 12.5 Entropy vs. temperature for normal and superconductor.
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12.4.2 Energy Gap
The heat capacity varies in exponential manner for superconductors as C

k Te ∝ exp
B

−∆




. This relation 

goes in accordance with the thermal excitation for energy gap (Figure 12.7(a)–(b)) for superconductors.
The energy gap in superconductor is different from the semiconductors or insulators. For super-

conductors, the energy gap separates the normal electron states from the superconducting electronic 
states. As the temperature becomes T

c
, the gap decreases continuously. For semiconductors or insula-

tors, the band gap separates valence and conduction bands. Moreover, for insulators, the band gap is 
independent of temperature. For superconductors, the electrons in the excited state behave as normal 
electrons and they are above the energy gap. Below the energy gap, the electrons behave as supercon-
ducting electrons.

∆ is the energy gap parameter and is equal to 1.4 k
B
T

c
 for Ga, we obtain energy gap as

 
Eg eV= ∆

−2 10 4
≈  (9)

Photons of energy less that 2∆ are not absorbed. For measuring band gap, microwave radiations are 
passed through superconductors. The absorption will take place only when hf ≥ E

g
.

Normal Ga
Ce/T

(a) (b)

Tc

T 2

Ce

A1Tc

Tc/T

Superconductor Ga

Figure 12.6 (a)  Temperature variation of heat capacity in normal as well as superconducting state 

for Ga and (b) variation of electronic specific heat vs T T
c .

EF

(a) (b)

EF

Eg = 2∆

Filled
level

Empty
level

Empty level

Figure 12.7 (a) Energy band for normal state and (b) for superconductors.
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12.4.3 Thermal Conductivity
The thermal conductivity decreases when the specimen changes from normal to superconductor. 
There is no electronic contribution when the material becomes superconductor. For impure super-
conductors, the thermal conductivity increases. Hulm suggested that increase in thermal conductivity 
of impure superconductors is due to decrease in scattering of lattice waves by electrons.

12.5 Isotope Effect

The superconducting critical temperature is different for isotopes of elements. This effect is known as  
isotope effect and was discovered by Maxwell and Reynolds in 1950. If M is the mass of superconductor 
and T

c
 is the critical temperature, then

M
a

∝

1

Tc

 M Ta c constant=  (10)

For most of the semiconductor, a = 1
2 , hence

 M T1 2/
c constant=  (11)

As per this relation, when M decreases, then T
c
 increases. Maxwell and Serine obtained T

c
 = 4.185 

K and 4.146 K for mercury, and the mass was found to be 199.5 and 203.4 a.m.u, respectively.  
The variation of log T

c
 and log M for mercury is given by Figure 12.8.

From the lattice vibrations, we know that q 
D
 is Debye temperature is inversely proportional to 

square root if mass of atom, that is,

qD ∝
1

M

 qD constantM 1 2/
=  (12a)

Comparing Eqs (11) and (12a),

 

Tc

D

constant
q
=  (12b)

From Eqn. (12b), it is evident that superconducting state of specimen is related to the phonon vibra-
tions. Hence, the phonon interactions might be playing a crucial role in superconductivity. Bardeen, 
Cooper, and Schrieffer gave a new theory of superconductivity based on phonon interaction.

Log Tc

Log M

Figure 12.8 Variation of log T
c
 vs log M.



488  • CHAPTER  12/SuPERConduCToRS And SEMIConduCToRS

12.7 The Thermodynamics of Superconducting Transitions

According to Meissner effect, the transition between superconductor and normal state is thermody-
namically reversible. Van Laer and Keesom gave the experimental demonstration of the transition. 
We will obtain an expression for the entropy difference of normal and superconducting state. We 
will obtain the expression for type-I superconductor (with B = 0). The Gibbs free energy/volume in 
magnetic field is

 G U TS HM= − −  (15a)

Where  M → Magnetization induced due to magnetic field H.
S → Entropy.
U → Internal energy.

The energy density in the presence of magnetic field is given by

 dU TdS H dM= +  (15b)

For gaseous systems, where P and V are pressure and volume respectively

   dU TdS PdV= −  (15c)
The Gibbs energy for gaseous system is

 G U TS PV= − +  (15d)

Figure 12.9 Flux quantization.

12.6 Flux Quantization

When a superconductor ring or hollow sphere is placed in magnetic field that is perpendicular to the 
plane of ring, and the temperature is reduced below transition temperature, then there is no magnetic 
flux density inside it and the superconductor behaves like a perfect diamagnet. The current flows 
through the surface. Current continues to flow even when the external field is made zero. This current 
produces a flux f, given by

 
f =

nh

e2
 (13)

n = 1, 2, 3 and h is Planck’s constant (h=6.63×10-34Js). The state of flux quantisation is shown in
Figure. 12.9.

For n = 1,

 
f = = ×

−h
e2 2 07 10 13. Wb  (14)

Equation (14) gives the minimum value of flux associated with the ring, and it is known as fluxoid.
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Comparing Eqs (15b) and (15c), we get H ↔ P and M ↔ V.
Differentiating Eqn. (15a), we obtain

 dG dU TdS SdT HdM MdH= − − − −  (16)

Use Eqn. (15b) in Eqn. (16), then

 dG SdT MdH= − −  (17a)

In case of constant temperature, dT = 0

 dG MdH= −  (17b)

Equation(17b) has to be solved for normal and superconducting state as follows:

 1. Normal State
Normal state is nonmagnetic along with zero magnetic susceptibility, which makes M = 0

 
dG( ) =N

0  (18a)

Hence,

 G T H G TN N, ,( ) = ( )0  (18b)

Therefore, application of magnetic field does not alter the free energy.

 2. Superconducting State

In superconducting state, B = 0 or M
H

=

−

4p

 
dG MdH

H
dH( ) = − =

s 4p
 (19a)

 
G T H G T

H
s s, ,( ) = ( ) +0

8

2

p

 (19b)

Hence, on increasing the magnetic field, the Gibbs free energy increases.

When H > H
c
, then

 
G T H G T HN c s c,,( ) = ( )  (20)

From Eqs (19a–b) and (20),

 
G T G T

H
N s

c,,0 0
8

2

( ) − ( ) =
p

 (21)

Hc
2

8p
 gives stabilization energy density of superconductor and its value may be 104 ergs/cm3

   The entropy can be given by S
G

T
= −

∂
∂






H

 

 Hence from Eqn. (21),

 

S S
dH

dT
N S

c= −






1

8

2

p

 (22)

Where

 

SN → Entropy in normal state
SS

 
→ Entropy in superconducting state

dH

dT
c
2







   is always negative, hence entropy in normal state is more than the supercon-

ducting state.
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This signifies that, superconducting state is more ordered than the normal state. Difference in heat 
capacity could be given by the following equation

 
C C

Td

dT
S S

TH d H

dT

T dH

dT
S N S N

c c c− = −( ) = +






2

2

2

4 4p p

 (23)

For T = T
c
 and H

c
 = 0

 
C C

T dH

dT
S N

c c− = 



p

2

 (24)

Equation (24) is known as Rutgers Formula. The difference in heat capacity depends on critical temperature.

12.8 BCS Theory

Many theories were proposed to explain the phenomena of superconductivity. London and London, 
Ginzburg also proposed theory to put forward their postulates for superconductivity. But, the theory 
given by Bardeen, Cooper, and Schrieffer (BCS) is the most successful theory to explain superconduc-
tivity. Although this theory could explain the properties of low-critical-temperature superconductors, it 
could not explain the properties of high-temperature superconductors. The theory by Bardeen–Cooper 
and Schrieffer could be explained as follows:

12.8.1 Interaction of Electron and Phonon
As discussed in Section 12.5, it is clear that the critical temperature and Debye temperature are related 
to each other. This idea was first given by Frohlich in 1950. Hence, the electrons cannot be treated 
as independent entities.They are supposed to interact with the lattice via quanta of lattice vibrations 
or phonons. When the current carrying electrons interact with the phonons, of lattice, then it gives 
rise to resistance in the conductors. When electron moves though the lattice, then there is interaction 
between electron and ions in the vicinity of electrons. The lattice gets distorted as shown in Figure 
12.10. This distortion leads to lattice vibrations, and hence energy is quantized in the form of phonon.

Due to elastic behavior of lattice, the momentum is imparted to the ions. The positive charge 
density gets increased in that region. Furthermore, this region of positive density propagates as waves 
carry momentum through the lattice. Momentum transfer takes place between phonon and electron. 
Whenever the momentum gets transferred from one electron to another via phonon, then it is said to 
be electron–phonon–electron interaction. The mathematical demonstration is given in Figure 12.11.

In electron having wave vector k
�

 interacts with the lattice producing virtual photon of momen-
tum mv

�

. Then, it is observed by another electron of wave vector k'. As shown in Figure 12.11, the 
first electron possesses momentum of k

�

−mv
�

 and second electron exhibits momentum of k'+mv
�

,  
keeping one thing in consideration that the process is virtual; hence, no energy conservation is 
required. The two electrons possessing wave vector k

�

 and k', respectively, exchange their momentum 
via interaction involving phonon as intermediator. Moreover, the force of repulsion between two 
negative charged electrons have been suppressed by the positive interaction via phonons. The pair of 
these two electrons is called Cooper’s pair.

Therefore, lattice vibrations play imperative role in superconductivity. Hence, the materials that 
have large amplitude of lattice vibrations tend to be good superconductors although they may not be 
good conductors at room temperatures. Therefore, some metals such as copper and silver are not good 
superconductors because the amplitude of lattice vibrations is small for them. In contrast to them, 
lead, tin, mercury, etc, have larger amplitude of vibrations, hence having good superconductivity.
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Cooper pair is formed when two electron overcome Coulomb’s repulsive force via interaction of 
phonon. Energy gap E

g
 corresponds to binding energy of cooper pair and is of the order of 10−3 eV. 

Free electrons have more energy than the binding energy of Cooper pair. This binding energy corre-
sponds to temperature of 10 K. Hence, superconductivity is regarded as low-temperature phenomena. 
Cooper pairs can be treated as a single quantum state despite the fact that these electrons normally 
repel each other due to electrostatic interaction. When the temperature falls below transition tempera-
ture, these Cooper pairs condensate. This can be interpreted as a single macroscopic quantum state 
that flows without resistance. These pair of electrons exhibit coupled motion up to certain distance, 
which is called coherence length. In other words, coherence length is the distance up to which the 
pairs behave as a single entity.

The electrons in Cooper pair are loosely bound Eg eV= 
−10 3 .  Hence, they keep on changing 

partners. The Cooper electrons behave as bosons as they have opposite spins leading to total spin of 
zero. Cooper pairs obey Bose–Einstein statistics. The current in superconductor is attributed to single 
large system of cooper pairs. To break this current, the correlation of cooper pair must be broken, 
which requires large amount of energy. Hence, the current persists if the system is undisturbed.

12.8.2 BCS Ground State
For normal conductors, there is no interaction between electrons (Fermi gas) unlike superconductors. 
For Fermi gas, all the states above Fermi level are vacant and below it, all the states are filled. According 
to BCS theory, there exists an energy gap E

g
 between the ground state and very first excited state. This 

energy gap is the binding energy of Cooper pairs, which is dependent on temperature.
At T = T

c
, the pairing vanishes; and at T = 0 K, the pairing is complete, leading to maximum band-

gap (Fig. 12.12).

e
−

Figure 12.10 Motion of electron through lattice causes electrostatic interaction.

The movement of electron 
causes lattice distortion

k − mv
k¢ + mv

mv

Virtual phonon

→

→→

k
→

k¢
→

→ →

Figure 12.11 Interaction of electron and phonon.
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12.9 Semiconductos

Electronics deals with the flow of current through semiconductors, vacuum, inert gases, or  conductors. 
Earlier, vacuum tubes were used as the electronic devices, for example, diode, triode, pentode, etc. 
Later on, the vacuum tubes were replaced by semiconductors as semiconductors have small size and 
require low voltage for their operation. Moreover, semiconductors do not produce humming voice 
and no heating is required to turn on the circuit. Solids can be classified into the following categories 
depending on energy bands and conductivity.

 1. Metals
These have low values of resistivity of the order of 10−8 ohm-m. For example, Ag, Cu, W, Hg, Al, etc. 
In terms of band gap, Figure 12.13(a) demonstrates the band gap for metals. For metals or conductors, 

k y

k z k z

k x

k x

k y

Fermi surface

Fermi surface

(a) (b)

Figure 12.12 (a) Free electron gas (b) BCS ground state.

John Bardeen, leon Cooper, and Robert 
Schrieffer studied superconductivity in 
metals and alloys in 1957. They gave a 
new theory known as BCS theory and won 
nobel Prize for it in 1972. The BCS theory 
has been confirmed for more than 60 
years in most superconductors. Schrieffer 
was the Phd student of Bardeen. leon 
Cooper joined his group in 1955 where 
they worked on the underlying principle 
of superconductivity. Cooper significantly 
explained the pairing of electrons at low 
temperatures, that is, electrons move in 
pairs known as cooper pairs. In 1957, their work was published as “theory of superconductivity” 
in Physical Review, which is highly cited till date. The work describes the collective wavefunction 
of Cooper pairs and its behavior. However, this theory fails to explain certain phenomena in new 
superconductors. Hence, scientists are working on it to give its explanation.

BARDEEN, COOPER AND SCHRIEFFER  
(LEFT TO RIGHT)
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the valence and conduction band overlaps. Hence, there is no forbidden energy gap. The electrons in 
the valence bands require very less energy to move to the conduction band.

 2. Insulators
Insulators have very high value of resistivity of the order of 108–1017 ohm-m, for example, wood, 
and glass. The valence band is completely filled with electron, whereas conduction band is empty. 
The band gap between valence and conduction band is ≈ 6 eV. The electrons require large amount of 
energy to jump to the conduction band (Figure. 12.13(b)).

 3. Semiconductors
The resistivity of semiconductor lies in between that of metals and insulators, that is, 100–105 ohm.

The forbidden energy gap between conduction and valence band is of the order of 1 eV (Figure. 
12.13(c)). For Si, the energy gap is 1.2 eV; and for Ge, it is 0.72 eV. At 0 K, the semiconductor behaves 
as insulator because the electrons in valence band do not have enough energy to jump to the conduc-
tion band. But at room temperature, some electrons may jump to the conduction band. Therefore, 
semiconductors may conduct at room temperature.

Conduction

band

Valence

band

Figure 12.13(a) Band gap for metals.

Conduction band

Valence band

Eg = 6eV

Figure 12.13(b) Band gap for insulator.

Conduction band

Valence band

Eg = 1eV

Figure 12.13(c) Band gap for semiconductor.
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12.10 Types of Semiconductors

There are two types of semiconductors: intrinsic semiconductors and extrinsic semiconductors as 
discussed below.

12.10.1 Intrinsic Semiconductors
These are pure semiconductors that have thermally generated current carriers. Germanium and silicon 
are intrinsic semiconductors. Each atom of silicon or germanium has four valence electron, and each 
atom shares its electron via covalent bond with the neighboring atom Figure. 12.14(a).

At 0 K, no free electron is available as all the covalent bonds are complete. Hence at 0 K, the semi-
conductor behaves as insulators. At room temperature, some covalent bands get broken due to thermal 
energy. The electron gets free and leaves the bond, leaving a hole behind as shown in Figure 12.14(b). 
The hole is equivalent to positive electron (+e). Some electrons from neighboring bonds will move to 
fill the vacancy created by electron, and hence another hole in the neighborhood is created. Hence, 
the conduction mechanisms for intrinsic semiconductor constitute movement of electrons and holes. 
The intrinsic concentration is given by the following equation:

 n nnc i= =n  (25)

At room temperature, the electrons gain thermal energy, and hence jump from the valence band to 
the conduction band. Hence, holes are created in the valence band as demonstrated in Figure 12.15. 
Furthermore, the nearby electrons jump to fill that empty holes. Therefore, the conduction phenom-
enon is basically due to thermal excitations.

12.10.2 Extrinsic Semiconductors
In order to increase the conductivity of pure intrinsic semiconductors, some suitable dopants are added 
to it. The process of adding impurities to intrinsic semiconductor is called doping. The  impurity atoms 
that are added to intrinsic semiconductors are called dopants. The semiconductor having  dopants to 
increase the conductivity is called extrinsic semiconductor. Sometimes, the impurity atom is diffused 
into molten material. The impurity atom can also be bombarded with the intrinsic semiconduc-
tor and the doping concentration is 1:106. Two types of impurities can be added in the intrinsic 
semiconductor as described below:

Figure 12.14(a) Intrinsic semiconductor.
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 1. P-type Semiconductors
When trivalent impurity is added to the pure intrinsic semiconductor, we obtain p-type extrinsic 
semiconductors. In Figure 12.16(a), trivalent indium atom is added to the silicon atom, then it 
replaces silicon atom from its lattice. The indium atom has three atoms in its outermost shell. Hence, 
it can form bonds with three neighboring atom, and the fourth bond has deficiency of one electron 
(known as hole). Neighboring electrons jump to that void, and a hole is created at its own place. Such 
type of semiconductor having excess positive charge (holes) is known as p-type semiconductor. For 
p-type semiconductors, holes are majority carriers and electrons are minority carriers. Figure 12.16(b) 
shows the bandgap of p-type semiconductor.

For p-type semiconductors, the energy level corresponding to holes lie near to the valence band, 
and this energy level is known as acceptor level. At room temperature, the electrons that are thermally 
generated jump easily to acceptor level, and hence holes are created in valence band. For p-type semi-
conductors, holes act as current carriers.

 2. N-type Semiconductors
When pentavalent impurity is added to the intrinsic semiconductor, then it is n-type extrinsic semi-
conductor. When pentavalent impurity atom (As) is added to the silicon crystal, then it replaces the 
silicon atom and settles down at its position. Arsenic atom shares its four electrons with silicon lat-
tice, and one extra electron is unaccommodated and loosely bound to parent nucleus. It moves freely 
through the lattice as demonstrated in Figure 12.17(a). Hence, the crystals have large number of free 
electrons. Therefore for n-type semiconductor, electrons are majority charge carriers. The fifth extra 
electron occupies a discrete level known as donor level which lies neer to conduction band.

For Si, donor energy level E
d
 = 0.05 eV (Figure 12.17(b)) and for Ge, E

d
 = 0.01 eV At room tem-

perature, the electrons from donor level can jump to conduction band.

Free electron
Hole

Figure 12.14(b) Conduction in intrinsic semiconductors.

Hole

Electron

Valence
band

Eg

Figure 12.15 Band gap diagram for intrinsic semiconductors.
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SiSi
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Figure 12.17(a) n-type extrinsic semiconductor.

O

Si

Si

Si Si Si

SiIn

Si Si

Electron

Hole

Figure 12.16(a) p-type semiconductor.
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Figure 12.16(b) Energy band diagram for p-type semiconductor. (E
a
-acceptor level energy)
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12.11 p–n Junction

When a Si or Ge material is doped in such a way that one part is doped with trivalent impurity and 
other part is doped with pentavalent impurity, then it forms p–n junction. In the p-region, holes are 
majority charge carriers where as in n-region, electrons are majority carriers. Hence, there is concen-
tration gradient in the two sides. Therefore, the holes will diffuse toward n-region and electrons will 
diffuse toward p-region. The electron and holes will combine at the junction. Furthermore, there will 
be no mobile charge carriers around the junction region; hence, this region is known as depletion layer 
or depletion region. This is also known as space–charge region and is about 10−6 m. The p–n junction 
diode is represented by  where arrowhead represents p-type semiconductor and bar is negative 
n-type semiconductor. The depletion layer consists of negative as well positive immobile ions. Hence, 
the ions on p and n regions are separated by distance that is equal to the depletion layer.

Further diffusion of electrons and holes is stopped as a potential difference gets set up across the 
junction. This potential difference is referred to as potential barrier (V

B
). For Si, V

B
 = 0.7V and Ge, 

V
B
 = 0.4V. Due to this potential barrier, an electric field is set up across the function, that is,

 
E =

V

d
B  (26)

The direction of electric field is from positive to negative (in Figure 12.18, from right to left across the 
junction). Hence, this gives rise to drift current across the junction whose direction is opposite to the 
flow of diffusion current. At the stage of equilibrium, drift current is equal to diffusion current. This 
leads to the formation of p–n junction diode.

CB

VB

Ed ∼ 0.05 eV

Eg

∼

Figure 12.17(b) Energy band diagram for p-type (E
d
-donor-level energy).
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Figure 12.18 p–n junction.
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12.12 Biasing of p–n Junction

When dc voltage is applied across the p–n junction, then the barrier voltage gets changed and p–n 
junction is said to be biased. Depending upon which terminal of battery is connected to the p-side or 
n-side, following are the two types of biasing.

 1. Forward Biasing
When the positive terminal of battery is connected to the p-side and negative terminal is  connected 
to the n-side, then the p–n junction is said to be forward biased as shown in Figure 12.19(a). If V 
is the applied voltage, then the net voltage is given by V−V

B
 where V

B
 is the barrier potential. The 

effective height of barrier potential increases. Hence, small resistance is offered at the junction to 
the flow of majority carriers and the depletion region decreases. When the external voltage is suf-
ficient to overcome the barrier potential, then the electrons and holes recombine with each other. 
Whenever an electron recombines with hole, then an electron from negative terminal of battery 
enters the n-region subsequently drifting toward the junction region. At the same time, a covalent 
bond breaks near the junction region producing an electron and hole. The hole drifts toward p–n 
junction and the electron enters positive terminal of the battery. The current is not due to minority 
carriers in this case.

 2. Reverse Biasing
When the negative of battery is connected to the p-region and positive terminal of battery is con-
nected to n-region, then the p–n junction is said to be reverse biased as shown in Figure 12.19(b). 
The depletion region in this case increases because the electrons get attracted to positive terminal 
and holes are attracted to negative terminal. The total net potential in this case is V V+ B . Hence, 
the resistance to the flow of majority carriers increases in this case. Therefore, the flow of current 
almost stops, but minority carriers, that is, holes in n-region and electrons in p-region move across 
the junction. Hence, small current of order of microamperes flow across the junction due to minority 
carriers. The flow of minority carriers depends on the temperature and is independent of the external 
applied voltage. This current is also known as the reverse saturation current. But there is a breakdown 
voltage at which the current increases abruptly. As the breakdown voltage distorts the crystal struc-
ture, this condition is not suitable for many practical applications.
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Figure 12.19 (a) Forward biasing and (b) reverse biasing of p–n junction diode.
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12.13 Junction Diode as a Rectifier

The electric power is generated, transmitted, and then distributed in the form of alternating current. 
The alternating current (A.C.)/voltage can be easily transmitted with low losses. Some of the devices 
require direct current (D.C.) for their operation. This implies that A.C. current or voltage needs to be 
rectified in the form of direct current or voltage. Any electrical device that offers high resistance to cur-
rent in one-direction and then low resistance in the opposite direction is called rectifier. p–n junction 
diode is used as a rectifier because it offers high resistance when it is reverse biased and low resistance 
when it is forward biased.

The rectifiers usually have power dissipation in the range of 0.1–10 W and breakdown voltage of 
50–250 V. Some of high power rectifies have switching time of 500 ns. Two main rectifiers are given below:

12.13.1 Half-Wave Rectifier
The principle of half-wave rectifier (HWR) states that the current will flow through p–n junction diode, 
if it is forward biased and very small or negligible current flows through it when it is reversed biased.

Working
The circuit of HWR is shown in Figure 12.20(a). Ac input is given and transformer is there at 
input. The transformer is a device that can step up or down the voltage. Hence, desired level of 
D.C. could be obtained. The A.C. supply is applied to the primary coil (P) of transformer. The 
secondary coil (S) is connected to the load resistance through junction diode. At load resistance, 
output signal is obtained. When the positive half cycle of A.C. input flows through primary coil 
of transformer, then induced emf is set up across the coil due to phenomena of mutual induction. 
The induced emf is set up is such a way that the lower end of the secondary coil becomes negative 
and the upper end of the secondary coil becomes positive. The upper end of the secondary coil is 
connected to the p-region of p–n diode. Hence, the diode gets forward biased and current starts 
flowing in the circuit as indicated by arrows in Figure 12.20(a). During the negative half cycle of 
A.C., the induced emf is set up in the secondary coil in such a way that the upper end of S-coil 
becomes negative and the lower end becomes positive. Hence, the diode gets reverse biased, and 
almost negligible output is obtained across the load resistance.

The output voltage waveform is shown in Figure 12.20(b). Only half of the input waveform is 
obtained; hence, the name of this rectifier is given as HWR. As the discontinuous output signal is 
obtained, hence efficiency of HWR is small. Moreover, the output may contain some ripples of A.C.

OutputRLAC

P

S

Transformer

Figure 12.20(a) Half-wave rectifier.
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12.13.2 Full-Wave Rectifier
The principle of full-wave rectifier (FWR) is the same as that of HWR, that is, when the p–n 
junction diode is forward biased, then current flows through the circuit. Hence, two diodes are 
connected, so that when one p–n diode gets forward biased then the other gets reverse biased, 
and vice versa.

Working:
The circuit of FWR is shown in Figure 12.21(a). The A.C. input signal is fed to the primary coil of 
the transformer and the p-regions are connected to the ends of the transformer. The load resistance 
is connected between the two diodes and central tapping of the secondary coil. During positive half-
cycle of input A.C., diode D

1
, gets forward biased and D

2
 gets reverse biased. The direction of flow of 

conventional current is shown by arrows in Figure 12.21(a). During the negative half-cycle, the diode 
D

2
 is forward biased and D

1
 gets reverse biased. The output of both the cycles is obtained at load 

resistance R
L
. The output waveform is shown in Figure 12.21(b). Both the halves of input waveform 

are rectified, hence the name is full-wave rectifier. The output waveform is continuous, therefore the 
efficiency of FWR is more than HWR. The disadvantage of FWR is pulsating output. By using filter 
circuits, the output can be smoothened.
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Figure 12.21(a) Full-wave rectifier.
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Figure 12.20(b) Waveform for input and output voltage.
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12.14 Different Types of p–n Diodes

The ideal diode is the one that offers infinite resistance during reverse biasing and zero resistance 
during forward biasing. In other words, ideal p–n diode can be regarded as automatic switch. But for 
practical purposes, it is hard to obtain the ideal diode. Some common diodes that do not follow the 
ideal characteristics are described as below. But they have a wide range of practical applications.

12.14.1 Zener Diode
Zener diode is a specially designed p–n junction diode with sharp breakdown voltage. Its 
symbol is 

When the current flows for reverse breakdown, then it should be in safe limit. In other words, we 
can say that the diode should not be overheated as overheating may lead to permanent damage. The 
breakdown voltage of zener diode is made sharp by properly doping the p and n regions of diode. The 
current voltage characteristics for zener diode are shown in Figure 12.22(a) where V

z
 is zener voltage 

that is dependent upon the doping concentration. V
z
 is high, if the diode is lightly doped or vice versa. 

This could be attributed to the fact that the depletion layer for heavily doped p–n diode is thin. Zener 
diode is always reverse biased and when it is forward biased, it behaves like conventional p–n junction 
diode. For voltage stabilization, zener diode is the most commonly used device.

From Figure 12.22(b), it is clear that resistance is connected in series with input voltage. The load 
resistance (R

L
) and zener diode are connected in parallel. Input voltage (V

input
) is to be regulated by 

connecting zener diode in reverse biasing. When the input voltage increases or decreases, the resistance 
of zener diode decreases or increases, respectively. But the output voltage always remains constant.

When reverse voltage is increased beyond the breakdown voltage V
z
, large I

z
 flows through zener 

diode. The output obtained across R
L
 is constant. Hence, V

output
 is constant.

Hence, voltage drop across R.

 

V V V

IR V V

= −

= −

input z

input z  (27a)

and I I R V Vz R input z+( ) = −

Input

Output

+

+ ++ ++

+ +

− −
π

π

2π

2π

3π

3π

4π 5π

5π4π

wt

wt
→

Figure 12.21(b) Output waveform of FWR.
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R
V V

I I
=

−

+

input z

z R

As V Voutput z=  and output is maintained constant,

 
R

V V

I I
=

−

+

input output

z R

 (27b)

From Eqn. (27b) gives drop resistance for zener diode.

12.14.2 Light-Emitting Diode(LED)
It is a p–n junction diode in which current flows in forward direction and visible light is emitted. In 
the forward biasing of p–n junction diode, the potential barrier is lowered. During forward biasing, 
the flow of current is due to majority carriers. The majority carriers recombine at the depletion region. 
When electron falls into hole, then energy is radiated in the form of visible radiations. The photons 
emitted are given by energy hf = E

g
. Hence,

 

l =
hc

Eg

 (28)

IR

Si
GeIF

Vz2Vz1

Forward
current

Forward
voltage

Reverse
voltage

Figure 12.22(a) Characteristics of zener diode.

+ +

−
−

Vinput

Iz

Vz
RL

R I IR

Voutput

Figure 12.22(b) Zener diode as voltage regulator.
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For GaAsP, the band gap E
g
 is 1.0 eV, which corresponds to wavelength of 6500Å. Hence, by choos-

ing different materials, LEDs are produced which emit different colors. The LEDs are used in digital 
watches, calculators, burglar alarms, and millimeters. LEDs have long life, and they do not require 
any warm-up time. They consume very less power and can be switched OFF and ON in ≈ 1 sec.

12.15 Transistors

A transistor is analogous to vacuum triode and has three terminals J. Bardeen and W. Brattain devel-
oped transistor in Bell laboratories in 1947. Transistors have several advantages over the vacuum diodes 
as they have no filament, are small in size, and have long operating life. Actually, the word transistor 
compiles of two words “transfer resistor.” Transistors consists of two p–n junctions, that is, either p semi-
conductor is sandwitched in two n-type regions or n-semiconductor is sandwitched within two p-type 
regions (Figure.12. 23(a)). There are two types of transistors: (i) p–n–p and (ii) n–p–n transistors. The 
symbolic representation of both the transistors is given in Figure 12.24(a)–(b).

The transistor has three important parts:

 (i) Emitter: This part is heavily doped, and it supplies charge carriers. It is always forward biased 
w.r.t. base; hence, it supplies majority carriers.

 (ii) Collector: This part is moderately doped, and it collects the charge carriers. It is always reverse 
biased w.r.t. base.

 (iii) Base: It is in the center of collector and emitter region. It is lightly doped so that most of major-
ity carriers should pass through it.

The width of three parts varies in order of collector > emitter > base. Thicker collector helps in dis-
sipating higher energy.

p

E
E

B
(a) (b)

B

C
C

IE
IE

IC

IB
IB

ICn n np p

Figure 12.23 (a) p–n–p transistor and (b) n–p–n transistor.

E EC C

B

(a) (b)

B

Figure 12.24  Symbolic representation of (a) p–n–p and (b) n–p–n (Direction of arrow represents 
direction of current).
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John Bardeen was an eminent and renowned American physicist, who won the nobel Prize 
twice, and he is the only person in history to receive two prizes in the same domain. John 
Bardeen was born in Wisconsin in 1908. He acquired an MS degree in electrical engineering from 
university of Wisconsin in 1929. He obtained Phd in 1936 from Princeton university. Bardeen 
revolutionized the fields of electronics (by inventing transistors) and magnetic resonance imag-
ing (by inventing superconductivity). He invented the transistor along with coworkers William 
B. Shockley and Walter H. Brattainhe. In 1956, they received the nobel Prize for the invention 
of transistor. Then, he formulated the theory of superconductivity along with leon n. Cooper 
and John R. Schrieffer. He received the second nobel Prize for discovering the principle of 
superconductivity in 1972. He did extensive research work at the universities of Minnesota and 
Harvard. He also worked at the naval ordonnance lab in Washington, dC. In 1945, he joined 
the solid state physics group at Bell labs in new Jersey. In 1951, he left Bell labs and started 
teaching at university of Illinois, where he worked with Cooper and Schrieffer to formulate the 
BCS theory. The invention of transistors revolutionized the field of electronics and regarded as 
the strongest discovery in the field of electronics. Bardeen died on January 30, 1991, in Boston, 
Massachusetts, due to heart trouble.

12.16 Action and Working of Transistor

There are two p–n junctions in transistor. The junction between collector and base is called collec-
tor–base junction and the junction between emitter and base is called emitter–base junction. We will 
discuss the action of both p–n–p and n–p–n transistors.

 1. n–p–n Transistor
The emitter–base junction is forward biased and collector base junction is reverse biased (Figure 12.25). 
The emitter–base voltage is V

EB
 and collector–base voltage is V

CB
. The emitter junction is forward biased; 

hence, electrons drift toward the base region. Electrons are majority charge carriers is emitter regions. 
Holes in base region also drift toward the junction region. Some of electrons recombine with the holes, 
but as the base region is very thin, most of electrons pass through the base region, that is, only 5 percent of 
electrons undergo recombination and rest pass through the base region to reach collector. Hence, collec-
tor current is smaller than emitter current. Therefore, emitter current can be divided into in two parts i.e.

 I I IE B C= +  (29)

where I
E
 is collector current, I

B
 = base current, and I

C
 = collector current.

IE IC

IB

IE

VEB

VCB

B

n np

E C

Figure 12.25 n–p–n transistor.
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 2. p–n–p Transistor
Similar to n–p–n transistor, the emitter base is forward biased and collector-base is reverse biased for 
p–n–p transist (Figure. 12.26).

In this case, holes are the majority carries and as the emitter junction is forward biased, the holes 
move toward the base region recombining with some electrons of the base region. Subsequently, the 
remaining holes reach the collector region and again I

C
 < I

E
, and we can write down.

I I IE B C= +

IE IC

IB

IE

VEB

VCB

B

p
p

n

E C

Figure 12.26 p–n–p transistor.

12.17 Characteristics of Transistors

The relation between current and voltage for p–n–p or n–p–n transistor is represented in the form 
of graphs. Such curves are known as characteristic curves. There are three types of characteristic curves, 
that is, common base (CB), common collector (CC), and common emitter (CE) characteristics. On 
the basis of operation of voltage, the characteristics can be of two types: static and dynamic. When 
transistor operates under the effect of D.C. only, it displays static characteristics, and when the transis-
tor operates under the effect of D.C. as well as A.C. voltage, it displays the dynamic characteristics. 
The slopes of characteristic curve display certain parameters. The noteworthy point is that collector is 
always reverse biased and emitter is always forward biased.

William Shockley was born on february 13, 1910, in london. He 
was the son of William Hillman Shockley who was a mining engi-
neer and Mary who was also working in mining. In 1932, William 
Shockley obtained his BSc degree at the California Institute of 
Technology. He obtained his Phd in 1936 on the energy band 
structure of sodium chloride. In 1936, he joined Bell Telephone 
laboratories under the supervision of dr C.J. davisson. He 
became director of the Shockley Semiconductor laboratory 
of Beckman Instruments, in California. In 1946, he received the 
Medal for Merit, for his work with the War department. In 1952, he 
also received the Morris leibmann Memorial Prize of the Institute 
of Radio Engineers. He shared the nobel Prize for Physics in 1956, jointly with his two former col-
leagues at the Bell Telephone laboratories. He has obtained honorary science doctorates from 
the university of Pennsylvania, Rutgers university, and gustavus Adolphus Colleges.

WILLIAM SHOCKLEY
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µA

Figure 12.27 Circuit diagram for common emitter configuration.

12.17.1 CE Characteristics
Figure 12.27 demonstrates for the circuit diagram for n–p–n CE configuration. In CE configura-
tion, emitter is common is between base and collector. Input voltage is applied across the emitter-base 
and output is collected at collector-base. Following are the input and output characteristics of n–p–n 
transistor.

 1. Input Characteristics
The graph depicting the relationship curves between base current and (I

B
) base–emitter voltage (V

BE
)

at constant collector emitter voltage (V
CE

) is known as input characteristics.
The input characterizations are quite similar to the forward-biased diode characteristics. From 

Figure 12.28(a), it is clear that the base current varies in nonlinear manner with the base emitter volt-
age. Moreover, the input characteristics depend on V

CE
. The input resistance is given by

 

R
V

I
V

input
BE

B
CE

Constant=
∆

∆
=  (30)

VBE (n)

IB
(mA)

VCE1 VCE2 VCE3

VCE3 > VCE2 > VCE1

Figure 12.28(a) Input characteristics of n–p–n transistor.

 2. Output Characteristics
The graphical depiction between collector current and current-emitter voltage at constant base current 
is called output characteristics of CE transistor. The output characteristics can further be divided in 
three regions: active region, cut-off region, and saturation region.
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 (a) Active Region
  This region lies above I

B
 = 0 and the collector current do not increase very charply with collector 

emitter voltage. The emitter junction is forward biased and collector region is reverse biased. As 
clear from Figure 12.28(b), initially the collector current increases with the increase in collector–
emitter voltage. For the purpose of amplification, the transistor is operated in active region.

 (b) Cut-Off Region
  The cut-off region lies below I

B
 = 0 as shown in Figure 12.28(b). To obtain the cut-off condition, slight 

reverse bias is applied to collector–emitter junction. The collector current has finite but small value.
 (c) Saturation Region
  The saturation region is shown in Figure 12.28(b). It lies in between the origin and the knees 

of the curve. To obtain the saturation region emitter and collector regions are forward biased. 
In saturation region, the collector current is independent of the base current. The saturation 
region lies close to zero voltage axis.

From Figure 12.28(b), it is clear that large value of base current corresponds to large collector 
 current. Even when the base current is zero, the collector current is not zero, which could be attributed 
to the intrinsic conduction. The output resistance is given by

 

R
V

I
I

output
CE

C
B

Constant=
∆

∆
=  (31)

12.17.2 CB Characteristics
For the CB characteristics, the emitter base is forward biased and collector base is reverse biased as shown 
in the Figure. 12.29(a). Following are the input and output characteristics for n–p–n CE transistor:

 1. Input Characteristics
The graphs depicting the variation between emitter current (I

E
) and base emitter voltage (V

BE
) at con-

stant collector base voltage are called input characteristics (Fig. 12.29(b)). The characteristics are same 
as that of forward biased p–n junction diode.

VCE

IB4

IB2

IB3

IB1

IB1 > IB2 > IB3 >IB4  

IC

(mA)
0

Saturation
region

Active region

=

Cut-off region

Figure 12.28(b) Output characteristics of n–p–n transistor.
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Increasing V
CB

 means increasing the depletion region around collector–base junction. When the 
depletion region increases, then the thickness of base region decreases. Furthermore, decrease in base 
region thickness increases emitter current. This phenomenon is known as early effect. Hence, increase 
in V

CB
 reverse biasing leads to increase in emitter current.

The input resistance is given by

 

R
V

I
V

input
BE

E
CB

Constant=
∆

∆
=  (32)

VBE

IE

(mA)

(n)

VCB1 VCB2 VCB3

VCB1 > VCB2 > VCB3

Figure 12.29(b) Input characteristics for n–p–n transistor.
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+

+
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−

−
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−

−
VBE VE

n–p–n

VC

IB

IE IC

VCB

mA mA

Figure 12.29(a) CB characteristics for n–p–n transistor.

 2. Output Characteristics
The graphical depiction of collector current and collector base voltage at constant collector base volt-
age is known as output characteristics. Like CB configuration, CE output characteristics are divided 
into three regions as explained below (Figure 12.29(c)).

 (a) Active Region
  The emitter junction is forward biased and collector junction is reverse biased. The curves are 

almost flat. When I
E
 = 0, the transistor exhibits characteristics like p–n junction diode (base–

collector region), then I
C
 is constituted due to minority carriers and is known as reverse satura-

tion current (I
CO

).
 (b) Cut-Off Region
  Both the collector and emitter are reverse biased for this region. The region below I

E
 = 0 consti-

tutes cut-off region (Figure 12.29(c)).
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 (c) Saturation Region
  Both the emitter and collector are forward biased. This region is situated toward the left of V

CB
 = 0.

The output resistance is given by

 

R
V

I
I

output
CB

C
E

Constant=
∆

∆
=  (33)

12.18 a and b of a Transistor

The current gain of transistor can be calculated using various characteristic curves (CB and CE).
For CB configuration, I

C
 ≈ I

E
 as I

B
 is very small. The ratio of collector current to emitter current is 

called D.C. current gain.

 
aD.C.

C

E

=

I

I
 (34)

The A.C. current gain is given by

 

aA.C.
C

E
CB

Constant=
∆

∆
=

I

I
V

 (35)

Hence, the ratio of change of collector current to change of emitter current at constant collector base 
voltage is ac current gain for CB configuration. For an ideal transistor α = 1, but usually some current 
is lost in recombination. In order to decrease the base currents, appropriate doping must be done.

For CE configuration, the D.C. current gain is given by

 
bD.C.

C

B

=

I

I
 (36)

That is, the ratio of collector current to base current.
Similarly, the A.C. current gain is given by

 

bA.C.
C

B
CE

Constant=
∆

∆
=

I

I
V

 (37)

VCB

IE4 = 0

IE2

IE3

IE1

IC

(mA)

(V )

Saturation
region

Active region

Cut-off region

Figure 12.29(c) Output characteristics of n–p–n transistor.
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We know that
 I

E
 = I

B
 + I

C

For small currents,

∆ = ∆ + ∆I I IE B C

∆

∆
=
∆

∆
+

I

I

I

I
E

C

B

C

1

1 1
1

a b
= +

 
b

a

a
=

−1
 (38)

If a ≈ 1, then b tends to infinity; hence, the current gain is higher in CE configuration. Therefore for 
most of practical applications, CE configuration is used.

12.19 Transistor as an Amplifter

Amplification is the process of strengthening a weak signal by increasing its magnitude. Transistor 
helps is amplifying the signals as described in the following section.

12.19.1 CB Transistor Amplifier
The circuit diagram for CB p–n–p transistor is shown in Figure 12.30. The base is common for emit-
ter and collector. The base is grounded, emitter is forward biased (V

EE
) and the collector is reverse 

biased (V
CC

). Hence, the resistance at output is more than at the input due to reverse biasing of collec-
tor. The output is obtained at load resistance (R

L
). Load resistance is connected in between collector 

and base.

As I
E
 = I

B
 + I

C

I
C
 passes through the load resistance R

L
; hence, potential drop occurs across the load resistance given 

by I
C
 R

L
.

Therefore,

 V V I RCB CC C L= −  (39)

Walter H. Brattain was born on february 10, 1902, in Amoy, China. He was 
the son of Ross R. Brattain and ottilie Houser. He received a BS degree 
from Whitman College in 1924. He was awarded the Phd degree by the 
university of Minnesota in 1929. He worked on the thermionic emission 
of tungsten. dr Brattain got the honorary doctor of Science degree from 
Portland university in 1952 and from the university of Minnesota in 1957.

W.H. BRATTAIN
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Let the positive half cycle be fed to the input circuit, then emitter will become more positive and 
hence emitter current increases (Figure 12.30). If emitter current increases, then the collector current 
also increases. Therefore, I

C
R

L
 or potential drop along load resistance also increases. From Eqn. (39), 

the V
CB

 decreases more; hence, “−ve” terminal will become more positive and “+ve” will become more 
negative. Therefore, correspondingly, we obtain amplified output of A.C. wave. The input circuit has 
approximately 30–70 Ω of resistance and output can go up to (500–700 kΩ). Hence, large load is 
produced across R

L
.

The voltage gain for CB transistor is given by

 
A

I R

I R

R

R
V

C L

E

LOutput voltage

Input voltage
= = =a  (40)

 AV resistance gain= ×a  (41)

A
V
 is very high because R

L
 is very high.

 Similarly, Power gain = VI

 = (Voltage gain) × Current gain

 AV Resistancegain= ×a
2  (42)

12.19.2 CE Amplifier
The base emitter is forward biased and collector emitter is reverse biased for CE amplifier as shown in 
Fig. 12.31. The Emitter is common junction and grounded. As I

C
 flows through R

L
, hence potential 

drop I
C
 R

L
 occurs and net potential if given by

 V V I RCE CC C L= −  (43)

E

R RL

B

C

IC

IE

IB

VCC

VEE

Input

p-n-p

VCB

+

−

Amplified
output

Figure 12.30 p–n–p amplifier.
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When “+ve” cycle is set at the input, then V
BB

 decreases, which decreases base current I
B
. Hence, 

I
C
 and I

E
 also decrease. Correspondingly, the potential drop also decreases and from Eqn. (43) V

CE
 

also increases. Hence, negative becomes more negative and positive becomes more positive. Hence, 
 corresponding to positive half cycle, “−ve” cycle is obtained. Hence, the output and input are out of 
phase with each other. Input resistance is between (1 and 5 K) and output goes up to (30–50 K).

The voltage gain is given by

A
I R

I R
V

C L

B

Output voltage

Input voltage
= =

  AV Resisitance gain= ×b  (44)

and power gain is given by
   Power gain = Voltage gain × Current gain

    Power gain Resistance gain= ×b 2  (45)

Therefore, transistors show better gain and amplification in CE configuration because b > a.

p–n–p

R

RL

IC

IB

IE

VCC

VBB

Input

VCE

Amplified
output

Figure 12.31 p–n–p amplifier.

SUMMARY

This chapter gave the insight of superconductivity as a low-temperature phenomena. Meissner and 
Ochsenfeld demonstrated that the magnetic field times are pushed out of superconductor, when it 
is cooled below critical temperature in magnetic field. The superconductors are classified into type 
I (soft) and type II (hard) superconductors. Type I superconductors follow Meissner’s law strictly, 
whereas type II superconductors do not follow Meissner’s law. Entropy and thermal conductivity 
decreases when the temperature decreases below critical temperature. The superconducting critical 
temperature is different for isotopes of elements. The BCS theory could explain the properties of low 
critical temperature superconductors. The electrons move as Cooper pairs by overcoming Coulomb’s 
repulsive force via interaction of phenon. The classification of solids is also given as metals, insulators, 
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and semiconductors. Semiconductors, especially transistors revolutionized the field of electronics. The 
semiconductors are classified as intrinsic and extrinsic semiconductors. The extrinsic semiconductors 
are formed by doping the intrinsic semiconductor either with trivalent or pentavalent atoms. When a 
Si or Ge material is doped in such a way that one part is doped with trivalent impurity and other part 
is doped with pentavalent impurity, then it forms p–n junction. The diode gets biased when dc volt-
age is applied across p–n junction. The diodes can be used as half-wave/full-wave rectifies to rectify ac 
signal to dc signal. The transistors, which are analogous to vacuum triodes are used as amplifiers. The 
characteristics of transistors decide its working regime.

SOLVED PROBLEMS

Q. 1: The critical temperature Tc  for mercury with isotopic mass 199.5 is 4.185 K. Obtain the criti-
cal temperature, when the isotopic mass changes to 203 K.

Ans: According to isotope effect,

M T

T
M

1 2

1 2

/

/

c

c

Constant

Constant

=

=

Hence, T
M

c1

Constant
=

1
1 2/

 (a)

and T
M

c

Constant
2

2
1 2

=

/
 (b)

Dividing (a) and (b),

T

T

M

M

c

c

1

2

2

1

=

Here T K
c1
4 185= .  and M M1 2199 5 203= =. ; ,

T T
M

M

T

c c

c

2 1

2

1

2

4 185
199 5

203
4 1487

=

= × =.
.

.

Hence Tc2
4 149= . K
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Q 2: For a superconducting alloy, the critical fields at 4 K and 6 K are 5.234 and 3 942 1. MAm− . 
Obtain the critical field and critical temperature at 0 K.

Ans: According to critical field,

H H
T

T
c o

c

= −






















1

2

For T = 4 K  and Hc MAm=

−5 234 1. ,

 

5 234 1
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For T = 6 K  and Hc MAm=
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o
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 (b)

Dividing (a) and (b),
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The field at 0 K can be obtained by using the following equation:

H H

H

c o

o

K4 1
4

9 8507

5 234 1 0 16488

5 234

2

( ) = − 
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Q. 3: The rating of a zener diode is given to be 360 mW at Vz =12 V . Obtain the maximum current, 
which could be passed through it without damaging it.

Ans:
Power Voltage Current

Current
Power

Voltage

= ×

=
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Here, power mW= 360  and voltage V=12

Current

A

mA

I z( ) =
×

= ×

=

−

−

360 10

12
30 10

30

3

3

Q.4: A 10 V Zener diode is used to regulate the voltage across a load resistor. The load current var-
ies b/w 20 and 75 mA, whereas input voltage varies b/w 20 and 25 V. The minimum zener current is  
10 mA. Obtain the series resistance Rs .

Ans:

V Vinput V V= =20 10z

IR mA=10  and IL mA= 75

R
V V

I I

R

R

R

R

=
−

+

=
−

+
=

=
×

=

≈

input

R

mA

z

Z

20 10

10 75

10

85

10 1000

85
117 647

Ω

.

1117Ω

Q.5: In the circuit given below, R = 40Ω and IR mA=15 . The voltage rating of the 1 W diode is 
10 V. Give the range of voltage regulation for the Zener diode.

+ +

−
−

Vinput

Iz

Vz
RL

R I IR

Voutput

Ans: R = 40Ω  and IR mA=15

Vz =10 V  and power W=1
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Current
power

voltage
A

mA

Maximum current

I

I I

z = = =

=

= =

1

10
0 1

100

.

max RR z

R z

z

mA

Minimum current

mA

+

= + =

= = + ( )

= ( )

I

I I I

I

15 100 115

15

min min

miin
= 0

Hence, maximum voltage Vs  is
= × +

= × +

= × × +

= + =

−

I R Vmax

. .

z

V

115 40 10

115 10 40 110

4 6 110 114 6

3

Minimum voltage is
= × +

= × × +

= +

=

−

I R Vmin

.

.

z

V

15 10 40 110

0 6 110

110 6

3

Hence, the range of the voltage V is 110 6 114 6. .V V− .

Q.6: A light-emitting diode (LED) has a wavelength of 800 nm. Obtain the energy gap.

Ans:

E
hc

E

g

g

nm m

=

= = ×

=

× × ×

×

= × ×

−

−

−

−

l

l 800 8 10

6 63 10 3 10

8 10

2 4 10 1

7

34 8

7

34

.

. 00

2 4 10

15

19
= ×

−. J

In eV,

Eg eV

eV

=
×

×

=

−

−

2 4 10

1 6 10
1 5

19

19

.

.
.
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Q.7: When the input characteristics of an n p n− −  transistor in CE configuration, obtain the resis-
tance when ∆IB mA= 3 5.  and ∆VEB V=1 20. .

Ans: The input resistance

R
V

I

R

input
BE

B

input mA

=

=

=

∆

∆

Ω

1 20

3 5

342 85

.

.

.

Q.8: For a common–base configuration, a = 0 95. . For a base current of 30 mA , obtain the emitter 
and collector currents.

Ans: We know that

I I IE = +B CAlso

a

a

m

= =

= =

= +

=
−( )

=

I

I

I I I

I I I

I
I

C

E

C E E

E B E

E
B A

0 95

0 95

0 95

1 0 95

30

0 05

.

.

.

. .
==

=

600

0 6

mA

EI . mA
The collector current is aIE = ×0 95 0 6. .

IC mA= 0 57.

Q.9: For a common–base transistor, a = 0 98. . The voltage drop occurs across a resistance of 2.5 kΩ.  
Find the base current if the collector voltage is 5 V.

Ans: The collector current is obtained by

I

I

C

C

Collector voltage

Resistance

mA

=

= =

5

2 5
2

.

The current gain a =
I

I
C

E

I
I

I

I

E
C

E

E

mA

mA

=

=

=

a

2

0 98
2 04

.
.
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The base current could be obtained using

I I I

I I I

E B C

B E C

mA

= +

= −

= − =2 04 2 0 04. .

Q.10: If a = 0 97. , obtain the parameter b.

Ans: Here, a = 0.97     

As b
a

a

b

b

b

=

−

=

−

=

=

1
0 97

1 0 97
0 97

0 03
32 33

.

.
.

.
.

OBJECTIVE QUESTIONS

 1. The resistance of mercury falls down sharply to zero at the temperature of

 (a) 4.15 K (b) 2.1 K
 (c) 6.08 K (d) 0 K

 2. Who discovered the phenomena of superconductivity?

 (a) Faraday (b) Maxwell
 (c) Kamerlingh Onnes (d) Ampere

 3. The temperature at which resistance abruptly falls to zero is called _________ temperature.

 (a) threshold (b) critical
 (c) both (a) and (b) (d) none of these

 4. The critical field Hc  is given by

 (a) H H
T

T
c o

c

= −






















1

2

 (b) H H
T

T
c o

c

=










 (c) H H
T

T
c o

c= 







2

 (d) H H
T

T
c o

c= − 















1

2

 5.  According to Silsbee effect, superconductivity gets destroyed by _________ associated with 
current.

 (a) voltage (b) current
 (c) resistance (d) magnetic field
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 6. For Meissner effect to occur, the sample should satisfy the following condition.

 (a) Free from strain (b) Free from impurities
 (c) None of the above (d) Both (a) and (b)

 7. Mathematically, for no field inside a superconductor, the following condition is given:

 (a) H M= −  (b) H M=

 (c) H
M

=

1
 (d) H

M
=

−1

 8. For a perfect diamagnetic substance,

 (a) c =1 (b) c = 0

 (c) c = −1  (d) c = 2

 9. For a perfect superconductor, which of the following is constant?

 (a) Magnetic field (b) Electric field
 (c) Current (d) all of the above

 10. Type-II superconductors have

 (a) superconducting state (b) vortex state
 (c) normal state (d) all of the above

 11. The variation of electronic specific heat varies with temperature as

 (a) exp −( )k TB  (b) exp −






∆
k TB

 (c) k TB  (d) 
1

k TB

 12. When the specimen changes from normal to superconducting, then the thermal conductivity

 (a) decreases (b) increases
 (c) does not change (d) increases exponentially

 13. According to isotope effect,

 (a) 
M

T

a

c

constant=  (b) 
T

M
c constant=

 (c) M Ta c constant=  (d) T = constant

 14. The minimum value of a fluxoid is

 (a) 1 10 13
×

− Wb  (b) 2 07 10 13. ×
− Wb

 (c) 1 Wb  (d) 8 4 10 12. × − Wb



520  • CHAPTER  12/SuPERConduCToRS And SEMIConduCToRS

 15. For normal state, the superconductivity is given by

 (a) G T H G HN N, ,( ) = ( )0  (b) G T H GN N, ,( ) = ( )0 0

 (c) G T H G TN N, ,( ) = ( )0  (d) G T H G TN N, ,( ) ≠ ( )0

 16. The Rutgers formula is given by

 (a) G T H GN N, ,( ) = ( )0 0  (b) G T G T
H

N S
c, ,0 0

8

2

( ) − ( ) =
p

 (c) S S
dH

dT
N S

c= − 







1

8

2

p

 (d) C C
T dH

dT
S N

c c− = 







p

2

 17. Copper and silver are not good superconductors because

 (a) the amplitude of lattice vibrations is small
 (b) there are no free electrons
 (c) they have large amplitude of lattice vibrations
 (d) the bandgap is very large

 18. Cooper pairs are formed via interactions of

 (a) photons (b) phonons
 (c) neutrons (d) electrons

 19. Cooper pairs obey _________ statistics.

 (a) Maxwell–Boltzmann (b) Fermi–Dirac
 (c) Bose–Einstein (d) None of the above

 20. The resistivity of metals is almost

 (a) 10 12−
Ωm  (b) 10 6−

Ωm

 (c) 10 8−
Ωm  (d) 10 14−

Ωm

 21. For insulators, the bandgap between valence and conduction band is

 (a) ≈ 4 eV  (b) ≈ 2 eV

 (c) ≈10 eV  (d) ≈ 6 eV

 22. The doping concentration should be

 (a) 1 108:  (b) 1 106:

 (c) 1 104:  (d) 1 1010:

 23. For a p-type semiconductor _________ impurity is added.

 (a) trivalent (b) tetravalent
 (c) pentavalent (d) hexavalent
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 24. For an n-type semiconductor _________ impurity is added.

 (a) trivalent (b) tetravelent
 (c) pentavalent (d) hexavalent

 25. During forward biasing, the effective potential

 (a) remains same (b) decreases
 (c) increases (d) increases exponentially

 26. For reverse biasing, the effective potential

 (a) remains the same (b) decreases
 (c) increases (d) decreases exponentially

 27. For a half-wave rectifier, the output is

 (a) discontinuous (b) continuous
 (c) constant (d) very high

 28. FWR has high efficiency than HWR. (Yes/No)

 29. The drop resistance for a Zener diode is given by

 (a) 
V

I I

input

z R+

 (b) 
V V

I I

input z

z R

−

+

 (c) 
V V

I

input z

z

−

 (d) 
V

I
z

z

 30. The collector of a transistor is heavily doped. (True/False)

 31. Following relations hold good for transistor currents.

 (a) I I IE B C= −  (b) I
I

I
B

C

E

=

 (c) I I IE B C= +  (d) I I IE C B= −

 32. For amplification, the transistor should be operated in

 (a) saturation region (b) cut-off region
 (c) active region (d) all of the above

 33. b  and a  are related to each other as follows:

 (a) b a a= +( )1  (b) a
b

a
=

−( )1

 (c) b a= +1  (d) b
a

a
=

−1
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Answers

 1. (a)

 2. (c)

 3. (b)

 4. (a)

 5. (d)

 6. (d)

 7. (a)

 8. (c)

 9. (a)

 10. (d)

 11. (b)

 12. (a)

 13. (c)

 14. (b)

 15. (c)

 16. (d)

 17. (a)

 18. (b)

 19. (c)

 20. (c)

 21. (d)

 22. (b)

 23. (a)

 24. (c)

 25. (b)

 26. (c)

 27. (a)

 28. (Yes)

 29. (b)

 30. (False)

 31. (c)

 32. (c)

 33. (d)



CRITICAl THInKIng QuESTIonS  •  523

Micro-assessment Questions

 1. What do you understand by superconductivity?
 2. How does magnetic field affect superconductivity?
 3. What is critical field?
 4. What are superconductors?
 5. How does magnetic field vary with temperature?
 6. List the finding of H. Kamerlingh Onnes.
 7. What do you understand by flux exclusion?
 8. What are hard superconductors?
 9. What are soft superconductors?
 10. How does electronic specific heat vary with temperature? Explain.
 11. What is the value of energy gap parameter for superconductors?
 12. Explain the flux quantization.
 13. What is fluxoid?
 14. What are Cooper pairs?
 15. What are semiconductors?
 16. List the differences between semiconductor and superconductor.
 17. What are intrinsic semiconductors?
 18. What are extrinsic semiconductors?
 19. What is junction diode?
 20. What is bipolar junction transistor?
 21. Define the depletion region.
 22. What is the principle of rectifiers?
 23. What is Zener diode?
 24. What is light-emitting diode?
 25. Define forward current transfer ratio.
 26. Define DC current gain (a ) for common base transistor.
 27. Define DC current gain (b  ) for common emitter transistor.
 28. What is an amplifier?

Critical Thinking Questions

 1. Show the variation of resistance with temperature.
 2. Give the relation between magnetic field and critical field.
 3. Explain and state Meissner effect in detail.
 4. Show that a superconductor is a perfect diamagnetic substance.
 5. How does the concept of diamagnetism in superconductors contradict Maxwell’s equations?
 6.  Show that for a perfect superconductor, the magnetic field is constant even when it is cooled 

below critical temperature.
 7. What is the difference between Meissner effect and Silsbee effect?
 8. What is superconducting state? How does it differ from vortex state?
 9. How do entropy and heat capacity vary with temperature for superconductors?
 10.  What is energy gap in superconductors? How does it differ from energy gap of semiconductors 

and insulators?
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 11.  When a specimen changes its state from normal to superconducting, how will the thermal con-
ductivity change?

 12. How do electrons and photons interact with each other?
 13. What is BCS ground state? Which statistics holds good in the ground state?
 14. What are n-type and p-type semiconductors?
 15. Show the bandgap diagram for intrinsic and extrinsic semiconductors.
 16. Define the acceptor level for p-type semiconductor.
 17. Define the donor level for n-type semiconductor.
 18. Explain the biasing of junction diode. How does the voltage change on biasing?
 19. What is rectifier? How does the p-n junction diode behave as rectifier?
 20. What are emitter, collector, and base for a transistor?
 21. Give the symbolic representation for n–p–n and p–n–p transistor.
 22. Explain the active and saturation region for common emitter p–n–p transistor.
 23. How does cut-off region differ from active region of transistor?
 24. Give the relation between ac current gain in common emitter and common base gain.
 25. Describe the power gain and voltage gain for common emitter amplifier.

Graded Question

 1.  What do you understand by superconductivity? How does Meissner effect takes place in 
superconductors?

 2. Explain in detail the differences between type-I and type-II superconductors.
 3. Give the properties of superconductors in detail.
 4.  What do you understand by isotope effect? Also explain the relation between superconducting 

state of specimen and phonon vibrations.
 5.  Give the thermodynamic changes, which take place during transition between superconducting 

and normal states.
 6. Obtain the Rutgers formula for difference in heat capacity of normal and superconducting states.
 7.  Give the BCS theory of superconductivity. Explain the electron–phonon interaction and forma-

tion of Cooper pairs.
 8. Give the classification of solids on the basis of energy bands and conductivity.
 9. What are the two types of semiconductors? Explain in detail.
 10. What is p–n junction diode? Also explain the forward biasing and reverse biasing of junction diode.
 11. Explain the principle, construction, and working of half-wave rectifier.
 12.  Give the principle, construction, and working for the full-wave rectifier. In what way is a full-

wave rectifier better than a half-wave rectifier?
 13. What is zener diode? How does it act as voltage stabilizer? Obtain the drop resistance for zener diode.
 14. Give the action and working of n–p–n transistor.
 15. State and explain in detail the working of p–n–p transistor.
 16.  What are the characteristics for a transistor? Explain the common emitter input and output char-

acteristics of n–p–n transistor.
 17. Explain the common base input and output characteristics of n–p–n transistor.
 18.  How can transistor behave as an amplifier? Explain the working of p–n–p common base transis-

tor as an amplifier.
 19. Give in detail the working of p–n–p common emitter transistor as an amplifier.



REMEMBER And undERSTAnd  •  525

Remember and Understand

 1.  The phenomena in which the resistivity of conductor approaches zero, even the temperature of 
conductor is reduced below critical temperature is called superconductivity.

 2.  Superconductivity is destroyed on application of strong magnetic field and the superconductor 
behaves as normal conductor.

 3.  According to the Silsbee, the superconductivity gets destroyed by the magnetic field associated 
with current rather than the current itself.

 4.  Meissner effect states that when superconductor is cooled below the critical temperature in mag-
netic field, then the magnetic field lines are pushed out of the superconductor.

 5.  There are two types of superconductors: type-I (soft) and type-II (hard) superconductors. Type-I 
superconductors follow Meissner effect strictly and type II do not follow Meissner effect strictly.

 6.  For superconductors, the entropy decreases as the temperature decreases below critical tempera-
ture. The heat capacity varies exponentially with temperature.

 7.  When the specimen changes from normal to superconducting state, then the thermal conductiv-
ity decreases.

 8.  According to isotope effect, the superconducting critical temperature is different for isotopes  
of materials.

 9.  Lattice vibrations play an imperative role in superconductivity. When the coulomb repulsive 
force between electrons gets overcome by attractive force between them via interaction of pho-
nons, then the electron move together as pairs known as Cooper pairs.

 10.  The materials can be classified as metals, insulators and semiconductors. Semiconductors behave 
as insulators at 0 K.

 11.  The semiconductors are of two types: intrinsic and extrinsic semiconductors. Intrinsic semicon-
ductors are pure and extrinsic semiconductors are made by doping.

 12.  Trivalent impurity is added to make p-type semiconductor and pentavalent impurity is added to 
make n-type semiconductor.

 13.  When a silicon or germanium material is doped in a way that one part contains trivalent impu-
rity and second part contains pentavalent impurity, then it forms p–n junction diode.

 14.  During the forward biasing of p–n diode, the effective height of potential decreases; and in 
reverse biasing, it increases the barrier height.

 15.  The principle of rectifier states that the current will flow through p–n junction diode, if it is 
forward biased and very small or negligible current flows through it, when it is reverse biased.

 16. Zener diode is specially designed diode with sharp breakdown voltage.
 17.  Transistor means “transfer resistor.” Transistor consists of two p–n junctions, that is, either p-type 

is sandwiched in two n-type semiconductors and vice versa.
 18.  The emitter region is heavily doped, the collector region is moderately doped and base region is 

lightly doped for semiconductors.
 19.  The CE amplifier produces output 180° out of phase w.r.t input waveform whereas CB amplifier 

produces in phase output. 
 20. α and β are transistor parameters which are related as follows

b =
a

1 - a

 21. The base current (I
B
), collector current (I

C
) and emitter current (I

E
) are related as: I

E
=I

B
+I

C
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In Chapter 12, we have studied about the transistors, p–n junction diode as half-wave rectifier and 
full-wave rectifier. We have seen the working of transistors as an amplifier. In this chapter, we will 
study about hybrid parameters and other electronic devices.

13

Electronic Devices

Learning Objectives

 To know about hybrid parameters (n-parameters) as equivalent circuits

 To know about principle, construction, and working of silicon-controlled rectifier (SCR)

 To gain insight of field effect transistors and its classification and to differentiate from junction field 
effect transistors

 To learn about junction field effect transistors, their characteristic, and parameters.

 To understand biasing of JFET and amplification

 To know about metal oxide semiconductor, field effect transistors (MOSFET)

 To learn about enhancement and depletion MOSFET

 To understand about feedback circuits

 To know about oscillators and their principle

 To understand about classification of oscillators

 To learn about Barkhausen criteria

 To classify the oscillators into different categories

 To know about principle, construction, and working of Hartley oscillator

 To know about principle, construction, and working of tuned collector and Colpitt’s oscillator

 To know about principle, construction, and working of phase-shift oscillator

 To know about principle, construction, and working of Wien bridge oscillator

 Keywords: h-parameters, silicon-controlled rectifier, junction field effect transistors (JFET), FET 

biasing, MOSFET, feedback circuits, oscillators, RC oscillators, LC oscillators
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13.1 Hybrid Parameters as Equivalent Circuits

Transistors usually operate under small signals. Figure 13.1 shows transistor as four-port network.  
A and B are input ports and C/D are output ports. The amplified output is obtained at output ports. 
Three parameters, that is, z-parameters, h-parameter, and y-parameters, are used to describe the tran-
sistor characteristics. Input current ii  and output current io  are taken to be positive, if they enter a 
port and are taken to be negative if they are coming out. In z-parameters ii  and io  are independent 
variables, whereas y-parameters consider them to be dependent. In contrast, y-parameters consider 
input voltage Vi  and output voltage Vo  as independent variables and z-parameters consider them to 
be dependent variables. In z-parameters system, the parameters have dimension of ohm (impedance) 
and for y-parameter system, the parameters have dimension of ohm−1  (admittance).

The hybrid parameters consider output voltage Vo  and ii  as independent variables, whereas Vi  
and io  are taken to be dependent variables. The dimensions of hybrid parameters depend on different 
ratios. Hybrid parameters are defined as the set of four parameters including impedance, admittance, 
and two dimensionless parameters for a linear circuit having fixed L, C, and R even if the voltage 
across them changes. We will obtain hybrid parameters now for transistors.

In hybrid parameters, io  and Vi  are taken to be function of ii  and Vo :

V f i Vi i o= ( ),  (1a)

i f i Vo i o= ( ),  (1b)

We can write Eqn. (1a) and (1b) in the form of partial derivatives as the network uses A.C. signals:
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In Eqn. (2a) and (2b), we define the hybrid parameters as follows:
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∂








 =






= =
=

V

i

V

i
h h

V V

i

i

i

i

i ii

o o 0

 (3a)

Equation (3a) is known as short-circuit input impedance.
Similarly,
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∂
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(3b)

Figure 13.1 Two-port network.
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Equation (3b) is known as open circuit reverse voltage ratio.
In Eqn. (2b), we obtain

¶

¶

é

ë
ê

ù

û
ú =

æ

è
ç
ö

ø
÷ = =

=

i

i

i

i
h h

V V

o

i

o

i

f oi

o o 0  

(3c)

Equation (3c) is known as the forward current ratio for short circuit.
From Eqn. (2b), we can write

∂
∂
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(3d)

Equation (3d) is known as output admittance for open circuit.
We can write Eqn. (2a) and (2b) using Eqn. 3(a)–(d) as follows:

V h i h Vi i i r o= +  (4a)

i h i h Vo f i o o= +  (4b)

hf  and hr  are dimensionless, whereas h
i
 has dimension of ohm and ho  has dimension of ohm( )

−1
.  

We can write Eqn. (4a) and (4b) for different transistor configurations as follows:

 (i) For common-emitter configuration,

  input current = i
b
,  input voltage =V

b

  output current = i
c
,  output voltage =V

c

V h i h V

i h i h V

b ie b re c

c fe b oe c

= +

= +

ü
ý
þ

 (5)

  (suffix “e” indicates common–emitter configuration).
 (ii) For common–base configuration,

input current input voltage

output current output volt

e e

c

= =

=

i V

i

,

, aage c=V

  The Eqn. (4a) and (4b) are given as Follows:

V h i h V

i h i h V

e ib e rb c

c fb e ob c

= +

= +





 (6)

  (suffix “b” indicates the common “base” mode).
 (iii) For common–collectors configuration,

input current input voltage

output current output volt

b b

e

= =

=

i V

i

,

, aage e=V
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The Eqn. (4a) and (4b) are given as follows:

V h i h V

i h i h V

b ic b rc e

e fc b oc e

= +

= +



  (7)

The equivalent circuit for Eqn. (4a) and (4b). is given in Figure 13.2.
Hybrid circuits may replace the transistors during circuit analysis. For common–collector 

 configuration, the hybrid equivalent circuit is shown in Figure 13.3.

Vi

hi

Vo

Vi = hi ii + hr Vo io = hf ii + ho Vo

hr Vo hf ii

+

−

ho

Figure 13.2 Hybrid equivalent circuit for a transistor.
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hreVe Ve
hfc ib

hoc

Figure 13.3 Equivalent circuit for common-collector amplifier.

13.2 Silicon-controlled Rectifier

Silicon-controlled rectifier (SCR) exhibits the features of transistor and rectifier. It acts as an electronic 
switch. It acts as a rectifier by changing alternating current (A.C.) to direct current (D.C.). SCR is a 
 tri-junction device and its symbol are given in Figure 13.4. Another name for SCR is thyristor.

For making SCR, a parent wafer of n-type silicon material is taken. The two p-layers are formed by dif-
fusion of acceptor atoms into the parent wafer. Three junctions J1 , J2 , and J3  are formed (Figure 13.4).  
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The n-type end forms the cathode and p-type end forms anode. An aluminum wire is used to form 
contact to the gate region with cathode. The gate layer is the first p layer from cathode side. If we 
look at Figure 13.4(a), then the SCR can be considered as a combination of two transistors: p–n–p 
and n–p–n. Moreover, SCR also exhibits rectifying properties. If anode is made negative and cathode 
is positive, then junctions J1  and J3  are reverse biased, whereas J2  will be forward biased. On the 
other hand, if anode is positive and cathode is negative, then the junctions J1  and J3  are forward 
biased and J2  gets reverse biased. Hence, SCR can control the power that is being fed to the load. 
SCR can exist only in two states, either it will conduct or will not conduct. That is why it behaves as 
a switch.

13.2.1 Working of SCR
SCR can be operated under two conditions, that is, gate positive w.r.t. cathode or open gate. When 
the gate is positive w.r.t. cathode, then SCR can conduct heavily (Figure 13.5).

When small positive potential is applied to gate, then the junction J3  gets forward biased. In the 
region around junction J3 , electrons from n-region will move toward p-region. Similarly, holes from 
p-region start diffusing toward n-region. Hence, electrons from junction J3  are attracted toward J2  
and gate current starts flowing, which increases the anode current also. When the anode current flows, 

Cathode

Gate

Anode

Anode

Gate

(ohmic)

J1

J2

J3

Cathode

p

n

p

n

(a) (b)

Figure 13.4 SCR and its symbol.
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Figure 13.5 Gate positive with respect to cathode.
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then more electrons become available at J2 . This process goes on, and finally junction J2  breaks 
down making SCR to conduct heavily. Once, the breakdown condition for J2  is achieved, the anode 
current no longer depends on the gate voltage. Only when the applied voltage V is reduced to zero, 
the SCR turns off.

Second condition of operation of SCR is by keeping gate open w.r.t. cathode (Figure 13.6). When 
gate (G) is open w.r.t. cathode, then junctions J1  and J3  are forward biased, whereas junction 
J2  is reverse biased. The SCR is in cut-off stage and no current flows through the load RL . When 

external voltage V is increased, then the reverse biased J2  junction breaks down leading to heavy 
conduction of SCR. The SCR turns to on condition. The minimum forward voltage that is applied 
to make SCR to conduct heavily while the gate is open is said to be breakover voltage. Breakover 
voltages may vary from 50 V to 500 V. When gate is positive w.r.t. cathode, then the applied volt-
age has to be reduced to zero in order to make the SCR off. The maximum anode current that turns 
the SCR to off state while the gate is open is called holding current. Every SCR has ratings marked 
over it. Usually, in markets the commercial SCR has applied voltage slightly less than the breakover 
voltage. Every SCR has forward current rating that limits the maximum anode current to be passed 
through SCR to limit its destruction due to overheating.

13.2.2 Characteristics of SCR
The graphs between anode–cathode voltage and anode current keeping gate current at constant value 
is known to be V–I characteristics of SCR (Figure 13.7(a)). Like p–n junction diode, SCR has for-
ward and reverse characteristics. During forward characteristics, the anode is made positive w.r.t. 
cathode. Then by keeping IG  constant, a graph is plotted between anode–cathode voltage and anode 
current. The voltage is varied from zero to breakover voltage IG =( )0

 
and the SCR conducts heavily 

at breakover voltage. Most of the voltage appears across load as voltage across SCR drops suddenly 
(Figure 13.7(b)).

For forward characteristics, B1  represents breakover voltage and C is the dropdown voltage. There 
is leakage current which is due to minority carrier. In reverse characteristics of SCR, anode is nega-
tive w.r.t. cathode, and the graph is plotted between anode–cathode voltage and current. Initially, the 
anode current will be small even after increasing the reverse anode–cathode voltage. This is due to 

Gate (G)

Anode

n ppnCathode

(C)

J3 J2

RL

J1

V

Figure 13.6 Gate open with respect to cathode for SCR.
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small leakage current. When voltage is increased up to point B2 , then the breakdown takes place and 
SCR conducts heavily shown by curve B D2 . B2  is also breakover voltage for reverse characteristics.

13.3 Field Effect Transistors (FET) and their Classification

We have studied about transistor rectifiers and hybrid parameters. Transistors are also known as Bipolar 
junction transistors (BJTs) because they have two majority and minority carriers taking part in their 
operation. But for unipolar junction transistors (UJTs), only majority carriers contribute during the oper-
ation. FETs are field effect transistors that fall under the category of UJT as its operation depends on the  
flow of majority carriers only. It differs from transistor because it is not current controlled like transistor. 
FET is a voltage-controlled device and the classification of FET can be done as shown in Figure 13.8.

In the sections that follow, JFET and MOSFET are described in detail.

Power
supply

RGR

50 K2 K

++

+ +−−

− −

VA VG

G

µA µA

Figure 13.7(a) Circuit diagram for obtaining characteristics of SCR.

Forward current Holding current

Forward voltage

Leakage

current

Leakage

curren
t

Reverse voltage

A C

Reverse voltage
D

B2(Breakover voltage)

B1(Breakone voltage)

Peak reverse voltage

Figure 13.7(b) Characteristics of SCR.
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13.4 Junction Field Effect Transistors (JFET)

The junction field effect transistors (JFETs) are three-terminal devices, that is, source, drain, and gate, 
in which the current flow in only due to one type of charge, either electrons or holes. Two types of 
JFETs are shown in Figure 13.9(a) and (b).

JFET has ohmic contacts at both sides. JFET is uniformly doped bar with trivalent or pentavalent 
impurities. When the semiconductor bar is of n-type, then the JFET is known as n-channel JFET. 
On the contrary, when the semiconductor bar is of p-type, then the JFET is known as p-channel 
JFET. The structure of p-channel JFET is shown in Figure 13.10. On either sides of p-channel JFET, 
 heavily doped n-regions are formed. These n-regions are connected to each other internally and form a 
 common terminal known as gate (G). The p-channel bar has two terminals: source (S) and drain (D).

Within these two terminals, the bar behaves as a resistors. The voltage is applied between the 
end terminals of source (S) and drain (D), and the current starts flowing along the length of 
 channel. The current carriers are majority carriers, which are holes in this case. Source (S) is the 
terminal through which the majority charge carriers enter the bar and constitute current IS  (source 
 current). The terminal through which the majority carriers leave the bar is known as drain and ID  
is the drain current. The gate voltage is applied between the gate and the source such as to reverse 
the p–n junction, hence, source and gate are reverse biased. The gate–source voltage is denoted 
by VGS  , the gate current is denoted by IG , and the drain-to-source voltage is denoted by VDS  
V VDS DD suply voltage= =[ ] . The symbols for JFET are given in Figure 13.11(a) and (b). The source 

and drain terminals are interchangeable.

p-channel n-channel

p-channel n-channel

p-channel n-channel

Deplection type Enhancement type

Field
effect

transistors
(FET)

Junction
field effect

transistor (JFET)

Metal oxide
semiconductor

FET (MOSFET)

Figure 13.8 Classification of FET.

Gate (G) Gate (G)

(b)(a)

Source (S) Source (S)Drain (D)

p-typen-channel p-channel n-type

Dain (D)

Figure 13.9(a) n-type channel (b) p-type channel.
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13.4.1 Working of JFET
Let us consider p-channel JFET as shown in Figure 13.12(a) and (b). The major current carriers for 
p-channel JFET are holes, and they drift through the channel. The source is forward biased w.r.t. 
drain and the current starts flowing from source to drain that constitute drain current as shown in 
Figure 13.12(a). When the gate is reverse biased by apply gate voltage, then the depletion region 
increases and the width of channel gets narrow. The holes pass through the channel of reduced width 

Source (S) Drain (D)

n-type gate

IG

IS

p-type channel

n-type gate

VDD

VGG

Depletion
region

I

Figure 13.10 p-channel JFET.

(b)(a)
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n

D

VDD

VDD

+ −

D

S

VGG

n

n
n

Figure 13.12 p-channel JFET: (a) without biasing and (b) under the effect of reverse biasing.

DD

GG

S

(a) (b)

S

Figure 13.11 Symbols for (a) p-channel JFET (b) n-channel JFET.
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that consequently decreases drain current. The reverse bias is not the same throughout the length of 
p–n junction; and, the drain end is narrower. The reverse bias is more between the gate and drain 
end than the gate and source end. The width of depletion region will increase more if the reverse bias 
is increased more. Hence, the increase in reverse bias of gate and source will decrease the drain cur-
rent. If sufficient and large reverse bias is applied, then the depletion region will extend to channel 
region from both side, and hence the current flow will stop. In other words, the current is pinched 
off (Figure 13.13).

The gate–source voltage, at which the current is pinched off, is known pinch-off voltage, VP . 
Hence, the extent of electric field decides the drain current and width of channel. Hence, the field has 
effect on its working and named as JFET.

13.4.2 Characteristics of JFET
JFETs have two types of characteristics. The schematic diagram of p-channel FET is given in Figure 
13.14. The gate and source are forward biased by voltage VGG . The gate is positive w.r.t. source 
whereas the drain is given negative potential w.r.t. source by VDS  (drain–source voltage). For p-chan-
nel JFET, the majority carriers through channel are holes. The two types of characteristics are output 
and transfer characteristics as demonstrated below.

1. Output Characteristics The output characteristics are also known as common source drain 
characteristics or static characteristics. The graph plotted between drain source voltage (V

DS
) and drain 

current (ID) keeping gate–source voltage (VGS ) at constant value are known as output characteristics 
(Figure 13.15(a)). The output characteristics curves a comprise of three regions: ohmic region (linear 
region), saturation region (pinch-off region), and breakdown region. In ohmic region, the p-bar 

DID = 0

n

S

VGG

n

Figure 13.13 Pinch-off condition (at large reverse voltage).

VD

VDS
IG

D

VGG

S

+

−

−

+
+

+

−
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−

−

ID

VGS

Figure 13.14 Schematic diagram of p-channel JFET.
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between the two terminal behaves as a resistor, and the resistance is given by R
V

I
=

( )
( )

DS

D

in V

inmA
. This 

region is almost linear and exists for smaller values of VDS . This region is useful for application of 

JFET as a voltage-dependent resistor (VDR).

The saturation region starts from pinch-off voltage (VP ). In saturation region, the drain cur-
rent becomes constant of drain-to-source voltage (VDS ). This region is of practical importance for 
high-voltage amplifiers. In the breakdown region, the drain current rises abruptly with increase of 
drain-to-source (V

DS
) voltage. When VGS V= 0 , then the p–n junction is not reverse biased, Whereas 

for VDS V= 0 , ID = 0 . As VDS  is increased, the drain current increases up to the knee point (A), 
which is also known as pinch-off voltage. The flow ID  contributes to voltage drop across the p-chan-
nel bar, and it contributes to reverse biasing of gate junction. With more and more increase of V

DS 

voltage, the channel starts narrowing at the drain region. The current ID  will not increase due to 
pinching off the channel and the current attain a saturated value in the saturated region. When VDS 
is increased further such that it exceeds reverse-breakdown voltage, then large current ID  flows from 
drain to gate, and this condition is breakdown condition. As the gate–source voltage is increased, then 
the curve shifts down and breakdown as well as pinch off occurs for small values of drain–source (VDS)  
voltage. In breakdown region, JFET is constant voltage source device whereas in saturation region, it 
is constant current source device.

2. Transfer Characteristics The graphs plotted between gate–source voltage (VGS ) and drain 
current ( ID ) keeping the drain–source voltage (VDS ) constant are known as transfer characteristics 
(Figure 13.15(b)). From the output and transfer characteristics, we can obtain IDSS  (drain current 
at zero bias) and cut-off voltage VP( )  or VGS  (off ). IDSS  is the drain current when VGS = 0  V and 
V VDS P> . The voltage at which the channel is completely cut off making drain current zero is known 
as pinch-off voltage (VP ).

Breakdown regions

Saturated
region

ohmic
region

IDSS

VDS

Knee point
A

Drain
current(ID in mA)

VP

VGS = 3 V

VGS = 2 V

VGS = 1 V

VGS = 0 V

Figure 13.15(a) Output characteristics of JFET.
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The pinch-off voltage is given by the following equation:

V
q N

aP

a
=

2
2

e

 (8)
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→

→

→
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a
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The drain current ( ID ) is related to IDSS  by the following expression:
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Figure 13.15(b) Transfer characteristics of JFET.

13.4.3 Parameters for JFET
The performance of JFET is defined by three important parameter as described below.

1. Transconductance ( g
m 
) It can be obtained from the transfer characteristics of  JFET. The ratio of 

small change in drain current to small change in gate–source voltage at constant drain–source voltage (VDS )  
is said to be transconductance for an operating point.

 i.e. g
I

V
V

m
D

GS constantDS

=

=

∆

∆
 (10a)

2. A.C. Drain Resistance (r
d
) It can be derived from the output characteristics of JFET. The 

ratio of small change in drain–source voltage (VDS ) to small change in drain current ( ID
), keeping 

constant VGS
 is known as dynamic/A.C. drain resistance for an operating point.

r
V

I
V

d
DS

D constantGS

=

=

∆

∆
 (10b)
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3. Amplification Factor ( m ) The ratio of small change in VDS
 to the small change in VGS  

keeping drain current constant is said to be amplification, that is,

m =

=

∆

∆

V

V
I

DS

GS constantD

 (10c)

As  

m

m

= = ×

=
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V
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r g
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GS

DS

D

D

GS

d m

∆

∆

∆

∆

∆

 

(11)

Equation (11) gives the relationship between all the three parameters of JFET. JFET can act as buf-
fer amplifier because it has high input impedance and low output impedance. Due to its high input 
impedance, it is also used as FET meters. In its linear region, it can be used for radio tuners.

13.4.4 Biasing of JFET
There are three ways of biasing JFET, that is, self-bias, voltage divider bias, and source biasing. Biasing 
means gate should be negative w.r.t. source. The biasing of FET is described as follows.

1. Voltage Divider Biasing As clear from Figure 13.16(a), the resistances R1  and R2  form volt-
age divider across the drain VDD  and voltage developed across R2  is VG , which is given by the 
following equation:

V
V R

R R
G

DD
=

+

. 2

1 2

 (12)

Further,

V V I RGS G D S= −  (13a)

and

V V I R RDS DD D D S= − +( )  (13b)

VDD

RD
R1

V D
S

VGS
VG

RS

R2

VS

Figure 13.16(a) Voltage divider bias.
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3. Source Bias In source bias, the VS  appear across RS  and the condition for drain is 

I
V

R
D

S

S

≈

 

(15)

ID  is independent of JFET characteristics (Figure 13.16(c)).

VDD

RD

RG
VGS

RS

VS

Figure 13.16(b) Self-bias.

VDD

RD

RG
VGS

RS VS

Figure 13.16(c) Source bias.

2. Self-Bias RS  is used as a bias resistor as shown in Figure 13.16(b) and

V I RS D S=  (14a)

VG = 0 , therefore,

V V I RGS S D S= − = −  (14b)

where VS  is the desired bias voltage.

13.5 Metal-oxide Semiconductor FET

Metal-oxide semiconductor FETs (MOSFETs) are also known as insulated-gate field effect  transistor 
(IGFET) or metal-oxide semiconductor transistor (MOTS). The MOSFET is also unipolar device 
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The MOSFETs can be n-channel or p-channel. The n-channel MOSFET consists of slightly doped 
p-substrate. Two heavily doped n-regions are formed at the end by diffusion (Figure 13.17).

The heavily doped n-regions on both ends serve as source and drain. The distance of separation between 
these two layers is up to 10 mm . A layer of SiO2  (insulating) is grown over the substrate. The whole channel 
is covered by a metallic (aluminum) region. This combination forms a parallel plate capacitor, that is, metallic 
gate and semiconductor substrate with dielectric medium inside it. The name IGFET is derived because the 
gate is insulated from the semiconductor channel due to SiO2  (dielectric) layer. Hence, MOSFET possesses 
very high input resistance (up to 1015

Ω ). For p-channel substrate, two heavily doped p-regions are formed 
at either ends of lightly doped n-substrate. The n-channel MOSFET are faster in their applications due to 
higher mobility of electrons. The symbolic representation of MOSFET is given in Figure 13.18 (a) and (b).

GateSource Aluminum

n-region

Induced
n-channel

p-substrate

n-region

Drain

Silica layer

Figure 13.17 n-channel MOSFET.

(a) (b)

G

D

B

S

G

D

B

S

Figure 13.18 Symbolic representation of (a) n-channel and (b) p-channel MOSFET.

like FET because the current carriers are of one type, only that is, holes in p-channel and electrons in 
n-channel. MOSFETs are of practical importance for large integrated circuits and microprocessors. 

Martin M. “John” Atalla was one of the inventors of MOSFET who was born 
on August 4, 1924, in Port Said, Egypt. He was a graduate student at Purdue 
university, uSA. He received his PhD in 1949. He investigated the surface 
properties of silicon semiconductors after joining Bell laboratories. He also 
worked at Hewlett-Packard and Fairchild Semiconductor. He envisioned 
MOSFET in 1940, and he worked on it with Dawon Kahng ultimately creat-
ing MOSFET in 1960. He gifted the banks with his invention of data security 
system that is used in automated banking machines. He is also the founder 
of A4 Systems, TriStrata, and Atalla Corp.

M.M.J. ATALLA
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charge carriers are present under the oxide layer in p-type substrate and this is known as inversion. The 
threshold gate voltage (VT ) is defined as the minimum gate voltage required to produce the inversion.
Conclusively, for n-channel MOSFET, the drain current gets enhanced due to induced n-channel 
produced by “positive” gate voltage. The characteristics of MOSFET are (i) drain characteristics and (ii)
transfer characteristics. The drain characteristics represent the curves between drain current and drain–
source voltage VDS  at constant gate source (VGS ) voltage (Figure 13.20a).

Gate (G)Source (S)

n-channel

p-substrate

n

−
+

+ + + + + + + + + + + + + + +

− − − − − − − − − − − − − − −

+

Drain (D)

n

Figure 13.19 Enhancement n-channel MOSFET.
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(VGS)5 > (VGS)4 > (VGS)3 > (VGS)2 > (VGS)1

(VGS)5

(VGS)4

(VGS)3

(VGS)2

(VGS)1

(VGS)0

Figure 13.20(a) Drain characteristics for MOSFET.

13.5.1 Types of MOSFET
We have studied about the n-channel and p-channel MOSFET. Both of them either conduct due to 
holes or due to electrons. These n-channel or p-channel MOSFET can be categorized into enhance-
ment MOSFET and depletion MOSFET. These MOSFETs are described in the following section.

1. Enhancement MOSFET

The enhancement MOSFET has been explained using n-channel (Figure 13.19). If we apply “positive” 
gate voltage, then negative charges will be set up under the oxide layer due to capacitor action. Under 
low-gate voltages, the negative charge is carried by acceptor ions in p-type  substrate. This gives rise to 
a thin layer and the thickness of this layer will increase on further increase in gate voltage. When gate 
voltage becomes sufficiently large, then drain carries away negative charge supplied by source. Hence, 
a conducting channel is formed between drain (D) and source (S) due to negative charges n-type 



13.5  METAl-OxiDE SEMiCOnDuCTOR FET   •  543

When VGS  is very small, then practically drain current is negligible. As the VGS  is increased and 
made more positive for n-channel MOSFET, and the drain current also increases.

The transfer characteristics represent the curves between drain–current and gate–source voltage  
(VGS ) at constant drain source (VDS ) voltage (Figure 13.20b). In transfer curve also the ID  is very 
small for small gate–source voltage (VGS ). It increases after a threshold voltage VT  (Figure 13.20(b)). 
The MOSFET usually have marking for threshold gate–source voltage.

2. Depletion MOSFET
For a MOSFET to operate in depletion mode, a “negative” gate voltage is applied for n-channel 
MOSFET and “positive” gate voltage for p-channel MOSFET (Fig. 13.21). A considerable amount 
of IDSS  will flow for VGS = 0 . As VGS  is made more negative for n-channel MOSFET, the positive 
charges are induced in channel and drain current drops. Hence, the channel region also gets depleted 
of majority charge carriers. The depletion region is more toward the drain side like JFET. Hence for 
characteristics curves also, for n-channel MOSFET, depletion region operates for “negative” gate volt-
age, whereas “positive” gate voltage is used for enhancement mode. The reverse happens for n-channel 
MOSFET, that is, the depletion region operates for “positive” gate voltage and enhancement for 
“negative” gate voltage.

O VT

VGS (V)

VDS

ID(mA)

Figure 13.20(b) Transfer characteristics for MOSFET.
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Figure 13.21 Depletion-type MOSFET.
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13.6 Introduction to Feedback

When we have to choose a device for working in particular range with desired values of input and 
output voltages, then it is important to choose an operating point of transistor (Q). Practically, the 
output is not an exact replica of the input waveform due to various types of distortions such as fre-
quency distortion, phase distortion, or nonlinear distortion. Hence, the concept of feedback circuits is 
introduced which combines the output signal and external output signal. Hence, the feedback is the 
process in which a part of output signal is fed back to the input circuit (Figure 13.22).

Vo

Vf = bVo

Vi

Amplifier
Gain A

Feedback circut (b)

Vi
′

Figure 13.22 Block diagram of amplifier with feedback circuit.

Dawon Kahng was born on May 4, 1931, in Seoul, South Korea. in 1955, 
he completed his bachelor’s degree from Seoul national university. 
He got his postgraduation as well as doctorate degree from the Ohio 
State university, uSA. Kahng joined Bell Telephone laboratories, in 
1959, where he met Martin M. “John” Atalla. He was the coinventor 
of MOSFET along with John Attalla. At first, their discovery was not 
favored and admired by their coworkers at Bell laboratories or the 
semiconductor industry; but today, the MOSFET are the most important 
components of microprocessors and integrated circuit.

Dawon Kahng was the founder of nEC Research institute, which is 
very famous for conducting basic science research in communications 
and computing. He retired from the Bell laboratories in 1988.

Hence, the amplifier performance can be improved using feedback circuits. The feedback can be  
positive/regenerative or negative/degenerative. In positive feedback, the gain of amplifier is increased 
as the applied signal and feedback signal are in phase with each other. This type of feedback is very 
beneficial for oscillator circuits. The positive/direct/regenerative feedback leads to instability in gain of 
amplifiers. Hence, they do not find practical applications in amplifiers.

In negative feedback, the gain of amplifier is reduced because the applied signal and feedback 
signal are out of phase with each other. As clear from Figure 13.22, the feedback amplifier has 
amplifier circuit and feedback circuit. Feedback circuits are composed of resistors. The inputs of 
amplifier and feedback circuits are in series with each other, whereas the outputs are obtained in 
parallel. The feedback circuit feeds a part of its output back to input. The amplifier circuit has gain 
A, such that

A
V

V
=

′

o

i

 (16)

D. KAHNG
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Let fraction b  of output signal is fed to the input circuit, such that voltage feedback is given by the 
following equation:

A Vf o is feedback factor= b b[ ]  (17)

b  is usually less than 1. Hence, the feedback voltage will become

V Vf o= b  (18)

Vi  is the input signal for amplifier, which will modify the input voltage after the feedback voltage, 
that is,

V V Vi
′ = ±i f  (19)

“+” symbol stands for positive feedback, whereas “−” symbol indicates negative feedback.
As A is the amplifier gain without feedback and from Eqn. (16),

A
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V AV

V A V V

V A V V
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using Eqs 18  and 19
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where

A
V

V
f

o

i

gain with feedback= =  (22)

Af  is called gain of amplifier with feedback.

For positive feedback circuit,

A
A

A
f =

−1 b
 (23a)

For negative feedback circuit,

A
A

A
f =

+1 b
 (23b)

⇒

⇒

⇒
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Ab  is the loop gain/feedback factor. For negative feedback circuit, the following cases may arise:

 (i) When 1 1+ <Ab , then A Af > . This type of condition is called regenerative/positive/ direct 
feedback. In this condition, the gain with feedback circuit is more than the normal gain.

 (ii) When 1 1+ >Ab , then A Af <  which is the condition for negative feedback, that is, the gain 

using feedback circuit is less than the normal gain. Further, if Ab >>1 , then Af =
1

b
, which 

indicates that gain depends only on feedback circuit and independent of A.

 (iii) When 1 0+ =Ab , then Af = ∞. This condition represents the sinusoidal oscillator, that is, 
even when no input is fed, then also the output is obtained. To measure the feedback, following 
expression is used

Feedback in dB( ) =
+









20

1

1
log

Ab
 (24)

13.7 Feedback Circuits

Usually, for practical applications, negative feedback circuits are used because positive feedback intro-
duces distortions in the circuit. Figure 13.23 demonstrates the types of negative feedback circuits.

Negative feedback circuits

Voltage feedback circuit Current feedback circuit

Voltage shunt
feedback

Voltage series
feedback

Current
series feedback

Current
shunt feedback

Figure 13.23 Schematic description of different types of feedback circuit.

Vo

Vi A

b

V i
¢

Figure 13.24(a) Voltage series feedback circuit.

In voltage feedback circuit, the voltage that is fed from amplifier output is proportional to load 
voltage. In contrast to this, for current feedback circuit, the voltage that is fed from amplifier output 
is proportional to load current. Other feedbacks can be explained as follows:

 1. Voltage Series Feedback
In this circuit (Figure 13.24(a)), the input impedance is very high, whereas the output impedance 
is small. This is due to the fact that input possesses series connections, whereas the output has 
shunt  connections. The part of output voltage is combined with input via feedback circuit in series.
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 2. Voltage Shunt Feedback
In this circuit (Figure 13.24(b)), the input and output possess shunt connection that reduces 
the input and output impedance. The fraction b  of feedback is returned to amplifier circuit in 
parallel and output is also obtained in parallel.

Vo

Vi A

b

Vi
′

Figure 13.24(b) Voltage shunt feedback circuit.

Vo

RLVi A

b

Vi
′

Figure 13.24(c) Current series feedback circuit.

Vo

RLVi A

b

Vi
′

Figure 13.24(d) Current shunt feedback circuit.

 3. Current Series Feedback
In this feedback circuit (Figure 13.24(c)), input and output circuit possesses series connections 
that lead to increase in the input and output impedance. The feedback factor ( b ) is returned 
the input voltage in series, the output is also obtained in series.

 4. Current Shunt Feedback
In this feedback circuit (Figure 13.24(d)), the input impedance decreases due to shunt connec-
tion and the output impedance increases due to series connection.

The feedback factor ( b ) combines the part of output signal via feedback circuit to input 
signal in parallel. The feedback is transmitted to input through feedback circuit and input is 
transmitted to output through the amplifier circuit.
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13.8 Oscillators and their Principle

For oscillators, we will use positive feedback circuit as they provide increased overall gain. An oscillator 
generates alternating voltage when the circuit is fed energy from D.C. source. Oscillators have wide 
range of applications such as audio signal generator that makes use of frequency from 20 Hz to 15 kHz. 
Oscillator circuit generates very high frequencies required for TV and radio receivers. Oscillators are 
also capable of supplying heat power. The oscillatory circuit consists of inductance L and capacitance 
C. L and C are connected in parallel constituting the tank circuit (Figure 13.25).

(a)

C V = 0

K

+

−
L

(b)

C

K

−

+
L

V

C

K

− −

+ +

L
V

C

K

−

+

−

+

L
V

C

K

−

+
+ +

− −

L
V

Figure 13.25 Tank circuit for oscillator: (a) at 0 voltage (b) at voltage V.

The tank circuit is connected to D.C. voltage source. The negative terminal of battery supplies energy, 
and hence the capacitor gets changed (Figure 13.25(b)). In capacitor, the energy is stored in the form 
of electrical energy. The inductor (L) is connected to the capacitor (C) which is charged. The  capacitor 
 discharges and sends current to inductor. This current is responsible for setting up magnetic field 
around the inductance coil. If the capacitor gets fully discharged, then the magnetic field around the 
coil is maximum. Hence, there is no electrical energy in capacitor when it is fully discharged. The 
electric energy of capacitor converts to the magnetic energy of coil. After the capacitor gets fully dis-
charged, the magnetic field starts decreasing. The induced e.m.f. developed keeps the current flowing 
in the same direction. The charging of capacitor begins, but this time the polarity of plates is reversed. 
As the charge starts building up across the capacitor, the magnetic field starts decreasing. When the 
capacitor gets fully charged, then the magnetic field energy becomes zero. The magnetic energy of 
inductor gets converted to the electrical energy of capacitor. After the capacitor gets fully charged, it 
begins to discharge and the current flows in opposite direction (Figure 13.25(b)). Hence, the cycle 
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repeats again and again, that is, electric energy gets converted to magnetic energy and vice versa. This 
means the energy is interchanged between L and C.

The oscillations are damped because the circuit usually has some resistance as shown in Fig. 13.26. 
For an ideal circuit, no loss of energy would occur and the oscillations are undamped. If energy is sup-
plied continuously to the tank circuit, then undamped oscillations are obtained.

The oscillator circuit consists of three important components (Figure 13.27). The first compo-
nent is tank circuit (LC circuit) which generates oscillations of frequency f  given by the following 
equation:

f
LC

=

1

2p
 (25)

These oscillations are generated due to exchange of energy between L and C.
The transistor amplifier changes the D.C. power of battery to the A.C. power by supplying it to 

the tank circuit. The oscillations of tank circuit are amplified, which reduce the losses in circuit. The 
feedback circuit provides positive feedback to obtain sustained oscillations of constant amplitude. The 
feedback circuit also helps in overcoming the losses of circuit. Hence, the fundamental principle of 
oscillators states that “The external positive feedback from the feedback circuit increases the overall 
gain by  providing negative resistance to overcome the natural damping of oscillations.”

13.9 Classification of Oscillators

The oscillator can be classified as shown in Figure 13.28, that is, depending on the frequency of gener-
ated waveform, the nature of output waveform, and the way of producing oscillations.

Time (t)

I

I

Figure 13.26 LC damped oscillations.

Oscillator circuit

Tank circuit Transistor
amplifier

Feedback
circuit

Figure 13.27 Components of oscillator.
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13.10 Barkhausen Criteria

We know that Ab  is the loop gain. According to Barkhausen criteria, it states that the loop gain should 

be unity in order to produce sustained undamped oscillations. Hence, Ab =1  and Ab  should have a 

phase of 2pn , (n = 0 1 2, , ,… ). For an oscillator circuit, positive feedback should be given to the amplifier 

circuit. Let b  is feedback fraction of feedback circuit and A be the voltage gain of amplifier (Figure 13.29). 

Then the feedback voltage for output Vo  is given by the following equation:

V Vf o= b  (26a)

Here,

V V Vi
′ = =f ob  (26b)

Oscillator

Frequency
dependent

Audio
frequency

(AF oscillator)

Sinusoidal
(Produce
sinusoidal
waveform)

Positive feedback oscillator
(It provides part of the

output waveform
to the input signal)

(It provides negative
resistance to cancel
positive resistance

of circuit)

Negative resistance oscillator

Non-sinusoidal
(Produce non-

sinusoidal
waveform)

Radio
frequency

(RF oscillator)

Very high
frequency

(VHF oscillator)

Ultra high
frequency

(UHF oscillator)

Waveform
dependent

Method of
producing
oscillations

Frequency
upto 20 kHz

Upto 20 kHz −
25 MHz

30 − 300 MHz

Microwave oscillator 

> 3 GHz

300 MHz −
3 GHz

e.g.  RC,LC
oscillator

e.g.  Multivibrators

Figure 13.28 Classification of oscillators.
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V Vi
′ − =b o 0  (26c)

As A
V

V
=

′

o

i

 [Eqn. (16)], hence

V AV

V A

i i
′ − ′ =

−[ ] =

b

b

0

1 0i
′

As Vi
′ ≠ 0 , hence 1 0−[ ] =Ab

Ab =1  (27)

We can write down Eqn. (27) as follows:

A ib = + ( )1 0  (28)

Where i is complex function and i = −1 . Equation (28) gives the magnitude of Ab  to be 1 and 
phase of 2np . Hence, no input signal Vi  is applied for sustained oscillations. The oscillator will 
start producing undamped oscillations as soon as the loop gain becomes unity for a closed circuit. 

As discussed in Section 13.6, the overall gain is A
A

f =

−

1

1 b
, when Ab =1 , then Af = ∞ , which 

indicates that the output will be yielded even in the absence of external voltage.

13.11 Types of Oscillators

While designing an oscillator, the initial voltage is noise voltage produced by random motion of 
electrons in the resistors (used in feedback circuits). The magnitude of noise voltage is small, which 
subsequently gets amplified by feedback circuits. This noise voltage will drive the oscillator circuit. 
For sustained oscillation, the required condition of Ab =1  is satisfied by some particular frequency 
present in noise signal. Even the noise is combination of many sinusoidal frequencies, every frequency 
is not satisfying the phase condition of 2np . Hence, only one sinusoidal frequency is amplified. The 
loop gain should satisfy Ab >1, when the oscillator is switched on.

The oscillations are built up and the amplifier gain decreases to unity gradually. The following 
conditions must be satisfied for oscillator action:

 (i) When the oscillator is switched on, the gain (loop gain) should be greater than unity.
 (ii) The loop gain should gradually decrease to 1, once the desired level is attained.
 (iii) It works on positive feedback or negative resistor.
 (iv) D.C. supply is required as energy source.

Vo

Amplifier
(A)

b (Feedback)

Vi = Vf
′

Figure 13.29 Oscillator with positive feedback.
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The oscillators fall under two categories: LC and RC. Hartley, Colpitts, and tuned collector oscillators 
fall under LC oscillators; whereas, phase shift and Wien bridge oscillator fall under the category of RC 
circuits. We will discuss these oscillators in the following sections.

13.11.1 Hartley’s Oscillator
Hartley’s oscillators have two types of arrangement: series-fed oscillator and shunt-fed oscillator. Hartley 
oscillator is used in radio receivers due to its adaptability to wide frequency range and tuning capability. 
In shunt-fed Hartley oscillator, a transistor is used in CE configuration (Figure 13.30). The frequency f  
is determined by circuit made up of L1 , L2 , and C

1
. Coils L1  and L2  are coupled to each other, which 

in turn are connected to variable capacitance. Hence, this generates the tank circuit for LC oscillations.

R 2

L1 L2

C 2

R 3

C 3

E

C1

C

C4

RFC

K

B

VCC

R 1

Figure 13.30 Shunt-fed Hartley oscillator.

The collector circuit has two bifurcations, collector is connected to radio frequency choke (RFC) 
coil and this RFC is further connected to voltage source VCC . Hence, the RFC eliminates A.C.  current 
out and provides path for the direct current. The collector is also connected to the LC tank circuit 
through capacitor C2 . This capacitor C2  provides path for the alternating current and eliminate D.C. 
The D.C. operating point of the transistor is maintained by the resistors R1 , R2 , R3 , and voltage 
VCC . The self-biasing is provided by C4  and R2 . Signal degeneration and A.C. ground is provided by 
capacitor C3  which is connected to emitter. Variable capacitance(C

1
) helps in adjusting frequencies 

so that the desired oscillations can be achieved through the tank circuit. The common emitter mode 
introduces a phase shift of 180° between input and output voltages.

As auto transformer in the circuit ( L1 , L2 , and C
1
 circuit) also introduces another phase shift of 

180 .°  Conclusively, input and output are in phase with each other.

In series-fed Hartley oscillator, again the common emitter mode is used (Figure 13.31). R1
, R2

, and 

R3  are bias resistances whose magnitude is large. C3  blocks the D.C. and allows A.C. to pass through it. 

C2  acts as a bypass capacitor. The voltages VCC  is directly connected to the LC tank  circuit. L1  and L2  

are two induction coils coupled together. L1 , L2 , and C
1
 constitute the tank circuit. (This combination is 

also known as auto transformer.) Collector of transistor is also connected to the auto transformer circuit.
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Working
When key K is closed, then current flows through the circuit that charges the capacitor C

1
 until it 

is fully charged. Then the capacitor is discharged through induction coils L1  and L2 . Hence, LC 
oscillations are set up in the tank circuit during which electric field energy and magnetic field energy 
are interchanged. The varying voltage due to these LC oscillations is applied between emitter and 
base. The base current is varying (different frequencies of LC oscillations). The b  is current gain 
for common emitter transistor, that is, b = I IC B/ . Hence for different IB, different b   amplification 
is obtained, which appears in collector circuit. Mutual inductances L1  and L2  help in providing 
feedback from collector–emitter circuit to base–emitter circuit. Hence, sustained or undamped oscil-
lations are obtained due to continuous source voltage.

13.11.2 Tuned-Collector Oscillator
This oscillator is known as tuned-collector oscillator because the collector is connected to the tuned 
circuit (Figure 13.32). The tuned circuit is the same as tank circuit. The capacitor C

1
 is connected to 

the primary coil of transformer. The frequency of oscillations depends on the tank circuit. The second-
ary coil of the transformer is connected to base of common emitter transistor.

The CE transistor introduces phase difference of 180° . The transformer also introduces a phase 
change of 180° . Hence, the total phase change of 360°  keeps the input and output signals in phase, 
which makes the feedback positive. Resistance R1 , R2 , and R3  provide bias to the transistor. R2  
and R3  do not effect A.C. operation of circuit. C2 and C3 act as bypass capacitors. R1  and R2  make 
potential divider arrangement. The potential divider arrangement is connected to the base of transis-
tor through the secondary coil of the transformer. C3  plays an important role in preventing voltage 
drop. If capacitor C3  would not have been connected across the resistor R2 , then the voltage drop 
would have occurred across resistor R2 . The feedback voltage developed across secondary of trans-
former bypasses through C3 .

R 2

R 3

R 1

C 3 C 2

K

C 1

L 2

L 1

VCC

Figure 13.31 Series-fed Hartley oscillator.
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Working
When key K is closed, then the current charges the capacitor. When the capacitor gets fully charged, 
then it starts discharging through inductance L, giving rise to oscillations in tank circuit. These LC 
oscillations induce varying voltage. The magnitude of varying voltage depends on the number of turns 
in inductor and coupling between primary and secondary windings of the transformer. This induced 
voltage is applied to base. The base current IB  varies and is amplified by common-emitter circuit. 
This amplified current appears across collector. Hence, the energy is also used to overcome the losses 
in tank circuit.

13.11.3 Colpitt’s Oscillator
The Colpitt oscillator is shown in Figure 13.33. The Colpitt oscillator has transistor in common-
emitter(CE) mode. The tank circuit is made up of L, C1 , and C2 . The capacitors C1  and C2  are 
tapped at the center. The D.C. operating point is defined by R1 , R2 , R3 , and supply voltage VCC .  
The collector is connected to RFC and LC tank circuit. RFC allows path for direct current. The col-
lector is connected to tank circuit via capacitor C5 . C5  gives path for the alternating current. The 
feedback is returned from LC circuit to base through capacitor C3 . R2  and C3  form self-bias circuit. 
C4  prevents signal degeneration and provide A.C. ground. C1  and C2  form voltage divider arrange-
ment that introduces phase change of 180° . CE transistor also introduces phase change of 180° . 
Hence, total phase change of 360°  keeps the input and output in phase.
Working

In Colpitt oscillator, the values of C1  and C2  decide the feedback. The frequency f is given by the 
following equation:

f
LC

=

1

2p

R 2

R 3

R 1

K

B

C

E

C3

C 2

C 1

L

VCC

Figure 13.32 Tuned-collector oscillator circuit.
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Whereas
 

C
C C

C C
C C=

+
[ ]1 2

1 2

1 2and are in series

When key K is closed, then the current flows through the circuit and charges the capacitor C1  
and C2 . After the capacitors are fully charged, then they discharge through inductor L setting up 
undamped LC oscillation. These oscillations will provide varying voltage that is fed to the base. IB  
gets amplified by a factor b, which is obtained at collector. Some part of amplified output is used to 
avoid any kind of damping.

13.11.4 Phase-Shift Oscillator
We have discussed LC oscillator that has the advantage of producing high-frequency oscillations. If the 
output is required at low frequencies, then RC circuits are used. Phase shift is an RC oscillator. The RC oscil-
lators also give good frequency stability. Figure 13.34 gives schematic circuit diagram of phase-shift oscillator.

The transistor is used in common-emitter mode. R4  is the load resistor that is connected to the 
collector. The A.C. operating point is defined by collector power supply VCC , R2 , R3 , and R5 . The 
common-emitter transistor introduces a phase change of 180°  between the input and output volt-
ages. For positive feedback, the phase change should be 0°  or 360° . Hence, additional 180°  are 
required to produce “positive” feedback. The phase change of 180°  is obtained by three cascade 
sections of CR. In these three-cascade sections, the series capacitor is connected to the shunt resistor. 
Each cascade circuit introduces a phase change of 60°  and three-cascade CR will introduce phase 
change of 180° , provided R and C are chosen accurately. Hence, the total phase change of 360°  is 
obtained, which fulfills the condition of positive feedback.
Working

Some voltage variations are done in VCC , which introduce random oscillations in the circuit. 
Sometimes, the noise in the transistor can also be used to induce oscillations. The varying voltage will 
cause variation in the base current. The amplified current is obtained at collector with phase change 
of 180° . This current is fed to the three-cascade CR circuits. This cascade circuit introduces a phase 
change of 180°  in the input and output signals. Hence, a total phase change of 360°  is obtained, 
which fulfills the condition of in-phase of input and output signals.

C3

C4

RFC

C2

C1

C5

VCCK

B

C

E

L

R2

R1

R3

Figure 13.33 Colpitt’s oscillator circuit.
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13.11.5 Wien Bridge Oscillator
The Wien bridge oscillator is a two-stage RC amplifier. The first stage consists of common-emitter 
amplifier and the second stage consists of common collector amplifier (Fig. 13.35). The output of 
 common-collector goes to the feedback network. The feedback network consists of R1  C1  in parallel and 
R2 C2  in series. The coupling network is of bridge nature; hence, it is named as Wien bridge oscillator.

Working
The input is applied to the base of common-emitter amplifier. The output is amplified with a phase 

change of 180°  across R
6
. The transistor CC introduces an additional phase change of 180° . Hence, 

the total feedback is of 360° , which satisfies the condition of positive feedback.
The condition for the phase shift to be zero occurs at frequency,

f
R C R C

=

1

2 1 1 2 2p
 (29)

RC provides negative feedback that precludes oscillations for every frequency. In Wien bridge 
 oscillators, the frequency can be varied; whereas in phase-shift oscillators, the frequency of oscillator 
is fixed.
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Figure 13.34 Phase-shift oscillator circuit.
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Figure 13.35 Wien-Bridge oscillator circuit.
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SUMMARY

In this chapter, we studied about hybrid parameters that are used to replace the transistors in the 
circuits. In hybrid parameters, output current and input voltage are functions of input current and 
output voltage. Silicon-controlled rectifier (SCR) exhibits the combined features of transistor and rec-
tifier and is a trifunction device SCR can be operated under gate open or gate “positive” w.r.t. cathode 
condition. Unlike transistors, JFET and MOSFET fall under the category of unipolar devices, where 
only one type of charges are involved in current conduction process, that is, majority carriers. JFET is 
a voltage-controlled device. Both MOSFET and JFET have source and drain on either ends. Source 
and drain are connected to each other through gate terminal. MOSFET have practical applications in 
large integrated circuits such as microprocessors. MOSFET can be n-channel or p-channel, which can 
further be classified as depletion or enhancement type. When a fraction of output signal is combined 
with the input signal, it gives rise to feedback circuits. The feedback can be positive or negative and 
usually obtained by current/voltage in series/shunt mode. Positive feedback is used for the oscillators. 
Oscillators convert dc to ac without external energy. Oscillators produce LC oscillations using tank 
circuit in which electric energy is converted to magnetic energy and vice versa. For sustained oscil-
lations, Ab =1  and phase of Ab  should be 2np . There are RC oscillators also that are used for 
low-frequency generation and have cascade RC circuits.

SOLVED PROBLEMS

 Q.1: For a JFET, the m  and rd  are given to be 100 and 5 kΩ . Obtain the trans conductance:

Ans:

m

m

=

= =
× Ω

= × Ω

= Ω

−

− −

−

r g

g
r

d m

m

d

m

100

5 10

20 10

20

3

3 1

1

Q.2: A change in VDS  of 5 V  produces a change in ID  of 50 µA  at constant VGS . Obtain the 
dynamic resistance.

Ans:

∆ ∆

∆

∆

V I V

r
V

I
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V
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d
DS
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d

V A, constant
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=
×

=
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6−
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A
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Q.3: For a JFET, VP V,= −6  IDSS mA= 30 , and VGS V,= −3  obtain drain current

Ans:

I I
V

V

I

I
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−













= −
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2
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Q.4: A JFET has drain current of 5 mA,  IDSS mA,= 10  VP V= −6 . Obtain VGS.

Ans:
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 Q.5: Negative feedback is applied to a circuit that reduces the gains from 40 to 20. Obtain the feed-
back fraction.

Ans:
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A A A
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Q.6: The voltage gain of amplifier without feedback is 800. If the feedback fraction is 0.04 for a nega-
tive feedback circuit. Obtain the voltage gain with feedback.

Ans: For “positive” feedback,

A
A

A

A

A

A

f

f

f

and

=
+

= =

=
+ ( )

=
+

=
+

=

1

0 04 800

800

1 800 0 04

800

1 32

800

33
2

b

b .

.

44 24.

OBJECTIVE QUESTIONS

 1. The short-circuit input impedance is given by

 (a) 
V

i
i

i

 (b) 
V

i
o

i

 (c) 
V

i
i

o

 (d) 
V

i
o

o

 2. For h-parameters, the dependent parameters are

 (a) Vo  (b) ii

 (c) V ii oand  (d) V io iand

 3. At breakover voltage, SCR conducts __________

 (a) lightly (b) heavily
 (c) moderately (d) does not conduct

 4. The forward characteristics of SCR are between

 (a) current and voltage at I IG a= ( )max  (b) gate current and voltage
 (c) gate current and voltage at I = 0  (d) current and voltage at IG = 0

 5. FET is a

 (a) bipolar transistor (b) unipolar transistor
 (c) junction rectifier (d) junction diode

 6. The drain and source of FET are interchangeable (Yes/No)

 7. FET has ____ off-set voltage at 0 drain current

 (a) infinite (b) 5 V
 (c) 0 V (d) 10 V
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 8. In JFET, the flow of current is due to

 (a) majority carriers (b) minority carriers
 (c) both majority and minority (d) leakage carriers

 9. In JFET, the potential drop is more toward _____ region.

 (a) source (b) channel
 (c) gate (d) drain

 10. The pinch-off voltage is given by

 (a) 
q a2

2e
 (b) 

q Na2

2e

 (c) 
q

Na

2
2

e

 (d) 
Na2

2e

 11. The pinch off voltage is equal to the gate source cut-off voltage. (Yes/No)

 12. The drain current is given by

 (a) I I
V

V
D DSS

GS

P

= −








1

2

 (b) I I
V

V
DSS D

GS

P

= −








1

2

 (c) I I
V

V
D DSS

P

GS

= −








1

2

 (d) I I
V

V
D DSS

P

GS

= −








1

 13. The A.C drain resistance for JFET is

 (a) 
∆
∆
I

V
V

D

GS constantDS






 =

 (b) 
∆
∆
V

V
I

DS

GS constantD






 =

 (c) 
∆
∆
V

I
V

DS

D constantGS






 =

 (d) ∆ ∆V IDS D.

 14. The parameters of JFET are related as

 (a) m =
r

g
d

m

 (b) r gd m= m

 (c) mr m dg r =1 (d) m = r gd m

 15. The threshold gate voltage VT  is the

 (a) voltage to produce breakdown
 (b) minimum gate voltage to produce inversion
 (c) maximum source voltage to produce breakdown
 (d) minimum drain voltage to produce pinch-off
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 16. The input resistance of MOSFET is

 (a) ∼1015
Ω  (b) 103

Ω

 (c) 101
Ω  (d) 105

Ω

 17. The negative feedback in amplifier

 (a) increases voltage gain (b) does not affect voltage gain
 (c) decreases voltage gain (d) increases the look factor

 18. When Ab + >1 1 , then the feedback

 (a) is positive (b) is zero
 (c) is negative (d) does not change

 19. Positive feedback is used for

 (a) low-gain amplifiers (b) oscillators
 (c) integrated circuits (d) high-gain amplifiers

 20. For LC tank circuit, the exchange occurs for

 (a) mechanical and electrical energy (b) electrical and thermal energy
 (c) magnetic and mechanical energy (d) electric and magnetic energy

 21. The phase shift oscillators use ______ cascades.

 (a) 3 (b) 5
 (c) 1 (d) 4

ANSWERS

 1. (a)

 2. (c)

 3. (b)

 4. (d)

 5. (b)

 6. (yes)

 7. (c)

 8. (a)

 9. (d)

 10. (b)

 11. (yes)

 12. (a)

 13. (c)

 14. (d)

 15. (b)

 16. (a)

 17. (c)

 18. (c)

19. (b)

20. (d)

21. (a)
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Micro-assessment Questions

 1. What are z-parameters?
 2. Define y-parameters. How do they differ from z-parameters?
 3. Define h-parameters.
 4. What is output admittance?
 5. What is silicon-controlled rectifier?
 6. Define the breakover voltage for SCR.
 7. What are field effect transistors (FETs)?
 8. What are unipolar devices?
 9. Define the bipolar devices with examples.
 10. Give the symbols for p-channel and n-channel JFET.
 11. What is the gate voltage for FET?
 12. Define the pinch-off voltage for JFET.
 13. How is drain current related to drain current at zero bias?
 14. Give the magnitude of pinch-off voltage.
 15. What is amplification factor for JFET?
 16. Define transconductance for JFET.
 17. Give the relation between all the three parameters for JFET.
 18. Give the symbols for n- and p-channel MOSFET.
 19. Explain the threshold voltage for MOSFET.
 20. What do you understand by feedback circuits?
 21. Give the block diagram for feedback circuits.
 22. Explain negative and positive feedback for amplifiers.
 23. How is the feedback measured?
 24. Define voltage shunt feedback.
 25. Explain current series feedback.
 26. Define oscillators.
 27. Define the resonance frequency for LC oscillators.
 28. Define RC oscillators.

Critical Thinking Questions

 1. What is short-circuit input impedance and forward current ratio?
 2. Give the h-parameters for common–base configuration.
 3. Draw the equivalent circuit for a common–collector amplifier.
 4. Write the hybrid equations for transistor.
 5. Define the characteristics of SCR with help of circuit diagram.
 6. How do field effect transistors differ from transistors?
 7. What are source and drain for JFET? Are they interchangeable?
 8. Define all the parameters for JFET.
 9. How does transconductance differ from ac drain resistance?
 10. Give the principle for n-channel metal oxide semiconductor field effect transistors.
 11. What is the difference between n- and p-channel MOSFET?
 12. Describe the depletion MOSFET in detail.
 13. Obtain the gain of amplifier with feedback.
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 14. How does current shunt feedback differ from voltage shunt feedback?
 15. Explain how magnetic energy is converted to magnetic energy in tank circuit.
 16. Give the components for oscillator circuit.
 17. Derive the Barkhausen criteria for oscillators.
 18. How do RC oscillators differ from LC oscillators?
 19. Write down the conditions necessary for oscillator action.
 20. Give the working action of phase shift oscillators with a circuit diagram.
 21.  Describe the principle and working action of Wien bridge oscillator with the help of a circuit 

diagram.

Graded Questions

 1.  What are h-parameters? Explain in detail all the four parameters. Draw the equivalent circuit for 
CE configuration.

 2. Give the working of SCR in gate open and gate positive w.r.t. cathode.
 3. Explain in detail the construction and principle of n-channel JFET.
 4. Give the working of p-channel FET without biasing and under the effect of reverse biasing.
 5. Describe the output and transfer characteristics of p-channel JFET.
 6. Explain the working of p-channel FET without biasing and under the effect of reverse biasing.
 7. Explain in detail the self-bias and source bias for JFET.
 8. What are MOSFETs? Give their types and working in detail.
 9. Explain in detail the working and characteristics for n-channel MOSFET.
 10. Explain in detail the working and characteristics for p-channel MOSFET.
 11. What are feedback circuits? Explain in detail with their types.
 12. What are oscillators? Give their principles. Why is the tank circuit used in oscillators?
 13.  Give in detail the classification of oscillators based on frequency dependence, waveform depen-

dence, and method of production of oscillations.
 14. Describe any one LC type of oscillator with the help of a circuit diagram.
 15.  Explain in detail the construction and working of Hartley’s oscillator in shunt-fed and series-fed 

mode.
 16. Give the construction and working of tuned-collector oscillator.
 17. Describe in detail the principle, construction, and working of the Colpitt’s oscillator.
 18. What are phase-shift oscillators? How do they differ from Wien bridge oscillators?

Remember and Understand

 1.  y, z, and h-parameters describe the transistor characteristics. In y-parameters, input and output 
voltage are independent variables; whereas in z-parameters, input and output current are consid-
ered to be independent.

 2.  The hybrid parameters consider output voltage and input current as independent variables. The 
dimensions of hybrid parameter depend on different ratio. The hybrid equations are given by the 
following equation:
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 3. The various hybrid parameters ratio are given by the following equation:
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 4.  The silicon-controlled rectifier (SCR) is an electronic switch that is a trijunction device. It can 
act as a rectifier by changing ac to dc. SCR can operate under two operations, that is gate positive 
w.r.t. cathode and open gate. The SCR conducts heavily when gate is positive w.r.t. cathode.

 5.  Field effect transistors (FET) are unijunction transistors as their operation depends only on the 
flow of majority carriers. FET is a voltage-controlled device, and is classified as junction FET and 
metal oxide semiconductor FET (MOSFET).

 6.  JFET has three terminals, that is, gate, source, and drain. JFET is uniformly doped bar with tri-
valent or penatavalent impurities. When the bar is of n-type carriers, then the JFET is n-channel. 
When the bar is of p-type carriers, then the JFET is p-channel type.

 7.  Source is the terminal through which the majority carriers enter the bar and constitute source 
current, whereas the terminal through which the majority carriers exit is known as drain. Gate is 
the common terminal and the gate voltage e is applied between gate and source.

 8.  The gate–source voltage at which the current is pinched off is known as pinch-off voltage. Its 
magnitude is given by the following equation:

V
q N

aP

a
=

2
2

e

 9.  There are three parameters for JFET: transconductance, ac drain resistance, and amplification 
factor. Amplification factor is the product of transconductance and ac drain resistance.

 10.  There are three ways to bias JFET, that is, keeping the gate negative w.r.t. source. JFET can be 
biased using self-bias, voltage divider bias, and source bias.

 11.  MOSFET are also unipolar devices, which are of practical importance for large integrated cir-
cuits and microprocessors. MOSFET are of two types: n-channel and p-channel. n-channel has 
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slightly doped p-substrate and p-channel has slightly doped n-substrate. MOSFET have silicon 
dioxide layer that keeps the gate insulated from the semiconductor.

 12.  Both the n-channel and p-channel MOFETs are further classified as enhancement and depletion 
types.

 13.  In feedback circuits, a part of output signal is fed back to the input circuit. Feedback can be of 
two types: negative and positive. In negative feedback, the gain of the amplifier is reduced as the 
applied signal and feedback signal are out of phase with each other. In positive feedback, the gain 
of amplifier is increased as the applied signal and feedback signal are in phase with each other.

 14. The gain A and A
f
 for amplifier is given by the following equation:

A
V

V
=

o

i
’

A
V

V
f

o

i

gain with feedback= =

 15.  The negative feedback circuits are of four types: voltage series/shunt feedback and current series/
shunt feedback.

 16.  Oscillators use positive feedback circuits. An oscillator generates alternating voltage when the 
circuit is fed energy from a dc source. Oscillator circuit consists of tank circuit, amplifier, and 
feedback circuit. Tank circuit consists of capacitor and inductor. Hence, in tank circuit, the elec-
tric energy is converted to magnetic energy and vice versa, which gives rise to LC oscillations.

 17.  For the oscillator action to occur, the gain should be > 1, when the oscillator is switched on. The 
loop gain should gradually decrease to unity.

 18.  Hartley, Colpitt, and tuned collector oscillators fall under the category of LC oscillators, whereas 
phase shift and Wien bridge oscillators are RC oscillators.
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Quantum mechanics defines the discrete energy states and also states that emission/absorption of 
energy takes place in discrete packets of energy known as photons. In 1917, Einstein predicted 
about spontaneous and simultaneous emissions; with the help of quantum theory, he was able to 
explain them. In 1954, Townes used simulated emission to construct microwave amplifier, that 
is, microwave amplification by stimulated emission of radiation (MASER). Further, Townes and 
Schawlow extended the principle of MASER to optical region and LASER was developed, that is, 
light amplification by stimulated emission of radiations. Therefore, this chapter deals with LASER 
and phenomena associated with it.

14.1 Preliminary Idea about Transitions

Basically, three types of transitions occur in an atomic system with discrete energy states. Consider 
two allowed energy states for an atomic system. The lower energy level is denoted by E

l
 and the higher 

energy level is denoted by E
2
 as shown in Figure 14.1.

14
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Spontaneous emission
E2

E1

hf
hf hf

hf

hf

Stimulated
absorption
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Figure 14.1 The three transitions between energy emission levels.

The three processes are summed up as follows:

 1. Stimulated absorption: The atom in its lower energy state is also known as ground state. By 
absorbing radiation of photon energy hf, it raises to higher energy level E

2
. The energy difference 

between two energy levels is E
2
 − E

1
. This process is known as induced absorption. B

12
 is the 

probability coefficient atom to go from ground state to excited state.
 2. Spontaneous emission: An atom in higher excited state can de-excite by emitting a photon with 

energy hf, which equal to energy difference between E
2
 and E

1
. This process in called spontaneous 

emission. A
21

 is the probability coefficient for spontaneous emission from excited state to ground state.
 3. Stimulated emission: When a photon of energy hf causes transition of atom from excited state 

to ground state, then it is called stimulated emission. We get a coherent beam light in this case 
because the emitted photon is in coherence with the incident photon. The coefficient for stimu-
lated emission in B

21
.

14.1.1 Mathematical Analysis
Usually, the probability that the atom will undergo a transition depends on the rate at which photons 
interact with atom.

Let us suppose U(f ) is the energy density of atom in its ground state. Then, the probabilities are 
given as follows:

 (i) Probability to go in higher state:

 P B U f1 2 12→ = ( )  (1)

 (ii) Probability to go in ground state (via spontaneous and stimulated emission):

 P A B U f2 1 21 21→ = + ( )  (2)

At thermal equilibrium, the transitions from ground level to higher level is same as that from excited 
state to lower ground level, that is,

  B U f A B U f12 21 21( ) = + ( )  (3)

Let N1 → number of atoms in ground level

  N 2 → number of atoms in excited level

Then Eqn. (3) becomes

N B U f N A N B U f1 12 2 21 2 21( ) = + ( )
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U f
N A

N B N B
( ) =

−

2 21

1 12 2 21

 U f
A

N N B B
( ) =

( ) −

21

1 2 12 21/  (4)

According to Boltzmann’s law the ratio of atoms in ground state to the atoms in excited state is given by

 N N e hf k T
1 2 =

( / )B  (5)

where k
B
 is Boltzmann’s constant and T is absolute temperature.

Substitute Eqn. (5) in Eqn. (4),

 U f
A

e B Bhf k T( ) =
−

21

12 21
( / )B

 (6)

According to Planck’s theory of black body radiation, the energy density is given by

 U f
hf

c e hf k T( ) =
−

8

1

3

3

p

( )/ B
 (7)

Comparing Eqs (6) and (7)

 B B B12 21= =  (8a)

and 
A

B

A

B

hf

c
21

3

3

8
= =

p
 (8b)

From Eqn. (8a), it can be concluded that the probability for stimulated absorption and stimulated 
emission are the same. Eqs (8a) and (8b) are known as Einstein’s relations. A and B are known as 
Einstein’s coefficients.

By looking at Eqs (6)–(8), it can be noted that the stimulated emission and spontaneous emission 
compete with each other. The process of amplification takes place only when the stimulated emis-
sion is more. The principle of stimulated emission is used for the amplification in lasers, and this is 
 discussed in the following section.

14.2 Lasers and their Principle

The principle of LASERS is based on stimulated emission of light radiations as shown in Figure 14.2.
Let us assume that a photon of frequency f passes through a medium consisting of large number 

of atoms. The incident photon may stimulate some atom to go to higher energy state. Then, the atom 
may return to its ground state by emitting a photon along with the incident photon. Hence, one 
photon produces two photon, two photons will produce four photons, and so on. Therefore, only 
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a single incident photon can produce a chain of photons. This chain of photons make very intense 
beam; hence, the bean is amplified. Conclusively, the following two conditions for laser action need 
to be followed:

 1. Optical pumping: This is the process by which the number of atoms in excited state is more 
than the number of atoms in ground state.

 2. Population inversion: Usually, three levels are required for laser action. Ground level, excited 
level, and metastable level (in between ground and excited level). Population inversion is the 
accumulation of more atoms in excited state than in ground state. Metastable state has an aver-
age lifetime of 10−3 sec.

The transition from E E2 3→  is allowed, but E E2 1→  is forbidden. Through the optical 
 pumping, the atoms from ground state are excited to higher energy level E

2
. The atoms undergo spon-

taneous emission and come to level E
3
 from E

2
. The average lifetime of E

2
 is only 10−8 sec. Hence, the 

spontaneous emission is fast and atoms come to E
3
 level, where it can stay for 10−3 sec. Hence, at the 

E
3
 level, the atoms get accumulated. Or, in other words, the phenomenon of population inversion has 

taken place. When the atom returns to ground level E
1
 from metastable E

3
 level, it emits a photon of 

frequency f
E E

h
=

−





3 1 . This photon further stimulates some atom to release photon. This process 

continues, and hence intense and amplified photon beam is obtained. This beam is also known as 
laser beam.

14.3 Properties of Lasers

Laser beam is intense, coherent, and monochromatic. Moreover, it is an electromagnetic beam, which 
means it has electric and magnetic components perpendicular to each other as well as in the direction 
of propagation of light. The properties of lasers are discussed below.

14.3.1 Monochromaticity
In laser light, all the photons are of the same frequency and hence energy hf. Therefore, it produces 
monochromatic light beam with single spectral color. Hence, laser transitions involve well-defined 
energy levels. Laser is generated inside a laser cavity. The laser oscillations sustain on resonant 
 frequencies inside the cavity, and hence laser line gets narrowed down. Hence, the narrower the 
 linewidth, the higher the monochromaticity of laser light.

E2

E3

E1

hf

hf

hf

hf

Stimulated
emission

Optical pumping

(Excited
state)

(Ground
state)

(Metastable
state)

Figure 14.2 Schematic showing LASER action.
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14.3.2 Coherence
An excited atom comes to ground state by emitting photon of energy corresponding to the difference 
in two states, that is,

f
E E

h

E

E
=

−





→
→

2 1 2

1

energy of excited level

energy of ground levell










This type of emission is called spontaneous emission, which is usually characterized by the lifetime of 
excited state. As explained earlier, when another photon of the same frequency induces the emission 
of an atom, then two photons are emitted. Hence, this phenomenon of stimulated emission leads to 
the overall gain of output of light. In this process, a group of photons is created, and they have fixed 
phase relationships with each other. Before proceeding, we should understand the coherence of light. 
Two sources of light are coherent, when there is a fixed or constant phase relationships between their 
wave trains. Similarly, two photons are said to be phase or coherence when the crest of wave emitted 
by one photon falls on the crest of wave emitted by second photon. Hence, the laser beam is having 
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property of coherence due to fixed phase relationships between photons in the active medium. In 
the case of spontaneous emission, no relationship is found between the photons, and hence no net 
amplification is obtained. Moreover, under normal conditions, the atoms are more in ground state, 
whereas stimulated emission demands population inversion. Laser light is coherent due to additive 
phase relationship between photons that usually contribute to its high brightness. Ordinary light 
source is incoherent in nature as shown in Figure 14.3. Laser light has  in-phase wave trains, whereas 
ordinary light has out-of-phase wave trains.

There are two types of coherence: (i) spatial and (ii) temporal.
Spatial coherence represents the correlation between waves at different places at same time, 

whereas temporal coherence represents the correlation between waves at different time but at same 
place. For example, we take two points on wave front [for time = 0]. The phase difference between 
these two points remains the same even after some lapsed time interval, then this wave exhibits perfect 
coherence between these points. Hence, the wave is said to possess spatial coherence between these 
two points. Spatial coherence represents uniphase wave fronts as well as directionality. In contrast to 
this, consider a point on wave front. Let dφ be the phase difference for same point at time t

1
 and t

2
, 

respectively, that is, t
1
 − t

2
 = dt represent phase difference dφ. If the phase difference corresponding to 

all is always the same, then it is known as temporal coherence. But it is important to note that partial 
and spatial coherence are independent of each other.

We can also analyze temporal coherence as explained to combine the wave at time t
1
 with its 

delayed wave at t
2
. Then ∆t is the duration over which the two waves will produce interference  pattern, 

∆t represents coherence time. Corresponding, the coherence length may be estimated as follows:

 l c tc = ∆  (9)

The coherence length is inversely proportional to the band width (Df ):

 
∆

∆
t

f
∝

1
 (10)

Hence, the narrower the frequency band width, the higher the temporal coherence. If multiple 
longitudinal modes are supported by lasers, then the laser output exhibits perfect spatial coherence. 
But the temporal coherence may be partial. The longitudinal modes are spaced at a distance of (c/2L). 
L is the effective length of resonator and c is the velocity. The following relations give the relation 
between number of modes (N), coherence length (l

c
), and resonator length (L) as follows:

Laser light

Coherent Incoherent

Ordinary light

Figure 14.3 (a) Laser light and (b) ordinary light.
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N =
L

lc

 
(11)

The coherence length is the length over which the energy in two waves remains constant. Also for 
spatial coherence, the sphere and plane waves give better output. By using spatial filters, the spatial 
coherence can be increased for example, putting a small pinhole in condenser lens. When light comes 
out of the pinhole, then with increase in distance, the wave front becomes plane. Ordinary light 
 produces light on time scale of about 10−8 sec. Hence, the coherency cannot be easily obtained.

14.3.3 Directionality
Ordinary source of light gives energy and radiation in all the directions. Hence, by placing an aper-
ture in front of ordinary light beam, a directional beam is obtained. But lasers give directional output 
of energy. Laser cavity has mirrors at both the ends; hence, the beam travels back and forth, which 
increases its beam intensity due to stimulated emission of photons. Only the photons that travel along 
the cavity are reflected back. The off-axis photons do not contribute to the total intensity of beams. 
Hence, the laser beam is highly collimated. Collimation refers to the degree up to which the beam 
remains parallel to cavity axis, or in other words the divergence is zero. Hence, the directionality is 
expressed in terms of “full-angle beam divergence.” It is defined as twice the angle which the outer 
edge of beam makes with the axis of beam. As the divergence of beam is related to diffraction effects, 
the angular spread is given by

 q
bl

=

D
 (12)

where b is coefficient depending on amplitude distribution diverge and diameter of beam. D is the 
aperture diameter, and l is the wavelength of light used. Usually, the lasers exhibit 2q (beam diver-
gence) less than 10−3 radian. For an ordinary light, 2q can be more than 10-3 radian for every kilometer 
it traverses.

Equation (12) also demonstrates that divergence increases with wavelength and decreases with 
beam diameter. Hence, a large diameter beam has small divergence. For a Gaussian beam, the half-
angle divergence is given by the following relation:

 
q

pl
h

o
=

w
 (13)

where wo represents beam waist radius. Hence, due to small divergence of laser beams, the plan-
etary distances could be measured with great accuracy.

14.3.4 Intensity and Beam Quality
The output of laser can go up to 109 W for solid-state laser. It is defined as power that is emitted per 
unit solid angle (Ω ). The relation between solid and planar angle is given by the following equation:

 
W

pq
=

2

4
 (14)
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For 1 milli-radian, the solid angle is given by

W
p

= 




( ) = × −

4
1 0 8 10

2 6mrad sterad.

For a laser with 1 mm output diameter and 1 mW output, the radiance can be calculated as

Radiance
Power

Area of beam area of solid angle
=

×

Radiance
10 W

W/m sr
3

=
×( ) × ×( )

= ×

−

− −0 785 10 0 8 10
1 6 10

6 6

9 2

. .
.

The radiance of sun is 106 W/m2 steradian (sr). Hence, laser emits more focused and bright light as 
compared to the radiations of sun. As far as the quality of beam is concerned, the following properties 
of laser come into action:

 (i) Laser can be focused more tightly due to less diffraction.
 (ii) Figure of merit is necessary to determine the characteristics of beam. Hence, beam propagation 

constant M 2 was developed in 1970. According to ISO (11146), M 2 is defined as beam param-
eter product (BPP) divided by l/p.

 
M

w2
=
( )

q

l p

o

/
 (15)

qw
o
 is called beam parameter product, and it is the product of laser beam divergence angle and 

beam waist w
o
 (diameter of beam at its narrowest point). M2 can also be defined as the ratio of BPP of 

original beam to that of Gaussian beam M2 is ≥1  for TEM
00

 laser beam. But for poor-quality beam, 
it can go up to several hundreds. For single-mode TEM

00
 beam, M2 is always 1.

The strength of early lasers was measured in Gillette’s, which was the number of blue razor 
blades a beam could puncture. In 1960, the first working laser was actually demonstrated by 
Theodore Maiman at the Hughes Research Laboratories.

14.4 Types of Lasers

The following section explains the various kinds of lasers depending upon their active medium 
 pumping mechanism and levels.

14.4.1 Ruby Laser
This was the first laser that was successfully fabricated by T.H. Maiman in 1960. Basically, it is a 
solid-state laser. To understand this laser, the meaning of “ruby” must be understood. Ruby is a crystal 
of aluminum oxide (Al

2
O

3
) in which some aluminum ions (Al3+) are replaced by chromium (Cr3+) 

ions. Usually, 0.05 percent Cr
2
O

3
 is the threshold value of doping. The red color of ruby laser is due 

to chromium ions. Usually, Al
2
O

3
 atoms do not participate in lasing action. It only acts as host for 
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chromium ions. The ruby crystals are grown in rods of length 2–30 cm and diameter between 0.5 
and 2 cm. The end faces of this laser are made parallel for coherent output. One face is fully reflect-
ing, whereas the second face is partially reflecting. Hence, the faces are polished with Ag as per the 
desired surface. These faces form the end of resonant cavity. During the operation of this laser, very 
high temperature is produced. Hence, the ruby rod is placed inside liquid nitrogen (T = 77 K) in 
order to keep the rod cool.

Active medium is chromium ions and optical resonator cavity system is formed with the help 
of completely and partially silvered faces at the end. For pumping, helical xenon flash lamp is 
used. Ruby rod is placed inside the xenon lamp, so that population inversion can be obtained 
using optical pumping. Furthermore, the xenon lamp is connected to capacitor through which 
it can discharge energy frequently. Almost a few thousand joules of energy is released in few 
 milliseconds, which results in Megawatt power output for the laser. The schematic of ruby laser 
is shown in Figure 14.4.

Ruby laser is basically a three-level laser system. E
1
 is the ground level, E

2
 and E

3
 are the excited 

levels, and E
4
 is the metastable level. The optical pumping raises the chromium ions to E

2
/E

3
 level 

from ground level through stimulated absorption. Basically, E
2
 and E

3
 are very close to each other, 

and therefore considered as a single band. These levels are also known as pumping levels, as they are 
responsible for the lasing action. Figure 14.5 illustrates the lasing action.

When atom absorbs 6600Å and 4000Å wavelength radiation, then it excites to level E
2
 and E

3
 

respectively. During interaction with crystal lattice, the Cr3+ ions loose some energy and decay to 
metastable state E

4
 through non-radiative transitions (or no photons). The lifetime of Cr3+ in metastable 

state is 0.003 sec; hence, they can stay in metastable state for longer time periods. After the popula-
tion inversion is achieved, some of the chromium may come back to ground level via spontaneous 

Laser
beam C

Xenon f lash tube

Ruby rod

Fully polished surface

Partially reflecting surface (silver polished)

Figure 14.4 Schematic of ruby laser.
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Figure 14.5 Lasing action and energy-level diagram.
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emission by emitting photon of wavelength 6943Å. This photon will travel through the ruby rod and 
gets reflected between the end reflecting plates. It will get reflected until it stimulates some excited 
atom, thereby stimulating it to emit a coherent photon. Hence, the reflections result in stimulated 
emission resulting in net amplification of laser light. These emitted photons will stimulate more and 
more chromium ions, and hence series of photons are produced. Until the flash lamp is active, it will 
keep on maintaining population inversion, and therefore lasing action. Therefore, output is pulsed in 
ruby laser.

Ruby laser produces very high output of radiations (104–106 W) with wavelength 6943Å. 6927Å 
photons do not contribute to lasing action. The ruby laser requires high power pumping source and 
the output is not continuous. Further, these lasers find potential applications in holography, welding 
as well as cutting.

Lasers we come across today operate at a low level of power. Lasers in DVD players will be 
around 5–10 mW, CD-ROMs drives will be around 5 mW, and recordable CD drives will be 
around 100 mW. The most powerful laser is in California and recorded at 1.25 PW.

14.4.2 He–Ne Laser
It was the first gas laser consisting of 90 percent helium and 10 percent neon gas. This gas mixture 
is the active medium. Figure 14.6 shows the schematic of He–Ne laser. The tube is made up of glass 
consisting of narrow capillary tube at the center. The electrical  discharge is directed through this 
capillary tube. The cross-section of bore is small in order to produce high current densities. The high 
reflecting mirror and less reflecting mirror are placed opposite to each other, and they form resonant 
cavity. The tube consists of small metallic cathode and anode. The direction of current is through 
cathode to anode. The gas reservoir provides the gas that maintains the tube pressure as well as the 
leakage losses inside the tube. The He:Ne ratio can vary from 5:1 to 20:1.

For optical pumping, electrical discharge is used. A high-power incandescent lamp or flash lamp is 
used for population inversion. Upon passing discharge through gaseous mixture, electrons are acceler-
ated, which collide with helium atoms and raise them to higher energy levels as shown in Figure 14.7.

When helium atoms move through the lasing medium, then they collide with neon atoms. Upon 
collision with neon atoms, the helium atoms transfer some of their energy to neon atoms. Hence, the 
neon atoms get raised to excited state/metastable state, and furthermore the population inversion is 
achieved. Therefore, pumping source excites helium atom that transfers its energy to neon, and neon 
is involved in lasing action.

The transition occurring from E E4 7→  produces infrared photon with wavelength 3.39 μm. The 
transition from E E4 8→  produces more energetic photon corresponding to wavelength 632.8 nm. 
This transition corresponds to red-light of He–Ne laser. E

5
 to E

8
 transition also produces as photon of 

Glass envelope

Cathode

Laser
output

Bore-tubeAnode

Reflector
He-Ne active gas reservoir

Figure 14.6 He–Ne laser tube.
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wavelength 1.15 μm is infrared region of spectrum. When the neon atom drops from E E8 6→ , then 
photon is emitted corresponding to wavelength 6000Å. Hence, the wavelength 632.8 nm is the main 
output of He–Ne laser, but the photons of 1.15 and 3.39 μm can also be obtained if desired He–Ne laser 
is a  low-gain system, but good coherence is obtained in it. The tube length is 10–100 cm and lifetime can 
go up to 2000 h, He–Ne laser require high power in but and leakage lasses are also predominant. In order 
to avoid the unwanted photons of undesired wavelengths (1.15 μm, 3.39 μm), the mirrors are coated 
with high reflectance of 632.8 nm. A magnet may also be placed near the laser tube that can provide sup-
pression of infrared wavelength. This makes, the structure of He–Ne lasers complex sometimes.

Lasers are grouped into classes Class of 1–5 that indicate level of dangers. Reaching level 5 
means permanent blindness as well as burning skin. Sometimes, the laser light seems to be harmless, 
but the continuous contact can cause skin injuries.

14.4.3 CO
2
 Laser

CO
2
 lasers were invented by Kumar Patel of Bell Labs in 1964. These CO

2
 lasers produce continuous 

output and produce infrared light. The active medium is inside a tube, whose end mirrors are silvered. 
One mirror is fully silvered for high reflectivity and other is partially silvered for obtaining power 
output. The windows of lasers are made of either germanium or zinc selenide. Diamond windows 
can also be used for these lasers. The active laser medium consists of CO

2
 (10–20 percent), nitrogen 

(10–20 percent), hydrogen (H
2
), and xenon (Xe). Remaining component is helium (He

2
).

In CO
2
 laser, the transitions occur between a rotational sublevel of vibrational level and rotational 

level of lower vibration state. By passing a gas discharge through the medium, and outputs are produced 
at 10.6 and 9.6 μm. N

2
 gas increases the efficiency of CO

2
 laser. In this laser also N

2
 gets excited which 

excites CO
2
 molecules. Hence, CO

2
 are lasing atoms. Nitrogen is excited first, and it holds its excited 

state for a long time. When they collide with CO
2
 molecule, they are raised to higher excited levels 

and population inversion is achieved. Figure 14.8 shows the energy-level diagram for CO
2
 laser.

N
2
 is an excellent partner for CO

2
 as the energy difference between ground level of nitrogen and 

excited state of nitrogen is almost equal to that required for exciting CO
2
 molecule. The laser light is so 

powerful as the gas is surrounded by mirrors, which reflects a part of light passing through the tube. This 
reflection causes more nitrogen molecules excited, which ultimately excites more CO

2
 molecule, thereby 
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Figure 14.7 Energy-level diagram for He–Ne laser.
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leading to population inversion. Hence after a certain intensity, when it comes out of laser, the output is 
quite high. This gives continuous power output, which is most powerful among gas lasers. This laser can 
be used for cutting, drilling, and welding applications. Due to its low attenuation in atmosphere, it can 
be used in optical radar systems, etc. These lasers may also be used for engraving and surgical procedures.

Cold lasers are used for acupuncture, engraving, detect and killing tumors. There is a new laser that 
can detect cancer and diabetes called the “breathalyzer.” Lasers are used for hair removal, eye surgeries, 
and tattoo removal. Clear scan laser technology can rid you of vascular lesions, spider veins, and skin 
discolorations.

14.4.4 Nd: YAG Lasers
It is a solid-state laser with four levels. The active medium is neodymium (Nd) and Yttrium aluminum 
garnet (Y

3
Al

5
O

12
). It was developed by J.E. Geusic, L.G. Van Vitert and H.M. Marces in 1964. Nd3+ 

ions are present as subititutional impurities on lattice sites being occupied by yttrium ions and YAG 
acts as host. The optical pumping is done by krypton arc lamp and sometimes by xenon lamp also.

YAG does not directly participate in lasing action. When Nd3+ is present inside the YAG lattice, 
then it is under the effect of crystal field exhibited by surrounding atoms. The crystal filed interacts 
with impurity Nd3+ atom in various ways depending on structure, strength, and symmetry. For free 
Nd3+, some transitions are forbidden; but when they are under the influence of field, those transitions 
become allowed. Figure 14.9 represents the schematic of Nd: YAG laser. Figure 14.10 represents the 
energy-level diagram for Nd: YAG laser.
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Figure 14.8 Energy-level diagram for CO
2
 laser.
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Figure 14.9 Nd: YAG laser.
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The wavelength of 7200–8000Å excites the atoms from ground state to higher state. From E
3
 and E

2
 

states, they come back to E
4
 level via nonradiative transitions. But E

4
 state is metastable state. Hence for E

4
 

level, the population inversion is achieved. When the Nd comes from upper metastable level (E
4
) to lower 

metastable level (E
5
), then photon of wavelength 1.06 μm is emitted, which is the laser output.

14.5 Application of Lasers

 1. It can be used in metallurgical applications because lasers produce localized heating that helps in 
welding and cutting proposes.

 2. Laser beams are used in under water communication due to high coherent nature of optical 
photons.

 3. It is also helpful in finding distance between stars and planets.
 4. Lasers are used for skin and body resurfacing, cancer diagnosis, and dental surgeries.
 5. Cooling of atoms to externally low temperatures by slowing down atoms is also done by lasers. 

“Optical molasses” is the term used for cooled atoms.

14.6 Holography

Holography is a technique for the re-construction of 3-D image for an object. Holography involves 
the following stages:

 1. Recording the image of object using interference of light waves from the source and that reflected 
from object.

 2. Using the diffraction of waves, the image of object is to be reconstructed.

E2

E3

E1

E4

E5

hf hf

Non-radiative transitions

1.06 µm

F3/2

J11/2
7200 –

8000-A°

4

4

Figure 14.10 Energy-level diagram for Nd: YAG lasers.
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Figure 14.11 Principle of holography.
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Figure 14.11 shows the principle of holography. Light waves scattered from the object and from the 
beam derived from laser source expose the photographic plate. These two beams are highly coherent, 
and they produce interference pattern. This pattern is recorded in the photographic emulsion and 
forms a hologram. The reference beam light diffracts through the hologram, but most of it passes 
straight. Hologram is window for object scene. After illuminating it with laser light, it can be viewed 
with different angles.

SUMMARY

The chapter deals with lasers, that is, light amplification by stimulated emission of radiations. 
Stimulated emission, optical pumping, and population inversion are prerequisites for lasers. A21 , B21

and B12  are the Einstein’s coefficients. By optical pumping, the atoms from ground state are excited to 
excited state. This further yields population inversion, that is, accumulation of more atoms in excited 
state than ground state. There is a metastable state between ground and excited state, having an average 
lifetime of 10 3− sec. Lasers are monochromatic and coherent monochromaticity means the photons 
are of same frequency. Two types of coherence are there for lasers, that is, spatial and temporal. Spatial 
coherence represents the correlation between waves at different places at same time, whereas temporal 
coherence represents the correlation between waves at different time but same place. Lasers are also 
very intense and directional in nature. Various kinds of lasers have been studied depending on the type 
of active medium used. For ruby lasers, aluminum Al3+( )  and chromium ( )Cr3+  are used as active 
medium, and Cr3+  ions give red color to lasers. The output is produced at 6943Å . For He–Ne laser, 
90 percent helium and 10 percent neon are used as active medium, although neon is involved in lasing 
action. The output occurs at 632.8 nm for He–Ne laser. CO2  lasers have CO N H Xe2 2 2, , , , and 
He as active medium, and the outputs are produced at 10.6 and 9 6. µm . For Nd:YAG lasers, active 
medium is neodymium and yttrium aluminum garnet. Output is produced at 1 06. µm . Holography 
technique is used to construct 3-D image for any object.

SOLVED PROBLEMS

Q.1: Sodium D2  line has coherence length of 2.5 cm. Obtain the coherence time.

Ans: Coherence time ∆t
l

c
( ) = c

Here, lc cm= 2 5.  and c = ×3 108 m/s

∆t =
×

×

−2 5 10

3 10

2

8

.
sec

∆t = ×
−0 833 10 10. sec

∆t = ×
−8 33 10 11. sec

Q.2: The aperture of laser light is 1 cm and wavelength 5890Å . This laser light is sent to moon 
having a distance of 4 108

× m  from earth. Obtain the (i) angular spread and (ii) areal spread upon 
reaching the moon’s surface.
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Ans: (i) Angular spread is given by

q
l

=

d
Here, d = 1 cm  and l = 5890Å

q =
×

−

−

5890 10

10

10

2

 

l q

q

q q

=

≈

















d sin

sin

For small

q = ×
−5890 10 8 rad

A

B

C

q

( )ii Areal spread = pr 2

 
= 





p

BC

2

2

We will calculate BC first:

We know angle
arc

radius
=

 
q =

BC

radius

 Here, q = ×
−5890 10 8  rad and radius m= ×4 108

 BC = × × ×
−5890 10 4 108 8

 BC = 23560 m

Hence, areal spread = × ( )
p

4
23560

2

 Areal spread m= ×4 35 108 2.
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Q.3: Obtain the intensity of laser beam with 20 mW power and diameter of 1.2 mm. (Assume the 
intensity to be uniform across the beam.)

Ans:

Power mW WP = = ×
−20 20 10 3

diameter mm md = = ×
−1 2 1 2 10 3. .

Intensity
Power

Area
= =

×






−20 10

2

3

2

p
d

Intensity =
× ×

× ×( )

−

−

20 10 4

3 14 1 2 10

3

3 2
. .

Intensity = × ×
−17 692 10 103 6.

= 17692 W/m2

Intensity kW/m= 17 692 2.

Q.4: Calculate the intensity for laser beam if it focuses on an area equal to l 2  for ruby laser 
l =( )6940Å , given the laser radiates energy at a rate of 2 mW.

Ans: P = = ×
−2 2 10 3mW W

and l = = ×
−6940 6940 10 10Å m

Hence,

Area = l 2

= ×( )−6940 10 10 2

= ×
−48163600 10 20 2m

Intensity
Power

Area
( )I =

=

×

×

−

−

2 10

48163600 10

3

20
2W

m
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=

×2 10

48 0

17

16360

=

×20000000 10

48163600

10

= ×0 4152 1010. W/m2

= ×4 152 109. W/m2

Q.5:  A ruby laser emits pulse of 2 J and wavelength 6940Å . Obtain the minimum number of 

chromium Cr3+  ions in ruby.

Ans: E = 2 J

and l = 6940Å

We know

E nh= f

E
nhc

=

l

E
nhc

=

l

n
E

hc
=

l

n =
× ×

× × ×

−

−

2 6940 10

6 63 10 3 10

10

34 8.

n = × × ×
− −697 838 10 10 1010 34 8.

n = ×697 838 1016.

n = ×6 9 8 1018. 7
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Q.6:  The power of a laser beam is 30 mW. It has an aperture of 3 10 3
×

− m  emitting wavelength of 
7200Å . The beam is focused with lens of focal length 0.3 m. Obtain the areal spread of image 
and line spread.

Ans:

P = ×
−30 10 3 W

d = ×
−3 10 3 m

l = 7200Å

f = 0 3. m

Angular spreadq
l

=

d

q =
×

×

−

−

7200 10

3 10

10

3

= ×
−2400 10 7

= ×
−2 4 10 4. rad

The line spread is given by the product of angular spread and focal length:

Line spread = × ×
−2 4 10 0 34. .

= ×
−0 72 10 4. m

OBJECTIVE QUESTIONS

 1. Lasers was discovered by

 (a) Einstein (b) Newton
 (c) Townes and Schawlow (d) None of the above

 2. B12  represents the probability of transition for

 (a) ground state to excited state (b) ground state to metastable state
 (c) excited state to ground state (d) excited state to metastable state

 3. A21  represents the probability coefficient for transition from

 (a) ground state to excited state (b) excited state to ground state
 (c) excited state to metastable state (d) ground state to metastable state
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 4. Probability to go in higher state is given by

 (a) B U f21 ( )  (b) B U f12 ( )

 (c) A U f21 ( )  (d) None of the above

 5. Probability to go in ground state is given by

 (a) B f12 U ( )  (b) B U f21 ( )

 (c) A B U f21 12+ ( )  (d) A B U f21 21+ ( )

 6. The condition at thermal equilibrium.

 (a) B U f A U f12 21( ) = + ( )  (b) A B U f B U f21 12 21= ( ) + ( )

 (c) B U f A B U f12 21 21( ) = + ( )  (d) B A21 21=

 7. The Boltzmann’s law states that

 (a) 
N

N
e hf k T1

2

=

( / )B  (b) 
N

N
e hf k T2

1

=

/ B

 (c) N N e hf k T
1 2 =

/ B  (d) N
N

e f k T1
2

=

/ B

 8. The ratio of constant A and B is

 (a) 
A

B

c

hf
=

3

38p
 (b) 

A

B

c f

h
=

3 3

8p

 (c) 
A

B

c

f
=

4 3

3

p
 (d) 

A

B

hf

c
=

8 3

3

p

 9.  During optical pumping, the number of atoms is excited state is _____ than the number of atoms 
in ground state.

 (a) less (b) equal
 (c) more (d) none of the above.

 10. Metastable state lies

 (a) in between ground and excited level (b) below ground state
 (c) above excited state. (d) exists as a separate entity.

 11. The average lifetime of metastable state is

 (a) 10 15− sec  (b) 10 10− sec

 (c) 10 8− sec  (d) 10 3− sec

 12. The average lifetime of excited state is

 (a) 10 10− sec  (b) 10 8− sec

 (c) 10 13− sec  (d) 10 3− sec
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 13.  If metastable level is E3  and ground state is E1 , then the atom on returning from E0  to E1  will 
emit a photon of frequency (f ):

 (a) f
E

h
=

−





1 3E
 (b) f

h

E E
=

−( )1 3

 (c) f
E E

h
=

−





3 1  (d) f
E

h
=

3

 14. The photons in laser light have

 (a) same frequency and energy (b) different frequency and energy
 (c) same frequency and different energy. (d) different frequency and same energy

 15. Higher monochromaticity of laser light is determined by

 (a) broad line width (b) energy barrier
 (c) narrow line width (d) ground state

 16. Laser beam is coherent due to

 (a) high amplification (b) high monochromaticity
 (c) narrow line width (d) fixed phase relationships among the photons

 17. The condition for stimulated emission is

 (a) amplification (b) optical pumping
 (c) population inversion (d) none of the above

 18. Spatial coherence represents the relation between waves

 (a) at same time only (b) at same place only
 (c) at different places and same time (d) at same place and different time

 19. Temporal coherence represents the relation between waves

 (a) at different time but at same place (b) at same time but different place
 (c) at same time and same place (d) at different time and different place

 20. Spatial and temporal coherence are independent of each other. (Yes/No)

 21. The coherence length is given by

 (a) l c tc = / ∆  (b) l c tc = ∆

 (c) D t=n / ∆  (d) D t=n∆

 22. The resonator length is given by

 (a) N Ll= c  (b) N
l

L
=

c

 (c) N
L

l
=

2

c

 (d) N
L

l
=

c
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 23. The off-axis photons also contribute to the intensity of laser beam. (Yes/No)

 24. The half-angle divergence for a Gaussian beam is given by

 (a) q pln = wo  (b) 
pl

q
wo

= n

 (c) q
pl

qn n= =

wo  (d) pl q= n

 25. For 1 milli-radian angular spread of laser, then the solid angle is given by

 (a) 0 8 10 6. × − sterad  (b) 1 10 5
×

− sterad

 (c) 0 8 10 8. × − sterad  (d) 0 9 10 7. × − sterad

 26. The beam parameter is given by

 (a) 
q

wo

 (b) qwo

 (c) 
wo

q
 (d) none of the above

 27. Ruby laser contains _______ doping of Cr O32 .

 (a) 0.01% (b) 0.02%

 (c) 0.05% (d) 0.5%

 28. Al O2 3  atoms do not participate in lasing action. (Yes/No)

 29. To keep the ruby laser cool, the ruby rod is place inside

 (a) liquid N
2 

(b) liquid H2

 (c) liquid (He) (d) O
2

 30. Ruby laser uses _____ for optical pumping.

 (a) CO2  (b) electric discharge

 (c) plasma (d) xenon flash lamp

 31. The photons contributing to lasing action of ruby laser are

 (a) 6943Å  (b) 6927Å

 (c) both (a) and (b) (d) None of these

 32. Ruby laser gives continuous output. (Yes/No)

 33. He–Ne laser have composition

 (a) 10% helium and 90% neon (b) 50% helium and 50% neon
 (c) 20% helium and 80% neon (d) 90% helium and 10% neon
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 34. Which atom is involved in lasing action of He–Ne laser?

 (a) Helium (b) Neon
 (c) Both helium and neon (d) Neither helium nor neon

 35. Which photons can be obtained during lasing action of He–Ne laser

 (a) 632 8. nm  (b) 1 15. µm

 (c) 3 39. µm  (d) All of these

 36. The active medium of CO2  laser consist of

 (a) CO2  (b) N
2

 (c) H2  and xenon (d) All of these

 37. For CO2  laser, the outputs are produced at

 (a) 10 6. µm  (b) 9 6. µm

 (c) Both (a) and (b) (d) 12 8. µm

 38. Yttrium aluminum garnet ( Y Al O23 12 ) is active medium for Nd: YAG laser. (Yes/No)

 39. What range of wavelength is used to excite the atoms from ground to excited state in Nd: YAG laser?

 (a) 7200 8000− Å  (b) 6000 7000− Å

 (c) 9000 9500− Å  (d) 5500 6500− Å

 40. Holography is technique used to construct

 (a) 2-D image (b) 3-D image
 (c) 1-D image (d) All of these

ANSWERS

 1. (c)

 2. (a)

 3. (b)

 4. (b)

 5. (d)

 6. (c)

 7. (a)

 8. (d)

 9. (c)

 10. (a)

 11. (d)

 12. (b)

 13. (c)

 14. (a)

 15. (c)

 16. (d)

 17. (c)

 18. (c)

 19. (a)

 20. (Yes)

 21. (b)

 22. (d)

 23. (No)

 24. (c)

 25. (a)

 26. (b)

 27. (c)

 28. (Yes)

 29. (a)

 30. (d)

 31. (a)

 32. (No)

 33. (d)

 34. (b)

 35. (d)

 36. (d)

 37. (c)

 38. (Yes)

 39. (a)

 40. (b)
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Micro-Assessment Questions

 1. What is stimulated emission?
 2. What are lasers?
 3. Give the applications of lasers. What is the basic principle of lasers?
 4. What is the difference between masers and lasers?
 5. List the properties of lasers.
 6. What is population inversion in lasers?
 7. Define optical pumping. How can it be done in ruby lasers?
 8. What is coherence?
 9. Differentiate between spatial and temporal coherence.
 10. What is coherence time and length?
 11. Which process is the backbone of lasing action of lasers?
 12. Is ruby laser a three- or four-level laser?
 13. Differentiate between three- and four-level laser.
 14. Give the angular spread of lasers.
 15. What do you understand by figure of merit?
 16. Explain the beam parameters.
 17. Give the source of pumping in Nd–YAG laser.
 18. Which pumping is used for carbon dioxide lasers.

Critical Thinking Questions

 1. What is spontaneous emission? How does it differ from stimulated emission?
 2. Why lasing medium must have at least three energy levels?
 3. Explain the role of neon in He–Ne lasers.
 4. Give the energy-level diagram for He–Ne lasers.
 5. Give the energy-level diagram for carbon dioxide lasers.
 6. Differentiate between optical and electrical pumping.
 7. Give the basic principle of holography.
 8. How is metastable state different from excited state?
 9. List the medical uses of lasers.
 10. Calculate the Einstein’s coefficients using probability function.
 11. What is the coherence length for laser beam having frequency bandwidth of 2 kHz?

Graded Questions

 1.  What is the monochromaticity for light of wavelength 5,475 angstrom emitted by source having 
temporal coherence of 10−9 sec?

 2.  Find out the temperature at which the stimulated and spontaneous emissions for 800 nm light 
are equal.

 3. Find out the coherence length corresponding to bandwidth of 107 Hz.
 4. Give the energy-level diagram for Nd–YAG laser.
 5.  The coherence length for Na light of wavelength 5,890 angstrom is 2.94 × 10−2 m. Calculate the 

number of oscillations corresponding to coherence length and time.
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 6. With a neat labeled diagram, give the construction and working of a ruby laser.
 7. Give the construction and working of He–Ne laser.
 8. Give the construction and working of Nd–YAG laser. Is it three- or four-level laser?
 9. Give the energy-level diagram for carbon dioxide laser.
 10. Why are laser beams considered to be intense beams?
 11. Describe holography.

Remember and Understand

 1. Laser works on the principle of stimulated emission of radiations.
 2.  Population inversion is necessary for lasing action. For inducing population inversion, optical or 

electric pumping is carried out.
 3.  For a light source, the coherence length is defined as the length over which phase relationship 

holds good.
 4.  The frequency spread is inversely proportional to coherence length. This spread is attributed to 

Doppler broadening, natural damping, and collision broadening.
 5.  In ruby lasers, the lasing action is produced by chromium ions; whereas in He–Ne laser, neon 

atoms are responsible for lasing action.
 6. Laser light is highly directional and monochromatic in nature.
 7.  The helium neon lasers have 90 percent helium and 10 percent neon as active medium helium 

atoms transfer their energy to nean atoms, and neon atoms contribute to lasing action.
 8. For CO

2
, laser, the active medium consist of CO

2
, N

1
, H

2
, Xe, and He.

 9.  In Nd:YAG lasers, YAG does not dirextly participate in lasing action. Nd3+ ions are present as 
substituted impurities on lattice sites are being occupied by yttrium ione.

 10.  Holography is reconstruction of 3-D image for an object that records the image of objects using 
inter-ference of light waves.
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Optoelectronics combine light and electricity together in one regime. Optoelectronic include devices 
operating in electrical to optical regime or vice versa. The fiber optics, remote-sensing systems, and 
laser systems fall under the category of optoelectronics. In this chapter, we will discuss optical fibers and 
semiconductor diode lasers.

15

Optoelectronics

Learning Objectives

 To understand the relation of light and electricity

 To learn about optical fibers as an important part in long distance communication

 To know about the components of optical fiber, that is, core, cladding, and sheath

 To get insight of single-mode and multimode fibers

 To know about acceptance angle, acceptance cone, and numerical aperture

 To understand about various power loss in optical fibers such as Rayleigh scattering loss, microbend 
and macrobend losses, material loss, temperature losses, mode leaking, and mode coupling losses

 To distinguish between fiber attenuation and the attenuation coefficient

 To understand semiconductor diode lasers and its voltage compatibility with the integrated circuit

 To know about band structure and density of states

 To understand the concept of effective mass of electron as a function of wave vector k

 To get insight of Fermi–Dirac distribution.

 To understand Schawlow–Townes condition for lasers and threshold condition for sustained 
oscillations

 To understand the quasi-Fermi levels for semiconductors, in terms of equilibrium time between 
bands and the carrier scattering time

 To know about lasing action of semiconductor laser (GaAs)

 To learn about direct and indirect semiconductor

Keywords:  fiber optics, numerical aperture, step index, multimode index, semiconductor diodes, 
Fermi energy, quasi Fermi levels
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15.1 Introduction to Fiber Optics

Usually, the communication is through electromagnetic radiations. The electromagnetic radiations 
are modulated using suitable carrier waves. This communication is termed as optical  communication. 
But optical communication has many disadvantages including small bandwidth and attenua-
tion losses. Optical fibers have resolved this problem. The branch of physics which deals with the 
 phenomena related to transmission of light through transparent fiber or glass is optoelectronics (John 
Tyndall invented  optical fibers in 1870). The optical fiber has very small loss of signal, hence they 
are very suitable for  long-distance transmission. They have more efficiency than the coaxial cable. 
The optical fibers are made up of  polymeric plastic which are quite resistant to external disturbances. 
These fibers  contain information that can be transmitted at microwave frequencies.

John Tyndall was born and brought up in ireland. His 
father was a local constable. in 1839, Tyndall joined the 
irish Ordance Survey. He also did some survey work in 
England. in 1840, he worked in railway construction 
department. He started teaching at Queenwood 
College Hampshire in 1847. Tyndall obtained his PhD 
in 1848 from Germany, and most of his scientific work 
was in the field of atmospheric gases. Tyndall became 
a lecturer in physics Royal institution in london in 1850.

JOHN TYNDALL

15.2 Optical Fibers

Optical fiber is used in optical communication as a waveguide. It is cylindrical in shape and is made 
from transparent dielectric material. It consists of core, clad, and sheath. These components can be 
described as follows:

 (i) Core: It is the innermost part of optical fiber. This is made of transparent dielectric material 
such as plastic or glass. This core is responsible for signal propagation.

 (ii) Cladding: Core is surrounded by cladding of almost 125 µm such that m
clad

 < m
core

. The  cladding 
keeps the light confined to core. This is also made of plastic or glass.

 (iii) Sheath: Sheath is a polyethylene jacket that surrounds cladding. It provides safety to core as 
well as cladding from environmental conditions. The cross-section of optical fiber is shown in 
Figure 15.1.

The principle of communication in optical fibers is based on the principle of total internal reflection 
(TIR) as shown in Figure 15.2.
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Figure 15.1 Optical fiber’s cross-section.
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Figure 15.2 Total internal reflection.
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Figure 15.3 (a) Single mode and (b) multimode fiber.

The core has refractive index m
1
 and cladding m

2
 such that m

2
 < m

1
. According to the principle of TIR, 

 whenever light ray travels from denser to rarer medium then at a certain angle known as critical angle, 
the light ray is only reflected in the same medium. From Figure 15.1, it is clear that when light ray 
strikes the core at angle greater than critical angle (critical angle is the angle of incidence at which 
the refracted ray grazes along the interface), then the ray is totally reflected. This process repeats, and 
hence the ray is transmitted along the fiber.
Mode: When many parallel light rays are totally internally reflected through a single-fiber, such that 
all the rays suffer from equal reflections and hence take same time to travel, these rays are said to 
constitute a mode. Parallel light rays constitute single mode and nonparallel rays make multimode as 
demonstrated in Figure 15.3(a)–(b).
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For multimode fibers, different rays take different time to travel, which is known as time dispersion. 
Sometimes, due to time dispersion, the information gets distorted due to overlapping of pulses. 
This distortion can be reduced by taking the diameter of core and wavelength of light of same 
order.The propagation of light ray inside an optical fiber continues until and unless the fiber is having 
some shape distortion, especially any sharp bend in fiber.

15.3 Acceptance Angle and Cone

In Figure 15.4, the rays enter at the launching end, m
o
 is the refractive index of air, m

1
 is refractive 

index of core, and m
2
 is refractive index of cladding (m

2
 < m

1
).

m1

m2

mo

DB

A
C

qo
qr

qq

qi
O

Figure 15.4 Light path in fiber.

θ
i
 is the incident angle and θ 

r
 is refracted angle. When light AO is refracted at an angle θ 

r
, then it 

strikes core – cladding interface (OB ) at an angle θ. Here θ is greater than the critical angle (θ 
c
) such 

that ray undergoes TIR and propagates through fiber.
Applying Snell’s law at point O.

 m q m qo i rsin sin= 1

m q m qo isin sin= −( )1 90

 m q m qo isin cos= 1

sin cosq
m

m
qi

o

=

1

 
(1)

At critical angle, q q=
c

  
[At critical angle, incidence is maximum]

 
sin cos

max
q

m

m
qi

o
c( ) = 1

 
(2)

Critical angle can also be obtained from Snell’s law:

 m q m1 2 90sin sinc = °           [at point B]



15.3   ACCEPTAnCE AnGlE AnD COnE  •  595
sinq

m

m
c =

2

1

cosq
m

m
c = −







1 2

1

2

 
 

(3)

Substituting Eqn. (3) in Eqn. (2),

sin
maxi

o o

( ) = − =
−m

m

m

m

m m

m

1 2
2

1
2

1
2

2
2

1
 

(4)

Usually, mo = 1  as the surrounding medium is air and qi max( )  can be regarded as q
o

sinq
m m

m
o

o

=

−1
2

2
2

 
(5)

Maximum angle of incidence q
o
 is known as acceptance angle of the fiber. Following are two impor-

tant terms associated with the propagation of waves inside the optical fiber:

 (a) Acceptance angle: The maximum value of angle of incidence at the launching end (entrance 
of optical fiber) so that the ray just propagated through the core of optical fiber is known as 
 acceptance angle.

 (b) Acceptance cone: The acceptance cone is 2q
o
, that is, only the rays that are contained within 

cone of full angle 2q
o
 can propagate and transmit to the other end.

In addition to this, the fractional difference between of refractive index is given by following expression:

∆ =
−m m

m

1 2

1

 (6)

Hence, the ratio of difference between refractive index of core and cladding to refractive index of core 
is known as fractional refractive index change. As m m1 2> , therefore ∆ is always positive and is of the 
order of 0.01. Further, we can describe numerical aperture of fiber. Numerical aperture is defined as 
the sine of angle of acceptance for optical fiber.

 NA = sinqo

 
NA = −

1
1
2

2
2

m
m m

o  
[from Eqn. (5)]

 
NA =

−( ) +( )1 1 2 1 2m m m m

mo  
(7)
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Usually mo ≈1 , hence

NA = −( ) +( )m m m m1 2 1 2

NA = +( )m m m1 2 1∆  [from Eqn. (6)]

m m1 2≈ , hence, we can take

NA = m1 2∆  (8)

Numerical aperture is also known as figure of merit for optical fiber. Basically, it measures how 
much light can be accepted by the fiber. Its value is usually between 0.13 and 0.3 for long-distance 
 transmission and 0.3–0.5 for short-distance communications. NA depends only on fractional 
 refractive index change and refractive index of core and cladding. It is independent of incident and 
refractive angles. Small numerical aperture means fiber will accept small light and vice versa.

15.4 Types of Optical Fibers

The optical fibers can be classified on the basis of mode operation, that is, whether the fiber can 
provide path to a single ray of many rays. Hence, optical fibers can be classified as single mode and 
multimode fibers. There is another parameter that should be taken into account, that is, V parameter. 
The V parameter is given by

V kr= m1 2D   (9)

Where r is radius of core and k = 2p
l

V is normalized frequency parameter and determines the number of modes that could be 
 supported by the optical fibers. 2.405 is V parameter for most of single-mode operation. When, we 
plot  refractive index versus the distance from core axis, we get index profile. The index profile can be 
step index type and graded index type. Usually, the single-mode fiber exhibits step index type. But 
multimode fiber can have step index as well as graded index profile, and it is discussed below.

15.4.1 Single-Mode Step Index Fiber (SMSIF)
For the step index fibers, refractive index of core are m1 is constant m m1 2>( ). The refractive index 
decreases abruptly at the interface of core and cladding, that is, from m m1 2→ . Clad also has uniform 
value of refractive index. The refractive index profile is shown in Figure 15.5.

The profile is same as that of step; hence, its name is step index fiber. Usually, the core of SMSIF 
is made up of germanium (Ge)-doped silicon. The fraction refractive index difference is almost 0.2 
percent. The cladding that surrounds core is made up of phosphorous oxide-doped silica and the ∆ is 
almost 0.02 percent. The V parameter for step index fiber is less than 2.405 laser is the light source for 
them. Single-mode step index fiber (SMSIF) can transmit the information to a longer distance. and, 
the dispersion factor is very small. SMSIF has very thin core so that only one mode can propagate. 
These smaller cores may make the coupling of light difficult.
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15.4.2 Multimode Step Index Fiber (MMSIF)
The diameter for multimode step index fiber  is large so that multiple modes can  propagate through 
the core (fig 15.6). Different modes take different time to travel as they travel different  distances 
(Figure 15.3(b)). Hence, different modes reach at different time and this effect is known as modal 
dispersion. For MMSIF, V parameter is greater than 2.405.

Maximum number of modes that are supported by MMSIF is

 
N

V
=

2

2
 (10)

The cut-off wavelength is given by the following equation:

 
l

l
cut =

V

2 405.
 (11)

Refractive index

Distance from core (r)

r2 = 100−250 µm

r1 = 50−200 µm

Figure 15.6 Index profile for MMSIF.

Refractive

index

r1 = 2 −15 µm

m2 m1

r2 = 60−70 µm

Distance from core (r)

Figure 15.5 Index profile for SMSIF.
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15.4.3 Multimode Graded Index Fiber (MMGIF)
The refractive index of core is not constant for graded index fiber (fig 15.7). Refractive index is a 
function of radial distances and the relation between NA and radial function as well as ∆  is given by

 

NA
r

r
= −


















m D1

2

2 1
1

 (12)

optic axis

Figure 15.8 Typical propagation of light through MMGIF.

Reflective index

r2 = 100−250 µm

Distance from core (r)

r1 = 50−200 µm

Figure 15.7 Multimode graded index fiber.

where r
1
 is the core radius and r is the distance of variation of core. The refractive index variation is 

given by the following equation:

 m
1
(r) = m

1
1 2

1 2

- D
r

r1

æ

è
ç
ö

ø
÷

é

ë

ê
ê

ù

û

ú
ú

a
/

 (13)

Here a is the profile function that determines the shape of core profile. When a increases, the shape 
of profile changes from triangular to step. Usually a = 2  exhibits parabolic profile, which is known 
to exhibit best performance.
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Figure 15.8 shows the variation of light rays in multimode graded index fiber (MMGIF). Those 

light rays that travel far from optic axis traverse long distance. But these light rays travel in lower 
refractive index part; hence, they travel with high velocity as compared to the rays that travel close to 
optic axis. Hence, all the rays take more or less the same time to reach at the end. The bandwidth of 
MMGIF fibers is high. Multimode fibers have large radii; hence, light rays can be launched easily into 
fiber. These are used for short transmission distances and LAN systems.

15.5 Power Loss in Opical Fibers

While the light is propagating through the fiber, there are many losses, which are listed as follows:

 (i) Rayleigh scattering loss: Optical material may contain large inhomogeneities. These inhomo-
geneities may be due to some impurities or variation in density. Usually, inhomogenities act as 
scattering centers. For example, there is loss of 2.5 dB/km and 0.012 dB/km at 0.82 and 1.55 
μm, respectively. The variation of loss with wavelength for silica fiber is given in Figure 15.9.

 (ii) Microbend and macrobend losses: Sometimes, the core is of nonuniform diameter as it is 
very difficult to fabricate the core of optical fiber with uniform diameter throughout. The place 
of small irregularities in the cladding or core causes the reflection of light at such angles that it 
hinders total internal reflection is known as microbends. At microbends, the leakage of light 
may occur; and hence, such losses are known as microbending losses. Macrobend causes certain 
modes not to be reflected because it is a bend of entire cable and hence again the loss may occur 
known as macrobending losses. Both the losses are shown in Figure 15.10.

 Microbend

losses

 Macrobend

losses.

Figure 15.10 Microbend and macrobend losses in optical fiber.

Loss (dB/km)

λ (in  µm)

Figure 15.9 Rayleigh scattering loss in silica fibers.
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 (iii) Material loss: Certain types of materials such as P
2
O

5
 and B

2
O

3
 have got high absorption for 

the wavelength range of 800–1300 nm. These dopants are used to modify the refractive index 
of fiber. Hence, these dopants may cause loss in the output by absorbing a portion of incident 
optical light. The hydroxyl ions (OH

_
) also contribute to losses.

 (iv) Induced loss by radiation: The structure of glass gets altered when it comes is contact with 
electrons neutron, X-rays or gamma rays. Hence, optical power gets reduced.

 (v) Temperature-dependent losses: Due to temperature difference between the polymer coating 
and glass materials, there exists a considerable difference in coefficient of thermal expansion, 
especially below temperature of − °10 C . These can cause microbends and hence power losses.

 (vi) Mode leaking: Usually, the rays travelling through optical fibers can be classified as meridi-
onal and skew rays. Meridional rays propagate in single plane, but skew rays change their plane 
of propagation on reflections. Meridional rays are guided, whereas skew rays can suffer from 
reflecting. Skew rays may propagate in leaky modes causing losses.

 (vii) Mode-coupling loss: There is a limitation on fiber length, that is, fiber with infinite length 
cannot be manufactured. Hence, connectors are used to connect the fibers. If the improper 
matching of fibers occur, then the signal cannot be transferred. Therefore, these losses contribute 
to coupling losses and are known as mode-coupling losses.

15.6 Total Attenuation in Optical Fibers

Figure 15.11 represents the losses corresponding to all the wavelengths. Corresponding to wavelength 
of 800–900, 1200–1300, and 1500–1600 nm, the optical losses are low. These three regions are 
known as optical windows.

Now, we will find out the total attenuation in the ray of initial power P
o
. Attenuation is decrease in 

intensity of light with distance traversed by light. Let P is the power at distance r from the launching 
end of fiber such that power gradient is proportional to optical power at that point.

Loss
(dB/km)

Loss

Net
Losses

800 900 1200 1300

Wavelenght (λ) in nm

1500 1600

Rayleigh
Scattering

OH−

Figure 15.11 Losses in optical fibers vs wavelength.
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such that  −

dP
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P∝   (14)
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(16)

Hence, the optical power decreases exponentially w.r.t. distance r. K
p
 is attenuation coefficient  

(in km−1). The attenuation can be converted to decibels/km as follows:

 K
r

P

P
= 





10
10log o  (17)

Where “K” is “fiber attenuation” and its units dB/km.
Further from Eqn. (17),

K =
10

2.30
o

3r

P

P
ln





 K
r

P

P
= 





4 343.
ln o  (18)

Kr
P

P
= 





4 343. ln o

 P P e
Kr

=






o  
−

4 343.

 
(19)

From Eqs (19) and (16), the relation between K
p
 and K can be found as follows:

 K
K

p = 4 343.
 (20)

Substituting K
r

p

1
=  in Eqn. (16),

 P
P

e
=

o  (21)

Hence, the attenuation coefficient is defined as the reciprocal of distance, at which the power is 
reduced to 1/e  times as that of initial power.



602  • CHAPTER 15/OPTOElECTROniCS

15.7 Semiconductor Diode Lasers

This field of optoelectronics has been of technological importance especially for optical data storage 
and fiber communication. Losses and electronics when integrated together have given rise to the field 
of optoelectronics. Semiconductor diode lasers can be pumped to the desired optical level so that the 
voltage becomes compatible with the integrated circuit. Before proceeding further for the field of 
semiconductor diode lasers, we should know about Schawlow-Townes condition and band structure, 
etc., which is discussed in following sections.

15.7.1 Band Structure and Density of States
For a solid-structure, the Fermi energy represents the energy corresponding to a Fermi level such that 
all the levels above Fermi levels are empty at 0 K and the levels below Fermi level are filled. The Fermi 
level is given by n

F
 (fig 15.12). It is well known that every level contains two electrons: one having 

spin-up and the other having spin-down. We have derived equation for energy in Chapter 4. i.e

 E
n

ma
=

�
2 2 2

22

p

 (22)

For Fermi level, this energy can be interpreted as follows:

 E
n

ma
F

F
=

2 2 2

22

p �
 (23)

The volume occupied by space represented by n
F
 is 

4

3
3

pnF . Each point occupies on an average volume 

of 
1

8

4

3
3

pnF
æ

è
ç

ö

ø
÷ . Hence, 

1

8

4

3
3

pnF
æ

è
ç

ö

ø
÷  represents the total number of points also. But the spins of elec-

trons also have to be taken into consideration, hence total number of electron becomes:
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If N is total density, then, N =

Total number of electron

Volume of box of dimension a

N
a

=

Total number of electrons
3

Valence
band

Conduction
band

EF

Eg

Figure 15.12 Fermi level and forbidden energy gap for semiconductor.
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 Na3

= Total number of electrons  (25)

Using Eqs (25) and (24),

Na n3 31

3
= p F

 n

a

NF = 





3
1

3

p

 (26)

Substituting Eqn. (26) in Eqn. (23), we obtain
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For a continuous energy range between E and E + dE, we have to figure out the total allowed states per 
unit volume. Hence, the density of states can be given by

 r E dE N
O

E

( ) =∫
F

 (28)

Only the limit from 0 to Fermi energy (E
F
)will contribute because the levels above Fermi level are 

empty. From Eqs (27) and (28),
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from Eqn. (27) and Comparing (28) and (29), we obtain.
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Taking natural log on both sides,

ln ln  constantFN E= +
3

2

Differentiating w.r.t. E
F
,
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 [from Eqn. (30)]
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 dN
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Therefore, the density of states depends on Fermi energy. The Eqn. (31) is not as simple as it looks, 
that is, the major concern is mass of electron. When the electron is in crystal, then its mass is usually 
 different from 9.1 × 10−31 kg and is given by the following formula:

 m
d E

dk
eff

2

2
=











−

�
2

1

 (32)

Which implies that effective mass is a function of wave vector k. Usually, m
eff

 is positive for valence 
band and negative for conduction band, which implies that electron behaves as a hole or positively 
charged particle. For conductors, m

eff
 = 9 × 10−31 kg due to the partial filling of band.

But the valence band for semiconductors and insulators is almost filled, and hence the effective 
mass of electron is not the same as that of free electron and is given by Eqn. (32). Therefore, Eqn. (31) 
can be written as follows:

 dN

dE

m
E=







1

2

2
2 2

3 2
1 2
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/
/  (33)

(for valence band m
v
 is mass of electron)

Similarly, dN

dE

m
E=







1

2

2
2 2

3 2
1 2

p

c

�

/
/  (34)

(for conduction band m
c
 is mass of electron).

15.7.2 Fermi–Dirac Distribution
The probability of occupation of an energy state E by an electron is given according to Fermi–Dirac 
distribution as follows:

 
f E

e
E E k TB

( ) =
+

−( )

1
F 1/

 
(35)

T is the temperature and E
F
 is the Fermi energy. The Fermi factor is temperature dependent, and 

Where describes the behavior of material.
At T = 0 K, three cases may arise as follows:

 (i) When E < E
F

Then Eqn. (35) becomes

f E
e

E E k TB
( ) =

+
− −( )

1
F 1/
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 f E E E T( ) = 1       for  <   at  = 0F  (36)

Hence, all the quantum states are occupied for which the energy is less than the Fermi energy at 
 temperature T = 0 K.

 (ii)When E >E
F

Then Eqn. (35) becomes f E
e

E E k TB
( ) =

+
−( )

1

1F

f E
e

( ) =
+
=
∞ +

=
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1
0

 f E E E T( ) = =0 0    for  >   at F  (37)

Hence, all the quantum states are empty for which the energy is greater than Fermi energy at 
 temperature T = 0 K.
 (iii) When k

B
T << E

F
 (especially for metals for which the value is almost 0.03 eV], we get E = E

F

Hence, f E
e

E E k TB
( ) =

+
−( )

1
F 1
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=
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1

1

1 1

1

2o

 f E( ) =
1

2
 for E = E

F
 at small temperature. (38)

From Eqn. (38), it is clear that when E = E
F,
 then the Fermi levels lie exactly in the middle of 

conduction and valence band where the probability of occupation is 50 percent.
When k

B
T approaches Fermi energy, then the distribution is no longer Fermi–Dirac. In other 

words the distribution becomes Maxwell–Boltzmann as shown in Figure 15.13.

0.5

Energy

1

T1T2T3

T3 >T2 >T1

f (E )

(EF)T = O 

Figure 15.13 Deviation from Fermi–Dirac distribution.
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15.7.3 Schawlow–Townes Condition for Lasers
We know from Chapter 14, that the principle of lasers is based on the principle of stimulated emission, 
that is, one photon can produce 2 photons, 2 photons can produce 4; and hence, the multiplication of 
photons goes on as more and more photons strike the lasing media.

In most of cases, the excited atoms may decay via spontaneous decay. But, for laser action, a condi-
tion is required which is derived as follows: The most important part for lasers is the optical resonator. 
The optical resonator consists of parallel plane reflecting mirrors that enclose active lasing medium. 
The mirrors are provided at both ends so that the light photons can be reflected back and forth as 
shown in the fig 15.14.

Let L be the original length of optical cavity and m be the refractive index of medium. Hence, the 
optical length (L′) becomes mL = L′

For reinforcement, the optical length should be some integral multiple of l/2, where l  is wave-
length of light used i.e.

L n′

= l 2

m lL n= 2

mL
nc

f
=

2

 f
nc

L
=

2 m

 (39)

If the reinforcement condition is set up, then stationary waves set up in the resonant cavity. Let I
o
  

be the intensity of light falling on mirror and I
r
 be the reflected light intensity. Then the reflection 

coefficient of mirror is given by

 R
I

I
I RI= ⇒ =

r

o
r o    (40)

For partially silvered mirror, R < 1,
The intensity decreases exponentially with distance as given below:

 I x I e
x( ) = ( ) −( )0   af  (41)

where a f is absorption coefficient and is function of frequency.
Let K = −a

f
 at x = L, then Eqn. (41) becomes

 I L I e KL( ) = ( ) ( )0   (42)

Let R
1
 and R

2
 be the reflectivity’s of two mirrors, such that light intensity reduces by factor e−2g i,e.

L

Active medium

Photons

MirrorMirror

Figure 15.14 Active medium between the mirrors.
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 R R e1 2

2
=

− g  (43)

g measures intensity loss/pass, Eqn. (42) can be written as follows:

 I L I KL( ) = ( ) -( )0  exp g  (44)

For sustained oscillations, the following conditions should be satisfied:

exp KL −( ) ≥g 1

 KL ≥ g  (45)

The threshold condition for sustained oscillations is

 K
L

=

g
 (46)

The value of absorption coefficient is given by
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g
1
 and g

2
 are degeneracies of ground and excited states. A

21
 is spontaneous emission from excited state 

to ground state.
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o
) is line shape function dependent on central angular resonant frequency w

o
 and w which 

is angular frequency spread of atomic line

 
K

c g A

g

g

g
N N g= − = −









 ( )a

p m
f

2 2
2 21

1
2
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2
2 1

 
, 

o
o

w
w w

 (48)

As K
L

≥
g

 (from Eqn. (45)), hence

p m g
2 2

2 21

1
2

1

2
2 1

c g A

g

g

g
N N g

L

 
, 

o
o

w
w w−









 ( ) ≥

For threshold condition, only equality holds good, and it can be written as follows:

 
g

g
N N

g

c L g A g
1

2
2 1

1
2

2 2
2 21

- =
( )

g

p m

  

   , 
o

o

w

w w
 (49)

This is the case for degenerate level. But for nondegenerate levels, g
1
 = g

2
 = 1, and Eqn. (49) can be 

written as follows:

 N N
c L A g

2 1

2

2 2
21

- =
( )

g

p m

w

w w
o

o , 
 (50)

Equation (50) represents critical inversion for nondegenerate states. The average lifetime of  photons 
(t

c
) is defined as the time during which the number of photons gets reduced by 1/e  times. The expres-

sion of tc  is given by

 t
L

c
c =

g
 (51)
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Hence, using Eqn. (51) in Eqn. (50),

 N N
c A g t

2 1

2

2 3
21 1

− =
( )

w

w w
o

o c p m ,
 (52)

Let A
t

21

1
=

s

 (reciprocal of spontaneous lifetime), then

 N N
c g

t

t
2 1

2

2 3
− =

( )
w

w w
o

o

s

c , p m
 (53)

This Eqn. (53) is known as Schawlow–Townes condition. When t
c
 is large, then the losses in resonant 

cavity are small. When t
c
 is large and t

s
 is small, then low value of threshold for population inversion 

is obtained. The population inversion depends upon angular frequency; hence, laser action can be 
obtained easily for UV rays rather than visible radiations (Ultraviolet radiations have high frequency 
value than the visible radiations). Therefore the Schawlow–Townes condition can be regarded as very 
important condition for population inversion.

15.7.4 Quasi-Fermi Levels for Semiconductors
In p–n junction, there is hole-rich region and electron-rich region separated by a depletion region. 
Depletion region is regarded as the recombination region and the thickness of depletion region 
depends on biasing. For forward biasing, the depletion region is thin; whereas for reverse biasing, the 
depletion region gets thicker. In other words, it can be said that when current passes through junction 
diode, there is no more thermal equilibrium in the p–n function diode. The Fermi levels get separated 
for p–n diode, that is, E

FC
 and E

FV
 are quasi Fermi levels for conduction and valence band, respec-

tively. For Fermi quasi levels to exist, the equilibrium time between bands should be smaller than the 
carrier scattering time. Hence, Eqn. (27) can be separated for condition and valence band as follows:

 E
m

NFC
c

= ( )
�

2
2

2
3

2
3p  (54a)

 E
m

NFV
v

= ( )
�

2
2

2
3

2
3p  (54b)

where m
c
 and m

v
 are effective mass of electron in conduction and valence band, respectively. For 

degenerate p-type semiconductor the Fermi level lies in conduction band and for degenerate n-type 
semiconductor, the Fermi level lies in valence band.

Eg

EFC

EFV

Figure 15.15 Quasi-Fermi levels for degenerate p-type semiconductor.
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Figure 15.15 shows a non-thermal equilibrium state where electrons are excited to conduc-

tion band of degenerate p-type semiconductor. This can be attained by two processes, that is, via  
subjecting the semiconductor to intense laser beam or injecting electrons into p-regions across  
p–n junction. When we say intense later beam , it means the energy hf of laser photon should satisfy 
the following condition:

 hf E E E > g FC FV+ +  (55)

When a photon is absorbed, then electron is excited, which jumps on to the conduction band. When 
the electrons get excited, they follow relaxation by emitting acoustic and optic phonon to the bottom of 
the conduction band. The relaxation time for electron is 10−12 sec, but the relaxation time for electron 
to reach valence band again is 3 − 4 × 10−9 sec. There is quite a probability that electron–hole recombina-
tion takes place, when electron jumps back to valance band. Hence, the lasing action of semiconductors 
is clear, when the quasi Fermi levels can be determined accurately for given excitation rate.

15.7.5 Lasing Action of Semiconductor Diode Laser
When p–n junction is formed, then excess electrons in n-type region flow across p-type region in 
n-type region, and excess holes flow from p-region to n-region. Near midway, they recombine to 
form depletion region. To obtain a laser radiation, the semiconductor or p–n junction diode is to be 
pumped. The pumping depends on the semiconductor material used. For p–n junction lasers, the 
junction region is most important as the population inversion occurs in this region.

The diode laser was first invented in 1962 by Robert Hall. Diode lasers are core devices in the field 
of electro-optics. The diode lasers are efficient and possess long lifetimes. In addition to this, they can 
give up to 200 mW of power despite being very small in size. They have potential role in laser disks 
and fiber-optic communication.
Construction
Figure 15.16 is GaAs p–n function diode, n and p regions are doped in order to make them degener-
ate. Zinc atoms are diffused into n-type region and one face is polished so that it can be reflecting. 
Only the reflecting face will produce lasing action; other faces are kept rough to avoid any losses due 
to unwanted lasing action. The active layer is usually of 1 μm width.

n-type

p-type

Polished end

Output of laser
Junction

(active region)

Current lead

Figure 15.16 Semiconductor laser (GaAs).
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Working
When electrons and holes recombine, then energy is released, and this is known as activation energy. 
Based on the type of energy released, the semiconductor diode can be two types:

 (i) Direct semiconductor: In these semiconductors, the energy released is in the form of heat, for 
example, group III and I elements such as gallium and arsenic.

 (ii) Indirect semiconductor: In these semiconductors, the energy is released in the form of light, 
for example, Si and Ge.

e−

eVp

EVp

ECp

eVn e− e− e− e− e−Holes

p-region

(a)

(b)

n-region

region

Fermi level (EF)

Conduction band (ECn)

Valence band (EVn)

e−

EVp

EFp

ECp

e− e− e− e− e−
e− e− e−

Holes
hf

p-region

n-region
Region for
population
invension

EFn

ECn

EVn

Figure 15.17  (a) p-n junction when the diode is in thermal equilibrium and (b) p-n Junction during 
forward biasing.
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The semiconductor has to be forward biased in order to obtain lasing action. The junction has to be 
cleaned properly. The refractive index of semiconductor is almost 3.6. The wavelength required for 
lasing action is 8400–8500 Å. At first, the spontaneous emission dominates due to electron–hole pair 
recombination. Upon increasing diode current, the stage of population inversion is obtained. Then 
simulated emission begins corresponding to normal modes. The wavelength of normal mode is given by

 l =
2L

n
 (56)

At high current, population inversion occurs, and the output radiation of wavelength occurs in range 
7000–25,000 Å. Figure 15.17 represents p–n junction energy band diagram.

When, there is no external applied voltage, then the two bands are separated by energy gap E
g
. The 

contact potential developed is e V Vn p+( )  Where V
n
 and V

p
 is the potential across n and p region respec-

tively. When the diode is forward biased, then n-side is raised. Hence, the electrons start flowing toward the 

p-side and holes flow toward n-side. Hence, the  depletion region contains higher concentration of electron 
and holes. Therefore, the condition of population inversion is attained. The total separation between E

Fn
 

and E
Fp

 is E
g
 + (eV

n
 + eV

p
).

Mathematical Treatment
When light beam of frequency f is incident on eight semiconductors, then the absorbed quanta are 
given by

 N AB P P U fa vc v c = −( ) ( )1  (57)

where A is constant, P
v
 is probability of occupying a particular state. (1 − P

c
) represent probability that 

the conduction band is empty. B
vc
 is probability of transition from valence band to conduction band U(f) 

is radiation density, which is function of frequency. The number of emitted light photons is given by

 N AB P P U f= −( ) ( )cv c v 1  (58)

The condition of amplification is

N N> a

AB P P U f AB P P U fcv c v vc c v1 1−( ) ( ) > −( ) ( )

Let B Bcv vc=

 P P P Pc v v c1 1-( ) > -( )  (59)

P
c
 and P

v
 can be written using Fermi–Dirac statistics:

P
E E

k TB

c

c

=
+

−





1

1 exp  and 

P
E E

k TB

v

V

=
+

−





1

1 exp

Hence, Eqn. (59) becomes

E E hf Ec v g>- >
 

hf E > g
   

(60)
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The Schawlow–Townes condition is given by the following equation:

N N
c

t

t
2 1

2

32
- =

w
w

mp
Ds

c

For population inversion, N N2 = c
 and N1 = 0 :

 N
c

t

t
c

s

c

=

w
w

2

32 mp
D  (61)

The current density is given by

J
I

A

N Ale

A t
= c

=

Where Al → volume of conductor of cross-section area A and length l, t → transition time for elec-
trons to return to valence band. Hence

J
N le

t
=

c
 (62)

Semiconductor laser diodes cannot be operated for a longer duration because to obtain the required 
gain, the threshold current it to be increased. Increasing the current increases the  temperature of 
material that is disadvantageous for diode operation.

Robert Hall was born in 1919 in new Haven, Connecticut. He 
got his bS in Physics from the California institute of Technology. 
Then, he worked at the Research and Development Center of 
General Electric in Schenectady, new york where he invented 
semiconductor diode lasers in 1962. The major contribution of 
Hall was the development of technique used to purify germa-
nium, which was further used to make transistors. He designed 
systems using continuous wave magnetrons, which could jam 
enemy radar. This was his major contribution to world war ii. 
when the world war got over, Robert returned to CalTech in 1948 
to obtain PhD in nuclear Physics. He then spent the rest of his life 
in new york working for GE. in his career, he got 43 uS patents.

  ROBERT HALL

Semiconductor lasers are small and inexpensive, which have most applications for 
optical fiber communications systems, barcode readers compact disk players, and laser 
printers. Robert Hall also contributed in improving the power rectifiers used in electrical 
transmission devices. He also studied solar cells and photovoltaics.
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SUMMARY

The chapter deals with the phenomena of light and electricity. Optical fibers and semiconductor 
diode lasers are important optoelectronic devices. Optical fiber is a cylindrical waveguide composed 
of core, cladding, and sheath; optical fibers work on the principle of total internal reflection. The rays 
inside the optical fiber propagate if they are within a required acceptance angle and cone. The numeri-
cal aperture lies between 0.13 and 0.3 for long-distance transmission and 0.3–0.5 for short-distance 
communication. Optical fibers can be classified as single-mode step index and multimode step index/
graded index fibers. There are many power laser in optical fibers including Rayleigh scattering loss, 
microbend, macrobend, material losses, mode leaking, mode coupling loss, and temperature-dependent 
losses. The optical power decreases exponentially with distance. The attenuation coefficient is defined 
as the reciprocal of distance at which the power is reduced to 1/e times as that of initial power. 
Semiconductor diode lasers find potential application in the field of integrated circuits. For a solid 
structure, the Fermi energy corresponds to a Fermi level such that all the levels above fermi level are 
empty. The density of states is obtained to depend upon the fermi energy. The mass of electron is 
no longer 9 1 10 31. × − kg  in crystal. Hence, effective mass of electron is taken “−ve” in valence band 
and “+ve” in conduction band). The Schawlow –Townes condition for lasers has been demonstrated, 
which illustrates that when average life time of photons is small, then the losses in resonant cavity 
are small. For the lasing action of GaAs p–n junction diode laser, the wavelength of 8000 8500− Å is 
required. During the forward biasing, n-side is raised and electrons start flowing toward the p-side. 
Hence, the condition of population inversion is achieved.

SOLVED PROBLEMS

Q. 1: The refractive index of core and cladding is 1.32 and 1.30, respectively. Obtain the numerals 
aperture of the optical fiber.

Ans: Numerical aperture
o

= −

1
1
2

2
2

m
m m

Usually mo ≈1 , hence

NA = −m m1
2

2
2

m1  = refractive index of care = 1.32

m2  = refractive index of cladding = 1.30

NA

NA

= ( ) − ( )

=

1 32 1 30

0 2289

2 2
. .

.

Q. 2: Obtain the acceptance angle and numerical aperture of optical fiber with refractive index of 
core and cladding to be 1.68 and 1.5, respectively.

Ans: m1 1 68= .  and m2 1 5= .
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NA = −m m1
2

2
2

= ( ) − ( )1 68 1 5
2 2

. .

NA = 0 7565.

sin o oq m m m= − ≈[ ]1
2

2
2 1

qo acceptance angle= = ( )−sin 1 NA

qo = ( )−sin .1 0 7565

qo = °49 15.

Q. 3: Obtain the refractive index of core, if index of cladding is 1.5 and the fractional difference 
refractive index is 0.0007.

Ans: The fractional difference of refractive index is given by the following equation:

∆ =
−m m

m

1 2

1

Here, m1 1 5= .  and ∆ = 0 0007.

0 0007
1 5

1 5
2.

.

.
=

− m

1 5 1 5 0 00072. . .− = ×m

1 5 0 001052. .− =m

m2 1 5 0 00105= −. .

m2 1 498= .

Q. 4: The refractive index of core and cladding is 1.45 and 1.42. Obtain the critical angle and accep-
tance angle.

Ans:  sinq
m

m
c =

2

1

m1 1 45= .  and m2 1 42= .

sin
.

.
q c =

1 42

1 45

sin .q c = 0 9793

q c = ( )−sin .1 0 9793

q c = °78 32.
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Hence, the critical angle (beyond which the total internal reflection takes place) is 78 32. .°

Moreover,

 
sinq m m mo o= − ≈[ ]1

2
2

2 1

sin . .qo = − ( )1 45 1 422 2

sin .qo = 0 0861

sin .qo = 0 2934

qo = ( )−sin .1 0 2934

qo = °17 06.

Q. 5: The numerical aperture of an optical fiber is 0.25 and the refractive index of core is 1.45. What 
would be the acceptance angle if the fiber is in water (refractive index of water = 1.33).

Ans:  NA = −m m1
2

2
2

Here NA = 0 25.

m m1 21 45= =. , ?

0 25 1 45
2

2
2. .= ( ) − m

0 25 1 45
2 2

2
2. .( ) = ( ) − m

m2
2 2 2

1 45 0 25= ( ) − ( ). .

m2
2 2 04= .

m2 2 04= .

m2 1 428= .

When the fiber is in water, then mo = 1 33.

sinq
m

m mo
o

= −

1
1
2

2
2

sin
. . .

.
q

m
o

o

=
( ) − ( )

=
1 45 1 428 0 25

1 33

2 2

sin .qo = 0 1879

qo = ( ) = °
−sin . .1 0 1879 10 83
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Q. 6: An optical fiber has attenuation coefficient to be 4 2. dB/km . If the initial power is 0 7. ,mW  
obtain the output power after 6 km.

Ans: Given K
r

P

P
= 





10
10log o

Here r = 6 km
P

o
 = 0.7 mW

K = 4.2 dB/km

4 2
10

6

0 7
10. log

.
= 



P

4 2 6

10

0 7
10

.
log

.×
= 



P

2 52
0 7

10. log
.

= 



P

10
0 72 52. .( )

=
P

P =
( )

=
0 7

10

0 7

331 1312 52

. .

..

P = ×
−2 11 10 3. mW

Q. 7: A metal has a density of 10 49 3. g/cm  and atomic weight of 107 g. Obtain its Fermi energy.

Ans: Let us calculate N, that is, total number of electrons/volume.

107 6 023 1023g of metal has electrons= ×.

n

M
=

×6 023 10

107

23.

 
Mass Volume density Density g/cm= ´ = =[ ]r rV 10 49.

n

Vr
=

´6 023 10

107

23.

n

V
=

×

×

6 023 10

107
10 49

23.
.
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N

n

V
= = × = ×

−0 59 10 5 9 1023 22 3. . cm

N = ×5 9 1028 3. /m

The Fermi energy EF  is given by

E
m

NF =  
�

2
2 2 3

2
3p

/

Here, m = ×
−9 1 10 31. kg

EF =
×( ) × × × ×( )

× × × ×

−6 62 10 3 3 14 3 14 5 9 10

8 3 14 3 14 9 1 1

34 2 28 2 3
. . . .

. . .

/

00 31−

EF J= ×
−8 848 10 19.

EF

eV
eV=

×

×

=

−

−

8 848 10

1 6 10
5 53

19

19

.

.
.

Q. 8: Obtain the Fermi energy for aluminum metal (atomic radius is 143 pm) when it is having 
 face-centered cubic.

Ans: For face-centered cubic structure,
Number of electrons = 4

Volume of cell = = ( )a r3
3

2 2

= =( )16 2 143r r pm

= × × ×( )−16 1 44 1 43 10 10 13
. .

= × × × × ×
−16 1 44 1 43 1 43 1 443 10 30. . . .

= ×
−67 37 10 20.

= ×
−6 737 10 29 3. m

Hence,
 
N =

Number of electrons

volume

N =
×

−

4

6 737 10 29.

N = ×0 593 1029.
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N = ×5 93 1028 3. /m

The Fermi energy is E
m

NF = ( )
�

2
2 2 3

2
3p

/

= ( )
h

m
N

2

2
2 2 3

8
3

p

p

/

=
×( ) × × × ×( )

× × × ×

−

−

6 63 10 3 3 14 3 14 5 93 10

8 9 1 10 3 14 3

34 2 28 2 3

31

. . . .

. .

/

..14

=
× ×( )

×

−

−

43 95 10 175 40 10

717 77 10

68 28 2 3

31

. .

.

/

=
×

×( )
−43 95 10

717 77
30765 16 10

37
56 1 3.

.
.

/

=

× × × ×
−43 95 10 31 33 4 64 10

717 77

37 18. . .

.

EF J= ×
−8 901 10 19.

EF

eV
eV=

×

×

=

−

−

8 901 10

1 6 10
5 56

19

19

.

.
.

Hence, Fermi energy for aluminum is 5.56 eV.

OBJECTIVE QUESTIONS

 1. Optical fibers are same as coaxial cables. (Yes/No).

 2. What is the shape of optical fiber?

 (a) Spherical (b) Cylindrical
 (c) Conical (d) Triangular

 3. The dielectric constant of core is similar to

 (a) wood (b) ether
 (c) glass (d) silver

 4. The refractive index of cladding is ______ than the refractive index of core.

 (a) less (b) greater
 (c) equal (d) none of the above
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 5. Sheath is a _______ jacket surrounding cladding.

 (a) polybutylene (b) polyethlene
 (c) polypropylene (d) can be (a), (b), or (c)

 6. The principle of communication in optical fibers is based on the

 (a) total internal reflection (b) dispersion
 (c) refraction (d) polarization

 7. For the reflected ray to graze along the surface,

 (a) angle of incidence < critical angle
 (b) angle of incident > critical angle
 (c) angle of incidence > angle of refraction
 (d) angle of incidence = critical angle

 8. Multimode is constituted by a set of

 (a) parallel rays (b) nonparallel rays
 (c) perpendicular rays (d) all of these

 9. The acceptance angle is given by

 (a) sinq m mo = +1
2

2
2  (b) sinq m mo = −2

2
1
2

 (c) sinq
m m

m
o

o

=

-1
2

2
2

 (d) sinq
m

m
o =

2

1

 10. The acceptance cone is given by

 (a) 2qo  (b) 3qo

 (c) qo  (d) q /2

 11. Fractional difference of refractive index is given by

 (a) ∆ =
−m m

m

2 1

1

 (b) ∆ =
−

m

m m

1

2 1

 (c) ∆ =
−m m

m

1 2

2

 (d) ∆ =
−m m

m

1 2

1

 12. Numerical aperture that is defined as sine of angle of acceptance of optical fiber is given by

 (a) 
m m

m

1
2

2
2

−

o

 (b) m1 2∆

 (c) none of these (d) Both (a) and (b)

 13. For long-distance transmission, the numerical aperture lies between

 (a) 0 13 0 3. .and  (b) 0 5 1. and

 (c) 0 4 0 5. .and  (d) 0 1and
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 14. Numerical aperture is independent of

 (a) refractive index change (b) refractive index of medium
 (c) acceptance angle (d) incidence and refractive angles

 15. The V-parameter for fibers is given by

 (a) V kr= m1  (b) V kr= m1 2∆

 (c) V
r

k
=
m1

2∆
 (d) V

k

r
=

2

1

∆

m

 16. For single-mode operation, the value of V-parameter is

 (a) 3.808 (b) 3.54
 (c) 2.405 (d) 1.832

 17. For step index fibers, the refractive index of core is

 (a) constant (b) varies as 
1

r

 (c) varies as 
1
2r

 (d) varies as r

 18. For step index fibers, the fraction refractive index is

 (a) 0.01 percent (b) 0.03 percent
 (c) 0.20 percent (d) 0.02 percent

 19. The core of SMSIF is

 (a) thick (b) thin
 (c) 30 45− µm  (d) 100 - 250 m m

 20. For multimode step index fiber, the core diameter is

 (a) 50 200− µm  (b) 100 250− µm
 (c) 2 15− µm  (d) 60 70− µm

 21. Maximum number of modes supported by MMSIF is

 (a) V  (b) 
V 2

2

 (c) 
V

2
 (d) 2V

 22. The cut-off wavelength for MMSIF is

 (a) 
2 405.

lV
 (b) 

V 2

2

 (c) 
l

2 405. V
 (d) 

lV

2 405.
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 23. For parabolic profile of core, the profile function a  is

 (a) 1 (b) 3
 (c) 2 (d) 1.405

 24. Rayleigh scattering losses occur due to:

 (a) impurities (b) density variation
 (c) inhomogenities (d) all of these

 25. Microbends hinder the

 (a) dispersion (b) refraction
 (c) total internal reflection (d) polarization

 26. To modify the refractive index of fiber, which dopants are used?

 (a) P O B O2 6 2 3,  (b) Na O2

 (c) CaO  (d) Al O2 3

 27. Skew rays change the plane of propagation on reflections. (Yes/No).

 28. The relation between K p  and K  is given by

 (a) K
K

=

p

4 343.
 (b) K Kp = 4 343.

 (c) K
K

p
= 1  (d) K

K
p = 4 343.

 29. The Fermi energy for a metal is directly proportional

 (a) 3 2 1 3
p N( )

/
 (b) 3 2 2 3

p N( )
/

 (c) 
1

3 2
p N







 (d) 
3 2 2 3
p N

V







/

 30. The effective mass is given by

 (a) m
d E

dk
eff =











−

�
2

2

2

1

 (b) m d keff =  �
2 2

 (c) m
dE

dk
eff =







�

2  (d) m
dE

dk
eff =








−

�
2

1

 31. When k T EB << F, then the Fermi–Dirac distribution function f E( )  becomes

 (a) 1 (b) 0

 (c) 
1

2
 (d) ∞
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 32. The threshold condition for sustained oscillations is

 (a) K
L

=

g
 (b) K

L
=

g

 (c) K L= g  (d) K = 1

 33. In direct semiconductors, the energy is released in the form of

 (a) heat (b) electricity
 (c) light (d) all of these

 34. For the lasing action of semiconductor lasers, the wavelength range is

 (a) 1000 2000− Å  (b) 2000 2500− Å
 (c) 8400 8500− Å  (d) 9000 9500− Å

 35. The amplification condition is

 (a) E E Ec v g− =  (b) E E Ev c g− =

 (c) E E Ev c g− >  (d) E E Ec v g− >

ANSWERS

1. (No)
2. (b)
3. (c)
4. (a)
5. (b)
6. (a)
7. (d)
8. (b)
9. (c)

10. (a)
11. (d)
12. (d)
13. (a)
14. (d)
15. (b)
16. (c)
17. (a)
18. (c)

19. (b)
20. (a)
21. (b)
22. (d)
23. (c)
24. (d)
25. (c)
26. (a)
27. (Yes)

28. (d)
29. (b)
30. (a)
31. (c)
32. (b)
33. (a)
34. (c)

35. (d)
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Micro-Assessment Questions

 1. What are optical fibers?
 2. List the uses of optical fibers.
 3. What is core of optical fiber? Give its properties.
 4. Which part of optical fiber is responsible for optical fiber?
 5. What is cladding of optical fiber?
 6. Explain the sheath for optical fiber.
 7. What are modes of optical fibers?
 8. Define the terms acceptance angle and cone.
 9. Define fractional refractive index change.
 10. What is numerical aperture?
 11. Define V-parameter.
 12. Give the cut-off wavelength for multimode step index fibers.
 13. What are the maximum modes supported by multimode step index fibers.
 14. Define the profile function.
 15. Explain the induced losses due to radiations.
 16. Define the temperature dependent losses.
 17. What do you understand by mode leaking?
 18. What are mode-coupling losses?
 19. Define the attenuation coefficient in decibels/km.
 20. What is the difference between fiber attenuation and attenuation coefficient?
 21. What do you understand by density states?
 22. What is Fermi energy?
 23. What are direct semiconductors?
 24. What are indirect semiconductors?
 25. What is the active medium of lasers?
 26. Why is one mirror of laser cavity partially silvered?
 27. Show the typical propagation of light through MMGIF.

Critical Thinking Questions

 1. Explain the parts of optical fibers with the help of a schematic diagram.
 2. What is total internal reflection? What are the conditions for total internal reflection?
 3. What is the difference between single-mode and multimode fibers?
 4. Derive the expression for acceptance angle of fiber.
 5.  Derive figure of merit for optical fibers. Give the relation between figure of merit and fractional 

refractive index change.
 6. What are single-mode step index fibers?
 7. Define the multimode step index fibers. How do they differ from single-mode step index fibers?
 8. Explain the multimode graded index fiber. How is the refractive index variation given for them?
 9. How the multimode graded index fibers differ from single-mode step index fibers?
 10. What are Rayleigh scattering losses? Give the variation of scattering loss with wavelength.
 11. With the help of a neat sketch, differentiate between microbend and macrobend losses.
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 12. What are material losses?
 13. Differentiate between mode leaking and mode-coupling loss.
 14. Define the band structure and density of states.
 15. Obtain the energy at Fermi level for semiconductors.
 16. What is effective mass of electrons?
 17. Derive the expression for density of states. Show that it depends upon Fermi energy.
 18. What do you understand from the quasi Fermi levels for semiconductors?
 19. What is the difference between direct and indirect semiconductors?
 20. Why semiconductor diode lasers cannot be operated for longer durations?
 21. Which condition should be satisfied to obtain intense laser beam?
 22. Give the threshold condition for sustained oscillations.
 23.  Show that when kT approaches Fermi energy, then the distribution is no longer Fermi–Dirac 

distribution.

Graded Questions
 1. List the different types of optical fibers along with the schematic representation.
 2.  Explain in detail acceptance angle, numerical aperture, and acceptance cone. Also derive the 

mathematical expression for them.
 3. List the various types of power losses in optical fibers.
 4. Derive the total attenuation losses in optical fibers.
 5. What are semiconductor diode lasers? Explain in detail their working and construction.
 6.  What is Fermi–Dirac distribution? Explain the different cases taking Fermi-energy in 

consideration.
 7. What is Schawlow–Townes condition for lasers? Explain in detail.
 8. Explain the quasifermi levels for degenerate p-type levels.
 9. Give in detail the lasing action of semiconductor lasers.
 10.  Give the schematic band gap diagram for p–n junction diode during thermal equilibrium and 

forward biasing.

Remember and Understand

 1.  Optical fiber is used in optical communication as a waveguide. It is cylindrical in shape and is 
made from transparent dielectric material.

 2. Core is the innermost part of optical fiber and is responsible for signal propagation.
 3.  According to the principle of total internal reflection, whenever light ray travels from denser to 

rarer medium, then at a certain critical angle, the light ray is reflected in the same medium.
 4.  The maximum value of angle of incidence is at the launching end so that the ray just propagated 

through the core of optical fibers is known as acceptance angle.
 5.  The ratio of difference between refractive index of core and cladding to refractive index of core is 

known as fractional refractive index change.
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 6.  Numerical aperture is the figure of merit for optical fiber. Numerical aperture is defined as the 

sine of angle of acceptance for optical fiber.
 7.  For SMSIF, the refractive index of core is constant, whereas for graded index fibers, it is not 

constant.
 8. The profile function for MMGIF determines the shape of core profile.
 9.  The attenuation coefficient is defined as the reciprocal of distance at which the power is reduced 

to 1/e times as that of initial power.
 10.  For solid-state structure, the Fermi energy represents the energy corresponding to a Fermi level 

such that all the levels above it are empty at 0 K and the levels below Fermi level are filled.
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16.1 Crystalline and Amorphous Solids

The basic states of matter are solids, liquids, and gases. Plasma is regarded as the fourth state of matter. 
Solids possess definite shape and size and are composed of well-described structural units. In case 
of liquid and gases, the atoms are usually in random motion due to large interatomic separations in 

16

Crystal Structure

LEARNING OBJECTIVES

 To know about the difference between crystalline and amorphous solids on the basis of atomic 
arrangement

 To understand the crystal structure and its types

 To know about basis, motif, unit cells, and basic types of symmetry operations for crystal

 To gain insight of lattice parameters and Bravais lattices

 To learn about the crystal planes and Miller indices

 To calculate interplanar spacing for different types of lattices

 To know about cubic systems, that is, simple cubic, body-centered cubic (BCC), and face-centered 
cubic (FCC)

 To learn about the packing fraction and packing of spheres in crystals

 To know about X-ray diffraction pattern using Bragg’s diffraction pattern

 To understand Laue’s theory of X-ray diffraction

 To learn about different diffraction patterns

 To get an insight of reciprocal lattice for BCC, FCC, and simple cubic lattice

 To know about k-space

 To understand Brillouin zones

 To know about Brillouin zones for simple cubic, face-centered, and BCC lattice

 To learn about the importance of atomic scattering factor

 To learn about the importance and significance of geometrical scattering factor

 Keywords:  crystal lattice, Miller indices, Bravais lattice, close packing, packing fraction,  coordination 
number, ionic radii, Bragg’s law, Laue’s theory, rotating crystal method, powder diffraction method, 
Brillouin zones, reciprocal lattice, atomic scattering factor, geometrical scattering factor
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between them. The solids are also classified in two broad categories: crystalline and amorphous solids. 
These are discussed in the sections that follow.

16.1.1 Crystalline Solids
For crystalline solids, the atoms, ions, or molecules are arranged in definite three-dimensional   array. 
Every atom or constituent ion occupies a well-defined position in space w.r.t. neighboring atoms. 
“Crystalline” is derived from Greek work “crystalles,” which means clear. The following are the salient 
features of crystalline solids.

 (i) The structural units of crystalline solids repeat themselves over regular intervals.
 (ii) Crystalline solids possess definite external geometry.
 (iii) All the bonds between atoms are of equal strength for crystalline solids.
 (iv) Crystalline solids have sharp melting and boiling point because all the bonds break at the same 

time.
 (v) Crystalline solids are anisotropic in nature; that is, they have different properties in different 

directions.

Some examples include calcite, mica, quartz, diamond, etc. Crystals can be monocrystal if it is a single 
crystal; it can be polycrystal, if it is an aggregation of large number of crystals. For polycrystals, the 
periodicity of the crystal is interrupted at the grain boundaries. The schematic of a crystalline solid is 
shown in Figure 16.1.

Figure 16.1 Crystalline pattern.

When we come across crystals, we should be familiar with the term “grain.” Grain is an array 
within which the structure is periodic. Grain can have macroscopic or microscopic dimensions.

16.1.2 Amorphous Solids
Solids in which the atoms or constituent ions are not arranged in regular or definite pattern are known 
as amorphous solids. The position of atoms or ions is not fixed w.r.t. each other. The following are the 
salient features of amorphous solids:

 (i) The structural units of amorphous solids do not repeat them over regular interval in space.
 (ii) They do not possess definite shape and size.
 (iii) The bonds between atoms of amorphous solids are not of equal strength.
 (iv) They do not exhibit sharp melting and boiling point because weaker bonds will break first and 

stranger bonds will break next.
 (v) Amorphous solids are isotropic in nature; that is, they exhibit same properties in all the 

directions.
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Some examples include glass, plastic, rubber, etc. In amorphous solids, grains play an important role. 
For amorphous solids, the grain size becomes very small and comparable to unit. Figure 16.2 dem-
onstrates the structure of amorphous solids. Crystallography deals with the geometric and physical 
properties of crystalline solids using  neutron beams, electron beams, and X-rays.

16.2 Crystal Structure

In a crystal, atoms are arranged in periodic array. Every atom or molecule is represented by a 
 representative unit; that is, the units are represented by mathematical points. These representative 
units are known as motifs (Figure 16.3). When these motifs are extended in space such that every 
mathematical point possesses identical surroundings, then this collection of infinite array of points 
constitutes lattice.

In Figure 16.3,
�

a  and 
�

b  are translational vectors. If we see AB, then its magnitude is a and the 
magnitude of AC is also a. The magnitude of AD is 2a. If we consider any other point, then also 
the same distances are observed corresponding to the nearest neighbor and diagonal neighbor. Hence, 
every point has identical surroundings. The lattice represented in Figure 16.3 is a square lattice, but it 
can be either rectangular shaped or parallelogram shaped. In Figure 16.3, the square unit is repeating 
itself over regular space intervals.

Let us take 
�

T  as the translational vector, such that
�

�

�

T n a n b= +1 2  (1)

Figure 16.2 Amorphous solid structure.

Figure 16.3 Lattice and motifs (in 2-D lattice).

C

A Ba

O

E

r¢

r

T

F

a

a

b

D

Motif

→

→

→
√2
a

→

→



630  • CHAPTER 16/CRYSTAL STRUCTURE

n1  and n2  are integers and 
�

a , 
�

b  are fundamental translational vectors. In 3-D, there is one more 

translational vector c, such that 
�

T  becomes

�

�

�

�

T n a n b n c= + +1 2 3  (2)

Two types of operations can be applied in ∆OEF , that is

� �

�

r r T′ +=

� � �

�

�

r r n a n b n c′ = + + +1 2 3  (3)

Two cases may arise for Eqn. (3) as follows:

 (i) If n1 , n2 , and n3  have integer values, then the fundamental translation vectors are primitive.
 (ii) If n1 , n2 , and n3  have noninteger values, then the fundamental translation vectors are said to 

be non-primitive.

The crystal system can be very well defined using the translational vectors.

16.3 Basis and Symmetry Operations

In Section 16.2, we have studied about infinite array of atoms known as lattice to obtain a crystal 
structure; a group of atom should be added to every lattice point. This group of atoms is known as 
basis. To interpret physical structure of a crystal, every lattice point is associated to group of atoms. 
Basis may contain several atoms. Ionic crystals are associated with two types of ions: positive and 
negative. The relation between basis and crystal is shown in Figure 16.4.

In Figure 16.4, there are two basis atoms: positive and negative. The center of basis should 
 coincide with every lattice point. The basis is usually regarded as the assembly of atoms that are 
 identical in their arrangement, orientation, as well as composition. The number of basis atoms can 
be very large, but the number of space lattices is limited. There are 14 basic types of space lattices. 
For every crystal, there are some operations that leave the crystal unchanged. Hence, symmetry 
 operations are defined as the operation that leaves crystal invariant, and the atoms yield identical 
features. Before we start for symmetry operations, we need to know about some basic symmetry 
 element of the crystal as follows:

Figure 16.4 Lattice and crystal structure.

+

Basis

Lattice
Crystal structure
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16.3.1 Symmetry Plane
The symmetry plane is an imaginary plane that is supposed to divide the lattice into two equal halves. 
For a cube, there are three planes that are perpendicular to the parallel faces of cube and 6 diagonal 
planes as shown in Figure 16.5.

16.3.2 Symmetry Centre
Centre of symmetry is point in crystal so that for point 

�

r , there also exists −
�

r  w.r.t. fixed position 0. 
The same point of crystal is obtained at 

�

r  and −
�

r .

16.3.3 Symmetry Axis
Let us suppose, there are four points: T, P, Q, and U (Figure 16.6). Let the system has n-fold sym-
metry operation such that if point T and U rotate at an angle q, it yields points R and S, provided 
RP QS QU TP a= = = = .  It can be mathematically represented as follows:

RS RP P S= +′ + ′ ′ ′Q Q

RS a a a= + +cos cosq q

RS a= +( )1 2cos q

Let RS xa= , that is, translation of vector a.

xa a a= + 2 cos q

Figure 16.5 Planes of symmetry for cubic lattice.
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Figure 16.6 Rotation symmetry.
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x a a−( ) =1 2 cos q  [x]

x −( )
=

1

2
cos q

cos q =
N

2
 [ x N− =1 ] also an integer (4)

as − ≤ ≤1 1cos q , hence − ≤ ≤2 2N .
Hence, N can have values −2, −1, 0, 1, and 2.
We know that

n =
360

q  (5)

For cos q = -1, 1/2, 0, 1, 2  and 1, we obtain n = 2 3 4 6, , ,  and, 1, respectively. Hence, five-fold and 
seven-fold symmetry do not exist.

Now, we can discuss the symmetry operations; there are four different symmetry operations as 
discussed below:

 (i) Rotation operation: A body is said to possess rotational symmetry if it remains invariant after 
a rotation of angle (Figure 16.7). The crystal is said to exhibit n-fold symmetry, if after the  

rotation of 
360

n
 angle, the crystal remains invariant. We have seen that five-fold and seven-fold 

symmetry axis does not exist.
 (ii) Translational operation: In this operation, the atoms repeat themselves after a distance a in 

given direction. The lattice remains invariant as shown in Figure 16.8.
 (iii) Reflection operation: The crystal is said to exhibit reflection operation such that if there is a plane 

dividing the crystal into two halves, then the system changes from left-handed system to right-
handed system. In other words, the identical halves are mirror images of each other (Figure 16.9).

 (iv) Inversion operation: The inversion operation changes the system from left handed to right 
handed along with the change of position from 

�

r  to -
�

r  with respect to certain point known 
as inversion center (Figure 16.10).

q
O

Figure 16.7 Rotational operation.
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16.4 Unit and Primitive Cells

As demonstrated in Figure 16.11, if AB and CD is translated by vectors 
�

a  and 
�

b , we may obtain a 
orthorhombic crystal, [a b= = °90 ]. Hence, ABCD is the representative unit which when repeated 
will generate the whole lattice structure. Therefore, ABCD is regarded as the unit cell. If we take a 
3-D case, such that there is third vector 

�

c  also, then 
�

a , 
�

b , 
�

c  repeat themselves in space producing 
the entire crystal structure. Hence, the unit cell is defined as the smallest geometrical entity, which 
when repeated in space generates the entire crystal structure. It is the elementary building block of 
the lattice structure. There are two types of unit cells: primitive and non-primitive cells. The  primitive 
unit cells possess minimum volume and the lattice points are present only at the corners. Hence, 
the primitive cells contain one complete unit of pattern. In the case of nonprimitive cells, the lattice 
points can be at the center or face of unit cell. In Figure 16.11, EFGH represent a non-primitive cell. 
Orthorhombic has base-centered and body-centered cells, hence, they are doubly primitive cells. The 
volume of primitive cell is �

�

�

a b c. .×( )

a

a

a

a

Figure 16.8 Translation operation.

B

A

Figure 16.9 Reflection operation.

r
→
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→
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centre

Figure 16.10 Inversion operation.
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16.5 Lattice Parameters and Types of Lattices

The unit cell is composed of three crystallographic axes and three interfacial angles. This collec-
tion of six parameters defines the lattice parameter for a unit cell. In Figure 16.12 OX, OY, and OZ 
are crystallographic axis. The crystallographic axes are drawn parallel to the line of intersection of two 
adjacent faces of the unit cell. The angles between these crystallographic axes are known as interfacial 
angle a, b, and c are the dimensions of unit cells and are known as primitives/intercepts. The angle 
between OX and OY is g , between OX and OZ is b , and between OY and OZ is a , respectively. 
The points in the lattice can be arranged in different ways. But the symmetry operations and condi-
tion of identical surroundings should be kept in consideration. In 1848, Bravais introduced different 
types of lattice in two and three dimensions. There are five Bravais lattices in two dimensions and 14 
Bravais lattices in three dimensions as demonstrated below:

D C

B

FE

H G

L K

I JA

b
→

a
→

Figure 16.11 Two-dimensional lattice demonstrating unit cells.
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γ

Figure 16.12 Lattice parameters for unit cell.

16.5.1 Two-Dimensional Lattices
The translations of 

�

a  and 
�

b  in two dimensions result in five Bravais lattices in two dimensions. 
Rectangular lattices are of two types: primitive (non-centered) and non-primitive (centered) as shown 
in Figure 16.13.
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16.5.2 Three-Dimensional Lattices
Three are seven crystal systems and the points can be arranged into 14 ways, which are described as follows:

 (i) Triclinic lattice: This system exhibits only one Bravais lattice system. In triclinic arrangement, 
none of the interfacial angles is 90°  and no intercept is equal (Figure 16.14(a)).

a

(a) Square lattice
(a = b, γ = 90°)

(e) Centred rectangular (non-primitive)
(a ≠ b, γ = 90°)

(c) Oblique lattice
(θ ≠ 90°, a ≠ b)

(d) Hexagonal lattice
(θ = 120°, a = b)

90°

≠ 90° 120°

b
→

b
→

b
→

→

a→ a→

a

90°

90°

b
→

b
→

→

a→

(b) Rectangular lattice (a ≠ b γ = 90°)

(Primitive type)

Figure 16.13  Bravais lattices in two dimensions.

a

( a ≠ b ≠ c ,

α ≠ β ≠ γ ≠ 90°)
bβ α

γ

c

Figure 16.14(a) Triclinic arrangement (simple).

a

a

a

a = b = c ,

α = β = γ ≠ 90°

β α

γ

Figure 16.14(b) Trigonal lattice (simple).

 (ii) Trigional lattice: It is also known as rhombohedral arrangement, and it has one Bravais lattice. 
All the intercepts are equal, and all the interfacial angles are equal, but they are not equal to 90°  
(Figure 16.14(b)).

 (iii) Hexagonal lattice: It has one Bravais lattice, two axes are coplanar, equal, and inclined at an 
angle of 120°  to each other. The third axis is perpendicular to other two and is not equal to any 
of the axis, that is, a b c= ≠ , a b= = 90° , g = °120  (Figure 16.14(c)).
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120˚

Figure 16.14(c) Hexagonal lattice (simple).

 (iv) Monoclinic lattice: It has two types of Bravais lattice: simple and base centered. In simple 
monoclinic lattice, the points occupy the corners only; whereas in base-centered lattice, there 
are two points that occupy the opposite faces of unit cell along with the corners.

  The axes are not equal for monoclinic lattice. Two interfacial angles are equal to 90° , and the 
third is not equal to 90°  (Figure 16.14(d)).

Simple monoclinic Base–centred monoclinic

a ≠ b ≠ c ,
α = β = 90° ≠ γ 

a

b

c

β
α

γ ≠ 90°

a

b

c

β
α

γ ≠ 90°

Figure 16.14(d) Monoclinic lattice.

 (v) Tetragonal lattice: It has two Bravais lattice: simple and base-centered. The  three-crystallographic 
axes are perpendicular to each other. Two intercepts are equal to each other but are not equal 
to the third intercept. In simple tetragonal lattice, all the points occupy the corners; whereas 
in base-centered lattice, in addition to corners, the points are also present at the base, that is, 
a b c= ¹ , and a b g= = = 90°  (Figure 16.14(e)).

Base–centered tetragonalsimple tetragonal

a

b

c

β
α

γ

a

b

c

β
α

γ

a = b ≠ c ,
α = β = γ = 90°

Figure 16.14(e) Tetragonal lattice.
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 (vi) Cubic lattice: It has three Bravais lattices, that is, simple, body-centered, and face-centered. In 
face-centered lattice, points are present at the faces also in addition to corners. The axes are 
equal and are perpendicular to each other, that is, a b c= =  and a b g= = = 90°  (Figure 
16.14(f )).

Simple cubic Body centred
cubic

Face–centred
cubic

a

a

a

a

a

a

β βα
α

γ γ

a

a

a

βα

γ

a = b = c
α = β = γ = 90°

Figure 16.14(f ) Cubic lattice.

 (vii) Orthorhombic lattice: It has four Bravais lattices: simple, body centered, base-centered, 
and face-centered. The axis are not equal, and all the angles are 90° , that is, a b c≠ ≠ , 
a b g= = = 90°  (Figure 16.14(g)).

Simple
orthorhombic

b
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Body–centered
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Base–centered
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b
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β
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γ

Face–centered
orthorhombic

b

a

c

β

α

γ

a ≠ b ≠ c
α = β = γ = 90°

Figure 16.14(g) Orthorhombic lattices.

16.6 Introduction to Miller Indices and Crystal Planes

In Section 16.1, we have studied about crystalline and amorphous solids. Amorphous solids are isotropic, 
possessing similar properties in all the directions, but this is not the case with crystalline solids; crystalline 
solids are anisotropic in nature; that is, they have different properties in different  directions. Hence, to 
understand the directions and planes for crystal is very important   aspect. Miller devised a system of indi-
ces to represent different set of planes within the crystals known as Miller indices. Miller indices describe 
the directions and orientations of planes. For getting insight of  Miller indices, we need to know about 
the reference system which we shall choose. The direction in general is denoted by [uvw]. The group of 
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directions is given by <uvw>. The Miller indices of a plane are denoted by (hkl  ). A family or group of 
planes is given by {hkl  }. In Figure 16.15, we can obtain the Miller directions that are given for OA, OB, 
and OC. OA is given by [011], OB is given by [010], and OC is given [101]. For [010], the equivalent 
directions are [100], [001], [100], [010], and [001]. The group of directions is given by <100>.

To obtain Miller indices of crystal planes, we shall proceed as follows (using Figure 16.16).

 (i) Obtain point O as the origin and get the vectors in direction of X, Y, and Z w.r.t. origin.
 (ii) Obtain the intercepts of the plane whose Miller indices are to be determined on 3-D axis. In 

Figure 16.16, x, y, and z are the intercepts.
 (iii) Further, we have to express the intercepts in terms of primitive vectors, that is, x n a= 1 , y n b= 2 ,  

and z n c= 3 .

  Here x a= 4 , y b= 3 , and z c= 4

A

B

Y

O

C

Z

X

Figure 16.15 Crystal directions.
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Figure 16.16 Determination of Miller indices for planes.
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 (iv) Obtain n1 , n2 , and n3  and their reciprocals.

  That is, 
1 1 1 1

4

1

3

1

41 2 3n n n
: : : :=

 (v) Convert the reciprocals to smallest integers (hkl  ), that is, (3:4:3) which is obtained after taking 
LCM.

 (vi) (343) are the Miller indices of plane ABC. Hence, we can obtain a family of planes to be {343}.

16.7 Interplanar Spacing

Take a lattice point O as the origin of planes with Miller indices (hkl  ) (Figure 16.17). Using these 
Miller indices, draw the crystallographic axes OX, OY, and OZ. Let an adjacent plane possess the Miller  
indices (hkl  ). From origin O, draw a perpendicular OP = d  to this adjacent plane. “d” is known as 
the interplanar distance between the planes (hkl ).

Let OP make angles a , b , and g  with OX, OY, and OZ, respectively. Here, a , b , and g  are 
not the interfacial angles.

For OP, the direction cosines are given by cosa , cosb , and cosg . OA, OB, and OC are inter-
cepts made by plane on the axes.

OA =
a

h
, OB =

b

k
,  and OC =

c

l
 (6)

a, b, and c are the lattice parameters.

In ∆OAP,

cosa = = =

OP

OA /

d

a h

hd

a
 (7a)

In ∆OBP,

cosb = = =

OP

OB /

d

b k

dk

b
 (7b)

Similarly in ∆OCP ,

cosg = = =

OP

OC /

d

c l

dl

c
 (7c)

For planes, the sum of squares of all direction cosines is unity.
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Equation (8) represents the interplanar distance between two planes.
For cubic system, a b c= =

d
a

h k l
=

+ +
2 2 2

 (9)

There are some important noteworthy points for Miller indices as follows:

 (i) A set of planes could be defined using Miller indices.
 (ii) All the equidistant planes have the same Miller indices (hkl  ).
 (iii) For a parallel plane, the intercept is ∞ , and hence the Miller index is zero.
 (iv) For a plane, (246) and (123) will represent the same set of planes.

C

Z

B

b/k

c/l

a/h

d
d

P

O

Y

A X

β
γ

Figure 16.17 Interplanar spacing and Miller indices.
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16.8 Cubic Systems

The crystal system that exhibits the unit cell to be a cube is called cubic system. Depending on the 
number of atoms present in every cube, the unit cells can be distinguished into simple cubic, BCC, 
and FCC. Every cubic system possesses definite characteristics. That is, volume, number of atoms/
unit cell, coordination number, atomic radius, density of unit cell, packing fraction. In this section, 
the unit cells and their characteristics are discussed.

16.8.1 Simple Cubic Crystal
For a simple cubic system, the atoms are present only at the corners of the cube as shown in Figure 16.18. 

Every atom is shared by eight such cubes. Hence, the contribution of every atom at the corner is 
1

8
.

For example, CsCl2, NH Cl4 , and polonium have such kind of unit cell.

Figure 16.18 Simple cubic system.

Properties of Simple Cubic Crystal

 (i)  Volume: The primitives of cube are equal yielding a b c= = ,
and hence the volume V a= 3  (10a)

 (ii) Number of atoms/unit cell: Every corner atom is shared by eight similar unit cells, and hence, 

the contribution of every atom is 
1

8
. There are eight total atoms. Hence, N  becomes

N = ´8
1

8
 (contribution of every atom = 1)

N =1  (for simple cubic) (10b)

 (iii) Coordination number: The number of neighboring atoms that surround each atom in a  lattice 
is known as coordination number. For simple cubic lattice, there are six neighbors that  surround 
every corner atom. Hence,

CN = 6  (for simple cubic) (10c)

 (iv) Atomic radius (r): Usually, atoms are considered to be hard spheres surrounding each other. 
The atomic radius (Figure 16.19) is given by exactly half of the distance between two nearest 
neighbors (a). Hence, for simple cubic lattice
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r
a

=

2
 (10d)

O′O

OO′ = 2r

r r

Figure 16.19 Atomic radius.

 (v) Packing fraction (PF): It is defined as the ratio of volume occupied by atoms to the total 
volume of unit cell. Hence,

PF =
Volume occupied by atoms in unit cell

Total volume of unit cell

For simple cubic system, PF
Volume occupied by atoms

=

a3

Every atom has volume 
4

3
3

pr

If there are N atoms, then the volume becomes N r.
4

3
3

p . In simple cubic system, N =1 .

Hence, the volume occupied by atoms is 1
4

3
3. pr

  ⇒  PF = =

æ

è
ç
ö

ø
÷
= =

4

3

4

3 2
6

0 523

3

3

3

3

p p

p
r

a

a

a
.

 
[using Eqn. (10d)]

\ =PF 0 523.

PF = 52 3. %  (10e)

Hence, in simple cubic systems, only 52.3 percent of volume of unit cells is occupied.
 (vi) Density: Let M be the molecular weight of crystal. Let there be N molecules/crystal. If N ′  

is Avogadro’s number, then

Mass of molecules gN M¢ =

 
Massof molecule g1 =

M

N ′

     
Massof moleculesN

M

N
N m= =

1

m
M

N
N=

′  (10f )
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Let r  be the density of crystal and a be the edge of unit cell, then

mass

volume
density= ( )r

r =
m

a3

Using Eqn. 10f,

r =
MN

N a¢ 3
 (10g)

Hence, Eqn. (10g) represents density for a crystal.
For simple cubic crystal, N =1 .

⇒    r =
M

N a¢ 3
 (10h)

16.8.2 Body-Centered Cubic
For BCC, in addition to eight corner atoms, there is one additional atom present inside the body of 
the cube. For example, sodium, tungsten, tantalum, etc. possess BCC structure (Figure 16.20).

Figure 16.20 BCC unit cell.

Properties of BCC

 (i) Volume: The primitives are equal, hence the volume is

⇒    V a= 3  (11a)

 (ii) Number of atoms/unit cell: Corner atoms contribute to 
1

8
/unit cell, whereas the atom at 

center of unit cell belongs to one unit cell only.
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N = ´ ( ) + ( )
1

8
8 1corner atoms atom at body centre

N = + =1 1 2

⇒  N = 2  (11b)

 (iii) Coordination number: To every central atom, there are eight nearest neighbors. Hence,

CN = 8  (11c)

 (iv) Atomic radius (r): If we see along the diagonal, then we get Figure 16.21.
The diagonal AD = 4r

AC AB BC= +
2 2

AC = 2 2
a

⇒  AC = 2a  (11d)

In ∆ADC ,

AD AC CD2 2 2
= +

4 2
2 2

2r a a( ) = ( ) +

⇒  16 32 2r a=

  ⇒      r a2 23

16
=

Hence, atomic radius r a=

3

4
( )for BCC lattice  (11e)

BA

F

C

DE

G

a

a

r

r

2r

Figure 16.21 BCC diagonal.
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 (v) Packing fraction (PF): For BCC lattice, N = 2

   Therefore, PF =
Volume occupied by atoms in unit cell

Total volume of unit cell

⇒  PF =
N r

a

.
4

3
3

3

p

⇒  PF =

×






2

4

3

3

4

3

3

p a

a
 [using Eqn. (11e)]

⇒  PF =

/

/
×
/

×
/

/

= = × =

/

/

8

3

3 3

16 4 3

8

3 14

8
1 73 0 68

3

3

p
p

a

a

.
. .

⇒  PF = 0 68.

⇒  PF = 68%  (11f )

Hence, in BCC lattice, 68 percent of the volume is occupied/unit cell.
 (vi) Density: From Eqn. (10g), the density is given by

r =
M

N a
N

¢
3

Here, N = 2

r =
2

3

M

N a¢
 (11g)

16.8.3 Face-Centered Cubic
In FCC, there are eight atoms at corners and six are present at faces. That is, every corner contains one 
atom and every face contains one atom. For example, aluminum, nickel, lead, and silver have FCC 
structure (Figure 16.22).

Figure 16.22 Face-centered cubic structure.
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Properties of FCC

 (i) Volume: The primitives are same yielding:

Volume V a= 3
 (12a)

 (ii) Number of atoms/unit cell: In addition to eight corner atoms, there are six atoms present at 
face. Each corner atom is shared by eight atoms, whereas every face atom is shared by two unit 
cell. Hence,

N = ´ ( ) + ´ ( )8
1

8
6

1

2
shared at corners shared at faces

N = + =1 3 4

⇒ N = 4  (for FCC) (12b)

 (iii) Coordination number: Every face-centered atoms is touched by 4 corner atoms, 4 face-cen-
tered atoms of first unit cell and 4 face-centered atoms of second unit cell as shown in Figure 
16.23. Hence,

CN =12  (12c)

a

r

r

a C

BA

D

2r

Figure 16.24 Face of FCC crystal.

5

4

3

1

6

7

12

11

10

8

2

9

Figure 16.23 Coordination number for FCC.

 (iv) Atomic radius (r): The face can be interpreted as shown in Figure 16.24.
 In ∆ABC
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AC AD CD2 2 2
= +

4
2 2 2r( ) = +a a

16 2 2r = a

⇒ r a2 22

16
=

   Hence, atomic radius       r a=

2

4  
(for FCC lattice) (12d)

 (v) Packing fraction (PF): For FCC lattice N = 4  and r a=

2

4

⇒ PF = =






N r

a

a

a

. .4

3
4

4

3

2

4
3

3

3

3

p
p

⇒ PF =






= =

16

3

2 2

64

2

6
0 74

3

3
p

p

a

a
.

⇒ PF = 74%  (12e)

Hence, in FCC lattice, atoms occupy 74 percent of the available space.
 (vi) Density: For FCC lattice, N = 4

   Hence, r =
MN

N a¢ 3

⇒  r =
4

3

M

N a¢
 (12f )

16.9 Packing of Spheres in Crystals

Atoms are considered to be hard spheres of equal size. They can be arranged as shown in Figure 
16.25(a). As is clear from Figure 16.25(a), every sphere is surrounded by six spheres. The center of 
spheres lies at the corners of equilateral triangle. Let this layer represent layer A. There are two ways 
in which we can proceed to stack other layers. They are described as follows: ABAB stacking and 
ABCABC stacking.

A6

Figure 16.25 (a) Arrangement of atom.



648  • CHAPTER 16/CRYSTAL STRUCTURE

 (i) ABAB stacking: In Figure 16.25(b), it is clear that in between the spheres, there are voids 
(shown by black). If we place another layer over the voids, then B layer is formed (Figure 
16.25(b)) two types of voids are formed over layer B. One is marked 1 and other 2. If we place 
atoms above the voids marked 1, then the center of symmetry of atoms match with those 
of A-layer atoms. Hence, we obtain A layer over B layer again. This type of arrangement is 
ABABAB … and it leads to hexagonal close packing (HCP).

 (ii) ABCABC stacking: In Figure 16.25(c), two types of voids could be seen on the layer B,  
(one marked as 1 and the other as 2). If we place the third layer above voids marked 2, then we get 
another layer C. Hence, we get ABCABC arrangement. This type of layer has cubical symmetry.

16.10 Structure for Different Elements

There are different structures of elements that are discussed in the section that follows.

16.10.1 Diamond Cubic Structure
Diamond structure is made from two interpenetrating structures (Figure 16.26(a)). Diamond struc-
ture has two atoms/lattice point. Among two interpenetrating structures, one has the origin at  

(0, 0, 0) and the second lattice has origin at 
a a a

4 4 4
, ,æ

è
ç

ö

ø
÷ , where a is the lattice constant. Hence, the 

origin of the second lattice is at 1

4

th
 of body diagonal. For diamond lattices, there are eight atoms/unit 

cell. The positives of atoms are given in Figure 16.26(b). 
a

2
 and 0 are present on FCC, whereas 

a

4
 

and 
3

4

a
 are obtained by displacing the first lattice by 

a

4
. Hence, (0, 0, 0) and 

a a a

4 4 4
, ,æ

è
ç

ö

ø
÷ , there are 

two identical atoms. Now we will calculate the packing fraction.

For diamond, N = 8
[3 are at faces, 4 inside the cell, and 1 at corner]

PF =
N r

a

.
4

3
3

3

p

A

B

Void2

Void1

Figure 16.25(b)  Stacking of B layer on A layer Figure 16.25 (c) Hexagonal arrangement is followed 
if ABAB … is followed.
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⇒ PF =
×8

4

3
3

3

pr

a
From Figure 16.26(b),

⇒ r r r r r a+ + + + =2 2 2 3

⇒ 8 3r a=

⇒ r
a

=

3

8
 (13)

Hence, PF =






=

×32

3

3

8

32 3 3

243

3
3

3

p p

a

a a

a

PF = =

3

16
0 34

p

.

Hence, PF = 34%  (14)
Hence, in diamond cubic lattice, 34 percent of volume is occupied.

16.10.2 Sodium Chloride
Sodium chloride has FCC crystal structure as shown in Figure 16.27. Sodium and chloride ions are sep-
arated by half of the body diagonal of unit cell. Sodium ions occupy the octahedral voids and  chloride 
ions are present at the FCC positions the position of sodium and chloride ions are given as follows:

Na

Cl

+

-

( ) æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷000

2 2
0 0

2 2 2
0

2

2 2 2

a a a a a a

a a a

, , , , , ,

, ,ææ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷0 0

2
0

2
0

2
0 0, , , , , ,

a a a

O

O O

O

O

a/2

a/2

a/4

a/2

a/2

a/43a/4

3a/4

Figure 16.26(a) Diamond structure. (b) Atomic position in diamond structure.
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16.10.3 Hexagonal Close Packing
In HCP, three atoms are present inside the hexagon body: one atom is present at the face and one 
atom is present at every corner Figure (16.28). Two atoms at basal planes are shared by two unit cells, 
and there are 12 corner atoms shared by 6 unit cells, hence

N

N

= ´ ( ) + ´ ( )+

=

12
1

6
2

1

2
3

6

at corners basal planes inside the hexagon

Þ

The coordination number of atoms in HCP is 12. Every basal atom touches three atoms above and 
below its plane and six in its plane.

  Therefore, CN = 3(atoms above its plane) + 3(below its plane) + 6(in its plane)

     ⇒  CN = 12

We will obtain the volume and packing fraction for HCP:

Area of base for hexagon =
3 3

2

2a

Na
+

Cl
−

Figure 16.27 Sodium chloride structure.
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Hence,
 

Volume =
3 3

2

3a c

For hexagon,

 
⇒ r

a
=

2
Hence,

PF
Volume

=

×N r
4

3
3

p

Þ PF =

´
æ

è
ç

ö

ø
÷6

4

3 2

3 3

2

3

2

p
a

a c

⇒ PF =
×

×

24 2

24 3 3

3

2

pa

a c

Þ PF

for HCP

=
æ

è
ç
ö

ø
÷ =

é

ë
ê

ù

û
ú

2

3 3

8

3

p a

c

c

a

( )

a = 2r

c

Figure 16.28 Hexagonal close-packed structure.
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Figure 16.29 HCP unit cell.
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PF =






=

2

3 3

3

8
0 74

p

.  (15)

PF = 74%

Hence, in HCP, 74 percent of volume is occupied by the atoms,

In unit cell, 
c

a
=1 633. , which can be derived using . 16.29.Figure

c

a
=

2DF

AB
 (16)

We have to obtain DF ,

DF BD BF= -

2 2  (17)

 As, BF BP=

2

3
 (18)

Now, we should find BP

⇒ BP AB AP= − = − =
2 2 2 2 4

3

2
a a

a
/

BP =
3

2

a
 (19)

Using Eqs (18) and (19) in Eqn. (17),

⇒ DF = −

















= −a

a
a a2

2

2 22

3

3

2
3/

Hence, DF =
2

3
a  (20)

Substituting Eqn. (20) in Eqn. (16)

⇒
c

a a
a=

×
=

2 2

3

8

3

⇒
c

a
= =

8

3
1 633.  (21)

16.11 Laue’s Theory of X-ray Diffraction

Diffraction deals with bending of light around the corners of obstacle. X-rays are also diffracted 
 provided the size of obstacle or aperture ≈ 1 Å.  Bragg obtained the X-ray diffraction from atomic 
planes of crystal (discussed in Chapter 2).

The Bragg’s diffraction law is given by:
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2d nsin q l=  (22)

This is known as Bragg’s law, d is the distance between two successive planes, q is the  glancing angle 
that incident ray makes with the plane of atoms. Bragg’s law could establish the periodicity of space 
lattice. The basis composition determines relative intensity of various diffraction orders, although 
Bragg law do not provide any information regarding the intensity of scattering.

Bragg suggested that X-rays are scattered from the crystal planes, but Laue said that the reflection 
of X-rays occur from the individual atoms. Let A and B be the scattering centers separated by distance 
r as shown in Figure 16.30. Let parallel set of rays with unit vector n̂o  is incident on A and B. The 
unit vectors of scattered rays is ˆ.n  Let the angle between incident ray and scattered ray be 2q. Draw 
perpendicular AD on the ray 2 and BC perpendicular to ray 1 (scattered ray 1).

The path difference between the rays scattered from A and B is given by the following equation:

D = -AC BD  (23)

In ∆ABD ,

cos

cos cos

q

q q

2

2 2

=

= =

BD

AB
BD AB r  

(24a)

Similarly, in ∆ABC

cosq1 =
AC

AB

AC AB= =cos cosq q1 1r  (24b)

Substituting Eqs (24a) and (24b) in Eqn. (23), we obtain

∆ = −r rcos cosq q1 2

1

2 D

Incident
rays

r

B

C

Scattered rays

A

no
∧

n
∧

n
∧

no
∧

q1

q2

2q

2q

→

Figure 16.30 Laue’s scattering of rays by scattered atoms.
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D = -
� �

r r n. .n
Ù Ù

o

∆ = − =
� �

�

r n n r N.( ) .∧ ∧

o
 (24c)

where N n n= -( )ˆ ˆ
o  represents the difference in unit vectors of the scattered and incident beams.

Further,
� �

N N n n n n

N n n n n

N

. .

| | | | .

cos

( ) ( )= - -

= + -

= + -

Ù Ù Ù Ù

Ù Ù Ù Ù

Þ

o o

o o
2 2 2

2

2

1 1 2 22

2 1 2 2 2

2

2 2

q

q q

q

Þ

Þ

N

N

= -( ) = ( )
=

cos sin

sin  (25)

N is also called scattering normal. Now, we will obtain the phase difference. The phase difference is 
given by

⇒ Phase difference f
p

l
=

2
 (path difference)

⇒ f
p

l

p

l
= ( ) = ( )

2 2
∆

�

�

r N.  (26)

For constructive pattern, or the condition of maxima, the phase difference should be multiple of 2p .
The crystal is periodic in nature. Hence, the atoms that are in same direction of A and B would 

also scatter the radiations in same direction as that of A and B. 
�

r  may coincide with any crystallo-
graphic axis. Hence, the following three conditions can be there:

⇒ ′f
p

l
p pa = ( ) = =

2
2 2

�

�

a N h nh.  (27a)

⇒ ′f
p

l
p pb = ( ) = =

2
2 2

� �

b N k nk.  (27b)

⇒ ′f
p

l
p pc = ( ) = =

2
2 2

�

�

c N l nl.  (27c)

h′,  k′,  and l ′  are integers, such that h nh′ = ,  k nk′ = ,  and l nl′ = ,  (hkl ) symbolizes the smallest 
vectors.

From Eqn. (27a), we can write

�

�

a N nh. = l  (28a)

Similarly, 
� �

b N nk. = l  (28b)

and 
�

�

c N nl. = l  (28c)

Let 
�

N  makes angle a,  b,  and g  with 
�

a,  
�

b ,  and 
�

c , respectively, then we can write Eqn. 28(a–c) 
as follows:
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⇒ aN nhcosa l=  (29a)

⇒ b N nkcosb l=  (29b)

⇒ c N nlcosg l=  (29c)

Substituting Eqn. (25) in Eqn. 29(a–c), then

2

2

2

a nh

a nk

a nl

cos sin

cos sin

cos sin

a q l

b q l

g q l

=

=

=  (30)

The set of Eqn. (30) constitute Laue’s equations. We can also obtain Bragg’s law from the set of Eqn. 
(30). From Eqn. (30), we can write

cos
sin

a
l

q
=

nh

a2
, cos

sin
b

l

q
=

nk

a2
, cos

sin
g

l

q
=

nl

a2

We can see from above equations that the direction cosines are proportional to 
h

a

k

b
,  and l

c
, 

respectively.
Hence, the normal to (hkl) planes is similar to the scattering normal N. Hence, if d is the inter 

planar spacing between Bragg’s planes, then

d
a

n

b

k

c

l
= = =cos cos cosa b a

 
(31)

Substituting Eqn. (31) in Eqn. (30), we obtain

⇒ 2d nsinq l=

Hence, Bragg’s law could be obtained from the Laue’s equations.

Max Laue was born at Pfaffendorf, koblenz, on October 9, 1879. His 
father was an official in the german military administration. Laue 
was deeply influenced by Professor goering, when he was at the 
Protestant school of Strassburg; Laue also joined military services 
for a year in 1898. He worked under Professor W. voigt and Professor 
W. Abraham in University of göttingen. in 1902, he worked under 
Professor Max Planck in University of Berlin and obtained his doc-
torate in 1903. He worked on the thermodynamic significance of 
the coherence of light waves and applications of entropy to radia-
tion fields at the institute for Theoretical Physics at Berlin under the 
supervision of Max Planck. He became Professor of Physics at the 
University of Zurich in 1912. He was appointed as a Professor of 
Physics at the University of Berlin, from 1919 to 1943. He wrote a 
paper on X-rays absorption during diffraction and submitted to the 
international Union of Crystallographers at Harvard University in 
1948. Much of his research work was done on X-ray optics in col-
laboration with Borrmann at Fritz Haber institute for Physical Chemistry at Berlin-dahlem before 
his retirement in 1958. He received the nobel Prize for diffraction of X-rays on crystals.

}

MAX LAUE
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16.12 Diffraction Methods

X-rays is widely used to determine the crystal structure. X-rays spectroscopy is used for variety of 
applications. For a given value of “d  ”, l  and q  should match. Hence, the following three methods 
are generally used to identify the crystal structure depending on the variation of wavelength “ l ” or 
orientation angle “q ”.

16.12.1 Laue’s Method
Laue suggested that if the crystal behaves as a three-dimensional diffraction grating if crystals consist 
of regular order of atoms with interplanar spacing of the order of angstrom. Laue’s experiment was 
performed on ZnS crystal, when an inhomogeneous X-rays was incident on it. Diffraction spots were 
obtained on photographic plate, which are named as Laue’s spots as shown in Figure 16.31.

In this method, the single crystal is held on a goniometer. The crystal is fixed, and hence q  is 
fixed. A X-ray of wavelength range 0 2 2. - Å  is incident on single crystal. The dimensions of crystal 
are 1 1 1mm mm mm.× ×  The beam usually falls perpendicular on the crystal. The X-rays fall on 
Bragg’s planes with interplanar spacing d. For a particular set of q,  d, and l,  Bragg’s condition is 
satisfied, which leads to constructive interference. The diffraction pattern is observed at the photo-
graphic plate. The photographic plate contains symmetrical arrangements of spots. The arrangement 
of spots depends on the crystal symmetry. In Laue’s method due to continuous range of wavelengths, 
an overlapping pattern can be obtained, which makes the crystal structure difficult to determine.

X-ray beam
(Highly
collimated)

Diffracted
beam

Single
crystal

Goniometer

  Photographic film

Laue’s spots

Figure 16.31 Laue’s method and Laue’s spots.

von-Laue was famous as a motorist in Berlin as he used to ride the motor bicycle at high speed 
to his lectures. He used to love high speeds, but a fatal collision ended his life. He was driving to 
his laboratory on April 8, 1960, when a motorcyclist collided with von Laue’s car. von Laue’s car 
overturned in the Berlin speedway and the Fire Brigade took him from beneath it. The motorcy-
clist who received his license just two days ago died on the spot. due to the injuries, von-Laue 
died on April 24, at the age of 80. von-Laue also suffered from depression, which took away his 
sense of humor and joy. He took a theist who was very much interested in classical music. He 
had a desire that his tombstone should be engraved with the text “he died trusting firmly in the 
mercy of god.”
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16.12.2 Rotating Crystal Method
In this technique, the crystal is moving slowly with the help of a rotating shaft where monochromatic 
X-rays are used. During the rotation of crystal, it X-rays come across different set of planes. The 
single crystal used is almost of 1 mm dimension. The whole arrangement is within a hollow cylinder 
whose axis is collinear with the axis of rotation of single crystal (Figure 16.32). The cylindrical holder 
contains photographic plate to record the diffraction patterns. The X-rays will be diffracted. When 
the rotating crystals  satisfy the Bragg’s condition of 2d nsinq l.=  The plane that contains incident 
beam does not  diffract any rays. The diffraction patterns are produced by all those planes that have 
some glancing angle w.r.t. the incident radiations. The rotation can be complete or oscillatory. During 
complete rotation, the overlapping of points can be obtained as each set of planes reflect four times, 
whereas the  oscillatory motion can avoid this problem. If a is treated to be the axis of rotation, then 
we can directly find a sinq l,=  because the distance d depends on the separation of lattice points on 
a-axis. Hence, a, b, and c can be obtained for a crystal using rotating crystal method.

Collimated
X-rays

Crystal

Undeviated
X-rays

Rotating spindle

Diffraction
pattern

Figure 16.32 Rotating crystal methods and the pattern.

16.12.3 The Powder Crystal Method
Certain substances can be readily worked upon to obtain single crystals; but sometimes, it is difficult 
to obtain single crystals for certain substances. Debye, Scherrer, and Hull devised a formula to grow 
a crystalline material in powder form. The orientations of atoms are random by individual crystal-
lites are ordered. Hence, a large number of crystallites are obtained by this method. The X-ray falls 
of powder sample and many diffraction planes are available for Bragg’s diffraction. There are almost 
10 1010 12

−  crystals/mm of sample. Again, the diffraction will occur through set of parallel planer 
satisfying the condition n dl q,= 2 sin  such that the X-rays make certain glancing angle with lattice 
plane. The sample is usually taken in capillary tube made up of nondiffracting material inside a cylin-
drical Debye–Scherrer camera (Figure 16.33). The diffracted beams will form cone of photographic 
film with semivertical angle 2q and q is Bragg’s angle. A series of concentric rings are obtained as 
shown in Figure 16.33. The glancing angle is given by

q
p

1 1=
90°

D
x

 
(32)

Where D is diameter of cylinder, and x1  is the distance between symmetrical lines. Hence, we can 
obtain the distance between the planes of crystal using Bragg’s angle.
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Figure 16.33 Powder crystal method and pattern obtained.

William Henry Bragg was born on July 2, 1862, in Cumberland, England. 
Sir William Lawrence Bragg (1890–1971) was the son of W.H. Bragg. 
W.H. Bragg was a very talented kid; he won many scholarships along 
with an exhibition to Trinity College, Cambridge. in 1886, Bragg joined 
as Professor of Pure and Applied Mathematics in Adelaide although he 
was had less knowledge in physics. He was a very good athlete and 
played tennis and golf. Slowly, he got interested in physics especially in 
electromagnetism. Bragg considered X-rays and γ-rays to be streams of 
neutral-pair particles instead of electromagnetic waves. This statement 
got him into controversy by his peers for several years. He was honored 
by the Rumford (1916) and Copley (1930) medals by the Royal Society. in 
1931, he was also admitted to the Order of Merit. He died in London on 
March 12, 1942 due to heart trouble.

W.H. BRAGG

16.13 Reciprocal Lattice and k
→

-Space

The concept of reciprocal lattice was given by P.P. Ewald in 1923. Later on, its further improvization 
was done by Von Laue. X-ray diffraction from atomic planes generate patterns only when Bragg’s 
 condition is satisfied, that is, n dl q.= 2 sin  If we have to determine slope of a diffraction plane, 
we have to draw a normal to it. Every plane has different normals, and hence different slopes. To 
 construct a set of reciprocal lattice, we need a set of planes.

Reciprocal lattice is the array of points that are obtained at the end of normals drawn to a common 
origin whose length is proportional to the reciprocal of interplanar spacing. The reciprocal lattice 
 construction takes the following points in consideration:

 (i) The periodicity of crystal structure determines Laue’s diffraction pattern.
(ii) The direct lattice determines the position of diffraction spots.

 (iii) A set of planes can be represented by Miller indices. A normal can represent each set of 
planes by drawing normal from common origin whose length is proportional to recipro-
cal of interatomic spacing.

To construct a reciprocal lattice, we should proceed as follows:
 (i) Mark origin on the direct lattice.
 (ii) Construct normal to every plane in the direct lattice.



 (iii) Set the length of normals equal to 2p  times the reciprocal of interplanar spacing for set 
of planes.

 (iv) Mark point at the end of all normals.
 (v) The collection of all these points constitute reciprocal lattice.

We will now define reciprocal lattice vector. It is defined as the vector with magnitude equal to recip-

rocal to interplanar spacing 
1

dhkl

æ

è
ç

ö

ø
÷ . The direction of reciprocal lattice is parallel to normal of ( hkl )  

plane.
�

a,  
�

b ,  and 
�

c  are primitives for direct lattice, �a * ,  
�

b * , and 
�

c *  represent primitives for reciprocal 
lattice. 

�

a  is normal to 
�

b  and 
�

c , hence
�

�

� �

a b a c* *. = = 0

and 
� �

� �

� �

a a b b c c. . .* * *
= == 2p  (33a)

As 
�

c *  is perpendicular to plane containing 
�

a  and 
�

b ,  hence

� �

�

c X a b*
= ×( )  (33b)

Substituting Eqn. (33b) in Eqn. (33a), hence

� �

c c. *
= 2p

� �

�

c X a b. ×( ) = 2p

⇒ X
c a b

=
×( )

2p
� �

�

.
 (33c)

Substituting Eqn. (33c) in Eqn. (33b),

⇒
�

�

�

� �

�

�

�

�

�

�

c
a b

c a b

a b

a b c

*

. .
=

×( )
×( )

=
×( )
×( )

2 2p p

⇒
�

�

�

�

�

�

c
a b

a b c

*

.
=

×( )
×( )

2p
 (34a)

�

�

�

�

� �

� �

�

a b c

b a c

c c b

.

.

.

×( )
= ×( )

= ×( )
=














Volume of unit cell








Similarly,             ⇒
�

�

�

�

�

�

a
b c

a b c

*

.
=

×( )
×( )

2p
 (34b)
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and                ⇒
�

� �

�

�

�

b
c a

a b c

*

.
=

×( )

×( )
2p

 (34c)

�

a * , 
�

b * , and 
�

c *  have dimension of (length)−1.

The reciprocal of reciprocal lattice yields direct lattice, that is, 
� �

a a* *

( ) = . As dhkl  of normal plane 

lattice is equal to 
1

dhkl

 of reciprocal lattice. Similarly, volume Vhkl  of normal lattice is equal to 
1

Vhkl

 

of reciprocal lattice.

The reciprocal lattice is an array of points such that the distance between points is inversely 
 proportional to the interplanar spacing between (hkl ) planes. As we have seen that reciprocal vector 

has dimensions of (length)–1. Wavevector 
�

k  also has the same dimensions of (length)−1 and is given 

by 
2p

l
.

If we get a reciprocal space such that 
2p

dhkl

 is the distance of separation between points, then  
�

k -space is obtained. 
�

k -space is also known as wave-number space. We have seen from Eqn. (2) that 
for direct lattice,

�

�

�

�

T n a n b n c= + +1 2 3

In 
�

k -space, the reciprocal lattice vector is 
�

G  and is given by the following equation:
�

�

�

�

G ha kb lc= + +
* * *  (35)

Take dot product of T and G,
� �

�

�

� �

�

�

T G n a n b n c ha kb lc. . * * *= + +( ) + +( )1 2 3

⇒ 
� �

T G n h n k n l. = + +( )1 2 3 2p

⇒ 
� �

T G Z. = 2p  (36)

where Z n h n k n l= + +1 2 3 .

Hence, vector 
�

G  drawn from origin to (hkl) of reciprocal lattice is normal to (hkl) plane of direct 
lattice. The Bragg’s condition in reciprocal lattice becomes 2 02k G G

� �

. ,+ =  where 
�

k  is wave-vector.

16.13.1 Reciprocal Lattice for SC

The volume of the cell is V a b c= ´( )�

�

�

.

Let �a a i= ,̂  
�

b b j= ,̂  and 
�

c c k=

ˆ

V a i b j c k a a b c= ´( ) = = =[ ].̂ ˆ ˆ 3 as

The primitive lattice vectors are given by the following equation:

( )
( )

2
*

3

ˆ2 . 2 2 ˆ

.

b c a i
a i

aaa b c

π π π×
= = =

×

�

�

�

�

� �



Similarly, * 2 ˆb j
a

π
=

�

 and * 2 ˆc k
a

π
=

�

Hence, the reciprocal lattice for simple cubic lattice is itself a simple cubic lattice with the lattice con-

stant 
2
a
π

. These reciprocal lattice vectors are directed along the crystallographic axis.

16.13.2 Reciprocal Lattice for BCC Lattice
The primitive translation vectors for BCC lattice are given by

� �

A
a

i j k B
a

i j k= - + +( ) = - +( )
2 2

ˆ ˆ ˆ , ˆ ˆ ˆ , and 
�

C
a

i j k= + -( )
2

ˆ ˆ ˆ

where a is the lattice constant, the volume of primitive cell is given by the following equation:

( ) ( ) ( ) ( ) × = − + + − + × + −
 

� ��

3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ. .

2

a
A B C i j k i j k i j k

 (37)

Let us obtain ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

i j k i j k

i j k

i j k

− +( ) × + −( ) = −

−

= −[ ] − − −[ ] + +

1 1 1

1 1 1

1 1 1 1 1 11

2 2

[ ]

= +ˆ ˆj k  (38)

Substituting Eqn. (38) in Eqn. (37), we obtain

( ) ( ) ( )

( )

3 3

3

ˆ ˆˆ ˆ ˆ.

    

. 2 2
8 2

.
2

a a
A B C i j k j k

a
A B C

 × = − + + + =  

× =

� ��

� ��

 
(39)

Hence,

( )

( )

( )

( )

2

*

3

*

ˆˆ2 . 2 22 .
4

/ 2.

2 ˆˆ

a
j kB C

a
aA B C

a j k
a

ππ

π

+×
= =

×

= +

��

�

� ��

�

 (40a)

Similarly, 
( )

( )
( )*

2 . 2 ˆ ˆ
.

C A
b k i

aA B C

π π×
= = +

×

� �

�

� ��

 (40b)

and 
( )

( )
( )*

2 . 2 ˆ ˆ
.

A B
c i j

aA B C

π π×
= = +

×

� �

�

� ��
 (40c)
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Equations 40(a–c) represent the reciprocal lattice for BCC lattice. The reciprocal lattice to BCC 

 lattice represents the direct lattice for FCC lattice with lattice constant 
2p

a







.

16.13.3 Reciprocal Lattice for FCC Lattice
The primitive translational vectors for FCC lattice are given as follows:

� � �

A
a

j k B
a

k i C
a

i j= +( ) = +( ) = +( )
2 2 2

ˆ ˆ , ˆ ˆ , ˆ ˆand

The volume of primitive cell of FCC lattice is given by the following equation:

⇒ 

� � �

� � �

A B C
a

j k k i i j

A B C
a

j

. .

.

×( ) = +( ) +( ) × +( )





×( ) = +

3

3

8

8
ˆ̂ . ˆ ˆ ˆk j i k

a( ) − +( ) =
3

4  
(41)

Hence,

⇒

⇒

�

� �

� � �

�

a
B C

A B C

a
j i k

a

a
a

i

*

*

.

.

/
=

×( )
×( )

=

− +( )

= − +

2 2
4

4

2

2

3

p
p

p

jj k+( )ˆ
 

(42a)

Similarly, 
�

� �

� � �b
C A

A B C a
i j k*

.
=

×( )
×( )

= − +( )
2 2p p

 (42b)

and 
�

� �

� � �c
A B

A B C a
i j k*

.

.
=

×( )
×( )

= + −( )
2 2p p

 (42c)

Equations 42(a–c) represent the reciprocal lattice vectors for FCC lattice. The reciprocal lattice vec-
tors for FCC lattice are same as that of primitive vectors of direct BCC lattice with lattice constant 
2p

a
.

16.14 Brillouin Zones

The primitive cell in reciprocal lattice represents the Brillouin zones. The Brillouin zones consist of all 
the Bragg diffracted k-vectors. Let us construct Brillouin zones, using primitive translation vectors 

�

a  

and 
�

b ,  such that 
�

a ai=

ˆ  and 
�

b bj=

ˆ  (for square lattice)

Hence, corresponding 
* 2 ˆa i

a

π
=

�

 and * 2 ˆb j
b

π
=

�

�

�

�

G ha kb= +
* * [ ( )]from Eqn. 35



16.14 BRiLLOUin ZOnES   •  663

�

G
a

hi kj= +( )
2p ˆ ˆ

 
(43)

From Bragg’s law in reciprocal space,

( ) ( ) ( )

( )

�

� �

2 1 2

2
2 2

1 2 2

2 2
1 2

ˆ ˆ
2 . 0

is wavevector

2 4ˆ ˆ ˆ ˆ2 . 0

(44)

k k i k j
k G G

k i k j hi kj h k
a a

hk kk h k
a

π π

π

 = +
+ =  

 

 + + + + = 
 
−

+ = +

Equation (44) represents family of straight lines in k k1 2−  plane.

k1

2 2

= −
+p

a

h k

h  
and

 
k2

2 2

= −
+p

a

h k

k

We obtain four lines k k1 2= ± = ±p p/ , /a a , which are plotted in Figure 16.34.

Figure 16.34 also shows ± ± =k k1 2

2p

a
 set of lines k1 = ±

p

a
 and k2 = ±

p

a
 represents 1st Brillouin 

zone; whereas k1

2
= ±

p

a
 and k2

2
= ±

p

a
 represent 2nd Brillouin zone.

k 1
−
k 2 

= 
−
 2
π
/a

k2 = –π/a 

k2 = π/a 

k1 = –π/a k1 = π/a 

k 1
−
k 2 

= 
2π

/a

k
1 +
k
2 = 2
π/a 

k
1 +k

2 = −2
π/a

3rd Zone

2nd Zone

1st Zone

Figure 16.34 Brillouin zones.
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16.14.1 Brillouin Zone of SC Lattice
A cube is obtained from the first Brillouin zone of simple cubic lattice. The primitive translation 
vector for simple cubic lattice are (Figure 16.35)

�

�

a ai b bj= =,̂ ˆ and
�

c cj=

ˆ

(for cubic lattice a b c= = )
The reciprocal lattice vectors are

* 2
,̂a i

a

π
=

�

 * 2
,̂b j

a

π
=

�

 and * 2 ˆc k
a

π
=

�

k vector for X-ray is given by the following equation:

�

k k k k= + +1 2 3
ˆ ˆ ˆi j k  (45a)

and G vector is written as follows:

�

�

�

�

G ha kb lc= + +
* * *  (45b)

The Bragg’s law in reciprocal lattice is given by the following equation:

2 0

2 4
0

2

1 2 3

2

2
2 2 2

1 2 3

� �

k

k k k

k k k

.G G

a
h k l

a
h k l

h k l

+ =

+ +( ) + + +( ) =

+ + = −

p p

pp

a
h k l2 2 2 45+ +( ) ( )c

 

If and then

If and then

If

h k l
a

h k l
a

= ± = = = ±

= = ± = = ±

1 0 0

0 1 0

1

2

, , ,

, , ,

k

k

p

p

hh k l
a

= = = ± = ±













0 0 1 3, , ,and then k
p

 

(46)

p/a

p/a

p/a

Y

X

Z

Figure 16.35 Brillouin zone for SC lattice.
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Equation (46) represents the planes and space occupied and represents 1st Brillouin zones. The space 

between the planes represented by Eqn. (46) is a cube, and its side is 
2p

a
.

16.14.2 Brillouin Zones for BCC
For BCC lattice, the primitive translation vectors in reciprocal are lattice given by the following 
equation:

( ) ( )* *2 2ˆ ˆˆ ˆ,a j k b k i
a a

π π
= + = +

�

� , and ( )* 2 ˆ ˆc i j
a

= +
p�

The reciprocal lattice vector is

( ) ( ) ( )
( ) ( ) ( )

= + +

     = + + + + +          

 = + + + + + 

��

� �

�

�

* * *

2 2 2ˆ ˆˆ ˆ ˆ ˆ

2 ˆˆ ˆ

G ha kb lc

G h j k k k i l i j
a a a

G k l i h k j h l k
a

p p p

p

 

(47a)

Using the Bragg’s condition,

2 0

2

4

2

1 2 3

2

2

2

� �

k

k k k

.G G

a
k l h k h l

a
k l h k

+ =

+( ) + +( ) + +( ) 

+ +( ) + +(

p

p )) + +( )



 =

+( ) + +( ) + +( ) = − +( ) + +( ) +

2 2

1 2 3

2 2

0h l

k l h k h l
a

k l h k⇒ k k k
p

hh l+( )





2
47( )b

If and thenh k l
a

= ± = = ± ± = −1 0
2

3 2, k k
p

 
(48a)

If and thenh k l
a

= = ± = ± ± = −0 0 0
2

1 3, , , k k
p

 
(48b)

If and thenh l
a

= = = ± ± ± = −0 0 1
2

1 2, , ,k k k
p

 
(48c)

The set of Eqn. 48(a–c) represents set of 12 planes. The region enclosed inside the 12 planes will 
represent dodecahedron.

16.14.3 Brillouin Zone for FCC
The primitive translation vectors for FCC are

( ) ( ) ( )* * *2 2 2ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , anda i j k b i j k c i j k
a a a

= − + + = − + = + −
�

� �p p p
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From Bragg’s condition,

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

p

p

p

 = + +
 + =
 = + + 

 − + + + − + + + −
 

 = − − + + + − + + + − 

− + + + − + + + −

= − − + + + − + + + −

* * *

2

1 2 3

1 2 3

2
2 2 2

2

1 2 3

2 2 2

2 . 0
ˆˆ ˆ

4 ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

4

G ha kb lc
k G G

k k i k j k k

k i j k k i j k k i j k
a

h k l h k l h k l
a

h k l k h k l k h k l k

h k l h k l h k l
a

��

� �

� �

�

 
(49)

when then /

when then

h k l a

h k l

= ± = = ± ± ± =

= = ± = ± ±

1 0 0 3

0 1 0
1 2 3

1

, ,

, ,

k k k

k

p

kk k

k k k

2 3

1 2 3

3

0 0 1 3

± =

= = = ± ± ± ± =









p

p

/

when then /

a

h k l a, ,
 

(50)

The Eqn. (50) represents the set of planes. The space between the planes form truncated octahedron 
whose reciprocal lattice vectors are given by

2
2

2
2

2
2

p p p

a
i

a
j

a
k±( ) ±( ) ±( )ˆ , ˆ , ˆ

16.15 Atomic Scattering Factor

Till now, we are familiar with Bragg’s condition of 2d nsinq l= . In Bragg’s law, we assumed the 
 scattering of X-rays from electrons; but in actual practice, the scattered X-rays are obtained from the 
atoms or in unit cell. The extent of scattering depends upon the scattering power of atoms. It is given by

f =
Amplitude of radiations which scattered from the atom

Amplitude off radiation which are scattered from the electron

O

r

dV

N

φ

θθ

∧
no

∧
no

∧
n

∧
n

→

Figure 16.36 Scattered and incident radiations.
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From Figure 16.36, let O be the scattering center and electrons are arranged uniformly around 
the center. Let 

�

r  be the radius of atom and consider a small volume element dV at vector 
�

r ,   
(Figure 16.36), such that

Charge at 
� �

r r dV= ( )r  (51)

(where r r( ) is the volume charge density at 
�

r )

n̂o  is the direction of incident X-ray and n̂  is the direction of scattered X-ray. As discussed in Section 
16.11, Eqn. (26), the phase difference between the scattered radiations from point O and volume ele-
ment dV is given by the following equation:

f
p

l
o = ( )

2
�

�

r N.  and 

�

N n n

N

= −

=











ˆ ˆ ,

sin
o

2 q

⇒

⇒

f
p

l
f

f
p

l
f q

p

l
q f

o

o

=

= ( ) =

2

2
2

4

rN

r
r

cos

cos sin sin cos
 

(52a)

Put          ⇒ m
p

l
q=

4
sin

 
(52b)

then Eqn. (52a) becomes

f m fo = r cos  (53)

The volume element dV for a ring of radius r sinf, thickness dr, and width rdf is given by the 
following:

dV

dV r rd dr

dV r

= × ×

= ( )

=

circumference width thickness

2

2 2

p f f

p

sin

sinnf fdrd  
(54)

We will consider amplitude of scattered radiations for an electron and an atom. Let the amplitude 
of scattered radiations from point electron at O along n̂  is A ke i x t−( )w  where k is wavevector, and x is 
distance covered along ˆ,n  Let the amplitude of scattered radiations from atom (constituted by volume 
dV with charge r

�

r dV( ) ,  along n̂  is Ae r dV
i x tk − +( ) ( )w f

ro ). Hence, the ratio of amplitude of scattered 
radiations by volume dV to amplitude of scattered radiations by electrons is given by the following 
equation:

df
Ae r dV

Ae
e r dV

df e r d

i kx t

i kx t

i

i

=
( )

= ( )

= ( )

− +( )

−( )

w f

w

f

f

r
r

r

o

o

o

�

�

�

VV
 

(55)

Hence,  f df e r dVi= ∫ = ∫ ( )f
ro
�
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f r e r d dri r

r

= ( )

( )
==

∞

∫∫ r p f fm f

f

p
� cos sin

o

using Eqs 53  and 5

00

22

44( ) 

f e d r r dr

f r

i r

r

r

r

= ( )

=

=

⇓

=

∞

∫ ∫m f

f

p

m

m

f f p r

p

cos

sin

sin
0

2

2

0

2

2

4

� ��� ���

rr
m

m

�

r
r

r
dr( )

∞

∫
sin

0

For q ® 0 , m→ 0 , and 
sinm

m

r

r
→1

f r r dr= ( )
∞

∫ 4 2

0

p r
�

 (56)

4 2
p rr r dr

�

( ) → represents total charge in spherical shell of radius r and thickness dr.
f Z=  (57)

Hence, f denotes total charge of atom. For q = =0, f Z  and for all other values of q, f Z< . The f 
can determine exact charge distribution in the atom. Batterman et al. have determined the scattering 
factors for Fe, Cu, and aluminum.

16.16 Geometrical Structure Factor

The atomic scattering factor determines the relative intensity of scattered amplitudes by atom and 
electron. The scattering of X–rays depends on the nature of the crystal also, that is, atoms and their 
distribution. To obtain, the total scattering, the amplitudes of all the scattered wavelengths by each 
atom are added up to get geometrical structure factor.

Let a cell contains n-atoms such that the position of ith atoms is given by (Figure 16.37)

� �

�

�

r u a v b w ci i i i= + +  (58a)

(where ui , vi , and wi are constants)

Let f i  is the scattering fraction for ith atom. We have supposed that all the electrons of ith atoms 
are concentrated at 

�

ri . The total scattering amplitude is

F f e

F f e

i
i

i

i

i r r N

i

i

i

=

=

−

− +( )





∑

∑

f

p

l

2

58
� � .

( )b
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a

c
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ri
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Figure 16.37 Position of ith atom.

 
F e f e

r N

i

r N

i

i

=
− ( ) − ( )

∑
2 2p

l

p

l

�

�

�

�

. . 

 
(58c)

In Eqn. (58c), we shall calculate 
�

�

r Ni . , [fi  is the phase differenced between the scattered  radiations 
from ith atom and at origin, N is the direction of normal to the plane].

�

�

�

�

�

�

�

�

�

� � �

�

r N a v b c N

r N a N v b N c

i i i i

i i i i

. .

. . . .

= + +( )
= ( ) + ( ) +

u w

u w
��

�

�

�

N

r N h v k l

r

i i i i

i

( )
−











= ( ) + ( ) + ( )

Using

Eqn. a c28( )

.

.

u wl l l
��

N h v k li i i= + +( )l u w  
(59)

Using Eqn. (59) in Eqn. (58c),

F e f e

F e S

i
r N

i
i u h v k w l

i

i
r N

i i i=

=

− ( ) − + +( )

− ( )

∑
2

2

2

p

l p

p

l

�

�

�

�

�

.

.
.  (60)

where S f ei
i u h v k w l

i

i i i=
− + +( )∑

2p  (61)

S is known as geometrical structure factor. We can calculate structure factor for some simple lattice.

 (i) SC lattice: It contains one atom at (0, 0, 0)/unit cell.
Hence,

  S f e fi= =å
o  (62a)

Hence, all the Bragg lines will occur.
 (ii) BCC lattice: It contains atom at (0, 0, 0) and 1

2
1

2
1

2, ,( )

S f e e f e
h k l i h k l= +



 = + 

− + +( ) − + +( )o 2 2 2 2 1p pi
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If odd,then

If even,then

h k l e

h k l e

i h k l

i h k

+ +( ) = = −

+ +( ) =

− + +( )

− +

p

p

1
++( ) =






l 1  

(62b)

Hence, for odd h k l+ +( ),  S = 0.  Hence, the reflection like (100), (221), (210), (111), are missing 
for BCC lattice.

For even h k l+ +( ),  S f= 2 .  Hence the reflections such as (2, 0, 0), (3, 1, 0), (2, 2, 2), (110) are 
present.
 (iii) FCC lattice: The atoms are present at (0, 0, 0) and 1

2
1

2 0, , ,( )  0 1
2

1
2, , ,( )  and 1

2
1

20, , .( )

S f e e e ei h l i h k i k l= + + + 
− +( ) − +( ) − +( )o p p p

If h l h k+( ) +,( ),  and k l+( )  are odd or even, then

S f= 4  (62c)

If one is odd and other are even or one is even and other are odd, then

S = 0  (62d)

Hence, no reflection occurs for (211), (324), and (100) planes of FCC lattice.

SUMMARY

This chapter deals with the crystal structure, basis, crystal lattice, motif, unit cell, and primitive cell. 
There are 14 Bravais crystal lattices. The planes and directions of crystal structure are represented by 
Miller indices (hkl). Cubic crystal is the most ordered one and triclinic is the most disordered. Cubic 
crystal has three Bravais lattices, that is, simple cubic (SC), body-centered cubic (BCC), and face-
centered cubic (FCC). The coordination number of FCC, BCC, and SC is 12, 8, and, 6, respectively. 
The packing fraction is highest for FCC lattice to be 74 percent. The HCP structure has packing 
fraction of 74 percent and coordination number 12. Diamond structure is made of two interpenetrat-
ing FCC lattice, whereas NaCl has FCC lattice. With the help of Bragg’s law, crystal structure could 
be determined. It assumes scattering by lattice; whereas, Laue’s theory says the diffraction occurs due 
to every atom. Laue’s method, rotating crystal method, and powder diffraction methods are used to 
obtain the primitives of crystals. Ewald gave the concept of reciprocal lattice, the reciprocal lattice 
vector is inversely proportional to dhkl , , that is, interplanar spacing. FCC is reciprocal lattice for BCC 
and vice versa; whereas, SC is its own reciprocal lattice. With the help of Bragg’s law in reciprocal 
lattice, that is, 2 02

� �

k .G G+ =  and wavevector, Brillouin zones are obtained. The Brillouin zone for 
SC is cubic itself, BCC possesses dodecahedron; whereas for FCC, it is truncated octahedron. The 
atomic scattering factor is equal to atomic number of an atom. Through geometrical structure factor 
S f ei

u h v k w li i i= − + +( )∑ 2pi  helps in determining the missing reflections.
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SOLVED PROBLEMS

 Q.1: Identify the lattice

 (i) a = 9 4. Å,  b = 8 Å,  c = 10 2. Å, , a b g= = = 90°

 (ii) a b c= = =

= = =

3 Å

85°a b g

Ans:  (i) It is orthorhombic lattice.
  (ii) It is trigonal lattice.

Q.2: Obtain the plane (i) (110), (ii) (111), (iii) (010), (iv) (100), (v) (011), and (vi) (010) for cubic 
systems.

Ans: (i) (110)

Y

X

O

Z

If the Miller index for an axis is 0, then its intercept is made at 1

0
= ∞.  Here, z will meet at infinity.

(ii) (111)

Y

XO

Z
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 (iii) (010)

Y

X

O

Z

 (iv) (100)

Y

XO

Z

 (v) (011)

Y

XO

Z
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 (vi) (010)

Y

Y′

X

Z

Q.3: A plane intercepts at 2a, 3b, and 
c

3
 in simple cubic cell. Obtain the Miller indices for plane.

Ans: The intercepts are 2 3
1

3
, ,æ

è
ç

ö

ø
÷

Reciprocal gives 
1

2

1

3
3, ,æ

è
ç

ö

ø
÷

Smallest integers yield (3, 2, 18)
Hence, Miller indices are (3, 2, 18).

Q.4:  A plane makes intercept of 4 Å,  6 Å, ,and 3 Å  for monoclinic lattice such that a b c: : : := 4 2 3 .  
Obtain the Miller indices for the system.

Ans: a b c: : : := 4 2 3

We know n a1 4= , n b2 6= , and n c3 3=

n
a

1

4 4

4
1= = =

n
b

2

6 6

2
3= = =

n
c

3

3 3

3
1= = =

Hence, n1 1= ,  n2 3= ,  and n3 1=

Reciprocals are 1
1

3
1, ,æ

è
ç

ö

ø
÷

Smallest integers are (3, 1, 3)
Hence, Miller indices are (3, 1, 3).
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 Q.5: For lead, obtain the spacing of (011), (111), and (112) planes for FCC structure a =( )4 95. .Å

Ans:

d
a

h k l
=

+ +
2 2 2

d011

4 95

2

4 95

1 41
3 51= = =

. .

.
. Å

d111

4 95

3

4 95

1 73
2 86= = =

. .

.
. Å

d112

4 95

6

4 95

2 44
2 02= = =

. .

.
. Å

Q.6: For orthorhombic system, calculate lattice planning or (110) planes for a = 4 5. Å,  b = 3 5. Å,  
and c = 2 5. Å.
Ans:

d
h

a

k

b

l

c

=
æ

è
ç
ö

ø
÷ +

æ

è
ç
ö

ø
÷ +

æ

è
ç
ö

ø
÷

2 2 2

1

d =
æ

è
ç

ö

ø
÷ +

æ

è
ç

ö

ø
÷ +

æ

è
çç

ö

ø
÷÷

-

1

4 5

1

3 5
0

2 2 1 2

. .

/

d = +( )
-

0 04938 0 081632
1 2

. .
/

d = 2 77. Å.

Q.7: The silver has FCC structure (mass number = 108). Obtain the density, if its lattice constant is 
4 077. Å.
Ans: For FCC,

r =
4

3

M

N a′

a N M= = × =4 077 6 023 10 10823. , . ,Å ′

r =
×

× × ×( )−
4 108

6 023 10 4 077 1023 8 3
. .
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r =
× ×

−

432

408 16 10 1023 24.

r = 10 58 3. g/cm

Q.8: Copper has atomic radius of 1 278. Å  and FCC structure. Obtain its density (M = 63.54 g)
Ans: For FCC,

r =
4

3

M

N a′

Here, r =1 278. Å

for FCC r a=

2

4

a
r

= =

´4

2

4 1 278

2

.

a = 3 625. Å

Hence, r =
×

× × ×( )−
4 63 54

6 023 10 3 625 1023 8 3

.

. .

r =
×

=
−

254 16

286 9 10
8 85

1
3.

.
. .g/cm

 Q. 9: A wavelength of 0 63. Å  is used for first order diffraction and the glancing angle of 12°. What 
should be the glancing angle for second-order diffraction?

Ans: 
1 1 212°, 0.63 Å, 1, and 2n n= = = =q l

According to Bragg’s law 2d sin q l1 1= n ,

2 0 63

2
0 63

d

d

sin .

.

sin

12

12

°

°

=

=
 

(a)

For second order diffraction,

2

2
2 0 63

2 2

2

d n

d

sin

.

sin

q l

q

=

=

×

 
(b)
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From Eqs (a) and (b),

/ / /
=
× / / /0 63 2 0 63

2

.

sin

.

sin12° q

sin sin . .q2 2 2 0 2079 0 414= × = × =12°

.q2
1 0 414= ( )−sin .

q2 = 24.45°

Q.10: Calculate the glancing angle for NaCl [001] corresponding to second-order diffraction maxi-
mum. The lattice constant is 2 814. Å  and wavelengths of X-rays is 0 72. Å.

Ans: First of all, we shall obtain “d ”

a

d
a

h k l

=

=

+ +

= =

2 814

2 814

1
2 814001 2 2 2

.

.
.

Å

Å

Now, according de Bragg’s law,

2d nsinq l=

Here, n = 2,  l = 0 72. Å,  and d = 2 814. :

sin
.

.
.q =

×

×
=

2 0 72

2 2 814
0 2558°

 q = ( ) =−sin .1 0 2558 14.82°

 q = 14.82

Q.11: For BCC crystal, X-rays of wavelength 1 54. Å  irradiate (101) planes. If the interplanar 
 separation is 1 181. Å,  obtain the orders of Bragg reflection:

Ans: According to Bragg’s condition,

2d nsinq l=

For maximum, sinq →1

n
d

= =

×

=

2 2 1 181

1 54
1 534

l

.

.
.

“n” should be a whole number, for q < 90°, n ≈ 1. Hence, only the first-order diffraction occurs.
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Q.12: Sodium chloride crystal has lattice constant of 5 6. Å.  If the interplanar separation d
a

=

5
 

and wavelength of 1 1. Å  fall on the planes, how many diffraction orders can be observed?

Ans: We know 2d nsinq l=

d
a

= = =

5

5 6

5
2 504

.
. Å

l =
°

1 1. A, for maximum, sinq →1

n
d

= =

×

=

2 2 2 504

1 1
4 55

l

.

.
.

As n can be whole number only, n = 4  for q < 90° .

Q.13: Find different orders of Bragg’s reflection, if the crystal spacing is 2 384. Å  and wavelength of 
1 54. Å  is incident on it.

Ans: l = 1 54. Å  and d = 2 384. Å
From Bragg’s law of diffraction,

2d nsinq l=

For n = 1,

sin
.

.
q

l
1 2

1 54

2 2 384
= =

×

n

d

sin .q1 0 3229=

q1 = 18.83°

For n = 2 ,
sin .q

q

2

2

0 645=

= 40.23°

For n = 3,

sin .q

q

3

3

0 9689=

= 75.67°

For n = 4,

sin .

sin

q

q

4

4

1 311

1

=

>

Hence, n = 4  is not possible. Only three orders of diffraction are observed.
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Q.14: Obtain the reciprocal lattice vector for 
�

a x= 2 ˆ  and 
�

b x y= +ˆ ˆ,2  two-dimensional lattice.

Ans: Let us suppose 
�

c z= ˆ

( )
( )

( )
*

*

ˆˆ ˆ2
2 2

ˆˆ ˆ ˆ2 . 2.

ˆ ˆ ˆ
2

x y zb c
a

x x y za b c

a x y

+ ××
= =

+ ××

= −

�

�

�

�

� �

p p

p

p

Similarly,

  

( )
( )

( )( )

* 2 .

.

ˆ ˆ2 . 2
ˆ

ˆˆ ˆ ˆ2 . 2

c a
b

a b c

z x
y

x x y z

×
=

×

×
= =

+ ×

� �

�

�

� �

p

p

p

Q.15: The primitive lattice vectors of hexagonal space lattice are as follows:

�

�

�

a
a

i a j

b
a

i a j

c ck

= +

= - +

=

2

3

2

2

3

2

ˆ ˆ

ˆ ˆ

.̂

Obtain the volume of primitive cell and primitive translation of reciprocal lattice:

Ans: Volume, V a b c= ´( )�

�

�

.

V
a

i a j
a

i a j c k

V
a

i a

= +
æ

è
ç

ö

ø
÷ - +
æ

è
ç

ö

ø
÷´

æ

è
çç

ö

ø
÷÷

= +

2

3

2 2

3

2

2

3

2

ˆ ˆ . ˆ ˆ ˆ

ˆ ˆ̂ . ˆ ˆj
ac

j a ci

V a c a c a c

æ

è
ç

ö

ø
÷ +
æ

è
ç

ö

ø
÷

= + + =

2

3

2

3

4

3

4

3

2
2 2 2

Hence, volume, V a c=

3

2
2
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The primitive translation of reciprocal lattice is given by the following equation:

( )
*

2

*

2

*

3 ˆˆ ˆ2
2 2

2
3.

2

3ˆ ˆ2
2 2

3

2

2 1ˆ ˆ
3

a
i a j c k

b c
a

a b c a c

ac
j a c i

a

a c

a i j
a a

  
− + ×  

 ×   = =
×

 
+ 

 =

 
= + 

 

�

�

�

�

� �

�

�

p

p

p

p

Similarly,

( )
( )

  
 × +     ×  

= =
×

 
− 

  =

 
= − + 

 

*

2

*

2

*

3ˆ ˆ ˆ2 .
2 22 .

3 / 2.

ˆ3ˆ2
2 2

3

2

2 1ˆ ˆ
3

a
ck i a j

c a
b

a ca b c

ac a c i
j

b

a c

b i j
a a

��

�

�

� �

�

�

p

p

p

p

and

( )
( )
×

=
×

   
+ × − +   

   
=

=

*

*

2

*

2 .

.

3 3ˆ ˆ ˆ ˆ2
2 2 2 2

3

2
2 ˆ

a b
c

a b c

a a
i a j i a j

c

a c

c k
c

�

�

�

�

� �

�

�

p

p

p



680  • CHAPTER 16/CRYSTAL STRUCTURE

OBJECTIVE QUESTIONS

 1. Primitive cell has

 (a) zero volume (b) maximum volume
 (c) negative volume (d) minimum volume

 2. Coordination number of SC lattice is

 (a) 8 (b) 6
 (c) 12 (d) 10

 3. Atomic radius for BCC lattice is

 (a) 
a

2
 (b) 

3

2

 (c) 
3

4

a
 (d) 

2

4

a

 4. Atomic radius for FCC lattice is

 (a) 
2

4

a
 (b) 

3

4

a

 (c) 3

2

a  (d) 
a

2

 5. Number of atoms is FCC lattice are

 (a) 1 (b) 12
 (c) 4 (d) 2

 6. The coordination number is HCP lattice is

 (a) 15 (b) 12
 (c) 8 (d) 6

 7. The ratio c a/  for HCP lattice is

 (a) 
6

5
 (b) 

6

7

 (c) 
4

3
 (d) 

8

3

 8. Atomic radius for SC lattice is

 (a) 
a

2
 (b) 

3

4

a

 (c) 2

4

a  (d) 
a

4
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 9. The packing fraction of FCC lattice is

 (a) 58 percent (b) 64 percent
 (c) 74 percent (d) 50 percent

 10. Packing fraction of BCC lattice is

 (a) 52 percent (b) 68 percent
 (c) 74 percent (d) 90 percent

 11. Sodium chloride has _____ structure

 (a) FCC (b) BCC
 (c) HCP (d) SC

 12. For monoclinic crystal

 (a) a b g= = = 90°  (b) a b g≠ ≠ ≠ 90°
 (c) a b g= = ≠90°  (d) 120°, 90= = = °a b g

 13. A crystal cannot have _____ symmetry

 (a) 5 (b) 7
 (c) both (a) and (b) (d) none of these

 14. BCC lattice is the reciprocal of

 (a) SC (b) FCC
 (c) BCC (d) HCP

 15. (300) reflection is absent for

 (a) BCC (b) FCC
 (c) SC (d) HCP

 16. FCC lattice is the reciprocal of

 (a) SC (b) FCC
 (c) HCP (d) BCC

 17. The Brillouin zones obtained by BCC lattice is

 (a) cubic (b) octahedron
 (c) dodecahedron (d) HCP

 18. The Brillouin zone obtained by FCC lattice is

 (a) cubic (b) octahedron
 (c) dodecahedron (d) truncated octahedron

 19. The structure factor S f= 4  exists for FCC, if all indices are

 (a) all even or odd (b) one even and two odd
 (c) one odd and two even (d) all of these
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ANSWERS

 1. (d)

 2. (b)

 3. (c)

 4. (a)

 5. (c)

 6. (b)

 7. (d)

 8. (a)

 9. (c)

 10. (b)

 11. (a)

 12. (c)

 13. (c)

 14. (b)

 15. (a)

 16. (d)

 17. (c)

 18. (d)

 19. (a)
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Micro-Assessment Questions

 1. What are crystalline solids? Give their properties along with examples.
 2. Define amorphous materials with examples.
 3. Define lattice ad motifs for crystal plane.
 4. What are the translational vectors?
 5. Explain basis for a crystal lattice.
 6. Define plane of symmetry and center of symmetry.
 7. How does reflection operation differ from rotation operation?
 8. Explain the translational operation.
 9. What is inversion operation?
 10. What is unit cell?
 11. Define the lattice parameters for crystal structure.
 12. Give the parameters for oblique lattice and primitive rectangular lattice.
 13. Draw base-centered tetragonal lattice.
 14. Give the lattice parameters for hexagonal and monoclinic lattice.
 15. Define interplanar spacing for planes.
 16. What is the miller index, when the intercept is infinity?
 17. What is the coordination number for SC, BCC, and FCC system?
 18. Explain the crystal structure for sodium chloride.
 19. Give the c/a ratio for HCP.
 20. What is Bragg’s equation?
 21. Define reciprocal lattice.
 22. Give the dimensions of reciprocal vector.

Critical Thinking Questions

 1. State the differences between crystalline and amorphous materials.
 2. Define crystal structure. Which quantities are required to make a crystal?
 3. Give the basic symmetry elements of a lattice.
 4. Show that five- and seven-fold symmetry does not exist for crystal structure.
 5. Describe the basic symmetry operations for crystal lattice, which leaves the lattice invariant.
 6. List the differences between translational and rotational operation for crystal.
 7. How does unit cell differ from primitive cell?
 8. Give the different types of lattices in two-dimensional systems.
 9. Draw the two Bravais lattice for the monoclinic lattice.
 10. How many types of orthorhombic lattices are possible? Explain.
 11. Draw the plane (111) and (101).
 12. Obtain the Miller indices, given the intercepts are 3a, 3b, and 2c for simple cubic cell.
 13.  Obtain the lattice spacing for 111 plane of orthorhombic system with a = 0.35 nm, b = 0.25 nm, 

and c = 0. 55 nm.
 14. Derive the atomic radius for FCC system.
 15. Derive the packing fraction and atomic radius for BCC system.
 16. Explain in detail all the properties for simple cubic system.
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 17. Obtain the density for iron and copper.
 18. What is ABC stacking? Explain with diagram.
 19. Give the crystal structure for sodium chloride crystal.
 20. Explain the scattering normal for crystal.
 21. Derive the Bragg’s law of diffraction form the Laue’s equations.
 22. What is rotating crystal method to determine crystal structure?
 23. Explain the Laue’s method of crystal structure determination.
 24. Describe the powder crystal method of crystallography.
 25. Obtain the reciprocal lattice for simple cubic system.
 26. Derive the reciprocal lattice for simple cubic lattice.
 27. Obtain the Brillouin zones for BCC.
 28. Derive the Brillouin’s zones for FCC lattice.
 29. What is atomic scattering factor? How does it differ from geometrical scattering factor?

Graded Questions

 1. Explain in detail the types of Bravais lattices in three dimensions.
 2. What are Miller indices? How can we obtain Miller indices for a plane? Draw a plane for (110).
 3. Define interplanar spacing. Derive the interplanar spacing for tetragonal system.
 4.  Explain the cubic systems in detail along with their coordination number, atomic radius, and 

packing fraction.
 5. Describe the packing of spheres in ABAB and ABCABC stacking in detail.
 6.  Explain in detail with diagram the crystal structure for diamond. Also obtain the packing frac-

tion, atomic radius, and coordination number.
 7.  What is hexagonal close packing? Obtain its packing fraction. Show that for HCP the c/a is 

1.633.
 8. State the Laue’s method of X-ray diffraction. Derive the Laue’s equations for crystals.
 9. List the various X-ray diffraction techniques for determination of crystal structure.
 10. Define the reciprocal vector. Obtain the reciprocal vectors from primitive lattice vectors.
 11.  Obtain the reciprocal lattice for BCC and FCC systems. Show that FCC and BCC lattices are 

reciprocal lattices of each other.
 12. Derive the first and second Brillouin zones for crystal.
 13.  What is atomic scattering factor? Show that the atomic scattering factor denotes the total charge 

of atom.
 14. Define geometrical factor. Derive the geometrical structure factor.
 15.  Obtain the geometrical structure factor for SC, BCC, and FCC lattice. Why (211), (342), and 

(100) planes do not exist for FCC lattice?

Remember and Understand

 1.  In crystals, atoms occupy well-defined positions in space; whereas in amorphous solids, the 
arrangement does not follow any regular arrangement. Crystals are anisotropic, whereas amor-
phous solids are isotropic.
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 2.  In the crystals, every atom or molecule is represented by a representative unit which is math-
ematical points known as motifs.

 3.  To obtain a crystal structure, a group of atom should be added to every lattice point. This group 
of atoms is known as basis. Basis may contain several atoms.

 4.  The symmetry plane is an imaginary plane, which is supposed to divide the lattice into two equal 
halves.

 5.  Symmetry center is point in crystal so that for point r, there exists −r w.r.t. fixed position O. Five- 
and seven-fold-symmetry do not exist.

 6.  There are four different symmetry operations, that is, rotational, translation, reflection, and 
inversion.

 7.  Unit cells are the smallest entities which when repeated will generate the whole crystal lattice 
in space. Unit cells are of two types: primitive and nonprimitive. Primitive cell has minimum 
volume. In nonprimitive cell, the lattice point can be at the center of cell also.

 8.  The intercepts for unit cell are a, b, and c. There are five types of crystal lattice in two-dimen-
sional space and 14 types of crystal lattice in three-dimensional space. The most symmetric lat-
tice is cubic system.

 9.  Miller devised a set of indices to represent different set of planes within the crystals. Miller 
indices describe the directions and orientations of planes. The direction in general is denoted by 
[uvw] and direction by <uvw>. The Miller indices of a plane are denoted by (hkl).

 10. The interplanar spacing “d ” between planes is given by the following equation:

d
h

a

k

b

l

c

=

+ +
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2

2

2

2

2

2

 11.  The cubic unit cells are of three types: simple cubic (SC), body-centered cubic (BCC), and face-
centered cubic (FCC). All of these have the same volume. The coordination number for SC, 
BCC, and FCC is 6, 8, and 12, respectively. The packing fraction of SC, BCC, and FCC is 52.3 
percent, 68 percent, and 74 percent, t respectively.

 12.  Diamond cubic structure is made of two interpenetrating lattices: one lattice having the origin 
at (0, 0, 0) and other lattice having the origin at (a/4, a/4, a/4). There are a total of eight atoms/
unit cell and the packing fraction is 34 percent for diamond cubic lattice.

 13.  In hexagonal close packing (HCP), three atoms are present inside the hexagon body, two at basal 
planes and one at every corner. The packing fraction is 74 percent for HCP and the coordination 
number is 12. The c/a ration for HCP is 1.633.

 14.  Bragg suggested that X-rays are scattered from the crystal planes, but Laue said that the reflection 
of X-rays occur from the individual atoms. Laue gave set of three equations from which Bragg’s 
equation can be obtained:
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 15.  There are three methods to determine the crystal structure: (i) Laue’s method in which the posi-
tion of crystal is fixed, (ii) rotating crystal method in which the crystal rotates, and (iii) powder 
diffraction method that uses the sample in powdered form.

 16.  Reciprocal lattice is the array of points that are obtained at the end of normal drawn to a common 
origin whose length is proportional to the reciprocal of interplanar spacing. The magnitude of 
reciprocal lattice vector is reciprocal of its interplanar spacing.

 17.  The reciprocal lattice vectors are given by the following equation:
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 18. Reciprocal lattice for BCC is given by the following equation:
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 19. Reciprocal lattice for FCC is given by the following equation:
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 20.  The primitive cell in reciprocal lattice represents the Brillouin zone. The family of straight lines 
is given by

 [type Figure (44)]
 21. The Brillouin’s zones for BCC is given by
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a

= ± = = ± ± = −1 0
2

3 2and then, k k
p

h k l
a

= = ± = ± ± = −0 0 0
2

1 3, , ,and then k k
p

h k l
a

= = = ± ± ± = −0 0 1
2

1 2, , ,and then k k
p

 22. The Brillouin’s zones for FCC is given by
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 23.  The atomic scattering factor (f   ) is defined as amplitude of radiations that are scattered from the 
atom to the amplitude of radiations that are scattered from the electron. “f ” denotes the total 
charge of an atom.

 24.  To obtain the total scattering, the amplitude of all the scattered wavelets by each atoms are added 
to get geometrical structure factor (S ) and is given by the following equation:

S f ei
u h v k w l

i

i i i= − + +( )∑ 2pi
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Lattice dynamics deals with vibrations of atoms around the equilibrium position. Atoms always 
vibrate around their mean position even at absolute zero, although these vibrations may be negli-
gible. As the temperature increases, the atoms displace from the equilibrium position. While talking 
about the crystal, it consists of regular arrangement of atoms/molecules. The neighboring atoms in 
the crystal have force of attraction or repulsion between them. Hence, the vibration spread among 
whole crystal lattice instead of being limited to any single atom. These vibrations are known as lattice 

17
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vibrations. Single atom vibrates like harmonic oscillator. The energy of harmonic oscillator is quan-
tized and is given by the following equation:

       
E n hfn = +





1

2
 (1)

Equation (1) signifies that the energy levels are discrete and not continuous. Different values of n  
correspond to different energy values:

For n = 0 , E hf wn = =

1

2
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2
�  

w =

=















2

2

p

p

f

f
w

1

2
�w  is the zero point energy which indicates that even at absolute zero, the atom has 

1

2
�w  minimum 

energy which is in contrast to the Planck’s hypothesis, According to Planck’s hypothesis, E nhfn = ; 
hence for n = 0, E = 0. But the existence of zero point energy is verified. If we take two energy levels 
corresponding to n

1
, and n2, then the energy difference is given by the following equation:

       
E E n n hf2 1 2 1− = −( )  (2)

Similar analogy is given when crystal atoms absorb quantum of thermal energy. “Phonon” is the name 
given to this quantum of thermal energy in case of lattice vibrations. In other words, the interactions 
that take lattice vibrations into consideration always involve the interaction of phonons. Like photons, 
phonons also obey Bose–Einstein statistics. The difference between photon and phonon is that pho-
tons originate from elastic waves. Although photons belong to electromagnetic waves, phonons require 
material medium for their propagation. Phonons interact with particles is the lattice. Phonons also get 
in elastically scattered by long wavelength photons. We can demonstrate it as follows:

Let us suppose m is the refractive index of medium, and c is the velocity of light in vacuum. We can 
give the velocity v, light photons to be

v
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                  k
w

c
=

m
 (5)

k is the incident wavevector. The momentum of photon is given by p
h h

k= = =

l

p

l p

2

2
�

                  p k
�� �
= �  (6)

We consider the interaction of photon with phonon and then photon gets scattered changing wave-
vector from k k→ .́ The angular frequency of photon changes from w w→ ´ . If the phonon having 
angular frequency Ω and wavevector K

���

 is created, then it follows the principle of conservation of 
momentum.

� � �w w= +´ Ω

The principle of conservation of momentum gives (fig. 17.1)

                � � �k k K
� �� ���
= +´  (7)

k k K
� �� ���

= +´

                   K k k
��� � ��

= − ´  (8)

To determine the magnitude of K, then from Eqn. (8)
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Figure 17.1 Schematic of interaction between photon and phonon.
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If we take the magnitude of k k
� ��

≈ ,́ then

K k k k= −( )  = 
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f is angle between the scattered and incident photon. Let vp  be the velocity of photons inside the 
crystal, then

v
K

p
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17.1 One-Dimensional Monoatomic Lattice

Consider infinite chain of atoms on a straight line with interatomic spacing a. All the atoms are identi-
cal having same mass m. The following assumptions are made:

 (i) Atom is considered to be like a sphere. Each atom is connected to each other with a spring 
(spring constant = b   ).

 (ii) Atoms follow Hooke’s law, that is, the force between the nearest neighbor atoms depends 
directly on the extension and contraction between them.

 (iii) The interaction extends only between nearest neighbors.
 (iv) The spring between atoms is considered to be mass less.

During equilibrium position, the atoms are present at their equilibrium position. But during motion, 
the atoms get displaced from their equilibrium position. If x1, x2, xn+1 are the displacement of 1st, 2nd, 
and (n + 1)th atom from respective equilibrium positions, then the force on nth atom due to (n − 1)th 
atom is b x xn n−( )−1

 as shown in fig 17.2. Similarly, force on nth atom due to (n + 1)th atom is given 

by b x xn n+ −( )1 . These forces are opposite to each other and the net force is given by

n −1 n +1
Equilibrium

state

Disturbed
state

n

x
n −1 x

n +1x
n

a

Figure 17.2 Equilibrium and disturbed state of monatomic lattice.
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F x x x xn n n n n= −( ) − −( )+ −b b1 1
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dt
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2 1 1= −( ) − −( )+ −b b
 

[Newton’s second law]

        m
d x

dt
x x xn
n n n
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2 1 1 2= + −[ ]+ −
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Let the solution of Eqn. (11) be given by wave represented by

        x Aen

i wt kna
=

−( ) (12)

k = 2p
l

 (wavevector), w is angular frequency of wave and na is distance of nth atom from origin. For 

(n − 1) and (n + 1)th atom, the solution is given by the following equation:

         x Aen
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Using Eqs (12) and (13) in Eqn. (11), we will obtain
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But w can only be positive quantity, hence

                 
w

m

ka
=

4

2

b
sin  (15)

Equation (15) is called dispersion relation. Further, these dispersion relations could be discussed as 
follows.
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The medium is dispersive whenever velocity is nonlinear function of wavelength or wave number. For 
nondispersive media, w and k are linearly dependent on each other.

w kv= = =2
2

p
p

l
lf f

                  w k∝  (16)

Variation of w vs. k is shown in Figure 17.3, which could be explained as follows:

 (i) When frequency is small, k→ 0

then, sin ka ka
2 2≈

Equation (15) can be written as follows:

                 
w m ka= b  (17)

The phase and group velocity are given by v
p
 and v

g
, respectively, and can be computed as follows:

                
v w

k m ap = = ⋅





b
 (18a)

                 
v

dw

dk m ag = = ⋅





b
 (18b)

From Eqn. 18(a)–(b), the phase velocity becomes equal to group velocity. Moreover, both are inde-
pendent of k. Hence for long wavelength, the atomic nature of medium is not of much importance. 
In other words, the medium behaves as a homogenous elastic medium. Discreteness of medium has 
less effect on large wavelengths. This could also be attributed to the fact that large number of atoms 
participate in all displacement. This is represented by straight dotted lines in Figure 17.3.

2nd Brillouin

zone
2nd Brillouin zone

k

1st Brillouin

zone

w

−2p/a +2p/a−p/a p/a

Figure 17.3 Plot of w vs. k.
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 (ii) For higher frequency, the k does not tend to zero.
then

               
v
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b sin  (19a)
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Hence, from Eqn. 19(a)–(b), it is clear that phase and group velocity depend on k. When the fre-
quency is high, the medium behaves as dispersive medium.

 (iii) When frequency w m=

4b , this represents maximum value of frequency.

  
i.e.

 
sin
ka

2
1=

 

ka

2
2= p

 l = 2a (20)

then     v
a

m
p =

2

p

b
 (21a)

and     vg = 0  (21b)

Equation (21b) represents that when k→ p 2, there is no transfer of energy. Waves act as stationary 
wave. Equation (20) represents the Bragg’s condition of reflection 2d nsinq l=[ ], first-order reflec-
tion is given by l = 2d .

Brillouin Zones

We know      w m
ka

=

4
2

b sin

Only those waves can propagate, for which sinka 2 1≤ .

− ≤ ≤1 2 1sinka

                 
− ≤ ≤p p

a k a  (22)

Equation (22) indicates that waves propagate in positive and negative direction. The Brillouin zones 
are shown in Figure 17.3.
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sinka 2 1≤  is also satisfied, when − ≤ ≤ −p
p

ka

2 2
 and p p2 2

≤ ≤
ka

− ≤ ≤ −2p p

a k a and p p

a k a≤ ≤ 2

This represents second Brillouin zone.

17.2 Diatomic Lattice

Consider a diatomic lattice with two atoms per primitive cell, with m
1
 and m

2
 respective masses

m m1 2<( ). The interatomic distance between nearest neighbor is a. Let x n2  be the displacement of 
atom at 2nth position. Lighter atoms (with mass m

1
) are placed at even-numbered positions and 

heavier atoms are placed at odd positions as shown in fig 17.4. All other assumptions are the same as 
that of monatomic lattice.

The force exerted on atoms could be written as follows:

      F m x x x xn n n n n2 1 2 2 1 2 1 22= = + −[ ]+ −
b  (23a)

      
F m x x x xn n n n n2 1 2 2 1 2 2 2 2 12

+ + + +
= = + −[ ]b  (23b)

For Eqn. (23a), the solution could be given by the following equation:

    
x A i wt knan2 2= −( ) exp  and x B i wt n kan2 1 2 1+ = − +(( ) exp  (24)

Where A and B are the amplitude of lattice vibration set by atom m
1
 and m

2
. Both atoms have different 

amplitudes, due to different masses.
Using Eqn. (24) in Eqn. 23(a)–(b), we get

− = ( ) + −( ) −w m A B ika ika A2
1 2b bexp. exp

             
+ −( ) + =w m A B ka2

1 2 2 0b b cos  (25)

m1

m1
m1

m1

m1m2

m2
m2 m2

m2 m2
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x x x
x x

2n − 2

2n

2n

2n − 1

2n − 1

2n + 1

2n + 1

2n + 2

2n + 2

2n + 3

Figure 17.4 Diatomic lattice in equilibrium and disturbed state.
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and       w m B A ka2
2 2 2 0−( ) + =b b cos  (26)

Using method of determinants, on Eqs (25)–(26),
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The solution for w2 is given by the following equation:
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Equation (28) is the dispersion relation for the diatomic lattice w2 has two values and both are allowed 
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For long wavelengths, ka <<1. This implies sin ka is very small, and hence can be ignored and positive 
frequency is written as follows:
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                 w m+
=

2
1

b  (31)

We should calculate the expression for w
−

, for long wavelength ka <<1, then sinka ka≈  (If we ignore 
sin ka, then zero value of w

−

 is obtained), hence
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[using binomial theorem and

 ignoring higher  order term]
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for k a→ p 2 ,
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b
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Figure 17.5 is obtained by plotting the solution of Eqs (30)–(33). It is clear that there exists a frequency 
gap b/w w

+
 and w

−
. This gap is termed as forbidden frequency gap. The width of this forbidden fre-

quency gap depends upon the ratio of m
1
 and m

2
. If 
m

m
2

1

 is large, then the forbidden band is more wide 

and vice-versa.

Forbidden
freqliency

hand

Acoutical
branch

Optical banch

−p/2a p/2a

1st Brillouin zone

2b/m1 = w
+

2bm2 = w
−

0

w

k

Figure 17.5 Optical and acoustical branch for diatomic lattice.
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Following are the important conclusions obtained as outcome of lattice vibrations in diatomic lattice.

 (i) Two branches originate for frequencies: optical and acoustical branches.
 (ii) The graph between w

+
 and k represents optical branch whereas graph between w

−
 and k repre-

sents acoustical branch.
 (iii) For optical branch,

When k→ 0 (longer wavelength), then eqn. (25) can be written as

w m A ka B2
1 2 2 0+( ) + ( ) =b b cos

as k→ 0, ka→ 0, and hence cos ka→1

              
w m A B2

1 2 2 0−( ) + =b b  (34a)

Similarly,   w m B A2
2 2 2 0−( ) + =b b  (34b)

Eliminating w2 from Eqs (34a) and (34b), we obtain

      

A

B

m

m
= −

2

1

 (35)

Equations (35) signify that two atoms vibrate opposite to each other. Hence, the atoms vibrate 
perpendicular to direction of propagation of wave. These wavemotions are excited by transverse 
optical waves. Therefore, this branch is called optical branch.

For acoustical branch,
When k→ 0 (longer wavelength), then

cos ka
k a

= −1
2

2 2

and we obtain      
A

B
=1 (36)

Equation (36) signifies that all the atoms have same amplitude. Moreover, they vibrate in same direc-
tion. Hence, longitudinal waves are required to excite such wavemotion. Therefore, this wavemotion 
is called acoustical branch.

Note:

 1. If m m1 2= , no forbidden gap exists and frequency for monatomic and diatomic lattices is same.
 2. If m m2 1> , then acoustical branch gets almost flat and if m m1 2> , then optical branch is flat.
 3. The 1st Brillouin zone extends from −p 2a to p 2a.

17.3 Free Electron Model (Drude–Lorentz Theory)

D. Drude gave the free electron model in 1909. Free electrons are those electrons that are present in 
the outermost shell of atom. These electrons are free to move anywhere inside the metal kernel, but 
cannot come out of metal surface on their own. When some force is applied to these electrons, they 
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may come out of metal surface. Drude proposed that the free electrons are responsible for thermal and 
heat conduction of metal. Two basic assumptions are that there is no force of attraction b/w electrons, 
and the electrons move in constant uniform field. Hence, the electrons theory follows the same trend 
as that of kinetic theory of gases, Therefore, the name of the theory is called electron gas model or free 
electron theory or Drude–Lorentz theory.

This theory explains Ohm’s law, Wiedemann–Franz’s law, and many other phenomena’s. But cer-
tain concepts could not be explained using these theory, that is, nonlinear hall resistivities and higher 
order thermal conduction which were explained by Sommerfled (he used quantum statistics).

17.4 Properties Explained By Free Electron Model

Electrons keep on moving in metal like molecules of gas. While in continuous motion, they keep 
on colliding with each other. Hence, when the electrons undergo these collisions, the direction and 

velocity of electron also get changed. As is clear from Maxwell–Boltzmann’s law, v
k T

m
rms

B
=

3
. The 

root-mean-square value for electrons is ≈105 m/s and k
B
 is Boltzmann constant.

As the electrons travel in zig-zag path, hence the average velocity of electrons is zero. But if electric 
field is applied across the ends of conductor, then the electrons gets accelerated in opposite direction 
to that of applied electric field. The average velocity with which the electrons drift opposite to applied 
electric field is called drift velocity. The average free path between two successive collisions is called 
mean free path and is given by l. Further, the time between two successive collisions is given by relax-
ation time and is given by t . We can define the following properties using free electron theory:

17.4.1 Ohm’s Law and Electrical Conductivity
If E is the electric field applied, then the electrons get accelerated and is given by the following equation:

        
a

d x

dt

eE

m
= =

2

2
 (37)

The relation between relaxation time t  and mean free path l is given by the following equation:

                  
t

l
=

v
 (38)

where v is the velocity of electron.

Integrate Eqn. (37), we get,

dx

dt

eEt

m
c= +

For t = 0, 
dx

dt
= 0

 
and hence c = 0

dx

dt
v

eEt

m
= =
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Hence, the distance travelled is given by the following relation:

     x
eE

m
t dt

eE

m
= 





=∫
0

2

2

t

t

 (39a)

From Eqn. (39a), we can find out average velocity,
i.e.

      
v

eE m eE

m
=
( )

=
t

t

t
2 2

2
 (39b)

      
v

eE

mv
=

l

2
 (39c)

According to kinetic theory of gases, 
1

2

3

2
2mv k T= B ,

      
⇒

 
mv

k T

v
=

3 B  (39d)

Substituting Eqn. (39d) in Eqn. (39c), we obtain

      
v

eE

k T v

eE v

k T
=
( )

=
l l

2 3 6B B/
 (40)

For a conductor, the current is given by (cross section of conductor is A and n is the number of free electrons).

I ne Av=

 

I

A
ne v

ne E v

k T
= =

2

6

l

B

       
J

I

A

ne E v

k T
= = =current density

2

6

l

B

 (41)

From Eqn. (41),

J
ne E v

k T
=

2

6

l

B

 
J

ne v

k T
E=







2

6

l

B
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  J E= s  (42)

Where            s
l

= =

ne v

k T

2

6 B

conductivity  (43)

Equation (42) represents Ohm’s law according to which the current density depends directly on 
electric field. Equation (43) signifies that conductivity depends on the number of free electrons (n).

17.4.2 Thermal Conductivity
Thermal conductivity is defined as the rate at which heat flows through a material that is maintained 
at temperature gradient. it can be explained in terms of following equation:

          

dQ

dt
KA
dT

dx
= −

 (44a)

K → Thermal conductivity
dQ

dt
→ rate of heat flow [perpendicular to cross-sectional area]

dT

dx
→

 
temperature gradient

A → cross-section area

According to the transport phenomena, the amount of heat Q passing through a cross section of strip/
area is given by the following equation:

        

dQ

dt
nv

dE

dx
=

1

3
l

 
(44b)

dE

dx
→energy gradient

v→ thermal velocity

l → is mean free path.

Thermal velocity is given by

v
k T

m
=

3 B

From kinetic theory of gases,

E k T=

3

2 B

 

dE

dx
k
dT

dx
=

3

2 B  (44c)
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Substituting Eqn. (44c) in Eqn. (44b),

dQ

dt
n

k T

m
k
dT

dx
=

1

3

3 3

2
B

Bl

 

dQ

dt
n

k

m
T
dT

dx
=

( )1

6

3
3 2

l
B

/

 (45)

Comparing Eqs (44a) and (45), we obtain

      
KA n

k

m
T=

( )1

6

3
3 2

l
B

/

 (46)

        
K

n k T

A m
=

( )l 3

6

3 2

B

/

 (47)

In Eqn. (44a) “−ve” sign signifies that energy flow takes place from higher to lower temperatures.

17.4.3 Wiedemann–Franz Law
The Wiedemann–Franz law states that the ratio of thermal and electrical conductivity of a metal for 
constant temperature is constant.

Dividing Eqs (47) and (43),

 

K
n k

k T

m

A

ne v

k Ts

l
l

=

3
3

6 6

2B
B

B

 
=

3 2

2

k T

Ae
B

For unit area,

        

K k

e
T

s

= 




3
2

B  (48)

Hence, 
K

s

 is constant, if T is kept constant. Eqn (48) called Wiedemann–Franz relation.

17.5 Merits And Demerits Of Drude–Lorentz Theory

Merits

 It could explain Ohm’s law of electrical conductivity, thermal conductivity, and Wiedemann–Franz 
law.
Demerits
 (i) It could not explain the positive charge carriers in semiconductors.
 (ii) It could not explain the preference of certain structures by metals.
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 (iii) At low temperatures, it fails to explain the long mean free paths.
 (iv) It could not explain the paramagnetic susceptibility of conduction electrons.

17.6  Sommerfeld’s Quantum Theory [One-Dimensional Analysis Of 
Free Electrons]

Many points could not be explained by Drude–Lorentz theory. While considering classical theory, 
electrons were considered to be distinguishable particles. But Sommerfled gave the quantum mechani-
cal explanation of free electron gas. He used Pauli exclusion principle and Fermi–Dirac statistics, that 
is, no two electrons can have same quantum numbers. Figure 17.6 shown an electron enclosed in 
one-dimensional box.

The electron can move freely inside the box, but the walls are perfectly rigid and potential limit is 
up to infinity. Hence, it is almost impossible for the electron to come out of the box without doing 
infinite work. Here, the potential could be divided as follows:

      V = 0, for 0 < <x a (49a)

      V = ∞, for x a≥  and x ≤ 0 (49b)

Applying Schrodinger wave equation on energy E of electron, we get

     

∂ ( )
∂

+ −( ) ( ) =
2

2 2

2
0

j
j

x

x

m
E V x

�
 (50)

Using boundary condition Eqn. (49a) in Eqn. (50), we get [For 0 < x < a]

∂

∂
+ =

2

2 2

2
0

j
j

x

mE

�

 

∂

∂
+ =

2

2
2 0

j
j

x
k  (51a)

where k
mE2

2

2
=

�
 (51b)

V = ∞

electron

V = ∞

V

0 ax

Figure 17.6 Electron inside one dimensional box
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      j = +A kx B kxsin cos  (52a)

Let Eqn. (52a) be the general solution for Eqn. (51a). A and B are the arbitrary constants.
Applying boundary condition, j = 0, at x = 0  and a.
For x = 0, we obtain B = 0 from Eqn. (52a)
Hence, Eqn. (52a) becomes

      j = A kxsin  (52b)

Using the second boundary condition, that is, j = 0 , at x a=

 f = =A kasin 0

 ⇒ A kasin = 0

 ⇒ ka n= p

 ⇒ k
n

a
=

p

 (53)

Using Eqn. (53) in Eqn. (52b), we obtain

      
j

p
= A

n x

a
sin  (54)

Here n = 1, 2, 3,…., no zero or negative values are acceptable for Eqn. (54). When n = 0, it means 
electron is at rest which is not possible.

We can obtain the value of A by normalization, as follows:

j x dx
a

( ) =∫
0

2

1

A
n x

a
dx

a

2 2

0

1sin∫ 





=
p

Upon solving it, we get

       A
a

=

2
 (55)

Using Eqn. (55) in Eqn. (54), we get

       
j

p
= 





2

a

n x

a
sin  (56)

From Eqs (51b) and (53), we get

2
2

2
mE n

a�
= 




p
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⇒

 
E

n

ma
=

2 2 2

22

p �
 (57)

The n takes values of 1, 2, 3,…; and hence, electron can take only discrete values. Figure 17.7 shows 
the energy-level diagram. From Eqn. (57), it is clear that energy ∝ n2. Hence, energy follows parabolic 
function. Further, Sommerfeld theory used different terms like Fermi energy, total energy, and Fermi 
velocity which are discussed below.

E4
2ma2

16p2h2
(n = 4)

(n = 3)

(n = 2)

(n = 1)

E3

E2

E1

 =

 =

 =

 =

2ma2

9p2h2

2ma2

4p2h2

2ma2

p2h2

Figure 17.7  Discrete energy-level diagram for electron inside infinite potential 
well / one dimensional box.

Arnold Johannes Wilhelm Sommerfeld was a German physi-
cist. He is well known for his findings and contributions in 
atomic and quantum physics. He gave the second quantum 
number, that is, azimuthal quantum number and the fourth 
quantum number, that is, spin quantum number. Along with 
these quantum numbers, he gave the fine-structure con-
stant. He was born on December 5, 1868. Sommerfeld did his 
studies at Albertina university, Königsberg, East Prussia. He 
received his PhD in 1891 at the age of 23. After receiving his 
doctorate, Sommerfeld passed the national exam in 1892. 
Then he started working in military service with the reserve 
regiment of Königsberg. Even after completing his obliga-
tory military service in 1893, he worked as a volunteer for 
military service. Sommerfeld was appointed as the Director 
of the new Theoretical Physics institute at the university of 
Munich in 1906. Sommerfeld applied FD statistics to the 
free electron model in metals (Drude model). His model was 
able to solve many of the problem that could not be explained by the free electron theory. He was 
the only scientist who was nominated 81 times for the Nobel Prize but never received the award. 
in 1951, Sommerfeld died after an accident, which left the scientific community speechless.

17.6.1 Fermi Energy
Let us distribute N electrons in orbitals. According to Pauli exclusion principle; no two electrons can 
have all the quantum numbers to be the same. Every orbit can accommodate two electrons, that is, 
one with spin up and the other with spin down. The lower orbitals are filled first and then the higher 
orbit. In other words, at absolute zero temperature, the electrons occupy certain energy levels known 
as Fermi levels and the energy corresponding to the Fermi level is called Fermi energy EF( ).

A.J.W. SOMMERFELD
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Let us consider N electrons (even number of electrons) and nF be the principle quantum number 
of Fermi state, then

       N n= 2 F (58)

Hence, according to Sommerfeld theory, the energy is given by the following equation:

E
n

ma
F

F
=

2 2 2

22

p �
 (59)

E
N

ma
F =

2 2 2

28

p �
 (60)

Equation (60) represents the Fermi energy corresponding to Fermi level,

17.6.2 Total Energy
The total energy is the sum of energies of all N electrons. As each level occupies two electrons, N  

electrons are occupied in 
N

2
 levels. Total energy is given by the following equation:

E E
ma

nn

n

N

n

N

T = =
= =

∑ ∑2
1

2 2 2

2
2

1

2
p �

E
ma

N N
T =



































p
2 2

2

2
1

6 2
2

2

�

E
N

ma
T =

1

3 8

3 2 2

2

p �
 (61a)

n x x x x x x

x
N

n

x
2

1

2 2 2 2 21 2 1
1

6
2 3 1

1

6
2

2

=
∑ = + + −( ) = + +( ) ≈ ( )









=

…

Here

E NET F=

1

3
 (61b)

The average energy is given by the following equation:

E
E

N

E
= =

T F

3

E
E

=

F

3  (61c)

Hence, the average kinetic energy of electron is equal to 
1

3 
rd of Fermi energy.
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17.6.3 Fermi Velocity and Density of States
From Sommerfeld theory, it is quite evident that the energy of electrons at 0 K is not zero for upper-
most levels. The velocity that Fermi electrons possess is called Fermi velocity. Fermi electrons are 
electrons that have energy equal to E

F 
.

Therefore, in equilibrium,
KE of Fermi electrons = E

F

1
2 8

2
2 2 2

2
mv

N

ma
F =

p �

       
v

Nh

ma
F = 4

 (62)

Equation (62) gives the Fermi velocity.
The density of states represents the quantum states per unit energy range and is denoted by D(E).

      
D E

dn

dE
( ) =  (63)

Here dn represents number of quantum states in the energy range between E and E + dE.
As specified, there are two electrons present in each quantum state, hence

      
D E

dn

dE
( ) = 2  (64a)

Now, we have to evaluate 
dn

dE
 as follows:

E
n

ma
=

2 2 2

22

p �

      

dE

dn

n

ma
=

�
2 2

2

p

 (64b)

Substituting Eqn. (64b) in Eqn. (64a), we obtain

          
D E

ma

n
( ) =

2 2

2 2
� p

 (64c)

D (E)

Fermi energy EF

Figure 17.8 Variation of density of states with Fermi energy.
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For computing D(E) as a function of energy, we need to compute 1
n( ) from eqn (57) and then sub-

stitute it in Eqn. (64c):

D E
ma

a mE
( ) =











2

2

2

2 2
�

�

p

p

D E
ma

a mE
( ) =











2

2
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2 2
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p

E
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ma
n

mEa

n a mE
= = =











2 2 2

2
2

2

2 22

2 1

2

p

p

p�

�

�
, ,

      
D E

a m

E
( ) =

p�

2
 (65)

The variation of density of states with energy is shown in Figure 17.8. The figure clearly indicates that 
the energy states up to Fermi level are filled.

17.7 Free Electron Gas in Three Dimensions

We have given one-dimensional treatment to electron gas. Now, we assume the electrons gas in three-
dimensional box.

It is assumed that the potential inside the box is zero and that outside the box is infinite. Then the 
Schrodinger wave equation is given by the following equation:

−
∇ ( ) = ( )

�
2

2

2m
r E rj j
� �

+
∇ ( ) + ( ) =

�
2

2

2
0

m
r E rj j
� �

∇ ( ) + ( ) =2
2

2
0j jr

mE
r

� �

�

     

∂
∂

+
∂
∂

+
∂
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( ) + ( ) =

2

2

2

2

2

2 2

2
0

x y z
r

mE
rj j

� �

�
 (66)

The solution for Eqn. (66) is given by the following equation:

   
j

p p p
r A

n x

a

n y

a

n z

a
x y z

�( ) = 

















sin sin sin  (67)

In Eqn. (67), the side of cubical box is assumed to be a. A is an arbitrary constant, whose value can be 
obtained after normalization.
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j j* r r dv
� �
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A
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2
3

8
=

A
a

=
8

3  (68)

Hence, using Eqn. (68) in Eqn. (67), we obtain

     
j r

a
k x k y k zx y z

�

( ) =
8

3
sin sin sin  (69a)

where k
n

a
z

x
=

p

, k
n

a
y

y
=

p

, and k
n

a
z

z
=
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Such that
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a
n n nx y z x y z

2 2 2 2
2

2
2 2 2

= + + = + +( )
p

    
k

a
n2

2

2
2

=

p

 (69b)

where    n n n nx y z
2 2 2 2
= + +  (69c)

From Eqn. (66),

k
mE

=

2
2
�

E
m
k k kx y z= + + 

�
2

2 2 2

2

 
E

n

ma
=

p
2 2 2

22

�
 (70)

In Eqn. (70),   n n n nx y z
2 2 2 2
= + +

From Eqn. (70), we obtain that energy eigenvalues are quantized and possess discrete values.
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17.8 Band Theory of Solids

Many properties such as heat capacity, conductivity phenomena, and susceptibility could be explained 
using free electron theory, yet many issues need to be addressed. Free electron theory could not explain 
the difference between conductors, semiconductors, and insulators. This theory also predicted nega-
tive Hall coefficients for the metals, whereas some metals such as beryllium and zinc possess positive 
Hall coefficients. The free electron theory predicts that conductivity is directly proportional to elec-
tron concentration. But despite this fact, some monovalent metals possess positive Hall coefficients. 
The free electron theory predicts that conductivity is directly proportional to electron concentration. 
But despite this fact, some monovalent metals possess high conductivity than the divalent and triva-
lent metals.

In free electron theory, the electron is supposed to move inside constant or zero potential that 
implies zero force on electron. Anyhow, electron always experiences force when it passes near some 
neighboring ions. Hence, when the electron moves from one place to another, the electron no longer 
belongs to constant potential. In the subsequent sections, the electron wavefunction for electron is 
calculated when it is under the impact of changing potential.

17.8.1 Bloch Theorem
According to free electron theory, electron moves in constant potential Vo such that the schrodinger 
equation is given by:

 

∂

∂
+ −( ) =

2

2 2

2
0

j
j

x

m
E V

�
o  (71)

The solution for Eqn. (71) is as follows:

 
j = ±( )exp ikx  (72a)

Consider one-dimensional Schrodinger wave equation, for an electron. Let a be the periodicity of  
lattice, such that

 V x V x a( ) = +( ) (72b)

Hence, Eqn. (71) is written as follows:

 

∂

∂
+ − ( )( ) =

2

2 2

2
0

j
j

x

m
E V x

�
 (72c)

Equation (72c) can solved with the help of Bloch theorem.
The solution can be given in the following form:

      
j x e U xikx( ) = ( )±  (72d)

and      U x U x a( ) = +( )  (72e)

j x( )  is the Bloch function, eikx  represents wavefunction of free electron modulated by factor U x( ).

Let j1 and j2 be two independent and real solutions of Eqn. (72c). Then the solution for Eqn. (72c) 
is given by the sum of individual solutions, that is, j1 and j2, that is,
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   j j jx A x B x( ) = ( ) + ( )1 2  (73)

A and B are the arbitrary constants, second-order differential equation has two solutions.

As per Eqn. (72e), we have taken the potential to be periodic, hence j1 x a+( ) and j2 x a+( ) 
should also represents the solutions of Eqn. (72c). Hence,

 
j a j a j1 1 1 2 2x a x x+( ) = ( ) + ( )  (74a)

 
j b j b j2 1 1 2 2x a x x+( ) = ( ) + ( )  (74b)

where a
1
, a

2
, b

1
 and b

2
 are constants.

In correlation to Eqn. (73), we can also write solution for j x a+( ) , that is,

 
j j jx a A x a B x a+( ) = +( ) + +( )1 2

 
j a j a j b j b jx a A x x B x x+( ) = ( ) + ( ) + ( ) + ( ) 1 1 2 2 1 1 2 2

Using Eqn. 74(a)–(b),

 j a b j a b jx a A B x A B x+( ) = +( ) ( ) + +( ) ( )1 1 1 2 2 2
 (74c)

 
j j jx a A x B x+( ) = ( ) + ( )δ δ1 2  (74d)

where A B Aa b1 1+ = δ  (75a)

 A B Ba b2 2+ = δ  (75b)

From Eqn. (74d),

 
j j jx a A x B x+( ) = ( ) + ( ) δ 1 2

 
j jx a x+( ) = ( )δ  (76)

From Eqs (75a) and (75b), we can write

 

a b

a b

1 1

2 2

0

0

−( ) + =

+ −( ) =

δ

δ

A B

A B  (77)

We can write Eqn. (77) in determinant form as follows:

 

a b

a b

1 1

2 2

0
−

−
=

δ

δ

 a b a b1 2 2 1 0−( ) −( ) − =δ δ
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a b a b a b2 1 1 2

2
1 2 0+ + − +( ) =δ δ

 
δ δ2

1 2 1 2 2 1 0− +( ) + −( )=a b a b a b  (78)

Equation (78) gives a factor a b a b1 2 2 1−( ) which is taken to be 1, and then Eqn. (78) becomes

 
δ δ2

1 2 1 0− +( ) + =a b  (79)

We will prove that a b a b1 2 2 1 1− =  as follows:

Differentiate Eqn. 74(a)–(b),

 j a j a j1 1 1 2 2
′ +( ) = ′ ( ) + ′ ( )x a x x  (80a)

 j b j b j2 1 1 2 2
′ +( ) = ′ ( ) + ′ ( )x a x x  (80b)

We can write Eqn. 74(a)–(b) and Eqn. 80(a)–(b) in matrix form:

 

j j

j j

j j

j j

a b

a
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x x
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′ ( ) ′ ( ) 22 2b
 (81)

Rewriting Eqn. (72c) in terms of j1 and j2, we obtain
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Multiplying Eqn. (82a) with j2 and Eqn. (82b) with j1, and subtracting
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j j

j j

j
1 2

1 2

x x

x x
x

( ) ( )

′ ( ) ′ ( )
= = ( )constant  (83)

From Eqs (81) and (83), we obtain

 

j j

j j
a b a b j

1 2

1 2

1 2 2 1

x a x a

x a x a
x

+( ) +( )

′ +( ) ′ +( )
= −( ) ( )

 j a b a b jx a x+( ) = −( ) ( )1 2 2 1   
(using eqn. (76))

 
a b a b1 2 2 1 1−( ) =  (84)

Equation (79) is quadratic equation, and hence has two solutions, that is, δ
1
 and δ

2
 are the two solu-

tions. These values can be real or virtual depending on a b1 2

2
4+( ) − . Consider the following cases:

 (i) Case I: For a b1 2

2
+ <( ) 4

Then two roots are given by the following equation:

 δ1 = e
ika  and δ2 =

−e ika (85)

Corresponding wavefunction j1 x a+( ) and j2 x a+( ) could be written as follows:

 
j j1 1x a ika x+( ) = ( ) ( )exp

and j j2 2x a ika x+( ) = −( ) ( )exp  (86)

Generalized form could be written as follows:

 
j jx a ika x+( ) = ±( ) ( )exp  (87)

Equation (87) also represents Bloch functions.

 (ii) Case II: For a b1 2

2
4+ >( )

Here, δ1 and δ2 represent real roots, given by the following equation:

       δ1 =
+e as  and δ2 =

−e as

 (88) 

[for real solutions, the product of roots = 1]

Hence, the solution for Schrodinger equation is

   
j

s

1 x e U xa( ) = ( )  and j
s

2 x e U xa( ) = ( )−  (89)

 s is real, these wavefunction approach ∞ as x approaches infinity. Hence, the wavefunction is not 
acceptable and the energy band has forbidden and acceptable bands.
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17.8.2 Kronig–Penney Model
Kronig and Penney assumed one-dimensional potential model for studying behavior of electrons. This 
model assumes the potential well to be in square shape. The period for the potential well is a + b. The 
potential energy of the electron is zero for region 0 < <x a and for − < <b x 0, its value is Vo (as shown 
in fig. 17.9).

V(x)

Vo

−a−b −b a0

x

a+b

Figure 17.9 Kronig–Penney potential model.

The Schrodinger wave equation is given by the following:

   

∂ ( )
∂

+ ( ) =
2

2 2

2
0

j
j

x

x

m
E x

�
 for 0 < <x a (90a)

 

∂ ( )
∂

+ −( ) ( ) =
2

2 2

2
0

j
j

x

x

m
E V x

�
o

 
for − < <b x 0 (90b)

The basic assumption is that E V< o such that E V <− o 0 .

Put 
2

2 1

mE
k

�
=    and   

2
2 2

m
V E k

�
o −( ) =  (91)

Substituting Eqn. (91) in Eqn. 90(a)–(b), we obtain

 

∂ ( )
∂

+ ( ) =
2

2 1
2 0

j
j

x

x
k x  (92a)

Felix Bloch was born on October 23, 1905 in zurich, Switzerland. He 
attended the public primary school from 1912 to 1918. He joined 
Federal institute of Technology in zurich to study engineering but only 
after one year, he decided study physics at the same institution. He 
attended the courses given by Schrödinger, Debye, Scherrer, and Weyl. 
in 1928, he received his PhD in the quantum mechanics of electrons in 
crystals and developing the metallic conduction theory. He also worked 
with Heisenberg, Bohr, Pauli, Kramers, and Fermi. in 1934, he joined a 
position at Stanford university. in 1939, he performed an experiment 
at the Berkeley cyclotron in collaboration with L.W. Alvarez from which 
he obtained the magnetic moment of the neutron to an accuracy of 
about 1 percent. in 1940, he married Dr Lore Misch, who was a refu-
gee from Germany and herself a physicist. in 1954, Bloch served as the 
first Director General of CERN in Geneva. He then returned to Stanford 
university where he continued working on nuclear magnetism and relax-
ation theory. in 1961, he was appointed as Max Stein Professor of Physics at Stanford university.

FELIX BLOCH
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∂ ( )
∂

− ( ) =
2

2 2
2 0

j
j

x

x
k x  (92b)

The solution of Eqn. 92(a)–(b) is given by Bloch function:

 
j x U x eikx( ) = ( )  (93a)

where U x U x a b( ) = + +( ) (93b)

Differentiate Eqn. (93a),

 

∂ ( )
∂

= ( ) +
∂

∂
( )

j x

x
ikU x e e

x
U xikx ika  (94a)

Differentiating Eqn. (94a) w.r.t. x, we obtain

 

∂ ( )
∂

=
∂

∂
( ) +

∂
( ) − ( )











2

2

2

2
22

j x

x
e

x
U x ik

d

x
U x k U xikx  (94b)

Use Eqs (94b) and (93a) in Eqn. 92(a)–(b):

 

∂

∂
( ) +

∂

∂
( ) − −( ) ( ) =

2

2 1
2 22 0

x
U x ik

x
U x k k U x  (95a)

and 
∂

∂
( ) +

∂

∂
( ) − +( ) ( ) =

2

2 2
2 22 0

x
U x ik

x
U x k k U x  (95b)

The solutions for Eqn. 95(a)–(b) are given by the following equation:

 

U Ae Be

U Ce De

i k k x i k k x

k ik x k ik x

1

2

1 1

2 2

= +

= +







−( ) − +( )

−( ) − +( )
 (96)

We have to use the boundary conditions, that is,

U U1 2=  at x = 0

 U a U b1 2( ) = −( )

∂
∂







=
∂
∂





= =

U

x

U

xx x

1

0

2

0

 and 
∂
∂






=
∂
∂





 −

U

x

U

xa b

1 2



17.8   BAND THEORy OF SOLiDS  •  717

Using U U1 2=  at x = 0 in Eqn. (96), we obtain

        A B C D+ = +  (97a)

Using U a U b1 2( ) = −( ) in Eqn. (96), we obtain

    Ae Be Ce De
i k k a i k k a k ik b k ik b1 2 2 2−( ) − +( ) − −( ) +( )

+ = +  (97b)

Use the condition ∂
∂







=
∂
∂





= =

U

x

U

xx x

1

0

2

0

 in Eqn. (96)

    
Ai k k Bi k k C k ik D k ik1 1 2 2−( ) − +( ) = −( ) − +( ) (97c)

Using 
∂
∂






=
∂
∂





 −

U

x

U

xa b

1 2  in Eqn. (96), we obtain

  
Ai k k e Bi k k e C k ik e D k

i k k a i k k a k ik b

1 1 2
1 1 2−( ) − +( ) = −( ) −
−( ) − +( ) − −( )

22
2+( ) +( )ik e
k ik b  (97d)

Equations from 97(a)–(d) are written in determinant form as follows:

1 1 1 1

1 1 2 2

1 1

e e e e

i k k i k k

i k k a i k k a i k ik b k ik b−( ) − +( ) − −( ) +( )

−( ) − +( ) kk ik k ik

i k k e i k k e k ik e
i k k a i k k a

2 2

1 1 2
1 1

−( ) − +( )

−( ) − +( ) −( )−( ) − +( ) −− −( ) +( )
− +( )

=

k ik b k ik bk ik e2 2

2

0

Solving the determinate yields the following:

      

k k

k k
hk b k a hk b k a k a b2

2
1
2

1 2
2 1 2 12

−
+ = +( )sin sin cos cos cos  (98)

Kronig and Penney assumed that potential Vo may tend to infinity and b can tend to zero, such that 

product V
o
b remains constant. When b tends to zero, then sinh k b k b2 2→  and cosh k b2 1→ , this  

eqn. (98) becomes
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k k

k k
k b k a k a ka2

2
1
2

1 2
2 1 12

−





+ =sin cos cos  (99a)

as k k2 1> , hence 
k k

k k

k

k k
2

2
1
2

1 2

2
2

1 22 2

−

=

Hence, Eqn. (99a) becomes

 

k b

k
k a k a ka2

2

1
1 12

sin cos cos+ =  (99b)

Let us introduce a new term P, such that

 
P

k ab
=

2
2

2
 (100)

 
P

m
V
ab

V E= >>[ ]
2

22
�

o o

 
P

mV ab
=

o

�
2

 (101a)

Equation (101a) measures area of potential barrier. If P decreases, it indicates that the electron is 
loosely bound to the potential well and vice versa. Put Eqn. (100) in Eqn. (99b), we get

−3p −2p 3p

k1a

P
sin k1a + cos k1a

k1a

2p

−p p

Figure 17.10 Variation of 
P

k a
k a k a k a

1
1 1 1sin cos and .
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P k a

k a
k a ka

sin
cos cos1

1
1+ =  (101b)

Figure 17.10 shows the variation of 
P

k a
k a k a

1
1 1sin cos+  with respect to k

1
a. Following are important 

conclusion that could be drawn from this graph.

 (i) cos ka lies between −1 and +1. (Two horizontal lines represent the extreme for cos ka. Hence, 
for cos )ka = ±1

 ⇒ ka n= p

 
⇒

 
k

n

a
=

p

Hence, there are allowed energy bands that are separated by forbidden energy gaps.
 (ii) The width of allowed bands varies directly as the energy values.

 (iii) As 
2

2 1
2mE
k

�
= ,

 ⇒ E
k

m
=

1
2 2

2

�
 (102a)

If P increases and tends to infinity, then the allowed region gets narrower and narrower; hence, Eqn. 
(101b) can have solution, only if sin k a1 0= :

 ⇒ k a n k n
a1 1= ⇒ =p

p  (102b)

Using Eqn. (102b) in Eqn. (102a), we obtain

 ⇒ E
n

ma
=

2 2 2

22

p �
 (103)

Equation (103) is the result for particle in box with constant potential.
 (iv) If P→ 0, then cos cosk a ka1 =

 ⇒ k k1 =  (104a)

This gives ⇒ E
k

n
=

�
2 2

2
 (104b)

Equation (104b) gives the energy of free electron, when P = 0. This results is expected as an outcome.
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SUMMARY

This chapter deals with an understanding of phonons as quanta of lattice vibrations. Phonons obey BE 
statistics and require material medium for their propagation. One-dimensional mono and diatomic lat-
tice have been discussed by making the assumption that atoms obey Hooke’s law and the interaction 
extends only between nearest neighbors. For diatomic lattice, two branches originate for the frequencies, 
that is, optical and acoustic branch. When the masses of both the atoms are same, then no forbidden 
gap exists and monoatomic/diatomic lattices have the same frequency. Drude model/free electron model 
assumed that electron can move anywhere inside the metal kernel. This model could explain ohm’s law, 
Wiedemann–Franz’s law but failed to explain high order thermal conductivity, long mean free paths and 
paramagnetic susceptibility of conduction electrons. Hence, Sommerfeld gave quantum theory which 
assumed that electrons move freely inside a potential well. The energies have discrete values and are directly 
proportional to n2. The average kinetic energy of electron is 1 3/  of Fermi energy. According to Sommerfeld 
theory, the energy of electrons at 0 K is not zero. The three-dimensional analysis has been done for free 
electrons. On the basis of the free electron theory, the difference between conductors, semiconductors, and 
insulators could not be explained. According to band theory, the electron always experience force while 
passing across neighboring ions. Bloch function is given to find the solution for electron moving inside 
constant potential Vo. Further, the behavior of free electron is studied, for a potential well to be in square-
well shape. Kronig and Penney also assumed that Vo may tend to infinity. A new term P is obtained which 
measures the area of potential barrier.

SOLVED PROBLEMS

Q.1: Obtain the phonon frequency (maximum) which is generated when visible light of wavelength 
l = 6000 Å is scattered. The sound velocity in medium is 5 105

× cm/sec and the refractive index is 1.33.

Ralph Kronig was born in 1904 in Dresden, Germany, where 
he received his primary education. Then he went to Columbia 
university, New york, to pursue his studies and later on he became 
an assistant professor. He kept on visiting the theoretical centers 
in Germany and Copenhagen. He also worked with Pauli, Kramers, 
Bohr, and Heisenberg.

While doing his PhD at Columbia university, he gave the con-
cept of electron spin, which was opposed by Werner Heisenberg 
and Wolfgang Pauli. Due to this criticism, Kronig could not publish 
his theory of electron spin. Although Ralph Kronig was the first one 
to give idea on electron spin, uhlenbeck and Goudsmit are cred-
ited with the discovery.

it is believed by many of the scientists that Pauli could receive 
the Nobel Prize for his exclusion principle only due to particle spin 
theory of Kronig’s. Kronig and Pauli were friends even though Pauli 
had opposed his ideas. Kronig exchanged his ideas on electron 
spin with Pauli before Pauli had published his paper explaining that two electrons occupying 
same orbital cannot have all the quantum numbers equal.

in 1939, Kronig was appointed as a professor of theoretical physics in the Netherlands. He also 
received Max Planck medal in 1962. Werner Heisenberg used Kronig ideas to develop his theories.

RALPH KRONIG
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Ans:       Ω = =v K
v

c
p

p /2 2wm fsin

Here      w p
p

l
= =2

2
f

c

l = 6000 Å

vp cm/sec m/sec= × = ×5 10 5 105 3

m = 1 33.

For maximum phonon frequency f = °180 ,

sin
f

2
1=

Ωmax =
× × ×2 5 10 23

p

l

c

c

Ωmax

.
=
× × × ×

×
−

2 5 10 2 3 14

6 10

3

7

Ωmax

.
=

×

×
−

10 6 28

6 10

4

7

Ωmax .= ×1 04 1011 rad/sec

Q.2: When light wave of wavelength 4500 Å is scattered from a crystal, obtain the fractional change 
of frequency of incident light. Given the refractive index of crystal is 1.5 and sound velocity is 
5000 m/sec.

Ans:       Ω =
2 2w m fv

c

p /sin

Here, w p
p

l
= =2

2
f

c

For maximum frequency sin
f

2
1= ,

 
Ωmax =

2w mv

c

p
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Ωmax =
× ×2 2p m

l

c v

c

p

Ωmax =
4p m

l

vp

m = 1 5. , l = × =
−4 5 10 50007. ,m and m/s pv

Ωmax

. .

.
=
× × ×

×
−

4 3 14 1 5 5000

4 5 10 7

Ωmax

.

= ×

= ×

209333 10

2 09 10

7

11 rad/sec

Fractional changeof frequency =
− ′w w

w

w w

w

− ′
=

× × ×

× × ×
= ×

−

−2 09 10 4 5 10

2 3 14 3 10
0 49 10

11 7

8
4. .

.
.

w w

w

− ′
= ×

−4 9 10 5.

Q.3: The interatomic spacing for a lattice is given to be 2 Å  and velocity of sound is 4000 m/sec. 
Obtain the cut-off frequency for one-dimensional monoatomic chain. Also obtain phase velocity.

Ans:      v
a

m
p =

2

p

b
 and vg = 0 for w

b
=

4

m

a = 2 Å

If S is the longitudinal stiffness and P represents mass/length, then

 
⇒ =S b a 

and P P= ⇒ =
m

a
m a

Hence, v
a

S
a
a

p =
2

p P
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v
S

p =
2

p P

S

P
= =Velocity of sound m/sec 4000

vp m/sec = ×

2
4000

p

vp m/sec  = × =

2

3 14
4000 2547 77

.
.

w
b b

max = =

4
2

m m

f
m

max
max

= =

w

p p

b

2

1

Hence, f
S a

P a
max =

1

p

/

f
a

S

P
max =

1

p

fmax .
=

× ×

×
−

1

3 14 2 10
4000

10

fmax .
=

×4 10

6 28

13

fmax .= ×0 636 1013

fmax .= ×6 36 1012 Hz
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Q.4: Obtain the Fermi velocity of electrons for aluminum metal, if number density is 5 93 1028 3. × /m  
and inter atomic spacing (286 pm).

Ans:         v
Nh

ma
F = 4

N

V
= ×5 93 1028 3. /m

a a= ⇒ = ×
−286 2 86 10 10pm m.

v
V

F =
× × × ×

× × × ×

−

− −

5 93 10 6 63 10

4 9 1 10 2 86 10

28 34

31 10

. .

. .

v VF = × × × ×
−0 377 10 10 1028 34 41.

Here,

V = ×( ) = ×

= ×

− −

−

2 86 10 23 33 10

2 33 10

10 3 30

29 3

. .

. m

vF = × × × × ×
− −0 377 10 10 10 10 2 3328 34 41 29. .

vF m/sec= × = ×0 878 10 8 78 106 5. .

Q.5: The Fermi energy for silver and lithium is 5.51 and 4.72 eV, respectively. Obtain the Fermi 
velocity for these metals.

Ans: As we know

1

2
2mv EF F=

Hence, v
E

m
F

F
=

2

For silver, EF eV= 5 51.

vF =
× × ×

×

−

−

2 5 51 1 6 10

9 1 10

19

31

. .

.

vF = ×1 937 1012.

vF m/sec= ×1 39 106.



OBJECTivE QuESTiONS  •  725

For lithium, EF eV= 4 72.
Hence,

vF =
× × ×

×

−

−

2 4 72 1 6 10

9 1 10

19

31

. .

.

vF = ×1 659 1012.

vF m/sec= ×1 288 106.

Q.6: Show that the energy of electron becomes E
k

m
=

�
2 2

2
, if the electron is free electron.

Ans: Using Kronig–Penney model,

P
mV ab

=

o

�
2

For free electron,   Vo = 0

P = 0

P k a

k a
k a ka

sin
cos1

1
1+ = cos

cos cosk a ka1 =

k k1 =

We know    k
mE

1
2

2

2
=

�

Hence,

k
mE

E
k

m

2
2

2 2

2

2

=

=

�

�

OBJECTIVE QUESTIONS

 1. The energy of harmonic oscillator is given by

 (a) n hf+







1

2
 (b) nh f

 (c) 
n
h f

2
 (d) 0
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 2. The zero point energy for harmonic oscillator is

 (a) n h f+







1

2
 (b) h f

 (c) 
1

2
h f  (d) 0

 3. The quantum of thermal energy in lattice vibrations is

 (a) photon (b) phonon
 (c) Cooper pair (d) Boron

 4. Phonons do not require material medium for their propagation. (Yes/No)

 5. The momentum of photon is given by

 (a) �w  (b) �k

 (c) h c  (d) 0

 6. The angular frequency of phonon is given by (Ω ):

 (a) 2 − vpw m (b) 2 2vp /wm fcos

 (c) 
2

2
v

c

pwm
fsin  (d) 

2
2

v

c

p
/

w m
ftan

 7. For one and two-dimensional monoatomic lattice, atoms should follow

 (a) Newton’s law (b) Coulomb’s law
 (c) Ampere’s law (d) Hooke’s law

 8. For one-dimensional lattice, the angular frequency is given by

 (a) 
2

2

b

m

ka
cos  (b) ±

2

2
2b

m

ka
tan

 (c) ±
4

2

b

m

ka
sin  (d) ±

m ka

4 2b
sin

 9. For small frequencies, the angular frequency can be given by

 (a) 
b

m
ka (b) 

m
ka

b

 (c) bm ka (d) 
4

2

b

m

ka
sin

 10. For monoatomic lattice, the group and phase velocity, when k→ 0 is given by

 (a) 
m

b
 (b) 

b

m
a

 (c) 0 (d) a/b
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 11. For monoatomic lattice, the group velocity at higher frequencies is given by

 (a) 
b

m

ka
cos

2
 (b) 

2

2k m

kab
sin

 (c) 
b

m

ka
tan

2
 (d) a

m

kab
cos

2

 12. At higher frequencies, for monoatomic lattice, the phase velocity is given by

 (a) a
m

kab
cos

2
 (b) 

2

2k m

kab
sin

 (c) a
m

kab
sin

2
 (d) 

2

2k m

kab
cos

 13. When frequency w
b

=

4

m
, then the group velocity is

 (a) 
2a

mp

b
 (b) 

a m

p b

 (c) 0 (d) a
m

b

 14. For frequency w
b

=

4

m
, the phase velocity is given by

 (a) 
2a

mp

b
 (b) 

a m

p b

 (c) 0 (d) a
m

b

 15. For monoatomic lattice, the first Brillouin zone lies between

 (a) − ≤ ≤
2 2p p

a
k

a
 (b) − ≤ ≤

p p

a
k

a

 (c) − ≤ ≤
p p

2 2a
k

a
 (d) − ≤ ≤

p p

3 2a
k

a

 16. The second Brillouin zone for monoatomic lattice lies between

 (a) − ≤ ≤
p p

a
k

a
 (b) − ≤ ≤

p p

2 2a
k

a

 (c) − ≤ ≤ −
2p p

a
k

a
 (d) − ≤ ≤

2 2p p

a
k

a
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 17. The diatomic lattice, w
+

2 is given by

 (a) a
m

kab
cos

2

 (b) 
2

2k m

kab
sin

 (c) b b
1 1 1 1 4

1 2 1 2

2 2

1 2m m m m

ka

mm
+









 − +









 −

sin

 (d) b b
1 1 1 1 4

1 2 1 2

2 2

1 2m m m m

ka

mm
+









 + +









 −

sin

 18. For F x x xn n n n2 2 1 2 1 22= + −[ ]+ −
b , the solution is given by

 (a) x A i t knan2 2= −( ) exp w

 (b) x A i t knan2 2= +( ) exp w

 (c) x A i t n kan2 2 1= − +( )( ) exp w

 (d) x A i t n kan2 2 1= − −( )( ) exp w

 19. For diatomic lattice, w
−

2 is given by

 (a) b b
1 1 1 1 4

1 2 1 2

2 2

1 2m m m m

ka

mm
+









 + +









 −

sin

 (b) 
2

2
k m

ka
b

sin /

 (c) a
m

ka
b

cos / 2

 (d) b b
1 1 1 1 4

1 2 1 2

2 2

1 2m m m m

ka

mm
+









 − +









 −

sin

 20. For diatomic lattice, when k a→ p /2 , the w
+
 is given by

 (a) ka
m m

2

1 2

b

+

 (b) 
2

2k m

kab
sin

 (c) 
2

1

b

m
 (d) 0
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 21. For long wavelength regime, when ka <<1, then w
−

 is given by

 (a) 
2

1

b

m
 (b) ka

m m

2

1 2

b

+

 (c) 
2

2

b

m
 (d) 2

1 1

1 2

b
m m
+











 22. For k a→ p /2 , w
−

 is given by

 (a) 
2

2

b

m
 (b) 

2

1

b

m

 (c) 
b

m
 (d) 

b

2m

 23. The optical branch is represented by graph between

 (a) w
−

 and k (b) w
+
 and k

 (c) w
−

 and w
+
 (d) w

−

2 and k

 24. For optical branch, A/B is given by

 (a) 1 (b) 2

 (c) −
m

m
2

1

 (d) 
m

m
1

2

 25. For acoustical branch, A/B is given by

 (a) 1 (b) 2

 (c) −
m

m
1

2

 (d) −
m

m
2

1

 26. For m m1 2= , which of the following is true?

 (a) No forbidden gap exists
 (b) Frequency of monoatomic and diatomic lattice are same
 (c) Both (a) and (b)
 (d) None of these

 27. The r.m.s velocity of electrons is ≈

 (a) 106 m/sec (b) 104 m/sec

 (c) 103 m/sec (d) 105 m/sec
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 28. The conductivity, according to Drude’s model is

 (a) nv
dE

dx
l  (b) 

ne v

k TB

2

6

l

 (c) 
3k T

m
B  (d) sE

 29. The value of K (thermal conductivity) is

 (a) 
3

2
k TB  (b) 3

2
k

e
TB





 (c) 
n k T

A m

Bl 3

6

3 2
( )

/

 (d) n k TBl

 30. According to Wiedemann–Franz’s law,

 (a) K
n k T

A m

B
=

( )l 3

6

3 2/

 (b) s
l

=

ne V

k TB

2

6

 (c) V
k T

m
B

=

3
 (d) 

K k

e
TB

s

= 




3
2

 31. Which of the following is true for Drude–Lorentz model?

 (a) Could not explain positive charge carriers
 (b) Could not explain paramagnetic susceptibility.
 (c) Could not explain long mean free paths.
 (d) All of the above.

 32. The normalization constant for one dimensional potential well is given by

 (a) 
2

a
 (b) 

2

a

 (c) 
8

a
 (d) 8 / a

 33. The Fermi energy is given by

 (a) 
p

2 2

22

�

ma
 (b) 

n

ma

2 2 2

28

p �

 (c) 
N �

2p
 (d) 1 2/ k TB

 34. The average kinetic energy of electron is given by

 (a) 
3

5
EF (b) 

EF

2

 (c) 
EF

3
 (d) 

EF

5
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 35. The Fermi velocity is given by

 (a) 
Nh

ma4
 (b) 

N h

ma

2 2

4

 (c) 
4ma

Nh
 (d) N ma4

 36. The density of states is given by

 (a) 
2m

E
 (b) p�

2m

E

 (c) a m

Ep�

2  (d) p

�

E

m2

 37. In 3-D, the normalization constant is given by

 (a) 
8

a
 (b) 

8
3a

 (c) 
2

a
 (d) 

2

a

 38. According to Bloch theorem, f x a+( ) is

 (a) f fx a i k a x+( ) = ±( ) ( )exp  (b) f x a i k a+( ) = ( )log

 (c) f x a i k a+( ) = ±( )exp  (d) f fx a A x+( ) = ( )

 39. The area of potential barrier is given as

 (a) mV abo  (b) 
�

2

mV abo

 (c) 
mV abo

�
2

 (d) sin ka ka/

 40. The value of P is given by

 (a) 
�

2

mV abo

 (b) 
8

3a

 (c) mV abo  (d) 
k ab2

2

2
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 1. (a)

 2. (c)

 3. (b)

 4. (No)

 5. (b)

 6. (c)

 7. (d)

 8. (c)

 9. (a)

 10. (b)

 11. (d)

 12. (b)

 13. (c)

 14. (a)

 15. (b)

 16. (c)

 17. (d)

 18. (a)

 19. (d)

 20. (c)

 21. (b)

 22. (a)

 23. (b)

 24. (c)

 25. (a)

 26. (c)

 27. (d)

 28. (b)

 29. (c)

 30. (d)

 31. (d)

 32. (a)

 33. (b)

 34. (c)

 35. (a)

 36. (c)

 37. (b)

 38. (a)

 39. (c)

 40. (d)

ANSWERS
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Micro-Assessment Questions

 1. What is lattice dynamics?
 2. What is zero point energy?
 3. Define the Planck’s hypothesis.
 4. What is phonon?
 5. Write down the dispersion relation for monoatomic lattice.
 6. How does angular frequency vary with wavenumber for monoatomic lattice?
 7. What are Brillouin zones?
 8. What is the forbidden energy gap between the angular frequencies?
 9. What is optical branch?
 10. What is acoustic branch?
 11. What are free electrons?
 12. What is relaxation time?
 13. What is thermal conductivity?
 14. What is Weidemann–Franz law?
 15. What is Fermi energy?
 16. What do you understand by density of states?
 17. How the density of states and energy vary?
 18. Define P function for Kronig–Penney model.

Critical Thinking Questions

 1. What is the difference between phonon and photon?
 2. Define the momentum and wave vector for phonon.
 3. How do phonon and photon interact with each other?
 4. Give the assumptions made for one-dimensional monoatomic lattice.
 5. Obtain the phase and group velocity for monoatomic lattice.
 6. Give the first and second Brillouin zone for the monoatomic lattice.
 7. What is the difference between the optical and acoustic branch?
 8. Explain the effect on forbidden gap for diatomic lattice, when both the atoms are of same mass.
 9. Give the postulates of Drude–Lorentz model.
 10. Derive the Ohm’s law and electrical conductivity using Drude–Lorentz model.
 11. Obtain the thermal conductivity from Drude–Lorentz model.
 12. Obtain the expression for Weidemann–Franz law.
 13. List down the merits and demerits of Drude model.
 14. Obtain the expression for Fermi energy using Sommerfeld model.
 15. Show that the average kinetic energy of electrons is equal to 1/3 of Fermi energy.
 16. Define Fermi velocity and obtain its value in equilibrium condition.
 17. Obtain the density of states for electrons and show that it depends inversely on square root of energy.
 18. Give the postulates of band theory of solids.
 19. Why is the free electron theory not being successful?
 20. What was the assumption made for Kronig–Penney model?
 21. Give the boundary functions for Kronig–Penney model.
 22. Give the equation that measures the area of potential barrier. Give its significance.
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Graded Questions

 1. Obtain the dispersion relation for one-dimensional monoatomic lattice.
 2. When the frequency is small for monoatomic lattice, show that the phase and group velocity are 

small.
 3. Show that for high frequency in monoatomic lattice, the phase and group velocity depend upon 

the wavenumber.
 4. Obtain the dispersion relation for diatomic lattice. Show that angular velocity has two values.
 5. Obtain the angular velocity and Brillouin zones for the diatomic lattice.
 6. Show that for the optical branch, the two atoms vibrate opposite to each other for diatomic lattice.
 7. Show that for the acoustic branch, the two atoms are in phase with each other.
 8. Explain in detail the properties explained by Drude–Lorentz model.
 9. Obtain the energy of electron using Sommerfeld model.
 10. Show that electron can take only discrete values of energy and energy is proportional to n2 where 

n is principal quantum number.
 11. Obtain the normalization constant for free electron gas in three dimensions.
 12. State and explain the Bloch theorem.
 13. Obtain the solution of Bloch equation. What are Bloch functions?
 14. Explain in detail the Kronig–Penney model.

Remember and Understand

 1. Lattice dynamics deals with the vibrations of atoms around the equilibrium position. Atoms 
vibrate around the mean position.

 2. There always exists a zero-point energy for single-atom harmonic oscillators, which is in contra-
dictory to the Planck’s hypothesis.

 3. Phonon is the quantum of thermal energy for lattice vibrations and obey BE statistics such as 
photons, but phonons originate from elastic waves.

 4. For one-dimensional model, the atoms are considered like sphere connected to each other via 
springs. Atoms obey Hooke’s law and the nearest neighbor atoms depends directly on the exten-
sion or contraction of atoms.

 5. For diatomic lattice, two types of branches originate: optical and acoustic branch. For optical 
branch, the atoms vibrate opposite to each other; whereas for acoustic branch, the atoms are in 
phase of each other.

 6. Free electrons are the atoms present in the outermost shells. Drude–Lorentz theory is also known 
as free electron theory which states that free electrons are responsible for thermal and heat con-
duction of metal.

 7. Free electron theory could not explain the difference of conductors, insulators, and semiconduc-
tors. This theory also predicted the negative hall coefficients for metals. Band theory was able to 
explain the shortcomings of free electron theory as it assumed that the electron is moving under 
some force.
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*This chapter is theoretical. Hence, there is no numerical problem/solved problem.

18

Characterization Techniques 
and Nanophysics

Learning Objectives

 To study about transmission electron microscopy and the electron sources

 To understand the signals generated by X-ray beam

 To learn about the characteristics of electron beam

 To know about lens defect in TEM and imaging system as well as display system

 To know about electron detectors and specimen preparation

 To know about principle, working, and scanning modes of scanning probe microscopy (SPM)

 To understand the principle, working, and methodology of scanning tunneling microscopy

 To understand the principle and working of atomic force microscopy

 To know about AFM probes, contact mode, and noncontact mode

 To get insight of nanophysics and different nanostructures

 To learn about mechanical, optical, chemical, electrical, biological, and magnetic properties of 
nanoparticles

 To know about importance of surface area/volume ratio

 To understand the concept of quantum confinement

 To learn about nanomaterials and their synthesis techniques

 To know about buckyballs/fullerenes structure

 To understand carbon nanotubes and their structure

 To learn about chemical vapordeposition, laser vaporization techniques, and carbon are discharge 
techniques

 To know about properties of CNTs

 Keywords: transmission electron microscope, AFM, STM, SPM, nanophysics, buckyballs, fuller-
enes, surface/volume ratio, nanorods, nanoparticles, ball-milling, sol-gel method
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18.1 Introduction to Transmission Electron Microscope (TEM)

The electron microscope was made by Knoll and Ruska in 1930. TEM is transmission electron 
microscope; electrons are smaller than atoms that increase the resolving power. TEM generally oper-
ates at 300–400 kV (accelerating voltage) and are of many types (fig. 18.1 (a)). Before we proceed 
 further, we should understand the properties of electrons. Electrons show both particle and wave-like 
 characteristics. According to de-Broglie’s hypothesis,

 p
l =  (1)

In TEM, electron is accelerated through potential V, and hence electrons gain momentum as well as 
kinetic energy.

The potential energy of electron = eV

The kinetic energy of electron = 
m v0

2

2
m

0
 → mass of e−

v → velocity of e−

At equilibrium,

PE KE=

eV
m v

=

0
2

2

 
v

eV

m
v

eV

m

2

0 0

2 2
= Þ =  (2)

We know, momentum p m v= 0

 
p m

eV

m
em V= =0

0
0

2
2  (3)

Substituting Eqn. (3) in Eqn. (1),

 

l =
h

em V2 0

 (4)

Hence, accelerating to Eqn. (4):

Wavelength of electrons µ
1

acc elerating voltage
 (5)

Electrons are ionizing radiation that has the capability of removing tightly bound inner-shell electrons 
from the attractive field of nucleus. The advantages of using ionizing radiation are that it produces 
wide range of secondary signals (Figure 18.1(b)).

h
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18.1.1 Electron Sources:
There are different types of electron sources as demonstrated below.

Thermionic emission
(Electrons are produced

by heating)

Field emission
(Electrons are produced when

intense electron beam or
electron field applied)

Electron source

Two kinds of sources are used for TEM: thermionic source and field-emission source. These sources 
are part of electron gun.

1. Thermionic Emission
When the material is heated to high temperature, then the electrons can overcome the natural barrier.  
which is termed as “work function” (W  ). Thermionic emission is based on Richardson law.

J CT e W k T
=

−2 / B  (6)

C → Richardson constant
  J → current density
T → temperature (in Kelvin)
k
B
 → Boltzmann’s constant

Back-scattered  electron

Auger electons

e-hole pairAbsorbed
electrons

e−

e−
e−

e−
e−o
e−o

Specimen

Elastically
scattered electrons

Direct beam Inelastically
scattered beam

Bremsstrahlung
radiations

Secondary electrons

Characteristic X-rays

Visible light

Incident beam

Figure 18.1(b) Signals generated by X-ray beam.

HVEM  IVEM

Types of TEM

STEM AEMHRTEM

High-resolution
TEM

High-voltage
TEM

Scanning
TEM

Analytical
electron microscope

Intermediate 
voltage TEM

Figure 18.1(a) Types of TEM



738  • CHAPTER 18/CHARACTERizATioN TECHNiquES ANd NANoPHySiCS

Thermionic sources are classified as follows:

Thermionic sources (cathodes)

Tungsten hairpin Pointed tungsten Lanthanum hexaboride (LaB6)

Tungsten (W) has got high-melting temperature (3660 K) and LaB
6
 has low work function. Pointed 

tungsten is fine thread having 0.1 mm diameter. When wire is bent into V shape, then it is called 
 tungsten hairpin. LaB

6
 are the rare-earth boride crystal not filaments are grown in <110> plane. Both 

tungsten and LaB
6
 are used as cathode in triode gun. In addition to cathode, there is a grid called a 

Wehnelt cylinder and an anode at earth potential with a hole at its center. The cathode is attached to 
high-tension cable, (high voltage). This cable is also connected to W filament to supply a current 
to heat the filament (Figure 18.2).

As the filament current (I
F
) increases, the temperature increases until the thermionic emission 

occurs. Subsequently, emission current (I
E
) reaches a maximum such that I

F
 does not increase the 

current going into microscope. This condition is saturation current condition which is demonstrated 
in Figure 18.3.

Wehnelt
cylinder
(Grid)

Anode plate

Into illumination system

Emission current

d

IE

(Gun cross over)

Gun
(Wehnelt)

Applied KV

Filament heating supply

Filament

Optic axis

+

−

Figure 18.2 Electron gun.
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IE

Emission
current

IF

(Filament current)

Operating condition

Saturation
condition

Figure 18.3 Variation of emission and filament current.

Grid

Filament Filament Filament

+ + + + + +

Maximum current at
No bias

Anode

Intermediate
bias (maximum

brightness)

No current at
high biasing

Figure 18.4 Effect of bias on the electron current.

All the thermionic sources should be operated at or just below saturation. Operating above saturation 
reduces film life. Operating below saturation reduces the current into specimen, thereby reducing the 
intensity of signals coming out of specimen.

In case of LaB
6
, it is preferable to operate little below saturation, because the electrons in halo are 

more coherent than those in central bright region. LaB
6
 are more susceptible to thermal shocks and 

hence care should be taken while heating or cooling. Increasing the heating current should be done 
slowly, with 10–20 sec pause between each setting (Figure 18.4).

2. Field-emission Sources
We know the relation between electric field (E ) and potential (V )

 
E =
V

r
 (principle of FE sources)

where r is the radius of spherical surface.
The principle of field emission sources is that the strength of an electric field E is high at sharp points 
(small r). Tungsten wire can be given a field radius of <0.1 μm. If 1 kV potential is applied, then
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E =
´

=
-

10

0 1 10
10

3

6
10V

V/m
.

This lowers work function barrier, and the exhibits severe stress on the tip, hence the material has to 
be strong.

Field emission guns (FEG) are much simpler than thermionic guns. FEG is a cathode w.r.t. two anode 
as shown in fig. 18.5. First anode is positively charged by several kV w.r.t the tip and is called extraction 
voltage since it generates the intense electric field-extracting electrons by enabling them to tunnel out of 
the tip. Anode 2 accelerates the electrons upto 100 kV. The combined fields of both the anode posses the 
crossover properties of an electrostatic lens. Field emission requires pristine (pure) surface and even in 
ultrahigh vacuum conditions, surface contaminants build up on the tip. With time, the emission  current 
falls and the extraction voltage has to be increased to compensate. But it is very necessary to clean the tip by 
“flashing.” This means reversing the potential to tip and “blowing off” a surface layer of atoms or to heat 
the tip at 5000 K. In most FEGs, flashing occurs automatically when the  extraction voltage increases to a 
certain predetermined level (Figure 18.5). The comparison of all the electron sources is given in table 18.1.

Field emission tip
Cross over

Anode I

Anode II

V1 V2

Figure 18.5 Crossover for field emission source.

Table 18.1 Comparison of guns

Property Unit Tungsten LaB6 FE

Work function (f ) eV 4.5 2.4 4.5

Richardson constant (C) A/m2k2 – 4 × 105 6 × 105

Operating temperature K 300 1700 2700

Current density A/m2 1010 106 5 × 104

Crossover (d) μm <0.01 10 50

Brightness (B) A/m2 Sr 1013 5 × 1010 109

Energy spread (AE) eV 0.3 1.5 3

Emission current %/hr 5 <1 <1

Vacuum Pa 10−8 10−4 10−2

Lifetime hr >1000 500 40 
�

 50
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18.1.2 Characteristics of Electron Beam

1. Brightness
It is the current density/solid angle of the source. Electron sources differ considerably in size; and as a 
result, the electrons leave the source with a range of angles, so we cannot ignore the angular distribu-
tion compiling all the factors.

Brightness   b

p p a

∝
I

d

E

2

2
2





( )

 I

d

E

p

2

2
æ

è
ç
ö

ø
÷

® emission current density

                 d ®  beam diameter

               a ®divergence angle of beam

Combining these,

b
p a

=
( )

4
2

I

d

E  (7)

The higher the value of b, more electrons can be put inside the beam and hence more information 
can be extracted.

2. Temporal Coherency and Energy Spread
Coherency indicates how well the electron waves are in step with one another. We know white light 
is incoherent because it consists of photons with a range of wavelengths and for coherency, mono-
chromaticity is essential. Hence, temporal coherency refers to measure of how similar the “wave 
 packets” are

Coherence length cl
D

=

vh

E
 (8)

v®  electron velocity
DE →  energy spread, which should be small.

3. Spatial Coherency and Source Size
Spatial coherency refers that the electrons were all emanating from the same point at the source. 
Spatial coherency is dependent on source size and small sources yield better coherency.

The effective source size d
c
 for coherent illumination is

dc <<
l

a2 ¢
  (a´ - angle suspended by source at the specimen) (9)

For better coherency, d
c
 should be small which can be obtained by using FE source. Spatial  coherency 

is more important than temporal coherency. The threshold for beam damage of metals is less than 
400 kV. Ceramics and polymers should be resolved at 100 kV.
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Max Knoll was a German electrical engineer born on July 17, 1897 
in Wiesbaden. He studied in Munich and at the Technical university 
of Berlin. He obtained his doctorate in the institute for high voltage 
 technology. in 1927 he and his co-worker, Ernst Ruska, invented the 
electron microscope. in 1932, Knoll pursued work in the field of tele-
vision design, and joined Telefunken in Berlin. Along with television 
designing, he was also a private lecturer in Berlin. Knoll joined as 
extraordinary professor in the university of after World War ii. in 1948, 
he moved to the Princeton university, uSA, to work at the department 
of Electrical Engineering. in 1956, he came back to Munich where 
he performed experiments on the generation of phosphenes at the 
Technische Hochschule. He got retired in 1966.

M.KNOLL

18.2 The Instrument

For studying the TEM, we need to know about its various components that constitutes its structure. 
TEM has four basic components as described below:

Illumination
system

The objective
lens/stage

Imaging system Display system

TEM

We will discuss them one by one.

18.2.1 Illumination System
This system takes the electrons from the gun and transfers them to specimen giving either a broad 
beam or focused beam. TEM generally operates on two modes: parallel-beam mode and convergent 
beam mode.

Operation of TEM

Parallel beam mode Convergent beam mode

1. Parallel-beam Mode
In Figure 18.6(a) L

1
 lens form demagnetized image of gun crossover. To produce an almost parallel 

L
2
 lens is adjusted. In Figure 18.6(b), L

2
 lens is focused to produce an image at the front focal plane 

of upper objective pole piece which in turn generates a broad parallel beam of electrons incident on 
the specimen. Parallel beam is essential to get the sharpest diffraction patterns as well as best image 
contrast. There is no need to change C

1
 and can be kept constant.
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Optic axis(a) (b) Optic axis

Convergence
angle

Underfocussed
beam is
oblained

Underfocussed

Gun crossover

L1 lens

L1 crossover

L2 lens

L2 lens is
underfocussed

L2 is focussed.

Focussed

Parallel
beam

Specimen

α

Specimen

Front
focal
plane

Upper
objective lens

Figure 18.6 Parallel-beam mode.

2. Convergent beam Mode
If we minimize the area of the specimen that is being illuminated so we change L

2
 lens. Sometimes, 

we deliberately require a focused convergent beam at the specimen. We then use convergent-beam 
mode. The convergence destroys the coherency and image contrast, and we cannot get the image of 
specimen immediately. Therefore, to see the image, we have to scan the beam, which forms the basis 
of STEM and AEM.

For getting convergent beam mode (Figure 18.7), we use a third L
3
 lens also. The aperture of L

2
 

will control convergence angle (a). A smaller L
2
 aperture gives a smaller a. Hence, the correct choice 

of L
2
 aperture is important in convergent beam electron diffraction (CBED).

Next is regarding the alignment of illumination system. The beam can be tilted using scan coils 
and current through potentiometers is varied by using scan coils. These scan coils generate magnetic 
field to deflect the beam rather than to focus. To translate the beam, deflector scan coils are used. To 
tilt the beam, tilt scan coils are used between L

2
 and L

3
. If the illumination system is correctly aligned, 

the gun crossover is on the optic axis and the electrons follow a straight line through the lenses and 
apertures until they hit the specimen.

L
2
 aperture must be accurately centered on the optic axis of TEM. If the aperture is mis-

aligned, the image of the beam on the screen moves off-axis and distorts as under focus or over 
focus L

2
.
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Optic axis

L1 lens

L1 crossover

Reduced
convergence

angle

Specimen

a

a

Optic axis

Specimen

Focussed
beam

L2 lens

L3 lens

Figure 18.7 Convergent-beam mode.

NOTE: How to focus lens?

 1. First, overfocus L
2
, so that the image of the beam is spread and outline of L

2
 aperture is visible on 

the screen.
 2. Then, use external drives to center the aperture on the screen.
 3. Again adjust L

2
, so that image of beam is focused.

 4. Center, the beam with deflector controls.
 5. Underfocus the L

2
 lens until you can again see aperture.

 6. Repeat the whole operation iteratively until the image of the beam expands and contracts around 
the center of screen (Figure 18.8).

+

Distorted image

Optic axis

Focussed
image

Viewing
screen

Figure 18.8 Focussed and unfocussed image.
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Lens Defect in TEM
The illumination system lens suffers from the standard lens defects, such as aberrations and astigma-
tism. Lens defect should be paid much attention. If convergent beam mode is to be done (as in STEM 
and AES), then the following defects are to be taken into consideration.

1. Spherical Aberration
L

3
 lens in convergent-beam mode is also known to be probe-forming lens, and it controls the mini-

mum possible probe size (Image). L
3
 should have short focal length. The spherical aberration limits 

the “minimum resolvable distance” to

r Lmin .= ( )0 91 3
1

4
sl

where Ls ®  spherical aberration coefficient for a particular lens. Hence, rmin  should be small so that 
Ls  should be small.

The optimum probe size a [probe angle] convergence angle should be

a
l

opt
s

=
æ

è
ç
ö

ø
÷.77

1
4

L

2. Chromatic Aberration
This is related to the color of the electrons. The basic assumption is that electrons are monochromatic, 
but they are not. However, we can make high-tension supplies and the electron energy limits between 
smaller interval minimizing fluctuations. This aberration is highly energy dependent. The objective 
lens bends electrons of lower energy more strongly, and thus the electron from a point in the object 
once again form a disc image. The radius of the disk is given by

r L
E

E
chr c=

D
a

0

Lc ®  chromatic aberration coefficient
DE →  energy less of electrons
E0 →  initial beam energy
a →  semiangle/convergence angle
For reducing chromatic aberration, the specimen should be very thin so that after coming out of the 
specimen the electron beam energy spread should be small.

3. Astigmatism
Astigmatism occurs when the electrons sense a nonuniform magnetic field as they spiral around the 
optic axis. The soft-iron pole pieces cannot be perfectly cylindrical symmetrical. The soft iron may also 
have microstructural inhomogeneities that cause local variations in the magnetic field strength. Even 
if these difficulties are overcome, the apertures introduced into the lens may disturb the field if they 
are not precisely centered around the axis. Further, if the apertures are not clean, the  contamination 
charges up and deflects beam. The distortion due to astigmatism is given by

r d xast = D

Dx®  maximum difference in focus induced by astigmatism
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Astigmatism can be corrected using stigmators. Stigmators are small octuplets that introduce a 
compensating field to balance the inhomogenities caused by astigmatism. If there is astigmatism, then 
image is elliptical and not circular (Figure 18.9).

+

Optical
axis

Unfocussed
beam

Focussed
beam

Figure 18.9 Demonstration of astigmatism.

Calibration of Illumination System
Following points must be considered while calibrating illumination system.

 1. Maximum beam current should go with minimum beam size.
 2. L

1
 lens strength controls the probe size, As L

1
 lens strength increases, the probe size decreases 

[probe size is measured in Full width half maximum (FWHM) (nm)] (Figure 18.10(a))
 3. L

2
 aperture size governs the convergence semi angle a. As L

2
 aperture size is increased, the con-

vergence angle also increases (Figure 18.10(b)).

200

1000

Lens strength of L1

(a) (b)

Aperture size (µm)

Convergence
semiangle

(α)

Probe
(FWHM
in nm)

Figure 18.10 Variation of (a) Probe size with lens strength (b) Convergence angle with aperture size.

18.2.2 Objective Lens and Stage
The stage is used to clamp the specimen holder in correct position, so that objective lens can form 
images and diffraction patterns. In TEM, the positions of lens are fixed and we focus by changing the 
strength of the lenses. In most cases, the lenses which are used are magnetic, so that we change their 
strength by changing the magnetic field.

Magnification, M
v
u

=  and it should not be confused with resolution.

For magnetic lens (Figure 18.11), there is a cylindrically symmetrical core of soft magnetic mate-
rial such as soft iron with a hole drilled in it. Soft iron pieces are known to be pole pieces. The distance 
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between the pole piece faces is called gap. The bore-to-gap ratio is important characteristic of lenses 
because it controls the focusing action of the lens. The second part of the lens is a coil of copper wire 
that surrounds each pole piece. When we pass a current through the coil, a magnetic field is created in 
the bore. This field is inhomogeneous along the length of lens, but axially symmetric. The lenses have 
to be cooled because they get resistively heated, and hence water recirculating system is  essential part.

Strengthening the lens shorten the focal lengths (Figure 18.12). Therefore, a weaker lens f
1
 produces 

higher magnification of object than the stronger lens ( f
2
). The image distance v changes, but u remains 

unchanged. We have to define a standard object plane for the main imaging lens of the microscope 
which is called eccentric plane. The specimen height should always be adjusted to sit in the eccentric 
plane because an image of an object in this plane will not move as the specimen is tilted. All other 
planes in the imaging system are defined w.r.t. eccentric plane. While inserting the specimen into TEM, 
it should be ensured that the object is in eccentric plane. To do this, tilt the specimen and adjust the 
height of specimen holder until the image of specimen remains stationary (±30 on either side of zero).

Soft
iron pole

pieces

Water inlet

Copper
coils

Water cooled surface

Power

Bore

Gap

Water outlet

Figure 18.11 Magnetic lens.

Object plane

f2
f1

Lens

v2

v1

u

Image plane 2

Image plane 1

Figure 18.12 Weak lens producing high magnification and vice versa.
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18.2.3 Imaging System
As shown in above ray diagram, the objective lens takes the electrons emerging from the specimen, disperses 
them to create diffraction pattern in back focal plane, and then recombines to form an image in image 
plane. There are two fundamental operations from the point of view of instrument. These are as follows:

 (i) Selected area electron diffraction (SAED)
 (ii) Bright-field and dark-field imaging

1. Selected Area Electron Diffraction
From Figure 18.13(a) (if no aperture is used), diffraction pattern contains electrons from whole of 
specimen that we illuminate. Such pattern is not very useful and the direct beam is so intense that it 
will damage viewing screen. Hence, we select a specific area of specimen to contribute to diffraction 

Fixed

A B

Intermediate
image

Objective lens (L1)

Intermediate lens (L2)

Projector lens (L3)

Specimen

SAED aperture

Objective
 aperture

Second intermediate
image

ScreenDiffraction
pattern

Projecting diffraction pattern
on screen

(a)

Projecting image
on screen.

(b)

Intermediate
lens

Final
image

Figure 18.13 (a) Projecting diffraction pattern on screen and (b) projecting image on screen.
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pattern. The pattern like Figure 18.13(a) (without aperture) is used in converged beam electron 
 diffraction (CBED) as it uses L

2
 and L

3
 lens to converge the beam. Converging the beam destroys any 

coherence, and spots in the pattern are not sharply defined but spread into disks.
If we wish to obtain a diffraction pattern with parallel beam of electrons, the standard way is 

to select an aperture. The operation is called selected area electron diffraction (SAED pattern). We 
insert SAED aperture into the image plane of objective lens and center the aperture on the optic 
axis. By using aperture, any electron hitting the specimen outside the area will be excluded from 
 contributing to the diffraction pattern. Basic principle of TEM operation is that when we want to 
look at  diffraction  pattern, we put an SAED aperture into the image plane of objective lens.

2. Bright Field and Dark Field
The SAED pattern contains a bright central spot that contains direct electrons and some scattered 
electrons. While forming images in TEM, an image is formed by moving central spot, or some/all of 
scattered electrons. External drives are used to move the aperture so that either the direct electrons or 
some scattered electrons go through it. When direct electrons form the image it is called bright-field 
image (Figure 18.14).

+
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Direct
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Diffracted beam
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Figure 18.14 Bright field image.

If scattered electrons are form an image then it is called dark-filed image (Figure 18.15).

Conclusively following points must be taken into consideration:
 1. If we want to have diffraction pattern, then SAED aperture should be inserted.
 2. If we want to look for image, then SAED aperture has to be removed and objective aperture 

should be inserted.
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18.2.4 Display System
TEM images can be seen with the help of charge-coupled devices (CCD). In order to compare the 
properties of detection and recording devices, we often use “detection quantum efficiency”(DQE).

DQE out
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For, perfect detector DQE = 1; otherwise, DQE < 1.

18.2.5 Electron Detectors
Electron detectors can be classified as following:

Viewing screens Multiple detectors Faraday cup

Semiconductor
detector

Scintillator
photomultiplier

detector

TV cameras and CCD

Electron detectors

1. Viewing screen
It is coated with a material such as ZnS (grain size is ~50 μm). The greatest source of screen damage 
is intense direct beam that comes through thin specimens and constitutes the central spot in dif-
fraction patterns. The burning of screen is minimized by (i) going to diffraction mode using SAED, 

+
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Figure 18.15 Dark-field image.
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(ii) Going to diffraction mode with L
2
 under focused, and (iii) if the spot appears exceptionally 

intense, then insert the beam stop.

2. Multiple Detectors
Electrons display screen emits light falling on it in one of the following ways:

Light emission (scintillation)
caused by ionization

Fluorescence
(rapid emission)

Phosphorescence
(delay time is longer
than fluorescence)

 (i) Semiconductor detectors: They are easy to fabricate, cheap to replace, and can be cut into any 
shape. They are sensitive to electrons with sufficient energy (>5 keV]. Hence, they are mostly 
used for back-scattered imaging. These detectors have large dark current (The current registered 
when no signal is incident on the detector.) This introduces noise in the imaging and hence, its 
DQE is poor. They are insensitive to low-energy electrons such as secondary electrons.

 (ii) Scintillator–photomultiplier detector: We use yttrium–aluminum garnet (YAG) as scintillating 
materials. These materials have decay time of order of nanoseconds rather than of microseconds. 
Once the incoming electron signal is cemented to visible light, the light from the scintillate is 
amplified by a photomultiplier (PM) system. The gain of this system is very high, and hence 
high DQE ≈ 0.9. The noise level is also low, but it is not as robust as semiconductor detector. 
Scintillate can also be coated with aluminium to prevent visible light from generating noise.

 (iii) TV cameras and CCD: Charge coupled devices (CCD) are devices that store charge generated 
by light or electron beams. CCD consists of thousands or millions of pixels that are electrically 
isolated from each other by creating potential wells, so that they can accumulate charge in pro-
portion to incident electron beam intensity. They have DQE > 0.5.

3. Faraday Cup
Faraday cup is like a black-hole for electrons. It is a detector that simply measures total electron cur-
rent in the beam. Once the electrons enter the Faraday cup, they cannot leave except by flowing to 
ground through an attached pico-ammeter that measures the electron current.

E. Ruska was born on december 25, 1906, in Heidelberg. He 
graduated from grammar school in Heidelberg. He studied at the 
Technical College in Berlin. Thereafter, he started working with high 
voltage and vacuum technology at the institute of High Voltage 
under the guidance of dr Max Knoll. Along with his other cowork-
ers, he worked on the development of a high-performance cath-
ode ray oscilloscope. While working with dr Knoll, they constructed 
the first electron microscope in 1931. in 1934, he got his doctoral 
thesis on the properties of electron lenses with short focal lengths.  
He also worked with dr Bodo von Borries on the development 
of high-resolution electron microscopes. in 1945, he helped in 
 reconstituting the institute of Electron optics in Berlin-Siemensstadt, 
which was disbanded due to bombing, so that the electron micro-
scopes can be built again. The “Elmiskop 1” was discovered in 
1954, which is in use over 1,200 institutions. He also worked at the 
German Academy of Sciences in Berlin-Buch. in 1957, he was made 
the director of the institute for Electron Microscopy. He retired on december 31, 1974, and de died 
on May 25, 1988.

E.RUSKA
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18.3 Specimen Preparation

Following precautimary points must be taken care of while preparing sample for TEM.

 1. Have the “antidote” at hand.
 2. Make up enough of the solution for one polishing session.
 3. Never use mouth pipette for measuring any component.
 4. Do not prepare cyanide solutions. The only metal where it excels is gold.
 5. Perchloric acid in ethanol/methanol are used as universal polish, with density below 1.48. Always 

add acid to the solvent, never solvent to acid.
 6. Avoid using nitric acid in combination with ethanol, as they form explosive mixtures. But meth-

anol can be used in place of ethanol.
 7. Use dilute solutions of hydroflouric and cover the skin as it penetrates and dissolves the bone.

18.3.1 Preparing Self-Supporting Disk 
A self-supporting specimen is one where the whole specimen consists of one material. Other speci-
mens are supported on a grid or a copper (Cu) washer with a single slot. However, if X-ray analysis is 
performed on a  specimen, then grid may contribute to signals. If we have to make a disk of sample, 
then it should be ≈ 3 mm in  thickness. The rim of specimen must be relatively thick and total area of 
material at center should be thin.
It involves the following steps:

1. Thin Slice from Bulk Sample
For ductile materials such as metals, we should use chemical saw or wafering saw to get a thin slice 
<200 μm. Brittle materials such as ceramics can be cleaved with razor blade or diamond cutter, but the 
sample can be damaged. For such samples, we can use ultramicrotome.

2. Cutting the Disk
For obtaining a circular disc, we can use mechanical punch for metals. For brittle materials, one 
should be using spark erosion, ultrasonic drilling, and a grinding drill. In each case, the cutting tool 
is a hollow tube with inner diameter of 3 mm spark erosion is used for conducting samples and intro-
duces least amount of mechanical damage.

3. Prethinning of the Disk
The aim of the process is to thin the center of the disk while minimizing damage to the surface. This 
stage is also referred to as dimpling. Mechanical dimples are used to grind and polish the disk to a 
fined radius of curvature in the center. If we are going for mechanical polishing, then always gradually 
decrease the grit size and conclude with the finest available. The better the polished surface, the better 
the final specimen.

4. Final Thinning of the Disk
(a) Electropolishing
It can only be used for mechanically and electrically conducting samples such as metals and alloys. 
There is a certain applied voltage at which the current due to anodic dissolution of the specimen 
 creates a polished surface. This constitutes the basic principle for electropolishing (Figure 18.16).
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Figure 18.16 Electropolishing curve.

Two types of electropolishing are as follows:

 (i) Jet electropolishing
 (ii) Twin-jet electropolishing

Jet electropolishing allows a single jet of gravity-fed electrobyte to thin a disk supported on  positively 
charged gauze, and the disk has to be related periodically as shown in Figure 18.17(a). Twin-jet 
 electropolishing thins the sample from both sides, and the sample is held between teflon holders 
(Figure 18.17(b)).
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Figure 18.17 (a) Jet electropolishing (b) Twin-jet electropolishing.

(b) Ion Milling
It involves bombarding delicate thin TEM specimen with energetic ions or neutral atoms and sputter-
ing material from film at an accelerating voltage of 4–6 keV. Ion gas is known as plasma and mostly 
argon or helium is used (Figure 18.18).
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Figure 18.18 Ion beam thining.

The ion beam can penetrate the sample up to some extent. Hence, the ion beam is aligned at an 
angle of 15 25° − °  to the surface. If we use aligning angle < 5° , then the deposition of ion beam in 
a region close to the specimen occurs. A lower beam energy also causes less damage; but in both the 
cases, the milling time is increased.

We define sputtering yield to be the number of atoms ejected/incident ion, which depends on 
mass of incoming ion and the sample ion milled, i.e

For ions depends on For target specimen depends on

Sputtering yield

(Mass, energy, charge, angle of incidence)  (Mass density, atomic mass,  
crystal structure, orientation).

Argon is used mainly due to its inert nature and hence no contamination or corrosion to the 
device. Most of the thinning parameters are fixed, except for ion energy, angle of incidence. One 
should start with rapid thinning (heavy ions, high incidence angle) and slow the thinning rates 
as perforation approaches (Figure 18.19). Cooling of the specimens is required as the ion beam 
might heat it to 200° C or even higher. The creation of vacancies through ion damage can cause 
diffusion changes.

Perforation
depth

Perforation
depth

Thinning
rateThinning

rate

20°

 i (Angle of incidence)

Figure 18.19 Variation of thinning rate and perforation depth with incident angle.
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Figure 18.20 Specimen preparation.

The graph shown in Figure 18.19 highlights following points:

 1. High incidence angles promote implantation, which is undesirable.
 2. The rate of thinning reaches a maximum at ∼ 20°  after which the beam penetrates rather than 

sputtering the sample surface.
 3. The specimen should also be rotated; otherwise, we tend to get surface structures/ grooves which 

are running in certain directions.
Figure 18.20 shows to put the samples on grids/washers, that is,

 1. The specimen is cut into thin slices normal to interfaces.
 2. They are glued together between spacers (that could be Si, glass).
 3. The sandwich structure is then inverted and ion-milled to perforation.

18.4 Scanning Probe Microscopy (SPM)

Scanning probe microscopes (SPMs) provides direct relation between the structure and material prop-
erties (ductility, strength, reactivity, etc.). It indicates the relation between surface features and materi-
als property.
Scanning probe microscopes can be classified as follows:

STM

Tunnelling
microscopy

Scanning probe microscopes (for morphology/topograph)

AFM MFM EFMSFM

Force microscopy

18.4.1 Operating Principle of SPM (Instrumentation)
In a scanning probe microscope Figure 18.21, the sample surface is scanned by sharp probe at a 
distance of less than few nanometers. For scanning, either the tip moves against the fixed sample or 
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vice versa. The moving element is mounted on piezoceramic scanner. The tip and sample are brought 
closer so that probing interactions can be measured with an appropriate detector. The detector signal 
is used for feedback control to adjust the tip–sample distance during the scanner. The functions of 
components of SPM are discussed below:

Sample

Computer
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electronics

Image display Command monitor

Photodetector

Piezoscanner

Sample

Cantilever

Laser

Contilever

Probe

STM
AFM

BiasPiezo
scanner
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tip

A

Figure 18.21 Schematic of scanning probe microscope.

1. Scanner
The driving motion is performed by piezoceramic drives (hollow tube scanner), which have property 
of changing dimensions under applied voltage. They can move the tip or sample in all three  mutually 
perpendicular directions. The detection of atomic-scale images requires a short-tube scanner and 
long-tube scanner for covering large areas (100 × 100 μm). At low voltages, the nonlinear response is 
given by long-tube scanner and can be corrected by computer software.

2. Tip–sample Approach
The tip should be positioned close enough to the sample surface to measure the strength of local–
probing interactions between tip and the sample. The damage of the sample by a tip–sample contact, 
the approach is delicate. Tip and sample are put close to each other manually by rotating the high-
precision mechanical screws. Stepper monitor brings the tip to the sample closer at atomic separa-
tions. Then, the lateral scanning is activated. The scanning tip can crash into the sample surface due 
to surface roughness and imperfect tip–sample alignment, unless the scanning is performed with 
feedback mechanism. Different type of feedback gain parameters (linear or logarithmic) can be used 
to generate the response of scanner.

18.4.2 Scanning Modes and Parameters
The lateral motion proceeds independently, whereas the vertical motion of the tip is adjusted  according 
to the chosen feedback gain. Conventionally, x and y are taken to be fast and slow scanning  directions 
(Figure 18.22). Scanning from left to right is taken to be “trace” scan and right to left is “retrace” scan. 
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The tip moves from one border to another performing trace and retrace motions alternatively cover-
ing square area along the slow scanning direction ( y).

Trace Retrace

Sample

Tip

Figure 18.22 Trace and retrace directions.

Generally, three models are applied for SPM: constant height mode, constant current mode, and 
barrier height mode. In constant height mode, feedback mechanism is turned off, and the interactions 
at constant tip height are observed. In constant current mode, feedback is activated. In barrier height 
mode, both feedback and tip–sample distance are variables.

In commercial scanning probe microscope, each line scan consists of 512 points and scanning 
proceeds with scanning frequency in 1–60 Hz range. Imaging of areas larger than 1 × 1 μm is per-
formed with scanning frequency is 1–4 Hz range. For scanning flat areas of the order 40 × 40 nm, 
the atomic and molecular size images are collected (8–60 Hz). Ideally, the position of sample is 
fixed in space and tip scans an area from one border to another. However, at ambient temperatures, 
the sample position drifts during the scanning and causes an image distortion. The thermal drift 
is large just after the sample has been installed and diminishes with time when the equilibrium 
between stage and sample has been achieved. Carry out small area scanning with high scanning rate 
to avoid damage of sample surface. The probability of damage increases if tip spends more time at 
a given location.

18.4.3 Images and Filtering
Trace image typically consisting of 512 × 512 pixels and can be generated by collecting data for trace 
scans when the data is collected in retrace direction, then retrace image is obtained. The  contrast in 
imaging refers to spatial variation of z-height of the tip. Bright spots correspond to elevated surface 
regions and places with stronger probing interactions and vice versa.

For increasing the quality of imaging, one can filter raw images by means of fast Fourier  transform 
procedure. The filtering highlights periodic features of images but can result in lose of nonperiodic 
features due to local defects. A plane-fit adjustment is necessary when the sample surface under 
 observation is not exactly perpendicular to the scanner z-axis. Zooming, low pass, erasing scan times 
flattening, etc., are done with software.

Vibrational noise must be avoided to detect surface features. Hence, the microscope head should 
be placed on the platform supported by rubber cords that have low natural frequency ( ∼  1 Hz). 
Interference of lab vibrational noises and acoustic noise should also be isolated. Suspension with 
springs, stacked plate systems, and pneumatic systems can be used for reducing vibrational noise.
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18.5 Scanning Tunneling Microscope (STM)

It allows us to determine the structure of surface with a spatial resolution on angstrom scale. Since 
a tunneling current is employed in STM, the application of this method is mostly limited to metals 
and semiconductors. The real-space visualization of surfaces on atomic scale can be obtained by STM.

18.5.1 Principle
Whenever a sharp conducting tip is brought very near to a metallic or semiconducting surface, then the 
bias between the two surfaces can allow electrons to tunnel through the vacuum between them. For low 
voltages, this tunneling current is a function of local density of states (LDOS) at the Fermi level (E

F
) of the 

sample. Whenever a probe passes over the surface then the variations in current are translated to an image.

18.5.2 Methodology and Tunneling
Tunneling is possible only if there is an empty level of same energy on the other side of barrier for 
electron to tunnel onto. That is, why tunneling current is dependent upon r r E, F( )  (density of avail-
able or filled states in sample). Conclusively, the current (I ) due to applied voltage (V ) depends on the 
number of free states to tunnel into on the other side of barrier. The higher the density of available 
states, the greater the tunneling current. The bias voltage V

bias
 determines which levels of the sample 

electronic states will participate in tip–sample electron transfer. For two metal surfaces near each 
other, the height of barrier can roughly be estimated by average work function of sample and tip.

w w w= +éë ùû
1

2 sample tip

Only electronic states very near the Fermi level (within eV) are excited when the bias voltage is small. 
The excited electrons can tunnel across the carrier and hence, tunneling occurs mainly due to  electrons 
whose energies lie near the Fermi level.

The bias voltage V
bias

 values are typically in 0.001–5 V range. When V
bias

 is positive, then electrons 
flow from tip to the sample and vice versa (Figure 18.23). The common tunneling current is 0.1-
40nA. Tip sample distance should be upto 0.01A ˚ . According to classical physics an electron cannot 
penetrate into or across a potential barrier if its energy E is smaller than potential V within the barrier 
(barrier width d ).

e−
e−Vbias > 0

Vbias < 0

Sample Sample

Tip Tip

Figure 18.23 Electron transfer in STM.

Suppose that tip and sample are both metals and form a metal–insulator–metal junction. The gap 
between tip and sample provides insulating barrier (e.g. air, vacuum). When the bias voltage Vbias( )  
between the electrodes is zero, their Fermi level becomes equal and no tunneling current is observed. 
When Vbias  is positive (i.e. tip is grounded), the energy levels of sample are lowered by eVbias , so that 
electrons in the occupied level of tip tunnel to unoccupied levels of sample. When bias is negative (i.e. 
tip is grounded), the energy levels of the sample are raised by eVbias , and the electrons in the occupied 
levels of the sample tunnel to unoccupied level of tip (Figure 18.24).
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Figure 18.24 Energy bands with metal-insulator-metal function.

18.5.3 STM Tips
Monoatomic sharp apex tips are ideal tips for STM which can be prepared and  characterized by means 
of a field-ion microscope. Tips are also prepared by mechanically cutting/ electrochemical etching of 
wires [tungsten, Au, Pt/Ir, Rh/Ir]. Only the outermost atom or few atoms of the tip are expected to 
participate in the electron transfer. Pt/Ir tips are preferred over tungsten (W) for ambient conditions 
because W is easily oxidized in air. The tungsten tips are mostly used in ultrahigh vacuum, as  oxidation 
is less likely to happen. Electrochemically etched W or Pt/Ir tips have well-defined sharp microscopic 
profile. For current detection in a scanning tunneling microscope a combination of  logarithmic and 
standard amplifiers is used because.

18.5.4 Construction of STM
The schematic of STM is shown in Figure 18.25. Tube scanner is a cylinder made out of piezoceram-
ics and is covered inside/outside with metal acting as electrodes (Figure 18.26).

The tunneling current is converted into a voltage by a current amplifier. To get a linear response 
with respect to tunneling gap, the signal is processed by a logarithmic amplifier. The output of 
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Figure 18.25 Schematic of STM.
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Figure 18.26 Tube scanner.
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logarithmic amplifier is compared with predetermined voltage (reference current). The error signal is 
passed to feedback electronics that applies a voltage to the piezo to keep the difference between the 
current set point and tunneling current small.

Hence the required circuit is feedback circuit (for measuring constant current), a feedback cir-
cuit has to be build up to control z-piezo. Data acquisition cards are required to read voltage and 
control the system through computer. Data acquisition software is required to control mode and 
scanning and also to acquire the required data. Data analysis software is required to analyse the 
acquired data.

18.6 Advantages of SPM

 1. The resolution is not limited by diffraction, but by the size of probe-sample interaction volume. 
It can measure small local differences in height (135 pm step on < 100 > silicon).

 2. Interaction can modify sample to create small structures.
 3. Unlike electron microscopes, specimens do not require a partial vacuum, but can be observed at 

Standard Temperature and Pressure.
 4. Organic molecules that are insulating can be imaged when they are adsorbed on conducting 

substrate.

18.7 Disadvantages of SPM

 1. Detailed shape of tip is difficult to examine. Noticeable effect is observed if specimen varies 
greatly in height over lateral distances of 10 nm or less.

 2. Scanning techniques are generally slower in acquiring data, due to scanning process.
 3. The maximum image size is generally smaller.
 4. It is not useful for buried solid/solid or liquid–liquid interfaces.

18.8 Atomic Force Microscopy (AFM)

Atomic force microscopy (AFM) consists of optical block and base (Figure 18.27). The base has 
stepper motor; the alignment screws and the scanner. The sample is mounted on top of scanner. 
The optical block consists of viewing window at the top mirrors diode layers and positional split-
diode photodetector. The cantilever holder is fixed on the top of alignment screws, and the tip is 
positioned over the samples.
Principle: Force curve plots the distance of scanner movement vs. cantilever deflection and are used 
to measure the vertical force of tip on the surface (Figure 18.28). In contact mode, it can be used to 
examine the attractive, repulsive, and adhesive interactions between the tip and the sample. The curve 
begins with the tip not touching sample, so that cantilever is undefeated and scanner retracted. When 
the tip comes close to the sample, the cantilever is deflected from its equilibrium position in response 
to the force experienced by the tip. It bends toward the sample when the force is attractive and away 
from it when the force is repulsive. The van der Waals’ (VDW) attraction bends the cantilever toward 
the sample when the sample approaches the tip in the non-touching regime.

When the sample is moved further, then the attraction force gradient exceeds the spring constant 

of cantilever k
F

m
=

é

ëê
ù

ûú
 at some point and the tip comes onto sample surface, thereby making contact 
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with the sample. As the sample further moves toward the tip, the cantilever is deflected (touching 
regime). In addition to the bending of cantilever, the tip and sample may undergo elastic (reversible) 
or plastic (irreversible) deformations (Figure 18.29).

The cantilever moves again with the sample when the sample is retracted from the tip in touching 
regime. This may result in deflection toward the sample before the tip breaks contact with sample due 
to adhesive and capillary forces. The capillary forces arise from the contamination liquid layer cover-
ing the sample surface. At the jump-out point (transition from touching to non-touching regime), the 
tip loses contact with sample surface, and the force vs. distance curve returns to the nontouching line. 
The difference between the minimum point of retrieval and the nontouching time is called pull-out 
force. In attractive force regime, the curve exhibits hysteresis, and the behavior of probe is influenced 
by long-range forces.
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Figure 18.29 Magnified image for Figure 18.28.

Two forces that influence probe interaction with sample are as follows:

1. Short-range Forces
These forces are strongly repulsive at short distance and slightly attractive at long distance. This leads 
to sharp force vs. distance curve and endows the basis for high-resolution surface imaging in contact 
mode AFM. During scanning in contact-mode AFM, the tip moves laterally and the cantilever experi-
ences vertical (normal) as well as lateral friction forces. The frictional forces are proportional to the 
load and scanning speed.

2. Long-range Forces
VanderWaal’s(VDW) forces act between the bodies separated beyond the chemical bonding distance.
VDW forces are important because depending on the shape of tip, the atoms at the tip apex experi-
ence strong repulsion and deformation due to VDW attractions. The VDW interactions between 
silica probe and metal surface immersed in various liquids is of the order of 1–104 nN. Immersion of 
tip/ sample system in high polar liquids is found to reduce VDW forces. For biological applications of 
AFM, it should be noted that in water many surfaces are charged. The surface charging is attracted to 
dissociation of surface groups on from adsorption of ions onto the surface. The surface charges attract 
other counterions, and form a double-layer near the surface.

Two other subsidiary forces due to short or long range interaction are as follows:

 (a) Adhesive Forces
It is a consequence of long-range and short-range interaction. AFM measures the variation in local 
adhesion of the surface by studying the hysteresis of the force vs. distance curves.

 (b) Capillary Forces
The tip apex is sometime coated by liquid contamination on the surface, hence forming a capillary 
between tip and sample. This gives rise to capillary force (10–100 nN). The capillary force increases 
pull-out force, and hence leads to additional load on the sample. Capillary forces should be negligible.
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18.8.1 AFM Probes
The probes used for AFM measurements are cantilever integrated Si N3 4  or silicon tip. The cantile-
vers are prepared with different lengths, thickness, and shapes. Their elastic constants vary in 0.01–50 
N/m, range. The spring constant (k) of a cantilever is given by the following equation

k
Et b

L
=

3

34

E → elasticity modulus
b → width of cantilever
t → thickness of cantilever
L → length of cantilever

The famous probe consist of Si N3 4  triangular cantilever (200 μm length, 0.18 N/m) with integrated 
pyramids (2.9 μm height, r < 20 nm). Rectangular cantilevers k = 20 N/m, Si) are used with inte-
grated. Trans tip (10 μm height, r < 10 nm, Si).

The following points must be taken into account while designing cantilever.

 1. The spring constant should be as small as possible to measure small forces.
 2. Thermal excitations set the lower limit on spring constant.
 3. The cantilever’s resonance frequency should be higher than building and acoustic frequency 

∼ kHz( ) . Resonance frequency µ
k

m
.

 4. Mass should be small for higher resonance frequencies.
 5. The cantilever tip should be robust for contact applications.
 6. Cantilever design depends on modes of operation and deflection system.

Silicon nitride probes are typically made using semiconductor photolithography techniques. Using 
it, a square opening is etched on SiO2  film. The chemical etching of part of Si (100) wafer exposed 
through the square opening self-terminates at Si (111) planes leading to pyramidal pit. After removing 
SiO2  protection layer, Si N3 4  is deposited on wafer to form the shape of cantilever using lithographic 
method. All remaining silicon is etched away, and back of cantilever is coated with gold in order to 
reflect the laser beam. These probes are used for contact modes. Silicon probes are fabricated from 
single crystal silicon. Silicon tips are often conical in geometry with high aspect ratio. These are much 
sharper than Si N3 4  but are easily broken. Silicon probes can dissipate charge much better than Si N3 4 .  
They possess higher spring constant and higher resonant frequency. They are best suited for contact 
applications.

18.8.2 Selecting a Tip for Probe
Following points must be taken care of before selecting a tip for probe.
 1. Tip radius should be minimum (2–60 nm radio).
 2. Tips should image at much higher resolution than predicted by the geometries as most tips have 

defects on their surface. These defects interfere with the resolution.
 3. If the sample is very flat, then the smaller radii of curvature of defect may image the surface.
 4. For best resolution, sharp tips should be used but sharp tips are less durable and very expensive 

also.
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18.8.3 Modes
The modes of operation for AFM are classified below, and we will be discussing them one by one.

Tapping mode
Intermittent

contact

Contact mode

Modes

Non-contact mode Force-modulation mode

1. Contact Mode (Tapping Mode)
In tapping mode, the tip is vertically oscillated at its resonant frequency. The sample approaches 
vibrating tip, lowering the vibrational amplitude. The tip makes soft physical contact with sample as 
it scans the surface. The changes in cantilever deflection are monitored with photodiode. Topography 
changes may occur due to constant force between tip and sample causing cantilever deflection 
(Figure 18.30). Topographic data are generated by two modes:

Surface

Figure 18.30 Contact mode.

 (a) Constant height mode: In this mode, the spatial variation of cantilever deflection is used 
to generate data. It is applicable for changing surfaces (speed is essential) or when cantilever 
 deflections are small (atomically flat surface).

 (b) Constant force mode: In this mode, scanner motion generates image as scanner is moved up 
and down to keep cantilever deflection  constant. This is preferred mode because feedback cir-
cuits limits the response time of circuit.

For the tip to penetrate contamination overlayer, application of rigid cantilever (Resonant frequency 
300–400 kHz) and high operating amplitudes (10–100 nm) is required. 

2. Noncontact Mode
In noncontact mode, the bottom-most point of each cycle is in attractive region of force– distance 
curve (Figure 18.31). Since long-range attractive forces do not exhibit sharp force vs.  distance  behavior, 
the spatial variation of Vander Waals’ forces is very weak in noncontact mode and the  operation 
must be carried out in ultrahigh vacuum by using mode techniques with frequency shift detection, 
 long-range attractive forces are insensitive to a small change in tip–sample separation and hence the 
information for subnanometer scale cannot be collected.
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In noncontact mode following points must be noted:
 1. An oscillator drives the tip up and down. Furthermore the tip do not touch the surface, rather it 

oscillates upon the absorbed fluid on the surface. This is also called intermittent contact and the 
bottom-most point is in repulsive region.

 2. This mode studies soft and elastic samples because total force between tip and sample is very low 
(10–12 N). As the tip comes near the sample, the system detects variation in resonant frequency/
vibration amplitude.

No contact IntermittentSurface

Figure 18.31 Non-contact mode.

 3. Cantilever must be stiff as the force is low in non-contact regime so that they are not pulled into 
contact with sample surface. Moreover, more stiff cantilevers have high force constant.

(c) Force-Modulation Mode
In this mode, the tip does not leave contact with the surface at all during the oscillation cycle. This 
technique uses a much smaller amplitude of vibrating cantilever to prevent tip/sample disconnection. 
By measuring amplitude and phase shift of cantilever, one can detect spatial variation of elasticity of 
surface. In this technique, force is applied directly on the tip rather than modulating the cantilever. 
The frequency range is 10 20Hz kHz∼ ; sometimes, the tip is coated with magnetic material and 
external magnetic field is applied to produce modulation on tip surface. Force up to 1 nN is used in 
this technique.

18.8.4 Applications of STM/AFM
 1. Surface Roughness measurement with spatial variations in the submicron range.
 2. With STM, one can profile conducting samples and insulators coated with metallic over layer.
 3. However tip/sample force interaction might introduce undefined changes to tip and sample 

geometry. Therefore, development of low current STM instrumentation is important. Therefore, 
AFM has broader applicability due to small, better controlled forces and rapid improvements in 
force sensors.

18.9 Nanophysics

Nanoscience is branch of physics that deals with the study of phenomena related to the object 
of size 1–100 nm (at least along one dimension). The applications features and characteristics of 
nanoparticles are different from that of macroscopic particles. Although classical description could 
not be applied to the nanoparticle, quantum mechanical approach is quite valid. It is a revolution-
ary field due to its technological and industrial applications. When we talk about nanotechnology, 
then it involves the study, synthesis, and processing of the structure at nanometer scale. Quantum 
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confinement and Gibbs– Thomson effects fall in this category. Basically, quantum confinement deals 
with the interaction of nanoparticles with bulk material resulting in electromagnetic as well as optical 
properties. Some structures such as carbon nanotubes follow lowering of melting point that is due to 
Gibbs–Thomson effect.

Many techniques are used to produce nanoparticles such as tip top down, lithography, etching, 
focused ion beam machining, and vapor deposition. For the study and observation of individual 
nanoparticles, following three techniques are vastly exploited. Hence, before we proceed for  properties 
and other important aspect of nanotechnology, we should study the characterization  techniques 
 elaborately, that is, transmission electron microscopy, atomic force microscopy scanning probe 
microscopy, and scanning tunneling microscopy which are discussed in previous sections.

18.9.1 Different Types of Nanostructures
Nanoscience is an interdisciplinary field that involves the phenomena of chemistry, biology, physics, 
and materials. At the same time, nanotechnology describes the vast technology that could find poten-
tial applications in almost every aspect of science.

Nanostructures are indispensable part of nanotechnology. The objects whose size lies in between 
0.1 nm and 1 μm are nanostructures. If we consider three-dimensional objects, then only one dimen-
sion may be satisfying the condition of nanostructure and other dimensions could be very large. Some 
of these nanostructures are described below:

1. Nanoparticles
Those particles whose dimensions are ≤100 nm  are called nanoparticles. When some materials are 
converted to nanoparticles, many material properties get modified due to increased surface to volume 
ratio (discussed later). Some ultrafine particles exhibit size between 1 and 100 nm. Nanoparticles 
are of vast technological use for the scientific community. Further, if one dimension of material is 
in nanorange while other are still large, then the structure of material is said to be quantum well. If 
two dimensions of material get reduced to nanodimension, then the material structure is said to be 
quantum wire. When all three dimensions get reduced to nanosize, then it is said to be quantum dot. 
(Figure 18.32)

(a) Well (b) Wire (c) dot

Figure 18.32 Various nanostructures.

2. Nanorods
These have at least two dimensions in the nanoscale range. These structures are produced from chemi-
cal synthesis. Most of the metals and semiconducters could be used to make nanorod. Diamond 
nanorods are produced, which is nanocrystalline form of carbon. This material is considered among 
one of hardest substance. Nanorods have wide range of applications such as display technologies, thin 
film-based computers, etc. The pixels involved for improving picture quality of television are also 
made up of nanorods.
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18.10 Properties of Nanoparticles

Following are the important properties of nanoparticles.

1. Mechanical Properties
Nanostructured materials exhibit very high mechanical properties. When 2 nm Al O2 3  is made to  
precipitate into thin films of pure nickel, then the yield strength increases from 0.15 to 5 GPa. Further, 
steel is known to be stronger than carbon. But when it comes to nanocylinders of carbon, it exhibits 
100 times more strength than the steel.

2. Optical Properties
At nanoscale level, the color as well as transparency of the material changes. Most common exam-
ples are of gold silicon and zinc oxide. The nanoscale zinc oxide is transparent while in bulk and 
is white in color, whereas bulk gold is yellow in color and bulk silicon is dark gray in color. The 
main reason for change of optical properties of nanoparticles is the change in degree of freedom of 
electron motion. As the size of nanoparticles is very small; hence, they are not free to move and react 
differently with the light photons that result in different optical properties than the bulk material.

3. Chemical Properties
The surface area for nanoparticles is higher than the bulk material; hence, nanoparticles are more reac-
tive. Especially, when the nanoparticles act as catalysts, then the chemical reaction activity increases. 
Moreover, nanoparticles exhibit higher average energy than the bulk atoms.

4. Electrical Properties
For nanoparticles, especially carbon nanotubes (CNTs), the conductivity is highly dependent upon 
the dimensions specially the cross-section area. We know that graphite that is allotropic form of 
carbon is a good conductor of electricity, but carbon nanotube can be conducting or semiconducting.

5. Biological Properties
Many revolutionary regimes have been explored using biotechnology and nanotechnology. The field 
of nanodrug delivery has been of wide applications. This field of medicine used nanoparticles 
for delivering target-oriented drug for this purpose; the cytocompatibility of nanoparticle is 
 indispensable criteria.

6. Magnetic Properties
Nanoparticles exhibit higher magnetic interactions due to higher surface to volume ratio. Magnetic 
particles contain magnetic particles such as cobalt and iron, etc. Nanocomposite materials are also 
extensively investigated due to their various technological applications. These nanocomposite have high 
remanence. Magneto-restrictive materials also allow a wide variety of applications due to  deformation 
of material on applying magnetic field. In the nanosize domain, magnetic  nanoclusters couple their 
spins and combine to produce a single giant particle. This further gives rises to  super-paramagnetism, 
that is, free rotation of giant ferromagnetic parameter at room temperature.

18.11 Surface Area/Volume Ratio

Nanomaterials have large surface area. If we consider a nanosphere of radius r, then its volume is 
4

3
3

pr  and 4 2
pr  is the surface area.
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Therefore,
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When r decreases, then surface area increases. Due to increase in surface area, the nanoparticle 
becomes more reactive. As r approaches zero, surface-area-to-volume approaches infinity. There is 
critical radius r at which the surface to volume ratio is 3:2. The particles that are smaller than critical 
radius are called embryos and the particles with radius greater than critical radius are called nuclei.

18.12 Quantum Confinement/Electron Confinement

In bulk, the solid atoms exhibit splitting of energy levels and they form bands. Individual atoms exhibit 
discrete energy level. Quantum confinement effect is observed when the size of nanoparticle approaches 
magnitude of wavelength of electron. In the nanosize regime, nanoparticles exhibit different properties 
from the bulk materials. For the nanosize particles, the band gap decreases. The nanoparticle behaves 
when it is confined inside a box of confining dimensions. When the confining dimensions are com-
parable to wavelength of electron, then the energy of particle is fixed; or in other words, the energy 
spectrum is continuous. When the dimensions decrease and reach in nanoscale limit, then the energy 
levels turn to be discrete. That critical measurement where the energy levels turn to be discrete from 
continuous is called Bohr radius. Hence, electrons and holes are confined to Bohr radius. The band gap 
changes and hence the properties of nanomaterial change accordingly. For silicon and germanium, the  
confinement limit extends up to 6–7 nm.

18.13 Nanomaterials and Their Synthesis

Nanomaterials are the materials that have at least one dimension <100 nm. They have variety of appli-
cations. Nanomaterials are strong, ductile, water-resistant, chemically active, corrosion-resistant, and 
very hard. In the form of thin films or surface coatings, they are one dimensional in nature. Nanowires 
and nanotubes are two dimensional in nature. Quantum dots and colloids, etc., are three dimensional 
in nature. Nanometer-sized grains of nanocrystalline material fall in this category. The nanomaterials 
can be synthesized by using the following techniques.

18.13.1 Top-Down Approach
In this technique, the structures are miniatured to nanoscale region. The most common technique 
adopted in top-down approach involves ball-milling and sol-gel processes as discussed below.

1. Ball- Milling
In this process, the materials are ground to yield fine particle with nanosize. For making such  particles, 
mill is used as shown in Figure 18.33. Some of the materials yield highly nanocrystalline particles. 
During the process of ball-milling, the energy is imparted to samples due to collisions. The colliding 
balls trap the powder in between them and the compaction of particles start taking place. During the 
process of compaction of particles within the balls, the particles slide over each other such that they 
undergo fracture and deformation. This produces particles of irregular dimensions. Further, during 
next stages, particles undergo plastic and elastic deformation. Then, the particles undergo more 
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fragmentation, which reduces the particle size. Although ball-milling is the most commonly used 
technique to produce nanoparticles, it may cause contamination. The milling process may take up to 
150 h to obtain uniform powder. Hence, ball-milling is a combination of many subprocesses, that is, 
grinding, deformation, mixing, and homogenization. Ball-milling processes have some demerits too, 
that is, ball-milling process may cause atomic defects. Further, the shape of nanoparticles may not be 
regular. Sometimes, the mixture obtained after ball-milling may have some amorphous powder in it.

2. Sol-Gel Synthesis
Sol-gel process deals high-purity nanoparticles. For sol-gel synthesis, suitable precursors such as 
 acetates, carbonates, etc., are taken and mixed with deionized water. The chemical solution acting as 
precursor is known as sol, and the diphasic system consisting the solid and liquid phase is known as 
gel. When the gels are formed after mixing precursors and deionized water, then the gels are dried and 
they shrink. Hence, after drying, we get oxide polymer. This polymeric unit is usually three dimen-
sional in nature, having interconnected porosity. Compared to the process of ball-milling, we get 
homogenized, uniform, and isotropic nanoparticles. The sol-gel process can be done at low tempera-
tures and it produces large quantity of nanoparticles. Hence, the complete process of sol gel involves, 
mixing (to obtain sol), gelation, drying, polymerization (densification). Hence, sol-gel process has the 
following merits:

 1. It can synthesize almost any material, along with that, it can cosynthesize two or more materials.
 2 It can produce homogenous and uniform nanoparticles.
 3. It can produce ultrapure nanoparticles.
 4. Sol-gel process involves microscopic synthesis and polymerization.
 5. It can produce large quantity at very economic level.

18.14 Bucky Balls and Fullerenes

We were familiar with two pure forms of carbon, that is, graphite and diamond were commonly 
known allotropes. Then, Richard Smalley, Robert Curl, and Harold Kroto discovered buckyballs or 
fullerene structures. Basically, fullerenes are a hollow cluster of 60 carbon atoms that are arranged in 
shape of soccer ball.

Carbon and graphite possess different structural arrangements hence different properties. Bucky 
balls possess very high stability. Different buckyballs with different number of carbon atoms have 
been discovered, for example C

60
 and C

80
, etc. C

60
 buckyball possess the truncated polyhedrons shape, 

Power to be
 crushed

Gap of
nanosize

Figure 18.33 Ball-milling to obtain nanosized particle.
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that is, 12 pentagons surrounded by 5 hexagons. Buckyballs are quite resistant to the deformation. 
In other words, its characteristics are elastic in nature, that is, it regains its original shape when the 
external force is removed. Among other allotrophes of carbons, buckyballs are comparatively soluble 
in water. The inside of fullerenes is hollow from inside; hence, they can accommodate some atom 
inside them. They have been of importance due to the following reasons:

 1. They are used in field of medicine. They can act as drug carrier, and hence are very useful diag-
nostic tool.

 2. In STM technique, the probe tip sometimes spoils and scratches the surface. Scientists are thinking  
of replacing the tip of probe with buckyball.

 3. They are also considered potential candidates for lubrication and superconductivity. Further, 
they are also considered to activate many reactions by acting as catalysts.

R. Buckminster Fuller was born on July 12, 1895 in Milton, 
Massachusetts. His grandfather was the literary critic 
Margaret Fuller. Fuller had poor vision during his youth due 
to which he was out of the army in World War i, but the navy 
accepted him. in 1913, he graduated from Milton Academy. 
Then, he went to Harvard university where he was expelled 
in his first year as he was indisciplined. Then, his mother sent 
him for mechanic job in a cotton factory run by a distant rela-
tive in Sherbrooke, quebec, Canada. The chief engineer was 
impressed by Fuller’s ability and convinced him to keep a 
notebook of his design sketches. in 1914, Harvard university 
reinstated Fuller and then again expelled him officially in 
1915 for bunking classes. in 1917, he married Anne Hewlett.

R.B. FULLER

18.15 Carbon Nanotubes

These are cylindrical structure of carbon atoms. In other words, it is cylindrical fullerene where 
carbon atoms are covalently attached to each other. The ends of CNTs can be open or closed 
and their length to diameter ratio can be greater than 1,000,000. Graphene is a two-dimensional 
 allotrope of carbon, and CNT can be obtained by rolling the sheet of grapheme. CNT can be 
 classified as single-walled CNT(SWCNT) or multiwalled CNT(MWCNT). Single-walled CNT 
can be obtained by  rolling grapheme sheet, but multiwalled CNT is obtained by the coaxial assem-
bly of SWCNT  cylinders, that is, SWCNT cylinders, one within another. The separation between 
coaxial cylinders is of the order of interlayer distance between natural graphite. The following sec-
tions give more insight of CNTS.

18.15.1 Structure of CNTs
High-resolution techniques are required (discussed in early sections) to describe and explore the struc-
ture of CNT. The three nanotubes are commonly known, that is, zig-zag, chiral, and simple nano-
tubes. The shape of CNT depends on the way graphene sheet is rolled up. One of the structures is 
shown in Figure 18.34.
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Figure 18.34 Chiral vector for CNT.

From Figure 18.34, it is clear that a
1
, and a

2
 are the unit vectors of honeycomb structure. The points 

O and P are connected by vector C. By drawing normal to C, we obtain lines PQ and OT. When PQ 
and OT are superimposed, then properly capped nanotube is obtained. n and m decide the structure 
of CNT as follows:

 (i) If n = m → then the CNTs are called armchair.
 (ii) If m = o → then the CNTs are zig zag.
 (iii) If n ≠ m, then the CNTs are called chiral.

18.15.2 Synthesis Techniques for CNTs
Three techniques that are widely used to study the structure of CNTs are given as follows:

 (i) Chemical vapor deposition: In this method, pure carbon fibers are produced by vapor decom-
position of hydrocarbon. A substrate layer of metal particles (Ni, Fe, Co, etc.) is prepared. 
MWCNTs require inert gas atmosphere at temperature of 300–800°C. SWCNT are produced 
at high temperature with mixture of four and inert gas such as argon. The inlet is provided 
which supplies carbon containing gases such as acetylene and ethylene. Upon heating in  
furnace, the thin film of carbon gets deposited on the substrate containing metal particles. This 
technique produces bulk quantities of CNTs.

 (ii) Laser vaporization technique: Upon focusing laser on graphite, the carbon atoms become 
free, which are further used for fabricating CNTs. For laser vaporization technique, graphite is 
kept in quartz tube and the furnace is kept at 1200°C. During the process, inert gase such as 
argon or helium is used. Copper collector is used at one end, which is cooled by water. On the 
other end, laser is used, when laser is incident on graphite, then carbon is liberated and moves 
toward cold region (copper collector). When they move toward cold region, they condense and 
form CNTs (≈ 10–20 nm in diameter).

 (iii) Carbon arc discharge: This technique uses two graphite electrodes, in inert atmosphere of 
helium. Direct current is passed through these electrodes. Graphite anode is consumed and 
the carbon gets deposited on the cathode. Two shells of carbon are deposited on cathode, that 
is, outer hard gray shell and inner soft black shell and the inner shell forms MWCNTs. For 
SWCNT, small amount of metal particles such as Fe, Co, Ni, etc., are incorporated inside the 
electrode.
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18.15.3 Properties of CNTs
 1. They are very strong and have high Young’s modulus than steel.
 2. They have covalent bonds, hence they keep on vibrating.
 3. MWCNT’s inner shell slide without friction. Hence, this constitutes perfect rotational bearing.
 4. The thermal conductivity is very high due to good vibrational properties of CNTs
 5. They have minimum defects, hence high electrical conductivity.

SUMMARY

This chapter deals with the characterization techniques such as transmission electron microscopy, scan-
ning probe microscopy, scanning tunneling microscopy, and atomic force microscopy. Transmission 
electron microcopy is used to determine the lattice fringing and planar structure of materials scanning 
probe microscopy provides direct relation between structure and material properties. STM allows 
us to determine the structure of surfaces with a spatial resolution on angstrom scale. It also provides 
real-space visualization of surfaces on atomic scale. Nanophysics deals with the phenomena related to 
the objects of size 1–100 nm. Nanostructures are of different types. When one dimension of mate-
rial is in nanorange, while others are still large, then the material structure is quantum well. If two 
dimensions of materials get reduced to nanodimension, then the material is a quantum wire. When 
the three dimensions are reduced to nanoise, then it is quantum dot. Nanostructures are more strong 
than material itself. Nanomaterials have large surface area. The surface-area-to-volume ratio is 3/r . 
The critical radius r at which the surface to volume ratio is 3:2. Quantum confinement is observed 
when the size of nanoparticles approaches the magnitude of wavelength of electron. Nanomaterials 
are synthesized using top-down approach, ball-milling, and sol-gel synthesis. Apart from diamond 
and graphite, carbon possesses buckyball structures. Basically, fullerene/buckyball structures have 60 
carbon atom arranged in shape of soccer ball. Buckyballs are used in the field of medicine and they 
act as drug carrier. Carbon nanotubes are cylindrical structures of carbon atoms. Graphene is 2-D 
allotrope of carbon and CNT can be obtained by rolling grapheme sheet.

OBJECTIVE QUESTIONS

 1. Which of the following is signal generated by X-rays?

 (a) Back-scattered beam
 (b) Secondary electrons and Bremsstrahlung radiations
 (c) Anger electrons and characteristic X-rays
 (d) All of the above

 2. In thermionic sources,

 (a) electrons are produced by heating.
 (b) electrons are produced by electric-field.
 (c) electrons are produced by light.
 (d) electrons are produced by X-rays.

 3. In field-emission sources, electrons are produced by

 (a) heating (b) electric field
 (c) light (d) X-rays
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 4. According to Richardson’s law,

 (a) J CT=

2  (b) J CT e k TB
=

2 f /

 (c) J CT e k TB
=

−2 f /  (d) J e k TB
=

f /

 5. Tungsten has high melting temperature of 3660 K (Yes/No).

 6. LaB6  crystals are grown in

 (a) <111> plane (b) <112> plane
 (c) <311> plane (d) <110> plane

 7. Which of the following is used for triode gun?

 (a) Tungsten (b) LaB6

 (c) Both (a) and (b) (d) None of these

 8. Which of the following is true?

 (a) For LaB6  filaments, it is preferable to operate below saturation.
 (b) LaB6  is susceptible to thermal stress.
 (c) LaB6  has low work function.
 (d) All of the above.

 9. The field radius for tungsten wire is

 (a) 0 2. mm  (b) 0 5. mm
 (c) < 0 1. mm  (d) 0 3. mm

 10. The tip in FEG guns is cleaned by

 (a) flashing (b) owenching
 (c) annealing (d) all of these

 11. Operating temperature in field emission guns is

 (a) 2700 K (b) 300 K
 (c) 1700 K (d) 2000 K

 12. The life-time of tungsten pin is

 (a) 100 h  (b) 40 50~ h
 (c) 500 h  (d) >1000 h

 13. The energy spread for field-emission gun is

 (a) 0 3. eV  (b) 3 eV
 (c) 5 eV  (d) 10 eV

 14. The brightness of electron beam is given by

 (a) B
I

d
=

E

p a

 (b) B
d

I
=

p a

E

 (c) B
I

d
=
( )
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2

E
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 15. The coherence length for energy spread is

 (a) 
vh

ED
 (b) 

DE

vh

 (c) 
v

ED
 (d) vh ED

 16. The effective source size dc  for coherent illumination is

 (a) 
l

a
 (b) 

l

a2

 (c) 
l

a3
 (d) l

 17. The operation of TEM can occur in parallel beam mode or convergent beam mode. (True/False)

 18. Which defect does not hinder the working of parallel-beam formation?

 (a) Spherical aberration (b) Chromatic aberration
 (c) Astigmatism (d) All of these

 19. The minimum resolvable distance for spherical aberrations

 (a) r
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min =
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s

 (b) r Lmin
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.= ( )0 91 3 1 4

sl
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/
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 20. The optimum probe size for TEM is
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 21. The radius of chromatic disk is given by

 (a) r
E

E
chr =

D

0

 (b) r L
E

E
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D
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0

 (c) r
E

E
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 22. For reducing chromatic aberration, the specimen should be very thick. (True/False)

 23. The distortion due to astigmatism is given by

 (a) a D f  (b) 
a

D f

 (c) 
D

a

f
 (d) a D f( )
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 24. In case of astigmatism, the image is

 (a) circular (b) cylindrical
 (c) elliptical (d) conical

 25. TEM operation requires ______ lens.

 (a) optical (b) magnetic
 (c) colored (d) all of these

 26. Which of the following constitute the imaging system?

 (a) Selected area diffraction (b) Bright-field imaging
 (c) Dark-field imaging (d) All of the above

 27. The detection quantum efficiency is given by

 (a) 

S

N

S

N

out

out

in

































in

2

 (b) 

S

N

S

N

in

in

out

out

































2

 (c) 
S

S
in

out











2

 (d) 
N

N
in

out











2

 28. For perfect detector, DQE is

 (a) <1 (b) 2
 (c) 1 (d) 0

 29. Phosphorescence is

 (a) light emission (b) delayed light emission
 (c) rapid emission (d) none of these

 30. Semiconductor detectors are sensitive to electrons of energy

 (a) 2 keV (b) >5 keV
 (c) 0.5 keV (d) 3 keV

 31. Semiconductor detectors have poor DQE. (True/False)

 32. YAG (Yttrium aluminum Garnet) cannot be used as a scintillating material. (True/False)

 33. What is DQE of scintillator detector?

 (a) 0.5 (b) 1
 (c) 0.1 (d) 0.9



776  • CHAPTER 18/CHARACTERizATioN TECHNiquES ANd NANoPHySiCS

 34. Electro polishing can be done for

 (a) ceramic samples (b) glass samples
 (c) alloys (d) insulators

 35. In twin-jet electropolishing, the sample is held between

 (a) metal holders (b) ceramic holders
 (c) alloy holders (d) teflon holders

 36. For ion-milling _______ accelerating voltage is used.

 (a) 10 keV (b) 4–6 keV
 (c) 2 keV (d) 15 keV

 37. For measurable tip and sample interaction, the tip and sample should be

 (a) placed close
 (b) kept at a distance ~ .0 5 mm
 (c) kept at a distance ~ .0 8 mm
 (d) kept at a distance ~10 mm

 38. For Schottky emission, the up-sample separation is

 (a) 100 nm  (b) 0 5 1. − nm
 (c) 1 2− nm  (d) 10 mm

 39. The common tunneling current is

 (a) 100 A  (b) 0 5 1. − mA
 (c) 0 1 40. − nA  (d) 100 nA

 40. The typical values of bias voltage are

 (a) 10 V  (b) 0 001 5. − V
 (c) 5 8− V  (d) 100 V

 41. The SPM can measure differences in height up to

 (a) 200 pm (b) 135 pm
 (c) 250 pm (d) 100 pm

 42. In optical deflection technique, the noise is almost

 (a) 150 pm D.C. (b) 200 pm D.C.
 (c) 100 pm D.C. (d) 500 pm D.C.

 43. Which of the following is true?

 (a) Piezoresistivity yields 10 pm AC noise.
 (b) Piezoresistivity is suitable for low temperatures.
 (c) Piezoresistivity gives low DC force resolution.
 (d) All of the above
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 44. The spring constant for AFM probe is given to be

 (a) k
E t

L
=

3

34

w
 (b) k
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E t
=

4 3

3
w

 (c) k
L E

t
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4 3
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t L

E
=

3 34w

 45. The Si N3 4  triangular cantilever has

 (a) tetrahedral tip (b) pyramidal tip
 (c) spherical tip (d) rectangular tip

 46. Tapping and intermittent made are noncontact modes. (True/False)

 47. For noncontact mode, the force between tip and sample is

 (a) 50 N  (b) 20 30− N
 (c) 10 12− N  (d) 1 N

 48. The nanophysics deals with objects of dimension:

 (a) 1 10− nm  (b) 1 10− mm
 (c) 1 100− nm  (d) > 200 nm

 49. Nanostructures have dimensions between

 (a) 0 1 1. and mm  (b) 1 100and nm
 (c) >100 nm  (d) <1 nm

 50. Carbon nanocylinders are 100 times weaker than the steel. (True/False)

 51.  Optical properties of nanoparticles are due to change in degree of freedom of electron motion 
(True/False).

 52. The nanoparticles are more reactive than the bulk material because

 (a) they act as catalysts.
 (b) their surface area is more than bulk materials.
 (c) both (a) and (b)
 (d) none of these

 53. The surface area/volume ratio for nanoparticles varies as

 (a) 
1
2r

 (b) 
3

r

 (c) 
5
3r

 (d) r
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 54. C60  buckyball possesses

 (a) tetrahedral shape (b) octahedral shape
 (c) spherical shape (d) truncated polyhedron.

 55. For arm-chair CNTs,

 (a) n m=  (b) n = 0
 (c) m = 0  (d) n m≠

 56. For chiral CNTs.

 (a) n m=  (b) n = 0
 (c) m = 0  (d) n m≠

 57. During chemical vapor deposition technique, the temperature should be

 (a) 800 1000− °C  (b) 1500 2000− Å
 (c) 300 800− °C  (d) 1000 1500− Å

 58. During laser vaporization technique, the temperature should be

 (a) 1200°C  (b) 1500°C
 (c) 2000°C  (d) 2200°C

Answers

 1. (d)

 2. (a)

 3. (b)

 4. (c)

 5. (Yes)

 6. (d)

 7. (c)

 8. (d)

 9. (c)

 10. (a)

 11. (b)

 12. (b)

 13. (a)

 14. (c)

 15. (a)

 16. (b)

 17. (True)

 18. (a)

 19. (b)

 20. (c)

 21. (b)

 22. (False)

 23. (a)

 24. (c)

 25. (b)

 26. (d)

 27. (a)

 28. (c)

 29. (b)

 30. (b)

 31. (True)

 32. (False)

 33. (d)

 34. (c)

 35. (d)

 36. (b)

 37. (a)

 38. (a)

 39. (a)

 40. (b)

 41. (b)

 42. (c)

 43. (d)

 44. (a)

 45. (b)

 46. (True)

 47. (c)

 48. (c)

 49. (a)

 50. (False)

 51. (True)

 52. (c)

 53. (b)

 54. (d)

 55. (a)

 56. (d)

 57. (c)

 58. (a)
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Micro-Assessment Questions

 1. What is electron microscopy?
 2. What are electron sources for TEM?
 3. What is the brightness for electron gun?
 4. What is the temporal coherence and energy spread of electron beam?
 5. What is the lens defect for TEM?
 6. What do you understand by spherical aberration?
 7. What is chromatic aberration?
 8. What is astigmatism?
 9. What is the display system for TEM?
 10. What is electropolishing?
 11. What is spring constant for AFM?
 12. What is contact mode of AFM?
 13. What is noncontact mode for AFM?
 14. What is the resolution mode for AFM?
 15. Explain the term “nanaoscience.”
 16. What are nanoparticles?
 17. What is topdown technique?

Critical Thinking Questions

 1. Give the principle of TEM.
 2. Write down the principle of AFM.
 3. What do you understand by thermionic emission?
 4. List the various thermionic sources.
 5. Show schematically the signals produced by X-ray beam.
 6. Why are lanthanum hexaboride filaments used in electron gun?
 7. Show the schematic representation of electron gun.
 8. Explain in detail the field emission sources.
 9. Explain the characteristics for electron beams.
 10. Explain the spatial coherency and source size for the beam.
 11. What is the operating voltage for TEM?
 12. Give the operation of TEM in terms of parallel and convergent beam mode.
 13. Explain the focusing of lens.
 14. What is the difference between spherical and chromatic aberration?
 15. How can information system be calibrated?
 16. Explain the objective lens for TEM. Why is it known as magnetic lens?
 17. What is selected area diffraction pattern? Explain in detail.
 18. What is the bright and dark field for TEM?
 19. Explain the process of ion-milling.
 20. Give the operating principle of SPM.
 21. What is tip-sample approach?
 22. What are different scanning parameters and modes for SPM?
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 23. Give the properties for STM tips.
 24. Explain the effect of bias voltage on STM working.
 25. What are the various modes of operation for STM?
 26. List the advantages and disadvantages of SPM.
 27. What is atomic force microscopy?
 28. Describe the AFM probes in detail with their properties.
 29. What is the criterion of selection of a tip for probe?
 30. List the various resolution issues for AFM.
 31. What is pixelization for AFM?
 32. What is the difference between nanoparticles and nanorods?
 33. Define surface area/volume ratio for nanoparticles.
 34. Explain the quantum confinement.
 35. What is the principle behind sol-gel synthesis?
 36. How does ball-milling reduce particle size?
 37. What are buckyballs/fullerene structures?
 38. List the various properties of CNTs.

Graded Question

 1. Give the detailed construction of transmission electron microscope.
 2. Give the detailed working of atomic force microscopy.
 3. Give the detail, the various types of defects in the lens system for TEM.
 4. What are the various detectors used in TEM system? Explain in detail.
 5. Explain the specimen preparation for the TEM investigation.
 6. Give the operation and working of SPM.
 7. Give the principle and methodology for STM.
 8. Explain the electron transfer process and tunneling for STM.
 9. Describe the construction of STM.
 10. Explain the detailed principle of AFM.
 11. List the various forces that influence probe interaction with sample.
 12. What are the various modes of operation of AFM?
 13. List the different types of nanostructures.
 14. Give in detail the various properties of nanoparticles.
 15. What are the various techniques, which are used to synthesize the nanomaterials?
 16. What are carbon nanotubes? Give the structure of CNTs in detail.
 17. Write down the synthesis techniques for CNTs.

Remember and Understand

 1.  In TEM, electrons are accelerated through potential V, and hence electrons can gain momentum 
as well as kinetic energy.

 2.  There are two types of electron sources, that is, thermionic emission and field emission. In therm-
ionic emission, the electrons are produced by heating; whereas in field emission, the electrons are 
produced by intense electron beam.
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 3. There are two modes of operation for TEM: parallel beam mode and convergent beam mode.
 4.  To look at the diffraction pattern obtained from TEM, we use SAED aperture into the image 

plane of objective lens. To look at the image, SAED aperture is removed and objective aperture is 
introduced.

 5.  Scanning probe microscopy gives the relation between the structure and material properties. The 
sample surface EIS scanned with the sharp probe at a distance of less than few nanometers. For 
scanning, either the tip moves against the fixed sample or vice versa.

 6.  Scanning tunneling microscopy allows determining the structure of surface with spatial resolu-
tion on angstrom scale. It gives real-space visualization of surface on atomic scale.

 7.  STM tips must be monoatomically sharp apex, which could be prepared by field ion microscope. 
Tips are also prepared by mechanical cutting and electrochemical etching of wires.

 8.  Nanoscience deals with the study of phenomena related to the objects of size 1–100 nm. The 
properties of nanoparticles are different from that of macroscopic particles.

 9.  The particles with dimension less than 100 nm are called as nanoparticles. Nanorods have at 
least two dimensions in nanoscale range.

 10.  Nanoparticles have very high mechanical strength. The color as well as the transparency of mate-
rial changes at nanoscale region. The surface area for nanoparticles are higher than the bulk 
material, hence they are more reactive.

 11.  Quantum confinement effect is observed when the size of nanoparticle approaches magnitude 
of wavelength of electron. In the nanoparticle regime, nanoparticles exhibit different properties 
from bulk materials.

 12.  Ball-milling and sol-gel synthesis are the most common techniques used for the synthesis of 
nanoparticles. In ball-milling, the materials are ground to yield fine particles. Sol-gel method 
gives high-purity nanoparticles. For sol-gel synthesis, suitable precursors are used.

 13.  Fullerenes are hollow clusters of 60 carbon atoms, which are arranged in shape of soccer ball. C
60

 
buckyballs possess the truncated polyhedron shape.

 14.  Carbon nanotubes are cylindrical structures. It is cylindrical fullerene where the carbon atoms are 
covalent attached to each other. CNTs are classified as single-walled and multiwalled CNT.
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