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Editors’	preface	to	the	Manchester
Physics	Series
The	Manchester	Physics	Series	is	a	series	of	textbooks	at	first	degree	level.	It	grew	out

of	our	experience	at	the	Department	of	Physics	and	Astronomy	at	Manchester	University,
widely	 shared	 elsewhere,	 that	many	 textbooks	 contain	much	more	material	 than	 can	 be
accommodated	in	a	typical	undergraduate	course;	and	that	 this	material	 is	only	rarely	so
arranged	 as	 to	 allow	 the	 definition	 of	 a	 shorter	 self-contained	 course.	 In	 planning	 these
books	 we	 have	 had	 two	 objectives.	 One	 was	 to	 produce	 short	 books:	 so	 that	 lecturers
should	 find	 them	 attractive	 for	 undergraduate	 courses;	 so	 that	 students	 should	 not	 be
frightened	 off	 by	 their	 encyclopaedic	 size	 or	 their	 price.	To	 achieve	 this,	we	 have	 been
very	selective	in	the	choice	of	topics,	with	the	emphasis	on	the	basic	physics	together	with
some	instructive,	stimulating	and	useful	applications.	Our	second	objective	was	to	produce
books	which	allow	courses	of	different	lengths	and	difficulty	to	be	selected,	with	emphasis
on	different	applications.	To	achieve	such	 flexibility	we	have	encouraged	authors	 to	use
flow	diagrams	showing	the	logical	connections	between	different	chapters	and	to	put	some
topics	 in	 starred	 sections.	These	 cover	more	 advanced	 and	 alternative	material	which	 is
not	required	for	the	understanding	of	latter	parts	of	each	volume.

Although	these	books	were	conceived	as	a	series,	each	of	them	is	self-contained	and	can
be	used	 independently	of	 the	others.	Several	of	 them	are	 suitable	 for	wider	use	 in	other
sciences.	 Each	Author’s	 Preface	 gives	 details	 about	 the	 level,	 prerequisites,	 etc.,	 of	 his
volume.

The	Manchester	Physics	Series	has	been	very	successful	with	total	sales	of	more	than	a
quarter	of	a	million	copies.	We	are	extremely	grateful	to	the	many	students	and	colleagues,
at	 Manchester	 and	 elsewhere,	 for	 helpful	 criticisms	 and	 stimulating	 comments.	 Our
particular	thanks	go	to	the	authors	for	all	the	work	they	have	done,	for	the	many	new	ideas
they	have	contributed,	and	for	discussing	patiently,	and	often	accepting,	the	suggestions	of
the	editors.

Finally,	 we	 would	 like	 to	 thank	 our	 publishers,	 John	 Wiley	 &	 Sons	 Ltd,	 for	 their
enthusiastic	and	continued	commitment	to	the	Manchester	Physics	Series.

D.	J.	Sandiford

F.	Mandl

A.	C.	Phillips

February	1997



Foreword
The	story	of	the	creation	was	told	in	200	words.	Look	it	up	if	you	don’t	believe	me.
—Edgar	Wallace

When	the	time	came	to	consider	a	second	edition	of	Solid	State	Physics	 I	 felt	 that	 I	had
already	said	what	I	had	to	say	on	the	subject	in	the	first	edition.	I	also	felt	that	the	book
was	 rather	 too	 idiosyncratic	 for	many	 students.	For	 these	 reasons	 I	 thought	 it	would	be
better	if	the	revision	and	updating	were	undertaken	by	another	hand,	and	the	editors	shared
this	view.

We	 therefore	approached	Dr	John	Hook,	a	 friend	and	colleague	for	many	years,	and	 I
think	 the	 result	 justifies	 the	 decision.	 The	 new	 edition	 is,	 in	 my	 opinion,	 a	 substantial
improvement	on	the	old	one,	but	it	would	not	have	occurred	to	me	to	write	it	like	that.

September	1990

Henry	Hall



Author’s	preface	to	second	edition
I	accepted	the	invitation	of	the	editors	of	the	Manchester	Physics	Series	to	write	a	second
edition	 of	 Solid	 State	 Physics	 for	 two	 main	 reasons.	 Firstly	 I	 felt	 that,	 although	 the
approach	 adopted	 in	 the	 first	 edition	 had	 much	 to	 commend	 it,	 some	 re-ordering	 and
simplification	 of	 the	 material	 was	 required	 to	 make	 the	 book	 more	 accessible	 to
undergraduate	 students.	 Secondly	 there	 was	 a	 need	 to	 take	 account	 of	 some	 of	 the
important	developments	that	have	occurred	in	solid	state	physics	since	1973.

To	achieve	 re-ordering	and	simplification	 it	has	been	necessary	 to	 rewrite	most	of	 the
first	 edition.	A	major	change	has	been	 to	 introduce	 the	 idea	of	mobile	electron	states	 in
solids	 through	 the	 free	 electron	 theory	 of	 metals	 rather	 than	 through	 the	 formation	 of
energy	bands	by	overlap	of	atomic	states	on	neighbouring	atoms.	The	latter	approach	was
used	 in	 the	 first	 edition	 because	 it	 could	 be	 applied	 first	 to	 the	 dilute	 electron	 gas	 in
semiconductors	 where	 an	 independent	 particle	 model	 might	 be	 expected	 to	 work.
Although	 this	 was	 appealing	 to	 the	 experienced	 physicist,	 it	 proved	 difficult	 to	 the
undergraduate	student,	who	was	forced	to	assimilate	too	many	new	ideas	at	the	beginning.
One	 feature	of	 the	 first	 edition	 that	 I	have	 retained	 is	 to	delay	 for	as	 long	as	possible	a
formal	 discussion	 of	 the	 reciprocal	 lattice	 and	 Brillouin	 zones	 in	 a	 three-dimensional
crystal.	 Although	 these	 concepts	 provide	 an	 elegant	 general	 framework	 for	 describing
many	 of	 the	 properties	 of	 crystalline	 solids,	 they	 are,	 like	 Maxwell’s	 equations	 in
electromagnetism,	more	likely	to	be	appreciated	by	students	if	they	have	met	some	of	the
ideas	earlier	in	a	simpler	context.	The	use	of	the	formal	framework	is	avoided	in	the	early
chapters	by	using	one-	and	two-dimensional	geometries	whenever	necessary.

To	 take	 account	 of	 recent	 developments	 the	 amount	 of	 material	 on	 semiconductor
physics	and	devices	has	been	substantially	increased,	a	chapter	has	been	added	on	the	two-
dimensional	electron	gas	and	quantum	Hall	effect,	and	sections	on	quasi-crystals,	high-Tc
superconductors	and	the	use	of	electrons	to	probe	surfaces	have	been	included.	A	chapter
on	the	electrical	properties	of	insulators	has	also	been	added.

I	have	tried	to	conform	to	the	aim	of	the	Manchester	Physics	Series	by	producing	a	book
of	 reasonable	 length	 (and	 thus	 cost),	 from	which	 it	 is	 possible	 to	 define	 self-contained
undergraduate	 courses	 of	 different	 length	 and	 difficulty.	 The	 problem	 with	 solid	 state
physics	in	this	context	is	that	it	contains	many	diverse	topics	so	that	many	quite	different
courses	are	possible.	 I	have	had	 to	be	very	selective	 therefore	 in	my	choice	of	 subjects,
which	 has	 been	 strongly	 influenced	 by	 the	 third	 year	 undergraduate	 solid	 state	 physics
courses	at	Manchester.	We	currently	have	a	basic	course	of	20	lectures,	which	is	given	at
two	levels;	the	courses	cover	material	from	Chapters	1–5	of	this	book	and	the	higher	level
course	 also	 incorporates	 appropriate	 sections	of	Chapters	11–13.	A	 further	 course	of	20
lectures	 on	 selected	 topics	 in	 solid	 state	 physics	 currently	 covers	 magnetism,
superconductivity	and	ferroelectricity	(Chapters	7–10).	The	flow	diagram	inside	the	front
cover	can	be	used	as	an	aid	to	the	design	of	courses	based	on	this	book.

Important	subjects	 that	are	not	covered	 in	 this	book	are	crystal	defects	and	disordered



solids.	 I	would	 have	 liked	 to	 include	 a	 chapter	 on	 each	 of	 these	 topics	 but	would	 have
exceeded	the	length	limit	set	by	the	publishers	and	editors	had	I	done	so.

Like	 the	 first	edition,	 this	book	presupposes	a	background	knowledge	of	properties	of
matter	 (interatomc	 potentials	 and	 their	 relation	 to	 binding	 energies	 and	 elastic	 moduli,
kinetic	 theory),	 quantum	 mechanics	 (Schrodinger’s	 equation	 and	 its	 solution	 to	 find
energy	eigenvalues	and	eigenfunctions),	electricity	and	magnetism	(Maxwell’s	equations
and	some	familiarity	with	electric	and	magnetic	fields	in	matter)	and	thermal	physics	(the
Boltzmann	factor	and	the	Fermi	and	Bose	distributions).	Books	in	which	this	background
information	 can	 be	 found	 are	 listed	 in	 the	 bibliography	 along	 with	 selected	 general
reference	books	on	 solid	 state	 physics	 and	 some	books	 and	 articles	 that	 provide	 further
information	on	specific	topics.

This	 book	 includes	 some	more	 advanced	 and	detailed	material,	which	 can	be	omitted
without	loss	of	continuity.	Complete	sections	in	this	category	are	identified	by	starring	and
parts	of	sections	are	printed	on	a	grey	background.

The	use	of	bold	 type	 for	 a	 technical	 term	 in	 the	 text,	 normally	when	 the	 term	 is	 first
encountered,	 indicates	 that	 a	 definition	 or	 explanation	 of	 the	 term	 can	 be	 found	 there.
Italic	type	is	used	for	emphasis.

I	 am	 very	 grateful	 to	 David	 Sandiford	 and	 Henry	 Hall	 for	 their	 helpful	 advice	 and
constructive	criticism.	 I	would	also	 like	 to	 thank	Manchester	undergraduate	Colin	Lally,
who	read	the	manuscript	from	the	point	of	view	of	a	prospective	consumer;	his	reaction
reassured	 me	 that	 the	 level	 was	 appropriate.	 Ian	 Callaghan’s	 draughtmanship	 and
photography	was	invaluable	in	producing	many	of	the	figures,	and	my	son	James	helped
willingly	with	some	of	the	more	mundane	manuscript-preparation	tasks.

September	1990

JOHN	HOOK



CHAPTER	1

Crystal	structure

Beauty	when	uncloth’d	is	clothè	d	best.—Phineas	Fletcher	(1582–1650)

1.1	INTRODUCTION
The	aim	of	solid	state	physics	 is	 to	explain	the	properties	of	solid	materials	as	found	on
Earth.	For	 almost	 all	 purposes	 the	properties	 are	 expected	 to	 follow	 from	Schrödinger’s
equation	 for	 a	 collection	 of	 atomic	 nuclei	 and	 electrons	 interacting	 with	 electrostatic
forces.	The	fundamental	laws	governing	the	behaviour	of	solids	are	therefore	known	and
well	tested.	It	is	nowadays	only	in	cosmology,	astrophysics	and	high-energy	physics	that
the	fundamental	laws	are	still	in	doubt.

In	this	book	we	shall	be	concerned	almost	entirely	with	crystalline	solids,	that	is	solids
with	an	atomic	structure	based	on	a	regular	repeated	pattern,	a	sort	of	 three-dimensional
wallpaper.	Many	important	solids	are	crystalline	in	this	sense,	although	this	is	not	always
manifest	 in	 the	 external	 form	 of	 the	 material.	 Because	 calculations	 are	 easier,	 more
progress	 has	 been	 made	 in	 understanding	 the	 behaviour	 of	 crystalline	 than	 of	 non-
crystalline	materials.	Many	common	 solids—for	 example,	 glass,	 plastics,	wood,	 bone—
are	 not	 so	 highly	 ordered	 on	 an	 atomic	 scale	 and	 are	 therefore	 non-crystalline.	 Only
recently	has	progress	been	made	in	understanding	the	behaviour	of	non-crystalline	solids
at	a	fundamental	level.†

Even	 in	 the	 restricted	 field	of	crystalline	solids	 the	most	 remarkable	 thing	 is	 the	great
variety	 of	 qualitatively	 different	 behaviour	 that	 occurs.	 We	 have	 insulators,
semiconductors,	metals	and	superconductors—all	obeying	different	macroscopic	laws:	an
electric	field	causes	an	electric	dipole	moment	in	an	insulator	(Chapter	9),	a	steady	current
in	 a	 metal	 or	 semiconductor	 (Chapters	 3	 to	 6)	 and	 a	 steadily	 accelerated	 current	 in	 a
superconductor	(Chapter	10).	Solids	may	be	transparent	or	opaque,	hard	or	soft,	brittle	or
ductile,	magnetic	or	nonmagnetic.

In	 this	 chapter	we	 first	 introduce	 in	 Section	 1.2	 the	 basic	 ideas	 of	 crystallography.	 In
Section	1.3	we	describe	some	important	crystal	structures	and	in	Section	1.4	we	explain
how	 x-ray	 diffraction	 is	 used	 to	 determine	 crystal	 structure.	 In	 Section	 1.5	 we	 discuss
quasi-crystals,	ordered	solids	that	challenge	much	of	the	conventional	wisdom	concerning
crystalline	 materials.	 Section	 1.6	 contains	 a	 qualitative	 description	 of	 the	 interatomic
forces	responsible	for	binding	atoms	into	solids.



1.2	ELEMENTARY
CRYSTALLOGRAPHY
A	 basic	 knowledge	 of	 crystallography	 is	 essential	 for	 solid	 state	 physicists.	 They	must
know	how	to	specify	completely,	concisely	and	unambiguously	any	crystal	structure	and
they	 must	 be	 aware	 of	 the	 way	 that	 structures	 can	 be	 classified	 into	 different	 types
according	to	the	symmetries	they	possess;	we	shall	see	that	the	symmetry	of	a	crystal	can
have	a	profound	influence	on	its	properties.	Fortunately	we	will	be	concerned	in	this	book
only	with	solids	with	simple	structures	and	we	can	therefore	avoid	the	sophisticated	group
theoretical	methods	required	to	discuss	crystal	structures	in	general.

1.2.1	The	crystal	lattice
We	 will	 use	 a	 simple	 example	 to	 illustrate	 the	 methods	 and	 nomenclature	 used	 by
crystallographers	 to	 describe	 the	 structure	 of	 crystals.	 Graphite	 is	 a	 crystalline	 form	 of
carbon	 in	 which	 hexagonal	 arrays	 of	 atoms	 are	 situated	 on	 a	 series	 of	 equally	 spaced
parallel	planes.	The	arrangement	of	the	atoms	on	one	such	plane	is	shown	in	Fig.	1.1(a).
We	choose	graphite	for	our	example	because	a	single	two-dimensional	plane	of	atoms	in
this	structure	illustrates	most	of	the	concepts	that	we	need	to	explain.	Solid	state	physicists
often	 resort	 to	 the	 device	 of	 considering	 a	 system	 of	 one	 or	 two	 dimensions	 when
confronted	with	a	new	problem;	the	physics	is	often	(but	not	always)	the	same	as	in	three
dimensions	but	the	mathematics	and	understanding	can	be	much	easier.

To	 describe	 the	 structure	 of	 the	 two-dimensional	 graphite	 crystal	 it	 is	 necessary	 to
establish	 a	 set	 of	 coordinate	 axes	 within	 the	 crystal.	 The	 origin	 can	 in	 principle	 be
anywhere	 but	 it	 is	 usual	 to	 site	 it	 upon	one	 of	 the	 atoms.	Suppose	we	 choose	 the	 atom
labelled	O	in	Fig.	1.1(a)	 for	 the	origin.	The	next	 step	 is	 a	very	 important	one;	we	must
proceed	to	identify	all	 the	positions	within	the	crystal	 that	are	identical	 in	all	respects	to
the	origin.	To	be	identical	 it	 is	necessary	that	an	observer	situated	at	 the	position	should
have	exactly	the	same	view	in	any	direction	as	an	observer	situated	at	the	origin.	Clearly
for	 this	 to	 be	 possible	 we	 must	 imagine	 that	 the	 two-dimensional	 crystal	 is	 infinite	 in
extent.	Readers	should	convince	themselves	that	the	atoms	at	A,	B,	C,	D	and	E	(and	eight
others	in	the	diagram)	are	identical	to	the	atom	at	the	origin	but	that	the	atoms	at	F,	G	and
H	are	not;	compare	for	example	the	directions	of	the	three	nearest	neighbours	of	the	atom
at	 O	 with	 the	 directions	 of	 the	 three	 nearest	 neighbours	 of	 the	 atom	 at	 F.	 The	 set	 of
identical	 points	 identified	 in	 this	 way	 is	 shown	 in	 Fig.	 1.1(b)	 and	 is	 called	 the	 crystal
lattice;	 comparison	 of	 Figs.	 1.1(a)	 and	 (b)	 illustrates	 clearly	 that	 the	 lattice	 is	 not	 in
general	the	same	as	the	structure.	Readers	should	convince	themselves	that,	apart	from	an
unimportant	 shift	 in	 position,	 the	 lattice	 is	 independent	 of	 the	 choice	 of	 origin.	Having
identified	the	crystal	lattice	in	this	way	the	coordinate	axes	are	simply	obtained	by	joining
the	lattice	point	at	the	origin	to	two	of	its	neighbours.



Fig.	1.1	Two-dimensional	crystal	of	carbon	atoms	in	graphite:	(a)	shows	how	the	atoms
are	situated	at	the	corners	of	regular	hexagons;	(b)	shows	the	crystal	lattice	obtained	by
identifying	all	the	atoms	in	(a)	that	are	in	identical	positions	to	that	at	O.	The	crystal	axes,
lattice	vectors	and	conventional	unit	cell	are	shown	in	both	figures

There	are	many	ways	of	doing	this	but	the	conventional	choice	for	graphite	 is	 to	 take
OA	and	OB	for	the	x	and	y	axes	as	shown	in	Fig.	1.1(b).	Note	that	the	coordinate	axes	for
graphite	are	not	orthogonal.	An	example	of	an	unconventional	choice	of	coordinate	axes
for	graphite	would	be	to	take	OA	for	the	x	axis	as	before	but	to	take	the	OD	direction	for
the	y	axis.	The	distances	and	directions	of	the	nearest	lattice	points	along	the	x	and	y	axes
are	specified	by	the	lattice	vectors	a	and	b	respectively	(Fig.	1.1.(b)).	The	crystal	lattice	is
completely	defined	by	giving	 the	 lengths	of	a	and	b	and	 the	angle	γ	 between	 them.	For
graphite	 we	 have	 a	 =	 b	 =	 2.46	 Å,	 γ	 =	 120°	 (1	 Å	 =	 1	 ångstrom	 =	 10−10	 m).	 The
conventional	choice	of	axes	for	graphite	therefore	clearly	reflects	the	hexagonal	symmetry
of	the	structure;	this	is	not	the	case	for	the	unconventional	choice	discussed	above.

The	positions	of	all	the	lattice	points	of	the	two-dimensional	graphite	crystal	are	reached
by	drawing	all	possible	vectors	of	the	form

(1.1)	

from	the	origin,	where	u	and	υ	take	on	all	possible	integer	values,	positive,	negative	and
zero.	That	the	crystal	appears	identical	when	viewed	from	all	the	positions	given	by	this
equation	 is	 an	 indication	 that	 it	 possesses	 the	 important	 property	 of	 translational
invariance.

The	generalization	of	the	above	ideas	to	a	three-dimensional	crystal	is	straightforward.
An	 origin	 is	 chosen	 and	 all	 the	 points	 within	 the	 crystal	 that	 are	 identical	 to	 it	 are



identified;	this	set	of	points	constitutes	the	three-dimensional	crystal	lattice.	The	directions
of	the	crystal	coordinate	axes	are	then	defined	by	joining	the	lattice	point	at	the	origin	to
three	of	its	near	neighbours	(Fig.	1.2).	The	choice	of	neighbours	is	sometimes	obvious	but,
where	this	is	not	the	case,	convention	usually	dictates	the	choice	that	most	clearly	reflects
the	symmetry	of	the	lattice.	The	distances	and	directions	of	the	nearest	lattice	points	along
the	crystallographic	x,	y	and	z	axes	are	specified	by	the	three	lattice	vectors	a,	b	and	c.	The
lattice	is	completely	specified	by	giving	the	lengths	of	a,	b	and	c,	and	the	angles	α,	β,	and
γ	between	them	(Fig.	1.2).	The	positions	of	all	the	lattice	points	are	reached	by	drawing	all
possible	vectors	of	the	form

Fig.	1.2	Crystallographic	axes	and	unit	cell	for	a	three-dimensional	crystal	lattice

(1.2)	

from	 the	 origin.	 The	 ability	 to	 express	 the	 positions	 of	 the	 points	 in	 this	 way,	 with	 a
suitable	choice	of	a,	b	and	c,	may	be	taken	as	a	definition	of	a	lattice	in	crystallography.	A
crystalline	material	may	be	defined	as	a	material	that	possesses	a	lattice	of	this	kind;	the
translational	invariance	property	of	the	crystal	is	that	it	appears	identical	from	all	positions
of	the	form	of	Eq.	(1.2).	Note	that	the	only	effect	of	a	shift	in	choice	of	origin	on	a	crystal
lattice	is	a	shift	in	the	lattice	as	a	whole	by	the	same	amount.

The	 lattice	 vectors	 also	 define	 the	unit	 cell	 of	 a	 crystal.	 This	 concept	 is	 most	 easily
explained	by	returning	to	the	two-dimensional	graphite	crystal	of	Fig.	1.1,	 for	which	 the
unit	cell	is	the	parallelogram	OACB	defined	by	the	vectors	a	and	b.	It	is	so	called	because
stacking	 such	 cells	 together	 generates	 the	 entire	 crystal	 lattice,	 as	 is	 indicated	 by	 the
broken	lines	in	Fig.	1.1(b).	The	analogous	three-dimensional	object	in	Fig.	1.2,	defined	by
lattice	 vectors	 a,	b	 and	 c,	 is	 called	 a	 parallelopiped	 and	 is	 the	 unit	 cell	 for	 the	 three-
dimensional	lattice.	The	unit	cell	obtained	from	the	conventional	choice	of	lattice	vectors
is	known	as	the	conventional	unit	cell.

The	concept	of	the	unit	cell	as	a	building	block	allows	us	to	understand	the	remarkable
similarities	between	different	crystals	of	 the	same	material.	 In	particular	we	can	explain
the	law	of	constancy	of	angle	(first	stated	by	Nicolaus	Steno	in	1761)	that:	In	all	crystals
of	the	same	substance	the	angles	between	corresponding	faces	have	a	constant	value.	Fig.
1.3	 is	 an	 illustration	 from	 an	 early	 book	 on	mineralogy	 showing	 how	macroscopically



plane	 faces	 in	various	orientations	 can	be	built	 up	by	using	 cubic	unit	 cells	 as	 building
blocks.	We	shall	see	in	Chapter	12	that	the	surfaces	of	crystals	are	not	in	fact	constructed
in	the	manner	suggested	by	this	illustration.

The	 reader	will	 have	noticed	 that	 the	 two-dimensional	 lattice	of	graphite	 (Fig.	 1.1(b))
possesses	 symmetry	 properties	 other	 than	 the	 translational	 invariance	 indicated	 by	 Eq.
(1.1).	The	lattice	is	transformed	into	itself,	for	example,	by	a	rotation	of	60°	about	an	axis
perpendicular	to	the	xy	plane	through	a	lattice	point;	this	axis	is	the	crystallographic	z	axis
of	 graphite,	 which	 is	 therefore	 a	 sixfold	 rotation	 axis	 of	 the	 lattice.	 In	 1845	 Bravais
deduced	that	any	three-dimensional	lattice	of	the	form	of	Eq.	(1.2)	could	be	classified	into
one	 of	 14	 possible	 types	 according	 to	 the	 symmetry	 that	 it	 possessed.	 The	 14	Bravais
lattices	contain	only	one-,	two-,	three-,	four-	and	six-fold	rotation	axes.

We	will	not	describe	all	14	Bravais	lattices	since	only	a	few	will	feature	in	this	book,	but
to	 illustrate	 the	 principle	 of	 the	 classification	 of	 lattices	 by	 symmetry	 we	 consider	 the
corresponding	 two-dimensional	 problem.	A	 two-dimensional	 lattice	 is	 specified	 by	a,	 b
and	the	angle	γ	between	a	and	b.	A	lattice	with	translational	symmetry	only	is	shown	in
Fig.	1.4(a)	with	three	possible	choices	of	primitive	unit	cell.	Lattices	of	higher	symmetry
are	 shown	 in	 Figs.	 1.4(b)-(e).	 The	 rectangular	 lattice	 in	 Fig.	 1.4(b)	 has	 γ	 =	 90°.
Alternatively	with	a	general	value	of	γ	we	may	have	a	 =	b,	 giving	 the	 rhombic	 lattice
shown	in	Fig.	1.4(c).	This	latter	example	is	interesting	in	that	it	shares	some	symmetries
with	the	rectangular	lattice	and	it	can	also	be	described	by	the	rectangular	unit	cell	defined
by	a′	and	b′.	This	 rectangular	unit	cell	has	a	 lattice	point	at	 the	centre	as	well	as	at	 the
corners	and	the	rhombic	lattice	may	therefore	also	be	referred	to	as	a	centred	rectangular
lattice.	The	unit	cell	defined	by	a′	and	b′	has	an	area	twice	that	defined	by	a	and	b.	The
latter	is	the	smallest	possible	unit	cell	of	the	lattice	and	is	said	therefore	to	be	a	primitive
unit	 cell;	 the	 former	 unit	 cell	 is	 consequently	 a	 non-primitive	 unit	 cell.	 We	 will
encounter	 examples	 of	 both	 primitive	 and	 non-primitive	 three-dimensional	 unit	 cells	 in
Section	 1.3.	 To	 complete	 our	 survey	 of	 two-dimensional	 lattices	 we	must	 consider	 the
possibility	a	=	b	combined	with	a	special	value	of	γ.	Two	cases	arise:	γ	=	60°	(or	120°)
gives	 the	 triangular	 lattice	 of	 Fig.	 1.4(d)	 with	 each	 lattice	 point	 surrounded	 by	 six
neighbours	at	 the	corners	of	a	 regular	hexagon;	and	γ	=	90°	gives	 the	square	 lattice	 of
Fig.	1.4(e).	The	two-dimensional	graphite	lattice	of	Fig.	1.1(b)	is	a	triangular	lattice.

Fig.	1.3	The	way	in	which	the	stacking	of	cubic	unit	cells	can	produce	crystal	faces	of
different	orientations	(Hauy,	Traite	de	crystallographie)



Fig.	1.4	The	five	possible	types	of	crystal	lattice	in	two	dimensions,	(a)	Lattice	with
translational	symmetry	only,	showing	three	possible	primitive	unit	cells,	(b)	Rectangular
lattice,	γ	=	90°.	(c)	Rhombic	lattice,	a	=	b,	equivalent	to	a	centred	rectangular	lattice	with
the	non-primitive	unit	cell	defined	by	a′	and	b′.	(d)	Triangular	lattice,	a	=	b,	γ	=	60°.	(e)
Square	lattice,	a	=	b,	γ	=	90°



1.2.2	The	basis
Once	the	crystal	lattice	has	been	determined	in	the	way	described	in	the	previous	section
and	used	to	identify	suitable	coordinate	axes	and	a	unit	cell,	the	description	of	the	crystal
structure	is	completed	by	specifying	the	contents	of	the	unit	cell.	This	is	accomplished	by
identifying	the	group	of	atoms	which,	when	associated	with	each	lattice	point,	completely
generates	 the	structure.	This	group	of	atoms	 is	known	as	 the	basis	of	 the	 structure.	The
basis	is	specified	by	giving	the	position	and	chemical	type	of	all	the	atoms	within	it.	We
again	use	the	two-dimensional	graphite	structure	of	Fig.	1.1(a)	to	illustrate	this	procedure.
The	 unit	 cell	OACB	of	 this	 structure	 contains	 the	 atom	F,	 and	 readers	 should	 convince
themselves	 that	 a	 suitable	 (but	 not	 unique)	 choice	 of	 basis	 for	 the	 two-dimensional
graphite	 crystal	 can	 be	 obtained	 by	 associating	 the	 carbon	 atoms	 at	 O	 and	 F	 with	 the
lattice	point	 at	O.	This	 is	 so	because	 the	association	of	 the	corresponding	pair	of	 atoms
with	 each	 lattice	 point	 (atoms	 G	 and	 A	 with	 the	 lattice	 point	 at	 A,	 for	 example)	 does
indeed	generate	the	entire	structure.	The	position	of	an	atom	within	the	cell	is	most	easily
described	by	using	 the	basis	 vector	 r,	which	 connects	 the	 atom	 to	 the	 origin.	Thus	 the
position	of	the	atom	at	F	may	be	written

This	 atom	 is	 said	 to	 be	 at	 position	 ( , ).	Our	 choice	 of	 basis	 for	 the	 two-dimensional
graphite	crystal	can	therefore	be	written	concisely	as



where	 the	 chemical	 type	 of	 the	 atom	 (carbon	 in	 this	 case)	 is	 specified	 by	 giving	 its
chemical	 symbol.	 That	 a	 basis	 of	 two	 atoms	 is	 required	 to	 specify	 completely	 the	 two-
dimensional	graphite	 structure	 is	an	 indication	 that	each	primitive	unit	cell	 contains	 just
two	 atoms.	 In	 a	 three-dimensional	 crystal	 the	 basis	 vector	 of	 an	 atom	 can	 always	 be
written	as

and	this	atom	is	therefore	said	to	be	at	(x,	y,	z).

Taking	the	symmetry	of	the	basis	as	well	as	that	of	the	lattice	into	consideration	allows
any	 crystal	 to	 be	 sorted	 into	 one	 of	 32	 possible	 point	 symmetry	 groups	 (sometimes
referred	to	as	the	32	crystal	classes)	and	one	of	230	possible	space	symmetry	groups.	A
knowledge	of	 these	classifications	 is	not	assumed	 in	 this	book,	and	 readers	 requiring	an
understanding	 of	 them	 are	 recommended	 to	 consult	 one	 of	 the	 standard	 texts	 on
crystallography.

1.2.3	Crystal	planes	and	directions
Within	a	crystal	lattice	it	is	possible	to	identify	sets	of	equally	spaced	parallel	planes.	Two
examples	of	sets	of	lattice	planes	for	a	two-dimensional	lattice	are	illustrated	in	Fig.	1.5.
The	density	of	lattice	points	on	each	plane	of	a	set	is	the	same	and	all	the	lattice	points	are
contained	 on	 each	 set	 of	 planes.	 Planes	 of	 lattice	 points	 play	 an	 important	 role	 in	 the
physics	 of	 the	 diffraction	 of	 waves	 by	 crystals,	 and	 it	 is	 necessary	 therefore	 to	 have	 a
method	of	 identifying	 the	different	 sets.	Miller	 indices	 are	used	 for	 this	purpose.	These
are	derived	from	the	intercepts	made	on	the	crystal	axes	by	the	plane	that	is	nearest	to	the
origin	 (but	 not	 the	 one	 that	 actually	 passes	 through	 the	 origin).	 Thus	 in	 Fig.	1.5(b)	 the
nearest	plane	 to	 the	origin	has	 intercepts	a/3	and	b/2,	 and	 this	 set	of	planes	 is	 therefore
referred	 to	by	 the	Miller	 indices	 (3	2);	note	 that	 it	 is	 the	reciprocal	of	 the	 intercept	 that
determines	 the	Miller	 index	so	 that	 a	 large	 index	 indicates	a	 small	 intercept.	Fig.	1.5(a)
illustrates	a	special	case	in	which	one	intercept	is	infinite	so	that	the	corresponding	Miller
index	is	zero;	thus	the	planes	(1	0)	are	parallel	to	the	y	axis.

Fig.	1.5	(a)	The	(1	0)	set	of	planes	in	a	two-dimensional	lattice,	(b)	The	(3	2)	set	of	planes
in	a	two-dimensional	lattice



For	a	set	of	lattice	planes	in	a	three-dimensional	lattice	the	plane	nearest	the	origin	will
have	intercepts	a/h,	b/k	and	c/l	and	 the	set	 is	 referred	 to	by	Miller	 indices	 (h	k	 l).	Some
three-dimensional	examples	are	 illustrated	 in	Fig.	1.6.	The	planes	 (1	0	0)	are	parallel	 to
both	the	y	and	z	axes,	and	hence	to	the	yz	plane.	Negative	intercepts	are	indicated	by	a	bar
over	 the	 corresponding	 index,	 as	 in	 (1	 	 1)	 and	 (2	 	 0).	 The	 ( 	 	 )	 set	 of	 planes	 is
however	identical	to	the	(h	k	l)	set.	Note	that	if	a,	b	and	c	define	a	primitive	unit	cell,	then
the	Miller	indices	do	not	have	a	common	factor.	To	see	why	this	is,	consider	the	special
case	of	a	set	of	planes	with	Miller	indices	(6	4)	on	Fig.	1.5(b);	such	a	set	would	be	parallel
to	 the	 (3	 2)	 planes	 shown	 but	 would	 have	 half	 the	 spacing.	 The	 (6	 4)	 planes	 would
therefore	have	lattice	points	only	on	alternate	planes.

For	crystals	of	high	symmetry	certain	 sets	of	planes	may	be	 related	by	symmetry	and
thus	be	equivalent	from	an	atomic	point	of	view.	Thus	for	crystals	of	cubic	symmetry,	in
which	the	unit	cell	sides	a,	b	and	c	are	equal	in	magnitude	and	mutually	perpendicular,	the
three	sets	of	planes	(1	0	0),	(0	1	0)	and	(0	0	1)	are	related	by	symmetry;	they	are	said	to
belong	 to	 the	 form	 {1	 0	 0}	 where	 the	 curly	 brackets	 mean	 all	 planes	 equivalent	 by
symmetry	to	the	given	plane.

Fig.	1.6	Some	crystal	planes	inscribed	in	a	unit	cell,	with	their	Miller	indices



It	 is	often	necessary	 to	specify	 the	direction	of	a	vector	r	 in	 a	 crystal.	The	vector	 can
always	be	written	as	r	=	ua	+	υb	+	wc	and	hence	the	direction	is	referred	to	as	‘the	[u	υ	w]
direction’	using	 square	brackets.	 If	 the	direction	corresponds	 to	 that	between	 two	 lattice
points,	as	 is	usually	 the	case,	 then	 it	 follows	from	Eq.	 (1.2)	 that	u,	υ	and	w	 take	 integer
values.	It	is	important	to	remember	that	indices	in	square	brackets	are	not	Miller	indices,
although	for	cubic	crystals	it	is	a	consequence	of	the	symmetry	that	the	direction	[u	υ	w]	is
normal	to	the	planes	of	Miller	indices	(u	υ	w)	(problem	1.3).	In	this	case	therefore,	which
we	shall	mainly	use	for	practical	examples,	the	direction	(u	υ	w)	and	the	planes	(u	υ	w)	are
simply	related.

1.3	TYPICAL	CRYSTAL	STRUCTURES
1.3.1	Cubic	and	hexagonal	close-packed	structures
The	crystal	structure	adopted	by	a	particular	material	depends	on	the	nature	of	the	forces
between	 the	 atoms	 within	 it.	 In	 some	 solids,	 particularly	 the	 inertgas	 solids	 and	 many
metals,	 the	 forces	are	 such	 that,	 to	a	good	approximation,	 the	atoms	 look	 like	attracting
hard	spheres.	For	minimum	energy	in	such	cases	it	is	necessary	that	the	spheres	should	be
packed	as	closely	as	possible.	In	two	dimensions	this	principle	leads	to	the	close-packed
layer	structure	shown	in	Fig.	1.7;	this	is	a	two-dimensional	crystal	in	which	the	centres	of
the	 spheres	 lie	 on	 a	 triangular	 lattice	 like	 that	 of	 Fig.	1.4(d).	 The	 close	 packing	 can	 be
extended	to	three	dimensions	if	a	second	close-packed	layer	is	placed	over	the	first	such
that	the	spheres	in	the	second	layer	are	centred	over	interstices	in	the	first.	Let	us	suppose,
for	example,	that	the	second	layer	occupies	the	positions	marked	B	in	Fig.	1.7.	In	this	way
each	sphere	in	the	second	layer	will	touch	three	spheres	in	the	first	and	the	packing	will	be
as	close	as	possible.	Inspection	of	Fig.	1.7	shows	that	such	packing	may	be	continued	in
various	ways,	 for	a	 third	 layer	can	occupy	either	positions	C	or	A;	both	of	 these	sets	of
positions	mark	interstices	in	the	second	layer.

A	very	 common	 stacking	 sequence	 is	ABCABC…,	which	gives	 a	 structure	 known	as
cubic	close-packed	(ccp)	or	face-centred	cubic	(fcc).	The	cubic	unit	cell	of	this	structure
is	shown	in	Fig.	1.8;	there	are	atoms	at	 the	corners	of	the	cell	and	at	 the	centres	of	each
face.	To	make	clear	the	relation	to	Fig.	1.7	a	close-packed	layer	of	atoms	is	shaded	in	Fig.
1.8;	it	is	a	(1	1	1)	plane,	normal	to	a	body	diagonal	of	the	cube.	It	follows	from	symmetry
that	 all	 planes	 of	 the	 form	 {1	 1	 1}	 are	 close-packed	 planes.	 In	 the	 fcc	 structure	 the
environment	of	every	atom	is	identical	so	that	the	crystal	lattice	corresponds	to	the	atomic
structure	in	this	case.	The	rhombohedral	primitive	unit	cell	of	the	lattice	is	shown	in	Fig.
1.8(b).	The	conventional	non-primitive	choice	of	unit	cell	is	however	the	cubic	unit	cell	of
Fig.	1.8(a)	 because	 it	more	obviously	 shows	 the	 full	 cubic	 symmetry.	The	 conventional
cell	has	a	volume	four	times	that	of	the	primitive	cell	and	thus	contains	four	lattice	points.
Not	 surprisingly	 the	 lattice	 of	 the	 fcc	 structure	 is	 denoted	 an	 fcc	 lattice	 in	 the	 Bravais
classification.	Examples	of	elements	that	crystallize	into	the	fcc	structure	are	aluminium,
calcium,	nickel,	copper,	silver,	gold,	lead,	neon,	argon,	krypton	and	xenon.



Fig.	1.7	A	close-packed	layer	of	spheres	occupying	positions	A.	The	adjacent	layers	can
occupy	positions	B	or	C

Fig.	1.8	The	cubic	close-packed	(ccp)	or	face-centred	cubic	(fcc)	structure

The	 environment	 of	 an	 atom	 in	 the	 fcc	 structure	 is	 best	 visualized	 by	 looking	 at	 the
atomic	 coordination	polyhedron.	 This	 is	 the	 figure	 formed	 from	planes	which	 are	 the
perpendicular	 bisectors	 of	 lines	 joining	 an	 atom	 to	 its	 neighbours.	 Suppose	 you	 built	 a
model	of	the	structure	out	of	Plasticine	spheres	and	then	compressed	it;	if	you	then	picked
it	apart	you	would	find	that	the	spheres	had	deformed	into	coordination	polyhedra.†

Fig.	1.9	Coordination	polyhedron	of	the	ccp	structure:	the	rhombic	dodecahedron.	The
origin	of	the	crystallographic	axes	has	been	shifted	so	that	there	is	an	atom	at	the	centre	of
the	unit	cell.	The	bonds	from	this	atom	to	its	nearest	neighbours	are	shown



The	coordination	polyhedron	thus	represents	 the	‘sphere	of	 influence’	of	an	atom.	The
coordination	 polyhedron	 of	 the	 fcc	 structure	 is	 shown	 in	 Fig.	 1.9,	 together	 with	 the
positions	of	the	nearest	neighbour	atoms.	Fig.	1.9	shows	a	cubic	unit	cell	with	the	origin
shifted	from	that	of	Fig.	1.8	by	half	a	cell	side	along	a	cube	axis,	the	[1	0	0]	direction.	This
polyhedron	 is	 called	 a	 rhombic	 dodecahedron;	 it	 has	 12	 faces	 corresponding	 to	 contact
with	the	12	nearest	neighbours;	hence	each	atom	is	said	to	have	a	coordination	number
of	12.	On	this	polyhedron	the	symmetries	characteristic	of	the	cubic	structure	(and	of	the
cube	 itself)	 may	 be	 identified.	 The	 rhombic	 dodecahedron	 has	 four	 three-fold	 axes	 of
symmetry	through	opposite	pairs	of	corners	A	([1	1	1]	directions);	it	looks	the	same	after
rotation	 by	 120°	 about	 any	 of	 these	 axes.	 There	 are	 also	 three	 four-fold	 axes	 through
opposite	pairs	of	corners	B	([1	0	0]	directions)	and	six	two-fold	axes	through	the	centres
of	opposite	faces	([1	1	0]	directions).

The	coordination	polyhedra	of	the	fcc	structure	all	stack	together	in	the	same	orientation
in	 such	 a	 way	 as	 to	 fill	 the	 whole	 of	 space.	 The	 polyhedron	 therefore	 constitutes	 an
alternative	choice	of	primitive	unit	cell	for	the	crystal.	This	type	of	unit	cell	is	known	as	a
Wigner-Seitz	 cell	 after	 those	 who	 first	 used	 it	 for	 a	 quantum	 mechanical	 problem.	 A
Wigner-Seitz	cell	 is	defined	 for	a	general	 lattice	as	 the	smallest	polyhedron	bounded	by
planes	that	are	the	perpendicular	bisectors	of	vectors	joining	one	lattice	point	to	the	others;
Fig.	 1.10	 illustrates	 this	 method	 of	 construction	 of	 the	 Wigner-Seitz	 cell	 for	 a	 two-
dimensional	lattice.	It	follows	from	the	definition	that	the	interior	of	the	cell	is	the	locus	of
points	which	are	nearer	to	the	given	lattice	point	than	any	other.	Only	for	the	special	case
that	 each	 atom	 represents	 a	 lattice	 point	 is	 the	 Wigner-Seitz	 cell	 also	 the	 atomic
coordination	polyhedron.

Fig.	1.10	The	Wigner-Seitz	cell	(broken	lines)	of	a	two-dimensional	lattice	obtained	by
drawing	the	perpendicular	bisectors	(full	lines)	of	the	lines	joining	a	lattice	point	to	its
neighbours



Another	 common	 stacking	 sequence	 of	 the	 close-packed	 layers	 in	 Fig.	 1.7	 is
ABABAB…	 ;	 this	 gives	 the	hexagonal	 close-packed	 (hcp)	 structure	 illustrated	 in	 Fig.
1.11(a).	 All	 the	A-plane	 atoms	 in	 this	 structure	 have	 an	 identical	 environment	 and	 can
therefore	be	taken	as	lattice	points.	The	environment	of	the	B-plane	atoms	is	different	to
that	of	the	A-plane	atoms,	so	that	the	B-plane	atoms	do	not	then	lie	on	lattice	points.	The
resulting	 lattice	 is	 denoted	 a	 hexagonal	 lattice	 in	 the	 Bravais	 classification.	 The
conventional	choice	of	crystallographic	axes	for	the	lattice	is	shown	in	Fig.	1.11(a)	and	the
resulting	primitive	unit	cell	is	identified	by	the	thicker	lines.	Fig.	1.11(b)	is	a	simpler	two-
dimensional	way	of	depicting	this	three-dimensional	unit	cell.	It	shows	a	plan	view	as	seen
along	the	z	axis;	the	z	coordinate	of	 the	atom	in	 the	cell	 is	 indicated	as	a	fraction	of	 the
side	c	of	the	unit	cell.	The	unit	cell	contains	a	basis	of	an	A	atom	at	(0,	0,	0)	and	a	B	atom
at	( , , ).	The	close-packed	A	planes	in	the	hcp	structure	are	the	(0	0	1)	planes,	with	the	B
planes	sandwiched	half-way	between.

Since	the	environments	of	the	A	and	B	atoms	are	different,	their	coordination	polyhedra
have	 the	 same	 shape	 but	 differ	 in	 orientation.	 Because	 there	 are	 two	 atoms	 in	 each
primitive	unit	 cell,	 the	Wigner-Seitz	unit	 cell	 of	 the	hcp	 lattice	 is	 double	 the	volume	of
each	coordination	polyhedron	and	does	not	bear	a	simple	relation	to	it.

The	 ratio	 c/a	 of	 the	 lattice	 constants	 for	 the	 ‘ideal’	 hexagonal	 close	 packing	 of	 hard
spheres	 can	 be	 shown	by	 elementary	 geometry	 to	 equal	 (8/3)1/2	 =	 1.633	 (problem	1.1).
This	ideal	value	is	not	however	imposed	by	the	hexagonal	symmetry	of	the	lattice.	Since
atoms	are	not	really	hard	spheres,	therefore,	the	unit	cell	axial	ratio	c/a	differs	a	little	from
the	 ideal	 value.	 Examples	 of	 elements	 that	 crystallize	 into	 the	 hcp	 structure	 with	 the
corresponding	 c/a	 values	 in	 brackets	 are	 magnesium	 (1.623),	 titanium	 (1.586),	 zinc
(1.861),	cadmium	(1.886),	cobalt	(1.622)	and	helium	(1.633).

Fig.	1.11



Other	 more	 complicated	 stacking	 sequences	 of	 close-packed	 layers	 are	 sometimes
found,	 ABACABAC…	 for	 example,	 particularly	 in	 the	 rare-earth	 metals.	 These	 more
exotic	possibilities	will	not	concern	us	in	this	book.

1.3.2	The	body-centred	cubic	structure
A	cubic	structure	only	slightly	less	close-packed	than	fcc	is	the	body-centred	cubic	(bcc)
structure,	three	cubic	unit	cells	of	which	are	shown	in	Fig.	1.12(a).	The	environments	of
all	 the	 atoms	 are	 identical	 in	 the	 bcc	 structure	 so	 that	 the	 lattice	 is	 the	 same	 as	 the
structure.	The	non-primitive	cubic	unit	cell	is	the	conventional	choice	for	this	lattice	and
contains	 two	 lattice	 points;	 the	 lattice	 vectors	 of	 the	 primitive	 cell	 are	 shown	 in	 Fig.
1.12(a).	The	eight	hexagonal	faces	of	the	coordination	polyhedron	shown	in	Fig.	1.12(b)
represent	 the	 ‘contact’	 of	 an	 atom	 with	 its	 eight	 nearest	 neighbours;	 the	 coordination
number	of	the	bec	structure	is	thus	8.	This	is	smaller	than	the	coordination	number	(12)	of
the	 fcc	 and	hcp	 structures,	 but	 the	 existence	of	 the	 six	 square	 faces	 of	 the	 coordination
polyhedron	indicates	that	an	atom	in	the	bcc	crystal	has	six	second	nearest	neighbours	not
much	 further	 away	 than	 the	 first	 nearest	 neighbours.	 The	 metallic	 elements	 lithium,
sodium,	potassium,	chromium,	barium	and	tungsten	crystallize	into	the	bcc	structure.

Fig.	1.12



Fig.	1.13	Unit	cell	of	the	NaCl	structure,	with	alternate	planes	of	Na+	and	Cl−	ions
perpendicular	to	the	[1	1	1]	direction	indicated	by	shading

1.3.3	Structures	of	ionic	solids
We	now	progress	to	consider	examples	of	the	simplest	type	of	crystals	containing	atoms	of
more	then	one	element,	namely	ionic	solids.	Since	ions	of	opposite	charge	approximate	to
attracting	 hard	 spheres,	 the	 crystal	 structure	 of	 these	 is	 also	 often	 dominated	 by	 close-
packing	considerations.	The	electrons	in	the	negatively	charged	anion	are	in	general	less
tightly	 bound	 than	 those	 in	 the	 positively	 charged	 cation	 and	 the	 anion	 is	 therefore
normally	larger.	In	crystals	containing	equal	numbers	of	positive	and	negative	ions	such	as
sodium	 chloride,	 NaCl,	 the	 structure	 is	 then	 likely	 to	 be	 determined	 by	 the	 number	 of



larger	anions	that	will	pack	tightly	around	the	cation.	For	NaCl	this	 is	only	six,	and	this
leads	to	the	three-dimensional	chessboard	structure	shown	in	Fig.	1.13.	All	 the	Na+	 ions
have	identical	environments	within	the	crystal	so	that	these	can	be	taken	to	represent	the
crystal	lattice,	which	is	therefore	an	example	of	an	fcc	Bravais	lattice.	The	Cl−	ions	also	lie
on	an	fcc	lattice	displaced	by	half	a	unit	cell	in	the	[1	0	0]	direction.

It	 can	 also	 be	 seen	 from	Fig.	1.13	 that	 planes	 of	 the	 form	 {1	 1	 1}	 of	 the	Na+	 lattice
contain	all	the	Na+	ions	and	no	Cl−	ions;	the	Cl−	ions	are	contained	on	parallel	planes	mid-
way	between	the	(1	1	1)	planes;	this	fact	was	crucial	in	the	elucidation	of	the	structure	of
NaCl	which	was	the	first	to	be	determined	by	x-ray	diffraction	(see	section	1.4).	When	this
structure	was	 first	 discovered	 some	 chemists	were	 horrified	 to	 find	 that	 it	 contained	 no
identifiable	NaCl	molecule.	We	now	know	that	the	absence	of	an	identifiable	molecule	is
very	general	in	inorganic	crystals	and	we	have	become	used	to	the	idea	of	a	crystal	as	a
single	giant	molecule.

Fig.	1.14	Primitive	cubic	unit	cell	of	CsCl	shown	in	plan	view.	The	basis	is	Cs+	(0,0,0)	and
Cl−	( ,	 ,	 )

The	caesium	chloride,	CsCl,	structure	of	Fig.	1.14	is	an	alternative	structure	for	an	ionic
solid	containing	equal	numbers	of	anions	and	cations;	the	cubic	unit	cell	has	Cs+	 ions	at
the	corners	and	a	Cl−	ion	at	the	centre.	Each	ion	in	the	structure	has	a	coordination	number
of	 8	 so	 that	 this	 is	 the	 structure	 likely	 to	 be	 adopted	when	 just	 eight	 anions	will	 pack
tightly	around	each	cation.	All	cations	(or	alternatively	all	anions)	in	this	structure	have	an
identical	 environment	 so	 that	 their	 positions	 form	 a	 crystal	 lattice.	 In	 this	 case	 the
conventional	cubic	unit	cell	is	primitive	and	is	designated	as	simple	cubic	in	the	Bravais
classification.

1.3.4	The	diamond	and	zincblende	structures
A	 very	 important	 structure	 in	 solid	 state	 physics	 is	 that	 adopted	 by	 carbon	 atoms	 in
diamond.	 In	 this	 structure	 each	 carbon	 atom	 is	 covalently	 bonded	 to	 four	 nearest
neighbours	arranged	at	the	corners	of	a	regular	tetrahedron	as	in	Fig.	1.15.	Fig.	1.15	shows
that	only	half	of	 the	 atoms	have	 identical	 environments	 and	 these	 lie	on	 an	 fcc	Bravais
lattice.	The	other	atoms	form	an	fcc	lattice	displaced	by	one-quarter	of	a	unit	cell	in	the	[1
1	 1]	 direction.	The	 two	 types	 of	 atom	differ	 only	 in	 the	 orientation	 of	 the	 bonds	 to	 the
nearest	neighbours.	The	small	coordination	number	(4)	of	the	diamond	structure	indicates
that	it	 is	very	far	from	being	a	close-packed	structure	and	that	the	interatomic	forces	are
very	different	 in	nature	 to	 those	 in	most	metallic,	 ionic	and	‘inert-gas’	solids.	Two	other



elements	 from	 group	 IV	 of	 the	 periodic	 table,	 the	 semiconducting	 elements	 silicon	 and
germanium,	crystallize	into	the	diamond	structure	and	this	explains	its	importance	in	solid
state	physics.

Group	 III–Group	 V	 semiconducting	 compounds	 (see	 Chapter	 5),	 such	 as	 gallium
arsenide,	 GaAs,	 and	 indium	 antimonide,	 InSb,	 crystallize	 into	 the	 closely	 related
zincblende,	ZnS,	 structure.	This	 structure	 differs	 from	 that	 of	 diamond	only	 in	 that	 one
type	of	carbon	atom	is	replaced	by	zinc	atoms	and	the	other	by	sulphur	atoms.

Fig.	1.15

1.4	X-RAY	CRYSTALLOGRAPHY
1.4.1	The	Bragg	law
The	 wavelength	 of	 x-rays	 is	 typically	 1	 Å,	 comparable	 to	 the	 interatomic	 spacings	 in
solids.	This	means	that	a	crystal	behaves	as	a	three-dimensional	diffraction	grating	for	x-
rays.	In	an	optical	diffraction	experiment	it	is	possible	to	deduce	the	spacing	of	the	lines
on	 the	grating	 from	 the	 separation	of	 the	diffraction	maxima;	 by	measuring	 the	 relative
intensities	of	different	orders	information	about	the	structure	of	the	lines	on	the	grating	can
be	 obtained.	 In	 an	 exactly	 similar	 way,	 measurement	 of	 the	 separation	 of	 the	 x-ray
diffraction	maxima	from	a	crystal	allows	us	to	determine	the	size	of	the	unit	cell,	and	from
the	intensities	of	the	diffracted	beams	we	obtain	information	on	the	arrangement	of	atoms
within	the	cell.

The	general	laws	of	diffraction	as	formulated	by	von	Laue	will	be	considered	in	Chapter
11.	For	the	present,	 the	simpler	and	more	physical	formulation	discovered	by	Bragg	and



used	 by	 him	 in	 his	 earliest	 structure	 determinations	 will	 suffice.	 Bragg	 derived	 the
condition	for	constructive	interference	of	the	x-rays	scattered	from	a	set	of	parallel	lattice
planes.	Consider	x-rays	 incident	at	a	glancing	angle	θ	on	one	of	 the	planes	of	 the	set	as
shown	in	Fig.	1.16(a).	The	figure	illustrates	that	there	will	be	constructive	interference	of
the	waves	 scattered	 from	 the	 two	 successive	 lattice	 points	 A	 and	 B	 in	 the	 plane	 if	 the
distances	AC	 and	DB	 are	 equal.	This	 is	 the	 case	 if	 the	 scattered	wave	makes	 the	 same
angle	θ	to	the	plane	as	the	incident	wave;	the	diffracted	wave	thus	looks	as	though	it	has
been	 reflected	 from	 the	 plane.	The	use	 of	 the	 glancing	 angle	θ	 rather	 than	 the	 angle	 of
incidence	is	conventional	in	x-ray	crystallography;	the	reflection	condition	implies	that	the
x-ray	 beam	 is	 deflected	 through	 an	 angle	 2θ.	 Note	 that	 we	 consider	 the	 scattering
associated	with	lattice	points	rather	than	atoms	because	it	is	the	basis	of	atoms	associated
with	 each	 lattice	 point	 that	 is	 the	 true	 repeat	 unit	 of	 the	 crystal;	 the	 lattice	 point	 is	 the
analogue	of	the	line	on	an	optical	diffraction	grating	and	the	basis	represents	the	structure
of	the	line.

Coherent	scattering	from	a	single	plane	is	not	sufficient	to	obtain	a	diffraction	maxium.
It	is	also	necessary	that	successive	planes	should	scatter	in	phase.	This	will	be	the	case	if
the	 path	 difference	 for	 scattering	 off	 two	 adjacent	 planes	 is	 an	 integral	 number	 of
wavelengths.	From	Fig.	1.16(b)	we	see	that	this	is	so	if

Fig.	1.16	Proof	of	Bragg’s	law.	(a)	Scattering	of	x-rays	from	the	adjacent	lattice	points	A
and	B	in	the	plane	will	be	in	phase	if	AC	=	DB	and	thus	if	the	scattered	beam	makes	the
same	angle	θ	to	the	plane	as	the	incident	beam,	(b)	Scattering	of	x-rays	off	successive
planes	is	in	phase	if	the	path	difference	2d	sin	θ	is	an	integral	number	of	wavelengths	nλ

(1.3)	

where	d	is	the	spacing	of	the	planes	and	n	is	an	integer.	This	is	Bragg’s	law.

The	diffracted	beams	(often	referred	to	as	reflections)	from	any	set	of	lattice	planes	can
only	occur	at	the	particular	angles	predicted	by	the	Bragg	law.	X-ray	crystallographers	use
the	Miller	indices	of	the	planes	to	label	the	reflections.	A	beam	corresponding	to	a	value	of
n	greater	than	1	could	be	identified	by	a	statement	such	as	‘the	nth-order	reflection	from
the	 (h	 k	 l)	 planes’.	 This	 however	 is	 rather	 cumbersome	 and	 such	 a	 beam	 is	 described
instead	more	concisely	as	the	(nh	nk	nl)	reflection.	Thus	the	third-order	reflection	from	the
(1	1	1)	planes	is	described	as	the	(3	3	3)	reflection.	This	notation	is	justified	by	rewriting



the	Bragg	law	as

which	 makes	 nth-order	 diffraction	 off	 (h	 k	 l)	 planes	 of	 spacing	 d	 look	 like	 first-order
diffraction	 off	 planes	 of	 spacing	d/n.	 Planes	 of	 this	 reduced	 spacing	would	 have	Miller
indices	(nh	nk	nl).

To	 illustrate	 the	general	principles	of	x-ray	 structure	analysis	we	will	 explain	 the	way
that	Bragg	deduced	the	structure	of	NaCl	and	KCl	(Proc.	R.	Soc.	A	89,	248	(1914))	in	the
same	series	of	experiments	as	he	established	the	existence	of	x-ray	spectral	lines.	A	more
general	 treatment	 of	 structure	 determination	 by	 diffraction	 methods	 can	 be	 found	 in
Chapter	 11.	 Bragg	 used	 an	 arrangement	 like	 an	 ordinary	 spectrometer	 to	 measure	 the
intensity	of	specular	reflection	from	a	cleaved	face	of	a	crystal	and	found	six	values	of	θ
for	 which	 a	 sharp	 peak	 in	 intensity	 occurred,	 corresponding	 to	 three	 characteristic
wavelengths	(K,	L	and	M	x-rays)	in	first	and	second	order	(n	=	1	and	n	=	2	in	Eq.	 (1.3)).
By	repeating	the	experiment	with	a	different	crystal	face	he	could	use	Eq.	(1.3)	to	find	for
example	the	ratio	of	the	(1	0	0)	and	(1	1	1)	plane	spacings,	information	that	confirmed	the
cubic	symmetry	of	the	atomic	arrangement.

The	 details	 of	 the	 structure	 were	 then	 deduced	 from	 the	 differences	 between	 the
diffraction	patterns	for	NaCl	and	KCl.	The	major	difference	was	the	absence	of	the	(1	1	1)
reflection	 in	KCl	 compared	 to	 a	weak	but	 clearly	detectable	 (1	1	1)	 reflection	 in	NaCl.
This	arises	because	the	K+	and	Cl−	 ions	both	have	the	argon	electron	shell	structure	and
hence	scatter	x-rays	almost	equally	whereas	the	Na+	and	Cl−	ions	have	different	scattering
strengths.	The	(1	1	1)	reflection	in	NaCl	corresponds	to	one	wavelength	of	path	difference
between	neighbouring	(1	1	1)	planes,	and	thus	to	half	a	wavelength	difference	between	the
alternate	planes	of	Na+	and	Cl−	 ions	 that	make	up	the	crystal	structure	of	Fig.	1.13.	The
difference	in	scattering	of	x-rays	by	the	Na+	and	Cl−	ions	is	necessary	therefore	to	prevent
elimination	of	the	(1	1	1)	reflection	by	destructive	interference.	Bragg	was	able	to	deduce
that	 the	 structures	 of	 NaCl	 and	 KCl	 corresponded	 to	 alternate	 planes	 of	 positive	 and
negative	ions	perpendicular	to	the	[1	1	1]	direction	and	the	structure	of	Fig.	1.13	followed
from	this.

1.4.2	Experimental	arrangements	for	x-ray
diffraction
Since	 the	 pioneering	 work	 of	 Bragg,	 x-ray	 diffraction	 has	 developed	 into	 a	 routine
technique	 for	 the	 determination	 of	 crystal	 structure.	 In	most	 experiments	 the	 x-rays	 are
produced	 by	 accelerating	 electrons	 through	 a	 potential	 difference	 of	 order	 30	 keV	 and
allowing	 them	 to	 collide	 with	 a	 metal	 target;	 the	 x-ray	 emission	 is	 a	 mixture	 of	 the
characteristic	lines	(K,	L,	M,	etc.)	of	the	metal	atoms	and	a	continuous	background	which
varies	 smoothly	with	wavelength.	By	 changing	 the	 accelerating	voltage	 it	 is	 possible	 to
vary	the	relative	amounts	in	the	mixture	to	obtain	either	almost	monochromatic	x-rays	or	a
broadened	white	spectrum.



If	 a	 higher-intensity	 source	 of	 x-rays	 is	 required,	 the	 intense	 radiation	 emitted	 by	 the
charged	particles	 (usually	 electrons)	 in	 a	 synchrotron	 can	 be	 used.	The	 particles	 radiate
predominantly	 in	 a	 direction	 tangential	 to	 their	 path	 as	 a	 result	 of	 the	 acceleration
associated	 with	 their	 orbits.	 The	 intensity	 of	 the	 synchrotron	 radiation	 normally	 varies
smoothly	with	increasing	wavelength	above	a	minimum	cut-off	value,	which	depends	on
the	 radius	of	 curvature	of	 the	path	 and	 the	 energy	of	 the	particles.	The	 intensity	 can	be
made	to	peak	at	a	particular	wavelength	by	placing	bending	magnets	at	regular	 intervals
along	a	straight	section	of	 the	synchrotron.	This	configuration	 is	known	as	an	undulator
and	 wavelength	 selection	 occurs	 because	 of	 constructive	 interference	 between	 the
radiation	emitted	 in	 the	vicinity	of	successive	magnets.	Examples	of	situations	 in	which
synchrotron	 radiation	 is	 used	 are	 for	 the	 determination	 of	 the	 structure	 of	 very	 small
crystals	 and	of	crystals	containing	biological	molecules	where	 the	unit	 cell	may	contain
thousands	of	atoms.	In	the	latter	case	it	is	necessary	to	measure	the	intensities	of	a	large
number	of	closely	spaced	diffracted	beams	in	order	to	determine	the	structure.

Many	types	of	x-ray	camera	have	been	invented	to	sort	out	the	reflections	from	different
crystal	planes.	We	shall	describe	only	three	very	common	types	of	x-ray	photograph	that
are	widely	used	for	the	simple	structures	that	we	study	in	this	book.

For	a	Laue	photograph,	historically	the	first	type,	a	single	crystal	is	illuminated	with	a
collimated	beam	of	‘white’	(i.e.	continuous	spectrum)	x-rays	as	in	Fig.	1.17(a).	Each	set	of
crystal	planes	will	 satisfy	 the	Bragg	condition,	Eq.	 (1.3),	 for	 some	wavelength	 (perhaps
several	wavelengths	 if	 the	 spread	 in	wavelength	 is	 large	 enough	 for	 different	 orders	 of
diffraction	to	occur)	and	the	resulting	diffracted	beams	generate	a	pattern	of	spots	on	the
photographic	 film	 as	 in	 Fig.	 1.17(b).	 The	 symmetry	 of	 the	 spot	 pattern	 reflects	 the
symmetry	 of	 the	 crystal	 when	 viewed	 along	 the	 direction	 of	 the	 incident	 beam.	 The
deduction	of	the	symmetry	of	the	crystal	is	one	of	the	main	uses	of	the	Laue	method;	it	is
often	used	to	determine	the	orientation	of	single	crystals	that	do	not	have	well	developed
external	faces.

Fig.	1.17



When	 a	 single	 crystal	 is	 exposed	 to	 a	 collimated	monochromatic	 beam	 of	 x-rays	 no
diffraction	takes	place	in	general	because	no	set	of	lattice	planes	is	at	the	correct	angle	to
satisfy	Bragg’s	law.	If	 the	crystal	 is	rotated	about	a	fixed	axis	perpendicular	to	the	x-ray
beam,	then	the	glancing	angle	θ	varies	for	sets	of	planes	that	are	not	perpendicular	to	the
rotation	 axis.	 A	 set	 of	 such	 planes	 is	 likely	 to	 satisfy	 the	 Bragg	 condition	 for	 some
orientation	of	the	crystal.	This	is	the	basis	of	the	rotating	crystal	method;	 the	crystal	is
typically	 surrounded	 by	 a	 photographic	 film	 in	 the	 form	 of	 a	 cylinder	 parallel	 to	 the
rotation	 axis	 and	 the	 resulting	 pattern	 of	 diffraction	 spots	 is	 analysed	 to	 obtain	 the
structure.

An	alternative	method	of	ensuring	that	there	are	sets	of	lattice	planes	in	the	specimen	at
the	correct	angles	to	satisfy	Bragg’s	law	for	a	monochromatic	incident	beam	of	x-rays	is	to
use	a	sample	in	the	form	of	many	small	crystalline	grains	glued	together.	If	the	orientation
of	 the	 grains	 is	 random	 then,	 for	 any	 set	 of	 lattice	 planes,	 some	 of	 the	 grains	 will	 be
oriented	at	the	Bragg	angle	θ	to	the	incident	x-rays.	The	locus	of	the	beams	reflected	from
the	same	set	of	planes	in	different	grains	will	be	a	cone	of	half-angle	2θ	with	the	incident
beam	 as	 axis	 as	 shown	 in	 Fig.	 1.18(a);	 intersection	 of	 the	 x-ray	 cone	 with	 the	 film
produces	a	line	on	the	photograph.	A	typical	example	of	a	powder	photograph	is	shown
in	Fig.	1.18(b);	each	line	represents	diffraction	from	a	different	set	of	lattice	planes.	The
structure	 is	 determined	 from	 the	 measured	 θ	 values	 and	 the	 relative	 intensities	 of	 the
reflections.	 Another	 application	 of	 the	 powder	 method	 arises	 because	 of	 the	 very	 high
resolution	 that	 can	 be	 obtained	 for	 the	 radiation	 that	 is	 almost	 back-scattered,	 as	 is
evidenced	 by	 the	 resolution	 of	 the	Co	Kα	 doublet	 in	 Fig.	1.18(b).	 Eq.	 (1.3)	 shows	 that
when	θ	is	close	to	90°	it	is	very	sensitive	to	the	precise	value	of	d.	Very	accurate	unit	cell
dimensions	 can	 therefore	 be	 obtained	 from	 almost	 back-scattered	 radiation	 and	 this
provides	a	valuable	method	of	measuring	thermal	expansion.



Fig.	1.18	(a)	Experimental	geometry	for	a	power	photograph,	(b)	A	powder	photograph	of
molybdenum	taken	with	Co	Kα	radiation.	The	x-rays	enter	the	camera	through	the	hole	in
the	centre	of	the	film	and	leave	between	the	ends	of	the	film.	Note	that	the	Kα1–Kα2	x-ray
doublet	(wavelengths	1.789	and	1.793	Å)	is	resolved	for	the	back-scattered	radiation	near
the	entrance	hole.	(Courtesy	of	H.	Lipson)

1.5	QUASI-CRYSTALS
To	the	crystallographer	devoted	to	the	view	of	ordered	structures	described	earlier	in	this
chapter	the	x-ray	Laue	photograph	of	Fig.	1.19	presents	a	seemingly	insuperable	problem.
A	diffraction	pattern	of	this	type	was	first	observed	in	1984	from	a	sample	of	Al/Mn	alloy,
cooled	so	rapidly	from	the	molten	state	 that	 the	first	solid	structure	 to	 form	was	‘frozen
in’.	Similar	patterns	have	subsequently	been	observed	for	other	materials.	The	existence	of
such	sharp	spots	in	the	pattern	indicates	a	highly	ordered	atomic	arrangement,	containing
presumably	 parallel	 planar	 structures	 capable	 of	 scattering	 x-rays	 coherently.	 The	 spot
pattern	 in	 Fig.	 1.19	 however	 has	 a	 tenfold	 symmetry	 axis,	 indicating	 that	 the	 atomic
structure	 must	 possess	 similar	 symmetry,†	 thus	 contradicting	 one	 of	 the	 fundamental
theorems	of	crystallography	that	any	lattice	of	the	form	of	Eq.	(1.2)	can	contain	only	two-,
three-,	 four-	 and	 sixfold	 symmetry	 axes.	 A	 tenfold	 axis	 fails	 to	 appear	 in	 the	 list	 for
essentially	 the	 same	 reason	 as	 it	 is	 impossible	 to	 tile	 a	 two-dimensional	 area	with	 tiles
shaped	like	regular	decagons,	as	is	apparent	from	Fig.	1.20.	As	the	materials	giving	rise	to
diffraction	 patterns	 like	 that	 of	 Fig.	 1.19	 cannot	 therefore	 possess	 the	 property	 of
translational	 invariance	 that	 is	expected	 in	crystals,	 they	have	been	designated	as	quasi-
crystals.

When	 diffraction	 patterns	 for	 different	 angles	 of	 incidence	 are	 viewed,	 quasi-crystals
often	appear	 to	have	 the	same	symmetry	as	 the	 icosahedron	shown	in	Fig.	1.21(a).	This
figure	has	20	faces	each	of	which	is	an	equilateral	triangle.	The	line	AA	is	one	of	the	six
fivefold	axes	of	symmetry	of	the	icosahedron	which	lead	to	the	tenfold	symmetry	of	the



diffraction	pattern.	Icosahedral	arrangements	of	atoms	arise	quite	naturally	in	attempts	at
close	packing	if	the	tetrahedral	arrangement	of	atoms	of	Fig.	1.21(b)	rather	than	the	close-
packed	plane	of	Fig.	1.7	is	taken	as	the	basic	building	block.	The	icosahedron	is	formed	by
allowing	20	tetrahedra	to	share	a	common	vertex.	In	order	to	achieve	this	each	tetrahedron
has	to	distort	slightly;	an	atom	is	about	5%	further	from	its	neighbours	on	the	surface	of
the	 icosahedron	 than	 it	 is	 from	the	atom	at	 the	centre.	 It	 is	 this	 feature	 that	prevents	 the
attainment	of	long-range	close	packing	by	continued	stacking	of	tetrahedra	outwards	from
the	 original	 shared	 vertex.	 All	 solids	 discovered	 prior	 to	 1984	with	 a	 local	 icosahedral
arrangement	of	atoms	had	relieved	the	distortion	by	incorporating	additional	atoms	in	such
a	way	as	to	regain	a	structure	with	translational	invariance.

Fig.	1.19	Spot	diffraction	pattern	with	tenfold	symmetry	obtained	from	a	rapidly	cooled
Al(86	at%)–Mn(14	at%)	alloy.	(Reproduced	with	permission	from	D.	Schechtman	et	al.,
Phys.	Rev.	Lett.	53,	1951	(1984))

Fig.	1.20	Three	regular	decagons	sharing	a	vertex,	P,	demonstrating	the	impossibility	of
tiling	a	two-dimensional	area	with	unit	cells	of	this	shape

Fig.	1.21



It	 is	generally	believed	 that	an	understanding	of	 the	structure	of	quasi-crystals	will	be
obtained	by	generalizing	to	three	dimensions	the	two-dimensional	tiling	pattern	invented
by	Roger	 Penrose	 in	 1974,	which	 is	 shown	 in	 Fig.	 1.22.	 In	 contrast	 to	 the	 stacking	 of
identical	parallelogram	unit	 cells,	which	generates	 a	 two-dimensional	 crystal	 lattice	 like
that	of	Fig.	1.1(b),	Penrose	 tiling	uses	 the	 two	building	blocks	of	Fig.	1.22(a).	Both	 the
basic	tiles	are	rhombuses,	like	the	unit	cell	of	the	rhombic	lattice	in	Fig.	1.4(c),	but	 they
have	values	of	the	angle	γ	of	144°	and	108°.	In	the	pattern	(Fig.	1.22(b))	tiles	of	the	former

angle	occur	exactly	 (1	+	 )/2	 times	as	often	as	 those	of	 the	 latter.	Despite	 the	 lack	of
translational	 invariance,	 the	 pattern	 contains	 regular	 decagons	 all	 with	 the	 same
orientation	and	also	sets	of	almost	straight	lines	intersecting	at	angles	of	72°	(Fig.	1.22(b)
shows	one	of	the	sets)	which	could	give	a	diffraction	pattern	of	fivefold	symmetry.	Three-
dimensional	 Penrose	 tiling	 can	 be	 achieved	 by	 using	 two	 different	 rhombohedrons
(squashed	cubes)	as	building	blocks,	but	although	 it	 is	 likely	 that	 the	structure	of	quasi-
crystals	 can	 be	 explained	 in	 this	 way	 there	 is	 as	 yet	 no	 unambiguous	 structure
determination.

Fig.	1.22	Penrose	tiling



The	difficulties	encountered	 in	elucidating	 the	structure	of	quasi-crystals	arise	because
of	the	lack	of	translational	invariance,	and	it	is	worth	stressing	at	this	point	just	how	useful
this	 property	 is	 to	 the	 crystallographer	 and	 solid	 state	 physicist.	 For	 a	 translationally
invariant	crystal	it	is	necessary	to	specify	only	the	position	and	orientation	of	one	unit	cell
in	order	to	specify	the	position	of	all	the	atoms	in	the	crystal.	So	valuable	is	this	property
that	one	theoretical	approach	to	quasi-crystals	has	been	to	investigate	the	possibility	that
they	may	be	represented	by	a	translationally	invariant	lattice	in	a	six-dimensional	space;
the	actual	structure	is	then	seen	on	a	three-dimensional	‘surface’	in	this	space!†

1.6	INTERATOMIC	FORCES
The	binding	energy	of	 the	atom	 in	all	 solids	 results	 from	 the	 reduction	 in	energy	of	 the
atomic	electrons	due	 to	 the	proximity	of	 the	neighbouring	atoms.	To	give	a	quantitative
description	it	is	necessary	to	calculate	the	electron	states;	some	indication	of	the	nature	of
these	and	the	factors	that	affect	the	binding	energy	are	given	in	Chapters	3	and	4.	Here	we
give	 a	 qualitative	 discussion	 of	 interatomic	 forces,	 most	 of	 which	 is	 probably	 already
familiar	to	the	reader.	It	is	conventional	to	classify	the	bonds	between	atoms	into	different
types:	van	der	Waals,	ionic,	covalent,	metallic	and	hydrogen	bonds	are	the	types	discussed
further	below.	We	must	always	bear	in	mind	that	these	terms	are	inventions	of	the	human
imagination,	 introduced	 as	 an	 aid	 to	 thought.	 All	 bonding	 is	 a	 consequence	 of	 the
electrostatic	interaction	between	nuclei	and	electrons	obeying	Schrödinger’s	equation.	In
most	 cases	 also	 the	bonds	must	 be	 regarded	 as	being	 intermediate	between	 the	 extreme
types	described	below.

1.6.1	Van	der	Waals	bonding



The	simplest	examples	of	van	der	Waals	bonding	are	the	inert-gas	solids.	The	spherically
symmetric	filled-shell	electronic	configurations	of	isolated	inert-gas	atoms	are	very	stable
and	little	affected	when	the	atoms	come	together	to	form	the	solid.	The	interaction	energy
of	two	inert-gas	atoms	depends	only	on	the	distance	between	them	and	is	represented	by
the	well	known	interatomic	potential	curve	of	Fig.	1.23;	the	force	between	the	atoms	is	the
negative	of	the	slope	of	this	curve.	The	attractive	force	at	large	separations	arises	because
even	a	spherically	symmetric	atom	has	a	fluctuating	electric	dipole	moment;	this	induces	a
dipole	moment	in	the	other	atom	and	the	two	dipoles	then	attract	each	other.	The	attractive
force	 is	 known	 as	 the	 van	 der	Waals	 or	London	 force.	 The	 repulsive	 force	 at	 small
separations	is	associated	with	the	overlap	of	the	outer	electron	shells	on	the	two	atoms.	An
important	 contribution	 to	 the	 repulsion	 arises	 because	 of	 the	 Pauli	 principle,	 which
prevents	two	electrons	from	occupying	the	same	quantum	state;	overlap	of	the	filled	shells
means	that	electrons	must	be	promoted	to	higher	atomic	energy	levels	in	order	to	comply
with	this	requirement.	The	repulsive	force	increases	very	rapidly	with	increasing	overlap,
and	this	explains	why	inert-gas	atoms	behave	like	attracting	hard	spheres	and	form	close-
packed	structures.

Fig.	1.23	Lennard-Jones	potential	 	for	the	interaction	of	two
argon	atoms.	The	parameters	ε	and	σ	which	specify	the	potential	were	obtained	from
measurements	on	gaseous	argon

The	binding	energies,	interatomic	forces	and	related	properties	of	the	inert-gas	crystals
can	be	 calculated	with	 reasonable	 accuracy	by	assuming	 that	 the	 interaction	of	 any	 two
atoms	within	 the	crystal	 is	given	by	an	interatomic	potential	of	 the	form	of	Fig.	1.23.	A
reader	who	is	unfamiliar	with	this	approach	is	recommended	to	read	Chapter	3	of	Flowers
and	Mendoza.1

1.6.2	Ionic	bonding
A	 similar	 situation	 to	 that	 in	 the	 inert-gas	 solids	 arises	 in	 ionic	 solids	 such	 as	 sodium
chloride.	Transfer	of	an	electron	from	a	sodium	atom	to	a	chlorine	atom	produces	Na+	and



Cl−	 ions	 with	 the	 stable	 electronic	 configurations	 of	 the	 inert	 gases	 neon	 and	 argon
respectively.	The	electron	 states	 are	 little	 affected	by	 the	coming	 together	of	 the	 ions	 to
form	the	solid	and	the	interaction	of	any	two	ions	within	the	solid	can	be	represented	by
the	 interionic	 potential	 curve	 of	 two	 isolated	 ions.	 At	 large	 separations	 the	 interionic
potential	 is	dominated	by	the	long-range	electrostatic	interaction	±e2/4πε0r;	 the	+	sign	 is
for	 two	 ions	of	 the	 same	 sign,	 the	–	 sign	 for	 ions	of	opposite	 sign.	As	 for	 the	 inert-gas
atoms,	 the	 potential	 at	 small	 separations	 is	 dominated	 by	 the	 repulsive	 interaction
associated	 with	 overlap	 of	 the	 electron	 shells.	 The	 use	 of	 the	 interionic	 potential	 in
calculating	 the	binding	energy	and	 related	properties	of	 ionic	 solids	 is	 also	discussed	 in
Chapter	3	of	Flowers	and	Mendoza.1

1.6.3	Covalent	bonding
In	covalently	bonded	crystals	such	as	diamond,	silicon	and	germanium	the	bonding	energy
is	 associated	 with	 the	 sharing	 of	 valence	 electrons	 between	 atoms.	 The	 states	 of	 the
valence	electrons	are	profoundly	changed	by	the	approach	of	the	atoms	to	form	the	solid,
and	 where	 an	 atom	 forms	 more	 than	 one	 bond	 the	 energy	 depends	 strongly	 on	 their
relative	orientation.	Covalent	bonds	are	thus	said	to	be	directed;	for	the	carbon	atoms	in
diamond	the	minimum	energy	occurs	when	the	four	covalent	bonds	are	directed	towards
the	 corners	 of	 a	 regular	 tetrahedron	 as	 in	Fig.	1.15.	 In	 Section	 4.3	we	 present	 a	 simple
approach	 to	 the	 construction	 of	 trial	 electron	 wavefunctions	 to	 describe	 the	 covalent
bonding	in	diamond	and	other	solids.	The	directed	nature	of	covalent	bonds	means	that	the
energy	of	a	covalently	bonded	solid	cannot	be	written	simply	as	a	sum	of	the	interatomic
potentials	for	isolated	pairs	of	atoms.

Since	a	pair	of	electrons	are	an	essential	feature	of	a	covalent	bond,	an	atom	cannot	in
general	 form	more	 covalent	 bonds	 than	 it	 has	 valence	 electrons.	Because	 of	 the	 limited
number	 of	 bonds	 per	 atom,	 covalent	 binding	 is	 said	 to	 be	 saturable;	 the	 structures	 of
covalently	bonded	materials	are	determined	by	 this	and	 the	directed	nature	of	 the	bonds
rather	than	by	close-packing	considerations.

In	 an	 ideal	 covalent	 bond	 between	 two	 atoms	 the	 two	 electrons	 are	 equally	 shared.
Symmetry	considerations	suggest	that	the	atoms	must	be	identical	for	this	to	be	so.	This	is
the	 case	 for	 the	 elemental	 semiconductors	 Si	 and	 Ge	 but	 not	 for	 the	 semiconductor
compounds	 such	 as	 GaAs,	 which	 have	 the	 zincblende	 structure	 (Fig.	 1.15);	 the	 shared
electrons	reside	nearer	to	the	group	V	element,	As,	than	to	the	group	III	element,	Ga.	The
covalent	bonds	in	such	materials	are	thus	intermediate	in	nature	between	a	pure	covalent
bond	with	 equally	 shared	 electrons	 and	 a	pure	 ionic	bond	with	one	 electron	 completely
transferred	from	one	atom	to	the	other.	A	measure	of	the	ionicity	of	a	bond	is	obtained	by
expressing	the	electric	dipole	moment	associated	with	the	bond	as	a	fraction	of	the	dipole
moment	 for	 a	 pure	 ionic	 bond;	 the	 latter	 is	 equal	 to	 the	 electronic	 charge	 times	 the
interatomic	 separation.	 The	 ‘covalent’	 bond	 in	 GaAs	 turns	 out	 to	 be	 32%	 ionic;	 for
comparison	the	‘ionic’	bond	in	NaCl	is	actually	94%	ionic	according	to	the	same	criterion.



1.6.4	Metallic	bonding
Metal	 atoms	 have	 fewer	 than	 the	 four	 valence	 electrons	 required	 to	 form	 a	 three-
dimensional	covalently	bonded	structure.	One	way	of	looking	at	metallic	bonding	is	as	a
type	 of	 covalent	 bonding	 in	 which	 some	 of	 the	 bonds	 are	 missing.	 There	 are	 many
possible	 arrangements	 of	 the	 omitted	 bonds	 and	 we	 can	 imagine	 a	 ground	 state
wavefunction	for	the	crystal	that	is	a	linear	combination	of	all	possible	ways	of	leaving	out
the	prescribed	fraction	of	bonds.	This	leads	naturally	to	the	idea	that	the	electrons	are	not
localized	as	is	necessary	for	electrical	conductivity.	Alternatively	metallic	bonding	may	be
regarded	as	a	limiting	case	of	ionic	bonding	in	which	the	negative	ions	are	just	electrons.
Thus,	sodium	chloride	contains	equal	numbers	of	Na+	and	Cl−	ions,	and	metallic	sodium
contains	equal	numbers	of	Na+	and	e−.	The	crucial	difference	is	that	the	very	small	mass
of	 an	 electron	 means	 that	 its	 zero	 point	 energy	 is	 so	 large	 that	 it	 is	 not	 localized	 to
vibrating	with	a	small	amplitude	about	a	fixed	position	in	the	crystal.	The	reduction	in	the
kinetic	 energy	 of	 the	 electrons	 resulting	 from	 their	 derealization	 makes	 a	 significant
contribution	 to	 the	 binding	 energy	 (section	 3.2.5).	 A	 metallic	 structure	 is	 determined
largely	 by	 the	 packing	 of	 the	 positive	 ions	 alone;	 the	 electron	 fluid	 is	 just	 a	 sort	 of
negatively	charged	glue.	In	Chapter	4	we	introduce	a	formalism	for	discussing	the	electron
states	in	solids	which	encompasses	both	metallic	and	covalent	bonding.

1.6.5	Hydrogen	bonding
Hydrogen	 bonding	 arises	 because	 a	 hydrogen	 atom	 is	 usually	 a	 somewhat	 positively
charged	region	of	a	molecule.	This	can,	by	electrostatic	attraction,	form	a	weak	bond	to	a
negatively	 charged	 region	 of	 another	 (or	 the	 same)	 molecule.	 Hydrogen	 bonding	 is
important	in	ice	and	in	many	organic	solids;	the	helical	form	of	the	DNA	molecule	is	due
to	hydrogen	bonding	between	different	parts	of	the	same	long	molecule.

1.6.6	Mixed	bonding
More	than	one	type	of	bonding	can	exist	simultaneously	in	the	same	solid.	In	graphite	for
example	 the	carbon	atoms	within	 the	hexagonal	planes	 (Fig.	1.1)	 are	 covalently	bonded
whereas	the	weaker	forces	between	the	planes	are	similar	in	origin	to	the	forces	between
the	 inert-gas	atoms;	 the	weakness	of	 the	 interplanar	 forces	explains	 the	ease	with	which
the	planes	slide	relative	to	each	other	and	is	thus	responsible	for	the	lubricating	properties
of	graphite.	That	graphite	is	an	electrical	conductor	for	current	flow	parallel	to	the	planes
and	a	non-conductor	for	current	flow	perpendicular	to	the	planes	is	another	consequence
of	 the	 mixed	 bonding.	 The	 forces	 between	 the	 covalently	 bonded	 molecules	 in	 many
organic	 solids	 are	 also	 similar	 in	 origin	 to	 those	 between	 the	 inert-gas	 atoms.	 In	 some
cases	 the	molecules	possess	a	permanent	electric	dipole	moment,	which	gives	 rise	 to	an
attractive	 potential	 varying	 as	 1/R3	 rather	 than	 the	 1/R6	 obtained	 for	 fluctuating	 dipole
moments.



PROBLEMS	1
1.1	Show	that	c/a	=	(8/3)1/2	for	hexagonal	close	packing	of	hard	spheres.

1.2	Sketch	a	few	cubic	unit	cells	and	draw	the	following	lattice	planes	within	them	(as
in	Fig.	1.6):	(0	0	1),	(1	0	1),	(0	1	1),	(0	2	1),	(2	1	0),	(2	1	1)	and	(1	2	2).

1.3	Prove	that	in	a	lattice	of	cubic	symmetry	the	direction	[h	k	l]	is	perpendicular	to
the	plane	(h	k	l)	with	the	same	indices.

1.4	Show	that	the	spacing	d	of	the	(h	k	l)	set	of	lattice	planes	in	a	cubic	lattice	of	side
a	is

(Remember	 that	 the	 sum	of	 the	 squares	 of	 the	 direction	 cosines	 of	 the	 normal	 to	 a
plane	is	1.)

1.5	Consider	the	following	pattern:

Indicate:

(a)	a	rectangular	unit	cell,

(b)	a	primitive	unit	cell,	and

(c)	the	basis	of	letters	associated	with	each	lattice	point.

1.6	Consider	the	fcc,	bcc,	hcp	and	diamond	structures.

(a)	Draw	plans	 of	 the	 conventional	 unit	 cells	 of	 these	 structures,	 indicating	 the
height	of	the	atoms	as	a	fraction	of	the	unit	cell	height.

(b)	Give	coordinates	of	the	atoms	in	the	basis	of	each	structure.

(c)	If	the	structures	are	formed	by	spheres	in	contact,	calculate	the	fraction	of	space
occupied	by	spheres.

1.7	A	crystal	has	a	basis	of	one	atom	per	lattice	point	and	a	set	of	primitive	translation
vectors	(in	Å):

where	i,	j	and	k	are	unit	vectors	in	the	x,	y	and	z	directions	of	a	Cartesian	coordinate
system.	What	is	the	Bravais	lattice	type	of	this	crystal,	and	what	are	the	Miller	indices
of	the	set	of	planes	most	densely	populated	with	atoms?	Calculate	the	volumes	of	the
primitive	unit	cell	and	the	conventional	unit	cell.

1.8	For	the	fcc	and	bcc	structures	it	is	possible	to	choose	a	primitive	unit	cell	that	is	a
rhomb,	i.e.	the	primitive	translation	vectors	a,	b	and	c	are	equal	 in	magnitude	as	are



the	 angles	 α,	 β	 and	 γ.	 Draw	 diagrams	 showing	 a,	 b	 and	 c	 for	 each	 structure	 and
calculate	α	for	each	case.

1.9	 The	 Bragg	 angle	 for	 a	 certain	 reflection	 from	 a	 powder	 specimen	 of	 copper	 is
47.75°	at	a	 temperature	of	293	K	and	46.60°	at	1273	K.	Calculate	the	coefficient	of
linear	thermal	expansion	of	copper.

†	The	December	1988	issue	of	Physics	Today	contains	articles	describing	some	of	 the
progress	towards	an	understanding	of	disordered	materials.

†	This	method	has	actually	been	used	by	Bernal	to	study	disordered	(liquid)	structures.

†	 Subsequently	 magnified	 images	 of	 quasi-crystallites	 have	 been	 observed	 which
confirm	the	existence	of	a	tenfold	symmetry	axis.

†	For	more	information	on	quasi-crystals,	see	the	article	by	D.	R.	Nelson	in	the	August
1986	issue	of	Scientific	American.



CHAPTER	2

Crystal	dynamics

I’m	picking	up	good	vibrations.	She’s	giving	me	excitations.	—Beach	Boys,	1967
pop	song

2.1	INTRODUCTION
The	 picture	 of	 a	 crystal	 given	 in	 the	 previous	 chapter	 as	 a	 regular	 arrangement	 of
stationary	 atoms	 cannot	 be	 entirely	 correct.	 It	 conflicts	with	 the	Heisenberg	uncertainty
principle	that	it	is	not	possible	to	know	simultaneously	and	exactly	both	the	position	and
momentum	of	a	particle.	Thus,	at	the	absolute	zero	of	temperature,	the	atoms	in	a	crystal
must	vibrate	about	their	equilibrium	positions.	The	energy	they	possess	as	a	result	of	this
zero	point	motion	is	known	as	zero	point	energy.	At	higher	temperatures	the	amplitude
of	 the	motion	 increases	as	 the	atoms	gain	 thermal	energy.	 In	 this	chapter	we	discuss	 the
nature	of	the	atomic	motions,	sometimes	referred	to	as	lattice	vibrations.

Initially	our	calculations	will	be	restricted	to	lattice	vibrations	of	small	amplitude.	Since
the	solid	is	then	close	to	a	position	of	stable	equilibrium	its	motion	can	be	calculated	by	a
generalization	 of	 the	 method	 used	 to	 analyse	 a	 simple	 harmonic	 oscillator.	 The	 small
amplitude	 limit	 is	known	as	 the	harmonic	 limit.	The	anharmonic	effects	 that	 occur	 at
larger	amplitudes	are	the	subject	of	sections	2.7	and	2.8.

The	 atomic	 motions	 are	 governed	 by	 the	 forces	 exerted	 on	 atoms	 when	 they	 are
displaced	from	their	equilibrium	positions.	To	calculate	the	forces	in	detail	it	is	necessary
to	 determine	 the	 wavefunctions	 and	 energies	 of	 the	 electrons	 within	 the	 crystal.
Fortunately	 we	 can	 deduce	 many	 important	 properties	 of	 the	 atomic	 motions	 without
doing	this	calculation.

2.2	SOUND	WAVES
We	 begin	 our	 investigation	 of	 the	 dynamics	 of	 crystals	 by	 recalling	 our	 everyday
experience	that	sound	waves	propagate	 through	solids.	This	 tells	us	 that	wavelike	lattice
vibrations	 of	 wavelength	 long	 compared	 to	 the	 interatomic	 spacing	 are	 possible.	 The
detailed	atomic	structure	is	unimportant	for	these	waves	and	their	propagation	is	governed
by	 the	macroscopic	elastic	properties	of	 the	crystal.	We	discuss	 sound	waves	 since	 they
must	correspond	 to	 the	 low-frequency,	 long-wavelength	 limit	of	 the	more	general	 lattice
vibrations	considered	later	in	this	chapter.



At	a	given	frequency	and	in	a	given	direction	in	a	crystal	it	is	possible	to	transmit	three
sound	 waves,	 differing	 in	 their	 direction	 of	 polarization	 and	 in	 general	 also	 in	 their
velocity.	For	sound	travelling	in	a	direction	of	high	symmetry,	e.g.	[1	0	0]	in	a	crystal	of
cubic	 symmetry,	 one	 of	 the	 waves	 is	 longitudinally	 polarized	 and	 the	 other	 two	 are
transversely	polarized	in	mutually	perpendicular	directions.	For	waves	travelling	in	the	[1
0	0]	direction	the	two	transverse	waves	have	the	same	velocity.

To	illustrate	the	method	for	calculating	the	velocity	of	sound	waves	we	suppose	that	a
longitudinal	wave	is	travelling	along	the	x	axis.	Consider	the	element	of	the	crystal	that	is
between	 the	 planes	 x	 and	 x	 +	 δx	 before	 the	 wave	 arrives.	 Suppose	 that	 as	 the	 wave
propagates	the	plane	x	is	displaced	by	ξ(x,	t)	as	shown	in	Fig.	2.1(a).	The	plane	x	+	δx	is
displaced	by	ξ(x	+	δx,	t),	which	if	δx	 is	small	compared	to	a	wavelength	may	be	written
ξ(x,	t)	+	(∂x ∂x)δx.	The	extension	of	the	element	δx	is	therefore	(∂ξ ∂x)δx	and	the	strain
suffered	by	this	element	(=	extension original	length)	is	just	∂ξ ∂x.	According	to	Hooke’s
law	(strain	proportional	to	stress)	the	associated	stress	Γ	(force	per	unit	area)	is	of	the	form

Fig.	2.1	The	effect	on	the	region	of	a	crystal	between	the	planes	x	and	x	+	δx	of	the
passage	of	a	longitudinally	polarized	sound	wave	travelling	in	the	x	direction

(2.1)	

where	C	 is	 an	 elastic	modulus.	Note	 that	C	 is	 not	 quite	 the	 same	 as	Young’s	modulus
because	it	refers	to	extension	of	the	element	δx	in	which	lateral	contraction	is	prevented,
whereas	Young’s	modulus	is	for	a	situation	of	no	lateral	constraint.	For	longitudinal	waves
of	 wavelength	 short	 compared	 to	 the	 dimensions	 of	 the	 solid	 the	 rest	 of	 the	 material
prevents	lateral	contraction.

To	 calculate	 the	motion	 of	 the	 element	 δx	 of	 the	 crystal	we	must	 allow	 for	 the	 small
difference	 in	Γ	between	the	 two	ends	of	 the	element	as	 indicated	 in	Fig.	2.1(b).	The	net
force	 per	 unit	 area	 dΓ	 can	 be	 written	 as	 (∂Γ ∂x)δx	 if	 δx	 is	 small	 compared	 to	 a
wavelength,	and	the	equation	of	motion	of	the	element	is	therefore



where	ρ	is	the	mass	density	of	the	crystal.	Using	Eq.	(2.1)	for	the	stress	this	can	be	written

(2.2)	

which	is	the	wave	equation	for	longitudinal	waves	of	velocity

(2.3)	

The	 velocity	 of	 a	 sound	 wave	 can	 always	 be	 written	 in	 this	 form,	 with	 an	 elastic
modulus	 C	 that	 depends	 in	 general	 on	 the	 propagation	 and	 polarization	 directions.
Velocities	of	sound	waves	in	solids	are	of	order	1000	m	s−1.

Our	derivation	of	sound	wave	propagation	is	valid	only	if	δx	is	both	much	less	than	the
wavelength	 λ	 and	 much	 larger	 than	 an	 atomic	 spacing	 a;	 the	 latter	 requirement	 is
necessary	for	the	use	of	macroscopic	elastic	properties.	The	calculation	thus	fails	for	the
important	 lattice	 vibrations,	 which	 have	 a	 wavelength	 comparable	 to	 the	 interatomic
spacing.	 We	 can	 nevertheless	 use	 a	 typical	 sound	 wave	 velocity	 of	 1000	 ms−1	 and	 a
wavelength	 of	 3	 Å	 to	 estimate	 a	 frequency	 for	 these	 vibrations	 of	 3	 ×	 1012	 Hz.	 This
suggests	that	lattice	vibrations	are	responsible	for	the	strong	absorption	by	some	solids	of
electromagnetic	radiation	at	frequencies	of	this	order,	which	are	in	the	infrared	part	of	the
spectrum	(see	section	9.1.4).	In	the	following	section	we	consider	a	very	simple	crystal	for
which	 it	 is	 possible	 to	 generalize	 the	 above	 calculation	 to	 vibrations	 of	 wavelength
comparable	to	an	interatomic	spacing.

2.3	LATTICE	VIBRATIONS	OF	ONE-
DIMENSIONAL	CRYSTALS
2.3.1	Chain	of	identical	atoms
The	simplest	crystal	is	the	one-dimensional	chain	of	identical	atoms	of	equilibrium	lattice
spacing	a	 shown	 in	Fig.	2.2.	We	 assume	 that	 the	 atoms	 can	move	 only	 in	 the	 direction
parallel	 to	 the	chain,	 that	 they	interact	via	an	interatomic	potential	of	 the	form	shown	in
Fig.	 1.23	 and	 that	 the	 forces	 between	 them	 are	 of	 such	 short	 range	 that	 only	 nearest
neighbour	forces	are	important.	In	this	limit	the	small	amplitude	motions	of	the	chain	of
atoms	 are	 identical	 to	 those	 of	 the	 chain	 of	 identical	masses	M	 connected	 by	 identical
springs	 of	 spring	 constant	 K	 shown	 on	 Fig.	 2.3,	 as	 we	 shall	 now	 demonstrate.	 The
interaction	 (r)	between	nearest	neighbours	of	separation	r	may,	for	a	small	deviation	of	r
from	its	equilibrium	value	a,	be	expanded	as	a	Taylor	series	about	r	=	a.	Thus

(2.4)	



No	 term	 linear	 in	 r	−	a	 appears	 in	 the	Taylor	 series	because	 the	 first	 derivative	of	
must	vanish	at	the	equilibrium	spacing	where	 	is	a	minimum.	If	the	higher-order	terms
are	ignored	(this	is	the	harmonic	limit	referred	to	in	the	introduction	to	this	chapter),	Eq.
(2.4)	looks	like	the	potential	energy	associated	with	a	spring	of	spring	constant

Fig.	2.2	One-dimensional	crystal	consisting	of	a	chain	of	identical	atoms

Fig.	2.3	A	chain	of	identical	masses	M	connected	by	springs:	(a)	at	equilibrium	spacings	
=	na;	(b)	at	displaced	positions	xn	=	na	+	un

(2.5)	

The	 spring	 constant	 can	 be	 simply	 related	 to	 the	 elastic	 modulus	 C	 of	 the	 one-
dimensional	 crystal,	 defined	 by	 writing	 the	 force	 required	 to	 increase	 the	 interatomic
distance	from	a	to	r	as	C(r	−	a) a	(i.e.	force	=	elastic	modulus	×	strain).	The	model	of	Fig.
2.3	predicts	a	force	K(r	−	a)	and	this	identifies	the	following	relation	between	C	and	K:

(2.6)	

We	now	proceed	to	calculate	the	lattice	vibrations	of	the	one-dimensional	chain	of	Fig.
2.3,	 which	 exhibit	 many	 of	 the	 important	 qualitative	 features	 of	 lattice	 vibrations	 in
general.	We	 will	 use	 the	 laws	 of	 classical	 mechanics	 and	 postpone	 until	 section	 2.5	 a
discussion	of	the	difference	in	the	results	of	a	quantum	mechanical	calculation.	We	shall
suppose	that	the	chain	consists	of	a	very	large	number	of	atoms	and	that	the	last	is	joined
to	the	first	so	as	to	make	a	ring.	This	last	assumption	is	simply	a	device	to	make	the	chain
endless	so	that	all	the	atoms	have	an	identical	environment,	and	has	no	important	effect	on
the	problem	for	a	long	chain,	where	end	effects	are	unimportant	anyway.

If	 the	displacements	of	 the	 atoms	 from	 their	 equilibrium	positions	 are	un	 as	 shown	 in



Fig.	2.3,	the	force	on	the	nth	atom	consists	of:

(i)	K(un	−	un−1)	to	the	left,	from	the	spring	on	its	left;	and

(ii)	K(un+1	−	un)	to	the	right,	from	the	spring	on	its	right.

Equating	the	total	force	to	the	right,	(ii)	–	(i),	to	the	product	of	mass	and	acceleration	we
have

(2.7)	

The	equations	of	motion	of	all	 atoms	 are	 of	 this	 form,	 only	 the	value	of	n	 varies.	To
solve	Eqs.	 (2.7)	we	 try	 a	wavelike	 solution	 in	which	all	 the	 atoms	oscillate	 at	 the	 same
amplitude	A.	Thus	we	substitute†

(2.8)	

where	 	=	na	is	the	undisplaced	position	of	the	nth	atom,	to	obtain

or,	on	cancelling	Aei(kna	−	ωt)	from	each	term,

Hence

(2.9)	

Fig.	2.4	shows	the	dispersion	relation	(relation	between	frequency	ω	and	wavenumber	k)
given	by	Eq.	(2.9)	for	our	wavelike	lattice	vibrations.	The	maximum	value	of	sin( ka)	is	1
so	that	the	maximum	possible	frequency	of	the	waves	is	2(K M)1/2.	This	is	known	as	the
cut-off	frequency	of	the	lattice.

We	notice	 that	n	has	cancelled	out	 in	Eq.	 (2.9),	 so	 that	 the	equations	of	motion	of	all
atoms	 lead	 to	 the	 same	 algebraic	 relation	 between	ω	 and	 k.	 This	 shows	 that	 our	 trial
function	 for	un	 is	 indeed	 a	 solution	 of	Eqs.	 (2.7).	 It	 is	 also	 important	 to	 notice	 that	we
started	from	the	equations	of	motion	of	N	coupled	harmonic	oscillators	(Eqs.	(2.7)).	If	one
atom	starts	vibrating	it	does	not	continue	with	constant	amplitude,	but	transfers	energy	to
the	 others	 in	 a	 complicated	 way;	 the	 vibrations	 of	 individual	 atoms	 are	 not	 simple
harmonic	 because	 of	 this	 energy	 exchange	 among	 them.	Our	wavelike	 solutions	 on	 the
other	hand	are	uncoupled	oscillations	called	normal	modes;	each	k	has	a	definite	ω	given
by	 Eq.	 (2.9)	 and	 oscillates	 independently	 of	 the	 other	 modes.	 We	 should	 expect	 the
number	of	modes	to	be	the	same	as	the	number	of	equations	N	that	we	started	with;	let	us
now	see	whether	this	is	the	case.

To	do	 so	we	must	establish	which	wavenumbers	are	possible	 for	our	one-dimensional
chain.	Not	all	values	are	allowed	because	the	nth	atom	is	the	same	as	the	(N	+	n)	th	as	the
chain	 is	 joined	 on	 itself.	 This	 means	 that	 the	 wave	 (2.8)	 must	 satisfy	 the	 periodic
boundary	condition

(2.10)	



which	requires	that	there	should	be	an	integral	number	of	wavelengths	in	the	length	of	our
ring	of	atoms

Fig.	2.4	Normal	mode	frequencies	for	a	chain	of	identical	atoms.	Note	that	the	modes	with
wavenumbers	at	A,	B	and	C	all	have	the	same	frequency	and	correspond	to	the	same
instantaneous	atomic	displacements	(see	Fig.	2.5).	Point	B	represents	a	wave	moving	to
the	right,	points	A	and	C	a	wave	moving	to	the	left

Hence

(2.11)	

where	p	 is	 an	 integer.	There	 are	 thus	N	 possible	k	 values	 in	 a	 range	2π a	 of	k,	 say	 the
range

Fig.	2.4	shows	that	this	restricted	range	of	k	does	indeed	include	all	possible	values	of
the	 frequency	ω	 and	 the	 group	velocity	 (dω dk);	 it	 also	 gives	 the	N	 normal	modes	we
expect	 for	 N	 atoms.	 What,	 if	 anything,	 is	 the	 physical	 significance	 of	 wavenumbers
outside	this	range?

To	understand	this,	consider	the	instantaneous	atomic	displacements	shown	in	Fig.	2.5;
we	 are	 really	 considering	 longitudinal	 waves,	 but	 the	 displacements	 are	 shown	 as
transverse	 in	Fig.	2.5	 because	 this	makes	 their	wavelike	 nature	 easier	 to	 visualize.	 Fig.
2.5(a)	 shows	 the	 displacements	 for	 k	 =	 π a,	 which	 gives	 the	 maximum	 frequency;
alternate	 atoms	 oscillate	 in	 antiphase	 and	 the	 waves	 at	 this	 value	 of	 k	 are	 essentially
standing	waves.	The	midpoint	of	each	spring	is	at	rest	and	each	mass	therefore	behaves	as
if	held	by	two	springs	each	of	spring	constant	2K,	giving	the	frequency	2(K M)1/2	that	we
have	calculated.

Fig.	2.5	(a)	Atomic	displacements	(shown	as	transverse	for	clarity)	for	wavelength	λ	=	2a,
wavenumber	k	=	π a.	(b)	The	atomic	displacements	for	a	wave	with	λ	=	7a 4,	k	=	8π 7a,
as	given	by	the	full	curve,	are	identical	to	those	for	a	wave	with	λ	=	7a 3,	k	=	6π 7a,	as
given	by	the	broken	curve



Now	consider	the	displacements,	shown	by	the	full	curve	in	Fig.	2.5(b),	for	the	slightly
larger	value	8	π 7a	of	k	corresponding	to	the	point	A	on	Fig.	2.4.	The	displacements	can
also	be	represented	by	the	longer	wave,	shown	broken	in	Fig.	2.5(b),	for	which	|k	|	=	6π
7a;	this	corresponds	to	points	B	or	C	in	Fig.	2.4.	Thus,	points	A,	B	and	C	correspond	to
the	 same	 instantaneous	 atomic	 displacements	 as	 well	 as	 the	 same	 frequency.	 At	 B	 the
group	 velocity	 dω dk	 >	 0,	 so	 we	 have	 a	 wave	 travelling	 to	 the	 right;	 A	 and	 C	 both
represent	a	wave	travelling	to	the	left	and	are	thus	completely	equivalent.	The	k	values	of
points	A	and	C	differ	by	2π a	and	we	therefore	conclude	that	adding	any	multiple	of	2π a
to	k	does	not	alter	the	atomic	displacements	or	the	group	velocity	and	is	without	physical
significance.	We	need	only	consider	the	range	–	π a	<	k	 	π a,	which	contains	just	the	N
modes	we	expected.

Further	insight	into	what	is	special	about	the	k	values	±	π a	is	gained	by	writing	down
Bragg’s	law	(Eq.	(1.3))	for	the	one-dimensional	crystal:

or

(2.12)	

where	we	have	taken	θ	=	90°	and	d	=	a	as	appropriate	 to	waves	 travelling	along	a	one-
dimensional	 chain.	 Waves	 with	 k	 =	 ±	 π a	 will	 thus	 undergo	 Bragg	 reflection.	 The
standing	 wave	 pattern	 that	 occurs	 at	 these	 two	 k	 values	 can	 be	 pictured	 as	 occurring
because	of	Bragg	reflection	of	running	waves.

We	note	that	in	the	long-wavelength	limit,	ka	 	1,	Eq.	(2.9)	reduces	to



so	that	in	this	limit	the	waves	are	dispersionless	with	group	velocity	and	phase	velocity	(ω
k)	both	being	equal	to

(2.13)	

These	waves	are	long-wavelength	sound	waves	and	a	calculation	of	their	velocity	from
the	 macroscopic	 elastic	 properties	 of	 the	 crystal	 by	 the	 method	 used	 in	 the	 previous
section	yields	a	velocity	(cf	Eq.	(2.3))

(2.14)	

where	ρ	(=	M a)	and	C	are	respectively	the	mass	per	unit	length	and	the	elastic	modulus
of	 the	crystal.	Using	Eq.	 (2.6),	we	confirm	 that	Eqs.	 (2.13)	 and	 (2.14)	 are	 identical	 and
thus	that	our	more	general	calculation	of	lattice	vibrations	gives	the	correct	answer	in	the
long-wavelength	 limit.	Note	 that,	 since	 there	 is	 only	 one	 possible	 propagation	 direction
and	one	polarization	direction,	 the	one-dimensional	crystal	has	only	one	sound	velocity.
Given	 the	velocity	of	 sound	and	 the	 lattice	 spacing	 it	 is	possible	 to	draw	 the	dispersion
relation	 for	 our	 simple	 crystal.	 This	 illustrates	 our	 statement	 in	 the	 introduction	 to	 this
chapter	 that	many	of	 the	properties	of	 lattice	vibrations	can	be	deduced	without	detailed
knowledge	of	the	interatomic	forces.

The	 inclusion	 of	 only	 nearest	 neighbour	 forces	 in	 our	 calculation	 appears	 very
restrictive.	Although	 it	 is	a	good	approximation	 for	 the	 inert-gas	 solids,	 it	 is	not	a	good
assumption	for	many	solids.	The	effects	of	removing	this	restriction	can	be	investigated	by
using	a	model	 in	which	each	atom	 is	attached	by	springs	of	different	 spring	constant	 to
neighbours	 at	 different	 distances	 (see	 problem	 2.1).	 When	 this	 is	 done,	 many	 of	 the
features	 of	 the	 above	 calculation	 are	 preserved.	 The	 wave	 solution	 of	 Eq.	 (2.8)	 still
satisfies	the	equations	of	motion.	The	detailed	form	of	the	dispersion	relation	is	changed
but	ω	is	still	a	periodic	function	of	k	with	period	2π a	and	the	group	velocity	vanishes	at	k
=	 ±	 π a.	 There	 are	 still	N	 distinct	 normal	 modes,	 which	 can	 be	 represented	 by	 the	N
possible	 k	 values	 in	 the	 range	 –	 π a	 <	 k	 	 +	 π a.	 Furthermore	 the	 motion	 at	 long
wavelengths	corresponds	to	sound	waves	with	a	velocity	given	by	Eq.	(2.14).

2.3.2	Chain	of	two	types	of	atom
We	now	consider	the	lattice	vibrations	of	a	chain	containing	two	types	of	atom,	of	masses
M	and	m,	connected	by	identical	springs	of	spring	constant	K	as	shown	in	Fig.	2.6.	This	is
the	simplest	possible	model	of	an	 ionic	crystal,	although	 the	assumption	of	only	nearest
neighbour	forces,	implicit	in	the	model,	is	a	poor	approximation	for	ionic	crystals	because
of	the	long	range	of	the	Coulomb	interaction	between	ions.	Fortunately	the	simple	model
again	produces	the	important	qualitative	features	of	the	lattice	vibrations	of	ionic	solids.	In
section	9.1.4	we	discuss	the	changes	to	the	vibrations	when	the	long-range	effects	of	the
Coulomb	force	are	included.

Fig.	2.6	A	chain	containing	two	unequal	masses	connected	by	springs:	(a)	at	equilibrium
positions	 =	na 2;	(b)	at	displaced	positions	xn	=	na 2	+	un.	Here	a	is	the	length	of	the
unit	cell	as	indicated



To	emphasize	the	more	complicated	motions	that	are	possible	when	there	is	more	than
one	type	of	atom	we	show	in	Fig.	2.6(b)	a	configuration	in	which	the	two	types	of	atom
are	 displaced	 in	 opposite	 directions.	 Note	 that	 we	 use	 a	 to	 denote	 the	 unit	 cell	 length
(lattice	spacing)	of	the	crystal;	the	nearest	neighbour	separation	of	the	undisplaced	atoms
is	a 2.

The	equations	of	motion	can	be	written	down	in	the	same	way	as	Eq.	(2.7)	but	there	are
now	two	distinct	types	of	equation:	those	for	masses	M,

(2.15)	

and	those	for	masses	m,

(2.16)	

For	the	masses	M	we	may	assume	as	before	a	solution	of	the	form	(2.8),	i.e.

where	 	 =	 na 2	 is	 the	 undisplaced	 atomic	 position.	 There	 is	 now	 an	 extra	 unknown
quantity,	the	relative	amplitude	and	phase	of	the	vibrations	of	the	two	types	of	atom;	this
we	allow	for	by	taking	for	the	masses	m

(2.17)	

where	α	is	a	complex	number	giving	the	relative	amplitude	and	phase.

Substitution	in	Eqs.	(2.15)	and	(2.16)	then	gives

and

or,	by	cancelling	common	factors	as	before,



(2.18)	

Thus	instead	of	a	single	algebraic	equation	for	ω	as	a	function	of	k,	we	now	have	a	pair
of	 algebraic	 equations	 for	α	and	ω	 as	 functions	of	k.	As	before	 the	 fact	 that	n	 does	 not
appear	in	Eqs.	(2.18)	indicates	that	our	assumed	solution	is	of	the	correct	form.	Eqs.	(2.18)
may	be	rewritten	in	the	form

(2.19)	

from	which	by	cross-multiplication	we	obtain	a	quadratic	equation	for	ω2,

(2.20)	

with	solutions

(2.21)	

The	two	roots	are	sketched	in	Fig.	2.7.	As	there	are	two	values	of	ω	for	each	value	of	k
the	dispersion	relation	is	said	to	have	two	branches	and	the	upper	and	lower	branches	in
Fig.	2.7	 corresponds	 to	 the	+	and	−	 signs	 in	Eq.	 (2.21)	 respectively.	We	 see	 that	 chains
containing	 two	 types	 of	 atom	 share	 with	 those	 containing	 one	 the	 property	 that	 the
dispersion	relations	are	periodic	in	k	with	period	2π a	=	2π (unit	cell	length);	this	result
remains	valid	for	a	chain	containing	an	arbitrary	number	of	atoms	per	unit	cell.

If	 the	 crystal	 contains	 N	 unit	 cells	 we	 would	 expect	 to	 find	 2N	 normal	 modes	 of
vibration	as	this	is	the	total	number	of	atoms	and	hence	the	total	number	of	equations	of
motion	(Eqs.	(2.15)	and	(2.16)).	Joining	the	ends	of	the	crystal	to	form	a	ring	requires	the
atomic	displacements	 to	satisfy	 the	periodic	boundary	condition	un	=	u2N	+	n,	 leading	 to
the	same	expression	for	the	possible	k	values,	as	for	the	crystal	containing	a	single	type	of
atom.	Thus	there	are	again	exactly	N	allowed	values	of	k	in	the	range	−	π	 a	<	k	 	π	 a;
also	as	in	the	previous	section,	adding	any	multiple	of	2π	 a	to	k	does	not	alter	the	atomic
displacements,	and	we	deduce	that	all	the	allowed	motions	can	be	described	by	k	values	in
this	range.	Hence	the	two	branches	of	the	dispersion	relation	contain	2N	normal	modes	as
required.

Fig.	2.7	Normal	mode	frequencies	of	a	chain	of	two	types	of	atom.	At	A,	the	two	types	are
oscillating	in	antiphase	with	their	centre	of	mass	at	rest;	at	B,	the	lighter	mass	m	is
oscillating	and	M	is	at	rest;	at	C,	M	is	oscillating	and	m	is	at	rest



It	is	instructive	to	examine	the	limiting	solutions	of	Eq.	(2.21)	near	the	points	O,	A,	B
and	C	in	Fig.	2.7.	For	ka	 	1,	sin	( ka)	≈	 ka	and

By	substituting	these	values	of	ω	in	Eq.	(2.19)	and	using	cos( ka)	≈	1	for	ka	 	1	we	find
the	corresponding	values	of	α	as

The	first	solution	corresponds	 to	point	A	in	Fig.	2:7;	 this	value	of	a	corresponds	 to	M
and	m	 oscillating	 in	 antiphase	 with	 their	 centre	 of	 mass	 at	 rest,	 and	 the	 frequency	 is
therefore	given	by	the	spring	constant	2K	and	the	reduced	mass	M*	=	Mm (M	+	m).	The
second	solution	represents	long-wavelength	sound	waves	in	the	neighbourhood	of	point	O
in	Fig.	2.7;	 the	 two	 types	of	atom	oscillate	with	 the	 same	amplitude	and	phase,	and	 the
velocity	of	sound	is

This	sound	velocity	must	agree	with	that,	namely	(C ρ)1/2	(Eq.	(2.14)),	predicted	from
the	macroscopic	elastic	properties	of	the	crystal;	substituting	values	of	(M	+	m) a	and	Ka
2	(cf.	Eq.	(2.6),	recalling	that	the	definition	of	a	has	changed)	respectively	for	the	mass
per	unit	length	ρ	and	the	elastic	modulus	C	into	Eq.	(2.14)	confirms	that	this	is	so.

The	other	limiting	solutions	of	Eq.	(2.21)	are	for	ka	=	π,	i.e.	sin( ka)	=	1.	In	this	case



with,	from	Eq.	(2.19),	the	corresponding	amplitude	ratios	α	=	∞	or	α	=	0	respectively.	In
this	limit	the	half-wavelength	is	a,	the	spacing	between	atoms	of	the	same	kind.	In	the	first
solution	m	oscillates	and	M	 is	at	 rest	 (point	B	on	Fig.	2.7	 if	M	>	m),	 and	 the	 frequency
therefore	depends	only	on	m;	in	the	second	solution	M	oscillates	and	m	is	at	rest	(point	C
on	Fig.	2.7).

It	is	instructive	to	compare	our	present	results	with	those	of	section	2.3.1	for	a	chain	of
one	type	of	atom.	In	Fig.	2.8	we	plot	the	lower-frequency	branch	of	Fig.	2.7	in	the	region	k
<	π a	and	the	higher-frequency	branch	in	the	region	π a	<	k	<	2π a.	If	we	now	let	m	→
M	the	points	B	and	C	in	Fig.	2.8	come	together	and	we	recover	Fig.	2.4,	as	we	must.	(Do
not	forget	that	the	value	of	a	in	Fig.	2.4	is	half	that	in	Fig.	2.8.)

There	 is	 thus	 a	 certain	 arbitrariness	 about	 how	we	 assign	 k	 values	 to	 the	modes	 of	 a
diatomic	lattice.	The	most	direct	comparison	with	a	monatomic	lattice	is	obtained	with	the
assignment	 shown	 in	 Fig.	 2.8,	 where	 there	 is	 only	 one	ω	 for	 each	 k	 and	 there	 are	 2N
modes	in	the	range	−	2π a	<	k	 	2π	 a.	 It	 is	more	usual,	however,	 to	assign	the	 lowest
possible	k	to	each	mode	as	in	Fig.	2.7;	there	are	now	two	branches	with	N	modes	on	each
branch	 in	 the	 range	−π a	<	k	 	π a.	 This	 latter	 approach	 is	 the	 usual	 one	 and	 has	 the
useful	feature	that	the	range	of	k	values	is	2π (unit	cell	side),	independently	of	the	number
of	atoms	in	a	unit	cell.

Although	the	dispersion	relation	is	no	longer	given	by	Eq.	(2.21)	when	the	restriction	to
nearest	neighbour	 forces	 is	 removed,	most	of	 the	qualitative	conclusions	concerning	 the
nature	of	 the	dispersion	 relation	 that	we	have	deduced	above	 remain	valid.	 In	particular
the	dispersion	relation	has	two	branches,	both	periodic	in	k	with	period	2π a.	Only	one	of
the	branches	has	the	limiting	form	of	sound	waves	at	long	wavelength	(ω k	→	constant	as
k	→	0).	This	branch,	the	lower	branch	on	Fig.	2.7,	is	consequently	known	as	the	acoustic
branch.	The	other	branch	is	called	the	optical	branch	because	as	k	→	0	on	 this	branch
the	 vibrations	 of	 the	 two	 types	 of	 atom	 are	 in	 antiphase	 and	 the	 resulting	 charge
oscillations	 in	 an	 ionic	 crystal	 give	 a	 strong	 coupling	 to	 electromagnetic	 waves	 at	 the
frequency	of	point	A	on	Fig.	2.7.	An	estimate	of	this	frequency	is	obtained	from	Fig.	2.8
by	extrapolating	the	linear	ω k	relation	near	k	=	0	up	to	k	=	2π a;	this	is	essentially	the
method	we	used	 to	estimate	 the	frequency	of	 lattice	vibrations	at	 the	end	of	section	2.2,
and	therefore	gives	an	answer	in	the	infrared	region	of	the	electromagnetic	spectrum.

Fig.	2.8	This	shows	Fig.	2.7	replotted	for	comparison	with	Fig.	2.4;	in	the	limit	m	→	M
points	B	and	C	come	together	and	the	dispersion	relation	is	given	by	the	broken	line.	The
atomic	displacements	at	A’	are	the	same	as	those	at	point	A	on	Fig.	2.7



2.4	LATTICE	VIBRATIONS	OF	THREE-
DIMENSIONAL	CRYSTALS
We	now	comment	briefly	on	the	way	in	which	the	properties	of	lattice	vibrations	in	one-
dimensional	crystals	manifest	themselves	in	real	three-dimensional	crystals.	In	a	particular
direction	 in	 a	 three-dimensional	 crystal	 there	 are	 similar	 dispersion	 relations	 for	 lattice
vibration	waves	to	those	in	Figs.	2.4	and	2.7.	Some	measured	dispersion	relations	can	be
seen	later	in	Fig.	12.7.	On	any	branch	of	the	dispersion	relation	ω	is	a	periodic	function	of
the	wave	vector	k;	the	manner	in	which	the	periodicity	is	determined	by	the	crystal	lattice
is	explained	in	Chapter	11.

For	a	unit	cell	containing	only	one	atom	 the	major	difference	 to	Fig.	2.4	 in	 the	 three-
dimensional	 case	 is	 the	 existence	 of	 three	 branches	 of	 the	 dispersion	 relation;	 as	 the
wavenumber	|k|	→	0	each	branch	tends	to	one	of	the	three	possible	sound	waves	so	that
the	 three	 branches	 are	 all	 acoustic.	 The	 number	 of	 lattice	 modes	 associated	 with	 each
branch	is	N,	the	number	of	unit	cells	in	the	crystal,	just	as	for	one-dimensional	crystals,	so
that	 altogether	 there	are	3N	modes.	Thus,	 as	 expected,	 the	number	of	modes	 equals	 the
number	of	equations	of	motion	(one	equation	for	each	Cartesian	coordinate	of	N	atoms).

For	a	three-dimensional	crystal	with	a	primitive	unit	cell	containing	two	atoms	there	are
three	 acoustic	 branches	 and	 three	 optical	 branches.	 The	 general	 result	 for	 a	 unit	 cell
containing	s	atoms	is	three	acoustic	branches	and	3(s	–	1)	optical	branches;	the	number	of
lattice	modes	associated	with	any	branch	of	the	dispersion	relation	is	always	equal	to	the
number	of	unit	cells	so	that	the	total	number	of	modes	is	always	three	times	the	number	of
atoms	in	the	crystal.

We	will	now	indicate	briefly	the	way	in	which,	at	least	in	principle,	the	motion	of
the	atoms	in	a	three-dimensional	crystal	may	be	determined.	Since	most	of	the	mass
of	the	atom	is	in	the	nucleus	it	is	the	motion	of	the	nucleus	that	concerns	us.	The
large	mass	of	the	nucleus	enables	us	to	make	a	very	useful	approximation,	which
simplifies	the	problem	both	conceptually	and	mathematically.	This	is	the	adiabatic
approximation	and	it	asserts	that	the	motion	of	electrons	and	nuclei	can	be



decoupled	to	a	good	approximation.	Because	the	nuclei	are	more	massive	than	the
electrons	they	move	more	slowly	and	the	electrons	thus	behave	at	any	instant
almost	as	though	the	nuclei	were	stationary	in	their	instantaneous	positions.	In
other	words	we	can,	to	a	good	approximation,	think	of	an	electronic	wavefunction
that	is	an	eigenstate	for	nuclei	fixed	in	their	instantaneous	positions;	as	the	nuclei
move,	this	wavefunction	adjusts	itself	smoothly	to	the	changing	boundary
conditions,	but	remains	an	eigenstate.	Such	a	slow	perturbation	of	the	boundary
conditions	(ideally	infinitely	slow)	is	called	an	adiabatic	perturbation,	and	it	is	a
principle	of	quantum	mechanics	that	such	a	perturbation	does	not	cause	transitions
between	quantum	states	(see,	for	example,	R.	Becker,	Theory	of	Heat,	Springer,
Berlin,	1967,	pp.	170–3).	The	wavefunction	and	energy	alter	during	an	adiabatic
perturbation	but	the	quantum	state	does	not.

This	enables	us	to	split	the	calculation	of	the	energy	of	a	solid	into	two	stages.	First
we	calculate	the	electronic	energy	Ee(R1,R2,…,	RN)	for	the	nuclei	fixed	in	their
instantaneous	positions	R1,R2,…,	RN.	We	then	use	the	adiabatic	approximation
described	above	to	assert	that	Ee(R1,R2,…,	RN)	so	calculated	is	the	electronic
contribution	to	the	total	energy	of	the	system	even	when	the	nuclei	are	allowed	to
move.	The	total	energy	of	the	solid	is	then	given	by

(2.22)	

where	Pi,	Mi	and	Qi	are	the	momentum,	mass	and	charge	of	the	ith	nucleus.	The
first	term	of	Eq.	(2.22)	is	the	nuclear	kinetic	energy,	the	second	term	the
electrostatic	potential	energy	of	the	nuclei	and	the	final	term	the	electronic	energy.
We	see	that	Ee(R	1,R	2,…,	RN)	appears	like	an	extra	potential	energy	of
interaction	between	the	nuclei,

A	full	quantum	calculation	of	lattice	vibrations	proceeds	by	solving	the	Schrödinger
equation	for	the	nuclear	motions	with	a	Hamiltonian	obtained	by	replacing	the
momenta	Pi	in	Eq.	(2.22)	by	their	equivalent	quantum	mechanical	operators	−i ∇i
The	classical	treatment	proceeds	by	writing	down	Newton’s	law	for	each	of	the	N
ions	moving	in	the	potential	 (R1,R2,…,	RN)	given	by	the	final	two	terms	in	Eq.
(2.22).	In	both	treatments	progress	can	only	be	made	by	making	the	harmonic
approximation	in	which	the	potential	 (R1,R2,…,	RN)	is	expanded	as	a	Taylor
series	to	second	order	in	the	displacements	of	the	nuclei	from	their	equilibrium
positions.	The	first-order	terms	vanish	because	the	potential	is	a	minimum	in	the
equilibrium	position.	The	terms	quadratic	in	the	displacement	resemble	the
potential	energy	of	simple	harmonic	oscillators	and	lead	to	lattice	waves	with	the
properties	we	have	indicated	earlier.	The	existence	of	the	potential	 (R1,R2,…,
RN)	for	any	crystal	is	an	important	result	of	the	adiabatic	approximation;	only	in
simple	inert-gas	and	ionic	crystals	can	 (R1,R2,…,	RN)	be	written	as	the	sum	of
the	interatomic	potentials	for	pairs	of	atoms.	A	comprehensive	account	of	the



calculation	of	lattice	vibrations	in	a	three-dimensional	crystal	can	be	found	in
chapters	22	and	23	of	Ashcroft	and	Mermin.11

In	performing	the	calculations	Ee	is	normally	taken	to	be	the	ground	state	energy	of
the	electrons	although	Eq.	(2.22)	holds	also	for	an	excited	state.	The	nuclear
motions	are	not	in	general	significantly	affected	by	the	existence	of	excited
electronic	states.

2.5	PHONONS
So	 far	we	 have	 considered	 the	mechanics	 of	 lattice	 vibrations	 in	 a	 completely	 classical
way.	 To	 the	 extent	 that	 the	 normal	 modes	 we	 have	 found	 are	 truly	 harmonic	 and
independent,	 the	 transition	 to	 quantum	 mechanics	 is	 easily	 made	 by	 supposing	 that	 a
lattice	vibration	mode	of	 frequency	ω	will	behave	 like	a	simple	harmonic	oscillator	and
will	thus	be	restricted	to	energy	values

(2.23)	

Since	 Eq.	 (2.23)	 represents	 a	 set	 of	 uniformly	 spaced	 energy	 levels,	 it	 is	 possible	 to
regard	the	state	εn	as	constructed	by	adding	n	‘excitation	quanta’	each	of	energy	 ω	to	the
ground	state.	You	may	already	have	met	this	viewpoint	in	the	context	of	electromagnetic
radiation	of	angular	frequency	ω;	there	we	say	that	the	state	εn	corresponds	to	the	presence
of	n	photons	each	of	energy	 ω.	The	reality	of	such	energy-carrying	particles	 is	shown,
for	example,	in	the	photoelectric	effect.

It	is	often	convenient	to	treat	lattice	vibrations	in	an	analogous	way,	and	to	introduce	the
concept	of	phonons	of	energy	 ω	as	quanta	of	excitation	of	the	lattice	vibration	mode	of
angular	frequency	ω.	Our	normal	modes	are	plane	waves	extending	throughout	the	crystal,
and	 correspondingly	 the	 phonons	 are	 not	 localized	 particles;	 the	 uncertainty	 principle
demands	 that	 the	 position	 cannot	 be	 determined	 because	 the	 momentum	 k	 is	 exact.
However,	 just	 as	 with	 photons	 or	 electrons,	 one	 can	 construct	 a	 fairly	 localized
wavepacket	by	combining	modes	of	slightly	different	frequency	and	wavelength.	Thus,	if
we	take	waves	with	a	spread	of	k	of	order	π 10a	we	can	make	a	wavepacket	localized	to
within	about	10	unit	cells.	Such	a	wavepacket	represents	a	fairly	localized	phonon	moving
with	group	velocity	dω dk.	We	can	therefore	 treat	phonons	as	 localized	particles	within
the	 limits	 of	 the	 uncertainty	 principle.	 The	 ω(k)	 curve	 for	 lattice	 vibrations	 can	 be
interpreted,	if	both	axes	are	multiplied	by	 ,	as	a	relation	between	energy	and	momentum
for	phonons	(E	=	 ω,	p	=	 k).

Although	 it	 is	 convenient	 to	 interpret	 k	 as	 the	momentum	of	 a	 phonon	 (and	we	will
continue	to	do	so),	we	should	be	aware	that	it	is	not	the	true	kinematic	momentum.	To	see
this	 it	 is	 only	 necessary	 to	 recall	 from	 section	 2.3	 that,	 in	 a	 one-dimensional	 crystal,	 a
lattice	mode	of	wavenumber	k	can	be	equally	well	represented	by	a	wavenumber	k	+	2πn
a.	It	is	thus	not	possible	to	ascribe	a	unique	value	of	k	to	a	phonon.	We	shall	find	that	the
quantity	 k	does	possess	many	of	the	properties	of	momentum;	to	make	it	clear	that	it	is



not	the	true	momentum	it	is	often	referred	to	as	the	crystal	momentum.

Like	 photons,	 phonons	 are	 bosons	 and	 are	 not	 conserved;	 they	 can	 be	 created	 or
destroyed	in	collisions.	Thus	in	Eq.	(2.23)	n	can	take	any	value	and	can	change	with	time.
We	shall	meet	examples	of	the	usefulness	of	the	idea	of	phonons	later.	In	section	12.4	we
shall	 see	 that	 phonons	 can	be	 created	 and	 absorbed	when	neutrons	 are	 scattered	 from	a
solid,	 leading	to	a	direct	experimental	measurement	of	ω(k),	and	in	sections	2.8	and	3.3
we	 shall	 see	 that	 the	 thermal	 conductivity	 of	 insulators	 and	 the	 electrical	 resistivity	 of
metals	can	be	understood	by	using	a	model	of	a	crystal	containing	a	gas	of	phonons.

2.6	HEAT	CAPACITY	FROM	LATTICE
VIBRATIONS
In	most	 solids	 the	 energy	given	 to	 lattice	 vibrations	 is	 the	 dominant	 contribution	 to	 the
heat	 capacity;	 in	non-magnetic	 insulators	 it	 is	 the	only	contribution.	Other	contributions
arise	 in	metals	 from	 the	 conduction	 electrons,	 and	 in	magnetic	materials	 from	magnetic
ordering.

We	have	seen	in	our	examples	of	one-dimensional	crystals	that	the	coupling	together	of
atomic	 vibrations	 leads	 to	 a	 band	 of	 normal	 mode	 frequencies	 from	 zero	 up	 to	 some
maximum	value.	Calculation	of	 the	 lattice	 energy	and	heat	 capacity	of	 a	 solid	 therefore
falls	into	two	parts:	the	evaluation	of	the	contribution	of	a	single	mode,	and	the	summation
over	the	frequency	distribution	of	the	modes.

2.6.1	Energy	and	heat	capacity	of	a	harmonic
oscillator
The	 average	 energy	 	 of	 a	 harmonic	 oscillator	 and	 hence	 of	 a	 lattice	 mode	 of	 angular
frequency	ω	at	temperature	T	is	given	by

where	 εn	 is	 an	 energy	 level	 of	 the	 oscillator,	 as	 given	 by	 Eq.	 (2.23),	 and	 pn	 is	 the
probability	of	the	oscillator	being	in	this	level	as	given	by	the	Boltzmann	factor	exp	(−	εn
kBT).	Thus

A	neat	way	of	evaluating	this	expression	is	to	note	that	it	can	be	written

(2.24)	

where



(2.25)	

Z	 is	 in	 fact	 the	 partition	 function	 of	 the	 oscillator	 (Mandl2,	 Chapter	 6)	 and	 has	 been
calculated	by	noting	that	the	sum	is	a	geometric	series	with	the	ratio	of	successive	terms
exp	(−	 ω	 	kBT).	Hence,	using	Eq.	(2.24),

(2.26)	

This	mean	energy	is	readily	interpreted	in	terms	of	phonons.	For	bosons	of	energy	 ω,
which	 are	 not	 conserved,	 the	 average	 number	 present	 in	 thermal	 equilibrium	 at
temperature	T	is	given	by	the	Bose-Einstein	distribution	function

(2.27)	

as	in	the	case	of	photons	in	black-body	radiation	(Mandl2,	Chapter	10).	Multiplication	of
Eq.	(2.27)	by	 ω	gives	the	second	term	in	Eq.	(2.26)	as	the	contribution	of	phonons	to	the
energy.	The	first	term	in	Eq.	(2.26),	 ω,	is	the	zero	point	energy,	which	cannot	be	frozen
out	because	of	the	uncertainty	principle.	Fig.	2.9(a)	shows	that	the	mean	energy	tends	to
this	value	in	the	low-temperature	limit,	kBT	 	 ω.	At	high	temperatures,	kBT	 	 ω,	we	can
expand	the	exponential	to	obtain

(2.28)	

so	that	the	classical	equipartition	value	is	obtained	in	this	limit;	note	that	a	classical	one-
dimensional	harmonic	oscillator	has	 thermal	energy	kBT	not	 kBT,	 because	 the	potential
energy,	as	well	as	 the	kinetic	energy,	 is	a	quadratic	contribution	 to	 the	 total	energy.	The
heat	capacity	C	is	found	by	differentiating	Eq.	(2.26)	with	respect	to	temperature,	i.e.

(2.29)	

Fig.	2.9	(a)	Mean	energy	and	(b)	heat	capacity	of	a	simple	harmonic	oscillator	as	functions
of	temperature



where	Θ	=	 ω kB.	C	is	plotted	as	a	function	of	T	in	Fig.	2.9(b);	it	vanishes	exponentially
at	low	temperatures	and	tends	to	the	classical	value	KB	at	high	temperatures.

The	general	features	of	Fig.	2.9	are	common	to	all	quantum	systems:	the	energy	tends	to
the	zero	point	energy	at	low	temperatures	and	to	the	classical	equipartition	value	at	high
temperatures;	 the	 heat	 capacity	 tends	 to	 zero	 at	 absolute	 zero	 and	 rises	 to	 the	 classical
value	in	such	a	way	that	the	‘missing	area’	under	the	classical	heat	capacity	curve	(shaded
in	Fig.	2.9(b))	is	equal	to	the	zero	point	energy.

The	first	quantum	theory	of	the	heat	capacity	of	solids	was	due	to	Einstein.	He	made	the
simplifying	 assumption	 that	 all	3N	 vibrational	modes	 of	 a	 three-dimensional	 solid	 of	N
atoms	had	the	same	frequency,	so	 that	 the	whole	solid	had	a	heat	capacity	3N	times	Eq.
(2.29).	 Even	 this	 very	 crude	 model	 gave	 the	 correct	 limit	 at	 high	 temperatures,	 a	 heat
capacity	 of	 3NkB(=	 3R	 for	 a	 mole	 of	 atoms	 as	 first	 found	 empirically	 by	 Dulong	 and
Petit);	 this	 result	 depends	 only	 on	 the	 classical	 theorem	 of	 the	 equipartition	 of	 energy.
Einstein’s	model	also	gave	correctly	a	specific	heat	 tending	to	zero	at	absolute	zero,	but
the	 temperature	 dependence	 near	 T	 =	 0	 did	 not	 agree	 with	 experiment.	 We	 shall	 now
account	 for	 this	 discrepancy	 by	 taking	 into	 account	 the	 actual	 distribution	 of	 vibration
frequencies	 in	 a	 solid,	 using	 the	 one-dimensional	 model	 of	 section	 2.3	 as	 out	 starting
point.



2.6.2	The	density	of	states
We	saw	in	section	2.3	that,	for	a	one-dimensional	crystal	containing	N	unit	cells	of	side	a,
the	application	of	periodic	boundary	conditions	gives	the	allowed	wavenumbers

where	p	 is	 an	 integer	and	L	=	Na	 is	 the	 length	of	 the	 crystal.	The	 allowed	k	 values	 are
therefore	uniformly	distributed	in	k	at	a	density	ρR(k)	(Fig.	2.10(a))	such	that	the	number
of	values	in	the	range	k	→	k	+	dk	is	given	by

(2.30)	

These	allowed	k	values	correspond	to	running	waves,	so	that	both	positive	and	negative
k	values	are	significant.

It	is	sometimes	more	convenient	to	consider	a	chain	with	fixed	ends,	in	which	case	the
normal	modes	are	standing	waves	and	we	have	an	integral	number	of	half-wavelengths	in
the	 chain,	 so	 that	 L	 =	 nλ	 2,	 k	 =	 2π λ	=	 nπ	 L.	 The	 standing	 wave	 states	 are	 thus
uniformly	distributed	in	k	at	a	density	ρs(k)	(Fig.	2.10(b))	and	the	number	of	states	in	the
range	k	→	k	+	dk	is

Fig.	2.10	Allowed	k	values	for	(a)	running	waves	and	(b)	standing	waves	on	a	one-
dimensional	chain	of	length	L	Note	that	a	running	wave	with	k	=	0	corresponds	to	a	rigid
displacement	of	the	crystal	as	a	whole;	a	standing	wave	with	k	=	0	does	not	exist

(2.31)

The	 density	 of	 standing	 wave	 states	 is	 therefore	 twice	 that	 of	 running	 wave	 states.
However	 since	 only	positive	 k	 values	 are	 used	 for	 standing	 waves	 the	 total	 number	 of
states	within	a	range	dk	of	the	magnitude	of	k	 is	the	same	for	both	running	and	standing
waves.	The	standing	waves	have	the	same	dispersion	relation	as	running	waves,	and	for	a
chain	containing	N	atoms	there	are	exactly	N	distinct	states	with	k	values	in	the	range	0	to
π a.

To	 calculate	 an	 energy	or	 heat	 capacity	 by	 summing	over	 normal	modes	we	need	 the
density	of	states	per	unit	frequency	range	g(ω)	which	is	defined	such	that	the	number	of
modes	with	frequencies	ω	→	ω	+	dω	is	g(ω)dω.	We	can	write	g(ω)	in	terms	of	ρs(k)	by
noting	 that	 if	 there	 are	 dn	 modes	 with	 frequency	 ω	 to	ω	 +	 dω	 corresponding	 to	 the
wavenumber	range	k	to	k	+	dk	then



so	that

(2.32)	

Thus,	using	Eq.	(2.9)	for	ω(k)	for	a	chain	of	identical	atoms,	we	obtain

so	that

(2.33)	

This	density	of	states	is	plotted	in	Fig.	2.11;	we	notice	that	it	tends	to	infinity	as	the	cut-off
frequency	2(K M)1/2	is	approached	from	below,	because	the	group	velocity	dω dk	tends
to	 zero	 there.	 If	 we	 had	 ignored	 dispersion	 of	 sound	 at	 wavelengths	 comparable	 to	 an
atomic	 spacing	 we	 would	 have	 obtained	 the	 constant	 density	 of	 states	 shown	 by	 the
broken	line	in	Fig.	2.11,	for	which	the	total	number	of	states	does	not	reach	the	value	N
until	a	frequency	ω	=	π	(K M)1/2.	The	reader	should	check	that	the	same	value	of	g(ω)	as
that	of	Eq.	(2.33)	is	obtained	for	running	waves.

Fig.	2.11	Density	of	states	for	a	chain	of	identical	atoms.	The	full	curve	gives	the	true
density	of	states;	the	broken	curve	gives	the	density	of	states	obtained	if	the	dispersion	of
sound	is	ignored

The	 energy	 of	 the	 lattice	 vibrations	 is	 obtained	 by	 integrating	 the	 energy	 of	 a	 single
oscillator,	Eq.	(2.26),	over	the	distribution	of	vibration	frequencies.	Thus

(2.34)	

We	 shall	 not	 proceed	 further	 with	 our	 one-dimensional	 example	 since	 it	 cannot	 be
compared	with	experiment.	Instead	we	will	attempt	to	generalize	our	calculation	of	g(ω)



to	three	dimensions.

Our	 first	 step	will	be	 to	calculate	 the	number	of	 lattice	modes	 in	a	given	 range	of	 the
wavevector	k.	 In	 this	 book	 we	 will	 find	 that	 the	 need	 to	 count	 k	 states	 is	 a	 problem
common	to	many	types	of	wave	motion	in	crystals.	We	will	 therefore	discuss	it	 in	some
detail	here	and	refer	to	the	results	of	this	section	when	we	encounter	other	types	of	waves.
Although	 the	 choice	 of	 boundary	 conditions,	 as	 we	 discovered	 in	 the	 one-dimensional
case,	 determines	 whether	 we	 are	 working	 with	 running	 waves	 or	 standing	 waves,	 the
number	 of	 states	 in	 a	 given	 range	 of	 the	magnitude	 of	k	 is	 always	 independent	 of	 the
choice	of	boundary	conditions	for	macroscopic	crystals.

We	begin	by	considering	a	two-dimensional	crystal	of	side	L	as	shown	in	Fig.	2.12(a).	If
we	 suppose	 that	 the	 boundary	 condition	 at	 the	 edges	 of	 the	 crystal	 is	 that	 the	 vibration
amplitude	 should	vanish,	 then	 the	 lattice	vibration	waves	will	 be	 standing	waves	of	 the
form

(2.35)	

This	already	satisfies	the	boundary	condition	at	the	edges	of	the	crystal	at	x	=	0	and	y	=	0
and	will	do	so	at	the	edges	at	x	=	L	and	y	=	L	if	we	choose	kx	and	ky	such	that

(2.36)	 	and	

where	p	and	q	are	positive	integers	(changing	the	sign	of	p	or	q	does	not	give	a	different
solution).	 The	 allowed	 values	 of	 the	 wavevector	 components	 can	 be	 represented	 as	 a
lattice	 in	 a	 space	with	 axes	 kx	 and	ky	 as	 shown	 on	 Fig.	2.12(b);	 a	 space	 of	 this	 type	 is
known	as	k-space	and	extensive	use	is	made	of	this	concept	in	solid	state	physics.	We	see
that	the	allowed	k	values	lie	on	a	square	lattice	of	side	π L	in	the	positive	quadrant	of	k-
space	and	are	therefore	uniformly	distributed	throughout	this	quadrant	with	a	density	(L
π)2	per	unit	area.

This	 result	 can	be	 extended	 easily	 to	 three	dimensions.	For	 a	 crystal	 in	 the	 form	of	 a
cube	of	side	L,	generalization	of	Eq.	 (2.36)	shows	 that	 the	allowed	standing	wave	 states
are	represented	by	a	simple	cubic	lattice	of	side	π L	in	the	octant	of	a	three-dimensional
k-space	in	which	kx,	ky	and	kz	are	all	positive.	The	number	of	standing	wave	states	inside	a
volume	element	d3k	in	this	octant	of	k-space	is	therefore

Fig.	2.12



(2.37)	

where	V	 =	L3	 is	 the	volume	of	 the	 crystal	 and	ρs(k)	=	V π3	 is	 the	 density	 of	 states	 for
standing	waves	in	a	three-dimensional	crystal.

When	summing	a	property	of	the	waves	that	depends	only	one	the	magnitude	of	k	and
not	its	direction	(this	is	not	strictly	true	for	the	frequencies	of	the	lattice	vibration	modes
but	is	often	used	as	an	approximation	in	this	case),	it	is	appropriate	to	take	the	spherical
shell	between	k	and	k	+	dk	as	the	volume	element	in	k-space	as	shown	in	Fig.	2.13.	Thus

where	the	factor	 	arises	because	the	standing	wave	k	values	are	restricted	to	the	octant	of
k-space	in	which	kx,	ky	and	kz	are	all	positive.	Eq.	(2.37)	becomes

where

(2.38)	

is	a	new	density-of-states	function	defined	as	the	number	of	states	per	unit	magnitude	of	k
(in	 the	one-dimensional	case	g(k)	and	ρs(k)	 are	 identical	because	 the	volume	element	 in
the	one-dimensional	k-space	is	just	dk).



Fig.	2.13	Spherical	shell	in	k	-space	that	defines	an	increment	dk	in	the	magnitude	of	dk.
Only	the	portion	of	the	shell	in	the	octant	of	k	-space	where	kx,	ky	and	kz	are	all	positive	is
shown.	This	is	appropriate	for	standing	waves	but	for	running	waves	the	complete
spherical	shell	is	required

Eq.	(2.38)	can	also	be	derived	using	running	waves.	Running	waves	 in	a	cubic	box	of
side	L	are	obtained	by	using	the	periodic	boundary	conditions†

(2.39)	

An	 extension	 of	 the	 argument	 leading	 to	 Eq.	 (2.11)	 gives	 the	 allowed	 wavevector
components	for	the	running	waves	as

(2.40)	

where	p,	q	and	r	are	positive	or	negative	 integers.	The	allowed	k	values	 lie	on	a	simple
cubic	lattice	in	k-space	of	side	2π L.	The	density	of	points	is	therefore	only	one-eighth	of
that	for	standing	wave	boundary	conditions	so	that	the	number	of	allowed	running	wave	k
values	in	a	volume	d3k	of	k-space	is

(2.41)	

where	ρR(k)	 is	now	the	density	of	states	for	running	waves.	As	the	running	wave	points
occupy	the	whole	of	k-space	the	total	number	of	points	inside	a	spherical	shell	between	k
and	k	+	dk	is	now	4πk2dk	ρR(k),	and	Eq.	(2.38)	is	again	obtained.	Eqs.	(2.37),	(2.38)	and
(2.41)	 are	 the	 general	 results	 that	 are	 applicable	 to	 any	 wave	 motions	 in	 the	 crystal.
Although	we	have	derived	the	densities	of	states	only	for	a	crystal	in	the	shape	of	a	cube
we	 should	 not	 worry	 that	 properties	 derived	 from	 them	 might	 depend	 on	 the	 shape;
experiment	 tells	 us	 that	 the	properties	 of	 samples	much	bigger	 than	 atomic	dimensions,
when	expressed	in	a	suitable	way	(e.g.	the	heat	capacity	per	unit	mass),	are	independent	of
shape	and	size	provided	that	the	crystal	is	much	larger	than	atomic	dimensions.

Returning	to	the	lattice	vibration	problem,	if	ω	is	a	function	only	of	the	magnitude	of	k
and	dω	 is	 the	 range	 of	ω	 corresponding	 to	 the	 range	 dk	 in	 k,	 then	 from	Eq.	 (2.38)	we
obtain	the	result



(2.42)	

analogous	to	Eq.	(2.32).	The	density	of	states	g(ω)	must	be	evaluated	by	using	Eq.	(2.42)
for	each	branch	of	the	dispersion	relation	and	then	the	total	density	of	states	obtained	by
summing	 over	 all	 branches.	 The	 energy	 of	 the	 lattice	 vibrations	 can	 then	 be	 evaluated
using	Eq.	(2.34).	This	 is	a	 task	 that	 is	best	 left	 to	a	computer.	We	will	content	ourselves
with	evaluating	the	energy	in	the	limits	of	high	and	low	temperatures,	and	presenting	an
approximate	 method	 for	 interpolating	 between	 these	 limits	 that	 is	 adequate	 for	 many
purposes.

2.6.3	The	high-	and	low-temperature	limits
As	we	have	already	discussed	 in	 section	2.6.1	each	of	 the	3N	 lattice	modes	of	a	crystal
containing	N	atoms	contributes	kBT	 to	 the	energy	at	high	temperatures,	 leading	to	a	heat
capacity

(2.43)	

This	will	only	be	the	case	if	T	is	much	higher	than	the	characteristic	temperature	Θ=	 ω
kB	(as	defined	after	Eq.	(2.29))	of	all	the	lattice	modes.

At	 low	 temperatures	 only	 lattice	 modes	 of	 low	 frequency	 will	 be	 excited	 from	 their
ground	state.	These	are	the	long-wavelength	acoustic	modes	(sound	waves)	for	which	the
dispersion	relation	is	of	the	form	ω=	vsk,	where	vs	is	the	sound	velocity.	From	Eq.	 (2.42)
the	density	of	states	associated	with	this	dispersion	relation	is

(2.44)	

where,	in	general,	vs	depends	on	the	direction	of	propagation	so	that	we	must	regard	the
factor	 l 	 as	 an	 average	 over	 all	 directions.	 In	 fact	 the	 dispersion	 relation	 has	 three
acoustic	branches,	one	longitudinal	and	two	transverse,	so	that	altogether

(2.45)	

where	vL	and	vT	are	the	sound	velocities	of	the	longitudinal	and	transverse	modes	and	the
quantity	in	brackets	must	again	be	regarded	as	an	average	over	all	directions.	†

Inserting	the	density	of	states	of	Eq.	(2.45)	into	Eq.	(2.34)	 for	 the	energy	of	 the	 lattice
vibrations	gives

(2.46)	

where	Ez	 is	the	zero	point	energy.	This	expression	for	E	will	be	valid	at	sufficiently	 low
temperatures	 that	 the	 Bose-Einstein	 distribution	 function	 ensures	 that	 only	 the	 long-
wavelength	 acoustic	 modes	 make	 significant	 contributions	 to	 the	 energy.	 Changing	 the
variable	in	the	integral	in	Eq.	(2.46)	to	x	=	 ω kBT	gives



(2.47)	

The	integral	is	just	a	number,	π4 15	in	fact,	so	that	differentiating	E	with	respect	to	T	 to
obtain	the	heat	capacity	C	gives

(2.48)	

The	 lattice	 heat	 capacity	 of	 solids	 thus	 varies	 as	 T3	 at	 low	 temperatures;	 this	 is	 often
referred	 to	 as	 the	 Debye	 T3	 law.	 Fig.	 2.14	 illustrates	 the	 excellent	 agreement	 of	 this
prediction	with	experiment	for	a	non-magnetic	insulator;	we	shall	see	later	that	there	are
extra	 contributions	 to	 the	 low-temperature	 heat	 capacity	 of	 other	 substances.	 The	 heat
capacity	 vanishes	 more	 slowly	 than	 the	 exponential	 behaviour	 of	 a	 single	 harmonic
oscillator	because	the	vibration	spectrum	extends	down	to	zero	frequency.

It	 is	 interesting	 to	 note	 that	 the	 energy	 of	 black-body	 radiation	 varies	 as	 T4	 at	 all
temperatures	 (Mandl,2	Chapter	10).	This	 is	because	 the	vacuum	has	no	atomic	structure
and	 the	 dispersion	 relation	ω	=	 ck	 applies	 up	 to	 infinite	 frequency.	 Another	 difference
between	photons	and	phonons	 is	 that	photons	have	no	state	of	 longitudinal	polarization,
only	two	transverse	states.

2.6.4	The	Debye	interpolation	scheme
The	calculation	of	g(ω)	from	the	interatomic	forces	is	a	very	heavy	calculation	for	a	three-
dimensional	crystal.	Debye	obtained	a	good	approximation	to	the	resulting	heat	capacity
by	 neglecting	 the	 dispersion	 of	 the	 acoustic	waves,	 i.e.	 assuming	ω	=	 vsk	 for	 arbitrary
wavenumber.	In	a	one-dimensional	crystal	this	is	equivalent	to	taking	g(ω)	as	given	by	the
broken	 line	 on	 Fig.	 2.11	 rather	 than	 the	 full	 curve.	 In	 a	 three-dimensional	 crystal	 the
Debye	interpolation	method	consists	of	assuming	that	the	density	of	states	of	Eq.	(2.45)	is
valid	at	all	frequencies	up	to	a	cut-off	value	ωD,	the	Debye	frequency,	above	which	there
are	no	modes.	The	cut-off	frequency	is	chosen	to	make	the	total	number	of	lattice	modes
correct.	 Since	 there	 are	3N	 lattice	 vibration	modes	 in	 a	 crystal	 containing	N	 atoms,	we
choose	ωD	so	that

Fig.	2.14	Low-temperature	heat	capacity	of	KCl	plotted	so	as	to	demonstrate	the	T3	law	at
low	temperature.	The	fact	that	the	graph	of	C T	versus	T2	goes	through	the	origin
indicates	the	absence	of	a	term	linear	in	T.	(Reproduced	with	permission	from	P.	H.
Keesom	and	N.	Pearlman,	Phys.	Rev.	91,	1354	(1953))



(2.49)	

Hence,	using	Eq.	(2.45),

or

(2.50)	

By	 substituting	 the	 density	 of	 states	 of	 Eq.	 (2.45)	 and	 using	 Eq.	 (2.50),	 the	 lattice
vibration	energy	(Eq.	(2.34))	becomes

(2.51)	

The	first	term	is	the	estimate	of	the	zero	point	energy	provided	by	the	Debye	interpolation
scheme.	 The	 heat	 capacity	 is	 obtained	 by	 differentiating	 Eq.	 (2.51)	 with	 respect	 to
temperature.	Thus

(2.52)	

where	we	 have	 introduced	 the	 variable	 x	 =	 ω kBT,	 as	 in	 the	 previous	 section,	 and	we
have	defined	the	Debye	temperature	ΘD	by

(2.53)	

At	high	temperatures,	T	 	ΘD,	x	 is	always	small	and	by	expanding	the	exponential	the
integrand	reduces	to	x2	so	that	the	heat	capacity	becomes	3NkBas	already	calculated	in	the
previous	section	(Eq.	(2.43)).	At	low	temperatures,	T	 	ΘD,	the	upper	limit	of	the	integral
is	essentially	infinite;	the	integral	is	then	just	a	number	(4π4 15)	and	we	obtain	the	Debye
T3	law	in	the	form



(2.54)	

which	reduces	to	Eq.	(2.48)	if	Eqs.	(2.53)	and	(2.50)	are	used.

Fig.	2.15	Lattice	heat	capacity	of	a	solid	as	predicted	by	the	Debye	interpolation	scheme

Fig.	2.15	shows	 the	heat	capacity	between	 these	 two	 limits	as	predicted	by	 the	Debye
interpolation	formula	(2.52).	Because	it	is	exact	in	both	high-	and	low-temperature	limits
the	Debye	formula	gives	quite	a	good	representation	of	the	heat	capacity	of	most	solids,
even	 though	 the	 actual	 phonon	 density-of-states	 curve	 may	 difer	 appreciably	 from	 the
Debye	 assumption;	 this	 is	 illustrated	 for	 copper	 in	Fig.	2.16.	The	 true	 density	 of	 states,
deduced	from	ω(k)	 curves	 determined	by	neutron	 scattering	 (section	12.4),	 is	 compared
with	the	Debye	assumption	in	Fig.	2.16(a).	The	difference	arises	from	two	main	effects:
(i)	 dispersion	 of	 sound	 lowers	 the	 cut-off	 frequency	 and	 causes	 a	 rise	 in	 the	 density	 of
states	just	below	it,	as	in	our	one-dimensional	example	(Fig.	2.11);	(ii)	the	variation	of	cut-
off	wavenumber	with	crystallographic	orientation	blurs	the	sharp	cut-off	in	the	density	of
states	so	that	the	actual	maximum	frequency	is	raised	somewhat.	The	general	result,	as	in
Fig.	2.16(a),	is	that	the	maximum	frequency	can	be	quite	close	to	the	Debye	value,	but	the
centre	of	gravity	of	the	true	frequency	distribution	is	lower.	This	means	that	the	main	rise
in	the	heat	capacity	comes	at	a	lower	temperature	than	one	would	expect	from	Eq.	(2.52).
Fig.	2.16(a)	illustrates	that	the	true	density	of	states	contains	far	more	structure	than	that
obtained	using	the	Debye	interpolation	scheme.	This	is	not	too	surprising	since	it	is	clearly
impossible	 to	 contain	 all	 the	 information	 on	 the	 atomic	 structure	 and	 forces	 in	 the	 one
parameter	ΘD	that	the	Debye	theory	uses	to	distinguish	one	material	from	another.

Departures	from	the	Debye	theory	are	best	investigated	by	using	Eq.	(2.52)	backwards
to	calculate	ΘD(T)	at	each	temperature	from	the	measured	heat	capacity;†	a	non-constant
ΘD	 indicates	 departures	 from	 Debye’s	 interpolation	 scheme.	 In	 Fig.	 2.16(b)	 the	 ΘD(T)
deduced	from	the	measured	heat	capacity	is	compared	with	the	ΘD(T)	calculated	from	the
true	density-of-states	curve	of

Fig.	2.16



Fig.	2.16(a).	 It	can	be	seen	 that	 the	general	 trend	 is	very	similar;	 the	small	systematic
difference	is	attributable	to	the	fact	that	the	neutron	experiments	measured	ω(k)	at	 room
temperature,	not	at	 the	 temperature	of	 the	heat	capacity	measurements.	The	 temperature
dependence	of	ω(k)	 arises	because	of	 the	 anharmonic	 effects	 that	we	have	 ignored	 (see
section	2.7).

From	Eq.	 (2.50)	 we	 see	 that	 the	 Debye	 frequency	 and	 hence	 the	 Debye	 temperature
scale	 with	 the	 velocity	 of	 sound	 in	 the	 solid.	 Thus	 solids	 with	 low	 densities	 and	 large
elastic	moduli	have	high	ΘD.	Values	of	ΘD	for	various	solids	can	be	found	in	Table	2.1.
We	will	use	the	Debye	energy	 ωD	when	we	need	an	estimate	for	the	maximum	phonon
energy	in	a	solid.

TABLE	2.1	Values	of	Debye	temperature	ΘD	for	various	solids	obtained	from	the	low-
temperature	heat	capacity	using	Eq.	(2.54)

2.7	ANHARMONIC	EFFECTS
Any	real	crystal	resists	compression	to	a	volume	smaller	than	the	equilibrium	value	more
strongly	 than	 expansion	 to	 a	 larger	 volume.	 This	 is	 a	 consequence	 of	 the	 shape	 of
interatomic	potential	curves	such	as	 that	of	Fig.	1.23,	and	 it	 represents	a	departure	 from
Hooke’s	 law	 since	 positive	 and	 negative	 stresses	 do	 not	 produce	 strains	 of	 equal



magnitude.	 The	 harmonic	 approximation	 used	 in	 our	 previous	 discussion	 of	 lattice
vibrations	in	this	chapter	does	not	produce	this	property	since	it	amounts	to	replacing	the
interatomic	potentional	curve	by	a	parabola	fitted	at	the	minimum	(Eq.	(2.4)).	Apart	from
departures	from	Hooke’s	law,	there	are	other	properties	of	solids	that	are	not	predicted	if
the	 harmonic	 approximation	 is	 made.	 Such	 properties	 are	 classified	 as	 anharmonic
effects	and	the	higher-order	terms	in	the	potential	that	are	ignored	in	making	the	harmonic
approximation	 are	 known	 as	 anharmonic	 terms.	 An	 important	 anharmonic	 effect	 is
thermal	expansion;	for	the	symmetric	harmonic	approximation	to	the	interatomic	potential
the	mean	separation	of	the	atoms	does	not	change	as	their	amplitude	of	vibration	increases
with	increasing	temperature.

The	harmonic	approximation	is	necessary	for	the	separation	of	the	lattice	motions	into
independent	normal	modes.	Inclusion	of	higher-order	terms	in	the	Taylor	series	expansion
of	Eq.	 (2.4)	 leads	 to	coupling	of	 the	modes.	This	 coupling	can	be	pictured	as	collisions
between	 the	 phonons	 associated	 with	 the	 modes.	 The	 collisions	 limit	 the	 thermal
conductivity	 associated	 with	 the	 flow	 of	 phonons.	 In	 the	 harmonic	 approximation	 the
phonons	do	not	interact	with	each	other	and,	in	the	absence	of	boundaries,	lattice	defects
and	impurities	(which	also	scatter	phonons),	the	thermal	conductivity	is	infinite.

2.7.1	Thermal	expansion
The	volume	coefficient	of	thermal	expansion	is	defined	as†

(2.55)	

In	order	to	explain	why	β	vanishes	in	the	harmonic	limit	and	to	discuss	its	value	more
generally,	it	will	be	helpful	to	rewrite	this	as

(2.56)	

where

(2.57)	

is	the	bulk	modulus,	the	elastic	modulus	that	determines	the	volume	change	produced	by
the	application	of	pressure.	To	evaluate	the	expansion	coefficient	it	is	therefore	necessary
to	determine	the	volume	and	temperature	dependence	of	the	pressure.	The	pressure	can	be
calculated	from	the	Helmholtz	free	energy	F	=	E	−	TS,	using

(2.58)	

In	the	harmonic	approximation

(2.59)	

where	Epot	is	the	temperature-independent	potential	energy	associated	with	the	interatomic



interactions	 and	 Fmodes	 is	 the	 free	 energy	 associated	 with	 the	 lattice	 vibrations.	 The
contribution	f	of	one	lattice	mode	to	Fmodes	can	be	calculated	from	the	partition	function
(Mandl,2	chapter	6)	of	the	simple	harmonic	oscillator	(Eq.	(2.25))

(2.60)	

In	 the	 harmonic	 approximation	 the	 frequency	 of	 a	 lattice	 mode	 is	 independent	 of
volume;†	thus	f	and	hence	Fmodes	do	not	depend	on	the	volume	and	the	lattice	vibrations
do	 not	 contribute	 to	 the	 pressure	 (Eq.	 (2.58))	 and	 thus	 not	 to	 thermal	 expansion	 (Eq.
(2.56)).	Although	the	term	Epot	in	F	does	depend	on	the	volume	and	hence	contributes	to
the	 pressure,	 its	 temperature	 independence	 ensures	 that	 it	 does	 not	 contribute	 to	 the
thermal	expansion.	Thermal	expansion	thus	vanishes	in	the	harmonic	limit.

One	effect	of	anharmonic	terms	is	to	cause	the	frequencies	of	the	lattice	vibration	modes
to	depend	on	 the	volume,	and	 this	 is	 the	 important	effect	as	 far	as	 thermal	expansion	 is
concerned.	We	thus	ignore	the	coupling	of	the	modes	and	assume	that	F	is	still	of	the	form
of	Eq.	(2.59)	with	the	contribution	of	each	mode	given	by	Eq.	(2.60).	From	Eq.	(2.58)	the
pressure	is	therefore

(2.61)	

so	that	the	volume	dependence	of	the	lattice	mode	frequencies	appears	explicitly	through
the	derivative	∂ω	 	∂V.

The	 simplest	 assumption	 is	 to	 assume	 that	 the	volume	dependence	of	 all	 lattice	mode
frequencies	is	the	same	and	can	be	represented	by	the	simple	power	law	ω	∝	V−γ	which	is
more	normally	written

(2.62)	

The	 dimensionless	 exponent	 γ	 is	 known	 as	 the	 Gruneisen	 parameter	 and	 can	 be
regarded	as	a	measure	of	 the	strength	of	 the	anharmonic	effects;	we	indicate	below	how
this	 parameter	 may	 be	 calculated.	 From	 Eq.	 (2.62)	 we	 obtain	 ∂ω ∂V	 =	 –γ	 ω V	 and
inserting	this	in	Eq.	(2.61)	gives

(2.63)	

where	 the	 energy	Emodes	 of	 the	 lattice	 vibrations	 has	 been	 identified	 using	 Eq.	 (2.26).
Inserting	this	form	for	the	pressure	into	Eq.	(2.56)	and	recalling	that	Epot	does	not	depend
on	temperature,	we	obtain	the	expansion	coefficient



(2.64)	

where	 Cv	 is	 the	 lattice	 heat	 capacity	 at	 constant	 volume;	 another	 anharmonic	 effect
associated	with	the	volume	dependence	of	the	lattice	vibration	frequencies	is	to	cause	the
heat	 capacity	 measured	 at	 constant	 volume	 to	 differ	 from	 that	 measured	 at	 constant
pressure.

Since	elastic	moduli	such	as	the	bulk	modulus	depend	only	weakly	on	temperature,	Eq.
(2.64)	 predicts	 that	 the	 temperature	 dependence	 of	 the	 expansion	 coefficient	 is
approximately	 the	 same	as	 that	of	 the	heat	 capacity,	 a	 feature	 first	noted	empirically	by
Gruneisen.	 Eq.	 (2.64)	 is	 therefore	 known	 as	Gruneisen’s	 law	 and	 is	 reasonably	 well
obeyed	by	most	solids.	The	value	of	βBV CV,	which	should	be	constant	according	to	Eq.
(2.64),	is	typically	between	1	and	3	and	is	slightly	temperature-dependent.

To	estimate	a	theoretical	value	for	γ	we	note	that	in	our	simple	one-dimensional	models
of	lattice	vibrations	the	frequencies	of	the	modes	scale	as	K1/2	(see	for	example	Eqs.	(2.9)
and	(2.21)),	where	K	is	the	spring	constant	of	the	springs	joining	the	atoms.	By	curtailing
the	 Taylor	 series	 expansion	 of	 the	 interatomic	 potential	 (Eq.	 (2.4))	 at	 the	 second-order
term,	one	obtains	a	spring	constant	that	does	not	depend	on	the	mean	separation	between
the	 atoms.	 If	 however	 the	 Taylor	 series	 of	 Eq.	 (2.4)	 is	 continued	 to	 include	 the	 first
anharmonic	term

(2.65)	

then	the	spring	constant	for	vibrations	around	a	mean	separation	a′	is

(2.66)	

The	 Gruneisen	 parameter,	 which	 describes	 the	 effect	 of	 the	 anharmonic	 term	 on	 the
volume	 dependence	 of	 the	 lattice	 vibration	 frequencies,	 can	 therefore	 be	 obtained	 from
Eq.	(2.62)	as	follows:

(2.67)	

where	we	have	used	V	∝	a3,	ω	∝	K1/2	and	Eq.	(2.66)	to	determine	δK δa.	Problem	2.7	is	a
calculation	 of	 γ	 for	 an	 inert-gas	 crystal.	 The	 curvature	 of	 the	 interatomic	 potential
essentially	determines	the	elastic	moduli	of	 the	crystal	and	we	therefore	see	that	another
anharmonic	effect	is	to	cause	the	elastic	moduli	to	depend	on	volume	and	hence	pressure.

That	anharmonicity	does	not	in	fact	have	the	same	effect	on	all	modes	is	clear	from	the
existence	 of	 soft	 modes	 in	 some	 crystalline	 solids;	 a	 soft	 mode	 is	 one	 for	 which	 the
anharmonicity	causes	the	frequency	to	vanish	at	a	particular	finite	temperature.	When	this
happens	the	atomic	displacements	associated	with	the	mode	become	time-independent	and



a	 permanent	 displacement	 of	 the	 atoms	 therefore	 occurs.	 This	 typically	 happens	 for	 a
transverse	 optic	mode	 of	 zero	wavenumber	 (infinite	wavelength);	 in	 this	 case	 each	 unit
cell	 is	 subject	 to	 the	 same	 change	 (although	 the	 displacement	 of	 different	 atoms	 inside
each	cell	is	different).	The	soft	mode	thus	provides	the	mechanism	for	a	phase	transition
from	one	crystal	structure	to	another;	such	a	transition	is	referred	to	as	a	displacive	phase
transition.	 The	 measured	 variation	 of	 the	 frequency	 of	 a	 soft	 mode	 near	 a	 displacive
phase	transition	can	be	found	in	Fig.	9.12.

In	 all	 cases	 the	 high-temperature	 phase	 has	 a	 higher	 symmetry;	 as	 the	 temperature
decreases	through	the	critical	value	the	displacement	associated	with	the	soft	mode	begins
to	grow.	In	ionic	solids	the	opposite	displacement	of	positive	and	negative	ions	associated
with	a	zero-wavenumber	transverse	optic	soft	mode	causes	the	low-temperature	phase	to
possess	a	permanent	electric	polarization;	the	low-temperature	phase	is	then	ferroelectric
(see	section	9.2).

2.7.2	Phonon–phonon	collisions
The	coupling	of	normal	modes	by	the	anharmonic	terms	in	the	interatomic	forces	can	be
pictured	as	collisions	between	the	phonons	associated	with	the	modes.	A	typical	collision
process	is	shown	in	Fig.	2.17(a);	a	phonon	of	wavenumber	k1	and	frequency	ω1	coalesces
with	a	phonon	of	wavenumber	k2	and	frequency	ω2	to	produce	a	phonon	of	wavenumber
k3	 and	 frequency	ω3.	We	 show	 below	 that	 in	 a	 one-dimensional	 crystal	 this	 process	 is
described	by	the	equations

(2.68)	

(2.69)	

Fig.	2.17



These	equations	have	a	simple	physical	 interpretation;	when	multiplied	by	 	 they	 look
like	 laws	 of	 conservation	 of	 energy	 and	momentum	 for	 the	 collision	 of	 phonons.†	 It	 is
necessary	 to	 modify	 Eq.	 (2.69)	 to	 take	 account	 of	 the	 convention	 that	 phonons	 are
represented	by	wavenumbers	 in	 the	range	–	π a	<	k	<	π a.	 If	k3	 lies	outside	 this	 range
then	we	must	add	a	suitable	multiple	2π a	 to	bring	 it	back	within	 the	 range.	Eq.	 (2.69)
then	becomes

(2.70)	

where	k1,	k2	and	k3	are	all	in	the	above	range.	The	three-dimensional	generalization	of	the
±n2π a	 term	 is	given	 in	 section	11.4	 (see	also	Eq.	 (12.8)).	We	will	 find	 that	Eq.	 (2.70)
holds	 also	 for	 the	 collisions	 of	 other	 types	 of	 particle	 within	 a	 crystal,	 electrons	 for
example.

It	 is	 usual	 to	 make	 a	 distinction	 between	 processes	 for	 which	 n	 =	 0,	 called	 normal
processes,	 and	 those	 for	 which	 n	 ≠	 0,	 called	Umklapp	 processes.	 The	 two	 types	 of
process	 are	 illustrated	 in	 Figs.	2.17(b)	 and	 (c).	We	 have	 had	 to	 invent	 one-dimensional
transverse	phonons	in	order	to	satisfy	Eqs.	(2.68)	and	(2.70)	simultaneously;	for	a	single
ω(k)	curve	that	is	everywhere	concave	downwards,	two	phonons	cannot	combine	to	give
enough	momentum	for	a	phonon	of	their	combined	energy.	The	inclusion	of	the	additional
term	in	Eq.	(2.69)	to	give	Eq.	(2.70)	indicates	again	that	the	crystal	momentum	 k	 is	not



the	 true	momentum	of	 a	 phonon.	Readers	 prepared	 to	 accept	Eqs.	 (2.68)	 and	 (2.69)	 on
trust	can	omit	the	proof	given	below.

The	mechanism	for	coupling	lattice	modes	can	be	understood	if	we	recall	from
section	2.7.1	that	anharmonic	effects	cause	the	elastic	constants	of	a	crystal	to
depend	on	the	density	or,	more	generally,	the	state	of	strain	of	the	crystal;	the
velocity	of	sound	is	thus	also	affected	by	the	state	of	strain.	Hence,	if	a	sound	wave
passes	through	a	crystal	in	which	another	sound	wave	is	already	present,	its
wavefront	will	become	phase	modulated	by	this	effect.	To	see	this,	we	consider	a
wave	of	frequency	ω1	and	wavemimber	k1	which	is	phase	modulated	at	frequency
ω2	and	wavenumber	k2:

(2.71)	

where	C	specifies	the	amount	of	the	modulation.	The	phase	velocity	of	this	wave	is
obtained	by	writing	the	equation	for	a	wavefront,	or	surface	of	constant	phase,

and	differentiating	with	respect	to	time	to	obtain

so	that	the	phase	velocity	is

(2.72)	

Hence,	in	the	absence	of	the	phase	modulation,	the	phase	velocity	is	ω1 k1;	the
additional	terms	in	the	numerator	and	denominator	of	Eq.	(2.72)	represent
modulation	of	the	phase	velocity	at	a	frequency	ω2	and	wavenumber	k2,
appropriate	to	a	crystal	containing	a	sound	wave	of	this	frequency	and	wavenumber
The	strength	C	of	the	modulation	depends	on	the	amplitude	of	the	ω2,k2	wave	and
on	the	strength	of	the	anharmonieity.

To	investigate	the	implications	of	the	phase	modulation	we	assume	that	C	is
sufficiently	small	that	Eq.	(2.71)	can	be	expanded	in	powers	of	C,	i.e.

(2.73)	

The	first	term	is	our	original	ω1,	k1	sound	wave;	the	second	is	a	new	wave	of
frequency	ω3	given	by	Eq.	(2.68)	and	wavenumber	k3	given	by	Eq.	(2.69).	if
ω3(k3)	is	a	point	on	the	phonon	dispersion	curve	fhis	new	wave	can	propagate	and
the	second	term	in	Eq.	(2.73)	thus	represents	the	process	shown	in	Fig.	2.17(a).	The
third	term	in	Eq.	(2.73)	corresponds	to	a	process	in	which	a	phonon	of	wavenumber
k1	emits	a	phonon	of	wavenumber	k2	to	become	a	phonon	of	wavenumber	k3,



These	two	processes	are	therefore	the	inverse	of	each	other:	either	two	phonons
coalesce	to	form	one,	or	one	phonon	splits	into	two;	they	are	both	three-phonon
processes.	The	terms	of	order	C2	and	higher	in	Eq.	(2.73)	correspond	to	processes
in	which	four	or	more	phonons	are	involved;	we	shall	not	discuss	these	higher-
order	processes	further.	We	see	that	Eq.	(2.69)	is	more	correctly	regarded	as	a
geometrical	interference	condition	on	wave-numbers	than	as	a	conservation	law	for
momentum.

2.8	THERMAL	CONDUCTION	BY
PHONONS
When	there	 is	a	 temperature	gradient	 in	a	solid	a	 flow	of	heat	 takes	place	from	a	hotter
region	 to	 a	 cooler	 region.	 In	 an	 electrically	 insulating	 solid	 the	 most	 important
contribution	to	thermal	conduction	comes	from	the	flow	of	phonons.	Thermal	conduction
is	an	example	of	a	transport	property,	a	term	used	to	describe	any	process	in	which	the
flow	 of	 some	 quantity	 occurs.	 The	 coefficient	 such	 as	 the	 thermal	 conductivity	 which
describes	the	flow	is	known	as	a	transport	coefficient.	We	will	use	the	elementary	kinetic
theory	of	 the	 transport	 coefficients	 of	 gases	 to	 calculate	 the	 thermal	 conductivity	of	 the
phonon	gas	in	a	solid.

2.8.1	Kinetic	theory
In	 the	 elementary	 kinetic	 theory	 of	 gases	 it	 is	 shown,	 by	 assuming	 a	 constant	 average
speed	 	 for	 the	molecules,	 that	 the	steady	state	 flux	of	a	property	P	 in	 the	z	direction	 is
given	by

(2.74)	

where	 l	 is	 the	mean	 free	path,	 and	 the	 factor	 	 arises	 from	an	 angular	 average	 (see,	 for
example,	Flowers	and	Mendoza1).	In	the	simplest	case	where	P	 is	the	number	density	of
particles	the	transport	coefficient	obtained	from	Eq.	(2.74)	is	the	diffusion	coefficient	D	=	
l.	If	P	is	the	energy	density	E	then	the	flux	W	is	the	heat	flow	per	unit	area	so	that

Now	dE dT	 is	 the	specific	heat	C	per	unit	volume,	 so	 that	 the	 thermal	conductivity	 is
given	by

(2.75)	

Particle	conservation	is	not	used	anywhere	in	the	derivation	of	Eq.	(2.75)	so	it	may	be
applied	 to	 a	 phonon	 gas	 just	 as	 to	 a	 real	 gas;	 in	 fact	 it	 works	 well	 for	 a	 phonon	 gas,
because	 	 is	 almost	 a	 constant	 (the	 velocity	 of	 sound)	 for	 phonons	 of	 not	 too	 large	 a



wavenumber.	 For	 a	 real	 gas	 of	 atoms	 the	 application	 of	 Eq.	 (2.75)	 is	 not	 so
straightforward,	for	several	reasons.	First,	 	depends	on	temperature	and	so	should	really
be	included	in	the	derivative	in	Eq.	(2.74);	secondly	the	conservation	of	atoms	imposes	the
constraint	that	there	is	no	net	particle	flux;	finally,	hydrostatic	equilibrium	requires	that	the
pressure	is	uniform.	A	satisfactory	theory	of	heat	conduction	in	a	real	gas	is	therefore	quite
hard,	and	the	correct	numerical	factor	in	Eq.	(2.75)	turns	out	to	be	rather	different	from	
in	this	case.	For	phonons	the	simple	theory	is	much	better.

The	essential	differences	between	 the	processes	of	heat	conduction	 in	a	phonon	and	a
real	gas	are	illustrated	in	Fig.	2.18.	For	phonons	(Fig.	2.18(a))	the	speed	is	approximately
constant,	but	both	 the	number	density	and	 the	energy	density	are	greater	at	 the	hot	end;
heat	flow	is	primarily	due	to	phonon	flow	with	phonons	being	created	at	the	hot	end	and
destroyed	 at	 the	 cold	 end.	For	 a	 real	 gas	 (Fig.	2.18(b))	 there	 is,	 in	 contrast,	 no	 flow	 of
particles.	The	 average	velocity	 and	 the	kinetic	 energy	per	 particle	 are	 greater	 at	 the	hot
end,	but	 the	number	density	 is	greater	 at	 the	cold	end,	 and	 the	energy	density	 is	 in	 fact
uniform	(because	the	pressure	is	uniform).	Heat	flow	is	solely	by	transfer	of	kinetic	energy
from	one	particle	to	another	in	collisions;	this	is	a	rather	minor	effect	in	the	phonon	case.

Fig.	2.18	Heat	conduction	in	a	phonon	gas	and	a	real	gas

We	will	 now	 proceed	 to	 use	Eq.	 (2.75)	 to	 discuss	 the	 temperature	 dependence	 of	 the
thermal	conductivity	of	a	phonon	gas.	We	assume	that	 	is	approximately	the	velocity	of
sound	and	therefore	 temperature-independent.	The	temperature	dependence	of	 the	 lattice
heat	capacity	Cv	is	discussed	in	section	2.6.	We	must	therefore	determine	the	temperature
dependence	 of	 the	 phonon	 mean	 free	 path	 l.	 Except	 at	 very	 low	 temperatures	 this	 is
determined	by	phonon–phonon	collisions.	Since	the	heat	flow	is	associated	with	a	flow	of
phonons,	the	most	effective	collisions	for	limiting	the	flow	are	those	in	which	the	phonon
group	 velocity	 is	 reversed.	 It	 is	 the	 Umklapp	 processes	 that	 conspicuously	 have	 this
property	(Fig.	2.17),	and	these	are	therefore	important	in	limiting	the	thermal	conductivity.
However,	 the	 rigid	 distinction	 between	 normal	 and	 Umklapp	 processes	 is	 a	 somewhat
artificial	one,	since	phonons	with	k	just	less	than	π a	and	k	just	greater	than	π a	are	really
very	similar;	both	have	a	small	group	velocity	and	contribute	little	to	the	energy	flow.	The
energy	flow	is	proportional	to	the	sum	over	all	phonons	of

and	this	is	reduced	by	both	the	three-phonon	processes	shown	in	Fig.	2.17.



It	 is	however	 true	 that	 if	 there	were	no	Umklapp	processes	 the	energy	 flow	would	be
statistically	 steady	 even	 in	 the	 absence	 of	 a	 temperature	 gradient;	 consequently	 the
thermal	conductivity	would	be	infinite!	To	see	this	we	note	that	in	the	absence	of	Umklapp
processes	the	collisions	of	phonons	are	described	by	equations	like	(2.69)	(or	their	three-
dimensional	 equivalents),	 which	 express	 the	 conservation	 of	 crystal	 momentum	 in	 any
collision.	 Thus	 in	 any	 state	 where	 there	 is	 a	 flow	 of	 phonons	 the	 total	 phonon	 crystal
momentum

is	conserved	when	collisions	occur.	The	flow	of	heat	associated	with	the	phonon	flow	is
likewise	unchanged.	The	existence	of	the	Umklapp	processes	described	by	Eq.	(2.70)	with
n	≠	0	(and	its	three-dimensional	equivalent)	is	therefore	necessary	for	finite	conductivity.

2.8.2	Conduction	at	high	temperatures
At	temperatures	much	greater	than	the	Debye	temperature	ΘD	the	heat	capacity	is	given	by
the	temperature-independent	classical	result,	Eq.	(2.43).	We	would	naively	expect	that	the
rate	 of	 collisions	 of	 two	 phonons	 would	 be	 proportional	 to	 the	 phonon	 density.†	 If
collisions	involving	larger	numbers	of	phonons	are	important,	however,	then	the	scattering
rate	will	 increase	more	 rapidly	 than	 this	with	 phonon	density.	At	 high	 temperatures	 the
average	phonon	 energy	 is	 constant	 and	 the	 total	 lattice	 energy	 is	 proportional	 to	T;	 this
means	that	the	phonon	number	is	proportional	to	T.	Consequently	we	expect	a	scattering
rate	proportional	to	T	and	a	mean	free	path	l	which	varies	as	T−1.	The	thermal	conductivity
from	Eq.	 (2.75)	 should	 therefore	 vary	 as	T−1	 (or	T−x	 with	 x	 	 1	 if	 collisions	 involving
larger	numbers	of	phonons	are	important).	Fig.	2.19(a)	shows	that	the	experimental	results
do	tend	towards	this	behaviour	at	high	temperatures.

2.8.3	Conduction	at	intermediate	temperatures
Fig.	2.19(a)	also	shows	that	at	temperatures	below	about	ΘD	 the	conductivity	rises	more
steeply	with	 falling	 temperature,	 despite	 the	 fact	 that	 the	 heat	 capacity	 is	 falling	 in	 this
region.	 This	 can	 be	 understood	 if	 we	 recall	 that	 Umklapp	 processes	 are	 essential	 for
phonon–phonon	 collisions	 to	 be	 effective	 in	 limiting	 the	 thermal	 conductivity.	 We	 see
from	Fig.	2.17	that	Umklapp	processes	will	only	occur	if	 there	are	phonons	of	sufficient
energy	 to	 create	 a	 phonon	 with	 k3	 >	 π a.	 This	 requires	 phonons	 with	 an	 energy
comparable	 to	 the	Debye	 energy	 k	ΘD.	 The	 energy	 of	 the	 relevant	 phonons	 is	 thus	 not
sharply	defined	but	we	might	expect	their	number	to	vary	roughly	as	exp	(–ΘD bT)	when
T	 	 ΘD,	 where	 b	 is	 a	 number	 of	 order	 unity.	 The	 mean	 free	 path	 would	 be	 expected
therefore	to	vary	as	exp	(+	ΘD bT);	this	exponential	factor	dominates	any	low	power	of	T
in	the	thermal	conductivity,	such	as	a	factor	T3	from	the	heat	capacity.	Experimentally	the
variation	is	of	this	form	over	a	fair	range	of	temperature;	the	empirical	values	of	b	are	of
the	order	of	2	or	3.

Fig.	2.19



2.8.4	Conduction	at	low	temperatures
Because	of	 the	exponentially	decaying	population	of	 the	high-energy	phonons	necessary
for	 Umklapp	 processes	 to	 occur,	 the	 mean	 free	 path	 for	 phonon–phonon	 collisions
becomes	very	long	at	low	temperatures	and	eventually	exceeds	the	size	of	the	solid.	The
phonon	mean	free	paths	in	a	good	quality	single	crystal	are	then	limited	by	collision	with
the	specimen	surface,	and	the	flow	of	phonons	becomes	analogous	to	the	flow	of	a	real	gas
in	 the	Knudsen	regime.	The	effective	phonon	mean	free	path	 to	be	used	in	Eq.	 (2.75)	 is
then	of	the	order	of	the	specimen	diameter;	it	may	even	be	larger	if	the	specimen	surface	is
smooth	 enough	 for	 appreciable	 specular	 reflection	 of	 phonons	 to	 occur,	 since	 specular
reflection	does	not	contribute	 to	 thermal	 resistance.	 In	 this	 limit	 there	 is	no	 true	 thermal
conductivity	since	Eq.	(2.75)	predicts	a	value	that	depends	on	the	size	of	the	specimen;	the
thermal	conductance	becomes	proportional	 to	 the	cube	of	 the	specimen	diameter	 instead
of	 the	 square.	The	variation	of	effective	conductivity	with	diameter	 is	 illustrated	 in	Fig.
2.19(b).The	 only	 temperature	 dependence	 of	 the	 conductivity	 now	 comes	 from	 the	 heat
capacity,	which	obeys	the	Debye	T3	law	(Eq.	(2.54))	in	this	region.	The	dependence	of	a
transport	coefficient	on	the	shape	and	size	of	a	crystal,	which	occurs	when	the	mean	free
path	becomes	comparable	to	the	sample	dimensions,	is	known	as	a	size	effect.

If	 the	 specimen	 is	 not	 a	 perfect	 single	 crystal	 and	 contains	 imperfections	 such	 as
dislocations,	grain	boundaries	and	impurities,	then	these	will	also	scatter	phonons.	At	the
very	 lowest	 temperatures	 the	 dominant	 phonon	wavelength	 becomes	 so	 long	 that	 these
imperfections	 are	 not	 effective	 scatterers,	 so	 the	 thermal	 conductivity	 always	 has	 a	 T3



dependence	at	these	temperatures.	The	maximum	conductivity	between	the	T3	region	and
the	exp(ΘD bT)	region	is	however	largely	controlled	by	imperfections.	For	an	impure	or
polycrystalline	specimen	the	maximum	can	be	broad	and	low	(Fig.	2.19(a)),	whereas	for	a
carefully	prepared	single	crystal,	as	illustrated	in	Fig.	2.19(b),	the	maximum	is	quite	sharp
and	the	conductivity	reaches	a	very	high	value,	of	the	order	of	that	of	metallic	copper	in
which	the	conductivity	is	predominantly	due	to	the	conduction	electrons	(section	3.3).

PROBLEMS	2
2.1	Show	that	the	dispersion	relation	for	the	lattice	vibrations	of	a	chain	of	identical
masses	M,	 in	which	each	 is	 connected	 to	 its	 first	 and	 second	nearest	neighbours	by
springs	of	spring	constant	K	and	K2	respectively,	is

where	a	is	the	equilibrium	spacing.

Show	that:

(a)	this	dispersion	relation	reduces	to	that	for	sound	waves	in	the	long-wavelength
limit	(ensure	that	the	velocity	corresponds	to	that	predicted	by	the	elastic	modulus
of	the	crystal);

(b)	the	group	velocity	vanishes	at	k	=	±	π a;	and

(c)	ω	is	periodic	in	k	with	period	2π a.

Explain	 why	 you	 would	 expect	 (a),	 (b)	 and	 (c)	 to	 remain	 valid	 if	 forces	 between
neighbours	of	even	higher	order	are	included.

2.2	 We	 may	 make	 a	 model	 of	 the	 stretching	 vibrations	 of	 a	 polyethylene	 chain	
	by	considering	a	linear	chain	of	identical	masses	M	connected

by	 springs	 of	 alternating	 force	 constants	 K1	 and	 K2.	 Show	 that	 the	 characteristic
frequencies	of	such	a	chain	are	given	by

where	a	is	the	repeat	distance	of	the	chain.	(Note	that	the	relative	lengths	of	the	single
and	double	bonds	are	irrelevant;	why?)

By	obtaining	values	for	ω	as	k	→	0	and	k	→	±	π a,	sketch	the	dispersion	curves	for	the
optical	and	acoustic	branches	of	the	vibration	spectrum.

2.3	Obtain	expressions	for	the	heat	capacity	due	to	longitudinal	vibrations	of	a	chain
of	identical	atoms;

(a)	in	the	Debye	approximation;

(b)	using	the	exact	density	of	states	(Eq.	(2.33)).

With	the	same	constants	K	and	M,	which	expression	gives	the	greater	heat	capacity	and
why?



Show	 that	 at	 low	 temperatures	 both	 expressions	 give	 the	 same	 heat	 capacity,
proportional	to	T.

2.4	The	relation	between	frequency	v	and	wavelength	λ	for	surface	tension	waves	on	a
liquid	of	density	ρ	and	surface	tension	σ	is

Use	this	result	to	construct	a	‘Debye	theory’	of	the	surface	contribution	to	the	internal
energy	 of	 a	 liquid.	 Obtain	 the	 analogue	 of	 the	 Debye	 T3	 law	 for	 the	 surface
contribution	to	the	heat	capacity	of	liquid	helium	very	near	to	absolute	zero.

Given	that	σ	is	the	surface	free	energy	(F	=	E	–	TS)	how	does	σ	vary	with	temperature
near	absolute	zero?

2.5	Use	Eq.	(2.26)	 to	show	that	 in	 thermal	equilibrium	at	 temperature	T	 the	average
energy	of	a	sufficiently	long-wavelength	mode	is	kB	T.

At	 temperatures	much	 less	 than	 the	Debye	 temperature	ΘD,	 approximately	 how	many
modes	will	be	excited?

Use	your	answer	to	show	that	for	T	 	ΘD	the	heat	capacity	due	to	atomic	vibrations	is	of
order	NkB(T ΘD)3	for	a	solid	containing	N	atoms.

2.6	Estimate	the	zero	point	energy	per	atom	of	the	lattice	vibrations	of	solid	argon	(ΘD
=	92	K)	and	compare	this	with	the	measured	binding	energy	of	solid	argon	of	0.090
eV	per	atom.

2.7	 Estimate	 the	 value	 of	 Gruneisen’s	 constant	 γ	 for	 an	 inert-gas	 crystal.	 Use	 the
Lennard-Jones	form	of	the	interatomic	potential	(see	caption	to	Fig.	1.23).

2.8	From	the	data	of	Fig.	2.19(b)	estimate:

(a)	the	diameters	of	the	sapphire	rods;	and

(b)	 the	 value	 of	 b	 that	 enters	 the	 temperature	 dependence	 exp	 (ΘD bT)	 of	 the
phonon	mean	free	path	at	intermediate	temperatures.

For	sapphire	ΘD	=	1000	K,	speed	of	sound	=	104	m	s−1,	and	for	T	 	ΘD,	C	=	10−1	T3	J	m
−3	K−1.)

†	As	usual	when	solving	vibration	problems	by	means	of	complex	exponentials,	it	is	the
real	part	of	un	that	we	interpret	physically	as	the	atomic	displacement.

†	 Note	 that	 periodic	 boundary	 conditions	 are	 merely	 a	 convenient	 fiction	 in	 three
dimensions	 since	 a	 three-dimensional	 object	 cannot	 be	 deformed	 so	 as	 to	 join	 up	 on
itself	 in	all	 three	directions	at	once.	The	 fiction	 is	nevertheless	useful	since	 it	enables
running	waves	to	be	considered	as	normal	modes.

†	Although	the	vibrations	are	not	exactly	transverse	or	longitudinal	in	general,	we	can
identify	the	polarization	associated	with	a	mode	by	noting	the	polarization	it	acquires	in
a	propagation	direction	of	high	symmetry.



†	 Contributions	 to	 the	 heat	 capacity	 other	 than	 from	 the	 lattice	 vibrations	 must	 be
deducted.

†	The	linear	coefficient	of	expansion	is	β 3.

†	 This	 can	 be	 checked	 explicitly	 for	 the	 one-dimensional	 crystal	 of	 section	 2.3.1	 by
recalculating	 the	vibrations	using	 the	harmonic	 approximation	 for	 the	 situation	where
the	 crystal	 is	 subject	 to	 a	 tension	 so	 that	 the	 average	 spacing	 is	 increased	 from	a.	 A
simpler	 calculation	 which	 expresses	 the	 same	 physical	 principle	 is	 to	 show	 that	 the
frequency	of	vibration	of	a	mass	suspended	from	a	spring	is	the	same	on	the	Earth	as	on
the	Moon.

†	In	a	three-dimensional	crystal	the	wavenumbers	in	Eq.	(2.69)	must	be	replaced	by	the
wavevectors	associated	with	the	phonons.

†	 This	 is	 supported	 by	 Eq.	 (2.73)	 in	 which	 the	 ‘three-phonon’	 scattered	 waves	 are
proportional	 to	C	 and	 hence	 to	 the	 amplitude	 of	 the	wave	 causing	 the	 scattering;	 the
scattered	intensity	is	thus	proportional	to	the	intensity	of	the	scattering	wave	and	hence
to	the	number	of	phonons	associated	with	it.	The	higher-order	processes	 in	Eq.	 (2.73)
depend	on	higher	powers	of	C	and	the	resulting	scattered	intensity	therefore	depends	on
a	higher	power	of	the	phonon	density.



CHAPTER	3

Free	electrons	in	metals

Science	may	be	described	 as	 the	 art	 of	 systematic	 oversimplification.—Sir	 Karl
Popper	(1982)

3.1	INTRODUCTION
Many	solids	conduct	electricity;	 this	 is	usually	an	indication	that	 there	are	electrons	that
are	not	bound	to	atoms	but	are	able	to	move	through	the	whole	crystal.	Conducting	solids
fall	into	two	main	classes;	metals	and	semiconductors.	The	room-temperature	resistivity	of
metals	is	typically	in	the	range	10−6	to	10−8	Ω	m	and	is	usually	increased	by	the	addition
of	 small	 amounts	 of	 impurity;	 the	 resistivity	 normally	 decreases	 monotonically	 with
decreasing	 temperature.	For	pure	semiconductors	 the	room-temperature	 resitivity	 is	very
much	larger	than	that	of	metals	but	can	be	reduced	by	many	orders	of	magnitude	towards
that	of	metals	by	the	addition	of	small	amounts	of	impurity;	the	resitivity	does	not	always
vary	monotonically	with	temperature	but	semiconductors	tend	to	become	insulators	at	the
lowest	temperatures.

We	 will	 set	 aside	 until	 the	 following	 chapter	 the	 question	 of	 why	 mobile	 electrons
appear	 in	 some	 solids	 and	 not	 others;	 this	 is	 a	 very	 difficult	 question,	 particular	 if	 the
interactions	 between	 the	 electrons	 are	 considered.	 In	 this	 chapter	 we	 will	 calculate	 the
properties	of	metals	using	the	assumption	that	conduction	electrons	exist	and	consist	of	all
the	valence	electrons	from	all	the	atoms;	thus	metallic	sodium,	magnesium	and	aluminium
will	be	assumed	 to	have	one,	 two	and	 three	mobile	electrons	per	 atom	 respectively.	We
will	 describe	 a	 simple	 theory,	 the	 free	 electron	model,	which	works	 remarkably	well	 in
explaining	the	properties	of	many	metals.	Semiconductors	are	the	subject	of	Chapter	5.

3.2	THE	FREE	ELECTRON	MODEL
The	simplest	possible	approach	is	to	assume	that	the	electrons	in	a	metal	behave	like	a	gas
of	 free	 particles;	 this	 is	 the	 free	 electron	model.	 The	 removal	 of	 the	 valence	 electrons
from	an	atom	leaves	a	positively	charged	ion	core.	The	free	electron	model	assumes	that
the	charge	density	associated	with	the	ion	cores	is	spread	uniformly	throughout	the	metal
so	that	the	electrons	move	in	a	constant	electrostatic	potential.	Note	that	all	the	details	of
the	 crystal	 structure	 are	 lost	 when	 this	 assumption	 is	 made;	 in	 the	 next	 chapter	 we
investigate	the	effect	of	using	a	more	realistic	potential	for	the	positive	ion	cores.	The	free
electron	model	 also	 ignores	 the	 repulsive	 interaction	 between	 the	 conduction	 electrons.



The	model	therefore	considers	the	electrons	as	moving	independently	in	a	square	potential
well	of	finite	depth,	the	edges	of	the	well	corresponding	to	the	boundaries	of	the	metal.

Since	 the	 bulk	 properties	 of	 a	 macroscopic	 piece	 of	 metal,	 such	 as	 the	 specific	 heat
capacity	or	the	resistivity,	are	independent	of	the	shape,	we	will	for	convenience	consider
a	cube	of	metal	of	side	L	with	faces	perpendicular	to	the	x,	y	and	z	axes.	We	must	solve	the
time-independent	Schrödinger	equation

(3.1)	

for	the	wavefunctions	 	and	energies	ε	of	the	electrons	inside	the	cube;	we	have	taken	the
uniform	potential	inside	the	cube	to	be	zero.	The	wavefunctions	depend	on	the	boundary
condition	at	 the	 surfaces.	One	possibility	 is	 to	use	 	=	0	 there,	which	 leads	 to	 standing
wave	 solutions	 of	 Schrödinger’s	 equation	 within	 the	 metal.	 Although	 this	 boundary
condition	 is	 not	 strictly	 appropriate	 at	 a	 finite	 discontinuity	 in	 the	 potential,	 the
wavefunctions	decay	to	zero	within	about	one	atomic	spacing	of	the	surface	(see	problem
3.1)	 and,	 as	 this	 is	 much	 less	 than	 L,	 the	 error	 involved	 in	 using	 it	 is	 negligible.
Experimentally	 the	 bulk	 properties	 of	 metals	 do	 not	 depend	 on	 the	 condition	 of	 the
surfaces	 and,	 correspondingly,	 the	 calculated	 properties	 ought	 not	 to	 depend	 on	 the
boundary	condition	assumed.	This	feature	makes	it	attractive	to	use	a	periodic	boundary
condition,	 as	 the	 electron	 wavefunctions	 are	 then	 running	 waves.	 This	 approach	 was
adopted	 in	 the	 discussion	 of	 lattice	 vibration	 waves	 in	 Chapter	 2	 (Eq.	 (2.39))	 and	 has
essentially	the	same	consequences	here	as	there.

Thus	by	imposing	a	periodic	boundary	condition	in	the	form

(3.2)	

we	find	that	the	solutions	of	Schrödinger’s	equation	are	plane	waves

(3.3)	

where	 V	 =	 L3	 is	 the	 volume	 of	 the	 cube	 and	 the	 1 V1/2	 factor	 ensures	 that	 the
wavefunction	is	normalized.	To	satisfy	Eq.	(3.2)	the	wavevector	components	are

(3.4)	

(cf.	Eq.	(2.40)),	with	p,	q	and	r	taking	any	integer	values,	positive,	negative	or	zero.	The
wavefunction	(3.3)	corresponds	to	an	energy

(3.5)	

and	a	momentum

(3.6)	

From	section	2.6.2	we	know	that	the	number	of	allowed	k	values	inside	a	spherical	shell
of	k-space	of	radius	k	and	thickness	dk,	centred	on	the	origin	(see	Fig.	2.13),	is	given	by
Eq.	(2.38)	as



where	g(k)	 is	 the	 density	 of	 states	 per	 unit	 magnitude	 of	 k.	 We	 can	 use	 this	 result	 to
calculate	the	number	of	allowed	electron	states	per	unit	energy	range	g(ε).	To	do	this	we
must	 take	 account	 of	 the	 fact	 that	 electrons	 have	 a	 spin	 of	 .	 Each	 k	 state	 therefore
represents	two	possible	electron	states,	one	for	each	of	the	two	possible	spin	polarizations.
In	 the	absence	of	an	applied	magnetic	 field	 these	states	have	 the	same	energy.	Thus	 the
number	of	electron	states	in	the	spherical	shell	between	k	and	k	+	dk,	which	corresponds	to
energies	between	ε	and	ε	+	dε	say,	can	be	written	as

That	is

Hence,	using	Eqs.	(3.5)	and	(2.38),

(3.7)	

3.2.1	Ground	state	of	the	free	electron	gas
Since	 electrons	 have	 half-integral	 spin	 they	 are	 fermions	 and	 must	 obey	 the	 Pauli
exclusion	 principle;	 accordingly	 each	 state	 can	 accommodate	 only	 one	 electron.	 The
lowest-energy	 state	 of	N	 free	 electrons	 is	 therefore	 obtained	 by	 filling	 the	N	 states	 of
lowest	energy.	Thus	all	states	are	filled	up	to	an	energy	εF,	known	as	the	Fermi	energy,
determined	 by	 the	 requirement	 that	 the	 number	 of	 states	 with	 ε	 <	 εF,	 obtained	 by
integrating	the	density	of	states	(Eq.	(3.7))	between	0	and	εF,	should	equal	N.	Hence

(3.8)	

so	that

(3.9)	

The	occupied	states	are	those	inside	the	Fermi	sphere	in	k-space	as	shown	in	Fig.	3.1;
the	surface	of	the	sphere	is	the	Fermi	surface	and	the	radius	is	the	Fermi	wavenumber
kF.	From	Eq.	(3.5),	kF	is	given	by	εF	=	 	hence

(3.10)	

kF	may	be	evaluated	more	simply	from	the	density	of	running	wave	states	in	k-space	of
Eq.	(2.41)	by	calculating	the	radius	of	the	sphere	that	contains	(N 2)	k	states;	thus



which	reduces	to	Eq.	(3.10).

Typical	values	may	be	obtained	by	using	monovalent	potassium	metal	as	an	example;
for	potassium	the	atomic	density	and	hence	 the	valence	electron	density	N V	 is	1.402	×
1028	m−3,	so	that

Fig.	3.1	Section	through	the	Fermi	sphere	in	k-space.	The	Fermi	surface	is	the	surface	of
the	sphere	and	it	marks	the	boundary	between	the	occupied	(shaded)	and	unoccupied	k
states	at	absolute	zero	for	the	free	electron	gas

(3.11)	

(3.12)	

Thus	 εF	 is	 of	 the	 order	 of	 atomic	 ionization	 energies	 and	 kF	 is	 of	 the	 order	 of	 the
reciprocal	 of	 an	 atomic	 spacing.	 It	 is	 instructive	 to	 define	 the	 Fermi	 temperature	 or
degeneracy	temperature	TF	by	εF	=	kB	TF;	for	potassium

(3.13)	

The	significance	of	TF	is	that	it	is	only	at	a	temperature	of	this	order	that	the	particles	in
a	classical	gas	attain	kinetic	energies	as	high	as	εF;	only	at	temperatures	above	TF	will	the
free	 electron	 gas	 behave	 like	 a	 classical	 gas.	 In	 practice	 metals	 vaporize	 before	 the
temperature	TF	 is	 reached.	At	ordinary	 temperatures	where	T	 	TF	 the	 behaviour	 of	 the
free	 electron	gas	 is	 dominated	by	 the	Pauli	 exclusion	principle	 and	 is	 said	 to	be	highly
degenerate.	The	large	kinetic	energy	of	the	electrons	makes	a	significant	contribution	to
the	bulk	modulus	of	most	metals	(see	problem	3.3).	Two	other	parameters	that	we	will	use
are	 the	Fermi	momentum	 pF	 (=	 kF)	 and	 the	 Fermi	 velocity	 vF	 (=	 pF m);	 these	 are
respectively	 the	momentum	and	velocity	of	electrons	 in	states	on	 the	Fermi	surface.	For
potassium	vF	=	0.86	×	106	m	s−1.	As	the	reader	will	probably	have	guessed	from	the	use	of
so	 many	 parameters	 labelled	 Fermi,	 the	 Fermi	 surface	 plays	 an	 important	 role	 in	 the
behaviour	of	metals.

3.2.2	The	free	electron	gas	at	finite	temperature
At	a	temperature	T	the	probability	of	occupation	of	an	electron	state	of	energy	ε	is	given



by	the	Fermi	distribution	function

(3.14)	

where	μ	 is	 the	chemical	potential	 (Mandl,2	Chapter	11).	This	 is	plotted	 in	Fig.	3.2(a)	 at
absolute	zero	and	at	a	finite	temperature.	At	absolute	zero	f(ε)	is	a	step	function:	f(ε)	=	1
for	ε	<	μ	and	f(ε)	=	0	for	ε	>	μ.	Therefore	ε	=	μ	represents	the	boundary	between	occupied
and	unoccupied	states	and,	 from	our	discussion	of	 the	previous	section,	we	see	 that	μ	 is
equal	 to	 εF	 at	T	 =	 0.	The	 large	 degeneracy	 temperature	 of	 the	 free	 electron	gas	 has	 the
consequence	 that	 very	 few	 electrons	 are	 thermally	 excited;	 the	 number	 of	 electrons	 per
unit	 energy	 range	 in	 thermal	 equilibrium	 is	 given	 by	 multiplying	 the	 density-of-states
function	g(ε)	by	the	probability	f(ε,	T)	that	a	state	is	occupied

(3.15)	

This	is	plotted	in	Figure	3.2(b)	for	T	=	0	and	for	a	finite	temperature	T	 	TF.	The	number
of	electrons	in	any	range	of	energy	is	just	the	area	under	the	n(ε,	T)	graph	in	that	energy
range.	 At	 finite	 temperatures	 the	 Fermi	 distribution	 function	 (Figure	 3.2(a))	 decreases
from	1	to	0	in	a	range	of	temperature	of	order	kB	T	centred	on	ε	=	μ.	The	effect	of	the	finite
temperatures	is	therefore	to	shift	the	few	electrons	in	the	shaded	area	with	ε	<	εF	in	Figure
3.2(b)	to	the	shaded	area	with	ε	>	εF.

Fig.	3.2

3.2.3	Heat	capacity	of	the	free	electron	gas



We	can	use	Figure	3.2(b)	to	obtain	an	estimate	of	the	thermal	energy	and	hence	of	the	heat
capacity	of	the	electrons.	If	the	shaded	areas	are	approximated	as	triangles	of	height	 g(εF)
and	base	2kB	T	 then	 the	 implications	of	Figure	3.2(b)	are	 that	approximately	 g(εF)kB	T
electrons	 have	 their	 energies	 increased	 by	 about	 kB	 T,	 so	 that	 their	 thermal	 energy
(difference	in	internal	energy	from	the	value	at	T	=	0)	is

Differentiating	with	respect	to	T	gives	the	heat	capacity	at	constant	volume,

(3.16)	

where	we	have	used	the	expression	in	brackets	in	Eq.	(3.8).

To	 obtain	 the	 exact	 result	 it	 is	 necessary	 first	 to	 calculate	 the	 chemical	 potential	 at
temperature	T	using	the	T	≠	0	generalization	of	Eq.	(3.8),	namely

(3.17)	

(μ	is	the	only	unknown	in	this	equation),	and	secondly	to	evaluate	the	energy

(3.18)	

This	is	a	rather	tedious	mathematical	process;	for	T	 	TF,	μ	decreases	very	slightly	from
εF	with	increasing	T	(for	most	purposes	the	T	dependence	can	be	ignored)	and	Cv	is	given
by

(3.19)	

This	is	the	same	as	our	estimate	(3.16)	except	for	the	numerical	coefficient.

The	 free	 electron	 theory	 was	 first	 introduced	 before	 quantum	 theory,	 and	 one	 of	 the
problems	 encountered	was	 that	 the	 heat	 capacity	 of	 the	 electrons	 according	 to	 classical
equipartition	 theory	was	 NkB,	which	was	not	observed	experimentally;	 from	Eq.	 (3.19)
we	see	that	quantum	theory	solved	this	problem	by	reducing	the	expected	heat	capacity	by
a	 factor	 of	 order	T TF.	At	 room	 temperature	 the	 lattice	 heat	 capacity	 of	most	metals	 is
close	 to	 its	 classical	 equipartition	 value	 (3NkB	 for	monovalent	metals	 according	 to	 Eq.
(2.43))	 and	 therefore	 completely	 dominates	 the	 electronic	 contribution.	At	 temperatures
low	 compared	 to	 the	Debye	 temperature	 ΘD,	 however,	 the	 lattice	 contribution	 falls	 off
rapidly	 with	 the	 T3	 dependence	 of	 Eq.	 (2.54)	 and	 the	 electronic	 contribution	 becomes
important.	The	total	heat	capacity	at	low	temperatures	is	therefore	of	the	form

(3.20)	

The	constants	γ	and	β	can	be	determined	by	plotting	CV T	as	a	 function	of	T2;	 this	 is
done	 for	 potassium	 in	 Fig.	 3.3.	 We	 see	 that	 the	 two	 contributions	 are	 comparable	 at
temperatures	of	order	1	K.	Note	that	the	heat	capacity	of	potassium	chloride	in	Fig.	2.14	is



also	 plotted	 in	 this	 way	 and,	 as	 expected,	 the	 electronic	 contribution	 is	 absent	 in	 this
material.	The	value	of	 the	electronic	specific	heat	constant	γ	 for	potassium	is	given	by
the	intercept	on	Figure	3.3	as	2.08	mJ	mol−1	K−2;	 the	predicted	value	obtained	using	Eq.
(3.19)	and	the	value	of	TF	for	potassium	of	Eq.	(3.13)	is	1.67	mJ	mol−1	K	−2.	This	25	
discrepancy	is	not	surprising	in	view	of	the	very	simple-minded	approach	adopted	in	the
free	electron	model.

Fig.	3.3	Separation	of	the	electronic	and	lattice	heat	capacities	of	potassium	at	low
temperatures	(Reproduced	with	permission	from	W.	H.	Lien	and	N.	E.	Phillips,	Phys.	Rev.
133,	A1370	(1964))

The	discrepancy	 is	often	 interpreted	as	arising	because	 the	electrons	have	an	effective
mass	m*	which	differs	from	their	bare	mass	m.	Replacing	m	by	m*	in	Eqs.	(3.1)	and	(3.5)
and	carrying	through	the	calculation	as	before,	we	find	that	εF,	TF	and	vF	are	changed	by	a
factor	m m*	from	their	free	electron	values	whereas	g(εF)	and	hence	Cv	are	changed	by
m* m;	pF	and	kF	are	unchanged	(the	allowed	k	values	are	all	unchanged).	For	potassium
therefore	m* m	=	1.25;	 the	corresponding	values	for	magnesium	and	aluminium	are	1.3
and	1.48,	indicating	an	effective-mass	correction	of	similar	magnitude	for	all	metals	(note
that	for	some	metals,	for	example	zinc	and	cadmium,	m* m	<	1).

A	 theoretical	calculation	of	m*	must	 take	 into	account	 the	 true	distribution	of	positive
charge	 density	 within	 the	 crystal	 and	 must	 include	 electron–electron	 interactions.	 The
positive	 charge	 distribution	 affects	 m*	 in	 two	 distinct	 ways:	 the	 periodic	 potential
associated	with	the	stationary	ion	cores	at	their	crystalline	sites	causes	a	change	which	is
discussed	 further	 in	 the	 following	 chapter;	 in	 addition	 the	motion	 of	 an	 electron	 causes
nearby	 ion	 cores	 to	 move	 and	 this	 electron–phonon	 interaction	 also	 contributes	 to	 the
effective	mass	(this	 is	probably	the	dominant	effect	 in	 the	alkali	metals).	That	electron–
electron	interactions	change	the	effective	mass	is	evident	if	the	conduction	electrons	are
pictured	as	a	fluid.	Repulsion	of	the	fluid	by	an	electron	moving	through	it	causes	the	fluid
in	 its	 path	 to	move	 out	 of	 its	way.	 The	 resulting	backflow	 of	 fluid	 around	 the	moving
electron	is	similar	to	that	of	a	real	fluid	around	a	solid	object	moving	through	it,	for	which
hydrodynamic	 theory	predicts	an	effective	 inertial	mass	 for	 the	object	 that	 is	 larger	 than
the	bare	mass	(the	hydrodynamic	virtual	mass).



One	 problem	 with	 the	 effective-mass	 concept	 is	 that	 different	 effective	 masses	 are
required	to	explain	the	departures	of	different	properties	of	the	conduction	electrons	of	a
particular	metal	from	their	free	electron	values.	We	will	give	a	conclusive	demonstration
of	 this	 fact	 in	 section	4.4.	Nevertheless	 the	 effective	mass	 associated	with	 any	property
provides	 a	 useful	way	 of	 quantifying	 departures	 of	 that	 property	 from	 the	 free	 electron
prediction	and	is	a	concept	that	we	will	use	frequently.

3.2.4	Soft	x-ray	emission	spectrum
The	 electronic	 heat	 capacity	 of	metals	 depends	 only	 on	 the	 properties	 of	 electrons	with
energies	close	 to	 the	Fermi	energy.	The	x-ray	emission	 spectrum	provides	a	method	 for
studying	conduction	electrons	of	all	energies.	The	spectrum	is	obtained	when	electrons	are
removed	 from	 the	 K	 and	 L	 shells	 of	 the	 ion	 cores	 by	 bombardment	 with	 high-energy
electrons	from	an	external	source;	conduction	electrons	fall	into	the	vacant	states	and	soft
x-rays	are	emitted.	The	energy	 range	of	 the	x-rays	 should	 reflect	 that	of	 the	conduction
electrons;	we	would	expect	the	spectrum	to	be	roughly	similar	in	shape	to	the	n(ε,	T)	curve
of	Figure	3.2(b);	the	shape	will	not	be	identical	since	the	spectrum	depends	on	an	energy-
dependent	 transition	probability	as	well	 as	on	n(ε,	T).	 Inspection	 of	 the	 x-ray	 emisssion
spectrum	of	sodium	in	Fig.	3.4	shows	that	this	is	the	case.

Particularly	noticeable	on	Figure	3.4	is	the	sharp	cut-off	of	the	spectrum	due	to	the	sharp
decrease	of	n(ε,	T)	at	the	Fermi	surface.	The	sharpness	of	the	cut-off	is	consistent	with	the
width	kB	T	of	the	rounding	of	the	Fermi	distribution	at	room	temperature,	and	we	can	draw
a	very	important	conclusion	from	this.	It	implies	that	the	energy	levels	of	the	conduction
electrons	are	well	defined	on	an	energy	scale	of	order	kB	T,	and	by	using	the	energy–time
uncertainty	relation	this	enables	us	to	put	a	 lower	 limit	on	the	lifetime	τ	of	a	conduction
electron	state	near	the	Fermi	surface.	Denoting	the	uncertainty	in	energy	of	the	state	by	∆ε
we	have	∆ε	<	kBT	so	that

Fig.	3.4	Experimental	L	x-ray	emission	spectrum	for	sodium.	(Reproduced	with
permission	from	H.	W.	B.	Skinner,	Phil.	Trans.	R.	Soc.	239,	95	(1940))

This	 is	 a	 long	 time,	 sufficient	 for	an	electron	 in	a	 state	on	 the	Fermi	 surface	 to	 travel



about	 100	 atomic	 spacings.	One	 factor	 limiting	 the	 lifetime	of	 the	 electron	 states	 is	 the
electron–electron	 interaction,	but	 the	evidence	 from	Figure	3.4	 is	 that	 the	effects	of	 this
interaction	are	not	 sufficiently	 strong	 to	prevent	 an	 independent	particle	model	 (such	as
the	 free	 electron	 model)	 from	 being	 a	 good	 approximation.	 Although	 it	 is	 difficult	 to
locate	with	precision	the	onset	of	x-ray	emission	at	 the	 low-energy	end	of	 the	spectrum,
Figure	3.4	indicates	conduction	electrons	in	an	energy	range	greater	 than	or	equal	 to	2.5
eV.	This	is	comparable	with	the	free	electron	value	of	εF	for	sodium	of	3.23	eV.

3.2.5	Metallic	binding
The	 reduction	 in	 kinetic	 energy	 associated	 with	 the	 derealization	 of	 the	 conduction
electrons	 contributes	 to	 the	 binding	 energy	 of	metals.	 To	 illustrate	 this	we	 consider	 the
one-dimensional	free	electron	metal	of	Fig.	3.5(b)	constructed	structed	by	assembling	the
very	special	(and	unrealistic)	‘atoms’	shown	in	Figure	3.5(a).	Each	atom	consists	of	one
electron	 in	 an	 infinite	 square	 potential	 well	 of	 width	 a;	 the	 ground	 state	 energy	 of	 an
electron	 in	 such	 an	 atom	 is	h2 8ma2	 (measured	 from	 the	 bottom	of	 the	well).	 The	 five
lowest-energy	 wavefunctions	 of	 the	 one-dimensional	 free	 electron	 metal	 of	 length	 5a
formed	from	five	such	atoms	are	shown	in	Figure	3.5(b)	and	we	can	see	that	the	highest	of
these	has	the	same	wavelength	(and	hence	the	same	energy)	as	the	ground	state	of	a	single
‘atom’.	The	mean	energy	of	the	five	electrons	is	therefore	lowered	by	forming	the	crystal
even	without	allowing	for	electron	spin,	which	permits	two	electrons	in	each	energy	level.
This	quantum	mechanical	effect,	the	reduction	of	kinetic	energy	by	delocalizing	electrons,
is	an	important	contribution	to	metallic	binding;	though	in	a	real	metal	the	changes	in	the
electrostatic	potential	energy	of	the	electrons	and	ions	are	of	comparable	importance.

Fig.	3.5

3.3	TRANSPORT	PROPERTIES	OF
THE	CONDUCTION	ELECTRONS



In	the	presence	of	an	electric	field	or	a	temperature	gradient	the	occupation	probability	of
the	electron	states	is	no	longer	given	by	the	Fermi	distribution	function,	Eq.	(3.14);	instead
the	 distribution	 is	 such	 as	 to	 give	 rise	 to	 the	 transport	 of	 electric	 charge	 and	 of	 heat
respectively.	 The	 transport	 coefficients	 that	 describe	 these	 flows	 are	 the	 electrical	 and
thermal	conductivities,	which	we	now	proceed	to	calculate.

3.3.1	The	equation	of	motion	of	the	electrons
In	the	absence	of	collisions	we	take	the	electrons	to	obey	the	acceleration	equation

(3.21)	

where	v	is	the	electron	velocity,	E	the	electric	field	and	B	the	magnetic	field.	This	is	just
Newton’s	law	for	particles	of	mass	me	and	charge	−e.	We	use	an	effective	mass	me	in	the
belief	 that	 by	 so	 doing	we	will	 take	 account	 of	 some	of	 the	 factors	 ignored	 in	 our	 free
electron	 model;	 we	 show	 in	 Section	 4.4	 that	 this	 takes	 account	 for	 example	 of	 the
interaction	 of	 the	 electrons	 with	 the	 periodic	 potential	 of	 the	 stationary	 ion	 cores.	 In
Section	4.4	we	explain	why	 the	effective	mass	me	 that	appears	 in	Eq.	 (3.21)	 is	 different
from	the	heat	capacity	effective	mass	m*	discussed	in	section	3.2.3.

The	use	 of	 the	 classical	 equation	of	motion	of	 a	 particle	 to	 describe	 the	 behaviour	 of
electrons	 in	plane	wave	states	 (Eq.	 (3.3)),	which	 extend	 throughout	 the	 crystal,	 requires
justification.	A	particle-like	entity	can	be	obtained	by	superposing	the	plane	wave	states	to
form	a	wavepacket;	it	is	possible	to	show	that	Eq.	(3.21)	is	the	equation	of	motion	of	the
wavepacket.	The	velocity	of	the	wavepacket	is	the	group	velocity	of	the	waves.	Thus

(3.22)	

where	we	have	used	Eq.	(3.5)	with	m	replaced	by	me;	Eq.	(3.22)	gives	 the	usual	 relation
between	velocity	and	momentum	p	for	a	particle	of	mass	me.

To	behave	like	a	classical	particle	our	wavepacket	ought	to	have	reasonably	well	defined
position	and	momentum.	To	obtain	a	wavepacket	localized	in	position	to	about	10	atomic
spacings	 requires	 the	 use	 of	 a	 wavenumber	 range	 of	 order	 kF 10	 in	 the	 plane	 wave
superposition;	 this	 follows	because	kF	 is	of	 the	order	of	 an	 inverse	atomic	 spacing.	The
uncertainty	 in	 momentum	 for	 such	 a	 wavepacket	 is	 therefore	 of	 order	 pF 10.	 For	 Eq.
(3.21)	to	be	valid	we	might	expect	that	the	wavepacket	would	have	to	be	smaller	than	both
the	 length	 scale	 associated	 with	 the	 variation	 of	 E	 and	 B	 (the	 wavelength	 if	 we	 are
considering	 electromagnetic	 waves)	 and	 the	 mean	 free	 path	 between	 collisions	 for	 the
electrons.	A	lower	limit	on	the	size	of	the	wavepacket	is	provided	by	the	requirement	that
it	should	be	much	larger	than	an	atomic	spacing	in	order	that	the	interaction	of	the	electron
with	the	ion	cores	can	be	described	by	an	effective	mass.

In	 the	absence	of	an	applied	magnetic	 field,	Eq.	 (3.21)	predicts	 that	a	dc	electric	 field
will	 cause	 a	 constant	 acceleration	 of	 the	 electrons,	 giving	 a	 steadily	 increasing	 electric
current.	 This	 does	 not	 happen	 in	 practice	 because	 the	 electrons	 suffer	 collisions	 with



thermal	vibrations	of	the	ion	cores†	and	with	imperfections	in	the	crystal	such	as	impurity
atoms.	We	allow	for	collisions	by	modifying	Eq.	(3.21)	to

(3.23)	

The	effect	of	the	additional	term	is	to	cause	v	to	decay	exponentially	to	zero	with	a	time
constant	τ	on	removal	of	the	applied	fields;	v	in	Eq.	(3.23)	must	therefore	be	interpreted	as
the	 drift	 velocity	 of	 the	 electrons,	 that	 is	 the	 additional	 velocity	 associated	 with	 the
departure	from	the	thermal	equilibrium	state	given	by	the	Fermi	distribution	function.	Eq.
(3.23)	 then	 says	 that	 the	electron	distribution	 relaxes	 to	 the	Fermi	distribution	when	 the
fields	 are	 removed.	 If	 we	 suppose	 that	 an	 electron	 loses	 all	 its	 drift	 velocity	 in	 each
collision	then	τ	is	the	mean	time	between	collisions;	in	any	case	it	is	a	quantity	of	the	same
order	of	magnitude.

3.3.2	The	electrical	conductivity
In	the	presence	of	a	dc	electric	field	only,	Eq.	(3.23)	has	the	steady	state	solution

(3.24)	

The	constant	of	proportionality	between	 |v|	and	 |E|	 is	known	as	 the	mobility	μe	of	 the
electrons.	Thus

(3.25)	

The	electric	current	density	j	is	n(−e)v	where	n	=	N V	is	the	electron	density.	Hence

(3.26)	

which	is	Ohm’s	law	with	an	electrical	conductivity

(3.27)	

In	a	perfect	crystal	of	a	pure	metal	the	dominant	collisions	of	the	conduction	electrons
are	 with	 thermally	 excited	 lattice	 vibrations;†	 the	 collision	 can	 be	 pictured	 as	 the
scattering	of	 an	 electron	by	 a	phonon,	 a	 picture	 that	 is	 pursued	 further	 in	 section	3.3.4.
This	 electron–phonon	 scattering	 gives	 a	 temperature-dependent	 collision	 time	 τph(T)
which	tends	to	infinity	as	T	→	0.	In	a	real	metal	the	electrons	also	collide	with	impurity
atoms,	 vacancies	 (missing	 atoms)	 and	 other	 structural	 defects;	 this	 results	 in	 a	 finite
scattering	time	τ0	even	at	T	=	0.	At	finite	temperature	the	collision	rate	for	electrons	in	a
slightly	 imperfect	 crystal	 is	 obtained	 to	 a	 good	 approximation	 by	 addition	 of	 the	 zero-
temperature	rate	1 τ0	for	scattering	by	imperfections	to	the	phonon	scattering	rate	l τph(T)
for	a	perfect	crystal.	Thus



(3.28)	

This	assumption	is	valid	if	the	two	scattering	mechanisms	operate	independently,	that	is
if	 the	 scattering	 by	 imperfections	 is	 temperature-independent	 and	 there	 are	 insufficient
imperfections	 to	 affect	 significantly	 the	 phonon	 scattering.	 Eq.	 (3.28)	 implies	 that	 the
electrical	resistivity	ρ	(=	1 σ)	can	be	written	as	the	sum	of	two	terms,

(3.29)	

Eq.	 (3.29)	 explains	Mattheisen’s	 rule,	 illustrated	 for	 sodium	 in	 Fig.	 3.6,	 that	 the
resistivity	versus	 temperature	graphs	 for	different	 specimens	 of	 the	 same	material	 differ
only	 by	 a	 displacement;	 the	 displacement	 is	 associated	 with	 the	 variation	 in	 ρ0	 due	 to
different	imperfection	densities.	The	temperature-dependent	part	of	the	resistivity	ρ1(T)	is
known	as	the	 ideal	resistivity	and	ρ0	 is	called	the	residual	resistivity;	all	but	 the	purest
specimens	 effectively	 attain	 their	 residual	 resistivity	 on	 cooling	 to	 the	 boiling	 point	 of
liquid	helium,	4.2	K.	The	ratio	of	room-temperature	resistivity	to	the	residual	resistivity	is
known	as	 the	residual	resistance	ratio	and	 it	can	be	as	high	as	106	 for	highly	purified,
annealed	single	crystals.

Fig.	3.6	Resistivity–temperature	curves	for	sodium	specimens	of	differing	purity.
(Reproduced	with	permission	from	D.	K.	C.	Macdonald	and	K.	Mendelssohn,	Proc.	R.
Soc.	A	202,	103	(1950))

The	room-temperature	conductivity	of	sodium	is	2.0	×	107	Ω−1	m−1	so	that	the	residual
conductivity	of	the	purest	specimen	of	Figure	3.6	is	5.3	×	1010	Ω−1	m−1;	we	can	deduce
estimates	of	the	collision	time	τ	from	these	data.	Taking	n	=	2.7	×	1028	m−3,	me	=	m	and
using	Eq.	(3.27)	gives

(3.30)	

The	free	electron	Fermi	velocity	of	sodium	is	1.1	×	106	m	s−1	so	that	the	corresponding
electron	mean	 free	paths	are	29	nm	at	 room	 temperature	and	77	μm	at	T	 =	 0;	 these	 are
much	 longer	 than	 the	 interatomic	 spacing,	 confirming	 that	 the	 electrons	 do	 not	 collide
with	the	atoms	themselves.	We	postpone	until	section	3.3.4	a	discussion	of	the	temperature



dependence	of	the	ideal	resistivity.

3.3.3	The	thermal	conductivity
Because	of	heat	transport	by	the	conduction	electrons,	the	thermal	conductivity	of	metals
is	 normally	 much	 greater	 than	 that	 of	 non-metals	 (but	 see	 section	 2.8.4).†	 Electrons
coming	 from	a	 hotter	 region	 of	 the	metal	 carry	more	 thermal	 energy	 than	 those	 from	a
cooler	 region,	 resulting	 in	 a	 net	 flow	 of	 heat.	 This	 is	 also	 the	 mechanism	 of	 heat
conduction	in	a	gas	and,	as	in	discussing	the	conduction	by	phonons	in	section	2.8,	we	will
use	the	elementary	kinetic	theory	result	(Eq.	(2.75))	for	the	thermal	conductivity.	Thus

(3.31)	

where	Cv	is	the	specific	heat	per	unit	volume	and	l	is	the	mean	free	path.	We	have	taken	vF
as	the	mean	speed	of	the	electrons	responsible	for	thermal	conductivity	since	only	electron
states	within	about	kB	T	of	εF	change	their	occupation	number	as	the	temperature	varies.
The	mean	free	path	of	these	electrons	is	vF	τ	and	therefore	using	εF	=	 me 	and
Eq.	(3.19)	for	Cv	we	find

(3.32)	

It	 is	 interesting	 to	 note	 that	 the	 final	 result	 in	 Eq.	 (3.32)	 is	 also	 true	 in	 order	 of
magnitude	for	a	classical	electron	gas:	the	specific	heat	is	larger	by	a	factor	of	order	(TF
T)	but	the	square	of	the	thermal	velocity	is	smaller	by	the	same	factor.

3.3.4	The	Wiedemann–Franz	law	and	the
temperature	dependence	of	the	electrical	and
thermal	conductivities
The	combination	nτ me	appears	in	both	Eqs.	(3.27)	and	(3.32)	so	that	by	dividing	them	we
find	 that	 the	 ratio	of	 electrical	 and	 thermal	 conductivities	 is	 independent	of	 the	electron
gas	parameters.	We	obtain

(3.33)	

which	 is	 known	 as	 the	Wiedemann–Franz	 law.	 The	 ratio	K σT	 is	 called	 the	Lorenz
number	and	is	denoted	by	L.	For	copper	at	0°C,	L	=	2.23	×	10−8	W	Ω	K−2,	 so	 that	 the
Wiedemann–Franz	 law	 works	 reasonably	 well,	 as	 indeed	 it	 does	 for	 most	 metals	 at
temperatures	of	 this	order.	Fig.	3.7	 shows	 a	 plot	 of	 the	Lorenz	number	 for	 sodium	as	 a
function	of	temperature	from	0	to	100	K;	we	see	that	L	is	significantly	below	the	predicted
value	 over	 most	 of	 this	 temperature	 range	 although	 it	 does	 tend	 towards	 the	 predicted
value	 in	 the	 T	→	 0	 limit	 where	 collisions	 with	 impurities	 are	 the	 dominant	 scattering



mechanism.

The	breakdown	of	the	Wiedemann–Franz	law	results	from	the	failure	of	our	assumption
that	 the	 collision	 times	 limiting	 the	 flow	 of	 electric	 and	 heat	 currents	 are	 the	 same.	 To
explain	 this	we	must	 investigate	 the	collision	processes	 in	more	detail,	and	we	begin	by
considering	 the	 change	 in	 occupation	 of	 electron	 states	 in	 k-space	 associated	 with	 the
current-carrying	states.

Fig.	3.7	Lorenz	number	L	=	K σ	T	for	sodium	at	low	temperatures.	(Reproduced	with
permission	from	R.	Berman	and	D.	K.	C.	Macdonald,	Proc.	R.	Soc.	A	209,	368	(1951))

From	 Eqs.	 (3.22)	 and	 (3.24)	 the	 drift	 velocity	 v	 associated	 with	 an	 electric	 current
corresponds	to	a	change	δk	in	the	wavevector	of	each	electron,	where

(3.34)	

The	electric-current-carrying	state	therefore	corresponds	to	a	shift	by	this	amount	of	the
whole	electron	distribution	in	k-space,	that	is	of	the	whole	Fermi	sphere,	as	shown	in	Fig.
3.8;	 the	 blurring	 of	 the	 Fermi	 surface	 due	 to	 a	 finite	 temperature	 makes	 no	 essential
difference	to	the	rearrangement	of	the	electrons	in	k-space	associated	with	a	finite	electric
current.	 The	 displacement	 shown	 on	 Figure	 3.8(b)	 corresponds	 to	 an	 electric	 current
flowing	 in	 the	 –x	 direction	 since	 there	 are	 more	 electrons	 with	 momentum	 in	 the	 +x
direction	 than	 the	 –x	 direction.	 For	 a	 current	 density	 of	 107	 A	 m−2	 (about	 the	 largest
normally	used),	the	electron	drift	velocity	is

for	a	 typical	electron	density	in	a	metal;	 this	 is	about	10−8vF,	 so	 the	displacement	of	 the
Fermi	sphere	in	Figure	3.8(b)	is	actually	minute.	For	the	current	to	decay	to	zero	the	Fermi
sphere	must	relax	to	the	unshifted	state	of	Figure	3.8(a),	and	the	type	of	collision	that	is
effective	in	achieving	this	is	one	in	which	an	electron	is	removed	from	the	right	side	of	the
Fermi	sphere	and	added	to	the	left	side;	typical	transitions	are	shown	in	Figure	3.8(b)	and
it	 can	be	 seen	 that	 they	 involved	a	 change	 in	 the	k	 vector	 of	 the	 electron	of	magnitude
comparable	 to	 the	diameter	of	 the	Fermi	sphere,	 that	 is	a	change	in	momentum	of	order
2pF.

Figure	3.8(c)	shows	the	electron	distribution	in	the	presence	of	a	temperature	gradient.



Because	of	the	finite	temperature	there	will	be	some	vacant	states	(open	circles)	below	the
Fermi	surface	and	some	occupied	states	(full	circles)	above.	If	the	specimen	is	hotter	at	the
left-hand	 end,	 electrons	 moving	 from	 the	 left	 (i.e.	 those	 with	 kx	 >	 0)	 will	 have	 a
distribution	corresponding	to	a	higher	temperature	than	those	coming	from	the	right	(i.e.
those	with	kx	<	0).	This	is	the	situation	shown	in	Figure	3.8(c),	where	the	Fermi	surface	is
more	blurred	for	kx	>	0	than	for	kx	<	0.	Note	that	the	blurring	shown	is	much	exaggerated;
the	total	blurring	at	room	temperature	is	of	order	1	 	of	kF,	and	the	difference	in	blurring
on	the	two	sides	due	to	a	temperature	gradient	corresponds	to	the	temperature	difference	in
a	mean	free	path	(typically	100	nm	at	room	temperature).	Effective	scattering	processes	in
limiting	thermal	conductivity	are	ones	in	which	the	blurring	of	the	Fermi	surface	is	evened
out;	 although	 this	 can	 be	 achieved	 in	 scattering	 events	 involving	 a	 large	 momentum
change	 such	 as	 those	 shown	 in	 Figure	 3.8(b),	 processes	 involving	 a	 small	 momentum
change	as	indicated	in	Figure	3.8(c)	are	also	effective.	Since	more	scattering	processes	are
effective	 in	 limiting	 thermal	 conduction	 the	 relaxation	 time	 for	 thermal	 conductivity	 is
shorter	and	the	Lorenz	number	falls	below	the	Wiedemann–Franz	value.

Fig.	3.8



Fig.	3.9	Scattering	of	an	electron	by	(a)	phonon	absorption	and	(b)	phonon	emission.
Straight	lines	indicate	electrons,	wavy	lines	phonons.	The	initial	and	final	wavenumbers	of
the	electron	are	ki	and	kf	respectively;	q	is	the	phonon	wavenumber.	In	each	case	the
equation	for	conservation	of	momentum	is	given

To	 investigate	 this	 further	 and	 to	 explain	 the	 temperature	dependence	of	 the	electrical
and	 thermal	 conductivities	 we	 must	 investigate	 the	 scattering	 of	 electrons	 by	 lattice
vibrations;	 this	 can	 be	 pictured	 as	 collisions	 between	 electrons	 and	 phonons	 with
conservation	 of	 energy	 and	 momentum.†	 The	 two	 most	 important	 processes	 are	 the
absorption	and	emission	of	a	phonon	by	an	electron	as	shown	in	Fig.	3.9;	the	changes	in
momentum	 and	 energy	 of	 the	 electron	 are	 equal	 to	 the	 momentum	 and	 energy	 of	 the
absorbed	 or	 emitted	 phonon.	 The	 maximum	 energy	 change	 of	 an	 electron	 in	 such	 a
process	is	therefore	the	maximum	phonon	energy,	which	is	of	order	kBΘD	where	ΘD	is	the
Debye	temperature	and	is	of	the	order	of	room	temperature	for	a	typical	metal	(Table	2.1).
The	maximum	energy	change	of	an	electron	is	therefore	much	less	than	the	energy	kB	TF
of	an	electron	on	the	Fermi	surface;	since	a	colliding	electron	must	scatter	 into	a	vacant
state	 and	 vacant	 states	 occur	 only	 close	 to	 the	 Fermi	 surface,	 this	 has	 the	 important
consequence	that	only	electrons	close	to	the	surface	can	be	scattered	by	phonons.

At	high	temperatures	(T	 	ΘD)	a	typical	phonon	has	energy	kBΘD	and	thus	a	wavelength
of	 the	 order	 of	 an	 interatomic	 spacing;	 since	 electrons	 on	 the	 Fermi	 surface	 also	 have
wavelengths	of	this	order,	we	see	that	typical	phonons	have	sufficient	momentum	to	cause
the	 large-momentum-transfer	 collisions	 of	 Figure	 3.8(b)	 that	 are	 required	 to	 produce
electrical	 resistance.	 Consequently	 the	 relaxation	 times	 for	 electrical	 and	 thermal
resistance	are	similar	and	the	Wiedemann–Franz	law	is	well	obeyed.	The	actual	electron
mean	 free	 path	 lph	 is	 inversely	 proportional	 to	 the	 phonon	 number.	 Since	 the	 lattice
vibration	 energy	 at	 high	 temperature	 is	 3NkB	T	 and	 the	 phonon	 energy	 is	 constant,	 the
phonon	number	is	proportional	to	T.	The	electron	scattering	time	τph	is	therefore	inversely
proportional	to	T,	and	inserting	this	into	Eq.	(3.29)	for	the	ideal	resistivity	we	find

(Fig.	 3.10(a)).	 Similarly,	 inserting	 τph	∝	 T−1	 into	 Eq.	 (3.32)	 predicts	 that	 the	 thermal
conductivity	 of	 metals	 is	 independent	 of	 temperature	 at	 high	 temperatures	 (Figure
3.10(b)).

At	low	temperatures	(T	 	ΘD)	the	average	phonon	energy	is	of	order	kB	T,	and	since	the



lattice	 vibration	 energy	 is	 proportional	 to	 T4	 (Eq.	 (2.47))	 the	 phonon	 number	 is
proportional	to	T3.	Phonons	of	energy	kB	T	have	just	the	energy	required	for	the	scattering
events	 shown	 in	 Figure	 3.8(c)	 that	 are	 effective	 in	 producing	 thermal	 resistance;	 the
corresponding	mean	 free	 path	 lth	 and	 the	 scattering	 time	 τth	 that	 determine	 the	 thermal
conductivity	are	therefore	just	inversely	proportional	to	the	phonon	number,	so	that

Thus	 from	 Eq.	 (3.32)	 we	 expect	 that	 the	 phonon-limited	 thermal	 conductivity	 will
exhibit	the	temperature	dependence	K	∝	T−2	for	T	 	ΘD	(Figure	3.10(b)).

In	the	case	of	electrical	resistance,	however,	it	is	the	momentum	of	a	typical	phonon	that
is	important.	Since	a	phonon	of	energy	kBΘD	has	a	momentum	of	order	pF,	a	phonon	of
energy	kB	T	has	momentum	of	order	(T ΘD)pF	and	for	T	 	ΘD	 this	is	too	small	to	cause
the	 large-momentum-change	 collisions	 of	 Figure	 3.8(b)	 that	 are	 effective	 in	 producing
electrical	 resistance;	 large	 momentum	 changes	 of	 the	 electrons	 can	 only	 occur	 by	 the
addition	of	many	small	changes.	Because	the	initial	and	final	electron	states	must	be	close
to	the	Fermi	surface,	a	small	momentum	change	implies	scattering	through	a	small	angle	θ
as	shown	in	Fig.	3.11.	The	effectiveness	of	a	collision	 in	producing	electrical	 resistance
may	be	measured	by	the	loss	in	momentum	 δk	of	the	electron	along	its	original	direction
of	motion,	and	from	Figure	3.11	this	is	 q2 2kF	for	small	θ	which	is	therefore	proportional
to	T2	for	typical	phonons	at	low	temperature.	Hence	the	scattering	rate	l τel	to	be	used	in
calculating	the	electrical	resistivity	must	be	weighted	by	an	effectiveness	factor	of	order	(T
ΘD)2	so	that

Fig.	3.10	Schematic	temperature	dependences	of	(a)	the	electrical	resistivity	and	(b)	the
thermal	conductivity	of	a	metal



Fig.	3.11	Change	in	momentum	of	an	electron	when	it	is	scattered	through	an	angle	θ	by
absorption	of	a	phonon	of	wavevector	q.	Note	that	the	magnitude	of	the	momentum	of	the
electron	does	not	change,	as	it	remains	in	a	state	close	to	the	Fermi	surface

and,	from	Eq.	(3.29),

(3.35)	

In	this	temperature	region	therefore	the	Wiedemann–Franz	law	fails.

At	the	lowest	temperatures	electron–impurity	collisions	are	dominant.†	These	collisions
are	elastic	and	thus	unable	to	produce	collisions	like	those	shown	in	Figure	3.8(c),	but	they
are	capable	of	producing	 large-momentum-change	collisions	 like	 those	 in	Figure	3.8(b);
the	effective	scattering	times	for	electrical	and	thermal	conductivity	are	therefore	identical
and	 the	 Wiedemann–Franz	 law	 is	 again	 obeyed.	 The	 electron	 mean	 free	 path	 due	 to
electron–impurity	 scattering	 should	 be	 independent	 of	 temperature,	 leading	 to	 a
temperature-independent	electrical	conductivity	and	a	thermal	conductivity	proportional	to
T.	The	temperature	dependences	of	the	electrical	resistivity	and	the	thermal	conductivity
that	 we	 have	 deduced	 are	 summarized	 in	 Figs.	 3.10(a)	 and	 3.10(b);	 many	 metallic



elements	of	high	purity	follow	these	dependences	reasonably	well.‡

The	predicted	T5	dependence	of	the	ideal	resistivity	at	low	temperatures	(Eq.	 (3.35))	 is
not	 observed	 in	 some	metals.	 This	 may	 be	 because	 of	phonon	 drag;	 electron–phonon
collisions	cause	the	phonons	to	be	dragged	along	with	a	drift	velocity	approaching	that	of
the	 electrons	 and	 they	 are	 thus	 less	 effective	 in	 reducing	 the	 drift	 momentum	 of	 the
electrons.	 Alternatively	 the	 T5	 dependence	 may	 be	 masked	 by	 the	 contribution	 to	 the
resistivity	of	electron–electron	scattering.	Since	momentum	is	conserved	 in	 the	collision
of	two	electrons	it	would	appear	at	first	as	though	such	collisions	do	not	lead	to	electrical
resistivity;	 we	 advanced	 a	 similar	 argument	 in	 section	 2.8.1	 to	 suggest	 that	 phonon-
phonon	collisions	could	not	limit	the	thermal	conductivity	of	phonons.	We	saw	there	that
the	 existence	 of	 a	 periodic	 lattice	means	 that	 the	momentum	 associated	with	 a	 phonon
cannot	 be	 unambiguously	 specified,	 and	 this	 permitted	 the	 existence	 of	 Umklapp
scattering	processes	with	an	associated	thermal	resistance.	When	the	effect	of	the	periodic
lattice	potential	is	taken	into	account	the	electron	momentum	becomes	ambiguous	in	the
same	way	 (section	 4.3.3).	The	 resulting	 electron–electron	Umklapp	 scattering	 processes
produce	a	small	contribution	to	the	electrical	resistivity	which	has	the	same	T2	temperature
dependence	as	the	electron–electron	scattering	rate	(section	13.5.4).†

3.3.5	The	Hall	effect
To	this	point	we	have	been	really	quite	successful	 in	explaining	the	properties	of	metals
using	the	free	electron	theory.	This	run	of	success	comes	to	an	abrupt	halt	in	this	section
with	 the	 failure	of	 the	 theory	 to	obtain	even	 the	correct	 sign	 for	 the	Hall	effect	 in	some
metals.	When	 a	metal	 is	 placed	 in	 a	magnetic	 field	B	 and	 a	 current	 density	 j	 is	 passed
through	it,	a	transverse	electric	field	EH	is	set	up	given	by

(3.36)	

This	is	the	Hall	effect	and	RH	is	known	as	the	Hall	coefficient.

The	geometry	of	 the	experiment	 is	 shown	 in	Fig.	3.12.	The	origin	of	 the	 effect	 is	 the
Lorentz	 force	 −ev	 ×	B	 on	 the	 conduction	 electrons	 in	 the	 magnetic	 field.	 Figure	 3.12
shows	the	direction	of	the	drift	velocity	v	of	electrons	corresponding	to	a	current	j	in	the	x
direction.	The	Lorentz	force	 tends	 to	deflect	 the	electrons	downwards	and	 this	results	 in
the	 rapid	 build	 up	 of	 a	 negative	 charge	 density	 on	 the	 lower	 surface	 of	 the	metal.	 The
consequent	electric	field	EH	 in	the	–y	direction	causes	 the	current	 to	continue	 to	flow	in
the	x	direction,	as	it	must	for	a	long	rod	with	electrical	connections	at	the	ends.

Fig.	3.12	Geometry	of	the	Hall	effect.	The	Lorentz	force	−ev	×	B	on	the	electrons	is	just
balanced	by	the	force	−eEH	due	to	the	Hall	field	EH



Thus,	in	the	steady	state	with	vy	=	0,	the	x	and	y	components	of	the	equation	of	motion
(3.23)	in	this	geometry	are

(3.37)	

The	first	of	these	equations	just	predicts	that	the	electrical	conductivity	σ	is	unaffected
by	the	presence	of	the	magnetic	field†	(cf.	Eq.	(3.24)).	From	the	second	we	obtain

(3.38)	

so	that,	by	comparison	with	Eq.	(3.36),

(3.39)	

Thus	the	Hall	coefficient	should	be	negative	and	give	a	direct	measurement	of	the	free
electron	concentration.	By	combining	Eqs.	(3.27)	and	(3.39)	we	find

(3.40)	

so	that	it	should	be	possible	to	determine	the	electron	mobility	μ	from	measured	values	of
RH	and	σ.

TABLE	3.1	Hall	coefficient	of	various	metals.	According	to	Eq.	(3.39),	−1 (RHNe)
should	equal	the	number	of	conduction	electrons	per	atom.	A	negative	sign	for	this
quantity	indicates	a	positive	value	for	RH	and	thus	that	the	charge	carriers	are	positively
charged	particles!

Metal Group −1 (RHNe)

Na I +0.9

K 	 +1.1

Cu IB +1.3

Au 	 +1.5

Be II −0.2

Mg 	 +1.5

Cd IIB −2.2

Al III +3.5

(Data	from	the	American	Institute	of	Physics	Handbook,	3rd	edn,	McGraw-Hill,	New	York	(1972))



If	N	is	the	number	of	atoms	per	unit	volume	then	the	quantity	−1 (RHNe)	should	equal	n
N	and	therefore	give	an	estimate	of	the	number	of	conduction	electrons	per	atom;	values
of	 this	quantity	 for	various	metals	are	 shown	 in	Table	3.1.	The	measured	values	 for	 the
group	 I	 and	 III	 elements	 appear	 reasonable,	 as	 does	 the	 value	 for	 the	 group	 II	 element
magnesium.	The	values	 for	 the	group	II	elements	beryllium	and	cadmium,	however,	are
negative,	 implying	 that	positively	charged	particles	are	 responsible	 for	 the	conduction	 in
these	metals!	To	account	for	this	surprising	result	it	is	necessary	to	consider	the	effect	of
the	periodic	 lattice	potential	on	 the	conduction	electron	 states,	 and	 this	 is	 the	 subject	of
Chapter	4.

PROBLEMS	3
3.1	 The	 work	 function	 of	 a	 metal	 is	 the	 minimum	 energy	 required	 to	 remove	 an
electron	 from	 the	metal	 and	 is	 typically	 3	 eV.	 Deduce	 a	 value	 for	 the	 ‘penetration
length’	 of	 the	 electron	 wavefunction	 outside	 the	 metal	 for	 electrons	 of	 the	 Fermi
energy.

3.2	 Metallic	 lithium	 has	 a	 body-centred	 cubic	 structure	 with	 unit	 cell	 side	 3.5	 Å.
Calculate	using	 the	free	electron	model	 the	width	of	 the	K	emission	band	of	soft	x-
rays	 from	 lithium.	How	would	 you	 expect	 the	width	 of	 the	 emission	 to	 depend	 on
temperature?

3.3	show	that	the	kinetic	energy	of	a	free	electron	gas	at	absolute	zero	is

where	εF	is	the	Fermi	energy.	Derive	expressions	for	the	pressure	p	=	−∂E ∂V	and	the
bulk	modulus	B	=	−V(∂p ∂V).

Estimate	the	contribution	of	the	conduction	electrons	to	B	for	potassium	and	compare
your	answer	to	the	experimentally	measured	bulk	modulus	0.37	×	1010	N	m−2.

3.4	 Add	 the	 contribution	 of	 the	 conduction	 electrons	 to	 Eq.	 (2.59)	 to	 obtain	 the
Helmholtz	free	energy	of	a	metal.	Hence	generalize	the	calculation	of	section	2.7.1	to
obtain	a	value	for	the	thermal	expansion	coefficient	of	a	metal.

3.5	 Prove	 that	 the	 loss	 of	momentum	of	 the	 electron	 along	 its	 original	 direction	 of
motion	in	the	collision	depicted	in	Figure	3.11	is	 q2 2kF.

3.6	Estimate	the	Fermi	temperatures	of:

(a)	liquid	3He	(density	81	kg	m−3),	and

(b)	the	neutrons	in	a	neutron	star	(density	1017	kg	m−3).

†	The	effect	of	 stationary	 ion	cores	 can	be	completely	 included	 in	 the	 effective	mass
(Section	4.4).

†	Since	a	free	electron	metal	does	not	possess	a	lattice	it	may	seem	absurd	to	refer	to	the
lattice	 vibrations	 within	 it.	 In	 the	 following	 chapter	 we	 explain	 why	 conduction



electrons	 can	 continue	 to	 behave	 like	 free	 electrons	 in	 the	 presence	 of	 the	 periodic
potential	 of	 the	 positive	 ions.	 The	 electrons	 are	 scattered	 by	 any	 departure	 from	 the
perfect	periodicity	such	as	that	caused	by	lattice	vibrations.

†	The	thermal	conductivity	due	to	the	phonons	in	metals	is	in	general	less	than	that	in
non-metals	because	the	phonons	are	scattered	by	the	conduction	electrons.

†	This	statement	can	be	proved	by	following	the	same	procedure	as	that	used	in	section
12.4	to	establish	conservation	of	energy	and	momentum	in	the	scattering	of	neutrons	by
phonons.	 The	 subtleties	 associated	 with	 the	 distinction	 between	 true	momentum	 and
crystal	momentum	need	not	worry	us	here.

†	In	very	pure	metals	collisions	of	the	electrons	with	the	sample	boundaries	can	become
important	and	the	effective	electrical	conductivity	then	depends	on	the	shape	and	size	of
the	sample;	this	is	another	example	of	a	size	effect	(section	2.8.4).	Size	effects	are	most
easily	 seen	 in	 thin	 films	or	 fine	wires	where	at	 least	one	of	 the	 sample	dimensions	 is
small.

‡	Interesting	departures	are	sometimes	observed	when	a	non-magnetic	metal	contains	a
small	amount	of	magnetic	impurity,	for	example	Fe	impurity	in	Cu.	The	resistivity	goes
through	 a	 minimum	 with	 decreasing	 temperature	 at	 low	 temperatures.	 This	 is	 the
Kondo	effect	(J.	Kondo,	Solid	State	Phys.	23,	183	(1969)).

†	 A	 recent	 review	 of	 the	 electrical	 and	 thermal	 conductivities	 of	 metals	 at	 low
temperatures	 has	 been	 given	 by	R.	 J.	M.	 van	Vacht	 et	 al.,	 Rep.	 Prog.	 Phys.	38,	 853
(1985).

†	In	fact	the	electrical	resistivity	of	metals	often	depends	weakly	on	the	magnetic	field.
The	 change	 in	 resistivity	 is	 called	magnetoresistivity	 and	 can	 arise	 because	 of	 the
failure	in	an	anisotropic	crystal	of	our	assumption	of	a	single	relaxation	time	for	all	the
electrons.



CHAPTER	4

The	effect	of	the	periodic	lattice	potential—
energy	bands

Everything	has	its	beauty,	but	not	everyone	sees	it.—Confucius

4.1	NEARLY	FREE	ELECTRON
THEORY
Despite	 the	 success	 of	 the	 free	 electron	 theory	 in	 explaining	many	 of	 the	 properties	 of
metals,	it	does	not	explain	why	some	materials	are	metals	and	others	insulators.	Nor	does
it	 explain	 why	 some	 metals	 have	 positive	 Hall	 coefficients,	 indicating	 the	 presence	 of
mobile	 positively	 charged	 particles	 within	 them.	 We	 now	 attempt	 to	 improve	 the	 free
electron	model	 by	 taking	 into	 account	 the	 fact	 that	 the	 positive	 ions	 do	 not	 produce	 a
uniform	 attractive	 potential	 but	 one	 with	 strong	 negative	 peaks	 at	 the	 lattice	 sites.	 An
example	of	such	a	potential	for	a	one-dimensional	chain	of	identical	equally	spaced	atoms
is	shown	in	Fig.	4.1(a);	the	potential	is	periodic	with	a	period	equal	to	the	lattice	spacing
a.	Note	that	we	have	chosen	the	origin	of	the	x	axis	to	be	centred	on	one	of	the	atoms.

We	 shall	 estimate	 the	 correction	 to	 the	 free	 electron	 energy	 by	 using	 the	 standard
formula	of	first-order	perturbation	theory,

(4.1)	

where	V	is	the	difference	between	the	true	potential	and	the	constant	potential	assumed	in
the	free	electron	calculation	and	 	is	the	unperturbed	wavefunction.

Fig.	4.1



We	 are	 regarding	 the	 lattice	 potential	 as	 a	 small	 perturbation	 on	 the	 free	 electron
potential	so	that	this	approach	is	known	as	the	nearly	free	electron	theory.	Inspection	of
Fig.	 4.1(a)	 suggests	 that	 the	 perturbation	 is	 really	 quite	 large	 so	 that	 at	 best	 we	would
expect	 the	 results	of	our	perturbation	 theory	calculation	 to	be	only	qualitatively	correct.
Our	confidence	in	the	answers	will	be	increased	however	in	section	4.3	where	we	obtain
the	 same	 qualitative	 results	 by	 adopting	 the	 extreme	 opposite	 viewpoint	 that	 the
unperturbed	state	is	one	in	which	electrons	are	tightly	bound	to	atoms	by	atomic	potentials
and	 the	 change	 in	 potential	 associated	with	 the	 proximity	 of	 neighbouring	 atoms	 is	 the
perturbation.

If	we	take	the	free	electron	potential	to	be	the	mean	value	of	the	true	potential	then	the
perturbation	V	for	our	one-dimensional	example	can	be	written	as	a	Fourier	series	in	the
form

(4.2)	

where	we	expect	the	Vn	to	be	positive	numbers	for	a	potential	with	strong	negative	peaks
at	the	lattice	sites	as	in	Fig.	4.1(a).	If	we	use	the	potential	of	Eq.	(4.2)	and	a	running	wave	
	=	eikx	 for	 the	unperturbed	wavefunction	 then,	 since	 | |2	=	1,	Eq.	 (4.1)	 gives	 the	 non-

informative	answer:	∆ε	=	0	for	all	values	of	k!	We	must	however	be	more	careful	than	this
since	 the	states	eikx	and	e−ikx	 are	degenerate.	When	doing	 first-order	perturbation	 theory
with	two	degenerate	unperturbed	states	 1	and	 2	the	appropriate	wavefunctions	to	insert
in	 Eq.	 (4.1)	 are	 the	 two	 orthogonal	 linear	 combinations,	 1	 and	 2,	 of	 1	 and	 2	 that
satisfy

(4.3)	



The	only	orthogonal	linear	combinations	of	eikx	and	e−ikx	 that	satisfy	 this	condition	for
all	values	of	k	are	sin	(kx)	and	cos	(kx)	(see	problem	4.1),	and	inserting	these	in	Eq.	(4.1)
we	 find	 that	∆ε	 is	 now	 finite	 for	 certain	 special	k	 values	 for	which	 the	periodic	 change
density	 associated	 with	 the	 wavefunction	 is	 in	 synchronism	with	 the	 periodicity	 of	 the
lattice	(Fig.	4.1(b)).

Thus	for	 	=	sin	(kx)	we	calculate	the	perturbation	as

The	 integrand	 in	 the	 numerator	 oscillates	 about	 zero	 and	 the	 integral	 over	 all	 space
vanishes	 unless	 the	 periodicity	 of	 cos	 (2kx)	 coincides	 with	 that	 of	 one	 of	 the	 Fourier
coefficients	cos	(2πnx/a);	thus	∆ε	is	only	non-zero	if	k	=	nπ/a,	in	which	case

(4.4)	

all	other	terms	in	the	series	having	integrated	to	zero.	Similarly	for	 	=	cos	(kx)	and	k	=
nπ/a	we	find

(4.5)	

The	physical	reason	for	these	results,	for	the	case	n	=	1,	becomes	obvious	on	inspection
of	Fig.	4.1(b):	 	=	sin	(πx/a)	has	antinodes	where	the	potential	is	repulsive,	so	its	energy	is
raised;	 	 =	 cos	 (πx/a)	 has	 antinodes	 where	 the	 potential	 is	 attractive,	 so	 its	 energy	 is
lowered.

In	Fig.	4.2	we	show	these	perturbed	energies	in	relation	to	the	free	electron	parabola	ε(k)
=	 2k2/2m.	Since	the	stationary	states	for	k	=	nπ/a	are	standing	waves	 it	 follows	 that	 the
group	velocity	and	hence	dε/dk	must	be	zero	at	these	points.	To	calculate	other	points	on
the	 ε(k)	 curve	 requires	 a	 different	 approach	 (see	 problem	 4.3),	 since	 the	 first-order
perturbation	 result	 is	zero.	But,	knowing	ε	and	dε/dk	at	k	 =	nπ/a,	we	 can	 guess	 that	 the
form	 of	 the	 full	 ε(k)	 curve	 is	 as	 indicated	 by	 the	 full	 curves	 on	 Fig.	 4.2;	 this	 guess	 is
confirmed	by	the	calculation.	The	lattice	potential	thus	has	the	dramatic	effect	on	the	ε(k)
curve	of	producing	regions	of	energy	in	which	there	are	no	electron	states;	these	regions,
known	as	band	gaps	or	energy	gaps,	are	indicated	in	Fig.	4.2.	The	regions	of	ε	in	which
states	do	exist	are	known	as	energy	bands	and	these	are	also	indicated.	The	grouping	of
the	 electron	 energies	 into	 bands	 has	 a	 very	 important	 influence	 on	 the	 behaviour	 of
electrons	in	solids,	as	will	become	apparent	to	the	reader	in	the	remainder	of	this	book.

Fig.	4.2	The	full	curves	show	the	effect	of	a	periodic	lattice	potential	on	the	parabolic	free
electron	dispersion	relation	(broken	curve).	The	bands	of	allowed	energy	levels	are
indicated	by	shading.	The	departures	of	the	energy	from	the	free	electron	values	on	the
Brillouin	zone	boundaries	are	given	by	Eqs.	(4.4)	and	(4.5)



We	also	see	from	Fig.	4.2	that	the	k	axis	is	naturally	split	into	a	number	of	regions	by	the
effect	of	 the	periodic	 lattice	potential	on	 the	electron	 states;	 these	 regions	are	known	as
Brillouin	zones.	Thus,	in	our	one-dimensional	example	the	region	|k|	<	π/a	(see	Fig.	4.2)
is	 the	 first	Brillouin	zone	and	states	with	k	values	 in	 this	 range	 lie	 in	 the	 lowest	energy
band.	The	two	regions	with	π/a	<	|k|	<	2π/a	are	the	second	Brillouin	zone	and	states	in	this
zone	lie	in	the	next-to-lowest	energy	band.

The	alert	reader	may	well	have	noticed	that	the	boundaries	of	the	first	Brillouin	zone	at
which	the	first	energy	gap	appears	and	at	which	the	electron	group	velocity	vanishes	occur
at	precisely	the	same	k	values,	k	=	±	π/a,	at	which	the	group	velocity,	dω/dk,	vanishes	(see
Fig.	2.4)	for	the	lattice	vibration	waves	of	the	one-dimensional	chain.	As	we	pointed	out	in
Chapter	 2,	 wave	 motions	 with	 these	 k	 values	 satisfy	 the	 Bragg	 law	 (Eq.	 (1.3))	 for
diffraction	by	the	one-dimensional	 lattice.	Inspection	of	Eq.	(2.12)	shows	 that	 the	Bragg
diffraction	condition	in	fact	generates	all	the	k	values	at	which	the	energy	gaps	in	the	ε(k)
curve	appear.	The	 interference	of	an	 incident	 running	wave	with	 the	 resulting	diffracted
wave	leads	to	the	creation	of	standing	waves	at	these	k	values	and	thus	to	the	vanishing	of
the	group	velocity.	In	Chapter	11	we	will	introduce	a	beautiful	formalism	which	allows	the
generalization	of	these	ideas	to	crystals	of	arbitrary	structure.



4.2	CLASSIFICATION	OF
CRYSTALLINE	SOLIDS	INTO
METALS,	INSULATORS	AND
SEMICONDUCTORS
We	now	consider	how	the	occupation	of	 the	electron	states	 in	k-space	 is	affected	by	 the
changes	 in	 the	 ε(k)	 relation	 discussed	 in	 the	 previous	 section.	 If	 periodic	 boundary
conditions	 are	 applied,	 the	 allowed	 k	 values	 for	 electron	 states	 in	 the	 one-dimensional
crystal	 are	 exactly	 the	 same	 as	 those	 for	 lattice	 vibration	waves	 (Eq.	 (2.11)).	 Thus	 k	 =
2πp/L,	where	p	 is	 an	 integer,	L	 =	Na	 is	 the	 length	of	 the	 chain	 and	N	 is	 the	number	of
atoms	 in	 the	 chain.	 As	 in	 the	 lattice	 vibration	 problem,	 therefore,	 there	 are	N	 allowed
values	of	k	in	the	range	−π/a	<	k	 	π/a	so	that	the	first	Brillouin	zone	and	hence	the	lowest
energy	band	of	Fig.	4.2	contain	exactly	N	k-states	and	can	accommodate	2N	electrons.

For	monovalent	atoms	the	electronic	ground	state	corresponds	to	the	states	in	the	lowest
energy	band	being	filled	up	to	the	Fermi	energy	εF	as	indicated	in	Fig.	4.3(a).	There	are
enough	electrons	exactly	to	half-fill	the	states	in	this	band;	that	is	the	first	Brillouin	zone	is
half-filled	by	one	electron	per	atom.	Because	there	are	vacant	states	immediately	adjacent
in	energy	to	the	occupied	states	it	is	possible	to	construct	an	electric-current-carrying	state
by	 shifting	 the	 whole	 electron	 distribution	 in	 k-space	 as	 indicated	 on	 Fig.	 4.3(a),
essentially	as	for	free	electrons	(cf.	Fig.	3.8(b));	we	therefore	expect	metallic	behaviour	in
this	case.	 Indeed,	since	 the	ε(k)	 relation	near	 the	Fermi	energy	 is	 similar	 to	 that	 for	 free
electrons,	 we	 might	 expect	 the	 free	 electron	 theory	 to	 work	 well	 for	 one-dimensional
monovalent	metals.

If	on	the	other	hand	the	atoms	are	divalent,	then	we	have	enough	electrons	to	fill	the	first
Brillouin	zone	exactly.	Because	of	 the	energy	gaps	at	k	=	±	π/a,	a	current-carrying	state
can	only	be	produced	by	expending	a	finite	amount	of	energy	Vl	for	each	electron	shifted
to	 k	 values	 greater	 than	 π/a	 (Fig.	 4.3(b)).	 Since	 this	 energy	 is	 not	 available	 from	 a	 dc
electric	 field	 such	 a	 material	 would	 be	 an	 insulator	 at	 absolute	 zero.	 At	 a	 finite
temperature,	 if	Vl	 is	 sufficiently	 small,	we	would	expect	 some	electrons	 to	be	 thermally
excited	 into	 the	 second	 Brillouin	 zone;	 we	 will	 see	 in	 Chapter	 5	 that	 this	 leads	 to
semiconducting	behaviour.	For	larger	Vl	the	material	would	continue	to	act	as	an	insulator
at	finite	temperatures.

Fig.	4.3	(a)	The	occupied	states	for	a	one-dimensional	chain	of	monovalent	atoms	are
indicated	by	thickening	of	the	ε(k)	curve.	Transfer	of	electrons	as	indicated	shifts	the
whole	electron	distribution	in	k-space	and	produces	a	current-carrying	state,	(b)	For	a	one-
dimensional	chain	of	divalent	atoms	all	the	states	in	the	first	Brillouin	zone	are	full.	To
produce	a	current-carrying	state	some	electrons	must	be	promoted	to	states	in	the	second
Brillouin	zone	as	indicated,	that	is	to	a	higher	energy	band



For	trivalent	atoms	the	first	Brillouin	zone	will	be	filled	and	the	second	Brillouin	zone
half-filled;	we	thus	expect	metallic	behaviour	again	from	the	electrons	in	the	second	zone.
In	 general,	 we	 expect	 metallic	 behaviour	 from	 odd-valence	 atoms,	 and	 insulating	 or
semiconducting	behaviour	from	even-valence	atoms.	Actually	it	is	the	number	of	valence
electrons	per	primitive	unit	cell	rather	than	the	number	per	atom	that	is	important.	This	is
because	the	positions	of	the	Brillouin	zone	boundaries	are	determined	by	the	periodicity	of
the	lattice	potential	and	hence	by	the	size	of	the	primitive	unit	cell.	The	number	of	k	states
in	 the	 first	 Brillouin	 zone	 is	 always	 equal	 to	 the	 number	 of	 primitive	 unit	 cells	 in	 the
crystal.	For	even-valence	atoms	there	will	always	be	an	even	number	of	valence	electrons
in	 a	 primitive	 cell	 so	 that	 according	 to	 the	 above	 argument	 these	 should	 always	 give
insulating	crystals.

The	problem	with	this	elegant	and	simple	picture	is	that	divalent	metals	actually	exist:



the	alkaline	earths	Ca,	Sr	and	Ba,	for	example.	The	existence	of	divalent	metals	does	not
invalidate	our	conclusion	because	our	argument	applies	only	to	one-dimensional	crystals.
To	explain	the	existence	of	divalent	metals	we	must	generalize	the	idea	of	energy	bands	to
crystals	in	more	than	one	dimension.	It	will	be	sufficient	to	consider	the	simplest	possible
two-dimensional	crystal:	a	square	crystal	of	side	L	×	L	consisting	of	a	simple	square	lattice
of	identical	atoms	of	spacing	a.	For	simplicity	we	will	confine	our	attention	to	the	energy
gaps	 produced	 by	 the	 fundamental	 component	 Vl	 of	 the	 Fourier	 series	 of	 the	 lattice
potential.	 The	 energy	 gaps	 occur	when	 the	 electron	waves	 are	 in	 synchronism	with	 the
periodicity	of	 the	 lattice.	There	will	be	synchronism	with	 the	fundamental	periodicity	 in
the	x	direction	if	kx	=	±	π/a,	and	with	the	periodicity	in	the	y	direction	if	ky	=	±	π/a.	The
boundaries	 of	 the	 first	 Brillouin	 zone	 in	 the	 two-dimensional	k-space	 are	 therefore	 the
lines	kx	=	±	π/a,	ky	=	±	π/a,	as	shown	in	Fig.	4.4.	Electron	energies	can	be	displayed	on	this
diagram	 by	means	 of	 contour	 lines	 of	 constant	 energy	 as	 a	 function	 of	 kx	 and	 ky.	 The
concentric	 circles	 shown	 in	 the	 figure	 are	 the	 contour	 lines	 according	 to	 free	 electron
theory,	

To	find	how	these	energy	contours	are	perturbed	by	 the	 lattice	potential	we	note	 from
Fig.	4.2	 that	 the	 energy	 is	 depressed	 below	 the	 free	 electron	 value	 just	 inside	 the	 zone
boundary	and	this	has	the	effect	of	moving	the	energy	contours	out	towards	the	boundary.
Similarly	the	increased	energy	outside	the	zone	boundary	moves	a	constant	energy	contour
in	towards	the	boundary.	Thus	zone	boundaries	‘attract’	energy	contours	and	a	perturbed
energy	contour	is	shown	in	Fig.	4.5(a).	The	perturbed	contour	meets	the	zone	boundaries
at	right	angles.	This	is	because	the	component	of	the	electron	group	velocity

Fig.	4.4	Boundaries	of	the	first	Brillouin	zone	(broken	lines)	for	a	simple	square	lattice	of
atoms	of	spacing	a.	The	circles	are	the	free	electron	energy	contours	(at	equal	energy
intervals)



normal	to	the	boundary	vanishes;	the	gradient	of	ε	in	k-space	is	therefore	parallel	 to	 the
boundary	and	the	contour	of	constant	ε	is	perpendicular	to	the	boundary.	The	vanishing	of
the	 group	 velocity	 component	 perpendicular	 to	 the	 boundary	 has	 the	 same	 physical
interpretation	 in	 terms	 of	 standing	waves	 produced	 by	 Bragg	 diffraction	 as	 in	 the	 one-
dimensional	crystal	(see	problem	4.2).

Fig.	4.5

The	area	of	the	first	Brillouin	zone	is	(2π/a)2	and	the	density	of	running	wave	states	in
k-space	is

(4.6)	

This	 is	 the	 two-dimensional	 equivalent	 of	 the	 one-	 and	 three-dimensional	 densities	 of
states	for	running	waves,	given	by	Eqs.	(2.30)	and	(2.41)	respectively.	The	first	Brillouin
zone	therefore	contains	ρR(k)(2π/a)2	=	(L/a)2	=	N	k-states	where	N	is	the	number	of	atoms
in	the	crystal;	 this	is	precisely	the	same	as	the	one-dimensional	result	and	is	also	true	in
the	 three-dimensional	 case.	The	 first	Brillouin	 zone	 can	 therefore	 accommodate	 exactly
2N	electrons.



To	determine	which	states	are	actually	occupied	for	a	lattice	of	divalent	atoms	we	must
satisfy	the	following	two	conditions:

(i)	we	must	fill	an	area	of	k-space	equal	to	that	of	the	first	zone;	and

(ii)	we	must	fill	all	levels	below	some	fixed	energy	εF.

These	conditions	are	satisfied	if	the	electrons	occupy	the	shaded	area	in	k-space	shown
in	Fig.	4.5(b).	The	boundary	between	occupied	and	unoccupied	states	is	still	referred	to	as
the	Fermi	surface	although	its	shape	is	very	different	to	the	free	electron	circle.	The	Fermi
surface	in	Fig.	4.5(b)	does	however	have	some	free	‘area’,	and	can	be	slightly	displaced	as
indicated	by	the	broken	curves	to	give	a	current-carrying	state.	We	therefore	have	a	two-
dimensional	divalent	metal.

The	reason	for	this	behaviour	is	 that	for	a	free	electron	(Fig.	4.4)	 the	energy	at	a	zone
corner	is	twice	that	at	the	centre	of	a	zone	edge	because	|k|	is	 	 times	larger.	Hence,	 if
the	perturbation	due	to	the	lattice	potential	is	small,	the	lowest-energy	states	in	the	second
zone	 are	 below	 the	 highest	 states	 in	 the	 first	 zone,	 and	 we	 have	 overlapping	 energy
bands,	 the	 situation	portrayed	 in	Fig.	4.5.	As	 the	 perturbation	 and	hence	 the	 associated
energy	gap	increases	we	reach	a	situation	where	the	bands	no	longer	overlap;	all	the	states
in	the	first	zone	have	an	energy	lower	than	any	state	in	the	second.	For	divalent	atoms	the
first	zone	is	entirely	occupied	and	the	second	zone	completely	empty.	The	occupied	region
of	k-space	is	then	completely	bounded	by	the	first	Brillouin	zone	boundaries	and	there	is
no	free	area	of	Fermi	surface.	Electrons	now	have	to	be	given	a	finite	amount	of	energy	to
create	a	current-carrying	state	and	we	have	an	insulator.

There	is	a	very	strange	consequence	of	the	fact	that	an	energy	band	filled	with	electrons
does	not	conduct	electricity	and	therefore	appears	to	contain	no	mobile	charge	carriers.	If
a	few	electrons	are	removed	from	such	a	band	to	produce	pockets	of	empty	states	such	as
those	 of	 the	 corners	 of	 the	 Brillouin	 zone	 in	 Fig.	 4.5(b)	 then	 the	 removal	 of	 negative
charge	 looks	 like	 the	addition	of	positive	charge	and	 the	empty	states	appear	 to	conduct
electricity	 like	 particles	 of	 charge	 +e.	 These	 ‘carriers’	 are	 known	 as	 holes	 and	 are
responsible	 for	 the	 positive	 Hall	 coefficients	 of	 some	 divalent	 metals.	 We	 discuss	 the
properties	of	holes	in	more	detail	in	the	following	chapter.

The	situation	in	a	three-dimensional	crystal	is	much	the	same	as	in	two	dimensions;	in
Chapter	11	we	give	the	general	method	for	determining	the	positions	of	the	Brillouin	zone
boundaries	in	three-dimensional	k-space	for	an	arbitrary	crystal	structure.	The	 important
conclusions	are:

(i)	 an	 odd	 number	 of	 valence	 electrons	 in	 a	 primitive	 unit	 cell	 leads	 to	 metallic
behaviour;	and

(ii)	 an	 even	 number	 of	 valence	 electrons	 per	 primitive	 unit	 cell	 gives	 metallic
behaviour	if	there	is	band	overlap,	a	semiconductor	if	there	is	a	small	band	gap	(see
Chapter	5)	and	an	insulator	if	there	is	a	large	band	gap.

Note	the	very	important	discovery	that	we	have	made	in	this	section	that	the	absence	of
conduction	in	a	solid	does	not	imply	that	the	electrons	are	localized	on	the	atoms.	All	the



wavefunctions	that	we	discuss	in	this	chapter	extend	throughout	the	crystal.

4.3	THE	TIGHT	BINDING	APPROACH
Although	 the	nearly	 free	electron	 theory	has	provided	a	 solution	 to	 the	problem	of	why
some	crystals	conduct	electricity	and	others	are	insulators,	it	has	not	given	us	much	insight
into	the	nature	of	the	electron	wavefunctions.	It	is	not,	for	example,	a	suitable	model	for
describing	the	covalent	bonding	by	the	valence	electrons	in	the	important	semiconductor
crystals,	 silicon	and	germanium.	The	 tight	binding	approach	will	give	us	 the	 insight	we
require	and	at	the	same	time	serve	to	confirm	the	qualitative	predictions	of	the	nearly	free
electron	theory.	The	tight	binding	approach	is	also	important	in	that	it	forms	the	basis	of
many	of	the	more	advanced	methods	of	energy	band	calculations	in	solids.

4.3.1	Coupled	probability	amplitudes
To	introduce	the	tight	binding	method	we	again	use	the	simplest	possible	crystal,	namely
the	one-dimensional	chain	of	 identical	 atoms	of	 separation	a	with	 the	 ends	of	 the	 chain
joined	together	so	that	periodic	boundary	conditions	are	appropriate.	When	the	atoms	are
widely	 separated	 the	 wavefunctions	 of	 the	 valence	 electrons	 will	 be	 those	 of	 isolated
atoms.	We	denote	the	wavefunction	of	the	appropriate	atomic	state	on	the	nth	atom	by	 n;
for	sodium	atoms,	for	example,	this	will	be	the	3s	state.	As	the	distance	between	the	atoms
decreases	we	might	expect	at	some	stage	that	the	electrons	begin	to	move	from	one	atom
to	another.	Provided	the	atoms	are	not	too	close	we	can	picture	this	motion	as	the	transfer
of	the	electron	from	the	state	 n	to	the	same	state	on	a	neighbouring	atom,	 n−1	or	 n	+	1.
This	 picture	 suggests	 that	 we	 might	 be	 able	 to	 write,	 to	 a	 good	 approximation,	 the
wavefunction	of	the	electron	as	a	linear	combination	of	the	states	 n	on	the	N	atoms	in	the
chain.	Thus

(4.7)	

Using	 the	 time-dependent	 Schrödinger	 equation	 to	 calculate	 Ψ	 is	 a	 cumbersome
procedure.	It	is	simpler	and	physically	more	meaningful	to	use	an	alternative	formulation
of	quantum	mechanics	which	gives	directly	the	probability	|cn(t)|2	for	finding	the	electron
in	 the	 state	 n	 at	 time	 t.	 Note	 that,	 since	 atomic	 states	 on	 different	 atoms	 are	 not
orthogonal,	the	probability	amplitude	cn(t)	is	not	equal	to	the	coefficient	an(t)	in	Eq.	(4.7);
however,	 we	 wish	 to	 find	 the	 stationary	 states	 of	 the	 system†	 and	 for	 these	 the	 time
dependences	of	an(t)	and	cn(t)	are	the	same,	namely

(4.8)	

for	 all	n,	where	E	 is	 the	 energy	 of	 the	 state.	 The	 formal	 justification	 of	 this	 alternative
formulation	of	quantum	mechanics	is	given	in	appendix	A	and	it	leads	to	the	following	set
of	N	coupled	equations	(one	for	each	atom	in	the	chain)	for	the	probability	amplitudes	cn:



(4.9)	

We	 can	 give	 a	 simple	 physical	 interpretation	 to	 the	 terms	 Acn−1	 and	 Acn	 +	 1.	 They
represent	the	changes	in	cn	(and	hence	in	the	probability	of	the	electron	being	on	the	nth
atom)	associated	with	the	transfer	of	the	electron	to	and	from	the	neighbouring	atoms.	The
parameter	 A	 therefore	 measures	 the	 strength	 of	 the	 coupling	 between	 the	 states	 on
neighbouring	atoms.	In	writing	Eqs.	(4.9)	we	have	ignored	the	possibility	that	transfer	of
electrons	might	occur	between	second	nearest	neighbours.

It	is	instructive	to	consider	first	the	case	of	widely	separated	atoms	so	that	the	coupling
between	neighbours	represented	by	the	parameter	A	can	be	ignored.	Eqs.	(4.9)	then	reduce
to	N	uncoupled	equations

(4.10)	

with	solutions

(4.11)	

If	we	suppose	that	an	electron	is	definitely	in	the	state	 	on	atom	m	at	t	=	0	then	we	have

(4.12)	

so	that	at	time	t	the	wavefunction	is	Ψ	=	 m	exp	(−iBt/ ),	thus	confirming	that	the	electron
remains	in	the	state	 	on	the	mth	atom	and	identifying	the	parameter	B	in	this	limit	as	the
energy	of	the	state	 .

Before	 proceeding	 to	 apply	 Eqs.	 (4.9)	 to	 the	 one-dimensional	 chain	 we	 will	 digress
slightly	and	show	in	section	4.3.2	that	these	equations	are	capable	of	describing	covalent
bonding	by	applying	 them	 to	 the	 simplest	possible	covalently	bonded	molecule,	 the	
ion.	The	reader	anxious	to	learn	the	answer	for	the	chain	can	skip	the	next	section	the	first
time	around	but	is	recommended	to	read	it	eventually	since	a	chain	of	two	atoms	provides
a	 useful	 and	 informative	 interpolation	 point	 between	 a	 single	 atom	 and	 a	 macroscopic
crystal.

4.3.2	The	 	ion—covalent	bonding
The	 	 ion	consists	of	 two	protons	bound	 together	by	a	 single	electron.	Applying	Eqs.
(4.9)	to	a	chain	of	two	protons	(labelled	1	and	2)	we	obtain†

(4.13)	



B	and	A	are	functions	of	the	separation	between	the	protons.	To	calculate	these	energies
requires	more	 detailed	 quantum	mechanics.	 The	 choice	 of	 the	minus	 sign	 in	 front	 of	A
makes	it	a	positive	quantity	(see	below).

We	must	now	seek	 to	 find	 the	 stationary	 state	 solutions	of	Eqs.	 (4.13);	such	solutions
must	possess	the	property	(4.8).	The	solutions	are	easily	found	by	noticing	that	Eqs.	(4.13)
look	 rather	 like	 the	 coupled	 oscillator	 equations	 that	 one	 gets,	 for	 example,	 for	 two
identical	pendulums	coupled	together;	the	main	difference	is	that	the	differential	operator
is	 i	 d/dt	 instead	 of	 d2/dt2.	 Finding	 solutions	 of	 the	 form	 of	 Eq.	 (4.8)	 is	 equivalent	 to
determining	the	normal	modes	of	the	coupled	pendulums	and	the	same	technique	can	be
used	in	both	cases,	namely	to	note	that	by	taking	the	sum	and	difference	of	Eqs.	(4.13)	two
uncoupled	equations	are	obtained	for	the	new	variables:	c+	=	c1	+	c2	and	c−	=	c1	−	c2.	The
uncoupled	equations	are

(4.14)	

with	stationary	state	solutions	c	+	∝	exp	[−i(B	−	A)t/ ]	and	c−	∝	exp	[−i(B	+	A)t/ ].

To	find	the	corresponding	wavefunctions	we	must	determine	the	values	of	a1(t)	and	a2(t)
in	Eq.	 (4.7);	we	 first	note	 that	 if	 the	electron	 is	definitely	 in	 the	 state	 represented	by	c+
then	|c−|	=	0	so	that	c1	=	c2.	Because	 1	and	 2	are	the	same	function	centred	on	different
points,	Eq.	(A3)	of	appendix	A	shows	that	a1	=	a2	if	c1	=	c2	and	hence	the	wavefunction
corresponding	to	c+	is

(4.15)	

with	an	energy	E+	=	B	−	A.	Similarly	the	amplitude	c−	refers	to	the	wavefunction

(4.16)	

with	 energy	E−	 =	B	 +	A.	 For	 hydrogen	 atoms	 the	 state	 	 is	 the	 Is	 state,	 shown	 in	 Fig.
4.6(a)	 for	 two	 isolated	 atoms.	The	variation	of	 the	wavefunctions	Ψ+	 and	Ψ−	 along	 the
internuclear	line	is	sketched	in	Figs.	4.6(b)	and	(c)	respectively.

Using	 the	wavefunctions	 of	Eqs.	 (4.15)	 and	 (4.16)	we	 can	 establish	 a	 sign	 for	A	 and
hence	determine	which	state	has	 the	 lower	energy.	The	two	contributions	 to	 the	electron
energy	are	the	electrostatic	potential	energy	in	the	field	of	the	two	protons	and	the	kinetic
energy	 proportional	 to	 |∇Ψ|2.	 Comparison	 of	 Figs	 4.6(b)	 and	 (c)	 shows	 that	 both
contributions	 are	 lower	 for	 the	 symmetric	 state	 of	 Fig.	 4.6(b).	 The	 potential	 energy	 is
lower	because	|Ψ|2	is	large	in	the	region	in	which	the	electrons	‘see’	the	attractive	potential
of	both	protons;	 the	kinetic	energy	is	 lower	because	 |∇Ψ|2	 is	smaller	between	 the	nuclei
and	much	the	same	elsewhere.	The	energy	A	is	therefore	positive.



Fig.	4.6	(a)	The	Is	wavefunctions	on	two	isolated	atoms,	(b)	The	symmetric	wavefunction
( 1	+	 2).	(c)	The	antisymmetric	wavefunction	( 1	−	 2)

This	discussion	of	the	relative	kinetic	and	potential	energies	of	Ψ+	and	Ψ−	is	valid	only
for	 the	approximate	wavefunctions	of	Eqs.	(4.15)	and	(4.16).	The	wavefunctions	are	not
exact	 because	 we	 did	 not	 include	 atomic	 excited	 states	 in	 Eq.	 (4.7).	 We	 can	 however
obtain	exact	energies	for	 the	limit	where	the	separation	R	of	 the	protons	goes	 to	zero	so
that	 the	nuclear	potential	becomes	 that	of	 the	helium	atom	and	 the	exact	wavefunctions
then	become	states	of	the	He+	ion.	The	symmetric	state	of	Fig.	4.6(b)	is	nodeless,	like	an
atomic	 Is	 state,	 and	 this	 state	 becomes	 the	 1s	 state	 of	 He+	 with	 electronic	 energy	 −4
Rydberg	(1	Rydberg	 is	 the	ground	state	binding	energy	of	 the	hydrogen	atom,	13.6	eV).
The	antisymmetric	state	of	Fig.	4.6(c)	has	a	single	nodal	plane	perpendicular	to	the	inter-
nuclear	line.	This	is	the	symmetry	of	an	atomic	2p	state	and	this	state	becomes	the	2p	state
of	He+	with	 an	 energy	−1	Rydberg.	 In	 the	opposite	 limit	R	 	∞	 both	 states	 tend	 to	 the
ground	state	energy	of	atomic	hydrogen,	−1	Rydberg.

These	limiting	energies	are	seen	to	be	correct	in	Fig.	4.7(a),	which	shows	the	results	of
exact	calculations	of	the	energies	of	the	two	states	as	functions	of	R.	Fig.	4.7(a)	shows	the
electronic	energy	only.	To	obtain	the	total	energy	we	must	add	the	internuclear	Coulomb



repulsion	 e2/4πε0R	 to	 obtain	 the	 effective	 internuclear	 potential	 energy	 curves	 of	 Fig.
4.1(b).	We	see	that	only	the	symmetric	combination	Ψ+	gives	a	minimum	in	the	potential
curve,	 representing	 the	 covalent	 bond.	 For	 this	 reason	 the	 symmetric	 wavefunction	 is
called	 the	 bonding	 orbital	 and	 the	 antisymmetric	 wavefunction	 is	 known	 as	 the
antibonding	 orbital.	 A	 wavefunction	 of	 the	 form	 of	 Eq.	 (4.15)	 to	 describe	 covalent
bonding	 is	 referred	 to	 as	 a	 linear	 combination	 of	 atomic	 orbitals.	 Fig.	 4.7	 shows	 an
embryonic	band	structure;	 the	degeneracy	of	the	atomic	states	of	 two	isolated	atoms	has
been	lifted	by	the	approach	of	the	two	nuclei;	the	number	of	levels	in	the	resulting	‘band’
is	equal	to	the	number	of	nuclei	in	the	molecule.

The	binding	of	two	protons	serves	to	illustrate	the	principle	of	covalent	bonding,	namely
the	reduction	in	energy	by	concentration	of	electrons	near	the	internuclear	line,	but	it	is	not
a	typical	example	since	the	resulting	molecular	ion	 	is	charged.	When	neutral	atoms	are
bound	by	equally	shared	electrons	this	necessarily	involves	taking	one	electron	from	each
to	 form	 the	 bond.	 The	 simplest	 example	 of	 a	 bond	 of	 this	 type	 is	 that	 in	 the	 neutral
hydrogen	molecule,	H2,	 and	 it	 will	 be	 instructive	 for	 us	 to	 discuss	 briefly	 the	 electron
wavefunctions	in	this	case.	If	we	neglect	the	mutual	Coulomb	repulsion	between	the	two
electrons,	 then	 they	 can	 be	 treated	 independently	 and	 our	 results	 for	 the	 	 ion	 are
immediately	applicable.	The	 lowest-energy	state	 is	obtained	by	putting	both	electrons	 in
the	 bonding	 orbital,	 and	 this	 is	 allowed	 by	 the	 exclusion	 principle	 provided	 that	 the
electrons	 have	 opposite	 spin.	 This	 situation	 is	 represented	 by	 a	 simple	 product
wavefunction

Fig.	4.7	(From	Quantum	Theory	of	Molecules	and	Solids,	Vol.	1,	by	J.	C	Slater	©	1963
McGraw-Hill	Book	Company	Inc.)



(4.17)	

which	 is	 symmetric	 under	 interchange	 of	 the	 two	 electron	 coordinates,	 ra	 and	 rb;	 the
opposite	spins	imply	an	antisymmetric	spin	wavefunction	so	that	the	total	wavefunction	is
antisymmetric	as	required.

This	independent	particle	approach	is	the	one	that	we	will	adopt	in	the	following	section
for	a	chain	of	atoms,	not	so	much	because	it	is	a	good	approximation	(although	this	turns
out	 to	 be	 the	 case)	 as	 because	 it	 is	much	more	 difficult	 to	 do	 otherwise.	 It	 is	 therefore
instructive	 in	 the	 simple	case	of	 the	hydrogen	molecule	 to	examine	 the	 sort	of	errors	 to
which	it	gives	rise.	To	do	this	we	write	out	in	full	the	wavefunction	of	Eq.	 (4.17),	using
our	approximate	form	of	Ψ+	of	Eq.	(4.15);

(4.18)	

Here	we	use	notation	such	that,	for	example,	 1(a)	corresponds	to	electron	a	in	the	state	



	on	atom	1.	We	have	omitted	the	time	dependence	of	Ψ(ra,rb)	which	just	tells	us	that	in
the	absence	of	electron–electron	interactions	the	energy	of	the	two	electrons	is	2(B−A).	If
we	note	that	 1	 is	 large	near	nucleus	1	and	 2	 large	near	nucleus	2	 then	we	see	 that	 the
first	two	terms	in	the	wavefunction	(4.18)	have	a	rather	different	physical	interpretation	to
the	last	two.	The	first	term	has	a	large	amplitude	when	both	electrons	are	near	nucleus	1,
the	 second	 when	 both	 are	 near	 nucleus	 2;	 in	 contrast	 the	 last	 two	 terms	 have	 a	 large
amplitude	when	one	electron	is	near	each	nucleus.	Thus	at	large	separations	the	last	two
terms	give	the	probability	amplitude	for	finding	two	neutral	hydrogen	atoms,	whereas	the
first	 two	 give	 the	 probability	 amplitude	 for	 finding	 a	 bare	 proton	 H+	 and	 a	 negative
hydrogen	 ion	 H−.	 Within	 the	 independent	 particle	 approximation	 these	 states	 have	 the
same	 energy	 because	 an	 electron	 has	 a	 binding	 energy	 of	 1	 Rydberg	 to	 a	 proton
irrespective	 of	 whether	 another	 electron	 is	 already	 bound.	 The	 electron–electron
interaction,	 however,	 reduces	 the	 binding	 energy	 of	 the	 second	 electron	 to	 only	 0.05
Rydberg	 and	 thus	makes	 a	 clear	 distiction	 between	 the	 states	H	+	H	 and	H+	 +	H−;	 the
higher	energy	of	the	latter	means	that	we	are	almost	certain	to	find	one	electron	near	each
proton	 in	 the	 large	 separation	 limit.	 In	contrast	Eq.	 (4.18)	gives	equal	amplitudes	 to	 the
states	H	+	H	and	H+	+	H−.

At	 smaller	 internuclear	 separations	 where	 1	 and	 2	 overlap	 considerably	 the	 clear
distinction	 between	 the	 two	 types	 of	 state	 can	 no	 longer	 be	 made	 and	 it	 is	 no	 longer
obvious	 that	 the	 independent	particle	approximation	 is	bad;	we	cannot	deduce	 from	 this
however	 that	 it	 is	 good	 and	 we	 should	 always	 treat	 it	 with	 caution.	 One	 important
deduction	 that	 we	 can	 make	 from	 the	 above	 argument	 is	 that	 when	 the	 atoms	 come
together	to	form	a	solid	we	should	not	expect	to	obtain	electron	wavefunctions	extending
throughout	the	crystal	when	the	atoms	are	widely	separated.	Extended	states	imply	a	finite
probability	that	some	atoms	will	have	more	valence	electrons	than	others	and,	because	of
electron–electron	 interactions,	 such	 states	 have	 a	 higher	 energy	 than	 those	 in	which	 the
valence	electrons	are	localized	on	their	atoms.	We	might	expect	the	transition	to	extended
states	and	hence	to	possible	metallic	behaviour	to	occur	at	some	critical	finite	separation
and	 this	 does	 indeed	 seem	 to	 be	 the	 case.	We	 discuss	 this	 possibility	 further	 in	 section
13.5.6.

4.3.3	Electron	states	on	a	one-dimensional	chain
We	will	now	try	to	find	stationary	state	solutions	of	the	form	of	Eq.	(4.8)	 to	 the	coupled
probability	equations	(4.9).	From	the	previous	section	we	know	that	the	approach	that	we
are	 adopting	 is	 essentially	 a	 generalization	 to	 a	 macroscopic	 chain	 of	 the	 ‘linear
combination	of	 atomic	orbitals’	 technique	 for	 finding	 the	 electronic	 states	 in	molecules.
We	find	solutions	of	Eqs.	(4.9)	by	noticing	that	these	are	very	similar	to	Eqs.	(2.7)	for	the
lattice	 vibrations	 of	 the	 chain	 of	 atoms;	 the	 only	 essential	 difference	 is	 that	 the	 time
derivatives	are	i	d/dt	instead	of	d2/dt2	because	Eqs.	(4.9)	are	obtained	from	Schrödinger’s
equation	rather	than	a	classical	equation	of	motion.	Finding	solutions	of	Eqs.	(4.9)	of	the
form	of	Eq.	(4.8)	corresponds	to	finding	the	normal	modes	of	vibration	of	the	chain;	since
these	 are	 running	waves	 (Eq.	 (2.8))	when	 periodic	 boundary	 conditions	 are	 applied,	we



will	look	for	running	wave	solutions	of	the	same	form	to	Eqs.	(4.9),

(4.19)	

where	 	=	na	 is	 the	equilibrium	position	of	 the	nth	atom	in	 the	chain.	Substituting	 into
Eqs.	(4.9)	gives

or,	on	cancelling	 factors	ei(kna	 −	ωt),	we	 find	 that	Eq.	 (4.19)	 is	 a	 solution	 of	Eqs.	 (4.9)
provided	that	the	energy	ε	of	the	state	is	related	to	the	wavenumber	k	by

(4.20)	

The	 coefficients	an(t)	 in	 the	 electron	wavefunction	 (Eq.	 (4.7))	 also	 have	 the	wavelike
form	of	Eq.	(4.19);	the	electron	states	of	the	one-dimensional	chain	are	thus	wavelike	and
extend	 throughout	 the	 crystal.†	 The	 dispersion	 relation	 for	 the	 waves	 (Eq.	 (4.20))	 is
plotted	in	Fig.	4.8.	We	see	that	the	degeneracy	of	the	states	on	the	isolated	atoms	has	been
broken	by	the	coupling	to	produce	an	energy	band	of	width	4A.	As	for	lattice	vibrations,	ω
is	a	periodic	function	of	k	with	period	2π/a.	Also	as	there,	our	assumption	of	coupling	to
nearest	neighbours	only	in	Eqs.	(4.9)	is	not	essential	to	this	periodicity;	terms	involving	cn
−2	and	cn	+	2	in	Eq.	 (4.9)	would	 just	give	rise	 to	a	 term	in	cos	 (2ka)	 in	Eq.	 (4.20).	More
complicated	 coupling	 therefore	 only	 adds	 harmonics	 to	 the	 ε(k)	 curve;	 the	 fundamental
periodicity	remains	at	2π/a,	depending	only	on	the	lattice	spacing.

By	 an	 argument	 identical	 to	 that	 used	 for	 lattice	 vibrations	 we	 can	 show	 that	 the
wavenumber	range	−π/a	<	k	<	π/a,	 that	 is	 the	first	Brillouin	zone,	describes	all	possible
physical	situations.	If	we	take	 the	ordinate	on	Fig.	2.5	as	 representing	cn	 rather	 than	 the
atomic	displacement	un,	then	Fig.	2.5(b)	shows	how	cn	values	given	by	a	wave	with	|k|	>
π/a	(point	A	on	Fig.	4.8)	can	equivalently	be	represented	by	a	wave	with	|k|	<	π/a	(points	B
and	C	on	Fig.	4.8).	Points	A	and	C	represent	states	with	a	negative	group	velocity	dω/dk,
and	thus	represent	electron	wavepackets	moving	to	the	left.	A	and	C	are	thus	completely
equivalent;	point	B	represents	an	otherwise	similar	wavepacket	moving	to	the	right.	The
application	of	periodic	boundary	conditions,	as	before	(sections	2.3.1	and	4.2),	determines
that	 the	number	of	allowed	values	of	k	 in	each	Brillouin	zone	 is	equal	 to	 the	number	of
atoms	N	in	the	chain.

Fig.	4.8	Tight	binding	result	for	the	energy	as	a	function	of	wavenumber	for	electrons	on	a
one-dimensional	chain	of	atoms



Fig.	 4.8	 provides	 more	 insight	 into	 why	 a	 full	 energy	 band	 cannot	 carry	 an	 electric
current.	 The	 filled	 band	 corresponds	 to	 all	 states	 between	Q	 and	 P	 being	 occupied.	An
electric	field	causes	a	shift	of	the	distribution	in	k-space	(Eq.	(3.34)),	to	the	states	between
C	and	A	say.	The	effect	of	the	field	is	therefore	to	cause	electrons	in	states	in	QC	to	shift
to	states	in	PA.	We	have	shown	above	however	that	the	states	in	PA	are	exactly	the	same
as	those	in	QC	so	that	the	electric	field	does	not	change	the	electron	distribution	at	all	and
produces	 no	 current.	 A	 current-carrying	 state	 can	 only	 be	 produced	 if	 some	 of	 the
electrons	are	promoted	to	a	higher	energy	band	as	in	Fig.	4.3(b).

The	freedom	to	describe	the	same	state	by	values	of	k	differing	by	integral	multiples	of
2π/a	allows	us	to	choose	which	Brillouin	zone	we	will	use	to	plot	the	ε(k)	relation.	This
freedom	allows	us	to	make	contact	with	the	ε(k)	relation	given	by	the	nearly	free	electron
theory	(Fig.	4.2).	We	must	first	suppose	that	higher-energy	atomic	states	will	give	rise	to
energy	bands	at	higher	energies	as	shown	on	Fig.	4.9(a);	this	method	of	plotting	in	which
the	 dispersion	 relation	 for	 each	 band	 is	 continued	 periodically	 through	 the	whole	 of	k-
space	is	known	as	a	repeated	zone	scheme.	Note	 that	we	have	assumed	 that	A	changes
sign	for	successive	bands	so	that	the	minimum	energy	is	alternately	at	k	=	0	and	k	=	π/a.

Fig.	4.9	Different	ways	of	plotting	the	ε(k)	curves	for	electrons	in	different	energy	bands



This	 assumption	will	 produce	 a	 dispersion	 relation	with	most	 similarity	 to	 that	 of	 the
nearly	 free	 electron	 theory;	 our	 argument	 concerning	 the	 sign	 of	 A	 in	 section	 4.3.2



depended	on	the	use	of	Is	wavefunctions	that	are	positive	everywhere.	In	Fig.	4.9(b)	 the
dispersion	relations	of	Fig,.	4.9(a)	are	plotted	according	 to	 the	reduced	zone	scheme	 in
which	only	 the	 first	Brillouin	 zone	 is	 used	 since	 this	 contains	 all	 the	physically	distinct
solutions.	 Fig.	 4.9(c)	 shows	 the	 dispersion	 relations	 in	 the	 extended	 zone	 scheme	 in
which	successively	higher	energy	bands	are	plotted	in	successively	higher	Brillouin	zones;
it	is	this	plot	in	which	the	qualitative	similarities	to	the	nearly	free	electron	approach	are
most	 apparent.	 The	 tight	 binding	 approach	 enables	 us	 to	 label	 the	 energy	 bands	 by	 the
atomic	levels	from	which	they	arise.	Thus	the	valence	electrons	in	solid	sodium	are	to	be
found	in	the	3s	energy	band.

In	Fig.	4.10	we	illustrate	the	use	of	the	repeated	zone	scheme	to	plot	the	Fermi	surface
of	the	two-dimensional	metal	of	Fig.	4.5(b).	Two	diagrams	are	needed,	one	for	each	of	the
overlapping	energy	bands.

We	 have	 so	 far	 ignored	 the	 possibility	 that	 the	 electron	 states	 of	 the	 ion	 cores	might
couple	together	and	give	rise	to	an	energy	band.	Normally	the	coupling	is	so	weak	that	the
degeneracy	of	the	energy	levels	is	not	significantly	broken	and	the	core	electron	states	are
localized.	This	is	not	the	case	however	when	the	outermost	core	states	are	not	completely
filled,	as	is	the	case	with	the	3d	states	of	the	transition	metals.	It	is	by	no	means	obvious
whether	these	electrons	are	best	regarded	as	localized	in	atomic	states	or	part	of	a	band	of
mobile	 electrons.	The	 closer	 packing	 of	 the	 atoms	 and	 the	 larger	 binding	 energy	 of	 the
transition	metals	can	be	attributed	to	the	covalent	bonding	associated	with	the	overlap	of
the	incompletely	filled	3d	shells	on	neighbouring	ions.

As	 an	 illustration	 of	 what	 tight	 binding	 wavefunctions	 would	 look	 like	 in	 one-
dimensional	sodium	metal	we	have	used	the	hydrogen	3s	orbital†	(Fig.	4.11(a))	for	 n	in
Eq.	(4.7).	an(t)	takes	the	same	form,	Eq.	(4.19),	as	cn(t)	and	we	thus	obtain	the	real	part	of
the	wavefunction	 as	 shown	 in	Fig.	4.11(b);	we	 took	a	 =	 3.66	Å	 (the	 nearest	 neighbour
distance	 in	 real	sodium	metal)	and	k	=	π/3a	 (equivalent	 to	λ	=	6a).	The	broken	curve	 is
proportional	to	the	real	part,	cos	(kx),	of	the	free	electron	wavefunction	for	the	same	k.	The
large	spikes	on	the	tight	binding	wavefunction	near	each	atom	are	from	the	3s	orbital	on
that	 atom;	 the	 3s	 character	 of	 the	 wavefunction	 near	 each	 nucleus	 serves	 to	 make	 the
wavefunctions	approximately	orthogonal	to	the	lower	lying	Is,	2s	and	2p	atomic	states	of
the	 ion	 core.	We	might	 expect	 that	 the	 tight	 binding	wavefunction	would	 have	 a	 lower
energy	than	the	free	electron	wavefunction	because	the	spikes	increase	the	probability	of
finding	 the	 electron	 in	 the	 neighbourhood	 of	 the	 nuclei	 where	 the	 potential	 energy	 is
lowest.	This	decrease	in	potential	energy	is	however	largely	compensated	by	the	increase
in	kinetic	energy	associated	with	the	rapid	spatial	variation	of	the	3s	wavefunction	near	the
nucleus;	 thus,	 despite	 the	 difference	 in	 the	wavefunctions,	 the	 two	 theories	 give	 similar
dispersion	relations.

Fig.	4.10	The	Fermi	surface	of	the	two-dimensional	divalent	metal	of	Fig.	4.5(b)	plotted	in
a	repeated	zone	scheme;	occupied	states	are	shaded,	(a)	Pockets	of	unoccupied	states
obtained	by	repeating	periodically	in	k-space	the	pattern	inside	the	first	Brillouin	zone	in
Fig.	4.5(b)	pockets	of	occupied	states	obtained	by	repeating	periodically	the	pattern	from
the	second	Brillouin	zone	in	Fig.	4.5(b)



The	compensation	of	kinetic	and	potential	energies	we	have	just	discussed	can	be	seen
already	in	an	isolated	atom.	The	potential	of	a	Na+	ion	is	that	of	a	single	positive	charge	at
large	distances,	but	that	of	a	greater	charge	at	short	distances	because	the	nuclear	charge	is
not	 fully	 screened	 by	 the	 inner	 shell	 electrons.	 We	 might	 therefore	 expect	 that	 the	 3s
electron	 in	sodium	would	be	more	strongly	bound	 than	 the	1s	electron	 in	hydrogen.	Yet
the	ionization	potential	of	hydrogen	is	13.6	eV	and	that	of	sodium	is	5.1	eV.	The	reason
for	 this	 is	 that	 the	 3s	wavefunction	 has	more	wiggles	 than	 the	 Is	wavefunction	 and	 the
consequent	kinetic	energy	largely	compensates	the	attractive	potential.	Thus	the	ionization
potential	of	 the	free	atom	is	a	better	guide	 to	 the	effective	periodic	potential	 in	 the	solid
than	the	Coulomb	potential	of	the	free	ion.

Fig.	4.11



4.3.4	Electron	states	in	diamond,	silicon	and
germanium
The	electron	configuration	of	an	isolated	carbon	atom	is	ls22s22p2.	In	a	crystal	of	diamond
(Fig.	1.15(a))	there	are	two	carbon	atoms	and	hence	eight	valence	electrons	in	a	primitive
unit	 cell.	 To	 construct	 approximate	 wavefunctions	 for	 these	 electrons	 using	 the	 tight
binding	approach	we	must	generalize	Eq.	(4.7)	(with	cn	and	hence	an	of	 the	form	of	Eq.
(4.19))	 to	a	 three-dimensional	crystal	containing	more	 than	one	atom	in	a	primitive	unit
cell.	The	appropriate	generalization	is

(4.21)	

where	the	sum	is	not	over	the	atoms	but	over	the	lattice	points	at	positions	rn	given	by	Eq.
(1.2).	Correspondingly	 the	 values	 of	k	 at	which	 standing	waves	 and	hence	 energy	gaps



occur	are	determined	by	the	periodicity	of	the	lattice,	and	the	wavefunction	 n	must	be	an
orbital	appropriate	to	the	basis	of	two	atoms	associated	with	each	lattice	point	rather	than
with	an	isolated	atom.

The	function	 	must	reflect	the	tetrahedral	arrangement	of	the	nearest	neighbours	in	the
diamond	structure.	The	2s	and	2p	states	of	the	isolated	atom	do	not	have	the	appropriate
symmetry	 but	 it	 is	 possible	 to	 form	 linear	 combinations	 of	 these	 states	 which	 do	 (see
problem	4.5).	This	procedure	is	also	used	in	explaining	the	tetrahedral	bonding	of	carbon
in	 organic	 molecules,	 such	 as	 methane;	 in	 this	 case	 the	 mixing	 of	 the	 s	 and	 p
wavefunctions	 to	 generate	 wavefunctions	 with	 tetrahedral	 symmetry	 is	 known	 as	 sp3
hybridization	 since	 all	 three	 p	 wavefunctions	 are	 involved.	 Four	 different	 linear
combinations	 of	 the	wavefunctions	 can	 be	 obtained,	 each	 one	 corresponding	 to	 a	 large
electron	concentration	in	a	lobe	along	one	of	the	four	tetrahedral	directions	(Fig.	4.12).†

Once	atomic	orbitals	of	the	appropriate	tetrahedral	symmetry	have	been	obtained	by	the
sp3	 hybridization	process,	 a	 suitable	 ‘molecular’	 orbital	 	 for	 the	 diatomic	 basis	 can	 be
obtained	by	linear	combination	of	the	atomic	orbitals	on	neighbouring	atoms.	The	obvious
way	 of	 doing	 this	 is	 to	 use	 the	 bonding	 and	 antibonding	 orbitals	 (see	 section	 4.3.2)
associated	with	the	overlap	of	the	appropriately	directed	tetrahedral	lobe	on	one	atom	with
that	 of	 its	 neighbour;	 the	 enhanced	 electron	 concentration	 in	 the	 region	 between	 the
nearest	 neighbours	 associated	 with	 the	 bonding	 combination	 (Fig.	 4.12(c))	 can	 be
identified	with	covalent	bonding	between	atoms.	The	four	bonding	combinations	and	the
four	 antibonding	combinations	provide	 eight	possible	molecular	orbitals	 to	 insert	 in	Eq.
(4.21)	and	thus	lead	to	eight	energy	bands,	sufficient	to	accommodate	16N	electrons	where
N	is	the	number	of	primitive	unit	cells	in	the	crystal.	As	there	are	8N	valence	electrons	and
diamond	 is	an	 insulator	we	can	deduce	 that	 four	of	 the	bands	are	completely	 full	 (those
associated	 with	 the	 covalent	 bonding)	 and	 the	 other	 four	 are	 separated	 from	 the	 filled
bands	by	an	energy	gap.

The	 situation	 for	 silicon	 and	 germanium	 at	 absolute	 zero	 is	 similar	 to	 that	 for	 carbon
except	 that	 it	 is	 the	 3s,	 3p	 and	 4s,	 4p	 orbitals	 respectively	 that	 are	 involved	 in	 the
hybridization	 process.	 Also	 the	 energy	 gap	 (see	 the	 following	 chapter)	 between	 the
occupied	and	unoccupied	bands	steadily	decreases	as	the	atomic	number	increases	so	that
at	finite	temperatures	sufficient	electrons	are	excited	across	it	in	silicon	and	germanium	to
produce	 semiconducting	 behaviour.	 The	 semiconducting	 compounds	 such	 as	 InSb	 and
GaAs	 are	 formed	 by	 combining	 a	 group	 III	 element	 (such	 as	 In	 or	Ga)	 and	 a	 group	V
element	 (such	 as	 Sb	 or	As).	 The	 electron	 states	 are	 similar	 to	 those	 in	 germanium	 and
silicon	but	three	of	the	valence	electrons	responsible	for	the	covalent	bonding	come	from
the	group	III	element	and	five	from	the	group	V	element.

Fig.	4.12



4.4	BAND	STRUCTURE	EFFECTIVE
MASSES
In	 this	 section	we	 justify	 the	 claim	made	 in	 section	3.3.1	 that	 the	 effect	 of	 the	periodic
lattice	potential	on	the	dynamics	of	the	conduction	electron	wavepackets	can	be	taken	into
account	by	using	an	effective	mass	me	in	the	equations	of	motion	rather	than	the	bare	mass
m.	 We	 will	 consider	 the	 effect	 of	 a	 uniform	 static	 electric	 field	 E	 applied	 to	 a	 one-
dimensional	chain.	The	electrostatic	potential	energy	eEx	of	the	electrons	in	the	presence
of	 the	 field	 superimposes	 a	 uniform	 gradient	 on	 top	 of	 the	 periodic	 lattice	 potential	 as
shown	in	Fig.	4.13(a)	and	the	local	average	potential	energy	thus	acquires	a	gradient	eE	as
indicated.	For	the	fields	that	can	normally	be	applied	the	change	in	the	average	potential
energy	on	an	atomic	length	scale	is	small	and	in	these	circumstances	the	ε(k)	relation	for
the	electrons	 is	 the	same	as	 in	 the	absence	of	 the	field	except	 that	ε	has	 to	be	measured
with	respect	to	the	local	average	potential.	We	thus	obtain	‘sloping’	energy	bands	also	with
a	gradient	eE	as	indicated	in	Fig.	4.13(b).

Fig.	4.13



We	will	calculate	 the	motion	of	an	electron	wavepacket	constructed	by	superimposing
states	 from	 one	 of	 the	 energy	 bands.	 Let	 us	 suppose	 that	 at	 a	 particular	 time	 t	 the
wavepacket	is	constructed	from	states	centred	on	energy	ε	and	wavenumber	k.	We	wish	to
calculate	the	motion	of	the	wavepacket	in	the	subsequent	time	interval	δt.	To	do	this	we
make	the	following	assumptions:

(i)	The	velocity	of	the	wavepacket	is	the	group	velocity

(4.22)	

(ii)	The	motion	of	the	wavepacket	resembles	that	of	a	classical	particle	in	that	its	total
energy	 remains	 constant.	 We	 see	 from	 Fig.	 4.14	 that	 if	 the	 wavepacket	 moves	 a
distance	δx	in	time	δt	then	the	change	δε	in	kinetic	energy	is	given	by

(4.23)	

Fig.	4.14	Motion	of	an	electron	wavepacket	at	constant	energy	in	the	presence	of	an
electric	field.	The	positions	of	the	wavepacket	at	times	t	and	t	+	δt	are	x	and	x	+	δx
respectively



We	will	use	Eqs.	(4.22)	and	(4.23)	to	derive	the	equation	of	motion	in	two	useful	forms.
From	Eq.	(4.22),	the	change	δk	in	k	in	time	δt	is

Hence,	using	Eq.	(4.23)	and	υ	=	dx/dt,

or

(4.24)	

In	 this	 form	 the	 equation	 of	 motion	 is	 just	 a	 statement	 that	 the	 rate	 of	 change	 of
momentum	is	equal	to	the	applied	force.	The	change	in	momentum	cannot	be	attributed	to
the	 electron	 only,	 since,	 as	 we	 will	 show	 in	 section	 13.3.1,	 some	 of	 the	momentum	 is
associated	with	the	crystal	lattice	as	a	whole.	For	this	reason	 k	is	referred	to	as	the	crystal
momentum	of	the	electron.

The	use	of	the	effective-mass	concept	makes	it	possible	to	write	the	equation	of	motion
in	 an	 alternative	 familiar	 form	 and	 to	 use	 it	 without	 having	 to	 worry	 about	 the	 subtle
difference	between	the	true	momentum	and	crystal	momentum	of	the	electron.	To	do	this
we	take	the	time	derivative	of	Eq.	(4.22)	and	use	Eq.	(4.24).	Thus

(4.25)	

which	can	be	written

(4.26)	



This	is	just	Newton’s	second	law	for	a	particle	of	charge	−e	and	mass	me.	Comparison	of
Eqs.	(4.25)	and	(4.26)	identifies	the	effective	mass	me	as

(4.27)	

We	have	 justified	 the	use	of	 an	effective	mass	 in	 the	electron	dynamics	only	 for	 a	dc
electric	field	applied	to	a	one-dimensional	crystal	and	in	the	absence	of	collisions,	but	we
hope	that	the	reader	will	accept	that	appropriate	generalization	of	Eq.	(4.26)	is	indeed	Eq.
(3.23),	 as	we	have	 already	assumed.	The	 three-dimensional	 equivalent	of	Eq.	 (4.27)	 for
the	effective	mass	is	given	in	section	13.3.1.

Readers	should	check	for	themselves	that	Eq.	(4.27)	yields	me	=	m	for	the	free	electron
dispersion	relation	ε	=	 2k2/2m.	For	the	dispersion	relation	within	a	typical	energy	band	as
shown	in	Fig.	4.15(a)	(cf.	Figs	4.2	and	4.8),	d2ε/dk2	is	positive	at	small	k,	zero	at	the	value
of	k	at	which	the	curvature	of	the	dispersion	relation	vanishes	and	negative	for	values	of	k
greater	than	this.	The	effective	mass	therefore	varies	with	k	as	shown	in	Fig.	4.15(b),	and
is	 negative	 for	 states	 close	 to	 the	 top	 of	 the	 energy	 band.	Note	 that	 the	 effective	mass
varies	very	slowly	with	k	near	the	top	and	bottom	of	the	energy	band;	this	is	because	the
ε(k)	 curve	 is	 approximately	 parabolic	 near	 a	 maximum	 or	 a	 minimum	 and	 therefore
resembles	 in	 form	 the	dispersion	 relation	 for	 free	particles	 (see	problem	4.7).	Physicists
find	 the	 idea	 of	 a	 particle	with	 a	 negative	 effective	mass	 rather	 indigestible	 and	 use	 an
alternative	approach	to	describe	the	motion	of	electrons	in	states	near	the	top	of	an	energy
band.	This	approach	uses	the	fact,	explained	in	the	following	chapter,	that	the	behaviour	of
the	electrons	in	states	near	the	top	of	an	energy	band	is	equivalent	to	the	unoccupied	states
behaving	like	positively	charged	particles	with	positive	masses.	These	fictitious	particles
are	 called	 holes	 and	 they	 play	 an	 important	 role	 in	 explaining	 the	 properties	 of
semiconductors.

Fig.	4.15



We	 should	 hasten	 to	 reassure	 the	 reader	worried	 about	 the	 implications	 of	 a	 negative
effective	mass	for	the	heat	capacity	(see	section	3.2.3)	that	a	different	effective	mass	m*	is
appropriate	for	this	property.	From	our	discussion	of	section	3.2.3	it	is	clear	that	the	heat
capacity	is	determined	by	the	value,	at	the	Fermi	energy,	of	the	density	of	states	per	unit
energy	range	g(ε)	and	this	is	always	positive.	To	calculate	m*	for	a	one-dimensional	metal
we	first	calculate	g(ε).	Proceeding	as	in	section	3.2	and	using	the	density	of	running	wave
states	ρR(k)	of	Eq.	(2.30),	we	find

(4.28)	

for	a	one-dimensional	crystal	of	length	L.	The	factor	4	allows	for	both	the	spin	degeneracy
and	the	two	regions	of	k-space,	symmetrically	disposed	around	k	=	0,	in	which	the	energy
range	de	occurs	 (in	one	of	 these	 regions	dε/dk	>	0	 and	 in	 the	other	dε/dk	<	0,	but	both
regions	 make	 the	 same	 positive	 contribution	 to	 the	 density	 of	 states;	 hence	 it	 is	 the
modulus	 of	 dε/dk	 that	 matters).	 From	 Eqs.	 (4.28)	 and	 (3.5)	 we	 deduce	 that	 for	 free
electrons



(4.29)	

whereas	in	general

(4.30)	

The	subscript	F	denotes	the	value	at	the	Fermi	surface.	Comparison	of	Eqs.	(4.29)	and
(4.30)	 shows	 that	 in	 determining	 the	 specific	 heat	 the	 electrons	 behave	 like	 particles	 of
effective	mass

(4.31)	

For	the	dispersion	relation	of	Fig.	4.15(a),	m*,	as	calculated	from	this	equation,	becomes
infinite	if	the	Fermi	‘surface’	is	at	k	=	π/a.	This	situation	corresponds	however	to	a	filled
band	 and	 insulating	 behaviour;	 despite	 the	 infinite	 density	 of	 states,	 the	 electronic	 heat
capacity	 then	vanishes	at	 low	 temperatures	because	 there	are	no	 low	 lying	vacant	 states
into	which	the	electrons	can	be	thermally	excited.

PROBLEMS	4
4.1	 Prove	 that	 1	 =	 sin	 (kx)	 and	 2	 =	 cos	 (kx)	 are	 the	 only	 orthogonal	 linear
combinations	of	eikx	and	e−ikx	that	satisfy

for	all	values	of	k,	where	V	is	the	periodic	lattice	potential	of	Eq.	(4.2).

4.2	 Show	 that	 the	 plane	 wave	 eik.r	 satisfies	 the	 Bragg	 condition	 (Eq.	 (1.3))	 for
diffraction	by	a	simple	square	lattice	of	identical	atoms	of	spacing	a	provided	that

	or	

This	identifies	the	boundaries	of	the	first	Brillouin	zone	in	k-space.

4.3	Near	the	boundary	k	=	π/a	of	the	first	Brillouin	zone	for	the	one-dimensional	chain
of	identical	atoms	of	spacing	a,	the	nearly	free	electron	theory	predicts	that	the	only
important	 term	 in	 the	 lattice	 potential	 of	 Eq.	 (4.2)	 is	 Vl	 cos	 (2πx/a)	 and	 that	 the
wavefunction	is	approximately

Subsitute	this	wavefunction	into	the	Schrödinger	equation

Multiply	the	resulting	equation	(a)	by	e−ikx	and	integrate	over	all	space,	and	(b)	by



e−i(k−2π/a)x	 and	 integrate	 over	 all	 space.	 By	 requiring	 that	 the	 resulting	 two
equations	have	a	non-trivial	solution	for	α	and	β,	show	that	the	energy	ε	associated
with	the	above	wavefunction	can	be	written

This	 confirms	 our	 guess	 for	 the	 form	 of	 the	 ε(k)	 curve	 away	 from	 the	Brillouin
zone	boundary	in	Fig.	4.2.	You	can	check	that	it	gives	the	correct	answer	at	k	=	π	/a
and	 that	 it	 reduces	 to	 the	 free	 electron	 result	 for	values	of	k	well	 away	 from	 the
zone	boundary.

4.4	A	 hypothetical	monovalent	metal	 consists	 of	 a	 simple	 cubic	 lattice	 of	 atoms	 of
spacing	a.	Use	 the	 free	 electron	 theory	 to	 calculate	 the	 radius	 of	 the	 Fermi	 sphere.
Calculate	 the	 distance	 of	 closest	 approach	 of	 this	 sphere	 to	 the	 Brillouin	 zone
boundary.	Is	the	sphere	completely	contained	within	the	first	Brillouin	zone?

How	would	you	 expect	 this	Fermi	 surface	 to	 be	modified	by	 the	 periodic	 lattice
potential?

4.5	A	set	of	normalized	and	mutually	orthogonal	p-state	wavefunctions	 for	an	atom
can	be	written	in	the	form:

Consider	the	linear	combination

Find	four	sets	of	coefficients	(ax,	ay,	az)	that	give	normalized	p-state	wavefunctions
with	 positive	 lobes	 pointing	 towards	 the	 corners	 of	 a	 regular	 tetrahedron.
(Remember	 that	 four	of	 the	corners	of	a	cube	are	corners	of	an	 inscribed	 regular
tetrahedron.)

Consider	the	linear	combination

where	 	 is	 one	 of	 the	 four	 wavefunctions	 calculated	 above	 and	 s	 is	 an	 s-state
wavefunction,	normalized	and	orthogonal	to	px,	py	and	pz.	Find	values	of	b	and	c
which	 make	 the	 four	 resulting	 	 wavefunctions	 orthogonal	 to	 each	 other	 and
normalized.	Write	out	these	four	wavefunctions	in	terms	of	px,	py,	pz	and	s.	(These
are	the	sp3	hybrid	wavefunctions.)

4.6	 The	 sp2	 hybrid	 wavefunctions	 involved	 in	 the	 bonding	 of	 the	 two-dimensional
layers	of	carbon	atoms	in	graphite	are	of	the	form

where	s,	px	and	py	are	s	and	p	wavefunctions	as	defined	in	the	previous	question.
Find	 values	 for	 α,	 β	 and	 γ	 that	 give	 three	 normalized	 mutually	 orthogonal
wavefunctions	with	positive	lobes	directed	at	120°	with	respect	to	each	other	in	the
xy	plane.



4.7	Calculate	the	variation	with	wavenumber	of	the	electron	effective	mass	me	for	the
tight	binding	dispersion	relation	of	Eq.	(4.20).	Show	that	the	value	obtained	at	k	=	π/a
agrees	with	that	obtained	by	expanding	s	to	second	order	in	k	−	π/a	about	k	=	π/a.

†	 For	 stationary	 states	 the	 probability	 |cn(t)|2	 of	 finding	 an	 electron	 on	 atom	 n	 is
independent	of	time.

†	Note	 that	 connecting	 the	ends	of	 the	 chain	 to	 form	a	 ring	 is	not	 appropriate	 in	 this
case.

†	There	is	a	general	result	known	as	Bloch’s	theorem,	which	shows	that	electron	states
in	a	periodic	potential	are	always	wavelike.	We	discuss	this	theorem	in	section	11.3.

†	The	3s	orbital	 in	sodium	will	be	qualitatively	similar	and	have	the	same	asymptotic
dependence	on	position	at	large	distances	from	the	nucleus.

†	sp2	and	sp1	hybridization	also	occur.	The	former	produces	orbitals	with	a	symmetry
appropriate	to	the	layers	of	carbon	atoms	in	the	graphite	structure	(see	problem	4.6).



CHAPTER	5

Semiconductors

The	unreasonable	man	persists	in	trying	to	adapt	the	world	to	himself.	Therefore
all	progress	depends	on	the	unreasonable	man.—George	Bernard	Shaw

5.1	INTRODUCTION
The	 important	 semiconductor	materials	 silicon	 and	 germanium	 form	 covalently	 bonded
crystals	 with	 the	 diamond	 structure	 (Fig.	 1.15);	 the	 semiconductor	 compounds	 such	 as
GaAs	 and	 InSb	 form	 the	 analogous	 zincblende	 structure.	 At	 absolute	 zero	 the	 highest
occupied	 energy	 band	 is	 completely	 full;	 this	 is	 known	 as	 the	 valence	 band	 since	 it
contains	the	electrons	responsible	for	the	covalent	bonding	(see	Section	4.3.4).	The	lowest
unoccupied	energy	band	is	known	as	the	conduction	band	and	is	typically	separated	from
the	valence	band	by	a	gap	of	order	1	eV.	The	behaviour	of	the	semiconductor	is	dominated
by	electrons	in	states	close	to	the	top	of	the	valence	band	and	the	bottom	of	the	conduction
band	for	which	the	energy	dispersion	relations	ε(k)	are	shown	in	Fig.	5.1.

Since	we	are	dealing	with	states	close	to	a	maximum	or	minimum	of	energy	we	can	take
the	dispersion	curve	ε(k)	to	be	parabolic	to	a	good	approximation	and	write:

(5.1)	

(5.2)	

where	EG	is	the	energy	gap	and	we	have	taken	the	top	of	the	valence	band	as	the	zero	of
potential	energy.	Electrons	near	the	bottom	of	the	conduction	band	therefore	behave	like
free	 particles	 of	 positive	 mass	 me.	 Those	 in	 states	 near	 the	 top	 of	 the	 valence	 band,
however,	appear	to	have	a	negative	effective	mass	−mh,	although	electrons	in	states	lower
down	 in	 the	 valence	 band	 do	 have	 positive	 effective	masses	 (see	 Fig.	 4.15(b)).	 At	 first
sight	 it	would	seem	to	be	a	very	difficult	problem	to	calculate	 the	properties	of	a	nearly
full	 valence	 band,	 but	 there	 is	 a	 simple	 and	 elegant	 approach	 which	 avoids	 the
complexities.	The	behaviour	of	a	nearly	full	valence	band	can	be	calculated	by	 ignoring
the	filled	states	completely	and	regarding	each	empty	state	as	being	occupied	by	a	particle
of	 positive	 charge	 |e|,	 positive	mass	mh†	 and	 energy	+ 2k2/2mh	 (as	 shown	 on	Fig.	 5.2).
These	fictitious	particles	are	referred	to	as	holes.



Fig.	5.1	Dispersion	relations	for	electrons	near	the	top	of	the	valence	band	and	the	bottom
of	the	conduction	band	(cf.	Fig.	4.9(b)).	The	transition	of	an	electron	from	the	valence
band	to	the	conduction	band,	as	indicated,	creates	a	hole	in	the	valence	band

Fig.	5.2	The	dispersion	relation	for	holes	in	the	valence	band	is	the	negative	of	that	for
electrons.	The	impurity	level	is	the	energy	of	a	hole	bound	to	an	acceptor	impurity

5.2	HOLES
We	will	consider	the	properties	of	the	valence	band	with	just	one	electron	missing,	from
the	state	k	say.	We	identify	the	energy	and	momentum	of	this	hole	by	asking	how	much	of



each	must	be	added	to	the	crystal	in	order	to	create	it	by	transfer	of	the	electron	from	state
k	in	the	valence	band	to	state	k1	in	the	conduction	band	as	indicated	in	Fig.	5.1.	From	Eqs.
(5.1)	and	(5.2)	the	energy	required	is

The	first	term,	in	brackets,	is	clearly	the	energy	of	the	electron	in	the	conduction	band.
The	second	term	is	therefore	identified	as	the	energy	required	to	create	the	hole	and	it	is
positive.	Thus	the	energy	of	the	hole	in	state	k	is

(5.3)

which	is	plotted	in	Fig.	5.2.	The	hole	dispersion	relation	is	therefore	obtained	by	inverting
that	for	the	valence	band	electrons.	By	a	similar	argument,	the	removal	of	an	electron	of
momentum	 (strictly	 crystal	 momentum)	 k	 from	 the	 valence	 band	 corresponds	 to	 the
addition	of	momentum	(− k)	 to	the	valence	band,	so	that	the	(crystal)	momentum	of	the
hole	in	state	k	is

(5.4)	 .

To	establish	the	equation	of	motion	of	a	hole	we	consider	the	effect	of	a	dc	electric	field
in	the	absence	of	collisions.	We	know	from	Eq.	(4.24)	that	the	effect	of	the	field	is	to	cause
the	k	vector	of	all	the	electrons	to	move	at	the	same	uniform	rate	through	k-space.	Figs.
5.3(a)	and	(b)	show	the	electron	distribution	at	two	successive	times.	We	see	that	the	hole
in	the	distribution	is	‘swept’	along	by	the	electrons	in	the	occupied	states.	The	important
conclusion	is	therefore	that	the	equation	of	motion	of	the	hole	is	exactly	the	same	as	that
of	an	electron	in	the	same	state;	using	results	from	Chapter	4	we	can	write	this	in	either	of
the	forms	(4.24)	or	(4.26),	i.e.

or

where	 Eq.	 (4.27)	 has	 been	 used	 with	 Eq.	 (5.2)	 to	 establish	 that	 the	 effective	 mass	 of
electrons	near	the	top	of	the	valence	band	is	indeed	−mh.	Here	vh	is	the	velocity	of	a	hole
wavepacket	(which	can	be	formed	by	Fourier	synthesis	from	different	valence	band	states
in	each	of	which	 the	one	missing	electron	 is	 from	a	different	k	 state).	Because	 the	hole
motion	is	determined	by	that	of	the	electrons	in	neighbouring	states	vh	is	just	the	electron
group	velocity	as	given	by	Eq.	(4.22),	i.e.



Fig.	5.3	Parts	(a)	and	(b)	show	the	electron	distribution	in	k-space	for	the	valence	band	at
two	successive	times,	illustrating	the	way	in	which	a	dc	electric	field,	in	the	absence	of
collisions,	causes	the	electrons	to	move	through	k-space	at	a	steady	rate	dk/dt	=	−eE/ .	The
unoccupied	states	(E	and	L)	are	swept	along	in	this	process	so	that	the	motion	of	a	hole	is
the	same	as	that	of	an	electron	in	the	same	state

(5.5)	

The	two	forms	of	the	equation	of	motion	given	above	can	be	rewritten:

(5.6)	

(5.7)	

where	we	have	used	Eq.	(5.4).	In	these	forms	the	equation	of	motion	looks	like	that	of	a
particle	of	positive	charge	+e	and	positive	mass	mh.	Note	also	that	the	velocity	of	the	hole
can	be	written

(5.8)	

appropriate	 to	 a	 particle	 of	 energy	 εh	 and	momentum	ph.	We	 hope	 that	 the	 reader	 will
accept	 that	 the	 appropriate	 generalization	 of	 Eq.	 (5.7)	 to	 allow	 for	 the	 existence	 of
collisions	and	for	a	magnetic	field	is

(5.9)	

(cf.	 Eq.	 (3.23)).	 The	 scattering	 of	 a	 hole	 from	 state	 k1	 to	 state	 k2	 corresponds	 to	 the
scattering	of	an	electron	from	state	k2	to	state	k1	so	that	the	scattering	time	for	holes	τh	is
directly	related	to	that	for	electrons.

To	complete	our	demonstration	that	the	behaviour	of	a	nearly	full	valence	band	can	be
explained	by	considering	only	the	vacant	states,	we	must	show	that	the	current	carried	by



the	band	as	a	whole	can	be	expressed	as	a	hole	current.	The	crucial	step	is	to	use	the	fact
that	a	full	band	carries	no	current.	Removing	an	electron	from	the	state	k	therefore	causes
a	 total	 current	 j	 which	 is	minus	 the	 current	 carried	 by	 the	 electron.	 Hence	 j	 =	 −(−e)v,
where	v,	the	group	velocity	of	the	electron,	is	the	same	as	that	of	a	hole	in	the	same	state.
The	current	is	 thus	+evh	and	 is	 therefore	 that	naturally	associated	with	a	hole	 in	state	k.
Since	the	total	current	can	be	written	as	the	sum	of	the	contributions	from	the	electrons	in
the	 conduction	 band	 and	 holes	 in	 the	 valence	 band,	 these	 are	 referred	 to	 as	 the	 charge
carriers	in	the	semiconductor.

5.3	METHODS	OF	PROVIDING
ELECTRONS	AND	HOLES
5.3.1	Donor	and	acceptor	impurities
If	atoms	from	group	V	of	the	periodic	table	(such	as	phosphorus	or	arsenic)	are	added	to
molten	 silicon	 or	 germanium	 they	 crystallize	 when	 the	 melt	 is	 cooled	 into	 a	 position
normally	occupied	by	a	silicon	or	germanium	atom.	It	is	important	that	the	impurity	takes
up	 a	 substitutional	 rather	 than	 an	 interstitial†	 position	 because	 this	 means	 that	 after
forming	 the	 four	 covalent	 bonds	 demanded	 by	 the	 structure	 there	 is	 an	 extra	 valence
electron	left	over	which	can	occupy	one	of	the	states	in	the	conduction	band.

Escape	of	 the	 electron	 to	 large	distances	 leaves	 the	 impurity	 atom	with	 a	 net	 positive
charge;	at	 finite	separations	 the	positive	charge	exerts	an	attractive	force	on	 the	electron
and	 leads	 to	 the	existence	of	 a	bound	 state	 for	 the	electron.	The	 ‘charged	 impurity	plus
electron’	 system	 is	 analogous	 to	 the	 ‘proton	plus	 electron’	 system	and	we	 can	 therefore
estimate	the	strength	of	this	binding	by	adapting	the	standard	result	for	the	energy	levels
of	 the	hydrogen	atom	 to	allow	for	 the	 fact	 that	 the	electron	 is	moving	 through	a	crystal
rather	 than	a	vacuum.	Thus	we	use	me	 for	 the	electron	mass	and	assume	that	 the	crystal
has	a	dielectric	constant	(relative	permittivity)	ε	to	obtain

(5.10)	

To	estimate	the	spatial	extent	of	the	bound	state	wavefunctions	we	use	the	radii	of	the
corresponding	orbits	as	given	by	the	Bohr	theory,

(5.11)	

The	effective	mass	of	electrons	in	germanium	is	0.2	electron	masses	and	the	dielectric
constant	is	15.8.	Using	these	values	in	Eqs.	(5.10)	and	(5.11)	gives	an	estimate

(5.12)	



for	the	ground	state	binding	energy	of	the	extra	electron	and

(5.13)	

for	 the	 radius	 of	 the	 corresponding	 orbit	 (−13.6	 eV	 and	 0.53	 Å	 are	 the	 corresponding
values	 for	hydrogen).	Thus	 the	combination	of	 small	 effective	mass	and	 large	dielectric
constant	gives	very	weak	binding	of	the	extra	electron	to	the	impurity	and	a	very	extended
wavefunction	for	the	bound	state.	Since	the	bound	state	wavefunction	extends	over	many
atomic	 diameters,	 our	 approximation	 of	 using	 an	 effective	 mass	 and	 a	 macroscopic
dielectric	 constant	 should	 work	 reasonably	 well.	 Note	 that	 our	 estimate	 of	 the	 binding
energy	is	less	than	kBT	at	room	temperature	(0.026	eV),	so	we	would	expect	most	of	the
impurity	 atoms	 to	 be	 ionized	 at	 this	 temperature,	with	 the	 extra	 electrons	 free	 to	move
through	 the	 crystal;	 the	 degree	 of	 ionization	 will	 be	 discussed	 more	 fully	 in	 the	 next
section.	Measured	values	of	donor	ionization	energies	for	silicon	and	germanium	are	given
in	Table	5.1.

Eq.	(5.10)	gives	an	infinite	series	of	bound	states,	but	this	applies	only	to	the	idealized
case	 of	 a	 single	 impurity	 in	 an	 infinite	 crystal.	 In	 practice	we	 can	 expect	 Eq.	 (5.10)	 to
apply	only	if	the	mean	separation	between	impurities	is	large	compared	to	the	size	of	the
bound	 state	wavefunction.	 Since	 the	 size	 of	 the	wavefunction,	 according	 to	 Eq.	 (5.11),
goes	 as	 the	 square	 of	 the	 quantum	 number	 n,	 the	 highest	 concentration	 for	 which	 we
expect	Eq.	 (5.10)	 to	 apply	 is	 proportional	 to	 1/n6.	 The	 limiting	 concentration	 is	 thus	 of
order:	1024	m−3	for	n	=	1,	1022	m−3	for	n	=	2	and	1021	m−3	for	n	=	3.	In	practice,	therefore,
the	notion	of	hydrogenic	bound	states	applies	only	to	the	lowest	few	levels.	The	important
parameter	 in	 determining	 the	 number	 of	 ionized	 impurities	 is	 the	 energy	 difference
between	 the	 lowest	 bound	 state	 and	 the	 lowest	 mobile	 state	 at	 the	 bottom	 of	 the
conduction	band.	The	presence	of	a	few	more	bound	states	much	closer	to	the	bottom	of
the	conduction	band	has	very	little	effect	and	is	usually	ignored.

The	electron	energy	level	diagram	of	Fig.	5.1	 is	 therefore	modified	near	 the	bottom	of
the	 conduction	 band	 as	 shown	 in	 Fig.	 5.4.	 The	 bound	 state	 is	 referred	 to	 as	 a	 donor
impurity	 level	 because	 it	 is	 capable	 of	 giving	 an	 electron	 to	 the	 conduction	 band.	 The
donor	level	is	shown	as	a	horizontal	line	in	Fig.	5.4	to	indicate	that,	since	it	is	localized	in
space,	the	Fourier	synthesis	of	the	wavefunction	of	the	bound	state	would	require	k	states
from	 a	 finite	 range	 of	k.	 At	 absolute	 zero	 the	 extra	 electron	 associated	with	 the	 donor
impurity	will	occupy	the	donor	impurity	level,	but	a	relatively	small	energy	is	required	to
ionize	it	into	the	conduction	band.

TABLE	5.1	Band	gaps,	donor	and	acceptor	energies,	relative	permittivities	and	intrinsic
carrier	concentrations	for	Si	and	Ge



Fig.	5.4	Electron	energy	states	of	Fig.	5.1	modified	to	allow	for	the	bound	states	near
donor	and	acceptor	impurities

Everything	 we	 have	 said	 about	 group	 V	 impurities	 and	 electrons	 applies	 equally	 to
group	III	impurities	and	holes.	A	group	III	element,	such	as	boron	or	aluminium,	has	one
too	few	electrons	to	form	the	four	covalent	bonds	demanded	by	the	diamond	structure	of
silicon	or	germanium.	This	missing	electron	represents	a	hole	in	the	valence	band	with	a
tendency	to	be	bound	to	the	B−	or	Al−	ion.	This	results	in	the	appearance	of	an	acceptor
impurity	 level	 (so	called	because	 it	accepts	electrons	from	the	valence	band)	 for	a	hole
about	0.01	eV	below	the	bottom	of	the	hole	valence	band	as	shown	in	Fig.	5.2.	Fig.	5.4
shows	the	equivalent	electron	energy	level;	since	 the	hole	has	a	 lower	energy	when	it	 is
bound	 to	 the	 acceptor	 impurity,	 the	 occupation	 of	 the	 acceptor	 level	 by	 an	 electron
represents	 a	 state	 of	 higher	 energy	 for	 the	 electron	 than	 a	 state	 in	 the	 valence	 band.
Measured	values	of	acceptor	ionization	energies	for	silicon	and	germanium	can	be	found



in	Table	5.1.

Note	that	adding	an	impurity	does	not	alter	the	total	number	of	electron	energy	levels.
Rather,	levels	are	detached	from	the	conduction	and	valence	bands	to	form	the	donor	and
acceptor	 impurity	 levels.	 Therefore,	 although	 a	 crystal	 containing	 an	 acceptor	 atom	has
one	too	few	electrons	to	form	all	the	covalent	bonds,	the	valence	band	has	lost	one	energy
level	to	form	the	localized	acceptor	level.	There	are	thus	just	enough	electrons	to	fill	the
valence	band	at	T	=	0.	Similarly,	the	conduction	band	is	completely	empty	at	T	=	0.

5.3.2	Thermal	excitation	of	carriers
To	calculate	the	number	of	charge	carriers	at	any	temperature	T	we	use	the	electron	energy
level	diagram	of	Fig.	5.4.	This	represents	a	simplification	of	the	actual	situation	in	silicon
and	germanium	since	in	these	materials	the	conduction	band	minimum	is	not	at	k	=	0;	this
makes	 no	 difference	 for	 our	 present	 purposes	 (but	 see	 sections	 5.4	 and	 5.5.3).	 The
probability	of	occupation	of	a	state	of	energy	ε	is	given	by	the	Fermi	distribution	function
(Eq.	(3.14))

in	which	the	value	of	 the	chemical	potential	μ	at	each	 temperature	has	 to	be	adjusted	 to
obtain	the	correct	total	number	of	particles.	The	energy	level	ε	=	μ(T)	is	called	the	Fermi
level	 and	 in	 semiconductor	 textbooks	 it	 is	 often	denoted	by	 the	 symbol	 εF.	This	 can	be
very	 confusing	 since	 in	 Chapter	 3	 we	 followed	 the	 normal	 convention	 in	 statistical
mechanics	and	reserved	this	notation	for	the	value	of	μ	at	T	=	0.	For	self-consistency	we
will	continue	this	practice	but	the	reader	should	be	careful	to	distinguish	between	our	use
of	the	term	‘Fermi	energy’	to	refer	to	μ(0)	and	‘Fermi	level’	to	refer	to	μ(T).

The	other	factor	that	determines	the	occupancy	of	states	in	the	conduction	and	valence
bands	is	the	density	of	states	per	unit	energy	range.	This	can	be	calculated	in	the	same	way
as	in	Section	3.2	for	free	electrons,	except	that	we	must	use	the	dispersion	relations,	Eqs.
(5.1)	 and	 (5.2)	 respectively,	 for	 the	 conduction	 and	 valence	 bands	 rather	 than	 the	 free
electron	dispersion	relation,	Eq.	(3.5).	The	resulting	density	of	states	(cf.	Eq.	(3.7))	is:

(5.14a)	

(5.14b)	

Fig.	5.5	Density	of	states	g(ε)	and	Fermi	function	f(ε)	for	a	semiconductor	with	the	energy
level	scheme	of	Fig.	5.4.	The	Fermi	level	μ	is	normally	within	the	band	gap	and	is
sufficiently	far	from	the	band	edges	that	the	probabilities	of	occupation	of	valence	and
conduction	band	states	by	electrons	are	close	to	1	and	0,	respectively



The	 density	 of	 states	 given	 by	 Eqs.	 (5.14)	 is	 sketched	 in	 Fig.	 5.5.	 In	 addition	 to	 the
parabolic	densities	of	states	 in	 the	conduction	and	valence	bands	there	are	NDV	 states	at
energy	EG	 −	ED	 and	NAV	 states	 at	 energy	EA	 corresponding	 to	 the	ND	 donors	 and	NA
acceptors	per	unit	volume†	respectively.	The	Fermi	function	is	also	shown	in	Fig.	5.5.

At	 room	 temperature	 kBT	 is	 much	 less	 than	 EG	 so	 that	 provided	 the	 Fermi	 level	 is
somewhere	 in	 the	band	gap,	not	 too	close	 to	 the	band	edge,	as	 illustrated	(this	 is	almost
always	 the	case),	 the	Fermi	function	 is	very	close	 to	unity	 in	 the	valence	band	and	very
small	in	the	conduction	band.	This	enables	us	to	approximate	the	Fermi	function	in	such	a
way	that	we	can	obtain	analytic	expressions	for	the	number	of	electrons	in	the	conduction
band	and	 the	number	of	holes	 in	 the	valence	band.	Thus	 for	an	electron	energy	ε	 in	 the
conduction	band	we	have	ε	−	μ	 	kBT,	and	hence

and

(5.15)	

Thus	the	number	of	electrons	per	unit	volume	in	the	conduction	band	is	given	by

(5.16)	

where

(5.17)	

By	comparison	of	Eqs.	(5.15)	and	(5.16)	we	see	that	NC	is	the	effective	number	of	levels
per	unit	volume	in	the	conduction	band	if	we	imagine	them	concentrated	at	the	bottom	of
the	 band,	 ε	 =	 EG.	 The	 temperature	 dependence	 of	 Nc	 arises	 because	 they	 are	 not	 so



concentrated.

The	probability	that	a	state	in	the	valence	band	is	occupied	by	a	hole	is	1	−	f(ε),	which
can	be	written

(5.18)	

For	μ	−	ε	 	kBT	 this	can	be	approximated	 in	a	similar	manner	 to	 that	used	 in	deriving
Eq.	(5.15)	to	give

(5.19)	

The	number	of	holes	per	unit	volume	in	the	valence	band	is	therefore

(5.20)	

where

(5.21)	

is	 the	 effective	 number	 of	 states	 per	 unit	 volume	 in	 the	 valence	 band	 if	 they	 were	 all
concentrated	at	the	top	of	the	band,	ε	=	0.

Note	 that	 Eq.	 (5.15)	 predicts	 that	 the	 probability	 for	 occupation	 of	 a	 state	 in	 the
conduction	band	by	an	electron	is	given	by	the	classical	Boltzmann	distribution	f(ε)	∝	exp
(−ε/kBT).	We	 thus	expect	 the	 results	of	classical	statistical	mechanics	 to	be	valid	 for	 the
conduction	band	electrons	provided	 the	 approximation	 leading	 to	Eq.	 (5.15)	 is	 justified.
For	 example,	 the	 electron	 energy	 of	 Eq.	 (5.1)	 depends	 quadratically	 on	 k	 so	 that
equipartition	of	energy	predicts	a	mean	 thermal	kinetic	energy	of	3kBT/2	 for	conduction
band	electrons	 just	 as	 for	 the	particles	 in	a	classical	gas.	 Inserting	εh	=	−ε	 in	Eq.	 (5.19)
shows	that	holes	also	obey	a	classical	Boltzmann	distribution.

The	effect	of	doping	a	pure	semiconductor	with	donor	or	acceptor	impurities	is	to	shift
the	 chemical	 potential,	 as	 we	 will	 discuss	 shortly,	 and	 hence	 alter	 the	 carrier
concentrations.	But	let	us	first	note	the	following	important	result,	obtained	by	multiplying
together	Eqs.	(5.16)	and	(5.20):

(5.22)	

The	product	of	hole	and	electron	concentrations	is	therefore	independent	of	μ	and	hence



of	 impurity	 concentration,	 although	 it	 does	 depend	 on	 temperature.	 Eq.	 (5.22)	 can	 be
viewed	as	an	example	of	the	law	of	mass	action	used	in	the	theory	of	chemical	reactions;
it	 is	 analogous	 to	 the	 constant	 product	 of	 hydrogen	 and	 hydroxyl	 ion	 concentrations	 in
different	 aqueous	 solutions	 at	 the	 same	 temperature.	 The	 ‘chemical	 reaction’	 in	 the
semiconductor	is	the	equilibrium	of	the	electons	and	holes	with	thermal	energy	in	the	form
of	lattice	vibrations	and	black-body	radiation.

5.3.3	Intrinsic	behaviour
In	a	pure	semiconductor	the	electron	and	hole	concentrations	are	equal	since	a	hole	in	the
valence	band	 can	only	be	 created	by	 excitation	of	 an	 electron	 into	 the	 conduction	band
(Fig.	5.1).	From	Eq.	(5.22)	therefore

(5.23)	

The	 subscript	 i	 identifies	 these	 as	 the	 intrinsic	 carrier	 concentrations,	 so	 called
because	 they	 are	 an	 intrinsic	 property	 of	 the	 pure	 semiconductor.	 The	 electrical
conductivity	 that	 they	 give	 rise	 to	 is	 likewise	 called	 the	 intrinsic	 conductivity.	 The
intrinsic	carrier	concentrations	in	silicon	and	germanium	at	room	temperature	are	2	×	1016

and	2	×	1019	m−3	respectively.	Equating	the	values	of	n	and	p	from	Eqs.	(5.16)	and	(5.20)
enables	us	to	deduce	the	chemical	potential	of	an	intrinsic	semiconductor.	Thus

and

(5.24)	

Since	kBT	 	EG	the	second	term	is	small	and	the	Fermi	level	is	essentially	in	the	middle
of	the	band	gap.	Note	that,	using	Eqs.	(5.22)	and	(5.23),	the	product	of	electron	and	hole
concentrations	in	any	semiconductor	can	conveniently	be	written

(5.25)	

where	ni(T)	is	the	intrinsic	carrier	concentration	at	the	same	temperature.

To	 find	 the	 circumstances	 in	 which	 we	 might	 expect	 to	 observe	 intrinsic	 behaviour
experimentally,	 let	us	consider	what	happens	when	a	small	amount	of	donor	 impurity	 is
added.	At	room	temperature	small	amounts	of	 impurity	alter	 the	chemical	potential	only
slightly	so	that	it	remains	close	to	the	centre	of	the	band	gap.	The	donor	level	remains	in
the	high-energy	tail	of	 the	Fermi	function	as	 in	Fig.	5.5	and	consequently	almost	all	 the
electrons	from	the	donor	atoms	will	be	in	the	conduction	band.	The	electron	concentration
will	 therefore	be	 seriously	affected	unless	 the	donor	concentration	 is	 small	 compared	 to
the	intrinsic	carrier	concentration	given	by	Eq.	(5.23).	Thus	 the	requirement	 for	 intrinsic
behaviour	 in	 silicon	 at	 room	 temperature	 is	 ND	 <	 2	 ×	 1016	 m−3.	 Since	 the	 atomic
concentration	is	5	×	1028	m−3	the	impurity	content	needs	to	be	less	than	1	in	1012.

Although	 the	 requirement	 for	 germanium	 is	 less	 stringent	 (<	 1	 in	 109),	 the	 technical
problem	 of	 making	 crystals	 of	 such	 extraordinarily	 high	 purity	 is	 one	 reason	 why



semiconductors	 were	 not	 widely	 used	 earlier.	 The	 breakthrough	 that	 made	 modern
developments	possible	was	the	discovery	of	zone	refining.	This	depends	on	the	fact	that
impurities	 are	 more	 soluble	 in	 the	 liquid	 than	 in	 the	 solid,	 so	 that	 if	 a	 molten	 zone	 is
moved	along	a	solid	the	impurities	are	swept	along	with	it.	In	practice	the	crystal	is	held
just	 below	 its	 melting	 point	 in	 a	 furnace	 and	 a	 small	 zone	 is	 melted	 by	 an	 auxiliary
induction	heater;	 by	pulling	 the	 sample	 through	 the	 induction	heater	 the	molten	 zone	 is
moved	along	it.	The	process	is	repeated	until	the	required	purity	is	achieved.	The	purified
material	is	subsequently	doped	with	controlled	amounts	of	donors	or	acceptors	to	give	the
desired	properties.

5.3.4	Extrinsic	behaviour
When	 acceptors	 and	 donors	 are	 present,	 the	 chemical	 potential	 is	 determined	 by	 the
requirement	 that	 the	 total	 number	of	 electrons	 is	 correct.	A	convenient	way	of	 ensuring
this	is	to	require	that	μ	be	chosen	so	that	the	crystal	is	electrically	neutral;	it	was	formed
from	 electrically	 neutral	 atoms	 so	 that	 a	 charge	 that	 appears	 at	 any	 point	 must	 be
accompanied	by	an	equal	and	opposite	charge.	The	charges	that	concern	us	are	electrons
in	 the	 conduction	 band,	 holes	 in	 the	 valence	 band	 and	 ionized	 donor	 and	 acceptor
impurities.	 The	 condition	 for	 electrical	 neutrality	 is	 that	 the	 densities	 of	 negative	 and
positive	charge	associated	with	these	should	be	equal.	That	is

(5.26)	

where	 	and	 	are	the	concentrations	of	ionized	acceptors	and	donors,	given	in	terms	of
the	Fermi	function	by†

(5.27)	

and

(5.28)	

By	inserting	Eqs.	(5.16)	and	(5.20)	for	n	and	p	into	Eq.	(5.26)	it	is	possible	to	determine
μ	and	hence	n	and	p.	Analytic	solutions	can	only	be	found	in	special	limiting	cases	and	we
now	proceed	to	discuss	some	of	these.

The	 commonest	 situation	 is	 that	 in	which	 impurities	of	both	 types	 are	present.	Let	 us
suppose	 that	 the	number	of	donors	exceeds	 the	number	of	acceptors.	Since	 the	acceptor
levels	have	a	lower	energy	they	will	be	fully	occupied	at	absolute	zero	by	electrons	from
the	donor	impurities,	leaving	ND	−	NA	donor	levels	un-ionized.	Since	only	the	Fermi	level
can	be	partly	occupied	at	T	=	0	we	have	μ	=	EG	−	ED.	At	very	low	temperatures,	kBT	 	ED,
where	the	number	of	ionized	donors	has	not	changed	much,	the	Fermi	level	remains	close
to	this	value,	so	that	the	electron	concentration	in	the	conduction	band	is,	from	Eq.	(5.16),

(5.29)	

Because	 ED	 	 EG	 the	 electron	 concentration	 is	 much	 greater	 than	 the	 intrinsic
concentration	given	by	Eq.	 (5.23);	consequently,	because	of	 the	 law	of	mass	action,	Eq.
(5.22),	 the	hole	concentration	 is	very	much	 less	 than	 its	 intrinsic	value.	Material	of	 this



type,	 in	which	 donor	 impurities	 are	 dominant	 and	 the	 number	 of	 electrons	 exceeds	 the
number	 of	 holes,	 is	 known	 as	 n-type	 material;	 the	 electrons	 are	 referred	 to	 as	 the
majority	carrier	and	the	holes	as	the	minority	carrier.	In	an	exactly	similar	way	excess
acceptors	give	p-type	material	in	which	holes	are	the	majority	carrier.	In	p-type	material
containing	more	acceptors	than	donors	the	Fermi	level	at	absolute	zero	is	at	the	acceptor
level,	μ	=	EA,	and	the	result	corresponding	to	Eq.	(5.29)	is

(5.30)	

Returning	 to	 the	 n-type	 material,	 with	 increasing	 temperature	 the	 number	 of	 ionized
donors	becomes	comparable	to	the	total	number	of	donors;	because	the	donor	level	must
then	be	in	the	tail	of	the	Fermi	distribution	function,	the	Fermi	level	lies	below	the	donor
level.	 We	 thus	 have	 a	 range	 of	 temperature	 in	 which	 essentially	 all	 the	 donors	 and
acceptors	are	ionized	and	the	electron	density,	from	Eq.	(5.26),	is

(5.31)	

The	Fermi	level,	obtained	by	equating	the	values	of	n	of	Eqs.	(5.16)	and	(5.31),	is

(5.32)	

The	 doping	 levels	 in	most	 semiconductor	 devices	 are	 such	 as	 to	 bring	 them	 into	 the
region	where	all	the	impurities	are	ionized	at	room	temperature;†	the	resulting	temperature
independence	 of	 the	majority	 carrier	 concentration	 is	 often	 important	 for	 the	 successful
operation	of	the	device.	The	temperature-dependent	minority	carrier	concentration	in	this
region	can	be	obtained	by	using	the	law	of	mass	action,	Eq.	(5.22).

On	 increasing	 the	 temperature	 of	 an	 n-type	 semiconductor	 still	 further	 the	 hole
concentration	 increases	 towards	 the	electron	concentration,	 the	Fermi	 level	 falls	 towards
the	 centre	 of	 the	 gap	 and	 eventually	 intrinsic	 behaviour	 is	 observed.	 The	 temperature
dependences	 of	 the	 chemical	 potential	 and	 carrier	 concentrations	 in	 an	 n-type
semiconductor	are	 thus	as	shown	in	Fig.	5.6.	 In	 the	 region	where	 the	concentrations	are
determined	by	 the	 impurities	 the	behaviour	of	 the	semiconductor	 is	said	 to	be	extrinsic.
For	a	p-type	semiconductor	the	results	corresponding	to	Eqs.	(5.31)	and	(5.32)	for	the	hole
concentration	and	chemical	potential	 in	 the	 temperature	range	 in	which	all	 the	acceptors
and	donors	are	ionized	are

(5.33)	

(5.34)	

The	very	low-temperature	behaviour	is	different	if	only	one	type	of	impurity	is	present.
If	only	donors	are	present,	the	donor	level	is	completely	full	at	absolute	zero	and	almost	so
at	very	low	temperatures.	The	Fermi	level	must	then	lie	between	the	donor	level	and	the
conduction	band;	the	situation	is	similar	 to	intrinsic	material,	except	that	 the	donor	level
takes	the	place	of	the	valence	band	Thus,	approximating	Eq.	(5.27)	in	the	way	we	used	to
obtain	Eq.	(5.19),	we	find



Fig.	5.6	Variations	of	(a)	the	Fermi	level	μ	and	(b)	the	electron	and	hole	concentrations
(note	the	logarithmic	scale)	with	1/T	for	an	n-type	semiconductor	containing	a	significant
number	of	acceptor	impurities.	The	figure	was	calculated	for	a	germanium	semiconductor
with,	ND	=	1022	m−3,	ED	=	0.012eV,	NA	=	1021	m−3	and	EA	=	0.010	eV;	the	scale	at	the	top
shows	temperature	values	for	this	case

(5.35)	

The	hole	concentration	can	be	ignored	so	that	electrical	neutrality	(Eq.	(5.26))	requires	n
=	 .	Therefore,	using	Eqs.	(5.16)	and	(5.35),

(5.36)	

The	exponents	of	Eqs.	(5.29)	and	(5.36)	differ	by	a	factor	of	2,	so	appreciable	amounts
of	minority	impurity	have	a	noticeable	effect	at	very	low	temperatures.

5.4	ABSORPTION	OF
ELECTROMAGNETIC	RADIATION
Fig.	5.7	 shows	 the	 absorption	 coefficient	 for	 electromagnetic	 radiation	 as	 a	 function	 of
photon	energy	(frequency)	for	germanium	at	two	different	temperatures.	At	T	=	77	K	there



is	 an	 onset	 of	 absorption	 as	 the	 photon	 energy	 increases	 through	 about	 0.73	 eV	 and	 a
further	sharp	increase	in	absorption	at	an	energy	of	0.87	eV.	The	increases	in	absorption
occur	when	the	photons	have	sufficient	energy	to	excite	a	valence	band	electron	into	the
conduction	band,	creating	an	electron-hole	pair	in	the	process.	The	photon	energies	at	the
onset	of	absorption	therefore	provide	a	measure	of	the	energy	gap	in	semiconductors.

To	understand	why	there	are	apparently	two	energy	gaps	in	germanium	it	is	necessary	to
know	that	germanium	(like	silicon)	is	an	indirect	(band)	gap	semiconductor	 in	 that	 the
maximum	of	the	valence	band	and	the	minimum	of	the	conduction	band	occur	at	different
values	of	k.	The	valence	band	maximum	is	at	k	=	0	but	the	minimum	in	the	conduction
band	 is	 at	 a	k	 vector	 on	 the	 Brillouin	 zone	 boundary	 in	 the	 [1	 1	 1]	 direction.	 This	 is
illustrated	in	Fig.	5.8(a),	which	shows	electron	dispersion	relations	for	germanium	for	k	in
the	[1	1	1]	direction.	The	lower	onset	energy	for	photon	absorption	corresponds	to	a	gopd
approximation	to	the	minimum	energy	difference,	EG,	between	the	two	bands	as	indicated
in	 the	 figure.	The	higher	 onset	 energy	 corresponds	 to	 the	minimum	energy	 at	which	 an
electron	can	be	promoted	to	the	conduction	band	with	no	change	in	wavenumber;	this	is
denoted	 	in	the	figure.	When	an	electron	absorbs	a	photon,	energy	and	momentum	must
be	conserved.	The	change	in	energy	∆ε	and	(crystal)	momentum	 ∆k	of	 the	electron	are
therefore

Fig.	5.7	Absorption	coefficient	for	electromagnetic	radiation	of	germanium	versus	photon
energy	at	temperatures	of	77	and	300	K.	(Reproduced	with	permission	from	W.	C.	Dash
and	R.	Newman,	Phys.	Rev.	99,	1151	(1955))

Fig.	5.8



	and	

where	ωph	and	kph	are	the	angular	frequency	and	wavevector	of	the	photon.	For	a	photon
of	energy	1	eV,	the	wavelength	is	about	10−6	m	and	thus	much	greater	than	the	interatomic
spacing	R.	The	momentum	h/λ	of	the	photon	is	thus	much	less	than	h/R,	which	is	the	order
of	the	momentum	of	a	conduction	band	electron.	Photons	of	energy	1	eV	cannot	therefore
cause	 significant	 momentum	 changes	 of	 the	 electrons	 and	 transitions	 are	 effectively
vertical	 as	 shown	 in	 Fig.	 5.8(b).	 The	 onset	 energy	 for	 such	 transitions	 is	 the	minimum
vertical	difference	between	valence	and	conduction	bands	and	this	explains	the	higher	of
the	two	onset	energies	of	Fig.	5.7.

Why	then	are	photons	absorbed	at	energies	between	EG	and	 ?	Clearly	there	must	be
some	source	 (or	 sink)	of	momentum	within	 the	crystal.	The	quanta	of	 lattice	vibrations,
phonons,	 provide	 this;	 in	 contrast	 to	 photons,	 phonons	 have	 large	 momenta	 and	 small
energy.	A	phonon	of	momentum	h/R	has	an	energy	of	order	kBΘD	where	ΘD	is	the	Debye
temperature	(Section	2.6.4),	and	this	 is	usually	very	small	compared	to	1	eV.	To	explain
the	lower	onset	energy	of	Fig.	5.7	we	envisage	a	process	like	that	shown	in	Fig.	5.8(c)	in
which	the	electron	simultaneously	absorbs	a	photon	and	emits	(or	absorbs)	a	phonon.	The
photon	provides	the	energy	change	of	the	electron,	the	phonon	the	momentum	change.	In
time-dependent	perturbation	theory	such	a	process	would	appear	in	second	order	whereas
a	process	involving	a	photon	only	is	present	in	first	order,	and	this	explains	why	the	onset



of	absorption	at	 ωph	=	EG	is	less	dramatic	than	that	at	 ωph	=	 .	In	the	direct	(band)	gap
semiconductor,	 InSb,	 in	which	 the	maximum	of	 the	valence	band	and	minimum	of	 the
conduction	band	occur	at	the	same	k	value,	only	one	onset	energy	is	observed.

The	 absorption	 spectrum	 of	 a	 semiconductor	 thus	 provides	 a	 direct	 method	 for
measuring	 the	 energy	gap.	 It	 is	 apparent	 from	Fig.	5.7	 that	 the	 band	gap	 and	hence	 the
electron	 energies	 are	 dependent	 on	 temperature.	 The	 temperature	 dependence	 has	 two
causes:	thermal	expansion	changes	the	interatomic	spacing	and	hence	the	lattice	potential;
also	 the	 electron	 energies	 are	 changed	 by	 the	 presence	 of	 thermally	 excited	 lattice
vibrations.

5.5	TRANSPORT	PROPERTIES
To	describe	the	motion	of	 the	carriers	 in	the	presence	of	electric	and	magnetic	fields	we
use	Eq.	 (3.23)	 for	 the	electrons	and	Eq.	 (5.9)	 for	 the	holes.	For	easy	 reference	we	write
these	equations	again	here	and	renumber	them.

(5.37a)	

(5.37b)	

5.5.1	Electrical	conductivity
When	only	a	dc	electric	field	is	present	the	solutions	of	Eqs.	(5.37)	are

(5.38a)	

(5.38b)	

(cf.	Eq.	(3.24)),	which	gives	the	electron	and	hole	mobilities	as

(5.39)	 	and	

The	 resulting	 electric	 current	 density,	 obtained	 by	 summing	 the	 electron	 and	 hole
contributions,	is

(5.40)	

Which	is	Ohm’s	law	with	an	electrical	conductivity	σ	given	by

(5.41)	

Since	 the	 electron	 and	 hole	 mobilities	 are	 usually	 comparable	 the	 relative	 carrier



densities	 determine	 the	 relative	 contributions	 of	 the	 electrons	 and	 holes	 to	 the
conductivity.	 In	 the	 intrinsic	 region	 the	 two	 contributions	 are	 usually	 similar	 but	 in	 the
extrinsic	region	the	conductivity	is	normally	dominated	by	the	majority	carrier.

Measured	conductivities	for	arsenic-doped	n-type	germanium	are	plotted	logarithmically
against	1/T	in	Fig.	5.9.	The	steep	increase	in	σ	at	high	temperatures	given	by	the	broken
line	on	the	left,	which	was	observed	in	the	purest	specimen	only,	represents	the	increase	in
n	and	p	associated	with	the	transition	to	intrinsic	behaviour	(Eq.	(5.23)).	The	fall	 in	σ	at
low	temperatures	on	the	right	of	the	figure	for	the	two	purest	specimens	is	associated	with
the	‘freezing’	out	of	electrons	on	the	donor	levels;	since	the	slopes	of	the	two	curves	differ
approximately	by	a	factor	of	2,	it	is	tempting	to	associate	the	upper	curve	with	Eq.	(5.36)
and	the	lower	curve	with	Eq.	(5.29)	 (see	problem	5.4).	At	 intermediate	 temperatures	 the
donors	are	fully	ionized	and	the	observed	decrease	in	conductivity	with	rising	temperature
results	 from	 the	 decrease	 in	 electron	 mobility	 caused	 by	 increased	 scattering	 from
thermally	excited	lattice	vibrations.

Qualitatively	 different	 behaviour	 is	 displayed	 by	 the	 most	 impure	 specimen;	 the
conductivity	 is	 independent	of	 temperature	at	 the	 lowest	 temperatures	 just	as	for	metals.
As	we	discussed	 in	Section	5.3.1,	 the	 impurity	 concentration	 in	 this	 specimen	 is	 that	 at
which	the	wavefunctions	of	the	lowest	bound	state	on	neighbouring	donor	atoms	begin	to
overlap.	 This	 results	 in	 the	 formation	 of	 an	 ‘impurity’	 energy	 band	 of	 mobile	 electron
states	 (Section	 13.5.6);	 the	 electrons	 in	 the	 donor	 levels	 can	 then	 conduct	 electricity,
leading	 to	 a	 temperature-independent	 carrier	 concentration	 at	 low	 temperatures.	 The
formation	 of	 an	 impurity	 energy	 band	 associated	with	 spatially	 disordered	 donor	 atoms
shows	that	crystalline	order	is	not	essential	for	the	presence	of	mobile	electron	states;	the
existence	of	liquid	metals	is	an	even	more	convincing	demonstration	of	this	fact.

Fig.	5.9	Temperature	dependence	of	the	conductivity	of	three	samples	of	germanium
containing	arsenic	donor	impurities	with	the	approximate	concentrations	indicated.
(Reproduced	with	permission	from	P.	P.	Debye	and	E.	M.	Conwell,	Phys.	Rev.	93,	693
(1954))



We	can	account	roughly	for	the	order	of	magnitude	of	the	conductivities	shown	on	Fig.
5.9.	We	take	a	moderately	low	temperature	(50	K)	and	the	specimen	of	intermediate	purity
so	that	we	might	expect	the	scattering	to	be	largely	due	to	the	impurities,	which	are	almost
100%	ionized	at	this	temperature.	The	experimental	conductivity	is	therefore	of	order	103

Ω−1	m−1	for	n	=	1022	m−3.	From	Eq.	(5.40),	with	e	≈	10−19	C,	a	typical	mobility	is	thus	1
m2	V−1	s−1,	and	from	Eq.	(5.39)	with	me	=	10−31	kg	a	typical	collision	time	is	τe	=	10−12	s.
We	can	relate	this	to	the	collision	cross	section	A	of	an	impurity	by	using	the	elementary
kinetic	theory	expression,

(5.42)	

for	 the	 mean	 free	 path	 l	 (Flowers	 and	 Mendoza,1	 Section	 6.4.1).	 We	 have	 taken	 the
impurity	concentration	as	the	donor	concentration.	The	mean	free	path	 l	 is	related	to	the
scattering	time	by

where	 e	 is	 the	mean	 group	 velocity	 of	 the	 elections;	 we	 take	 this	 to	 be	 (3kBT/2me)1/2

since,	as	we	have	already	shown,	equipartition	of	energy	can	be	used	for	the	conduction
band	electrons.	From	the	experimental	value	of	τe	we	therefore	deduce

for	ND	=	1022	m−3,	me	=	10−31	kg	and	T	=	50	K.

An	impurity	thus	has	a	collision	diameter	of	3	×	10−8	m	(=	300	Å)	which	is	large	on	an



atomic	scale.	Since	the	donors	are	ionized	it	is	Coulomb	scattering	that	is	responsible	for
this	 cross	 section.	 The	Rutherford	 scattering	 formula	 can	 be	 used	 to	 obtain	 an	 accurate
value	of	A,	but	 for	our	purpose	we	can	make	a	 rough	estimate	by	saying	 that	 the	radius
inside	 which	 scattering	 is	 appreciable	 is	 that	 at	 which	 the	 Coulomb	 potential	 energy
(e2/4πε0εr)	is	equal	to	the	kinetic	energy	(3kBT/2)	of	the	incident	electron.	Thus

for	ε	≈	10,	so	that	the	effective	collision	diameter	is	about	200	Å,	in	agreement	with	our
rough	 estimate	 from	 the	 conductivity.	Note	 that,	 in	 contrast	 to	 the	 situation	 in	 a	metal,
because	the	electron	velocity	and	scattering	cross	section	are	temperature-dependent,	 the
contribution	 of	 impurity	 scattering	 to	 the	 total	 resistivity	 is	 temperature-dependent	 in	 a
semiconductor.

5.5.2	Hall	effect
We	 have	 already	 defined	 the	 Hall	 coefficient	 RH	 in	 Section	 3.3.5	 as	 determining	 the
electric	field	generated	transverse	to	an	applied	current	flow	j	and	magnetic	field	B	via	Eq.
(3.36),	i.e.

We	also	calculated	its	value	for	a	free	electron	metal.	 In	a	semiconductor,	where	 there
are	two	types	of	carrier,	the	calculation	is	more	complicated.	Often	however	the	density	of
one	 type	 of	 carrier	 is	 much	 greater	 than	 that	 of	 the	 other	 and	 we	 can	 then	 use	 the
calculation	of	Section	3.3.5	directly	to	obtain†

(5.43)	

The	sign	of	the	Hall	effect	is	thus	determined	by	the	sign	of	the	majority	charge	carrier,
and	measurement	of	RH	enables	the	carrier	concentration	to	be	determined.	By	combining
Eqs.	 (5.41)	 and	 (5.43)	we	 find	 that	 simultaneous	measurements	 of	σ	 and	RH	 enable	 the
carrier	mobility	to	be	determined	from

(5.44)	

We	have	assumed	that	the	conductivity	is	also	dominated	by	the	majority	carrier.

For	the	example	considered	in	the	previous	section

compared	 with	 a	 resistivity	 1/σ	 =	 10−3	 Ω	 m;	 the	 ohmic	 and	 Hall	 electric	 fields	 are
therefore	equal	in	a	field	of	1	T.	At	this	magnetic	field	the	total	electric	field	is	at	45°	to
the	current	flow,	that	is	the	Hall	angle	is	45°.	This	magnetic	field,	the	Hall	field	B0,	 is	a
useful	measure	of	the	strength	of	the	Hall	effect	(the	smaller	B0	the	larger	the	Hall	effect);



from	the	above	calculation	we	see	that	it	is	given	by

The	smaller	carrier	density	means	 that	 the	Hall	effect	 is	 larger	 in	semiconductors	 than
metals	(see	problem	5.5)	and	hence	makes	semiconductors	useful	for	the	construction	of
Hall	probes	for	measuring	magnetic	fields.	Fairly	lightly	doped	material	gives	the	largest
sensitivity	 although	 it	 is	 desirable	 that	 the	 carrier	 concentration	 remain	 independent	 of
temperature	(all	 impurities	ionized	and	negligible	intrinsic	carriers)	throughout	the	range
of	operation.

When	both	electrons	and	holes	are	present	in	significant	numbers,	in	the	intrinsic
region	for	example,	the	calculation	of	the	Hall	coefficient	is	more	complicated.	The
steady	state	solutions	of	Eqs.	(5.37)	are

(5.45)	

so	that	the	current	density	j	is

We	assume	the	experimental	geometry	of	Fig.	3.12	in	which	the	current	flows	along
the	magnetic	field	is	applied	along	z	and	the	Hall	field	appears	along	y.

The	boundary	conditions	in	this	geometry	require	jy	=	0,	but	this	does	not	mean
that	the	hole	and	electron	currents	in	this	direction	are	individually	zero,	merely
that	they	are	equal	and	opposite.

For	simplicity	we	will	restrict	our	calculation	to	small	magnetic	fields.	If	we	note
that	the	y	components	of	the	carrier	velocities	are	linear	in	B	and	keep	only	terms
up	to	first	order	in	B,	then	from	Eq.	(5.46)

(5.47a)	

and

(5.47b)	

where	we	have	used	Eq.	(5.45)	to	obtain	the	last	line.	Elimination	of	Ex	between
these	two	equations	gives

(5.48)	

From	the	definition	of	the	Hall	coefficient	(Eq.	(3.36))	therefore

(5.49)	



Thus	a	minority	carrier	can	determine	the	sign	of	the	Hall	coefficient	if	its	mobility
is	high	enough.

It	is	interesting	to	work	out	the	magnitude	of	the	equal	and	opposite	electron	and
hole	currents	in	the	y	direction.	Thus,	using	Eqs.	(5.47)	and	(5.48),

(5.50)	

where	σe(=	neμe)	and	σh(=	peμh)	are	the	electron	and	hole	contributions	to	the
conductivity.	Eq.	(5.50)	shows	that	there	is	a	steady	How	of	electrons	and	holes	in
the	negative	y	direction,	which	is	largest	when	the	electron	and	hole	conductivities
are	comparable.	This	implies	the	creation	of	electron–hole	pairs	on	one	side	of	the
sample,	absorbing	energy,	and	their	mutual	annihilation	at	the	other	side,	releasing
energy.	Consequently	a	transverse	temperature	gradient,	known	as	the
Ettinghausen	effect,	develops;	such	an	effect	is	indicative	of	two	types	of	carrier.

If	terms	of	higher	order	in	B	are	retained	in	the	calculation	then	the	resistance
measured	along	the	direction	of	current	flow	is	found	to	be	dependent	on	the
magnetic	field.	The	magnetoresistance	depends	quadratically	on	the	field	in	small
fields	(Smith,18	p.	114).

5.5.3	Cyclotron	resonance
A	 cyclotron	 is	 a	 machine	 used	 to	 accelerate	 charged	 particles;	 its	 operation	 depends
critically	on	the	fact	that	in	a	constant	dc	magnetic	field	non-relativistic	particles	of	mass
m	move	in	circular	orbits	at	an	angular	frequency	ωc	=	eB/m,	independent	of	their	energy,
and	can	 thus	absorb	energy	from	a	suitably	phased	ac	electric	 field	at	 this	 frequency.	 In
semiconductors	the	same	principle	applies	and,	by	measuring	the	cyclotron	frequencies	at
which	absorption	of	energy	from	ac	electric	fields	occurs,	 it	 is	possible	 to	determine	the
effective	masses	 of	 the	 carriers.	 For	 one	 type	 of	 carrier,	 holes	 say,	 we	 can	 analyse	 the
situation	by	writing	Eq.	(5.37b)	in	component	form	for	B	in	the	z	direction	and	E	in	the	xy
plane:

The	 symmetry	 of	 these	 two	 equations	 enables	 us	 to	 reduce	 them	 to	 one	 equation	 by
adding	i	 times	the	second	to	the	first	and	writing	u	=	υhx	+	 iυhy	and	 	=	Ex	+	 iEy.†	This
gives



(5.51)	

We	assume	an	ac	electric	field	of	the	form,	 	=	 0	eiωt;	note	 that	 this	corresponds	to	a
circularly	polarized	wave	since	Ex	=	 0	cos	(ωt)	and	Ey	=	 0	sin	(ωt).	The	magnetic	field
of	the	radiation	is	negligible	at	the	frequencies	that	concern	us	and	we	will	ignore	it.	The
solution	for	u	will	be	of	the	form	u	=	u0	eiωt	where	u0	is	in	general	complex.	Inserting	this
solution	into	Eq.	(5.51)	we	find

or

(5.52)	

where	ωc	=	−eB/mh	is	the	cyclotron	frequency	of	the	holes.	The	minus	sign	in	ωc	defines
the	direction	of	rotation	of	the	holes	around	the	field	as	shown	in	Fig.	5.10	and	hence	the
direction	of	rotation	of	the	circularly	polarized	electric	field	that	will	couple	to	them.	With
the	sign	convention	that	we	have	adopted	the	cyclotron	frequency	of	electrons	is	positive.

Fig.	5.10	The	directions	of	the	cyclotron	orbits	of	electrons	and	holes

Eq.	(5.52)	gives	 the	response	of	 the	holes	 to	an	applied	electric	 field.	To	 interpret	 this
equation	we	note	that	it	is	of	the	same	form	as	the	response	of	a	series	L–C–R	circuit	to	an
applied	ac	voltage	(Grant	and	Phillips,3	p.	268).	If	the	current	in	the	circuit	of	Fig.	5.11	is	I
=	I0	eiωt,	then,	for	frequencies	close	to	the	resonant	frequency	ωR	(=	1/(LC)1/2)	and	in	the
limit	of	a	large	quality	factor,	I0	can	be	written

(5.53)	

where	τ	=	2L/R	 is	 the	 time	constant	 for	 the	decay	of	 free	oscillations	 in	 the	circuit.	The
L–C–R	 circuit	 exhibits	 a	 maximum	 power	 absorption	 at	 the	 resonant	 frequency,	 and
comparison	of	Eqs.	(5.52)	and	(5.53)	therefore	suggests	that	a	maximum	in	the	absorption
of	electromagnetic	energy	by	the	semiconductor	should	occur	at	the	cyclotron	frequency.

For	a	sharp	resonance	the	damping	must	be	small	and	in	the	case	of	the	L–C–R	circuit
this	 requires	ωRτ	 	 1.	The	 corresponding	 condition	 for	 the	 semiconductor	 is	 |ωc|τh	 	 1,



which	is	just	the	condition	that	the	hole	should	complete	several	orbits	between	collisions.
This	 is	 not	 an	 easy	 condition	 to	 achieve;	 cyclotron	 resonance	 experiments	 typically
operate	at	frequencies	of	about	20	GHz	and	thus

Fig.	5.11	Series	L–C–R	circuit

	when	 .

Collision	 times	 of	 this	 order	 are	 only	 achieved	 in	 pure	 semiconductors	 at	 low
temperatures	 where	 scattering	 by	 lattice	 vibrations	 is	 small.	 Under	 such	 conditions	 the
conductivity	is	usually	small	enough	that	the	electromagnetic	skin	effect	does	not	prevent
penetration	 of	 the	 sample	 by	 the	 electric	 field	 but	 the	 number	 of	 carriers	 in	 thermal
equilibrium	 is	 so	 small	 that	 the	 resonance	 can	only	be	observed	 easily	 if	 the	number	 is
increased,	 for	 example,	 by	 shining	 light	 on	 the	 semiconductor	with	 a	 frequency	 greater
than	EG/h.

The	 resonance	 is	 often	 observed	 using	 plane	 polarized	 radiation;	 since	 this	 can	 be
considered	 as	 a	 coherent	 sum	 of	 left	 and	 right	 circularly	 polarized	 light,	 it	 does	 not
distinguish	between	electrons	and	holes.	Typical	results	for	silicon	are	shown	in	Fig.	5.12.
We	 see	 that	 there	 are	 four	 absorption	 peaks,	 two	 corresponding	 to	 holes	 with	 different
effective	masses	 and	 two	 to	electrons	with	different	 effective	masses.	The	 two	effective
masses	 for	 holes	 reflect	 the	 fact	 that	 the	 maximum	 valence	 band	 energy	 in	 silicon	 is
actually	a	degenerate	level	in	two	different	energy	bands	with	electron	dispersion	relations
of	 different	 curvature	 (germanium	 also	 exhibits	 this	 property	 as	 can	 be	 seen	 from	 Fig.
5.8(a)).	The	 two	effective	masses	 for	 electrons	 reflect	 the	 fact	 that	 the	 conduction	band
dispersion	relation	in	silicon	is	anisotropic;	electrons	travelling	in	different	directions	have
different	effective	masses.

Fig.	5.12	Typical	cyclotron	resonance	signal	from	silicon.	The	field	lies	in	the	(1	1	0)
plane	and	is	at	30°	to	the	[0	0	1]	axis.	(Reproduced	with	permission	from	G.	Dresselhaus,
A.	F.	Kip	and	C.	Kittel,	Phys.	Rev.	98,	368	(1955))



To	extend	our	theory	of	cyclotron	resonance	to	cover	this	possibility	we	need	to
know	that	the	conduction	band	minimum	in	silicon	occurs	at	six	degenerate	points
in	k-space	situated	on	the	coordinate	axes	as	shown	on	Fig.	5.13.	The	constant
energy	surfaces	around	each	point	are	ellipsoids	of	revolution	as	shown.	Thus	if	we
consider	the	electrons	situated	close	to	(0,0,	k0)	on	the	+kz	axis	the	dispersion
relation	is	of	the	form

(5.54)	

where	the	subscripts	T	and	L	refer	to	transverse	and	longitudinal	to	the	axis	of	the
ellipsoid.	We	cannot	use	Eq.	(5.37a)	to	calculate	the	dynamics	of	the	electrons
since	this	assumes	a	single	isotropic	effective	mass.	Instead	we	use	the	three-
dimensional	generalization	of	Eq.	(4.24).	Thus	we	take

(5.55)	

in	which	we	have	ignored	collisions	and	also	the	driving	electric	field	for	the
cyclotron	motions;	this	is	self-consistent	since,	in	the	absence	of	damping	by
collisions,	the	cyclotron	motions	will	not	decay	and	so	should	be	steady	state
solutions	of	Eq.	(5.55).

The	electron	velocity	to	insert	in	Eq.	(5.55)	is	obtained	from	the	three-dimensional
equivalent	of	Eq.	(4.22),

(5.56)	

which	says	that	v	is	determined	by	the	gradient	of	ε	in	k-space.	From	Eqs.	(5.54)
and	(5.56)	we	deduce	therefore

(5.57)	

for	electrons	near	to	the	conduction	band	minimum	at	(0,	0,	k0).	The	most	general
situation	for	electrons	in	this	region	of	k-space	is	a	magnetic	field	at	an	angle	θ	to



the	axis	of	the	ellipsoid	as	shown	in	Fig.	5.13.	For	convenience	we	take	B	to	be	in
the	xz	plane.	Using	Eqs.	(5.57)	we	find	that	the	components	of	Eq.	(5.55)	can	be
written

If	we	look	for	an	oscillatory	solution	of	the	form

then	we	readily	find	that	such	a	solution	can	exist	only	at	the	frequency

(5.58)	

The	cyclotron	frequency	therefore	depends	on	the	orientation	of	the	field;	the
frequency	is	often	quoted	in	terms	of	a	cyclotron	eflfective	mass	defined	by

(5.59)	

In	the	two	extreme	limits,	θ	=	0°	and	θ	=	90°	we	see	that	mc	=	mT	and	mc	=

(mLmT)1/2	respectively.	The	two	electron	resonances	on	Fig.	5.12	represent
contributions	from	two	of	the	different	pockets	of	conduction	band	electrons	on
Fig.	5.13	(see	problem	5.7).	Analysis	of	cyclotron	resonance	experiments	for	fields
at	different	angles	therefore	enables	the	details	of	the	electron	dispersion	relation	to
be	deduced.

Fig.	5.13	Energy	contours	in	k-space	near	the	conduction	band	minimum	in	silicon.	Two
more	pockets	of	conduction	band	electrons	are	found	on	the	±ky	axis.	In	the	text	we
calculate	the	cyclotron	resonance	of	the	electrons	on	the	±kz	axis	for	a	magnetic	field	B	in
the	direction	indicated



5.6	NON-EQUILIBRIUM	CARRIER
DENSITIES
In	 the	 operation	 of	most	 semiconductor	 devices	 the	 carrier	 concentrations	 are	 disturbed
from	 their	 thermal	 equilibrium	values.	To	 understand	 the	 behaviour	 of	 such	 devices	we
must	derive	the	equations	that	describe	the	variation	in	space	and	time	of	the	disturbances.
We	write	the	carrier	densities	as

(5.60)	

where	p0	and	n0	are	the	thermal	equilibrium	concentrations,	which	in	a	uniformly	doped
homogeneous	semiconductor	are	independent	of	position.	We	take	the	departures	n′	and	p′
of	 the	 concentrations	 to	 be	 dependent	 on	 one	 spatial	 coordinate	 only,	 although	 the
generalization	 to	dependence	on	more	 than	one	 is	 straightforward.	We	will	 also	 assume
that	 the	disturbances	n′	and	p′	 are	 small	 compared	 to	 the	majority	 carrier	 concentration;
thus	in	n-type	semiconductor	we	would	have

(5.61)	

5.6.1	The	continuity	equations
We	 consider	 the	 processes	 that	 can	 change	 the	 carrier	 concentrations	 in	 the	 region	 of
semiconductor	between	x	and	x	+	δx	(Fig.	5.14):

(1)	Recombination.	An	electron	in	the	conduction	band	can	fall	into	an	empty	state	in
the	 valence	 band,	 resulting	 in	 the	 loss	 of	 an	 electron-hole	 pair.	 As	 well	 as	 by	 this
direct	 process,	 recombination	 can	 also	occur	 through	 traps	or	 at	 surfaces.	Traps	 are
localized	states	with	energies	near	the	middle	of	the	band	gap	(gold	impurity	atoms	in
silicon	 are	 a	 source	 of	 such	 levels)	 into	which	 the	 electron	 falls	 before	 dropping	 at



some	 later	 time	 into	 the	 valence	 band.	 Whatever	 the	 mechanism,	 recombination
results	in	the	disappearance	of	holes	and	electrons	at	the	same	rate,	which	we	denote
by	r	per	unit	volume.

(2)	Generation.	 This	 is	 the	 opposite	 process	 to	 recombination;	 an	 electron	 in	 the
valence	 band	 receives	 enough	 energy	 from	 some	 source	 to	 promote	 it	 to	 the
conduction	 band,	 creating	 an	 electron-hole	 pair	 in	 the	 process.	 We	 denote	 the
generation	rate	by	g	per	unit	volume	and	note	that	both	types	of	carrier	are	generated
at	the	same	rate.	The	internal	source	of	energy	for	generation	is	the	photons	associated
with	thermal	equilibrium	radiation	within	the	crystal.

Fig.	5.14	The	ways	in	which	the	concentration	of	electrons	in	the	region	between	x
and	x	+	δx	can	change

(3)	Diffusion.	 If	 the	 carrier	 concentration	 depends	 on	 position	 then	 diffusion	 will
occur.	We	assume	that	the	resulting	number	current	densities,	Je	and	Jh,	for	electrons
and	holes	are	given	by	Fick’s	law	as

	and	

where	De	and	Dh	are	the	respective	diffusion	constants.	The	net	rate	per	unit	area	at
which	electrons	enter	 the	 region	between	x	and	x	 +	δx	 as	 a	 result	 of	 diffusion	 is
given	by	the	difference	in	the	values	of	Je	at	x	and	x	+	δx	and	can	thus	be	written

with	a	similar	expression	for	holes.

(4)	Motion	in	an	electric	field.	 In	 the	presence	of	an	electric	field	(assumed	to	be	in
the	 x	 direction)	 the	 electric	 current	 densities	 of	 electrons	 and	 holes	 are	 neμeE	 and
peμhE	respectively	(Eq.	(5.40)).	The	corresponding	number	current	densities	are

As	with	diffusion	currents	the	net	rate	per	unit	area	at	which	electrons	enter	the	region
between	x	and	x	+	δx	is	determined	by	the	difference	in	the	values	of	Je	at	x	and	x	+	δx	and
is	given	by



By	adding	together	the	contributions	listed	above	we	deduce	that	the	net	rate	of	change
of	the	electron	density	in	the	region	between	x	and	x	+	δx	is

(5.62a)	

where	 we	 have	 cancelled	 a	 factor	 dx	 from	 every	 term.	 Eq.	 (5.62a)	 is	 known	 as	 the
continuity	 equation	 for	 electrons.	 The	 continuity	 equation	 for	 holes	 is	 likewise
determined	to	be

(5.62b)	

5.6.2	Electrical	neutrality
Eqs.	(5.62)	give	the	impression	that	the	electrons	and	holes	move	independently,	but	this	is
misleading	since	 the	electric	 field	 that	appears	 in	both	equations	contains	a	contribution
from	the	disturbed	carrier	densities,	which	couples	the	motion	of	electrons	and	holes	very
strongly.	 The	 effect	 of	 this	 coupling	 is	 that	 any	 momentary	 departure	 from	 electrical
neutrality	in	a	homogeneously	doped	semiconductor	disappears	on	a	very	short	time	scale.
Alternatively,	if	a	departure	from	electrical	neutrality	is	maintained	at	a	particular	point	in
the	 semiconductor,	 electrical	 neutrality	 is	 attained	 a	 very	 short	 distance	 away	 from	 that
point.	 In	both	cases	electrical	neutrality	 is	achieved	by	 the	redistribution	of	 the	majority
carrier	resulting	from	the	electric	field	associated	with	the	charged	region.

The	charge	density	at	a	point	in	the	semiconductor	is

(5.63)	

Inserting	 Eqs.	 (5.60)	 and	 recalling	 that	 the	 semiconductor	 is	 electrically	 neutral	 in
thermal	equilibrium	(Eq.	(5.26))	we	obtain

(5.64)	

Thus	we	see	 that	electrical	neutrality	 is	attained	when	 the	disturbances	of	 the	electron
and	hole	densities	are	equal.	The	electric	field	generated	by	the	departure	from	electrical
neutrality	is	given	by	Gauss’	law,	div	E	=	ρ/εε0.	For	variation	only	with	x	therefore

(5.65)	

We	wish	 to	calculate	 the	effect	of	 this	electric	field	on	 the	distribution	of	 the	majority
carrier,	 which	 we	 take	 to	 be	 electrons.	 We	 substitute	 Eq.	 (5.65)	 into	 the	 continuity
equation	for	electrons	(Eq.	(5.62a))	to	obtain

where	we	have	used	the	fact	that	n0	is	constant	to	replace	derivatives	of	n	by	derivatives	of
n′.	From	Eq.	(5.65)	we	see	that	(at	least	in	the	absence	of	an	externally	applied	electrical
field)	E	 is	 first	 order	 in	 departures	 from	 equilibrium;	 the	 term	 μeE	 ∂n′/∂x	 is	 therefore



second	 order	 and	 we	 will	 ignore	 it.	 We	 shall	 see	 that	 recombination	 and	 generation
represent	slow	processes	when	compared	with	the	remaining	terms	in	the	equation	and	we
will	ignore	them	also.	The	resulting	equation	can	be	written	in	the	form

(5.66)	

where	 τD	 =	 εε0/neμe	 =	 εε0/σe	 is	 known	 as	 the	 dielectric	 relaxation	 time	 and	 λD	 =
(εε0De/neμe)1/2	is	called	the	Debye	length.

We	will	not	need	to	consider	solutions	of	Eq.	(5.66)	in	detail	but	just	note	their	general
behaviour	 (see	 problem	5.8)	 that	 a	 finite	 value	 of	p′	 −	n′	 at	 any	 point	 in	 space	 or	 time
disappears	by	a	 redistribution	of	 the	 electrons	on	a	 time	 scale	 τD	 and	 a	 length	 scale	λD.
Clearly	the	order	of	magnitude	of	these	quantities	is	important.	To	estimate	τD	we	take	a
typical	value	of	100	Ω−1	m−1	for	σe,	the	contribution	of	the	electrons	to	the	conductivity,
and	obtain

To	calculate	λD	we	can	use	the	Einstein	relation	(proved	in	Section	6.2),

(5.67)	

to	obtain

(5.68)	

for	T	=	300	K,	ε	=	10	and	n	=	1022	m−3.	These	estimates	 tell	us	 that	τD	and	λD	are	very
much	shorter	 than	the	time	scales	and	length	scales,	respectively,	of	most	phenomena	in
semiconductors;	 in	 calculating	 such	 phenomena	 it	 is	 then	 possible	 to	 ignore	 departures
from	electrical	neutrality.

In	homogeneous	semiconductors	therefore	the	motion	of	the	majority	carrier	is	such	as
to	make	n′	=	p′	everywhere	and	it	is	only	necessary	to	solve	the	continuity	equation	for	the
minority	carriers:

(5.69a)	

(5.69b)	

E	is	now	an	applied	spatially	constant	electric	field;	Eq.	(5.65)	and	electrical	neutrality
ensure	that	the	gradient	of	E	vanishes.

5.6.3	Generation	and	recombination



We	 now	 consider	 the	 recombination	 and	 generation	 terms	 in	 Eqs.	 (5.69).	 In	 thermal
equilibrium	the	rates	of	recombination	and	generation	are	equal	and	we	denote	the	value
of	each	by	g0(T)	to	indicate	that	it	is	temperature-dependent.	The	rate	g	at	which	valence
band	 electrons	 make	 transitions	 to	 the	 conduction	 band	 depends	 on	 the	 number	 of
electrons	in	the	valence	band	and	the	probability	that	at	any	one	time	one	of	them	acquires
enough	energy	to	make	the	transition.	Neither	of	these	factors	is	significantly	affected	by
small	disturbances	in	the	carrier	concentrations	(recall	that	the	concentration	of	electrons
in	 the	 valence	 band	 is	 much	 greater	 than	 n′	 and	 p′)	 and	 consequently	 the	 thermal
generation	 rate	 remains	 at	 the	value	g0(T)	when	 the	 carrier	 concentrations	 are	 disturbed
from	 their	 equilibrium	 values	 by	 small	 amounts.	 In	 contrast	 the	 recombination	 rate	 for
direct	 recombination	 depends	 on	 the	 carrier	 concentrations.	 Since	 each	 recombination
process	 involves	 the	 interaction	of	an	electron	in	 the	conduction	band	with	a	hole	 in	 the
valence	 band	 we	 might	 expect	 the	 recombination	 rate	 to	 depend	 linearly	 on	 both	 the
electron	and	hole	concentrations	so	 that	r	=	k(T)np,	where	k(T)	depends	on	 temperature
but	not	on	carrier	concentration.	Thus	we	can	write

where	to	obtain	the	last	line	we	have	used	g0(T)	=	k(T)n0p0,	which	is	just	the	condition	that
the	recombination	and	generation	rates	should	be	equal	in	thermal	equilibrium.	One	of	the
three	 remaining	 terms	 is	 much	 bigger	 than	 the	 other	 two;	 if	 we	 recall	 that	 electrical
neutrality	requires	n′	=	p′	and	that	both	n′	and	p′	are	much	smaller	than	the	majority	carrier
concentration,	then	the	largest	term	is	−k(T)n0p′	in	n-type	material	and	−k(T)p0n′	in	p-type
material.	These	terms	can	be	written	as	−p′/τn	and	−n′/τp	respectively,	where	τn	and	τP	are
known	as	 the	minority	 carrier	 lifetimes	 in	 n-	 and	p-type	material	 respectively.	Do	not
confuse	the	carrier	lifetimes,	τn	and	τp,	with	the	scattering	times,	τh	and	τe.	The	continuity
equations	for	the	minority	carriers	can	therefore	be	written

(5.70a)	

for	electrons	in	p-type	semiconductor,	and

(5.70b)	

for	holes	in	n-type	semiconductor.

Although	we	 have	 deduced	 the	 form	of	g	 −	 r	 for	 the	 case	 of	 direct	 recombination	 in
extrinsic	 semiconductor,	 the	 form	 that	we	have	determined	 is	more	generally	valid.	The
expressions	for	the	carrier	lifetimes	will	be	different	for	other	types	of	recombination.	The
minority	 carrier	 lifetime	 is	 typically	 10−7	 s;	 this	 is	 much	 longer	 than	 the	 dielectric
relaxation	time	τD,	thus	justifying	our	neglect	of	recombination	and	generation	processes
in	Section	5.6.2.

We	will	now	apply	Eqs.	(5.70)	to	two	important	situations,	which	will	provide	the	reader
with	a	physical	picture	of	the	processes	that	occur.



5.6.4	Injection	of	minority	carriers	at	a	steady	rate
We	consider	a	long	thin	rod	of	p-type	semiconductors	of	cross-sectional	area	A	as	in	Fig.
5.15(a)	and	assume	that	electrons	are	injected	at	a	steady	rate	N	per	unit	area	per	second	at
one	end.	In	a	steady	state	(∂n′/∂t	=	0)	and	in	the	absence	of	an	applied	electric	field,	Eq.
(5.70a)	becomes

(5.71)	

Fig.	5.15

where

(5.72)	

is	 known	 as	 the	 diffusion	 length	 of	 the	 electrons	 and	 is	 typically	 about	 20	 μm;	 the
significance	of	this	quantity	will	become	clear	shortly.

The	solution	of	Eq.	(5.71)	is

(5.73)	

where	C1	and	C2	are	constants	of	integration.	If	the	rod	occupies	the	region	x	 	0	then	the



second	 term	 predicts	 an	 electron	 concentration	which	 increases	 exponentially	with	 x	 at
large	x;	this	is	unphysical	in	a	long	rod	and	we	therefore	set	C2	=	0	in	this	case.	C1	is	then
determined	from	the	number	current	density	at	x	=	0.	Thus

and	the	excess	electron	concentration	is	given	by

(5.74)	

The	 electron	 concentration	 is	 shown	 in	 Fig.	 5.15(b)	 and	 we	 see	 that	 it	 decays
exponentially	with	 increasing	x	with	 a	decay	 length	Le.	The	diffusion	 length	 is	 thus	 the
mean	 distance	 that	 an	 electron	 diffuses	 before	 recombination.	 Fig.	 5.15(c)	 shows	 the
corresponding	electron	diffusion	current,	De	∂n′/∂x,	which	also	decays	exponentially	with
decay	 length	Le.	 To	 preserve	 electrical	 neutrality	 the	 total	 electric	 current	 density	must
remain	 constant.	 A	 hole	 current	 that	 increases	 with	 x	 enables	 this	 to	 be	 achieved	 as
indicated	in	Fig.	5.15(c).	The	holes	are	flowing	towards	x	=	0	and	they	replace	those	lost
by	recombination	with	the	incoming	electrons.	We	could	of	course	have	chosen	the	steady
flow	of	holes	into	an	n-type	semiconductor	to	illustrate	the	same	principles.

5.6.5	Injection	of	a	pulse	of	minority	carriers
We	 consider	 the	 simple	 circuit	 shown	 in	 Fig.	 5.16(a),	 which	 forms	 the	 basis	 of	 the
Haynes–Shockley	experiment	(Phys.	Rev.	75,	691	(1949));	the	purpose	of	the	circuit	is	to
inject	a	pulse	of	 the	minority	carrier,	holes	 in	 this	case,	at	a	point	on	a	 long	 thin	 rod	of
semiconductor.	Suppose	that	the	switch	is	closed	for	a	short	period	of	time.	The	effect	of
this	is	to	inject	a	pulse	of	holes	at	point	A	on	the	rod	and	a	pulse	of	electrons	at	point	B.
Immediately	after	 the	pulse	 the	excess	carrier	distributions	are	as	shown	on	Fig.	5.16(b)
and	thus	electrical	neutrality	is	violated;	majority	carriers	therefore	flow	until	neutrality	is
effectively	 achieved	 after	 a	 few	 dielectric	 relaxation	 times.†	 The	 excess	 carrier
distributions	are	then	as	shown	in	Fig.	5.16(c);	there	are	no	excess	carriers	left	at	point	B
and	equal	hole	and	electron	pulses	at	point	A.	Subsequently	the	much	slower	diffusion	and
recombination	processes	occur;	these	result	in	a	broadening	of	the	pulse	and	a	decrease	in
the	 area	 underneath	 it	 (the	 area	 determines	 the	 number	 of	 excess	 holes	 left	 in	 the
semiconductor)	as	shown	in	Fig.	5.16(d).

Fig.	5.16



The	 solution	 of	 the	 continuity	 equation	 (Eq.	 (5.70b))	 that	 describes	 this	 behaviour	 is
well	known	from	the	theory	of	diffusion	(problem	5.9),	and	is

(5.75)	

where	P	 is	 the	 initial	 number	 of	 holes	 (per	 unit	 area	 of	 cross	 section)	 injected	 into	 the
semiconductor	at	x	=	0	and	t	=	0.	Thus	the	area	underneath	the	pulse	decreases	as	exp	(−t/
τn)	as	the	holes	recombine,	and	the	width	of	the	pulse	at	time	t	is	of	order	(Dht)1/2	as	would
be	expected	 for	a	diffusion	process.	 In	 the	Haynes–Shockley	experiment	 the	holes	were
also	 subject	 to	 a	 dc	 electric	 field	 and	 the	 effect	 of	 this	was	 to	 cause	 the	 pulse	 to	move
steadily	along	the	rod	at	a	velocity	determined	by	the	hole	mobility;	thus	after	a	time	t	the
whole	pulse	had	shifted	to	x	=	μhtE	as	shown	in	Fig.	5.16(e).	Observations	of	 the	shape
and	position	of	the	pulse	after	a	time	t	therefore	provide	a	direct	method	for	measuring	the
mobility,	diffusion	constant	and	 lifetime	of	 the	holes.	The	Haynes–Shockley	experiment
demonstrated	 the	 importance	of	 the	minority	 carrier	 in	 determining	 the	behaviour	 of	 an
extrinsic	semiconductor.

PROBLEMS	5
5.1	The	electron	energy	near	the	top	of	the	valence	band	in	a	semiconductor	is	given
by

where	k	is	the	wavevector.	An	electron	is	removed	from	the	state

where	 	is	a	unit	vector	along	the	x	axis.	Calculate	(a)	the	effective	mass,	(b)	the



energy,	(c)	the	momentum	and	(d)	the	velocity	of	the	resulting	hole.	(Each	answer
must	include	the	sign	(or	direction).)

5.2	A	sample	of	silicon	is	purified	until	it	contains	only	1018	donors	m−3.	Below	what
temperature	does	it	cease	to	show	intrinsic	behaviour?	(EG	=	1.1	eV	and	the	intrinsic
carrier	concentration	at	300	K	is	2	×	1016	m−3.)

5.3	Indium	antimonide	has	dielectric	constant	ε	=	17	and	electron	effective	mass	me	=
0.014m.	Calculate:

(a)	the	donor	ionization	energy,

(b)	the	radius	of	the	ground	state	orbit,	and

(c)	 the	 donor	 concentration	 at	 which	 orbits	 around	 adjacent	 impurities	 begin	 to
overlap.	What	effects	occur	at	about	this	concentration,	and	why?

5.4	Use	 the	 data	 of	 Fig.	5.9	 to	 estimate	 a	 value	 of	 the	 donor	 ionization	 energy	 for
arsenic	impurities	in	germanium.

5.5	 Calculate	 values	 for	 the	 Hall	 coefficients	 of	 sodium	 and	 intrinsic	 indium
antimonide	at	300	K.	Sodium	has	a	bcc	structure	with	unit	cell	side	4.28	Å.	Indium
antimonide	has	EG	=	0.15	eV,	me	=	0.014m,	mh	=	0.18m	and	the	electrons	are	the	only
effective	carrier	(why?).

Estimate	 the	 Hall	 voltages	 generated	 in	 each	 case	 across	 the	 5	 mm	 width	 of	 a
sample	of	 1	mm	 thickness	when	 a	 current	 of	 100	mA	 is	 passed	 along	 it	 and	 the
perpendicular	field	is	0.1	T.

5.6	 A	 sample	 of	 germanium	 is	 doped	 with	 a	 single	 type	 of	 impurity.	 Outline	 the
measurements	 you	 would	 make	 to	 determine	 the	 sign	 and	 concentration	 of	 the
carriers,	their	mobility	and	effective	mass.

If	 there	 are	 1020	 donors	 m−3	 what	 are	 the	 conditions	 necessary	 for	 satisfactory
observation	of	 cyclotron	 resonance?	 (Collision	diameter	of	donor	=	300	Å,	me	=
10−31	kg.)

5.7	 Deduce	 values	 of	mL	 and	mT	 in	 Eq.	 (5.54)	 from	 the	 data	 of	 Fig.	 5.12.	 (The
direction	of	the	magnetic	field	is	given	in	the	figure	caption.)

5.8	 Show	 that	 solutions	 of	 Eq.	 (5.66)	 have	 the	 qualitative	 behaviour	 indicated	 in
Section	5.6.2	by	considering	the	two	important	limits:

(a)	no	time	dependence;

(b)	no	position	dependence.

5.9	Show	that	Eq.	 (5.75)	 is	a	 solution	of	 the	continuity	equation	 for	holes	 in	n-type
semiconductor	 in	 the	 absence	 of	 an	 electric	 field.	Confirm	 that	 the	 total	 number	 of
holes	remaining	at	time	t	decreases	as	exp	(−t/τn).

†	Since	 there	are	only	empty	states	near	 the	 top	of	 the	band	 the	appropriate	effective



mass	for	all	of	these	is	mh.

†	 That	 is	 as	 an	 additional	 atom	 inserted	 in	 a	 gap	 between	 the	 atoms	 on	 the
crystallographic	sites.

†	Since	we	are	assuming	that	all	the	donor	levels	are	degenerate,	the	density	of	states	at
the	 donor	 level	 is	 in	 fact	 infinite.	 A	 function	 that	 is	 infinite	 at	 one	 point	 and	 zero
everywhere	else	but	which	has	a	finite	area	underneath	it	(the	area	under	the	density-of-
states	curve	is	the	number	of	states)	is	known	as	a	δ-function.	A	δ-function	of	unit	area
at	x	=	0	is	denoted	by	δ(x).	We	should	therefore	write	the	density	of	states	for	the	donor
levels	as	NDVδ(ε	−	(EG	−	ED))	which	says	that	it	is	a	δ-function	at	ε	=	EG	−	ED	with	area
NDV	underneath	it.

†	These	expressions	for	 	and	 are	not	strictly	correct.	They	do	not	allow	for	the	fact
that	the	bound	impurity	states	can	be	occupied	by	carriers	of	either	up	(↑)	or	down	(↓)
spin,	 but	 that	 the	 probability	 of	 dual	 occupation	 is	 zero	 (because	 of	 electron-electron
interactions).	 Using	 the	 correct	 expressions	 (C.	 Kittel	 and	 H.	 Kroemer,	 Thermal
Physics,	2nd	edn,	W.	H.	Freeman,	San	Fransisco	(1980),	p.	143)	does	not	make	much
difference.

†	Although	 the	 donor	 and	 acceptor	 ionization	 energies	 are	 comparable	 to	 kBT	 (Table
5.1),	all	the	donors	and	acceptors	are	ionized	because	the	effective	densities	of	states	in
the	conduction	and	valence	bands,	NC	and	Nv,	are	very	much	larger	 than	the	 impurity
concentrations.

†	These	 results	depend	on	our	assumption	of	a	 single	 relaxation	 time,	 independent	of
carrier	 velocity,	 for	 each	 type	 of	 carrier;	 failure	 of	 this	 assumption	 can	modify	 Eqs.
(5.43)	 by	 factors	 of	 order	 unity,	 and	 give	 rise	 to	 a	 change	with	magnetic	 field	 in	 the
electrical	resistance	measured	along	the	current	direction,	a	phenomenon	referred	to	as
magnetoresistance.

†	We	 are	 using	 the	 general	 rule	 that	 two-dimensional	 vectors	 can	 be	 represented	 by
complex	numbers	on	an	Argand	diagram.

†	In	a	typical	experiment	the	switch	is	closed	for	about	1	μs;	as	this	is	much	longer	than
τD,	electrical	neutrality	is	maintained,	to	a	good	approximation,	throughout	the	injection
process.



CHAPTER	6

Semiconductor	devices

I	find	television	very	educating.	Every	time	somebody	turns	on	the	set	I	go	into
the	other	room	and	read	a	book.—Groucho	Marx

6.1	INTRODUCTION
The	use	of	semiconductors	in	electronics	is	probably	the	biggest	contribution	of	solid	state
physics	 to	 twentieth	 century	 technology.	 To	 understand	 the	 great	 majority	 of
semiconductor	devices	it	is	necessary	to	consider	the	behaviour	of	charge	carriers	near	a
surface	or	interface.	Of	particular	importance	are	the	boundary	between	an	n-type	region
and	 a	 p-type	 region,	 the	 boundary	 between	 a	 semiconductor	 and	 an	 insulator,	 and	 the
boundary	between	two	different	semiconductors.	In	this	chapter	we	consider	devices	using
these	three	possibilities.	Our	emphasis	will	be	on	understanding	the	physics	of	the	devices,
not	the	technical	applications.

6.2	THE	p–n	JUNCTION	WITH	ZERO
APPLIED	BIAS
A	boundary	between	p	and	n	regions	can	be	produced	in	a	number	of	ways.	The	deposition
of	a	thin	layer	of	donor	impurities	on	the	surface	of	a	p-type	semiconductor,	followed	by	a
controlled	period	of	 time	at	a	high	 temperature	 to	allow	diffusion	of	 the	donors	 into	 the
substrate,	 creates	 an	 n-type	 region	 near	 the	 surface	 where	 the	 donors	 outnumber	 the
original	acceptors.	A	p–n	junction	can	also	be	produced	by	epitaxial	growth	(section	6.6)
on	a	p-type	substrate	of	material	containing	donor	impurities.	Both	of	the	above	methods
can	 of	 course	 alternatively	 create	 an	 acceptor-rich	 region	 in	 contact	 with	 an	 n-type
substrate.	Other	methods	also	exist	 for	producing	a	 region	of	 semiconductor	 in	which	a
changeover	from	p-type	to	n-type	behaviour	occurs	on	a	short	length	scale.

The	useful	 behaviour	 of	 a	 p–n	 junction	 results	 from	 the	 effect	 on	 the	 electron	 energy
levels	in	the	region	of	the	junction	as	shown	in	Fig.	6.1.	The	energy	levels	are	shown	as	a
function	of	position	only,	and	no	distinction	is	made	between	different	k	values;	electrons
in	the	conduction	band	are	indicated	schematically	by	full	circles	and	holes	in	the	valence
band	by	open	circles.	The	factor	controlling	the	relative	positions	of	the	levels	on	the	two
sides	of	the	junction	is	the	necessity	for	a	uniform	chemical	potential;	this	is	the	condition
for	 thermal	 equilibrium	 between	 two	 or	 more	 systems	 when	 particles	 can	 move	 freely



between	 them	 (see	Mandl,2	 chapter	 8).	 In	 the	 case	 of	 a	 p–n	 junction	 the	 equilibrium	 is
achieved	by	 a	 small	 transfer	 of	 electrons	 from	 the	n	 region	 to	 the	p	 region,	where	 they
annihilate	 with	 holes,	 leaving	 a	 region	 with	 very	 few	 free	 carriers†	 near	 the	 junction,
known	 therefore	 as	 the	 depletion	 layer	 (Fig.	 6.2(b)).	 The	 positively	 charged	 ionized
donors	in	the	n	region	of	the	depletion	layer	and	the	negatively	charged	ionized	acceptors
in	the	p	region	leave	the	n	region	positively	charged	and	the	p	region	negatively	charged
(Fig.	6.2(c)).	This	results	 in	 the	 lowering	of	electron	energy	levels	on	the	n	side	and	the
raising	 on	 the	 p	 side,	 shown	 in	 Fig.	 6.1,	 which	 causes	 the	 chemical	 potential	 to	 be
position-independent	as	required;	remember	that	Fig.	6.1	is	a	diagram	of	electron	energy
levels	so	that	a	region	of	low	energy	is	a	region	of	high	electrostatic	potential.

Fig.	6.1	A	p–n	junction	in	equilibrium	with	electrons	(full	circles)	and	holes	(open	circles)
indicated.	The	relationship	e∆ o	=	µn	−	µp	(Eq.	(6.1))	is	obtained	by	inspection	of	the
figure.	The	arrows	indicate	the	equal	and	opposite	electron	currents,	Ie0,	and	hole	currents,
Ih0,	that	are	discussed	in	section	6.3

Fig.	6.2	(a)	A	sharp	p–n	junction	showing	the	variation	with	position	of:	(b)	carrier
concentrations,	n	and	p;	(c)	net	charge	density,	ρ;	(d)	electric	field,	E;	and	(e)	electrostatic
potential,	



The	total	potential	difference	∆ 0	required	to	produce	a	uniform	chemical	potential	can
be	deduced	from	Eqs.	(5.32)	and	(5.34).	Thus	if	we	ignore	the	acceptor	concentration	on
the	 n	 side	 of	 the	 junction	 and	 denote	 the	 donor	 concentration	 there	 by	 ND,	 then	 the
chemical	 potential	µn	 relative	 to	 the	 valence	 band	 edge	 on	 the	 n	 side	 at	 large	 distances
from	the	junction	is	given	by	Eq.	(5.32)	as

Similarly	 for	 a	 p	 region	 containing	NA	 acceptors	 per	 unit	 volume	 and	 no	 donors,	 the
chemical	 potential	µp	 relative	 to	 the	 valence	 band	 edge	 on	 the	 p	 side	 at	 large	 distances
from	the	junction	as	given	by	Eq.	(5.34)	is

Hence,	for	equality	of	the	chemical	potential,	we	see	from	Fig.	6.1	that	the	valence	band
edges	on	the	two	sides	of	the	junction	must	differ	by

(6.1)	



which,	by	the	use	of	Eq.	(5.23),	may	be	written

(6.2)	

where	ni	is	the	electron	(or	hole)	concentration	in	an	intrinsic	sample	of	the	semiconductor
at	the	same	temperature.	It	is	important	to	remember	that	∆ 0	is	in	the	nature	of	a	contact
potential;	 in	any	complete	circuit	 there	will	be	compensating	potential	differences	at	 the
other	junctions	so	that	no	current	flows	in	thermal	equilibrium.	Typical	values	of	∆ 0	for
Si	and	Ge	of	0.7	V	and	0.3	V	respectively	are	obtained	at	T	=	300	K	by	substituting	NA	=
ND	=	1022	m−3	in	Eq.	(6.2)	(ni	is	given	in	Table	5.1);	∆ 0	is	only	weakly	dependent	on	the
impurity	concentration	as	readers	can	check	for	themselves	by	substituting	different	values
for	NA	and	ND	in	Eq.	(6.2).

The	 width	 of	 the	 depletion	 layer	 and	 the	 variation	 of	 the	 electrostatic	 potential	 (x)
within	 it	 may	 be	 calculated	 to	 a	 good	 approximation	 by	 making	 two	 simplifying
assumptions:

(1)	 The	 boundary	 between	 the	 n	 and	 p	 regions	 is	 sharp	 as	 shown	 in	 Fig.	 6.2(a),	 †
where	the	boundary	is	taken	to	be	at	x	=	0.

(2)	The	majority	carrier	concentrations	decrease	very	rapidly	from	their	‘bulk’	values
at	the	edges	of	the	depletion	layer,	which	we	take	to	be	at	x	=	−wp	on	the	p	side	and	x
=	wn	on	the	n	side;	this	very	rapid	decrease	is	depicted	in	Fig.	6.2(b)	and	is	necessary
for	the	edges	of	the	depletion	layer	to	be	well	defined.

If	 these	 assumptions	 are	 made	 then	 the	 charge	 density	 near	 the	 junction	 is	 well
approximated	by

(6.3)	

as	shown	on	Fig.	6.2(c).

The	electrostatic	potential	is	related	to	the	charge	density	by	Poisson’s	equation

(6.4)	

the	first	integral	of	which	gives	the	electric	field	within	the	depletion	layer	as

(6.5)	

The	 linear	 variation	 of	E	 with	 x	 follows	 from	 integrating	 Eq.	 (6.4)	with	 the	 constant
charge	 density	 of	 Eq.	 (6.3).	 The	 electric	 field	 must	 vanish	 in	 the	 bulk	 semiconducting
regions	 outside	 the	 depletion	 layer	 and	 the	 integration	 constants	 in	Eq.	 (6.5)	 have	 been



chosen	to	ensure	that	E	 is	continuous	at	the	boundaries	of	the	depletion	layer.	Using	Eq.
(6.5)	and	requiring	that	E	should	be	continuous	at	x	=	0	provides	the	relation

(6.6)	

which	 is	 just	 the	 statement	 of	 overall	 electrical	 neutrality,	 that	 the	 number	 of	 ionized
acceptors	on	the	p	side	in	the	depletion	layer	equals	the	number	of	ionized	donors	on	the	n
side.	The	electric	 field	of	Eq.	 (6.5)	 is	 shown	 in	Fig.	6.2(d).	 Integrating	 the	electric	 field
(Eq.	(6.5))	gives

(6.7)	

for	 the	 potential;	 the	 linear	 variation	 of	 E	 with	 x	 in	 Eq.	 (6.5)	 leads	 to	 the	 quadratic
dependence	of	 	on	x	in	Eq.	(6.7).	The	constants	of	integration	have	been	chosen	so	that
the	potential	of	 the	p	 region	outside	 the	depletion	 layer	 is	 zero	 (this	defines	 the	zero	of
potential)	and	the	total	potential	difference	across	the	junction	is	∆ 0	as	given	by	Eq.	(6.1)
or	(6.2).	The	potential	 	(x)	must	be	continuous	at	x	=	0	and	this	provides	the	relationship

(6.8)	

The	potential	is	shown	as	a	function	of	position	in	Fig.	6.2(e).

Finally,	 solving	Eqs.	 (6.6)	 and	 (6.8)	 simultaneously	 gives	 the	widths	 of	 the	 depletion
layer	on	the	two	sides	of	the	junction	as

(6.9)	

It	follows	that	the	depletion	layer	is	wider	in	more	lightly	doped	junctions	(smaller	NA
and	ND);	the	width	wn	+	wp	is	about	1	µm	for	NA	~	ND	~	1021	m−3	and	about	0.1	µm	for
NA	~	ND	~	1023	m−3.	For	our	assumption	of	a	sharp	junction	to	be	valid	it	is	necessary	that
the	 change	 in	 doping	 from	p-type	 to	 n-type	 should	 occur	 on	 a	 length	 scale	much	more
rapid	than	this.

It	 remains	 for	 us	 to	 investigate	 the	 assumption	 that	 the	majority	 carrier	 concentration
falls	off	very	rapidly	at	the	edges	of	the	depletion	layer.	As	the	variation	of	 	(x)	is	slow
on	 an	 atomic	 length	 scale	 our	 calculation	of	 the	 carrier	 concentrations,	 given	 in	 section
5.3.2,	 remains	valid,	 the	values	of	n	 and	p	 at	 any	point	 being	determined,	 through	Eqs.
(5.16)	and	(5.20),	by	the	position	of	the	chemical	potential	relative	to	the	conduction	and
valence	 band	 edges	 respectively.	 The	 chemical	 potential	 is	 constant	 and	 the	 spatial
variation	 of	 the	 band	 edges	 is	 given	 by	 e (x).	We	 can	 therefore	 conveniently	write	 the
carrier	concentrations	as

(6.10)	



where	n0	and	p0	are	the	concentrations	of	electrons	and	holes	at	points	where	 (x)	is	zero;
in	the	present	situation	this	is	all	points	on	the	p	side	of	the	junction	outside	the	depletion
layer.	 The	 rapid	 fall-off	 in	majority	 carrier	 concentrations	 at	 the	 edges	 of	 the	 depletion
layer	occurs	because	kB	T	is	small	compared	to	the	total	energy	difference	e∆ 0	across	the
junction;	 a	 small	 change	 in	 (x)	 therefore	 produces	 a	 large	 change	 in	 the	 carrier
concentration	(see	problem	6.1).

Eqs.	 (6.10)	 are	 valid	 in	 other	 situations	 in	 which	 there	 is	 a	 position-dependent
electrostatic	potential	and	they	can	be	used	to	deduce	the	very	useful	Einstein	relations
between	the	diffusion	constants	and	mobilities	of	the	carriers.	In	thermal	equilibrium	the
current	 density	 of	 electrons	must	 vanish	 everywhere,	 and	 in	 a	 region	 of	 semiconductor
where	there	is	an	electric	field	such	as	a	p–n	junction	this	means	that	the	contributions	due
to	diffusion	and	to	the	electric	field	must	cancel	each	other.	Thus

(6.11)	

Alternatively	by	differentiating	Eq.	(6.10)	we	obtain

(6.12)	

By	recalling	that	E	=	−∂ /∂x	we	see	that	Eqs.	(6.11)	and	(6.12)	are	consistent	only	if

(6.13)	

which	is	the	Einstein	relation	for	electrons,	which	we	have	already	used	in	section	5.6.2.
Similarly	by	requiring	that	the	hole	current	should	vanish	in	thermal	equilibrium,	we	can
deduce	the	Einstein	relation	for	holes,

(6.14)	

These	Einstein	relations	remain	valid	as	long	as	the	electron	and	hole	concentrations	are
given	by	the	Boltzmann	distributions	of	Eqs.	(6.10).

6.3	THE	p–n	JUNCTION	WITH	AN
APPLIED	BIAS
The	 application	 of	 an	 additional	 potential	 difference	V	 across	 a	 p–n	 junction	 causes	 an
electric	current	to	flow	through	it.	If	the	positive	side	of	the	potential	is	attached	to	the	p
region,	 the	 junction	 is	 said	 to	 be	 forward	 biased	 and	V	 is	 taken	 to	 be	 positive;	 if	 the
positive	 side	 is	 attached	 to	 the	 n	 region	 then	 the	 junction	 is	 reverse	 biased	 and	 V	 is
negative.	Because	of	the	low	carrier	density	in	the	depletion	layer	this	region	has	a	high
resistivity	compared	to	the	neutral	semiconducting	regions	on	either	side	and	consequently
the	applied	voltage	appears	across	 this	 layer.	Hence,	using	 the	 sign	conventions	 that	we
have	adopted,	the	total	potential	difference	across	the	depletion	layer	is



(6.15)	

where	∆ 0	is	the	potential	drop	in	the	absence	of	applied	bias	as	given	by	Eqs.	(6.1)	and
(6.2).	 Forward	 bias	 therefore	 reduces	 the	 total	 potential	 difference	whereas	 reverse	 bias
increases	it	(see	Fig.	6.3).	To	be	consistent	with	our	sign	convention	for	V	we	must	 take
the	current	as	positive	when	it	flows	from	p	to	n.

The	variation	of	the	potential	within	the	depletion	layer	is	obtained	by	solving	Poisson’s
equation	(Eq.	 (6.4))	 as	 in	 the	 previous	 section.	The	width	 of	 the	 depletion	 layer	 is	 thus
obtained	by	replacing	∆ 0	in	Eqs.	(6.9)	by	∆ 	to	give

(6.16)	

Thus	 the	width	 of	 the	 depletion	 layer	 is	 decreased	 by	 forward	 bias	 and	 increased	 by
reverse	bias.	Since	the	charges	of	the	ionised	impurity	atoms	within	the	depletion	layer	are
not	compensated	by	carriers,	a	change	in	the	width	of	this	layer	results	in	a	change	dσ	=
eND	dwn	=	eNA	dwp	 in	 the	magnitude	of	 the	charge	per	unit	 area	associated	with	a	p–n
junction	(see	Fig.	6.2(c)).	For	a	small	change	dV	in	bias	the	junction	therefore	behaves	as
though	it	has	a	capacitance

(6.17)	

per	unit	area	of	junction,	where	we	have	used	the	value	of	wn	from	Eqs.	(6.16).

Fig.	6.3



Although	 this	 capacitance	 can	 be	 a	 problem	 in	 electronic	 circuits	 where	 speed	 is
important,	it	is	put	to	good	use	in	circuits	where	a	voltage	variable	capacitance	is	required
(see	problem	6.2);	p–n	 junctions	 intended	 for	 this	use	are	known	as	varactor	diodes	or
varicaps.	They	can	be	used	only	under	conditions	of	reverse	bias	where	the	current	flow
is	very	small.

We	now	proceed	to	calculate	the	electric	current	through	a	p–n	junction	produced	by	the
applied	 bias.	 In	 the	 absence	 of	 the	 bias	 the	 shift	 in	 energy	 levels	 associated	 with	 the
potential	 difference	 ∆ 0	 can	 be	 regarded	 as	 a	 potential	 barrier	 limiting	 the	 flow	 of
conduction	band	electrons	from	n	to	p;	from	Fig.	6.1	we	see	that	only	those	few	electrons



with	 sufficient	 energy	 to	 overcome	 this	 barrier	 can	make	 the	 transition	 and	we	 suppose
that	these	electrons	give	rise	to	an	electron	current	Ie0	from	n	to	p.	In	the	absence	of	bias
the	 total	 electron	 current	 must	 vanish	 and	 to	 achieve	 this	 there	 must	 be	 an	 equal	 and
opposite	electron	current	from	p	to	n;	 this	counter-current	arises	because,	although	there
are	very	few	electrons	on	the	p	side,	any	that	diffuse	to	the	edge	of	the	depletion	layer	are
swept	across	the	junction	by	the	favourable	electric	field	within	this	layer.	These	equal	and
opposite	currents	are	indicated	by	arrows	on	Fig.	6.1.

It	is	necessary	for	us	to	calculate	Ie0	and	it	is	more	straightforward	to	calculate	the	flow
from	p	to	n.	If	the	lifetime	of	the	np	electrons	per	unit	volume	on	the	p	side	of	the	junction
is	τp	then	the	recombination	and	generation	rates	for	electrons	on	this	side	of	the	junction
are	 both	 equal	 to	 np/τp	 per	 unit	 volume	 (section	 5.6.3).	 On	 average	 a	 newly	 generated
electron	 moves	 a	 distance	 of	 one	 diffusion	 length	 Le	 (see	 section	 5.6.4)	 before
recombination.	Hence	we	can	estimate	 Ie0	 by	 saying	 that	only	 those	electrons	generated
within	one	diffusion	length	of	the	depletion	layer	edge	are	likely	to	diffuse	to	this	edge	and
cross	to	the	n	region	before	recombination.	Thus

Ie0	≈	e	×	(generation	rate/volume)	×	(volume	within	Le	of	depletion	layer)

where	A	is	the	area	of	the	junction.	By	assuming	that	all	the	acceptors	on	the	p	side	are
ionized,	so	that	np	=	 /pp	=	 /NA	(from	Eq.	(5.25)),	we	can	write	Ie0	as

(6.18)	

where	we	have	also	used	Le	=	(Deτp)1/2	(Eq.(5.72)).

The	effect	of	forward	bias	V	is	to	reduce	the	potential	barrier	by	an	amount	eV	as	shown
on	Fig.	6.3(a).	Since	the	occupancy	of	electron	states	within	the	conduction	band	is	given
by	a	Boltzmann	distribution	(Eq.	(5.15)),	this	leads	to	an	increase	by	a	factor	exp	(eV/kB	T)
in	 the	number	of	electrons	on	 the	n	 side	with	 sufficient	 energy	 to	overcome	 the	barrier.
The	electron	current	from	n	to	p	therefore	increases	to	Ie0	exp	(eV/kB	T)	but	the	flow	from
p	to	n	is	not	changed	since	there	 is	no	potential	barrier	for	motion	in	 this	direction.	The
imbalance	in	the	electron	currents	is	 indicated	in	Fig.	6.3(a)	and	the	net	electron	current
through	the	junction	is	given	by

(6.19)	

Eq.	(6.19)	is	also	valid	for	reverse	bias;	in	this	case	the	flow	of	electrons	from	n	to	p	is
reduced	by	a	factor	exp	(eV/kB	T)†	because	of	 the	increase	in	the	potential	barrier	by	an
amount	e|V|	as	shown	in	Fig.	6.3(b).

We	 leave	 it	 as	 an	 exercise	 for	 the	 reader	 to	 fill	 in	 the	 details	 of	 the	 corresponding
argument	 for	 the	 hole	 contribution	 to	 the	 current.	 In	 this	 case	e	∆ 0	 acts	 as	 a	 potential
barrier	preventing	the	flow	of	holes	from	p	to	n;	the	barrier	height	is	again	decreased	by



forward	bias	and	increased	by	reverse	bias	giving	a	net	hole	current

(6.20)	

where,	by	comparison	with	Eq.	(6.18),

(6.21)	

is	the	value	of	the	equal	and	opposite	hole	currents	through	the	junction	in	the	absence	of
an	applied	potential	difference.

The	total	current	is	obtained	by	summing	the	electron	and	hole	contributions	to	give

(6.22)	

where

(6.23)	

Since	the	diffusion	constants	and	diffusion	lengths	depend	only	weakly	on	temperature,
the	temperature	dependence	of	I0	is	dominated	by	the	factor	exp	(−EG/kB	T)	 that	appears
in	 	(Eq.	(5.23)).	The	current–voltage	relation	of	Eq.	(6.22)	is	plotted	in	Fig.	6.4.	Because
of	 the	 rectifying	 action	 apparent	 from	 this	 characteristic,	 the	 p–n	 junction	 diode	 has
largely	replaced	the	vacuum	diode	in	electronic	circuits	where	such	action	is	required.	Eq.
(6.22)	gives	the	best	rectifier	characteristic	that	can	be	obtained	with	carriers	of	charge	e.
For	an	interesting	discussion	showing	that	the	mechanical	analogue	of	such	a	rectifier	(a
ratchet)	 cannot	 violate	 the	 second	 law	 of	 thermodynamics,	 consult	 Feynman,6	 vol.	 1,
chapter	46.

The	current–voltage	relations	of	real	p–n	junctions	differ	from	Eq.	(6.22)	in	a	number	of
ways	 and	we	 discuss	 three	 of	 these	 here.	 The	 rapid	 increase	 in	 current	with	 increasing
forward	 bias	 that	 is	 apparent	 in	 Fig.	 6.4	 corresponds	 to	 a	 decrease	 in	 the	 effective
resistance	of	the	depletion	layer;	when	this	resistance	becomes	comparable	to	that	of	the
semiconductor	 regions	on	either	 side	of	 this	 layer,	 it	 is	no	 longer	possible	 to	 ignore	 the
potential	drop	across	 these	regions	and	this	 leads	 to	a	 less	rapid	 increase	 in	current	with
voltage	 than	 that	 predicted	 by	 Eq.	 (6.22).	 The	 second	 correction	 to	 Eq.	 (6.22)	 arises
because	the	calculation	leading	to	it	ignores	the	recombination	and	generation	of	carriers
within	the	depletion	layer	itself;	taking	these	into	account	gives	an	additional	contribution
to	the	current	for	forward	bias	of	the	form

Fig.	6.4	The	current–voltage	relation	for	a	p–n	junction	as	predicted	by	Eq.	(6.22).	We
have	taken	I0	=	10−10	A.	The	resistance	of	the	diode	is	much	larger	for	reverse	bias	than
forward	bias



(6.24)	

(see	van	der	Ziel,19	p.	321).	Eq.	(6.24)	is	valid	only	for	a	sufficiently	large	bias	that	I	 	 ;
the	main	difference	 to	Eq.	 (6.22)	 is	 the	 factor	 2	 in	 the	 exponent,	which	means	 that	 the
contribution	of	Eq.	(6.24)	tends	to	dominate	at	lower	voltages.	Also,	since	 	∝	ni	whereas
I0	∝	 ,	 the	 current	 of	 Eq.	 (6.24)	 is	 more	 important	 in	 silicon	 diodes	 than	 germanium
diodes	because	ni	is	much	smaller	in	the	former.

The	most	obvious	deviation	from	Eq.	(6.22)	is	the	phenomenon	of	reverse	breakdown;
this	is	the	sudden	increase	of	current	that	occurs	when	the	reverse	bias	increases	through
some	critical	value,	≈	−3	V	for	the	diode	characteristic	shown	in	Fig.	6.5(a).	At	values	of
reverse	 bias	 of	 this	 order	 the	 top	 of	 the	 valence	 band	 on	 the	 p	 side	 of	 the	 junction	 lies
above	the	bottom	of	the	conduction	band	on	the	n	side	as	shown	in	Fig.	6.5(b).	A	valence
band	electron	on	 the	p	side	 therefore	has	states	available	 to	 it	at	 the	same	energy	 in	 the
conduction	band	on	the	n	side;	there	is	a	finite	probability	that	such	an	electron	can	cross
the	junction	by	quantum	mechanical	tunnelling	through	the	potential	barrier	consisting	of
the	 central	 region	 of	 the	 depletion	 layer	 where	 no	 states	 of	 the	 appropriate	 energy	 are
available.†	 The	 tunnelling	 current	 increases	 exponentially	 with	 decreasing	 barrier
thickness	 and	 this	 leads	 to	 a	 rapid	 increase	 in	 tunnelling	 current	when	 the	 reverse	 bias
increases	through	some	critical	value.	This	type	of	reverse	breakdown	is	known	as	Zener
breakdown	 and	 it	 is	 the	 normal	mechanism	 for	 breakdown	 in	more	 heavily	 doped	p–n
junctions	 where	 the	 depletion	 layer	 and	 hence	 the	 potential	 barrier	 is	 narrower	 (Eq.
(6.16)).

Fig.	6.5



With	 decreasing	 levels	 of	 doping	 the	 threshold	 voltage	 increases	 and	 eventually	 the
mechanism	 of	 reverse	 breakdown	 changes;	 for	 silicon	 diodes	 the	 change	 in	 behaviour
occurs	 when	 the	 breakdown	 voltage	 reaches	 about	 5	 V.	 As	 the	 breakdown	 voltage
increases,	 the	 electric	 field	within	 the	depletion	 layer	 at	 breakdown	becomes	 larger	 and
eventually	reaches	a	value	at	which	carriers	within	the	depletion	layer	gain	enough	energy
from	 the	 field	 between	 collisions	 to	 excite	 an	 electron	 from	 the	 valence	 band	 to	 the
conduction	 band,	 thus	 creating	 an	 electron–hole	 pair,	 the	 members	 of	 which	 can
themselves	 create	 new	pairs	 in	 the	 same	way.	This	 breakdown	mechanism	 is	 known	 as
avalanche	breakdown	because	of	the	amplification	of	the	current	that	it	implies.

The	 rapid	 increase	 in	 current	 with	 only	 small	 increases	 in	 voltage	 in	 the	 breakdown
region	 (whatever	 the	mechanism	 of	 breakdown)	 leads	 to	 the	 use	 of	 reverse	 biased	 p–n
junctions	as	voltage	references	in	electronic	circuits.	Junctions	constructed	to	exploit	this
possibility	 are	 known	 as	Zener	diodes.	 By	 changing	 the	 doping	 levels	 it	 is	 possible	 to
tune	the	breakdown	voltage	from	a	value	of	around	2	V	up	to	values	above	1000	V.

In	very	heavily	doped	p–n	junctions	the	Fermi	level	can	lie	in	the	valence	band	on	the	p
side	and	in	the	conduction	band	on	the	n	side	as	depicted	in	Fig.	6.6(a);	the	bottom	of	the
conduction	band	on	the	n	side	is	then	below	the	top	of	the	valence	band	on	the	p	side	even
with	 zero	 applied	 bias.	 In	 these	 circumstances	 the	 depletion	 layer	 is	 very	 narrow	 and	 a
large	 tunnelling	current	 is	observed	at	 small	 forward	bias	as	 shown	 in	Fig.	6.5(b).	With
increasing	forward	bias	the	overlap	in	energy	between	the	conduction	band	on	the	n	side



and	 the	 valence	 band	 on	 the	 p	 side	 eventually	 disappears	 (point	 A	 on	 Fig.	 6.6(b));
tunnelling	can	no	longer	occur	and	the	current	decreases	to	the	lower	value	appropriate	to
the	 current–voltage	 characteristic	 of	 a	 conventional	 diode	 (Fig.	 6.4).	 Devices	 with	 a
current–voltage	characteristic	 like	 that	of	Fig.	6.6(b)	 are	known	as	 tunnel	diodes.	Their
use	 in	 electronic	 circuits	 results	 from	 the	 region	of	 the	 characteristic	 (between	points	B
and	A	on	Fig.	6.6(b))	in	which	they	have	a	negative	differential	resistance,	dV/	dI	<	0.

6.4	OTHER	DEVICES	BASED	ON	THE
p–n	JUNCTION
In	this	section	we	describe	briefly	some	of	the	many	semiconductor	devices	that	contain
p–n	junctions;	we	choose	devices	that	are	interesting	from	a	physical	viewpoint.

6.4.1	Light	emitting	diodes	and	lasers
A	p–n	junction	with	forward	bias	corresponds	to	a	situation	of	minority	carrier	injection;
electrons	 from	 n	 flow	 into	 the	 p	 region	 and	 holes	 from	 p	 into	 the	 n	 region.	 As	 we
discussed	 in	 section	 5.6.4,	 excess	 minority	 carriers	 recombine	 with	 majority	 carriers
within	 about	 one	 diffusion	 length	 of	 the	 depletion	 layer	 edge.	 If	 the	 dominant
recombination	process	is	a	direct	one	in	which	an	electron	from	the	conduction	band	falls
into	 a	 vacant	 state	 in	 the	 valence	 band,	 emitting	 a	 photon	 to	 conserve	 energy,	 then	 the
diode	acts	as	a	source	of	light.	Light	emitting	diodes	(LEDs)	are	made	from	direct	band
gap	 semiconductors,	 where	 direct	 processes	 are	 more	 likely	 because	 momentum
conservation	 can	 be	 achieved	 in	 the	 recombination	 process	without	 the	 involvement	 of
lattice	vibrations	(see	section	5.4).	The	dominant	photon	energy	is	close	to	the	energy	gap
EGbecause	the	excess	carriers	come	into	thermal	equilibrium	(energies	close	to	 the	band
edges)	prior	to	recombination;	thermal	equilibrium	can	be	achieved	for	example	through
collisions	with	lattice	vibrations	(phonons)	and	the	mean	time	between	such	collisions	is
normally	 much	 shorter	 than	 the	 carrier	 lifetime	 at	 room	 temperature.	 By	 using
semiconductors	of	different	band	gap	 it	 is	possible	 to	produce	 light	of	different	colours.
The	 efficiency	 of	 an	 LED	 is	 usually	 small	 since	 the	 large	 refractive	 index	 of
semiconductor	 materials	 means	 that	 many	 of	 the	 emitted	 photons	 are	 totally	 internally
reflected	at	the	surface	and	reabsorbed	within	the	semiconductor.

Fig.	6.6



In	very	heavily	doped	junctions	the	Fermi	level	lies	within	the	energy	bands	outside	the
depletion	layer	(see	Fig.	6.6(a)).	Consequently	states	near	the	top	of	the	valence	band	on
the	 p	 side	 are	 empty.	 Applying	 a	 forward	 bias	 that	 approximately	 cancels	 the	 thermal
equilibrium	potential	difference	∆ 0	results	in	the	injection	of	a	large	number	of	electrons
into	 states	 near	 the	 conduction	 band	 edge	 on	 the	 p	 side,	 and	 it	 is	 possible	 to	 obtain	 a
situation	of	population	inversion	as	shown	in	Fig.	6.7	in	which	there	are	more	electrons
near	 the	 conduction	 band	 edge	 than	 near	 the	 valence	 band	 edge	 on	 the	 p	 side	 of	 the
junction.	Photons	are	generated	in	this	region	by	electron–hole	recombination	processes.
Because	of	the	population	inversion	such	a	photon	is	more	likely	to	cause	recombination
of	 a	 conduction	 band	 electron	 with	 the	 associated	 stimulated	 emission	 of	 a	 second
coherent	photon	 than	 to	be	absorbed	by	a	valence	band	electron.	 If	 the	p-type	 region	 is
sandwiched	between	mirrors	(the	total	internal	reflection	mentioned	above	can	be	used	for
this	purpose)	 then	escape	of	 the	photons	created	by	stimulated	emission	 is	 inhibited	and
the	coherent	photon	amplitude	increases.	The	energy	of	 the	photons	emitted	by	this	p–n
junction	laser	is	close	to	the	energy	gap	of	the	semiconductor	(see	Smith	and	Thomson,5
chapter	17,	for	a	fuller	account	of	the	physics	of	lasers).	To	achieve	population	inversion
in	a	simple	p–n	junction,	a	very	high	current	is	required;	in	section	6.6	we	will	show	how
the	current	can	be	reduced	by	using	a	three-layer	heterojunction	structure.



Fig.	6.7	The	application	of	a	forward	bias	to	the	p–n	junction	of	Fig.	6.6(a)	that	almost
cancels	the	thermal	equilibrium	potential	difference	∆ 0	results	in	a	large	injection	of
electrons	into	states	near	the	conduction	band	edge	on	the	p	side.	A	population	inversion
can	result	in	which	the	concentration	of	electrons	in	states	at	the	bottom	of	the	conduction
band	exceeds	that	in	states	at	the	top	of	the	valence	band.	Recombination	by	stimulated
emission	of	a	photon	can	then	result	in	laser	action

6.4.2	Solar	cells
The	use	of	p–n	junctions	as	solar	cells	exploits	the	inverse	effect	to	that	discussed	in	the
previous	section.	When	photons	with	an	energy	exceeding	the	energy	gap	are	incident	on	a
p–n	 junction,	 electron–hole	 pairs	 are	 produced.	 The	 electrons	 produced	 within	 the
depletion	layer	and	many	of	those	produced	within	about	a	diffusion	length	of	it	on	the	p
side	are	swept	to	the	n	side	by	the	electric	field	within	this	layer.	Similarly	holes	generated
in	the	depletion	layer	and	within	about	a	diffusion	length	of	it	on	the	n	side	can	be	swept
into	 the	 p	 region.	 The	 junction	 therefore	 behaves	 as	 a	 current	 source,	 with	 the	 current
proportional	to	the	intensity	of	the	incident	radiation.

6.4.3	The	junction	transistor
A	 p–n–p	 junction	 transistor	 consists	 of	 a	 thin	 (<	 1	µm)	 layer	 of	 n-type	 semiconductor
sandwiched	between	two	more	heavily	doped	p-type	layers	as	shown	schematically	in	Fig.
6.8(a).	The	three	layers	are	referred	to	as	the	collector,	base	and	emitter	as	indicated,	and
electrical	 contact	 is	 made	 to	 each	 layer	 by	 metallic	 contacts.	 We	 can	 obtain	 a	 semi-
quantitative	 understanding	of	 the	 behaviour	 of	 the	 transistor	 by	 regarding	 it	 as	 two	p–n
junctions	back-to-back.	An	n–p–n	junction	transistor	has	a	layer	of	p-type	semiconductor
sandwiched	between	two	more	heavily	doped	n-type	layers;	its	behaviour	is	analogous	to
that	of	a	p–n–p	transistor	with	the	roles	of	electrons	and	holes	interchanged	and	the	signs
of	all	the	currents	and	voltages	reversed.

When	 the	 transistor	 is	being	used	as	an	amplifier	 the	base–emitter	 junction	 is	 forward
biased	 and	 the	 base–collector	 junction	 is	 reverse	 biased,	 as	 shown	 in	 Fig.	 6.8(b);	 this
produces	the	energy	level	diagram	for	electrons	shown	in	Fig.	6.8(c).	The	emitter	current
IE	is	just	that	of	a	forward	biased	p–n	junction	and	can	be	estimated	using	Eq.	(6.22)†

(6.25)	



where	VEB	 is	 the	 potential	 difference	 across	 the	 junction	 and	we	have	 assumed	 that	 the
contribution	 −I0	 to	 the	 current	 in	 Eq.	 (6.22)	 is	 negligible	 (true	 under	 normal	 operating
conditions).	We	will	suppose	that	a	fraction	f1	of	IE	is	carried	by	electrons	and	a	fraction	1
−	f1	is	carried	by	holes	as	shown	in	Fig.	6.8(d);	because	of	the	higher	doping	level	in	the
emitter	the	current	is	predominantly	due	to	holes	flowing	from	the	emitter	to	the	base,	so
that	f1	 	l.	From	Eq.	(6.25)	we	deduce	that	IE	is	a	very	rapid	function	of	VEB;	inserting	I0	=
1	nA	we	find	that	IE	increases	by	a	factor	of	10	from	1	to	10	mA	as	VEB	increases	by	only
17%	from	0.36	to	0.42	V.	This	property	of	a	p–n	junction	can	also	be	seen	in	Fig.	6.5(a).

Fig.	6.8

The	injection	of	the	holes	into	the	base	region	from	the	emitter	is	a	situation	of	minority
carrier	injection	similar	to	that	discussed	in	section	5.6.4.	The	important	difference	in	the
transistor	 is	 that	 the	width	of	 the	base	 is	narrow	compared	 to	 the	diffusion	 length	of	 the
holes	and	the	majority	of	the	holes	therefore	diffuse	to	the	edge	of	the	depletion	layer	of
the	base–collector	junction	prior	to	recombination;	these	are	immediately	accelerated	into
the	collector	by	the	electric	field	within	 the	depletion	layer	(recall	 that	hole	energies	are
the	 negative	 of	 electron	 energies	 so	 that,	 by	 reference	 to	 Fig.	 6.8(c),	 we	 see	 that	 the



collector	is	a	region	of	low	energy	for	holes).

These	 holes	 flowing	 into	 the	 collector	 are	 the	 only	 significant	 contribution	 to	 the
collector	current	IC	since	the	current	intrinsic	to	the	reverse	biased	base–collector	junction
can	 usually	 be	 ignored	 in	 comparison.	 The	 collector	 and	 emitter	 currents	 are	 therefore
almost	equal.	The	small	difference	between	 them	 is	 the	base	current	 IB;	IB	 provides	 the
electron	contribution	to	the	base–emitter	current	f1	IE,	and	also	electrons	to	replace	those
annihilated	by	the	small	fraction	of	injected	holes	that	fail	to	diffuse	to	the	collector–base
junction	prior	to	recombination.	This	latter	contribution	is	proportional	to	the	hole	current
and	 thus	 to	 the	 total	 emitter	 current;	we	write	 it	 as	 f2	 IE	where	 f2	 	 1	 (see	 Fig.	6.8(d)).
Hence

(6.26)	

The	ratio	IE/IB	is	denoted	by	β	and	is	called	the	current	gain	of	the	transistor.	From	Eqs.
(6.26)	we	see	that

A	typical	value	for	β	is	100.	It	follows	from	Eqs.	(6.26)	that,	since	a	small	variation	iB	in
base	current	is	associated	with	a	much	bigger	variation	(β	−	1)iB	in	collector	current,	the
transistor	can	be	pictured	as	a	current	amplifier	of	gain	β	−	1.

Ideally	 a	 current	 amplifier	 should	 have	 zero	 input	 impedance	 and	 infinite	 output
impedance.	The	input	impedance,	∂VEB/∂IB,	seen	at	the	base-emitter	junction,	is	(for	T	=
300	K,	IE	=	5	mA	and	β	=	100)

where	we	have	used	Eqs.	(6.25)	and	(6.26).	The	output	impedance	is	infinite	according	to
our	simple	model	since	the	emitter	and	collector	currents	are	independent	of	the	collector–
emitter	 voltage	 VCE	 provided	 that	 the	 reverse	 bias	 at	 this	 junction	 is	 maintained.	 In
practice	 an	 increase	 in	VCE	 causes	 the	 depletion	 layer	 at	 the	 base–collector	 junction	 to
expand	and	hence	the	width	of	the	base	region	to	decrease;	this	causes	the	value	of	I0	 in
Eq.	 (6.25)	 to	 increase	 (see	 the	 footnote	 at	 the	 bottom	 of	 p.	 184)	 and	 thus	 IE	 and	 IC	 to
increase	slightly.	The	resulting	output	impedance	is	typically	around	5	kΩ.	The	transistor
can	be	converted	to	a	voltage	amplifier	by	allowing	the	collector	current	to	flow	through	a
suitable	 load	 resistance;	 the	 changes	 in	 collector	 current	 caused	 by	 variations	 in	 VEB
through	 Eq.	 (6.25)	 are	 then	 converted	 to	 variations	 in	 voltage	 difference	 across	 this
resistance.

6.4.4	The	junction–gate	field-effect	transistor
Fig.	 6.9(a)	 is	 a	 schematic	 diagram	 of	 an	 n-channel	 junction–gate	 field-effect	 transistor



(JUGFET).	 The	 source	 and	 drain	 connections	 are	 linked	 by	 a	 continuous	 conducting
channel	of	n-type	semiconductor;	 flow	of	current	 through	this	channel	can	be	controlled
by	 varying	 the	 reverse	 bias	 applied	 to	 the	 p-type	 gate.	 Figs.	 6.9(b)	 and	 (c)	 show	 the
conventional	circuit	symbol	and	the	normal	biasing	arrangement	for	this	type	of	JUGFET.
Comparison	of	Figs.	6.9(a)	and	(c)	shows	that	the	width	of	the	depletion	layer	between	the
p	and	n	regions	is	increased	by	the	reverse	bias	and	thus	the	area	for	current	flow	through
the	n	channel	is	reduced.	Variations	in	the	gate	potential	cause	changes	in	the	thickness	of
the	 depletion	 layer	 and,	 since	 this	 is	 a	 region	 of	 high	 electrical	 resistivity,	 there	 are
corresponding	changes	 in	 the	 resistance	of	 the	channel	between	 the	drain	and	source.	A
sufficiently	negative	gate	voltage,	or	alternatively	a	large	enough	positive	drain	or	source
voltage,	 can	 cause	 the	 depletion	 layer	 to	 extend	 across	 the	 whole	 of	 the	 channel,	 a
situation	 referred	 to	as	pinch-off.	When	 the	 JUGFET	 is	used	as	 a	voltage	 amplifier	 the
input	voltage	is	fed	to	the	gate;	the	resulting	variations	in	channel	resistance	cause	changes
in	the	drain-source	current	and	hence	voltage	variations	across	a	load	resistance	in	series
with	 the	 channel.	 The	main	 advantage	 of	 a	 JUGFET	voltage	 amplifier	 is	 that	 the	 input
resistance	is	that	of	a	reverse	biased	p–n	junction	and	is	consequently	very	large;	the	gate
current	is	therefore	very	small.

Fig.	6.9



6.5	METAL–OXIDE–
SEMICONDUCTOR	TECHNOLOGY
AND	THE	MOSFET
Metal–oxide–semiconductor	(MOS)	technology	derives	its	name	from	the	basic	structure
shown	in	Fig.	6.10(a),	in	which	a	metal	electrode	(referred	to	as	a	gate)	is	separated	from	a
semiconductor	substrate	by	a	thin	layer	of	insulating	material.	In	the	most	common	MOS
devices	the	substrate	is	silicon	and	the	insulator	is	silicon	dioxide.	The	structure	shown	in
Fig.	6.10(a)	 is	 useful	 because	 it	 is	 possible	 to	 alter	 the	 properties	 of	 the	 semiconductor
close	to	the	surface	by	applying	a	potential	to	the	gate.

To	illustrate	this	we	suppose	that	the	substrate	is	weakly	p–type	and	that,	in	the	absence
of	 a	 potential	 on	 the	 gate,	 the	 energy	 level	 diagram	 for	 electrons	 is	 as	 shown	 in	 Fig.
6.10(b);	 the	 filled	 circles	 and	 open	 circles	 are	 used	 to	 indicate	 electrons	 and	 holes
respectively.	When	a	positive	potential	is	applied	to	the	gate	as	in	Fig.	6.10(c),	holes	are
repelled	 from	 the	 surface	 towards	 the	 interior	 of	 the	 semiconductor	 and	 electrons	 are
attracted	 towards	 the	 surface.	 For	 small	 applied	 potentials	 the	 latter,	 being	 the	minority
carrier,	are	small	in	number	and,	as	a	result,	a	region	with	very	few	carriers	is	generated
close	to	the	surface;	this	region	is	called	a	depletion	layer	and	it	has	similar	properties	to
the	depletion	layer	at	a	p–n	junction	(see	section	6.2)	such	as	a	high	electrical	resistivity.

There	 is	 a	 net	 negative	 charge	 density	 within	 the	 depletion	 layer	 because	 the	 charge
density	of	the	ionized	acceptor	impurities	is	no	longer	compensated	by	that	of	the	holes.
As	 in	 the	 p–n	 junction	 this	 charge	 density	 ρ(x)	 is	 associated	 with	 a	 spatially	 varying
electrostatic	potential	 (x)	 through	Poisson’s	equation	(Eq.	(6.4)).	Since	ρ(x)	depends	on
the	concentration	of	electrons	and	holes	and	these	in	turn	depend	on	 (x)	via	Eqs.	(6.10)
we	obtain	a	non-linear	equation	for	 (x)	which	has	in	general	to	be	solved	using	numerical
methods.	The	spatially	dependent	potential	obtained	by	solving	Eq.	(6.4)	causes	bending
of	the	electron	energy	bands	near	the	surface	just	as	it	does	in	the	depletion	layer	of	a	p–n
junction;	we	thus	obtain	the	electron	energy	level	diagram	of	Fig.	6.10(c).	Since	there	is
no	net	flow	of	electrons	or	holes	the	chemical	potential	must	be	constant	as	shown.

Fig.	6.10



Increasing	the	positive	bias	on	the	gate	increases	the	bending	of	the	energy	bands	until
the	 conduction	 band	 edge	 at	 the	 surface	 approaches	 the	 chemical	 potential	 as	 shown	 in
Fig.	 6.10(d).	 The	 conduction	 band	 electron	 density	 then	 becomes	 significant	 near	 the
surface	 as	 indicated	 in	 the	 figure.	 There	 is	 thus	 a	 layer	 near	 the	 surface	 in	 which	 the
electrical	conductivity	 is	enhanced.	This	 layer	 is	known	as	an	 inversion	 layer	 since	 the
behaviour	 has	 been	 essentially	 changed	 from	 p-type	 to	 n-type	 within	 it.	 The	 high-
resistivity	depletion	layer,	in	which	there	are	very	few	carriers,	has	been	displaced	towards
the	interior	of	the	semiconductor	where	it	separates	the	n-type	inversion	layer	from	the	p-
type	substrate;	the	analogy	with	the	p–n	junction	is	now	even	stronger.

Because	the	electrons	in	the	inversion	layer	are	restricted	to	moving	in	a	thin	layer	close
to	 the	 surface,	 their	 behaviour	 is	 often	 similar	 to	 a	 two-dimensional	 electron	 gas;	 we
explain	further	the	implications	of	this	in	Chapter	14.	The	density	of	electrons	within	the
inversion	layer	and	hence	the	conductivity	of	this	layer	can	be	increased	by	increasing	the
positive	potential	on	 the	gate.	For	sufficiently	high	potentials	 the	chemical	potential	 lies
within	 the	 conduction	band	near	 the	 surface	 as	 in	Fig.	6.10(e)	 and	 the	 two-dimensional
electron	gas	then	becomes	degenerate	with	the	occupancy	of	the	states	being	given	by	the



Fermi	function	(Eq.	(3.14))	rather	than	the	Boltzmann	distribution	(Eq.	(6.10)).

The	modulation	of	 the	conductance	of	 the	electrons	 in	 the	 inversion	 layer	by	 the	gate
potential	 explains	 the	operation	of	 the	metal–oxide–semiconductor	 field-effect	 transistor
(MOSFET).	A	section	through	a	MOSFET	is	shown	in	Fig.	6.11;	the	width	shown	for	the
depletion	layer	is	appropriate	to	the	bias	voltages	indicated.	The	structure	of	Fig.	6.10(a)
can	be	seen	in	the	centre	of	the	top	face	in	Fig.	6.11.	The	n-type	regions	near	the	drain	and
source	contacts	are	more	heavily	doped	 than	 the	substrate	and	are	consequently	denoted
by	n+	 in	 the	 figure;	 they	provide	 a	means	 for	making	 contact	with	 the	 n-type	 inversion
layer	 in	 order	 to	 pass	 a	 current	 through	 it.	 Note	 that	 the	 depletion	 layers	 at	 the	 p–n+
junctions	 link	 up	 with	 the	 depletion	 layer	 created	 by	 the	 gate	 bias	 so	 that	 the	 n-type
conducting	path	 is	 completely	 insulated	 from	 the	p-type	 substrate.	The	negative	bias	on
the	substrate	electrode	provides	additional	control	of	 this	 layer;	 this	electrode	 takes	very
little	current	provided	both	p–n+	junctions	remain	reverse	biased.

As	the	similarity	in	the	naming	of	the	contacts	suggests,	the	JUGFET	(section	6.4.4)	and
MOSFET	 behave	 very	 similarly	 in	 electronic	 circuits.	 The	more	widespread	 use	 of	 the
latter	in	integrated	circuits	is	due	to	the	relative	ease	with	which	many	MOSFETs	can	be
manufactured	within	 a	 small	 area	 on	 the	 surface	 of	 a	 thin	 slice	 of	 silicon.	Other	 circuit
components,	such	as	junction	transistors,	resistors	and	capacitors,	can	be	fabricated	on	the
surface	using	essentially	the	same	manufacturing	methods,	and	it	is	thus	possible	to	build
integrated	circuits	 to	fulfill	many	different	functions.	It	 is	currently	possible	 to	construct
circuits	with	 about	 105	 individual	 components	 per	 square	millimetre	 and	 this	 density	 is
likely	to	increase	further.

Fig.	6.11	Section	through	an	n-channel	MOSFET.	The	shading	shows	the	depletion	layer
appropriate	to	the	bias	voltages	indicated.	The	n-type	inversion	channel	can	be	seen,
sandwiched	between	the	depletion	layer	and	the	oxide	layer	underneath	the	gate	electrode.
Electrical	connections	to	the	metal	electrodes	can	be	made	through	metal	strips	evaporated
onto	the	surface

The	basic	MOS	structure	of	Fig.	6.10(a)	will	only	operate	in	the	way	we	have	outlined
above	if	the	behaviour	of	the	surface	layer	is	controlled	by	the	gate	potential	rather	than	by
charges	resident	on	the	surface.	Unwanted	surface	charge	density	can	result	from	electrons
in	states	localized	near	the	surface;	these	states	often	have	energies	within	the	band	gap	of
the	 semiconductor.	 Also	 the	 large	 number	 of	 unsatisfied	 covalent	 bonds	 on	 a	 bare
semiconductor	 surface	 makes	 the	 surface	 very	 reactive	 chemically	 and	 liable	 to
contamination	by	impurity	atoms	(section	12.6);	these	chemical	impurities	in	general	have
an	associated	surface	charge	density.	The	scale	of	the	problem	is	indicated	by	noting	that
there	are	about	1013	 semiconductor	atoms	per	square	millimetre	of	surface	(and	hence	a



similar	number	of	unsatisfied	covalent	bonds)	whereas	a	charge	density	of	1011	electronic
charges	per	square	millimetre	is	sufficient	to	prevent	the	gate	from	determining	the	surface
behaviour.

It	 is	 also	 important	 that	 the	 surface	 should	 be	 flat	 and	 free	 from	 defects	 so	 that	 the
mobility	of	the	carriers	in	the	inversion	layer	should	not	be	severely	reduced	by	increased
scattering.	The	following	surface	preparation	procedure	can	be	used.	A	thin	slice	of	silicon
is	 cut	with	 a	 diamond	 saw	 and	 the	 surface	 is	 polished	 to	 produce	 a	mirror	 finish.	 The
surface	 is	 then	 etched	 to	 remove	 the	 strained	 material	 produced	 by	 the	 sawing	 and
polishing	processes.	Finally	the	surface	is	sealed	by	depositing	a	protective	silicon	dioxide
layer	 on	 it.	 The	 unwanted	 charge	 density	 can	 be	 reduced	 in	 this	 way	 to	 about	 108
electronic	 charges	 per	 square	millimetre.	To	 construct	 a	MOSFET	on	 this	 virgin	 silicon
surface	the	sequence	of	operations	described	in	Fig.	6.12	can	be	used.

The	MOSFET	described	above	is	referred	to	as	an	n-channel	enhancement	MOSFET
because	it	is	necessary	to	apply	a	positive	potential	to	the	gate	in	order	to	create	an	n-type
channel	of	enhanced	conductivity.	It	is	possible	also	to	prepare	a	semiconducting	surface
with	a	controlled	amount	of	surface	charge	density.	The	right	amount	of	positive	charge
density	on	the	surface	of	the	semiconductor	in	the	MOS	structure	of	Fig.	6.10(a)	can	cause
sufficient	downward	bending	of	the	energy	bands	that	an	n-type	inversion	layer	exists	in
the	 absence	 of	 an	 applied	 gate	 potential.	 In	 this	 case	 the	 application	 of	 a	 negative	 gate
potential	removes	the	inversion	layer	and	hence	the	n-type	conduction	channel.	A	device
exploiting	this	possibility	is	referred	to	as	an	n-channel	depletion	MOSFET.	The	reader
will	not	be	surprised	to	learn	that	p-channel	MOS	devices	also	exist	in	which	the	roles	of
electrons	and	holes	are	reversed.

Fig.	6.12	Processes	used	to	create	an	n-channel	MOSFET	on	the	surface	of	a	thin	slice	of
Si



6.6	MOLECULAR	BEAM	EPITAXY
AND	SEMICONDUCTOR
HETEROJUNCTIONS
The	 development	 of	 the	 molecular	 beam	 epitaxy	 (MBE)	 method	 for	 the	 epitaxial
growth†	 of	 fresh	 semiconductor	 material	 on	 a	 substrate	 has	 made	 it	 possible	 to
manufacture	 semiconductor	 structures	 in	 which	 the	 chemical	 composition	 varies	 on	 an
atomic	length	scale.	In	this	method	the	new	material	arrives	at	the	substrate	in	the	form	of
a	beam	of	atoms;	 individual	 sources	are	used	 for	 each	element	 in	 the	beam	so	 that	 it	 is
possible	to	vary	the	relative	amounts	of	the	different	elements	arriving	at	the	substrate.	In
this	 way	 the	 chemical	 composition	 of	 the	 new	 material	 can	 be	 controlled	 and	 varied;
growth	rates	are	usually	in	the	range	1	to	10	Å	s−1.	The	temperature	of	the	substrate	must
be	 high	 enough	 for	 good	 epitaxial	 growth	 but	 low	 enough	 to	 prevent	 diffusion	 of	 the
deposited	atoms	over	significant	distances.	An	example	of	the	type	of	structure	that	can	be
created	using	this	technique	is	shown	in	Fig.	6.13;	a	layer	of	GaAs	is	sandwiched	between
two	 layers	 of	 Ga1−xAlx	 As	 (0	 <	 x	 <	 1,	 typically	 x	 ~	 0.3).	 The	 interfaces	 (known	 as
heterojunctions	 since	 they	 are	 between	 two	 different	 semiconductors)	 are	 sharp	 on	 an



atomic	length	scale	and	layers	as	thin	as	a	few	atomic	spacings	can	be	made.

We	now	discuss	 the	motivation	 for	making	such	a	 structure.	GaAs	has	 the	zincblende
(ZnS)	crystal	structure	 (Fig.	1.15)	and	 the	 structure	of	Ga1−xAlxAs	differs	only	 in	 that	a
fraction	x	of	the	Ga	atoms	have	been	directly	substituted	by	Al	atoms.	Since	both	Ga	and
Al	are	 in	group	 III	of	 the	periodic	 table,	Ga1−xAlxAs	 is	 also	a	 III−V	semiconductor,	but
with	an	energy	gap	that	varies	from	1.42	to	2.16	eV	as	x	varies	from	0	to	1;	the	end	points
in	 the	range	correspond	to	unsubstituted	GaAs	and	AlAs	respectively.	The	 larger	energy
gap	in	Ga1−xA1xAs	explains	the	energy	level	diagram	for	electrons	shown	in	Fig.	6.13.

This	energy	level	diagram	provides	many	interesting	possibilities.	The	conduction	band
edge	provides	a	finite	square	potential	well	for	electrons;	the	valence	band	edge	provides	a
similar	 well	 for	 holes.	 Most	 elementary	 courses	 on	 quantum	 mechanics	 contain
calculations	of	the	bound	states	of	particles	in	one-dimensional	square	potential	wells	and
the	semiconductor	heterojunction	structure	of	Fig.	6.13	provides	an	experimental	system
in	 which	 the	 results	 of	 these	 calculations	 can	 be	 demonstrated.	 Of	 course	 the
heterojunction	structure	is	not	strictly	one-dimensional	in	that	the	electrons	and	holes	are
free	 to	 move	 in	 the	 plane	 of	 the	 GaAs	 layer;	 this	 difference	 can	 however	 be	 simply
allowed	for	as	we	shall	demonstrate	in	Chapter	14.	Because	the	carriers	in	the	bound	states
are	 restricted	 to	 moving	 parallel	 to	 the	 GaAs	 layer	 their	 behaviour	 is	 essentially	 two-
dimensional	 if	 this	 layer	 is	 thin	 enough.	 The	 heterojunction	 structure	 of	 Fig.	 6.13	 thus
provides	an	alternative	to	the	MOSFET	for	the	study	of	two-dimensional	electron	systems
and	we	discuss	this	possibility	further	in	Chapter	14.

Fig.	6.13	Heterojunction	structure	consisting	of	a	thin	layer	of	GaAs	sandwiched	between
two	regions	of	Ga1−xAlxAs.	The	electron	energy	levels	are	also	shown.	Some	transfer	of
charge	between	the	GaAs	and	Ga1−xAlxAs	is	in	general	necessary	to	cause	alignment	of
the	chemical	potential	µ	but	for	very	weakly	doped	layers	the	resulting	charge	density
does	not	cause	significant	bending	of	the	band	edges	on	the	length	scale	shown	(see
however	Fig.	6.14)

More	 complicated	 structures	 than	 that	 illustrated	 in	Fig.	6.13	 can	be	manufactured	by
the	MBE	technique.	One	possibility	is	to	create	a	regular	array	of	alternate	layers	of	GaAs
and	Ga1−xAlxAs.	The	result	of	this	is	to	add	a	periodicity	to	a	solid	state	system	in	addition
to	the	underlying	crystal	structure.	Systems	containing	such	an	additional	periodicity	are
often	 referred	 to	 as	 superlattices.	 One	 interesting	 consequence	 of	 the	 existence	 of	 a



superlattice	is	the	appearance	of	band	gaps	in	the	ε/k	dispersion	relations	of	the	electrons
at	values	of	k	such	that	the	electron	wavefunction	has	the	same	periodicity	as	that	of	the
superlattice.	 These	 band	 gaps	 are	 analogous	 to	 those	 that	 appear	 at	 the	 Brillouin	 zone
boundaries	when	the	electron	wavefunction	has	the	same	periodicity	as	the	crystal	lattice
(see	section	4.1).	Since	the	periodicity	of	the	superlattice	is	greater	than	that	of	the	crystal
lattice	the	superlattice-induced	band	gaps	occur	at	smaller	values	of	k	than	those	due	to	the
crystal	lattice.

Because	the	mobility	of	conduction	band	electrons	in	GaAs	is	very	high,	this	material	is
often	used	in	semiconductor	devices	where	high-frequency	operation	or	fast	switching	is
required.	One	problem	is	that	if	the	electrons	are	provided	by	donor	atoms	then	the	carrier
mobility	is	reduced	by	scattering	of	the	electrons	by	the	ionized	donors.	This	problem	can
be	 overcome	 by	 the	 use	 of	 a	 heteroj	 unction	 structure	 as	 in	 the	high-electron-mobility
transistor	(HEMT),	the	crucial	part	of	which	is	shown	in	Fig.	6.14.	A	thin	(~	500	Å)	layer
of	n-type	Ga1−xAlxAs	is	sandwiched	between	a	metal	gate	electrode	and	a	 thick	 layer	of
pure	 GaAs;	 the	 donors	 are	 introduced	 into	 the	 Ga1−xAlxAs	 in	 the	 MBE	 process	 by
including	the	dopant	atoms	in	the	atomic	beam.	The	behaviour	of	the	structure	of	Fig.	6.14
is	analogous	to	that	of	the	MOS	structure	shown	in	Fig.	6.10;	the	potential	applied	to	the
metal	 gate	 determines	 the	 conductance	 of	 an	 n-type	 inversion	 layer	 at	 the	 surface.
Inspection	of	the	electron	energy	diagram	of	Fig.	6.14	shows	that,	although	the	electrons
in	 the	 inversion	 layer	are	provided	by	 the	donors	 in	 the	Ga1−xAlxAs,	 the	 inversion	 layer
itself	 is	 situated	 in	 the	GaAs;	 this	 is	 because	 there	 are	 conduction	 band	 states	 of	 lower
energy	within	the	GaAs.	Since	the	carriers	are	physically	separated	from	the	donor	atoms,
their	mobility	is	not	decreased	by	donor	scattering.

Fig.	6.14	Electron	energy	levels	in	an	HEMT	showing	the	formation	of	an	n-channel
inversion	layer.	Contact	is	made	to	the	channel	through	drain	and	source	electrodes	as	in
the	MOSFET	of	Fig.	6.11

The	electrostatic	potential	that	gives	rise	to	the	curvature	of	the	band	edges	in	Fig.	6.14
can	be	calculated	from	the	charge	density	using	Poisson’s	equation	(Eq.	(6.4))	just	as	for
the	p–n	junction	(section	6.2).	The	charge	density	in	the	Ga1−xAlxAs	is	predominantly	that



of	the	positive	ionized	donors;	in	the	GaAs	the	charge	density	is	due	to	the	electrons	in	the
inversion	layer	and	to	the	negative	ionized	acceptors	(we	take	the	GaAs	to	be	weakly	p-
type).	The	 curvature	 of	 the	bands	 is	 therefore	 in	 opposite	 directions	 in	 the	 two	 regions.
Since	the	electron	concentration	depends	on	the	potential	it	is	necessary	to	ensure	that	the
electron	 concentration	 inserted	 into	 Poisson’s	 equation	 is	 the	 appropriate	 one	 for	 the
potential	obtained	by	solving	the	equation.	This	self-consistency	requirement	is	often	quite
tricky	 to	 achieve	 due	 to	 the	 small	 length	 scale	 of	 the	 potential	 variation	 in	 the	HEMT;
because	 of	 this,	 Eqs.	 (6.10)	 do	 not	 adequately	 relate	 the	 electron	 concentration	 to	 the
potential.	Instead	the	electron	charge	density	has	to	be	obtained	by	solving	Schrödinger’s
equation	for	the	electron	wavefunctions	in	the	inversion	layer.

The	 HEMT	 is	 now	 widely	 used	 in	 situations	 where	 low-noise	 amplification	 at	 high
frequencies	 is	 required.	 The	 performance	 can	 be	 significantly	 improved	 by	 cooling	 the
transistor	to	low	temperatures.

Fig.	6.15	Three-layer	heteroj	unction	laser

A	more	satisfactory	p-n	junction	laser	than	that	illustrated	in	Fig.	6.7	can	be	obtained	by
using	 the	 three-layer	 heteroj	 unction	 structure	 of	 Fig.	 6.15.	 The	 p-n	 junction	 is	 formed
between	n-type	Ga1−xAlxAs	and	p-type	GaAs.	The	electrons	injected	into	the	p	region	are
confined	 to	a	 small	 region	 in	 the	neighbourhood	of	 the	 junction	by	 the	potential	barrier
provided	 by	 a	 layer	 of	 p-type	 Ga1−xAlxAs.	 Because	 of	 the	 confinement,	 population
inversion	 and	 laser	 action	 are	 achieved	 at	 much	 lower	 currents	 than	 in	 a	 simple	 p-n
junction.	A	further	advantage	of	the	structure	shown	in	Fig.	6.15	is	that	Ga1−xAlxAs	has	a
lower	 refractive	 index	 than	 GaAs	 so	 that	 total	 internal	 reflection	 helps	 to	 confine	 the
photons	to	the	GaAs	layer	where	the	laser	action	occurs.†

PROBLEMS	6
6.1	By	assuming	that	the	potential	in	the	depletion	layer	of	a	p–n	junction	is	given	by
Eqs.	(6.7)	with	wn	and	wp	given	by	Eqs.	(6.9),	estimate	the	distance	from	the	edge	of
the	depletion	 layer	 (as	a	 fraction	of	 the	 total	width,	wn	+	wp)	 in	which	 the	majority
carrier	concentrations	decrease	by	a	factor	of	2.	(Assume	NA	=	ND.)



6.2	The	capacitance	at	a	silicon	p–n	junction	diode	is	used	with	a	100	μH	inductance
to	create	a	resonant	circuit.	Calculate	the	change	in	resonant	frequency	when	the	bias
applied	to	the	junction	changes	from	−1	to	−10	V.	(Take	NA	=	ND	=	1022	m−3,	T	=	300
K,	ε	=	12,	ni	=	2	×	1016	m−3	and	assume	that	the	area	of	the	junction	is	10−6	m2.)

6.3	Calculate	the	potential	variation	 (x)	and	the	depletion	layer	width	for	a	graded	p–
n	junction,	that	is	one	in	which	the	doping	level	varies	linearly	with	position:	ND	−	NA
=	kx.	You	 should	 assume	 that	 this	 linear	 variation	 is	 valid	 throughout	 the	 depletion
layer.

6.4	A	current	of	5	μA	flows	through	a	p–n	junction	diode	at	room	temperature	when	it
is	 reverse	 biased	with	 0.15	V.	Calculate	 the	 current	 flow	when	 it	 is	 forward	 biased
with	the	same	voltage.

6.5	 Show	 that	 the	 following	 alternative	 method	 for	 deriving	 the	 current–voltage
relation	for	a	p–n	junction	also	leads	to	Eq.	(6.22).	Calculate	the	electron	contribution
to	 the	current	by	using	Eq.	 (5.74)	 to	deduce	 the	diffusive	 flow	of	electrons	 injected
into	the	p	region	by	a	forward	bias.	The	excess	electron	concentration	at	the	edge	of
the	depletion	layer	on	the	p	side	can	be	deduced	by	assuming	that	Eqs.	(6.10)	remain
valid	within	the	depletion	layer	even	in	the	non-equilibrium	situation	where	a	bias	is
present.

Use	this	method	to	justify	the	statements	in	the	footnote	on	p.	184	concerning	the
value	of	Ih0	appropriate	to	the	base–emitter	junction	of	a	p–n–p	transistor.	You	will
have	 to	 generalize	 Eq.	 (5.74)	 to	 the	 case	 of	 minority	 carrier	 injection	 into	 a
semiconductor	of	length	much	shorter	than	a	diffusion	length.	You	can	assume	that
the	 excess	 hole	 concentration	 vanishes	 at	 the	 edge	 of	 the	 depletion	 layer	 at	 the
base–collector	junction.

6.6	Use	 the	generalization	of	Eqs.	 (6.5)–(6.9)	 to	 a	 situation	of	 finite	 reverse	 bias	 to
calculate	the	maximum	electric	field	within	the	depletion	layer.

Estimate	 the	width	T	of	 the	potential	barrier	 through	which	electrons	 involved	 in
the	 Zener	 breakdown	 process	 must	 tunnel.	 By	 assuming	 that	 the	 tunnelling
probability	 contains	 a	 factor	 of	 the	 form	 exp(−2αT)	 (why?)	 show	 that	 the
tunnelling	current–voltage	relation	contains	a	factor	exp	(−b/|V|1/2)	for	|V|	 	Δ 0.

Given	a	time	between	collisions	for	carriers	(me	=	0.1m)	 in	 the	depletion	layer	of
10−12	s,	estimate	the	critical	electric	field	for	avalanche	breakdown.	Hence	deduce
the	doping	level	(NA	=	ND)	required	to	achieve	a	breakdown	voltage	of	100	V	in	a
silicon	diode	(EG	=	1.1	eV,	ε	=	12).

†	Note	however	 that	 the	electron	and	hole	concentrations	must	still	 satisfy	 the	 law	of
mass	action	(Eq.	(5.22))	everywhere.

†	 Such	 a	 junction	 is	 described	 as	abrupt.	 Problem	6.3	 calculates	 (x)	 for	 a	 junction
with	no	sharp	boundary	between	the	p	and	n	regions.



†	This	factor	is	less	than	unity	because	V	is	negative	for	reverse	bias.

†	 For	 an	 account	 of	 quantum	 mechanical	 tunnelling	 through	 potential	 barriers	 see
French	and	Taylor,4	p.	383.

†Because	the	width	wB	of	the	base	region	is	small	compared	to	the	diffusion	length	Lh
for	holes,	our	method	of	estimating	I0	in	section	6.3	is	no	longer	valid;	a	better	estimate
of	I0	in	Eq.	(6.25)	is	obtained	by	replacing	Lh	in	Eq.	(6.23)	by	wB	(see	problem	6.).

†	For	more	 information	on	 semiconductor	heterojunctions,	 see	M.	 Jaros,	Physics	 and
Application	of	Semiconductor	Microstructures,	Oxford	University	Press,	1989.

†	An	epitaxial	growth	process	is	one	in	which	the	arrangement	of	atoms	in	the	newly
added	 material	 is	 a	 continuation	 of	 the	 ordered	 crystal	 structure	 of	 the	 substrate.	 In
vapour	phase	and	liquid	phase	epitaxy	(VPE	and	LPE)	the	new	material	is	deposited
from	 the	 gaseous	 and	 liquid	 phases	 respectively.	MBE	provides	 a	more	 sophisticated
method	of	achieving	epitaxial	growth.



CHAPTER	7

Diamagnetism	and	paramagnetism

7.1	INTRODUCTION
Quantum	Mechanics	 is	 the	 key	 to	 understanding	magnetism.	When	 one	 enters
the	first	room	with	this	key	there	are	unexpected	rooms	beyond,	but	it	is	always
the	master	 key	 that	 unlocks	 each	door.—	J.	H.	Van	Vleck	 (Nobel	 prize	 address,
1977)

Increasing	 from	 zero	 the	magnetic	 field	 applied	 to	 any	material	 causes	 an	 induced	 emf
(Faraday’s	law),	which	accelerates	electrons	within	the	material.	According	to	Lenz’s	law
the	resulting	electric	current	is	in	such	a	direction	as	to	reduce	(screen)	the	applied	field.
For	reasons	that	we	will	explain	in	Section	7.3	the	current	persists	when	the	applied	field
is	 maintained	 at	 a	 constant	 value	 (even	 though	 the	 induced	 emf	 is	 then	 zero)	 and	 the
material	 thus	 acquires	 a	 magnetization	M	 (magnetic	 moment	 per	 unit	 volume)	 in	 the
direction	opposite	to	the	field.	This	phenomenon	is	known	as	diamagnetism.	The	strength
of	magnetic	effects	of	materials	 is	quantified	by	the	magnetic	susceptibility	χ,	which	 is
defined	as	the	dimensionless	constant	of	proportionality	between	M	and	H,	where	H	is	the
macroscopic	magnetic	field	within	the	material	(see	appendix	B).	Thus

(7.1)	

From	our	discussion	above	we	deduce	that	χ	is	negative	for	diamagnetic	materials;	it	is
normally	 also	 very	 small,	 the	 value	−8.1	×	 10−6	 for	 ice	 being	 typical.	 The	 diamagnetic
susceptibility	normally	depends	only	very	weakly	on	temperature	at	temperatures	of	order
room	temperature	and	below.

In	materials	 in	which	 some	 or	 all	 of	 the	 atoms	 possess	 a	 permanent	magnetic	 dipole
moment	 (i.e.	 a	 dipole	moment	 that	 is	 non-zero	 in	 the	 absence	 of	 an	 applied	 field),	 the
diamagnetic	 effects	 are	 normally	 small	 in	 comparison	 to	 the	 paramagnetic	 effects
associated	 with	 the	 permanent	 moments.	 The	 magnetization	 of	 paramagnetic	 materials
vanishes	in	zero	applied	field	and	satisfies	Eq.	(7.1)	 in	small	fields.	We	show	in	Section
7.2	that	this	behaviour	can	be	understood	by	assuming	that	the	permanent	dipoles	behave
independently	of	each	other.	In	zero	field	the	atomic	moments	are	randomly	oriented	and
there	 is	 no	net	magnetization;	 in	 small	 fields	 there	 is	 competition	 between	 the	 aligning
effect	 of	 the	 field	 and	 thermal	 disorder,	 but	 on	 average	 there	 are	 more	 moments	 with
components	parallel	to	the	field	than	antiparallel	to	it.	The	paramagnetic	susceptibility	is
therefore	 positive	 and	 decreases	 with	 increasing	 temperature	 as	 the	 thermal	 disorder
increases.	A	typical	value	of	χ	for	a	paramagnetic	solid	at	room	temperature	is	3.8	×	10−4
for	CuSO4.



At	 low	 temperature	 the	 interactions	 between	 the	 permanent	 dipole	 moments	 can	 no
longer	be	ignored.	Thermal	energy	is	insufficient	to	cause	the	dipoles	to	point	in	random
directions	 in	 zero	 applied	 field.	 Their	 directions	 are	 correlated	 in	 such	 a	 way	 as	 to
minimize	the	interaction	energy.	Thus	the	permanent	dipoles	in	all	paramagnetic	materials
make	 a	 transition	 to	 some	kind	of	 ordered	 state	 as	 the	 temperature	 is	 decreased	 in	 zero
applied	field.	The	ordering	temperature	varies	widely;	it	is	as	high	as	1388	K	in	cobalt	but
is	 below	 1	 K	 in	 some	 ionic	 salts	 in	 which	 the	 magnetic	 ions	 are	 widely	 separated.
Magnetic	ordering	is	the	subject	of	Chapter	8.

In	 this	 book	we	 shall	 consider	 only	magnetic	 properties	 arising	 from	 the	 electrons	 in
solids.	The	magnetic	effects	due	to	the	nuclei	are	in	general	weaker	by	a	factor	of	order	the
electron	 mass	 divided	 by	 the	 proton	 mass	 (~	 1/2000).	 The	 reader	 should	 not	 however
assume	 that	 nuclear	 magnetism	 is	 unimportant.	 The	 technique	 of	 nuclear	 magnetic
resonance	(NMR),	for	example,	provides	an	excellent	tool	for	investigating	the	properties
of	solids.

We	 conclude	 this	 introduction	 with	 a	 warning	 to	 the	 reader	 of	 problems	 that	 can	 be
encountered	 when	 looking	 up	 values	 of	 the	 magnetic	 susceptibility	 in	 tables.	 The
susceptibility	defined	by	Eq.	 (7.1)	 is	dimensionless	although	 it	 is,	perhaps	misleadingly,
often	referred	to	as	the	susceptibility	per	unit	volume	or	volume	susceptibility.	The	reader
is	likely	to	encounter	also	the	susceptibility	per	unit	mass	(or	mass	susceptibility)	and	the
susceptibility	 per	 mole	 (or	 molar	 susceptibility).	 These	 are	 given,	 in	 terms	 of	 the
dimensionless	susceptibility	we	have	defined,	by	χ/ρ	and	χVm,	respectively,	where	ρ	is	the
mass	density	and	Vm	the	molar	volume;	unfortunately	the	notation	χ	is	used	frequently	to
refer	 to	all	 three	quantities.	Another	problem	 the	 reader	may	encounter	 is	 that,	 although
the	 volume	 susceptibility	 is	 dimensionless,	 the	 value	 appropriate	 to	 the	 SI	 units	 used
throughout	 this	book	differs	 from	that	appropriate	 to	 the	cgs	system,	which	 is	still	often
encountered	in	tabulations	of	χ:	the	relationship	is

(7.2)	

7.2	PARAMAGNETISM
7.2.1	The	origin	of	permanent	dipole	moments
To	 investigate	 the	 origin	 of	 atomic	 dipole	 moments	 we	 consider	 the	 simple	 classical
picture	 of	 an	 atom,	 i.e.	 an	 electron	 undergoing	 circular	motion	 of	 radius	 r	 at	velocity	v
about	the	nucleus	(Fig.	7.1).	The	period	τ	of	the	orbit	is	2πr/ν	and	the	orbiting	electron	is
therefore	equivalent	 to	an	electric	current	 i	=	 (−e)/τ	=	−eν/2πr:	 the	minus	 sign	 indicates
that	 the	 electron	 is	moving	 in	 the	 opposite	 direction	 to	 the	 current.	 It	 is	 a	 principle	 of
electromagnetism	(Ampère’s	law)	that	such	a	current	loop	has	a	magnetic	dipole	moment

(7.3)	

where	a	is	the	‘area’	vector	of	the	loop,	directed	so	that	the	current	is	in	a	clockwise	sense



when	looking	along	a.	Thus

(7.4)	

where	 l	is	the	angular	momentum	vector	of	the	orbiting	electron	(| l|	=	mνr)	and	we	have
used	 |a|	 =	πr2.	We	write	 the	 angular	momentum	as	 l	 since	 	 is	 the	 natural	 unit	 for	 the
orbital	angular	momentum	of	atoms.	It	thus	follows	from	Eq.	(7.4)	that	the	natural	unit	for
the	magnetic	moment	is	the	Bohr	magneton	μB,	where

(7.5)	

Eq.	(7.4)	indicates	that	there	will	be	a	contribution	to	the	magnetic	moment	of	an	atom
from	the	orbital	angular	momentum	of	the	electrons	within	it.	Eq.	(7.4)	remains	valid	in	a
quantum	mechanical	 treatment	 provided	 that	 1	 is	 regarded	 as	 the	 angular	 momentum
operator	of	the	electron.

There	is	also	a	magnetic	moment,

(7.6)	

associated	with	the	intrinsic	(spin)	angular	momentum	 s	of	 the	electron;	 to	a	very	good
approximation	(certainly	good	enough	for	our	purposes)	g0	=	2.

Fig.	7.1	An	electron	in	a	circular	orbit	is	equivalent	to	a	current	loop	and	hence	to	a
magnetic	moment

Comparison	of	Eqs.	(7.4)	and	(7.6)	then	shows	that	spin	angular	momentum	is	twice	as
effective	in	generating	magnetic	moment	as	orbital	angular	momentum.	The	eigenvalues
of	 the	 z	 component,	 sz,	 of	 s	 are	± 	 so	 that,	 from	 Eq.	 (7.6),	 the	 z	 component	 of	 the
intrinsic	magnetic	moment	can	take	the	values	±	μB.

The	total	magnetic	dipole	moment	of	 the	atom	is	obtained	by	summing	Eqs.	(7.4)	and
(7.6)	over	all	the	electrons	within	it.	Thus

(7.7)	

where	 L	=	 	Σ	I	and	 S	=	 	Σ	s,	the	sums	being	over	the	electrons	in	the	atom;	 L	and	 S
are	the	total	orbital	and	spin	angular	momenta	of	the	atom	respectively.	The	contribution
of	a	closed	shell	of	electrons	 to	L	or	S	 is	 zero,	 so	 that	permanent	dipole	moments	only
occur	 in	atoms	or	 ions	with	 incomplete	shells	 such	as	 those	of	 the	 transition	metals	and
rare	earths,	which	have	incomplete	3d	and	4f	shells	respectively;	transition	metal	and	rare-
earth	ions	thus	exhibit	paramagnetism	and	we	will	use	them	to	illustrate	this	phenomenon.
In	weak	applied	fields	the	angular	momenta	 L,	 S	and	 J	(=	 L	+	 S)	associated	with	the



incomplete	 shells	 in	 isolated	 ions	 of	 these	 elements	 are	 determined	 by	 the	 Russell–
Saunders	 coupling	 scheme,	 sometimes	 called	 the	 L-S	 coupling.	 According	 to	 this
scheme	the	stationary	states	of	the	shell	are	eigenstates	of	L2,	S2,	and	J2,	with	eigenvalues
L(L	+	1),	S(S	+	1)	and	J(J	+	1)	respectively.

The	 values	 of	 L,	S	 and	 J	 for	 the	 state	 of	 lowest	 energy	 are	 given	 by	Hund’s	 rules,
which,	in	the	order	they	must	be	obeyed,	are:

(1)	 S	 takes	 the	 maximum	 value	 allowed	 by	 the	 exclusion	 principle—as	 many	 as
possible	of	the	electrons	must	have	parallel	spins;

(2)	L	 takes	 the	maximum	value	 consistent	with	 this	 value	 of	S—the	 electrons	 have
their	orbital	angular	momenta	as	well	aligned	as	possible;

(3)	J	=	|L	–	S|	for	a	shell	less	than	half-full	and	J	=	L	+	S	for	a	shell	more	than	half-
full.

In	Fig.	7.2	we	illustrate	the	use	of	these	rules	to	calculate	the	values	of	L,	S	and	J	for	the
ground	states	of	 the	 transition	metal	 ions	V3+	and	Fe2+.	The	 spectroscopic	notation	 (see
Fig.	7.2)	is	used	in	Tables	7.1	and	7.2	to	show	the	values	of	L,	S	and	J	predicted	by	Hund’s
rules	for	all	the	rare-earth	and	transition	metal	ions.	Note	that	Hund’s	rules	1	and	2,	which
determine	 the	 values	 of	 L	 and	 S,	 are	 associated	 with	 the	 Coulomb	 forces	 between
electrons;	since	these	are	much	larger	than	magnetic	forces†	the	application	of	a	magnetic
field	 does	 not	 interfere	 with	 these.	 The	 third	 rule,	 which	 determines	 the	 value	 of	 J,	 is
associated	with	the	spin–orbit	interaction,	that	is	with	the	magnetic	field	generated	by	the
motion	of	the	electrons	within	the	atom;	this	is	of	order	10	T	(see	problem	7.1)	so	there	is
a	possibility	that	this	rule	can	be	disrupted	by	an	applied	field	of	this	order.	Note	also	that
the	splitting	of	the	levels	corresponding	to	different	J	values	can	be	comparable	to	KBT	at
room	temperature	so	 that	 levels	other	 than	 the	ground	state	may	be	occupied	 in	 thermal
equilibrium.	In	solids,	Hund’s	third	rule	can	also	fail	because	of	the	effect	of	the	electric
field	of	the	neighbouring	ions.

Fig.	7.2	Use	of	Hund’s	rules	to	calculate	the	quantum	numbers	S,	L	and	J	of	the	ground
states	of	the	V3+	and	Fe2+	ions.	The	3d	shell	has	l	=	2	so	there	are	2l	+	1	sublevels	is
corresponding	to	lz	=	−2,	−1,	0,	1,	2	as	indicated.	In	the	spectroscopic	notation,	values	of	L
of	0,	1,	2,	3,	4,	5,	6,…	are	indicated	by	letters	S,	P,	D,	F,	G,	H,	I,..



7.2.2	The	interaction	of	a	permanent	dipole
moment	with	an	applied	magnetic	field
The	magnetic	field	B	is	conventionally	taken	to	be	along	the	z	axis.	The	alignment	of	an
atomic	dipole	by	the	field	occurs	because	of	a	term

(7.8)	

in	 the	energy	of	 the	atomic	electrons,	where	μ	 is	 the	dipole	moment	given	by	Eq.	 (7.7).
Although	HP	 causes	 the	 reorientation	of	 the	magnetic	moment	by	a	magnetic	 field,	 it	 is
incorrect	 to	 interpret	 it	 as	 the	potential	 energy	of	 interaction	of	 an	 ‘atomic	bar	magnet’
with	the	field.	We	show	for	example	in	appendix	C	that	the	term	μBL.B	in	HP	is	part	of	the
kinetic	energy	of	the	electrons	in	a	magnetic	field.	The	reader	is	recommended	to	consult
Mandl2	for	further	discussion	of	magnetic	energies.

The	simplest	approach	to	calculating	the	effect	of	the	alignment	energy	HP	is	to	assume
that	 it	 is	 small	 and	 to	 use	 first-order	 perturbation	 theory.	 This	 involves	 calculating	 the
expectation	value	of	HP	 for	 the	unperturbed	ground	state	of	 the	 ion	as	given	by	Hund’s
rules.	The	calculation	requires	a	competence	in	quantum	mechanics	above	that	assumed	in
this	book,	so	we	will	not	reproduce	it	here	but	refer	the	interested	reader	to	Ashcroft	and
Mermin,11	appendix	P	(see	problem	7.3	for	a	simpler	geometrical	calculation	which	gives
the	same	answer).	The	result	of	the	calculation	has	a	simple	interpretation	which	we	now
present;	the	effect	of	the	alignment	energy	(7.8)	is	to	break	the	degeneracy	of	the	ground



state	of	the	ion	associated	with	the	2J	+	1	different	values	of	Jz.	The	energies	of	the	states
are

(7.9)	

Jz	=	−J,…−1,	0,	1,…,	J	and	the	Landé	g-factor	is

(7.10)	

Eq.	(7.9)	corresponds	to	2J	+	1	equally	spaced	levels	and	comparison	of	Eqs.	(7.8)	and
(7.9)	shows	that	the	ion	behaves	as	though	it	had	an	effective	magnetic	moment

(7.11)	

The	Landé	 -factor	gives	 the	number	of	Bohr	magnetons	associated	with	 the	effective
moment,	and	in	the	simple	geometrical	model	of	problem	7.3	it	arises	because	μ	(∝	(L	+
2S))	is	not	parallel	to	μeff	(∝	J	(=	L	+	S)).	Fig.	7.3	shows	the	energy	levels	predicted	by
Eq.	 (7.9)	 for	 V3+	 and	 Fe2+	 ions	 in	 a	 field	 B.	 The	 lowest	 energy	 corresponds	 to	 the
maximum	possible	alignment	of	μeff	with	B	(JZ	=	−J).

7.2.3	Calculation	of	the	magnetization	of
paramagnetic	ions
If	 the	 permanent	 dipoles	 in	 a	 solid	 behave	 independently	 of	 each	 other,	 then,	 at	 a
temperature	T,	the	relative	occupation	of	the	energy	levels	of	Eq.	(7.9)	will	be	given	by	a
Boltzmann	factor

Fig.	7.3	Splitting	of	the	ground	state	degeneracy	of	the	V3+	and	Fe2+	ions	by	a	magnetic
field	B,	as	given	by	Eq.	(7.9)



From	Eq.	(7.11)	the	contribution	of	an	atom	to	the	z	component	of	the	magnetization	is
− μBJz.	The	net	magnetization	for	N	moments	per	unit	volume	is	therefore	given	by

This	can	be	evaluated	in	a	manner	similar	to	that	used	in	Section	2.6.1	for	evaluating	the
thermal	energy	of	a	simple	harmonic	oscillator	by	noting	that	it	can	be	written

(7.12)	

where

(7.13)	

is	 the	 partition	 function	 of	 the	 dipole.	 Z	 is	 readily	 calculated	 by	 noting	 that	 it	 is	 a
geometric	series	of	2J	+	1	terms	with	first	 term	exp	( μBBJ/kBT)	and	ratio	of	successive
terms	exp	(− μBB/kBT).	Thus

(7.14)	

wherex	=	 μBBJ/kBT	is	essentially	a	dimensionless	measure	of	the	magnetic	field.

Thus,	using	Eq.	(7.14)	in	Eq.	(7.12),	we	obtain,	after	some	manipulation,†

(7.15)	

where



(7.16)	

is	known	as	the	Brillouin	function.	The	behaviour	of	this	function	is	qualitatively	similar
for	all	values	of	J.	It	increases	linearly	with	x	for	small	x	but	saturates	at	1	for	large	x;	as	a
result	 the	magnetization	 increases	 linearly	with	 field	 at	 small	 fields	 but	 approaches	 the
saturation	 magnetization	N μBJ	 at	 large	 fields,	 corresponding	 to	 maximum	 possible
alignment	of	the	dipoles	with	the	field	(all	the	ions	in	the	Jz	=	−J	state).	The	changeover	in
behaviour	occurs	when	x	~	J,	that	is	when	 μBB/kBT	~	1.	For	 	=	1	this	corresponds	to	a
field	of	order	450	T	at	T	=	300	K	and	hence	to	a	field	of	order	1.5	T	at	T	=	1	K.	Fig.	7.4
shows	that	the	experimentally	observed	dependence	of	the	magnetization	on	B	and	T	 for
Gd3+,	Fe3+	and	Cr3+	ions	is	well	described	by	the	Brillouin	function.

For	small	x,	BJ(x)	≈	(J	+	l)x/3J	so	that	in	weak	fields

(7.17)	

Before	using	this	result	to	deduce	a	value	for	the	susceptibility	χ	we	must	recall	that	B	in
Eq.	 (7.8)	 and	 subsequent	 equations	 is	 the	 local	magnetic	 field	 at	 the	 ion,	which	will	 in
general	 differ	 from	 the	 applied	 field	 because	 of	 the	 contribution	 from	 the	 magnetic
moments	of	neighbouring	ions.	For	small	χ,	μ0M	 	B	and	the	difference	between	the	local
and	applied	fields	as	well	as	that	between	B	and	μ0H	is	unimportant.	We	then	obtain,	from
Eqs.	(7.17)	and	(7.1),

(7.18)	

Fig.	7.4	Magnetization	curves	for	Cr3+	ions	in	potassium	chromium	alum,	Fe3+	ions	in
iron	ammonium	alum	and	Gd3+	ions	in	gadolinium	sulphate	octahydrate.	Note	that	the
values	of	M/NuB	at	different	temperatures	fall	on	the	same	curve,	indicating	that	the
magnetization	is	a	function	of	B/T	in	agreement	with	Eq.	(7.15).	The	full	curves	are
obtained	from	Eq.	(7.15)	using	g	=	2	and	values	for	J	of,	 	for	Cr3+,	 	for	Fe3+	and	 	for
Gd3+.	Comparison	with	Tables	7.1	and	7.2	shows	agreement	of	these	values	with	the
Hund’s	rules	predictions	for	Fe3+	and	Gd3+	but	disagreement	for	Cr3+.	The	values	needed
to	obtain	agreement	for	Cr3+	indicate	that	the	orbital	angular	momentum	is	quenched	by
the	crystal	field	so	that	L	≈	0	and	consequently	J	≈S.	(Reproduced	with	permission	from
W.	E.	Henry,	Phys.	Rev.	88,	559	(1952))



where	p	 =	 	 [J(J	 +	 1)]1/2.	 This	 notation	 is	 used	 because	 Eq.	 (7.18)	 is	 the	 result	 of	 a
classical	calculation	by	Langevin	of	the	paramagnetic	susceptibility	for	ions	of	magnetic
moment	 pμB	 (see	 section	 9.1.3	 for	 the	 Langevin	 calculation	 for	 electric	 dipoles).	 Our
quantum	calculation	relates	the	value	of	p	to	the	properties	of	the	ion.	Eq.	(7.18)	explains
the	Curie	 law	 for	 a	 paramagnet,	 that	 the	 susceptibility	 is	 inversely	 proportional	 to	 the
absolute	temperature;	if	it	is	written	in	the	form	χ	=	C/T	then

(7.19)	

is	known	as	the	Curie	constant.

Inserting	typical	numbers	in	Eq.	(7.18)	(N	≈	1028	m−3,	p2	≈	3)	shows	that	χ	becomes	of
order	unity	at	a	temperature	of	order	0.1	K;	thus	the	distinctions	between	the	applied	field
and	the	local	field	and	between	B	and	μ0H	only	become	important	at	temperatures	below
about	1	K.	In	appendix	B	we	discuss	the	relationship	of	the	local	and	applied	fields	when
the	difference	cannot	be	ignored;	the	relationship	depends	on	the	shape	of	the	sample	and
the	symmetry	of	the	atomic	arrangement.	We	show	in	appendix	B	that	the	contribution	of
the	other	dipoles	to	the	local	field	vanishes	for	a	spherically	shaped	sample	in	which	each
ion	either	has	an	environment	of	cubic	symmetry	or	is	surrounded	by	dipoles	arranged	at
random	(as	in	a	liquid	or	gas);	for	this	case	the	local	and	applied	fields	are	equal.

Using	Eq.	 (7.18)	 it	 is	 possible	 to	 deduce	values	 for	p2	 from	measured	 values	 of	χ.	 In
Tables	7.1	and	7.2,	values	obtained	 in	 this	way	are	compared	with	 theoretical	values	 for
isolated	ions	deduced	using	Hund’s	rules.	Agreement	is	generally	good	for	the	rare-earth
ions	 but	 it	 can	 be	 seen	 from	 Table	 7.2	 that	 for	 most	 of	 the	 transition	 metals	 better
agreement	 is	obtained	by	using	S	 rather	 than	J	 to	calculate	 the	value	of	p	 in	Eq.	 (7.18).
This	seems	to	suggest	that	the	transition	metal	ions	are	behaving	as	though	they	had	L	=	0;
their	orbital	angular	momentum	is	said	to	be	quenched.	Quenching	is	also	apparent	from



the	value	of	the	saturation	magnetization	observed	for	the	Cr3+	ion	in	Fig.	7.4.	Quenching
occurs	 because	 in	 a	 solid	 the	 electronic	wavefunctions	 are	 affected	 by	 the	 electric	 field
produced	by	neighbouring	 ions;	 this	 field	 is	 referred	 to	 as	 the	crystal	 field.	The	 crystal
field	 is	 usually	 insufficient	 to	 disrupt	 the	 first	 two	Hund’s	 rules	 so	 that	L	 and	S	 remain
good	 quantum	 numbers	 for	 each	 ion.	 It	 does	 however	 compete	 with	 the	 spin–orbit
interaction	 responsible	 for	Hund’s	 third	 rule	 to	decide	which	 linear	 combinations	of	 the
(2L	+	1)	(2S	+	1)	substates	in	the	L,	S	manifold	constitute	the	states	of	lowest	energy.

If	the	crystal	field	effect	is	dominant,	as	it	usually	is	for	the	transition	metal	ions,	then
the	 symmetry	 of	 the	 environment	 is	 often	 such	 that	 the	 eigenstates	 determined	 by	 the
crystal	field	have	〈	LX	〉	=	〈	Ly	〉	=	〈	LZ	〉	=	0,	so	that	the	contribution	of	the	orbital	motion
to	the	magnetic	moment	vanishes;	only	S	is	free	to	respond	to	an	applied	magnetic	field	in
this	case.	On	the	other	hand,	Hund’s	 third	rule	works	for	 the	rare-earth	 ions	because	the
incomplete	 4f	 shell	 is	 much	 closer	 to	 the	 nucleus	 and	 not	 so	 strongly	 affected	 by	 the
crystal	field.	In	this	respect	it	 is	important	to	realize	that,	because	the	electron	density	is
symmetrically	disposed	with	respect	 to	the	nucleus,	 it	 is	 the	electric	field	gradient	rather
than	the	field	itself	that	is	responsible	for	the	effect	on	the	wavefunction;	the	change	in	the
field	across	a	3d	wavefunction	is	much	bigger	than	that	across	a	4f	wavefunction.

TABLE	7.1	Values	of	p	deduced,	using	Eq.	(7.18),	from	measured	values	of	the	Curie
constant	for	rare-earth	ions	compared	with	the	value,	g	[J(J	+	1)]1/2,	predicted	for	the
Hund’s	rule	ground	state	of	the	ion.	The	discrepancies	between	theory	and	experiment	for
Sm	and	Eu	can	be	accounted	for	by	the	existence	of	levels	with	different	J	values	within	~
kBT	of	the	ground	state

TABLE	7.2	Comparison	of	experimental	and	theoretical	values	of	p	for	transition	metal
ions.	The	experimental	values	agree	much	better	with	2	[S(S	+	1)]1/2	than	with	 	[J(J	+
1)]1/2,	indicating	that	the	orbital	angular	momentum	is	quenched



7.2.4	Conduction	electron	paramagnetism
The	theory	of	section	7.2.3	does	not	apply	when	the	permanent	moments	within	the	solid
are	 those	 associated	with	 the	 conduction	 electron	 spins	 in	 a	metal.	 This	 is	 because	 the
behaviour	of	the	conduction	electrons	is	dominated	by	their	indistinguishability	and	hence
by	the	Pauli	principle;	we	were	able	to	consider	the	paramagnetic	ions	as	distinguishable
particles	obeying	a	classical	Boltzmann	distribution	because	they	were	located	in	definite
positions	 within	 the	 crystal.	 The	 Pauli	 principle	 restricts	 the	 states	 that	 a	 conduction
electron	can	occupy	and	hinders	spin	alignment,	thereby	reducing	the	susceptibility	below
the	Curie	law	value.

Fig.	7.5	Occupied	states	for	conduction	electrons	in	a	magnetic	field	at	T	=	0,	showing	an
excess	of	electrons	with	dipole	moments	parallel	to	the	field	(↑)	over	those	with	moments
antiparallel	to	the	field	(↓).	Note	that	the	spin	angular	momentum	is	in	the	opposite
direction	to	the	dipole	moment

The	 effect	 may	 be	 calculated	 by	 reference	 to	 Fig.	 7.5,	 which	 shows	 the	 conduction



electron	density-of-states	curve	(see	Fig.	3.2.(b))	split	into	two	halves,	one	for	each	of	the
two	 spin	 states	 of	 the	 electrons.	The	 component	 of	 the	 spin	magnetic	moment	 can	 take
values	±μB	parallel	 to	an	applied	field.	The	energies	of	 the	electrons	with	their	magnetic
moment	 parallel	 to	 the	 field	 B	 (labelled	 ↑)	 are	 lowered	 by	 μBB	 and	 the	 energies	 of
electrons	with	moments	antiparallel	to	the	field	(labelled	↓)	are	raised	by	μBB,	giving	the
density-of-states	 curves	 as	drawn.	The	Fermi	 energy	 	must	 be	 the	 same	 for	 both	 spin
states	 in	thermal	equilibrium.	For	fields	that	can	be	applied	in	the	laboratory	the	shift	 in
energy	levels	μBB	is	usually	much	smaller	than	the	Fermi	energy	 	(see	problem	7.5),	and
if	 this	 is	 the	 case	 there	 is	 an	 excess	 of	 parallel	moments	 over	 antiparallel	moments	 ∆n
equal	to	the	approximately	rectangular	area	indicated	in	Fig.	7.5.	Thus

(7.20)	

so	that	the	magnetization	is

(7.21)	

where	now	 ( )	 is	 the	 density	 of	 states	 at	 the	Fermi	 surface	 per	unit	 volume	 of	metal.
Assuming	that	the	magnetic	effects	are	weak	we	take	B	=	μ0H	and	deduce	a	value	for	the
susceptibility,

(7.22)	

The	effect	we	have	just	considered	is	known	as	the	Pauli	spin	paramagnetism	of	 the
conduction	electrons.

For	N	 free	electrons	per	unit	volume	we	can	write	 ( )	=	3N/2 	 (Eq.	 (3.8))	 and	 Eq.
(7.22)	becomes

(7.23)	

It	is	interesting	to	compare	this	result	with	the	classical	Curie	law	prediction	χcl	=	Nμ0
/KBT	obtained	from	Eq.	(7.18)	by	putting	J	=	S	=	 	 	=	2.	Since	εF	=	kBTF	we	see	that	the
spin	 susceptibility	 of	 a	 degenerate	 Fermi	 gas,	 like	 the	 heat	 capacity	 (section	 3.2.3),	 is
reduced	by	a	factor	of	order	T/TF	below	its	classical	value.	The	classical	value	would	only
be	 achieved	 at	 temperatures	 T	 	 TF,	 where	 the	 electrons	 become	 non-degenerate;	 all
metals	vaporize	before	reaching	such	a	high	temperature!

Because	 it	 is	 reduced	 by	 such	 a	 large	 factor	 from	 the	 classical	 value,	 the	 Pauli
paramagnetic	susceptibility	is	comparable	to	the	diamagnetic	susceptibility	of	conduction
electrons.	Indeed	Landau	calculated	a	value

(7.24)	

for	 the	diamagnetic	susceptibility	of	a	 free	electron	metal.	The	net	susceptibility	 for	 free
electrons	 is	 thus	 positive	 and	 equal	 to	 χP.	 Band	 structure	 effects	 and	 electron–electron
interactions	modify	 this	 result	but	 it	 remains	correct	 in	order	of	magnitude.	Comparison
between	theoretical	and	experimental	values	of	χP	 for	 the	alkali	metals	 is	given	in	Table



7.3;	 there	 is	 agreement	 within	 a	 factor	 of	 order	 2.	 The	 prediction	 of	 a	 temperature-
independent	χ	is	well	satisfied	in	practice	for	many	metals	over	a	wide	temperature	range.

The	magnetic	 susceptibility	 of	 some	 transition	metals	 is	 larger	 and	 this	 is	 due	 to	 the
contribution	 of	 the	 3d	 electrons.	 If	 these	 are	 pictured	 as	 inhabiting	 an	 energy	 band
associated	 with	 the	 overlap	 of	 the	 3d	 wavefunctions	 on	 neighbouring	 atoms,	 then	 the
enhancement	to	the	susceptibility	can	be	attributed	to	the	contribution	of	the	3d	band	to	 (
)	in	Eq.	(7.22);	the	overlap	of	the	3d	wavefunctions	is	small	and	this	means	that	the	band

is	narrow	and	has	a	high	density	of	states.	In	order	that	the	3d	band	should	contribute	to	
(v)	it	is	necessary	that	this	band	should	be	only	partly	filled	so	that	the	Fermi	energy	lies
within	 it.	 In	 the	rare-earth	metals	 the	4f	electrons	contribute	 to	 the	susceptibility;	 in	 this
case	the	overlap	of	the	wavefunctions	on	neighbouring	atoms	is	negligibly	small	and	the
contribution	 is	 better	 calculated	 by	 assuming	 that	 these	 electrons	 are	 localized	 in	 the
atomic	states	with	a	susceptibility	given	by

TABLE	7.3	Comparison	of	the	free	electron	theory	prediction	(Eq.	(7.23))	with	the
measured	Pauli	spin	susceptibility	for	the	alkali	metals.	Note	that	the	experimental	value	is
just	the	contribution	from	the	conduction	electron	spin,	not	the	total	susceptibility

Eq.	(7.18).	The	 temperature	below	which	many	transition	metals	and	rare-earth	metals
exhibit	 magnetic	 ordering	 is	 high	 and	 this	 is	 an	 indication	 that	 the	 magnetic	 moments
interact	strongly	in	these	metals.

7.3	DIAMAGNETISM
We	have	already	described	how	diamagnetism	arises	because	of	the	induced	currents	set
up	on	applying	a	magnetic	field;	 these	currents	 tend	to	screen	the	applied	field	from	the
interior	of	the	material.	According	to	classical	mechanics	the	currents	are	destroyed	by	the
interactions	that	maintain	thermal	equilibrium	within	the	material.	We	shall	see,	however,
that	quantum	mechanics	gives	a	certain	stability	 to	 the	screening	currents,	 resulting	 in	a
tendency	(usually	very	weak)	for	all	matter	 to	exclude	applied	fields.	To	understand	this
effect	we	will	 need	 to	 consider	 in	more	detail	what	 happens	when	 a	 charged	particle	 is
accelerated	by	a	changing	magnetic	field.

7.3.1	Momentum	in	a	magnetic	field
Consider	a	stationary	particle	of	mass	M	and	charge	q	at	a	distance	r	from	a	point	on	the
axis	of	a	long	solenoid	carrying	a	current	i	as	in	Fig.	7.6	For	simplicity	we	suppose	 that
the	 solenoid	 is	 superconducting	 so	 that,	 if	 the	 ends	 are	 connected	 together	 as	 shown	 to



form	 a	 complete	 circuit,	 it	will	 carry	 the	 current	 indefinitely	without	 an	 external	 power
supply.	 If	 the	 solenoid	 is	 heated	 above	 its	 superconducting	 transition	 temperature	 the
current	and	hence	the	magnetic	field	decay.	The	resulting	induced	emf	around	the	circle	C
accelerates	the	particle,	giving	it	a	momentum	Mv.	Where	has	this	momentum	come	from?
We	 certainly	 applied	 no	 force	 to	 the	 system	 in	 heating	 the	 coil	 to	 cause	 the	 current	 to
disappear.	 This	 paradox	 can	 be	 resolved	 by	 arguing	 that	 the	 particle	 possessed	 the
momentum	throughout;	we	demonstrate	below	that	to	recover	the	law	of	conservation	of
momentum	it	is	necessary	to	write	the	momentum	of	the	particle	as

Fig.	7.6	A	charged	particle	accelerated	by	a	decaying	magnetic	field.	The	motion	indicated
is	appropriate	to	a	negatively	charged	particle.

(7.25)	

where	A	 is	 the	magnetic	vector	potential	 (A	 determines	 the	magnetic	 field	 through	B	=
curl	 A).	 The	 momentum	 qA	 possessed	 by	 a	 charged	 particle	 at	 rest	 is	 known	 as
electromagnetic	 momentum;	 in	 the	 experiment	 described	 above	 the	 momentum	 is
initially	all	electromagnetic	and	in	the	final	state	it	is	all	in	the	kinetic	form	Mv.

To	establish	that	the	momentum	defined	by	Eq.	(7.25)	is	conserved	in	the	above	process
we	assume	that	the	current	decays	in	a	short	time	so	that	the	motion	of	the	particle	during
the	decay	period	may	be	ignored.	We	do	this	only	to	simplify	the	calculation;	the	result	we
obtain	is	a	general	one.	The	kinetic	momentum	acquired	by	the	particle	is	the	impulse	of
the	force	on	it.	That	is

(7.26)	

The	electric	field	E	at	the	position	of	the	particle	is	given	by	Faraday’s	law

(7.27)	

where	Φ	is	the	magnetic	flux	through	C.	We	will	relate	the	electric	field	to	the	magnetic
vector	potential	A.	If	the	solenoid	in	Fig.7.6	is	long	the	field	B	is	vanishingly	small	at	the
position	of	the	particle;	A	must	however	be	finite	there	in	order	to	satisfy	the	requirement



(7.28)	

where	the	surface	integrals	are	over	 the	surface	of	circle	C.	Inserting	this	value	for	Φ	in
Eq.	(7.27)	we	obtain

(7.29)	

From	the	symmetry	of	Fig.	7.6,	E	must	be	constant	around	C	and	we	can	also	choose	A
to	have	this	property.†	In	this	case	we	deduce	from	Eq.	(7.29)	that

(7.30)	

so	that	Eq.	(7.26)	can	be	written

(7.31)	

A0	 is	 the	value	of	A	 prior	 to	 the	decay;	 the	value	of	A	 is	 zero	 at	 the	 end.	Eq.	 (7.31)
establishes	that	the	momentum	defined	by	Eq.	(7.25)	is	indeed	conserved.

Our	discussion	so	far	has	been	classical;	the	transition	to	quantum	mechanics	is	made	by
replacing	the	momentum	p	of	Eq.	(7.25)	by	the	operator	−i ∇.	This	is	discussed	further	in
appendix	 C.	 In	 the	 remainder	 of	 this	 chapter	 we	 apply	 Eq.	 (7.25)	 to	 electrons	 by
substituting	q	→	−e	and	M	→	m.

7.3.2	Screening	by	induced	currents
Classically	the	velocity	v	of	an	electron	averages	to	zero	in	thermal	equilibrium	so	there
are	no	induced	currents;	from	Eq.	(7.25)	the	average	momentum	〈p〉	is	therefore	−eA	and
changes	as	the	magnetic	field	changes.	Quantum	mechanically	the	identification	of	p	with
−i ∇	means	that	p	is	determined	by	the	geometry	of	the	wavefunction.	The	confinement	of
atomic	 electrons	 by	 the	 Coulomb	 attraction	 of	 the	 nucleus	 means	 that	 there	 are	 only
discrete	electronic	states	with	orthogonal,	qualitatively	different,	wavefunctions	(differing
for	example	in	the	number	of	nodes);	the	states	are	separated	in	energy	by	typically	1	eV.
Atomic	wavefunctions	thus	possess	a	measure	of	rigidity	so	that	they	are	perturbed	only
slightly	by	a	weak	magnetic	field;	using	 the	 language	of	perturbation	 theory	we	can	say
that	 the	wavefunction	 is	 unchanged	 to	 first	 order	 in	 the	 perturbation.	 It	 is	 a	 reasonable
guess	 that	 an	 atomic	wavefunction	 cannot	 change	much	 until	 the	 applied	 field	 is	 large
enough	to	make	free	electron	cyclotron	orbits	(see	section	5.5.3)	of	atomic	dimensions.

Because	of	this	rigidity	of	the	atomic	wavefunctions	we	might	expect	that	it	is	〈p〉	 that
remains	constant	and	〈v〉	that	changes	when	a	field	is	applied.	If	this	is	so	then,	from	Eq.
(7.25),	 the	 induced	 velocity	 is	 v	 =	 −qA/M	 =	 eA/m	 and	 the	 resulting	 induced	 current
density	is

(7.32)	



Since	 the	 electron	 density	 is	 independent	 of	 time,	we	must	 have	 div	 j	 =	 0.	 Thus	 Eq.
(7.32)	is	only	valid	if	A	is	chosen	so	div	A	=	0.†

To	show	that	Eq.	(7.32)	implies	screening	of	the	applied	magnetic	field	by	the	electrons,
we	use	B	=	curl	A	and	Maxwell’s	equation	(for	static	fields)	curl	B	=	μ0j	to	obtain‡

On	using	the	vector	identity	curl	curl	A	=	grad(div	A)	−∇2A	and	recalling	that	div	A	=
0,	this	becomes

(7.33)	

where	 λ	 =	 (m/μ0ne2)1/2	 is	 a	 characteristic	 length;	 the	 solutions	 of	 Eq.	 (7.33)	 have	 the
property	(see	problem	7.7)	 that	A,	and	hence	B,	decays	exponentially	as	we	go	 into	 the
interior	of	a	region	containing	electrons,	such	as	an	atom.

The	characteristic	length	of	this	decay	is	λ,	and	if	we	compare	 this	 length	with	atomic
dimensions	 we	 will	 see	 how	 effective	 atomic	 electrons	 are	 in	 screening	 an	 applied
magnetic	field.	The	typical	electron	density	in	an	atom	is	1	electron/Å3so	that	n	~	1030	m
−3.	Hence

(7.34)	

which	 is	 much	 larger	 than	 an	 atomic	 size.	Magnetic	 fields	 are	 therefore	 screened	 only
slightly	 from	 an	 atom	 and	 in	 the	 following	 section	 we	 will	 calculate	 the	 diamagnetic
moment	of	the	atom	by	using	Eq.	(7.32)	with	A	the	vector	potential	of	the	applied	 field.
Thus,	even	 if	 the	atomic	wavefunctions	are	completely	unperturbed	by	a	magnetic	field,
the	resulting	diamagnetism	is	very	weak.	On	an	atomic	scale,	the	inertia	of	the	electrons	is
too	great	for	them	to	provide	effective	screening	currents.

When	 electronic	 wavefunctions	 extend	 over	 a	 larger	 region,	 as	 for	 the	 conduction
electrons	in	a	metal,	they	are	usually	strongly	perturbed	by	a	magnetic	field;	the	change	in
〈p〉	 is	then	of	order	−eA,	 the	screening	currents	are	small	and	the	diamagnetism	remains
weak.	 Landau’s	 calculation	 of	 the	 diamagnetism	 for	 free	 electron	 metals	 (see	 section
7.2.4)	confirms	this.	The	weak	Landau	diamagnetism	of	normal	metals	contrasts	sharply
with	 the	 situation	 in	 superconductors;	 we	 shall	 see	 in	 Chapter	 10	 that	 superconducting
electron	wavefunctions	are	only	slightly	perturbed	by	a	magnetic	field,	so	that	the	decay	of
field	predicted	by	Eq.	(7.33)	occurs	on	a	macroscopic	scale.

7.3.3	Calculation	of	the	diamagnetic	susceptibility
We	 will	 use	 Eq.	 (7.32)	 to	 calculate	 the	 magnetic	 moment	 induced	 on	 an	 atom	 by	 an
applied	 field	 and	hence	 to	 calculate	 the	diamagnetic	 susceptibility.	We	use	 a	 cylindrical
system	of	coordinates	with	origin	at	the	centre	of	the	atom	and	z	axis	parallel	 to	B	as	in
Fig.	7.7.	By	using	Eq.	(7.28)	it	is	possible	to	show	that	the	uniform	field	can	be	described



by	a	vector	potential	(problem	7.6)

(7.35)	

where	ĉ	is	a	unit	vector	directed	tangential	to	the	circular	ring	of	radius	ρ	in	Fig.	7.7.	This
vector	potential	also	satisfies	div	A	=	0	and	so	it	is	the	appropriate	vector	potential	to	use
in	Eq.	(7.32).

Fig.	7.7	Current	element	for	calculating	the	magnetic	dipole	moment	μ	of	an	atom	due	to
induced	screening	currents

From	Eq.	(7.32),	the	current	density	is

(7.36)	

If	we	make	the	simplifying	assumption	that	n	is	constant	within	the	circular	ring	in	Fig.
7.7,	then	the	contribution	dμ	of	this	ring	to	the	magnetic	moment	of	the	atom	is	that	of	a
loop	of	current

According	to	Ampere’s	law,	Eq.	(7.3),	therefore

and	the	total	induced	moment	on	the	atom	is

where	dV	 =	 2πρ	dρ	dz	 is	 the	 volume	of	 the	 ring.	 Since	 ∫n	dV	 =	Z,	 where	Z	 is	 the	 total
number	 of	 electrons	 in	 the	 atom,	we	 can	write	 ∫nρ2	dV	 =	Z〈ρ2〉	 where	 〈ρ2〉	 is	 the	mean
square	distance	of	the	electrons	from	the	z	axis.	Thus

(7.37)	



Note	that	for	a	spherically	symmetric	distribution	of	electrons	〈ρ2〉	=	2〈r2〉/3	where	〈r2	〉
is	the	mean	square	distance	of	the	electrons	from	the	nucleus	(see	Fig.	7.7);	the	appearance
of	Eq.	(7.37)	with	a	6	rather	than	a	4	in	the	denominator	indicates	that	this	substitution	has
been	made.

Our	 calculation	 is	 appropriate	 to	 an	 isolated	 atom,	 but,	 since	 diamagnetic	 effects	 are
weak,	 we	 can	 ignore	 the	 effect	 on	 the	 field	 at	 an	 atom	 of	 the	 induced	moments	 of	 its
neighbours	and	take	B	=	μ0	H	with	B	the	externally	applied	field.	Thus	the	magnetization
for	N	identical	atoms	per	unit	volume	is

(7.38)	

By	comparison	with	Eq.	(7.1),	we	identify	the	magnetic	susceptibility	as

(7.39)	

To	obtain	an	order	of	magnitude	value	for	χ,	we	have	used	the	estimate	of	the	screening
length	λ	calculated	 in	 the	previous	section	and	 taken	 〈ρ2〉	~	 ,	where	a0	=	0.53	Å	is	 the
Bohr	 radius.	 More	 precisely	 we	 might	 expect	 from	 Eq.	 (7.39)	 that	 the	 quantity	 4mχ/
μ0NZe2 	is	of	order	unity;	we	see	that	this	is	true	in	Table	7.4,	which	gives	values	of	this
quantity	and	of	the	molar	susceptibility	for	the	inert	gases.

TABLE	7.4	Values	of	the	molar	susceptibility	χM	(in	m3	mol−1)	for	the	inert-gas	atoms.
The	molar	susceptibility	is	given	by	Eq.	(7.39)	with	N	replaced	by	Avogadro’s	number
NA.	The	quantity	−4mχM/N	Aμ0Ze2 	should	therefore	be	of	order	unity.	The	diamagnetic
properties	of	an	inert-gas	atom	are	independent	of	the	state	(gas,	liquid	or	solid)	of	the
atom	to	a	good	approximation

PROBLEMS	7
7.1	For	an	electron	in	the	lowest	energy	state	of	the	Bohr	model	of	the	hydrogen	atom,
calculate	 in	 tesla	 the	magnetic	 field	 at	 the	nucleus	 resulting	 from	 the	motion	of	 the
electron	around	it.

(Note	however	 that	 a	 correct	quantum	mechanical	 calculation	 shows	 the	 electron	 to
have	zero	angular	momentum	in	 its	ground	state	and	 thus	 to	produce	zero	magnetic
field.)

7.2	Apply	Hund’s	rules	to	a	4f	shell	containing	n	electrons	to	show	that;



Use	these	results	to	check	the	values	of	S,	L	and	J	given	for	the	rare-earth	elements	in
Table	7.1

7.3	The	coupling	of	L	and	S	to	give	J	may	be	represented	on	the	vector	diagram

The	magnetic	moment	 is	μ	 =	 −μB(L	 +	 2S)(Eq.	 (7.7)).	 Unlike	J2,	μ2	 is	 not	 a	 good
quantum	number	so	that	only	the	component	of	μ	along	J	contributes	to	the	magnetic
properties	 (the	 component	 perpendicular	 to	 J	 is	 sometimes	 pictured	 as	 precessing
rapidly	around	J	and	thus	averaging	to	zero).	Show	that	the	effective	moment	can	be
written

and	hence	evaluate	the	Landé	g-factor	of	Eq.	(7.10).

7.4	The	most	important	contribution	to	the	paramagnetism	of	CuSO4	comes	from	the
Cu2+	ions	for	which	the	magnetic	moment	is	due	to	a	single	unpaired	spin	(L	=	0,J	=	S
=	 ,	 	=	2).Write	down	the	probabilities	at	temperature	T	that	the	moment	lies	parallel
and	 antiparallel	 to	 the	 field.	Hence	 show	 that	 the	magnetization	 for	N	 ions	 per	 unit
volume	in	a	field	B	is

Write	down	the	internal	energy	and	hence	calculate	the	magnetic	heat	capacity	CB	of
the	ions	in	a	constant	field	B.	Deduce	the	limiting	form	of	the	specific	heat	at	high	and
low	temperatures.	Sketch	CB	as	a	function	of	temperature.	What	is	a	high	temperature
if	B	=	0.5	T?

7.5	In	deriving	the	Pauli	spin	susceptibility	for	free	electrons	in	a	metal	we	made	the
assumption	 that	 μBB	 	 .	 Show	 that	 the	 exact	 relation	 between	 the	 spin
magnetization	M	and	the	field	B	for	a	free	electron	gas	at	absolute	zero	can	be	written

provided	M	<	Ms,	where	εF	is	the	Fermi	energy	and	Ms	is	the	saturation	magnetization.



(You	will	need	to	choose	the	energy	(≠εF)	of	the	maximum	occupied	level	in	Fig.	7.5
so	that	the	shaded	area	is	equal	to	the	number	of	electrons.)

Estimate,	for	potassium	(N	=	1.4	×	1028m−3),	 the	magnetic	 field	 required	 to	saturate
the	spin	magnetization.	Estimate	the	field	required	at	T	=	0	to	saturate	the	nuclear	spin
magnetization	of	the	3He	atoms	present	at	a	concentration	of	0.1 	in	a	liquid	mixture
of	 3He	 and	 4He.	 (The	 3He	 behaves	 like	 a	 degenerate	 Fermi	 gas	 and	 the	 nuclear
moment	on	each	atom	is	2.1	×	10−26	J	T−1;	the	total	density	of	the	liquid	is	130kg	m
−3.)

7.6	Use	 Eq.	 (7.28)	 to	 calculate	 the	magnetic	 vector	 potential	 at	 the	 position	 of	 the
particle	 when	 there	 is	 a	 flux	 Φ	 through	 circle	 C	 in	 Fig.	 7.5.	 Show	 that	 the	 vector
potential	satisfies	div	A	=	0.

Show	that	Eq.	(7.35)	gives	the	vector	potential	of	a	uniform	field	that	satisfies	div	A	=
0.

7.7	show	that	A	=	A0	ŷ	exp	(−x/λ)	is	a	solution	of	Eq.	(7.33)	for	the	penetration	of	the
vector	 potential	 into	 the	 interior	 of	 a	 region	 containing	 electrons	 with	 rigid
wavefunctions	if	the	region	occupies	the	space	x	>	0.Write	down	the	magnetic	field	B
and	the	induced	current	density	j	for	this	solution.

7.8	 In	 benzene	 the	 carbon	 atoms	 form	 a	 regular	 hexagon	 of	 side	 1.4	Å.	One	 outer
electron	 from	 each	 atom	 has	 a	 wavefunction	 that	 extends	 round	 the	 whole	 ring	 of
atoms	 (the	 other	 three	 outer	 electrons	 from	 each	 atom	 are	 in	 sp2	 atomic	 orbitals).
Estimate	roughly	the	contribution	of	these	electrons	to	the	diamagnetic	susceptibility
of	 liquid	 benzene	 (density	 =	 880	 kg	 m−3,	 molecular	 weight	 =	 78(C6H6)).	 The
experimental	value	of	χ	for	benzene	is	−7.7	×	10−6.

†	See	Chapter	8	for	justification	of	this	statement	and	of	Hund’s	first	rule.

†	Readers	unwilling	or	unable	 to	do	 this	manipulation	are	 advised	 to	do	problem	7.4
which	 contains	 the	 same	 calculation	 for	 the	much	 simpler	 (but	 very	 important)	 case
where	J	=	S	=	 ,	 	=	2.

†	E	 is	 a	 measurable	 quantity	 and	 its	 cylindrical	 symmetry	 is	 thus	 ensured	 by	 the
symmetry	 of	 the	 apparatus.	B	 =	 curl	A	 is	 also	measurable	 and	must	 be	 cylindrically
symmetric.	A	 cannot	be	measured	and	 the	addition	of	∇θ	 to	 it,	where	θ	 is	any	 scalar
function	of	position,	gives	an	equally	acceptable	vector	potential	 (it	gives	 the	same	B
because	curl	(∇θ)	=	0).	∇θ	and	hence	A	need	not	be	cylindrically	symmetric.	We	can
force	A	 to	 be	 cylindrically	 symmetric	 in	 the	 geometry	 of	 Fig.	 7.6	 by	 imposing	 the
additional	 condition	 div	A	 =	 0.	 Equations	 tend	 to	 be	 be	 simpler	 if	 this	 condition	 is
imposed	on	A.

†	For	any	other	choice	of	A	it	is	no	longer	true	that	the	change	in	〈p〉	can	be	ignored.

‡	In	this	section	the	response	of	 the	medium	to	the	magnetic	field	is	described	by	the
current	density	j	rather	than	the	equivalent	magnetization;	we	can	therefore	set	B	=	μ0H.



In	deriving	Eq.	(7.33)	we	have	ignored	the	spatial	dependence	of	n	and	assumed	that	it
can	 be	 replaced	 by	 its	 average	 value;	 since	 our	 intention	 is	 to	 determine	 only	 the
qualitative	behaviour	this	is	an	acceptable	assumption.



Chapter	8

Magnetic	order

It	 is	 well	 to	 observe	 the	 force	 and	 virtue	 and	 consequence	 of	 discoveries,	 and
these	are	to	be	seen	nowhere	more	conspicuously	than	in	those	three	which	were
unknown	to	the	ancients,	and	of	which	the	origin,	though	recent,	is	obscure	and
inglorious;	namely,	printing,	gunpowder	and	the	magnet	(i.e.	Mariner’s	Needle).
For	 these	 three	have	changed	 the	whole	 face	of	 things	 throughout	 the	world.—
Francis	Bacon	(1561–1626)

8.1	INTRODUCTION
At	 low	 temperatures	 it	 is	 observed	 that	 many	 paramagnetic	 materials	 possess	 a	 finite
magnetization	 in	 the	 absence	 of	 an	 applied	 magnetic	 field.	 This	 spontaneous
magnetization	 is	 due	 to	 alignment	of	 the	permanent	dipole	moments	 and	 indicates	 that
each	dipole	is	aware	of	the	direction	in	which	other	dipoles	are	pointing.	This	awareness
results	 from	 the	 interactions	between	 the	moments	 that	we	 ignored	 in	our	calculation	of
paramagnetism	in	the	previous	chapter.	The	transition	to	a	state	in	which	the	dipoles	are
aligned	represents	an	increase	in	the	degree	of	order	within	the	solid	and	thus	a	decrease	in
entropy.	 The	 simplest	 type	 of	 magnetic	 order	 is	 ferromagnetic	 order	 (section	 8.3)	 in
which	all	the	moments	contribute	equally	to	the	spontaneous	magnetization.	The	ordering
in	 antiferromagnets	 (section	 8.4)	 is	 such	 that	 there	 is	 no	 spontaneous	 magnetization
because	 half	 the	 dipoles	 are	 aligned	 in	 one	 direction	 and	 the	 other	 half	 in	 the	 opposite
direction.	In	ferrimagnets	(section	8.6.1)	there	are	oppositely	directed	moments	which	do
not	cancel	and	thus	there	is	a	net	spontaneous	magnetization.

The	magnetic	interaction	between	the	dipoles	is	too	small	to	be	responsible	for	magnetic
ordering.	To	demonstrate	this	we	estimate	the	magnetic	interaction	between	two	moments
of	magnitude	μB	a	distance	r	=	3	Å	apart;	the	field	B	at	one	moment	due	to	the	other	is	of
order	μ0μB/4πr3	so	that	the	interaction	energy	can	be	estimated	as

This	energy	is	equal	to	kBT	at	a	temperature	of	order	0.03	K.	Random	thermal	disorder
would	be	sufficient	to	destroy	alignment	of	magnetic	moments	by	this	mechanism	above
this	temperature.	Many	ferromagnets	retain	a	spontaneous	magnetization	at	 temperatures
of	order	1000	K,	 indicating	a	much	stronger	 interaction.	The	only	possibility	 is	 that	 the
interaction	results	from	the	electrostatic	interactions	of	the	electrons	with	each	other	and
with	 the	 nuclei	 in	 the	 solid;	 exchange	 provides	 a	mechanism	whereby	 the	 electrostatic



interaction	energy	of	two	electrons	can	depend	on	the	relative	orientation	of	their	magnetic
moments.

8.2	THE	EXCHANGE	INTERACTION
We	give	here	a	qualitative	explanation	of	 the	exchange	interaction;	a	fuller	discussion	is
given	in	appendix	D.	The	interaction	is	a	consequence	of	the	fact	that	the	wavefunction	of
two	electrons	must	be	antisymmetric	under	the	exchange	of	all	electron	coordinates,	space
and	spin:

It	 follows	 that	 the	wavefunction	 vanishes	 when	 the	 coordinates	 of	 both	 electrons	 are
identical:	r1	=	r2,	s1	=	s2.	There	 is	 thus	 zero	probability	of	 finding	 two	electrons	of	 the
same	 spin	 at	 the	 same	 point	 in	 space.	 The	 antisymmetry	 of	 the	wavefunction	 therefore
tends	to	keep	electrons	of	parallel	spin	apart	so	that	the	expectation	value	of	the	Coulomb
repulsion	energy	e2/4πε0|r1−r2|	is	smaller	for	parallel	spins	than	for	antiparallel	spins.	This
is	the	exchange	interaction	and	it	can	be	represented	in	the	form	−2 s1.s2,	corresponding
to	the	Coulomb	energy	of	the	parallel	spin	state	being	2 	less	than	that	of	the	antiparallel
spin	state	(see	appendix	D	and	problem	8.1).

The	argument	we	have	given	suggests	that	 	is	positive	and	that	ferromagnetic	(parallel)
alignment	of	spins	is	preferred;	exchange	interactions	between	electrons	on	the	same	atom
explain	Hund’s	first	rule	(section	7.2.1).	The	Coulomb	interaction	between	two	electrons
on	 different	 atoms	 also	 depends	 on	 their	 relative	 spin	 orientation	 because	 of	 the
antisymmetry	 of	 the	 wavefunction	 but	 the	 exchange	 energy	 	 falls	 off	 rapidly	 with
increasing	distance	between	the	atoms;	the	region	r1	=	r2	is	no	longer	so	important	so	that
our	 argument	 that	 	 is	 positive	 no	 longer	 applies.	 A	 negative	 value	 for	 	 for	 nearest
neighbours	favours	antiparallel	spins	and	thus	antiferromagnetic	ordering.

The	type	of	exchange	that	we	have	described	above	is	known	as	direct	exchange.	Direct
exchange	cannot	explain	magnetic	ordering	in	the	rare-earth	metals	because	there	is	little
overlap	of	the	4f	wavefunctions	on	neighbouring	atoms.	Other	types	of	exchange	exist	and
the	important	mechanism	in	the	rare	earths	is	believed	to	be	the	indirect	exchange	process
illustrated	in	Fig.	8.1.	Indirect	exchange	also	leads	to	a	coupling	betwen	spins	of	the	form
−2 s1.	s2	where	 	alternates	 in	sign	as	well	as	decreasing	 in	magnitude	as	 the	distance
between	the	atoms	increases.

Fig.	8.1	The	indirect	exchange	interaction—the	direction	of	polarization	of	a	conduction
electron	spin	is	affected	by	its	direct	exchange	interaction	with	the	magnetic	moment	of
atom	i;	atom	j	then	senses	the	polarization	of	the	conduction	electron	and	thereby	interacts
indirectly	with	atom	i



In	 practice	 there	 are	 many	 atoms	 in	 the	 solid	 and	 usually	 more	 than	 one	 magnetic
electron	 on	 each	 atom.	 It	 is	 a	 difficult	 task,	 involving	 some	 dubious	 assumptions,	 to
proceed	from	an	exchange	interaction	of	the	above	form	to	the	Heisenberg	Hamiltonian

(8.1)	

for	 the	 exchange	 energy	 of	 the	 whole	 solid.	 Here	 −2 ijSi.	Sj	 is	 the	 contribution	 from
atoms	 i	and	 j.†	The	convention	of	using	 the	notation	Si	and	Sj	 and	 referring	 to	 these	 as
‘spins’	would	suggest	erroneously	that	orbital	angular	momentum	plays	no	role	in	ordered
magnetism.	The	orbital	angular	momentum	can	contribute	to	the	magnetic	moment	of	the
atoms	in	a	magnetically	ordered	solid	just	as	it	can	to	that	of	 the	ions	in	a	paramagnetic
solid	(section	7.2).	In	some	treatments	of	ordered	magnetism	extra	confusion	is	created	by
taking	S	to	represent	an	angular	momentum	parallel	to	the	magnetic	moment.	We	will	not
do	 this	 because	 this	 approach	 can	 easily	 lead	 to	 incorrect	 signs	 being	 obtained	 in	 the
equations	 describing	 the	 dynamics	 of	 spins	 (section	 8.5);	 instead	 we	 will	 continue	 to
regard	 electrons	 as	 negatively	 charged	 particles	 with	 magnetic	 moment	 antiparallel	 to
their	angular	momentum.	The	Heisenberg	Hamiltonian	is	the	starting	point	for	many	of	the
calculation	of	the	properties	of	magnetically	ordered	materials.

8.3	FERROMAGNETISM
8.3.1	The	Weiss	molecular	field
Before	 the	 advent	 of	 quantum	mechanics,	Weiss	 had	 suggested	 that	 the	 spontaneous

magnetization	of	iron	was	due	to	the	alignment	of	the	atomic	magnetic	moments	and	had
postulated	the	existence	of	a	molecular	field	proportional	to	the	magnetization	to	explain
this	alignment.	He	proposed	that	the	effective	magnetic	field	acting	on	any	moment	was

(8.2)	

where	Bloc	 is	 the	real	magnetic	field	at	 the	atom	and	λμ0M	 is	 the	Weiss	molecular	field.
Inserting	 this	 value	 of	Beff	 into	 Eq.	 (7.8)	 leads	 to	 the	 additional	 term	 −λμ0μ.M	 in	 the
energy	of	the	dipole	moment.

By	 approximating	 the	 Heisenberg	 Hamiltonian	 (Eq.	 (8.1)),	 we	 show	 below	 how
exchange	 interactions	 can	 give	 rise	 to	 the	 Weiss	 molecular	 field.	 The	 nature	 of	 the
approximation	 is	 to	 assume	 that	 the	 effect	 on	 a	 spin	Si	 of	 its	 exchange	 interaction	with
another	spin	Sj	can	be	calculated	by	replacing	Sj	by	its	average	value	〈S〉.	Note	that	 in	a
ferromagnetic	material	〈S〉	is	the	same	for	all	spins	and	is	related	to	the	magnetization	by



(see	Eq.	(7.11))†

(8.3)	

where	N	is	the	number	of	spins	per	unit	volume.	Making	this	approximation	to	Eq.	(8.1)
leads	to	the	following	value	for	the	dimensionless	constant	λ	in	Eq.	(8.2)	that	determines
the	molecular	field	acting	on	the	ith	moment:

(8.4)	

Therefore	λ	 is	proportional	 to	 the	 sum	of	 the	exchange	energies	of	 a	 spin	with	all	 the
other	 spins	 in	 the	 solid.	We	shall	 see	 that	λ	 	 1,	 reflecting	 the	 fact	 that	 the	electrostatic
interactions	giving	rise	to	 ij	are	much	stronger	than	magnetic	interactions	between	atoms.

The	systematic	way	of	replacing	the	spin	operators	in	the	Heisenberg	Hamiltonian
by	their	average	values	in	order	to	obtain	the	Weiss	molecular	field	approximation
is	to	insert

(8.5)	

in	Eq.	(8.1)	and	to	ignore	the	term	(Si	−	〈S〉)	(Si	−	〈S〉),	quadratic	in	the	difference
between	the	operators	and	their	average	value;	note	that	Eqs.	(8.5)	are	identities	so
no	approximation	is	involved	in	writing	them.	Proceeding	in	this	way	simplifies	the
Hamiltonian	considerably	because	it	no	longer	contains	the	products	of	operators,
which	make	more	exact	calculations	very	difficult.	Eq.	(8.1)	becomes	(see	problem
8.2	for	the	details)

(8.6)	

where	μi	=	−	gμBSi	is	the	operator	corresponding	to	the	magnetic	moment	of	the
atom	and	λ	is	given	by	Eq.	(8.4).	The	second	term	in	H	represents	the	interaction	of
μi	with	the	Weiss	molecular	field.

The	 replacement	 of	 spins	 by	 their	 average	 value	 means	 that	 fluctuations	 about	 the
average	value	are	 ignored;	 this	 type	of	approach	 is	used	for	phase	 transitions	other	 than
that	to	a	ferromagnetic	state	and	is	referred	to	generally	as	a	mean	field	theory.	We	shall
discuss	some	of	the	failures	of	the	mean	field	theory	of	ferromagnetism	later,	but	for	the
moment	we	note	that	our	model	is	approximate	and	proceed	to	analyse	it.	Fortunately	the
model	is	simple	enough	for	a	complete	solution	to	be	obtained.

8.3.2	Calculation	of	ferromagnetic	properties	using
the	mean	field	theory
Our	procedure	 is	 identical	 to	 that	used	 for	paramagnetism	 in	 section	7.2	 except	 that	we
replace	 the	 real	 magnetic	 field	 B	 by	 the	 effective	 field	 Beff	 of	 Eq.	 (8.2).	 Thus	 the



magnetization	 is	 given	 by	 Eq.	 (7.15).	 For	 simplicity	 we	 consider	 the	 case	 where	 the
magnetic	moment	on	each	atom	is	due	to	a	single	electron	spin	so	that	we	put	L	=	0,	J	=	S
=	 ,	 	=	2	in	Eq.	(7.15),	which	becomes	(see	problem	7.4)

(8.7)	

Consider	 first	 the	 high-temperature	 limit,	μBBeff/kBT	 	 1,	 in	which	 the	 approximation
tanh	x	≈	x	can	be	used	to	write	Eq.	(8.7)	as

(8.8)	

where	we	have	used	Eq.	(8.2)	for	Beff.	In	this	limit	M	is	proportional	to	Bloc	so	there	is	no
spontaneous	magnetization.	To	identify	the	resulting	paramagnetic	susceptibility	we	must
relate	Bloc	 to	 the	macroscopic	 field	μ0H	 in	 the	material;	 since	 these	 fields	 differ	 by	 an
amount	of	order	μ0M,†	the	difference	can	be	incorporated	into	the	molecular	field	where	it
is	 dwarfed	 by	 the	 exchange	 interaction	 and	 we	 will	 consequently	 ignore	 it.	 Thus
substituting	μ0H	for	Bloc	into	Eq.	(8.8)	and	solving	for	M	we	can	identify	the	susceptibility
using	Eq.	(7.1)	as

(8.9)	

where

(8.10) 	and	

Eq.	 (8.9)	 is	a	modified	Curie	 law	(Eq.	 (7.18)),	known	as	 the	Curie-Weiss	 law,	 which
describes	fairly	well	the	susceptibility	of	ferromagnetic	metals	at	high	temperatures.	At	T
=	 TC	 the	 susceptibility	 diverges,	 and	 below	 this	 temperature	 our	 assumption	 that
μBBloc/kBT	 	 1	 is	 no	 longer	 true.	We	 show	 below	 that	 a	 spontaneous	magnetization	 is
predicted	by	 the	Weiss	model	 for	T	<	TC	 so	 that	TC	 represents	 the	upper	 temperature	 at
which	the	material	displays	ferromagnetic	properties;	this	temperature	is	referred	to	as	the
Curie	temperature.	To	estimate	the	Curie	constant	C	we	substitute	N	=	9	×	1028	m−3	(the
value	 for	 Fe)	 and	 obtain	C	 ≈	 1	 K.	 Since	 TC	 is	 typically	 1000	 K	 for	 ferromagnets	 we
deduce	 that	 the	Weiss	molecular	 field	 constant	λ	~	1000.	From	TC	 it	 is	 also	possible	 to
estimate	the	exchange	energy	 .	If	we	assume	that	only	nearest	exchange	interactions	are
important,	 we	 can	 replace	 Σ	 ij	 in	 Eq.	 (8.4)	 by	 z ,	 where	 	 is	 the	 nearest	 neighbour
exchange	interaction	and	z	the	number	of	nearest	neighbours.	Then	by	using	Eqs.	 (8.10),
we	see	that	 	≈	2kBTc/z,	confirming	our	supposition	at	the	beginning	of	this	chapter	that
ferromagnetism	disappears	when	the	thermal	energy	kBT	is	of	the	order	of	the	interaction
energy	between	spins.	For	TC	≈	1000	K	and	z	=	8,	 	≈	0.03	eV.

At	 temperatures	 below	 Tc,	 Eq.	 (8.7)	 (with	Beff	 given	 by	 Eq.	 (8.2))	 cannot	 be	 solved
analytically	 for	 the	magnetization;	a	graphical	 solution	 is	however	possible.	We	wish	 to
show	that	there	is	a	non-zero	magnetization	in	the	absence	of	an	applied	field.	Putting	Bloc
=	 0†	 and	 introducing	 convenient	 dimensionless	measures	 of	 the	magnetization,	 y	 =	M/



NμB,	 and	 the	 effective	 field,	 x	 =	 μBBeff/kBT,	 enables	 us	 to	 write	 Eqs.	 (8.2)	 and	 (8.7),
respectively,	in	the	forms

(8.11)	

(8.12)	

where	we	have	used	Eqs.	(8.10).	The	simultaneous	solution	of	these	equations	is	obtained
by	plotting	both	on	the	same	graph,	and	this	is	done	in	Fig.	8.2	for	three	different	values	of
T/Tc.	 For	 T	 /	 TC	 >	 1	 the	 only	 intersection	 is	 at	 the	 origin,	 which	 corresponds	 to	 zero
magnetization,	y	=	0;	 this	 is	 the	 temperature	 region	 in	which	paramagnetic	behaviour	 is
predicted	as	discussed	above.	For	T/Tc	=	1	 the	only	 intersection	 is	 still	 at	 the	origin	but
now	both	curves	have	the	same	slope	there.	For	T	<	TC	there	are	two	intersections,	one	at
the	origin	and	the	other	at	the	point	labelled	A.

Fig.	8.2	Graphical	solution	of	Eqs.	(8.11)	and	(8.12).	The	figure	also	demonstrates	that	the
solution	at	the	origin	is	unstable	for	T	<	Tc

The	solution	at	the	origin	corresponds	to	unstable	equilibrium	as	the	following	argument
demonstrates.	Suppose	that,	by	a	fluctuation,	a	small	magnetization	appears,	shown	as	δy
on	Fig.	8.2;	this	will	cause	an	effective	field	given	by	Eq.	(8.11)	and	this	is	indicated	as	δx
on	the	figure.	The	magnetization	that	would	be	produced	by	this	effective	field	is	given	by
Eq.	(8.12)	and	is	indicated	by	δy′	we	see	that	the	original	fluctuation	produces	an	effective
field	that	generates	an	even	bigger	magnetization.	The	fluctuation	therefore	grows	and	the
solution	y	=	0	is	unstable	for	T	<	Tc.	A	similar	argument	can	be	devised	to	show	that	point
A	represents	a	stable	solution.

The	spontaneous	magnetization	represented	by	point	A	increases	from	zero	at	TC	to	the
saturation	 value	NμB	 at	 T	 =	 0.	 Fig.	 8.3	 compares	 the	 temperature	 dependence	 of	 the
spontaneous	magnetization	for	nickel	with	that	predicted	by

Fig.	8.3	Spontaneous	magnetization	of	a	ferromagnet,	relative	to	its	value	at	T	=	0,	as	a
function	of	T/Tc.	The	full	curve	is	the	theoretical	mean	field	result	for	J	=	S	=	 ,	obtained
by	solving	Eqs.	(8.11)	and	(8.12).	The	circles	show	experimental	values	for	Ni	taken	from
the	American	Institute	of	Physics	Handbook,	3rd	edn,	McGraw-Hill,	New	York	(1972)



TABLE	8.1	Properties	of	ferromagnetic	materials

the	 theory;	 although	 there	 is	 qualitative	 agreement	 there	 are	 small	 but	 important
discrepancies,	 which	 we	 discuss	 further	 below.	 In	 table	 8.1	 saturation	 values	 of	 the
spontaneous	magnetization	for	various	ferromagnetic	metals	are	compared	with	the	values
predicted	 by	 assuming	 that	 the	moment	 on	 each	 ion	 is	 that	 predicted	 by	Hund’s	 rules.
Good	agreement	is	obtained	for	the	rare-earth	ferromagnets	Gd	and	Dy	but	agreement	is
poor	 for	 the	 transition	 metals	 Fe,	 Ni	 and	 Co.	 In	 contrast	 to	 the	 situation	 for	 the
paramagnetic	salts	of	the	transition	metals,	the	agreement	for	the	metals	themselves	is	not
improved	by	assuming	that	the	orbital	angular	momentum	is	quenched.

As	we	have	already	 indicated	 in	section	7.2.4,	 the	3d	electrons	 in	 these	metals	can	be
described	as	occupying	a	band	of	mobile	electron	states	rather	than	being	localized	on	the
atoms.	The	mean	 field	 theory	 can	 be	 extended	 to	 cover	 this	 situation.	The	 spontaneous
magnetization	then	arises	because	the	molecular	field	causes	a	relative	displacement	of	the
bands	of	up	and	down	spins	like	that	shown	in	Fig.	8.4.	This	figure	also	explains	how	a
saturation	magnetization	 for	 iron	 of	 2.2	 Bohr	magnetons	 is	 produced	 in	 such	 a	model.
Confirmation	that	 the	spontaneous	magnetization	of	 iron	is	associated	with	electron	spin
only	comes	from	the	Einstein–de	Haas	experiment,	in	which	a	measurement	is	made	of
the	angular	momentum	impulsively	generated	when	an	iron	rod	is	suddenly	magnetized;
the	ratio	of	angular	momentum	to	magnetic	moment	corresponds	to	a	Landé	factor	 	=	2.

In	the	limits	T	 just	 less	than	TC	and	T	close	 to	zero,	approximate	analytic	solutions	of
Eqs.	(8.11)	and	(8.12)	can	be	obtained.	Near	TC,	x	 is	small	and	we	can	use	 tanh	x	≈	x	−
x3/3;	solving	for	y	then	gives



(8.13)	

Fig.	8.4	Simplified	band	picture	of	ferromagnetism	in	iron.	The	vertical	arrows	indicate
spin	directions	and	the	numbers	indicate	the	division	of	the	eight	3d	and	4s	electrons	per
atom	between	the	3d	and	4s	energy	bands.	A	possible	small	polarization	of	the	4s	band	has
been	ignored	in	drawing	the	figure;	the	4s	electrons	probably	contribute	to	the	exchange
interaction	between	the	3d	electrons	through	the	indirect	mechanism	of	Fig.	8.1

indicating	that	M	goes	 to	zero	as	(1	−	T/TC)1/2	as	 the	Curie	 temperature	 is	approached
from	below.	Near	T	=	0,	x	is	large	and	tanh	x	≈	1	−	2	exp	(−2x)	so	that,	from	Eqs.	(8.11)
and	(8.12)

or

(8.14)	

where	we	have	put	y	=	1	in	the	second	term	in	brackets,	which	gives	the	small	correction
to	perfect	alignment	of	the	moments.

Although	 mean	 field	 theory	 correctly	 describes	 the	 qualitative	 behaviour	 of
ferromagnets,	the	temperature	dependences	predicted	by	Eqs.	(8.9),	(8.13)	and	(8.14)	are
not	 observed	 experimentally.	The	 reason	 for	 the	 discrepancy	near	T	 =	 0	 is	 discussed	 in
section	8.5.	The	failure	of	mean	field	theory	near	TC	is	common	to	all	second-order	phase
transitions.†	 It	 occurs	 because	 of	 the	 presence	 near	 TC	 of	 large	 thermodynamic
fluctuations	(known	as	critical	fluctuations)	of	the	properties	of	the	system	around	their
average	 values;	 in	magnetic	 systems	 the	 large	 fluctuations	 of	 an	 atomic	 dipole	moment
mean	that	it	is	no	longer	a	good	approximation	to	replace	the	moment	by	its	average	value.

The	critical	fluctuations	dominate	the	behaviour	of	the	susceptibility	just	above	TC	and
the	 spontaneous	magnetization	 just	 below	TC.	 The	 susceptibility	 for	 iron	 is	 shown	 as	 a



function	 of	T	 −	TC	 in	 Fig.	 8.5;	 as	 the	 scales	 on	 both	 axes	 are	 logarithmic	 the	 critical
behaviour	of	the	susceptibility	is	described	by	the	temperature	dependence

with	the	critical	exponent	γ	=	1.33.	The	spontaneous	magnetization	below	TC	is	found	to
vary	as

where	β	is	another	critical	exponent.	Measured	values	of	γ	and	β	are	given	in	table	8.1	for
various	 ferromagnets.	 Similar	 values	 of	 γ	 (≈	 1.35)	 and	 β	 (≈	 0.35)	 are	 found	 for	 all
materials;	the	mean	field	predictions	are	γ	=	1	(Eq.	(8.9))	and	β	=	0.5	(Eq.	(8.13)).

Investigation	of	 the	critical	behaviour	has	been	 the	subject	of	 intense	 research	 interest
and	 one	 important	 conclusion	 is	 that	 the	 critical	 exponents	 for	 different	 second-order
phase	transitions	appear	to	depend	only	on	the	nature	of	the

Fig.	8.5	Susceptibility	of	iron	(containing	0.16	at	 	tungsten	impurity)	plotted	as	a
function	of	T	−	TC	using	logarithmic	scales	on	both	axes.	The	straight	line	followed	by	the
data	indicates	a	relationship	of	the	form	χ	∝(T	−	TC)−1.33.	(Reproduced	with	permission
from	J.	E.	Noakes,	N.	E.	Tornberg	and	A.	Arrott,	J.	Appl	Phys.	37,	1264	(1966))

symmetry	 change	 involved.	 Thus	 the	 critical	 exponents	 of	 a	 paramagnetic–
ferromagnetic	 transition	described	by	 the	Heisenberg	Hamiltonian	are	determined	by	the
fact	 that	 the	 isotropic	 paramagnetic	 phase	 changes	 to	 one	 in	 which	 there	 is	 a	 special
direction,	 that	 of	 the	 spontaneous	 magnetization;	 the	 ferromagnetic	 state,	 unlike	 the
paramagnetic	 state,	 is	 not	 rotationally	 invariant.	 Note	 however	 that	 all	 the	 physically
different	ferromagnetic	states	produced	by	rotation	of	the	spontaneous	magnetization	must
have	the	same	energy	because	the	Heisenberg	Hamiltonian	itself	is	rotationally	invariant.

To	complete	our	discussion	of	the	Weiss	mean	field	theory	of	ferromagnetism	we	note
that	 the	 theory	 appears	 to	 predict	 a	 hysteretic	magnetization	 versus	 applied	 field	 curve,



qualitatively	 similar	 to	 that	 observed	 in	 ferromagnetic	 particles	 consisting	 of	 a	 single
domain	 (see	 section	 8.7	 for	 an	 explanation	 of	 domains).	 After	 the	 particle	 has	 been
magnetized	 in	one	direction	by	a	 field	 in	 that	direction,	 the	magnetization	 reverses	 sign
only	when	a	field	in	the	reverse	direction	exceeds	a	certain	critical	value.	The	hysteresis	in
our	model	is	an	artefact	of	our	restriction	of	the	magnetization	to	the	z	direction.	In	zero
applied	 field	 there	 is	 nothing	 in	 the	 model	 to	 define	 a	 special	 direction	 for	 the
magnetization,	 which	 thus	 rotates	 freely	 and	 reverses	 direction	 as	 the	 field	 decreases
through	 zero.	 In	 a	 real	 crystal	 there	will	 be	 a	 preferred	 direction	 for	 the	magnetization,
associated,	 for	 example,	 with	 the	 electrostatic	 fields	 of	 the	 neighbouring	 atoms;	 the
hysteresis	curve	of	single-domain	ferromagnets	results	from	this	crystalline	anisotropy.

8.4	THE	NÉEL	MODEL	OF
ANTIFERROMAGNETISM
If	 the	 exchange	 energy	 ij	 between	 nearest	 neighbours	 in	 Eq.	 (8.1)	 is	 negative	 then
antiparallel	 alignment	 of	 their	 spins	 is	 preferred.	 In	 this	 case	 there	 is	 a	 tendency	 for
ordering	to	occur	into	a	state	in	which	up	and	down	spins	alternate	within	the	structure	and
there	is	no	macroscopic	magnetization	in	zero	applied	field.	The	lattice	of	magnetic	atoms
is	divided	into	two	identical	sublattices,	A	and	B,	such	that	in	the	ordered	state	the	mean
magnetic	moment	on	the	sites	of	the	A	sublattice	is	antiparallel	to	that	on	the	B	sublattice.
If	the	initial	lattice	is	simple	cubic	then	there	is	an	obvious	subdivision	in	which	the	A	and
B	sites	are	the	Na	and	the	Cl	sites	of	the	NaCl	structure.†	There	is	also	an	obvious	division
of	a	bcc	lattice	in	which	the	body-centred	sites	form	one	sublattice	and	the	corner	sites	the
other.‡	 In	both	 these	cases	 the	nearest	neighbours	of	 any	B	site	 are	all	A	 sites	 and	vice
versa.	 An	 fcc	 lattice	 cannot	 be	 subdivided	 into	 two	 sublattices	 with	 this	 property	 (see
problem	8.4).

Néel	 generalized	 the	 Weiss	 molecular	 field	 approach	 to	 antiferromagnetism	 by
supposing	that	the	atoms	on	one	sublattice	experience	a	molecular	field	proportional	to	the
magnetization	of	 the	other	sublattice	and	opposite	 in	direction	 to	 it.	Thus	 instead	of	Eq.
(8.2)	we	write	the	effective	fields	for	the	two	sublattices	as

(8.15)	

where	MA	and	MB	are	the	contributions	of	each	sublattice	to	the	total	magnetization,	M	=
MA	 +	MB.	Here	 as	 in	 the	 previous	 section	we	 assume	 that	 the	 differences	 between	 the
local	 field	 Bloc	 and	 the	 macroscopic	 field	 μ0H	 can	 be	 incorporated	 as	 insignificant
corrections	to	the	molecular	fields.	It	is	also	possible	to	include	coupling	of	the	sublattice
to	itself	within	the	model;	this	adds	complication	without	changing	the	major	qualitative
results,	so	we	shall	not	do	so	(see	problem	8.4).

Eqs.	 (8.15)	 can	 be	 derived	 from	 the	 Heisenberg	 Hamiltonian	 by	 assuming	 that	 only
nearest	neighbour	interactions	are	important	and	that	all	the	nearest	neighbours	of	any	A
moment	are	from	the	B	sublattice.	A	procedure	analogous	to	that	used	in	the	ferromagnetic



case	identifies	the	molecular	field	constant	λ	in	Eqs.	(8.15)	as

(8.16)	

where	 	 is	 the	 nearest	 neighbour	 exchange	 energy	 and	 z	 the	 number	 of	 nearest
neighbours.	Note	that,	since	 	is	negative,	λ	is	positive;	Eq.	(8.16)	differs	by	a	factor	of	2
from	Eq.	(8.4)	because	each	sublattice	has	only	N/2	atoms.

As	in	the	ferromagnetic	case	we	will	specialize	for	simplicity	to	the	case	S	=	J	=	 ,	 	=
2,	so	that	the	sublattice	magnetizations,	as	given	by	Eq.	(8.7),	are

(8.17)

At	high	temperatures	we	can	use	tanh	x	≈	x	as	before	and	substitute	the	effective	fields
from	Eqs.	(8.15)	to	obtain,	after	rearrangement,

(8.18)	

where	C	 =	Nμ0 /kB	 is	 the	Curie	 constant	 (cf.	 Eq.	 (8.10)).	 Solving	 Eqs.	 (8.18)	 gives	 a
magnetization

corresponding	to	a	susceptibility

(8.19)	

where	TN	 =	 λC/2.	 Thus	 the	 susceptibility	 is	 reduced	 below	 the	 Curie	 law	 value	 of	 Eq.
(7.18)	(see	Fig.	8.6)	and	remains	finite	at	all	temperatures.

The	onset	of	magnetic	ordering	occurs	at	 the	 temperature	at	which	Eqs.	 (8.18)	 have	 a
non-zero	 solution	 in	 the	 absence	 of	 an	 applied	 field.	 This	 requires	 the	 determinant	 of
coefficients	on	the	left-hand	side	of	these	equations	to	vanish	and	thus

or

(8.20)	

The	onset	temperature	for	antiferromagnetism,	known	as	the	Néel	temperature,	is	thus
equal	to	the	temperature	that	appears	in	the	modified	Curie	law	for	the	susceptibility	(Eq.
(8.19));	 this	feature	is	not	shared	by	more	advanced	models	or	by	real	antiferromagnetic
materials.	 The	 formation	 of	 an	 antiferromagnetic	 state	 is	 confirmed	 by	 substituting	 Eq.
(8.20)	into	Eqs.	(8.19)	to	find	that	the	non-zero	solution	for	H	=	0	has	the	property	MA	=
−MB.	 For	 temperatures	 below	 TN	 Eqs.	 (8.15)	 and	 (8.17)	 continue	 to	 have	 an
antiferromagnetic	 solution	 with	 MA	 =	 −MB	 in	 zero	 applied	 field;	 the	 spontaneous
magnetization	of	the	A	sublattice	satisfies



(8.21)	

which	is	essentially	the	same	equation	(obtained	by	combining	Eqs.	(8.11)	and	(8.12))	as
that	which	gives	the	spontaneous	magnetization	of	a	ferromagnet.

Since	 the	 total	 magnetization	 (MA	 +	MB)	 vanishes	 in	 zero	 field	 it	 is	 still	 possible	 to
define	 a	 susceptibility	 for	 an	 antiferromagnet	 in	 its	 ordered	 state.	 The	 measured
susceptibility	is	shown	as	a	function	of	temperature	for	MnF2	in	Fig.	8.6.	Below	TN	there
are	two	values	depending	on	whether	the	applied	field	is	parallel	or	perpendicular	to	the
sublattice	 spontaneous	magnetizations.†	We	will	 not	 calculate	 these	 susceptibilities	 (see
problem	 8.5)	 but	 the	 observed	 behaviour	 is	 qualitatively	 reasonable.	When	 the	 field	 is
perpendicular	 to	 the	 sublattice	magnetizations	 the	 spins	are	 fairly	easily	 tilted	as	 in	Fig.
8.7	 to	 give	 a	 magnetization	 parallel	 to	 the	 field	 with	 the	 approximately	 constant
susceptibility	 χ⊥	 shown	 in	 Fig.	 8.6.	 Magnetization	 by	 a	 field	 parallel	 to	 the	 sublattice
magnetizations	is	opposed	by	the	full	molecular	field	and	does	not	occur	at	all	to

Fig.	8.6	Magnetic	susceptibility	of	antiferromagnetic	MnF2.	The	two	susceptibilities,	χ||
and	χ⊥,	measured	below	the	Néel	temperature	of	67	K	correspond,	respectively,	to	fields
applied	parallel	and	perpendicular	to	the	sublattice	spontaneous	magnetizations

Fig.	8.7	Magnetization	of	an	antiferromagnet	in	a	direction	perpendicular	to	the	sublattice
spontaneous	magnetizations	can	be	achieved	by	slight	tilting	of	the	atomic	moments	as
shown

first	order	in	the	applied	field	at	T	=	0	where	both	sublattices	are	perfectly	aligned.	It	is
only	 near	 TN	 that	 the	 molecular	 field	 weakens	 and	 the	 two	 susceptibilities	 become
comparable.

8.5	SPIN	WAVES
8.5.1	Ferromagnets	at	low	temperatures



The	mean	 field	 theory	 of	 ferromagnetism	 fails	 at	 low	 temperatures	 because	 it	 does	 not
predict	 correctly	 the	 low	 lying	 excited	 states.	 To	 see	 this	 consider	 the	 one-dimensional
chain	of	ferromagnetically	aligned	spins	shown	in	Fig.	8.8(a).	If	the	spin	at	one	end	of	the
chain	 is	 rotated	 through	360°,	 then	 the	other	 spins	 relax	 into	 the	 arrangement	 shown	 in
Fig.	8.8(b)	 to	minimize	 the	 exchange	 energy.	 This	 is	 a	 low	 lying	 excited	 state	 because
neighbouring	 spins	 are	 very	 nearly	 parallel	 in	 the	 resulting	 structure	 so	 that	 very	 little
exchange	energy	 is	 lost.	However	 the	mean	field	 theory	attributes	a	very	high	energy	 to
this	 state	 since	 the	 average	 magnetization	 and	 hence	 the	 molecular	 field	 vanish.	 The
crucial	point	is	that	the	energy	of	a	spin	should	depend	on	the	orientation	of	the	other	spins
in	its	neighbourhood	and	not	on	the	average	magnetization	of	the	sample.

Fig.	8.8	(b)	Low	lying	excited	state	of	the	chain	to	which	mean	field	theory	incorrectly
attributes	a	high	energy.	In	real	crystals	crystalline	anisotropy	provides	an	‘easy’	direction
for	the	magnetization	and	the	lowest	lying	excited	states	correspond	to	small	departures	of
the	spins	from	this	preferred	direction	as	in	our	spin	wave	calculation	of	section	8.5.2.
Because	of	the	crystalline	anisotropy,	the	spin	wave	frequency	tends	to	a	finite	value	in	the
infinite-wavelength	limit	(see	problem	8.6)

8.5.2	Spin	waves	in	a	one-dimensional	crystal
We	will	calculate	the	low	lying	excited	states	of	the	chain	of	aligned	spins	of	Fig.	8.8(a)
by	assuming	that	the	spins	behave	as	classical	angular	momenta.†	The	method	is	similar	to
that	already	used	to	calculate	the	lattice	vibrations	of	the	chain	in	Chapter	2.	For	simplicity
we	 consider	 only	 nearest	 neighbour	 exchange	 interactions	 so	 that,	 from	 Eq.	 (8.1),	 the
exchange	energy	of	the	nth	spin	in	the	chain	is

(8.22)	

where	2 	is	the	nearest	neighbour	exchange	interaction.	Since	the	magnetic	moment	μn	of
spin	n	is	−gμBSn,	we	can	write	En	in	the	form	−μn.Bn,	where

(8.23)	

is	the	effective	field	acting	on	the	nth	atom	due	to	the	exchange	interaction.	The	equation
of	motion	of	the	nth	spin	is	obtained	by	equating	its	rate	of	change	of	angular	momentum	
	dSn/dt	to	the	torque	μn	×	Bn	acting	on	it	due	to	this	field.	Thus

(8.24)	



Eqs.	 (8.24)	 are	 non-linear	 in	 the	 spins	 and	 therefore	 difficult	 to	 solve	 without
approximation.	Since	we	are	 interested	 in	 the	 low	lying	excited	states,	we	may	linearize
the	equations	by	writing

(8.25)	

where	−S 	is	the	constant	value	of	Sn	(and	all	the	other	spins)	in	the	perfectly	aligned	state
and	σn	 is	 a	 small	 vector	 in	 the	xy	 plane	 that	 represents	 the	deviation	of	 spin	n	 from	 its
perfect	alignment.†	 This	 situation	 is	 illustrated	 in	 Fig.	 8.9.	Note	 that	 the	magnetization
direction	 	 need	 have	 no	 special	 relation	 to	 the	 direction	 of	 the	 chain.	 Substituting	 Eq.
(8.25)	in	Eq.	(8.24)	and	retaining	only	terms	to	first	order	in	σn	we	obtain

(8.26)	

Fig.	8.9	Precession	of	a	single	spin	in	a	classical	spin	wave

In	component	form	Eq.	(8.26)	becomes

(8.27)	

If	we	multiply	the	first	of	these	equations	by	i	and	add	the	second	we	obtain	the	single
equation

(8.28)	

for	the	complex	variable



(8.29)	

Eqs.	(8.28)	are	very	similar	in	form	to	Eqs.	(2.7)	and	(4.9),	which	describe,	respectively,
the	 lattice	 vibrations	 and	 the	 electron	 states	 of	 the	 one-dimensional	 chain;	 like	 these
equations,	Eqs.	(8.28)	have	wavelike	solutions.	If	we	substitute

(8.30)	

where	a	is	the	lattice	spacing,	then,	on	cancelling	a	factor	A	exp[i(kna	−	ωt)],	we	obtain

(8.31)	

which	is	the	dispersion	relation	for	the	spin	waves.

The	dispersion	relation	 is	plotted	 in	Fig.	8.10.	As	with	 the	 lattice	vibration	waves	and
the	electron	states	the	relation	is	periodic	in	k	with	period	2π/a;	also

Fig.	8.10	Dispersion	relation	for	spin	waves	in	a	one-dimensional	ferromagnet.	The	first
Brillouin	zone,	−π/a	<	k	<	π/a,	contains	all	the	physically	distinct	solutions

as	 in	 these	cases	 the	application	of	periodic	boundary	conditions	determines	 that	 there
are	exactly	N	distinct	modes	of	vibration.	From	Eqs.	(8.29)	and	(8.30)	we	see	that	σnx	and
σny	are	of	the	form

The	90°	phase	difference	between	σnx	and	σny	implies	that	(on	a	classical	picture)	each
spin	precesses	about	the	z	axis	as	shown	in	Fig.	8.9.	Spin	waves	also	propagate	in	a	three-
dimensional	 crystal	 with	 a	 dispersion	 relation	 similar	 to	 Eq.	 (8.31).	 As	 in	 the	 one-
dimensional	case	the	z	direction	of	the	magnetization	need	have	no	special	relation	to	the
propagation	 direction	 k.	 Spin	 waves	 with	 k	 parallel	 and	 perpendicular	 to	 z	 are	 shown
schematically	in	Fig.	8.11.

A	quantum	mechanical	calculation	of	spin	waves	also	leads	to	the	dispersion	relation	Eq.
(8.31),	but,	as	we	might	expect	 from	the	analogy	with	 lattice	vibrations,	 the	energy	of	a
mode	of	wavenumber	k	is	quantized	and	can	only	take	the	values

(8.32)	

appropriate	 to	 a	 simple	 harmonic	 oscillator.	 The	 quanta	 associated	 with	 the	 spin	 wave
modes	 are	 called	 magnons	 and,	 like	 phonons,	 magnons	 are	 bosons.	 The	 quantum
mechanical	 calculation	 also	 shows	 that	 each	 magnon	 within	 the	 crystal	 reduces	 the



magnitude	 of	 the	 z	 component	 of	 angular	 momentum	 by	 	 and	 thus	 decreases	 the
magnetization	by	gμB.

From	Eq.	(8.31)	the	magnon	energy	near	k	=	0	is

(8.33)	

The	 quadratic	 dependence	 of	 ε	 on	 k	 contrasts	 with	 the	 linear	 relation	 for	 phonons.†
Comparison	with	the	dispersion	relation	ε	=	 2k2/2m	for	free	particles	of	mass	m	suggests
that	magnons	of	long	wavelength	behave	like	particles	of	effective	mass

(8.34)	

If	we	take	S	=	 ,	a	=	2.5	Å	and	 	=	0.03	eV	then	we	find	that	the	effective	mass	of	a
magnon	is	approximately	20	electron	masses.

8.5.3	Magnetization	and	heat	capacity	at	low
temperatures
The	 contribution	 of	 the	 spin	 waves	 to	 the	 heat	 capacity	 of	 ferromagnets	 at	 low
temperatures	can	be	calculated	in	a	manner	analogous	to	that	used	for	calculating	the	heat
capacity	due	to	lattice	vibrations	in	section	2.6.	The	number

Fig.	8.11	Ferromagnetic	spin	waves	propagating:	(a)	perpendicular	to	spontaneous
magnetization;	(b)	parallel	to	spontaneous	magnetization



of	spin	wave	modes	with	wavenumber	between	k	and	k	+	dk	is	given	by	Eq.	(2.38)	as

At	 low	 temperatures	 only	 low-energy	 long-wavelength	modes	will	 be	 excited	 and	 for
these	 we	 can	 use	 the	 limiting	 form	 of	 the	 dispersion	 relation,	 Eq.	 (8.33),	 to	 write	 the
number	of	modes	with	frequency	between	ω	and	ω	+	dω	as†

(8.35)	

The	 energy	 associated	with	 each	mode	 is	 (n	 +	 ) ω,	 where	 the	 average	 number	n	 of
magnons	at	temperature	T	is	given	by	the	Bose-Einstein	distribution	function	(Eq.	(2.27))

Thus	the	contribution	of	the	magnons	to	the	energy	is

(8.36)	

where	E0	 is	 the	 zero	 point	 energy	 and	 the	 final	 line	 has	 been	obtained	by	 changing	 the
variable	to	x	=	 ω/kBT.	The	upper	limit	of	the	integral	has	been	set	toco	because	n(ω)	cuts



off	the	integrand	at	small	frequencies	where	Eq.	(8.33)	is	still	valid.	The	integral	is	just	a
number	(=	1.78)	so	that	the	spin	wave	contribution	to	the	heat	capacity	at	low	temperature
is

(8.37)	

The	magnon	heat	capacity	therefore	varies	as	T3/2	at	low	temperatures.

Since	 each	 magnon	 reduces	 the	 magnetic	 moment	 by	 μB,	 the	 magnetization	 at	 low
temperatures	is

where	Ms	=	NgμBS	is	the	saturation	magnetization	and

is	the	number	of	magnons	per	unit	volume.	Thus,	proceeding	as	for	the	specific	heat,	we
obtain

(8.38)	

The	integral	is	again	just	a	number	(=	2.32);	the	decrease	of	the	magnetization	from	its
saturation	 value	 with	 a	 T3/2	 temperature	 dependence	 as	 predicted	 by	 Eq.	 (8.38)	 agrees
much	better	with	the	experimentally	observed	behaviour	than	does	the	mean	field	theory
prediction	of	Eq.	(8.14).

8.5.4	Ferromagnetic	resonance	and	the
experimental	observation	of	spin	waves
In	the	long-wavelength	limit	the	lattice	vibrations	of	a	crystal	are	essentially	sound	waves,
which	can	be	excited	by	attaching	suitable	 transducers.	One	can	ask	 if	 there	 is	anything
similar	 for	 spin	waves.	To	obtain	sound	waves	 from	 the	equations	of	motion	 (2.7)	 for	a
one-dimensional	crystal	we	note	that	(un+1	−	2un	+	un−1)/a2	is	the	finite	difference	form	for
the	second	spatial	derivative	d2u/dx2,	so	that	in	the	long-wavelength	limit	these	equations
can	be	written

(8.39)	

which	is	the	wave	equation	with	the	velocity	of	sound	correctly	identified	(Eq.	(2.13))	as
a(K/M)1/2.

Let	us	suppose	that	there	is	a	long-wavelength	disturbance	in	the	x	direction	of	the	spins
in	 a	 ferromagnetic	 material.	 To	 describe	 the	 dynamics	 of	 such	 a	 disturbance	 it	 is
convenient	to	rewrite	Eq.	(8.26)	as	an	equation	for	the	local	magnetization	M(x,	t)	defined,
using	Eq.	(8.3),	by



(8.40)	

where〈S(x,	t)〉	 represents	an	average	over	 the	spins	 in	 the	neighbourhood	of	point	x.	For
small	motions	we	can	take,	by	analogy	with	Eq.	(8.25),

(8.41)	

where	M⊥	 is	 the	 small	perpendicular	deviation	of	M	 from	 its	 average	value	M0.	 Using
Eqs.	(8.40)	and	(8.41)	enables	us	to	write	Eq.	(8.26)	in	the	form

(8.42)	

where	the	finite	difference	form	of	the	derivative	has	been	replaced	by	the	derivative	itself
just	as	in	Eq.	(8.39).	Proceeding	as	in	section	8.5.2,	it	is	easy	to

Fig.	8.12

show	that	Eq.	(8.42)	has	wavelike	solutions	with	M⊥	∝	exp	[i(kx	−	ωt)]	with	ω	and	k
related	by	the	dispersion	relation	of	Eq.	(8.33)	for	spin	waves	of	small	k.

A	typical	experimental	set-up	for	observing	spin	waves	of	long	wavelength	is	shown	in
Fig.	8.12(a).	A	steady	field	Be	is	applied	perpendicular	to	a	thin	film	of	the	ferromagnet;
we	 take	 the	 field	 to	 be	 in	 the	 z	 direction	 and	 assume	 that	 the	 field	 orients	 the	 average
magnetization	M0	of	the	sample	in	this	direction.	Spin	waves	with	k	vector	perpendicular
to	the	film	are	then	excited	by	applying	a	radiofrequency	field	in	the	plane	of	the	film.	To



generalize	Eq.	(8.42)	to	allow	for	the	existence	of	the	external	field	we	must	add	a	term	μn
×	Bloc	 to	 the	 right-hand	 side	of	Eq.	 (8.24)	where	Bloc	 is	 the	 real	 local	magnetic	 field	 at
atom	n.	Bloc	contains	a	contribution	from	the	magnetization	as	well	as	from	the	external
field,	and	we	show	in	appendix	B	that	in	the	thin	film	geometry	under	consideration

(8.43)	

The	extra	term	in	Eq.	(8.24)	leads	to	an	extra	term	on	the	right-hand	side	of	Eq.	(8.42),
which,	for	M⊥	varying	in	the	z	direction,	becomes

(8.44)	

where	γ	=	−gμB/ 	=	−ge/2m	is	the	gyromagnetic	ratio	of	the	atom.

The	spin	wave	dispersion	relation	(Eq.	(8.33))	for	waves	of	the	form	exp	[i(kz	−	ωt)]	 is
thus	modified	to

(8.45)	

The	presence	of	the	additional	term	indicates	a	finite	frequency	for	the	precession	of	a
spatially	uniform	magnetization	(k	=	0),	and	the	absorption	peak	observed	at	the	frequency
ω	=	−γ(Be	—	μ0M0)	is	referred	to	as	ferromagnetic	resonance.	 In	general	 the	frequency
of	ferromagnetic	resonance	depends	on	the	sample	shape.

The	experimental	results	 in	Fig.	8.12(b)	were	obtained	for	a	 thin	Co	film	in	which	the
magnetization	was	pinned	at	the	surface	by	strong	local	anisotropy	so	that	M⊥	=	0	there.
The	situation	is	analogous	to	a	string	stretched	between	two	fixed	points;	only	spin	wave
modes	 with	 an	 integral	 number	 of	 half-wavelengths	 in	 the	 thickness	 d	 of	 the	 film	 are
excited.	As	the	film	is	thin	compared	to	the	electromagnetic	skin	depth,	the	radiofrequency
magnetic	 field	 is	 uniform	 across	 the	width	 of	 the	 film	 and	 only	 the	 odd	 harmonics	 are
excited	(k	 =	 (2n	 +	 1)π/d).	Fig.	 8.12(b)	 shows	 the	 absorption	 associated	with	 harmonics
corresponding	to	values	of	2n	+	1	between	3	and	21.	The	value	of	 Sa2	and	hence	of	the
magnon	effective	mass	m*	can	be	deduced	from	these	measurements	(problem	8.9).

8.6	OTHER	TYPES	OF	MAGNETIC
ORDER
8.6.1	Ferrimagnetism
Ferrimagnetic	 ordering	 is	 intermediate	 between	 ferromagnetic	 and	 antiferro-magnetic
ordering;	an	important	class	of	compounds	that	exhibit	it	are	the	ferrites,	which	have	the
general	formula	MO.Fe2O3,	where	M	is	a	divalent	cation	such	as	Ni,	Mn	or	Fe.	Mankind’s
earliest	experience	of	magnetism	was	almost	certainly	provided	by	magnetite	(lodestone)



FeO.Fe2O3,	and	we	will	use	this	material	to	illustrate	the	nature	of	ferrimagnetic	ordering.
Magnetite	 and	 the	 other	 ferrites	 have	 the	 spinel	 crystal	 structure	with	 a	 cubic	 unit	 cell
containing	32	oxygen	ions	in	an	approximately	close-packed	array;	some	of	the	interstices
between	the	oxygen	ions	are	filled	by	the	(smaller)	Fe2+	and	Fe3+ions.	Eight	of	 the	Fe3+
ions	 in	 each	 cell	 are	 in	 tetrahedral	 (A)	 sites	 surrounded	 by	 four	 oxygen	 atoms;	 the
remaining	eight	Fe3+	 and	 the	 eight	Fe2+	 ions	 are	 in	octahedral	 (B)	 sites	 surrounded	by
eight	oxygen	atoms.

The	 exchange	 interactions	 between	 neighbouring	magnetic	 ions	 are	 all	 believed	 to	 be
antiferromagnetic	 but	 the	 interactions	 between	 the	 neighbouring	 A	 and	 B	 sites	 are
dominant,	 with	 the	 result	 that	 the	 spins	 on	 all	 the	 A	 sites	 are	 parallel	 and	 oppositely
directed	to	all	the	spins	on	the	B	sites.	Since	Fe3+	 ions	inhabit	the	A	and	B	sites	equally
there	is	no	net	magnetization	from	these.	The	Fe2+	ions	are	all	on	B	sites	however	and	give
rise	 to	 a	 spontaneous	 magnetization.	 The	 low-temperature	 limiting	 value	 of	 the
spontaneous	magnetization	confirms	 this	picture	 as	 it	 corresponds	 to	32μB	 per	 unit	 cell,
just	 the	 value	 expected	 for	 eight	 Fe2+	 ions	 in	 which	 the	 orbital	 angular	 momentum	 is
quenched	(hence	J	=	S	=	2,	 	=	2).	The	widespread	use	of	ferrites	in	devices	results	from
the	combination	of	the	high	electrical	resistivity	of	these	materials	with	the	high	effective
magnetic	permeability	associated	with	their	spontaneous	magnetization.

8.6.2	Spin	density	wave	antiferromagnetism	in
chromium
Chromium	crystallizes	in	the	body-centred	cubic	structure.	The	earliest	neutron	scattering
experiments	below	 the	Néel	 temperature	of	311	K	suggested	a	 simple	antiferromagnetic
structure	with	the	atoms	at	the	corners	of	the	unit	cell	having	spins	opposed	to	those	at	the
body-centred	positions.	Since	chromium	is	a	transition	metal	we	expect	that	a	band	picture
of	 the	 3d	 electrons	 will	 best	 describe	 the	 magnetic	 ordering.	 In	 such	 a	 picture
antiferromagnetic	 ordering	 can	 be	 achieved	 by	 a	 periodic	 variation	with	 position	 of	 the
density	n↑	of	↑	spin	electrons,	with	the	density	n↓	of	↓	spin	electrons	varying	in	antiphase,
so	 that	 the	 total	 electron	 density	 (n↑	 +	n↓)	 is	 constant	 but	 the	 spin	 density	 (n↑	 −	 n↓)	 is
oscillatory.

The	 result	 is	 a	 spin	 density	 wave	 (SDW).	 One	 possible	 way	 of	 creating	 the	 simple
antiferromagnetic	 structure	 described	 above	 is	 to	 set	 up	 a	 SDW	 of	 wavevector	 2π/a
(wavelength	 a)	 in	 the	 [1	 0	 0]	 direction;	 Fig.	 8.13(a)	 illustrates	 this	 situation	 with	 the
arrows	 indicating	 the	 spin	 density	 at	 the	 lattice	 positions.†	 This	 SDW	 is	 said	 to	 be
commensurate	since	it	has	the	same	periodicity	as	the	lattice;	it	is	also	described	as	static
since	the	spin	density	does	not	vary	with	time.

Later	 neutron	 scattering	 experiments	 on	 Cr	 indicated	 that	 the	 SDW	 was	 in	 fact
incommensurate	with	the	lattice	with	a	wavevector	Q	about	4 	less	than	2π/a	in	the	[10
0]	direction.	The	resulting	magnetic	structure	is	shown	in	Fig.	8.13(b)	and	corresponds	to
a	slow	modulation	in	space	of	the	spin	density	at	the	atomic	sites.	Note	that,	by	symmetry,



SDWs	described	by	Q	vectors	of	the	same	magnitude	in	the	[0	1	0]	and	[0	0	1]	directions
must	 correspond	 to	 the	 same	 energy.	 The	 direction	 of	 the	 arrows	 in	 Fig.	 8.13(b)	 is	 not
necessarily	meant	to	indicate	the	spin	polarization	direction	relative	to	the	wavevector	Q:
neutron	scattering	experiments	indicate	that	the	spin	polarization	is	perpendicular	to	Q	for
T	>	123	K	and	parallel	to	Q	below	this	temperature.	Localized	magnetic	moments	could
not	possibly	produce	such	a	magnetic	structure;	the	existence	of	an	incommensurate	SDW
is	convincing	evidence	in	favour	of	a	band	picture	for	the	3d	electrons.

Fig.	8.13

To	demonstrate	why	such	a	structure	might	be	energetically	favoured	we	consider	first	a
one-dimensional	 solid.	We	 showed	 in	Chapter	 4	 that	 the	 periodic	 lattice	 potential	 has	 a
strong	influence	on	the	electron	dispersion	relation	for	wavevectors	close	to	the	Brillouin
zone	boundaries,	k	=	nπ/a,	where	a	 is	 the	 lattice	spacing	and	n	an	 integer;	 the	energy	 is
reduced	below	its	free	electron	value	for	k	just	inside	the	boundary	and	increased	above	it
for	k	just	outside	the	boundary,	as	shown	in	Fig.	4.2.	Fig.	4.1(b)	shows	that	the	reduction
in	energy	for	k	just	inside	the	boundary	occurs	because	the	wavefunction	corresponds	to	a
standing	 wave	 of	 electron	 density	 with	 maxima	 situated	 on	 the	 lattice	 sites	 where	 the
potential	is	low;	this	situation	could	be	described	as	a	static	commensurate	charge	density
wave.	 Fig.	 4.3(a)	 explains	 why	 the	 changes	 in	 the	 dispersion	 relation	 often	 have	 little
effect	on	the	properties	of	metallic	solids,	essentially	because	the	Fermi	wavenumber	kF	is
not	close	to	the	Brillouin	zone	boundary.

If	however	a	periodic	potential	with	period	π/kF	were	somehow	to	be	introduced	into	the
solid	then	this	would	produce	energy	gaps	at	the	Fermi	surface,	that	is	at	wavenumbers	k	=
±	kF	as	shown	in	Fig.	8.14.	We	see	 that	 the	energy	of	 the	occupied	 states	 for	 |k	 |	<	kF	 is
lowered	by	the	potential	and	that	of	the	unoccupied	states	with	|k	|	>	kF	is	raised,	resulting
in	an	overall	decrease	in	the	energy	of	the	electrons.	It	can	therefore	be	advantageous	for
the	 electron	 gas	 to	 deform	 spontaneously	 to	 produce	 such	 a	 potential,	 and	 an
incommensurate	 SDW	 of	 wavenumber	 2kF	 is	 a	 possible	 deformation	 of	 this	 kind;	 the
decrease	 in	 energy	 associated	 with	 the	 changes	 in	 the	 dispersion	 relation	 more	 than
compensates	 for	any	 increase	 in	energy	associated	with	 the	deformation	(from	electron–
electron	 interactions	 for	 example).	 An	 important	 consequence	 of	 the	 appearance	 of	 the
energy	gaps	at	the	Fermi	surface	is	to	convert	a	metal	into	an	insulator.†



Fig.	8.14	A	potential	of	period	π/kF	introduces	gaps	in	the	electron	dispersion	relation	at
the	Fermi	surface,	k	=	±	kF,	analogous	to	those	produced	at	k	=	±	π/a	by	a	potential	of
period	a.	The	occupied	states	are	indicated	by	the	thicker	line

This	simple	argument	can	be	applied	only	 to	one-dimensional	solids.	 In	 two	and	 three
dimensions	a	SDW	cannot	produce	an	energy	gap	at	all	points	on	the	Fermi	surface.	The
mechanism	 we	 have	 suggested	 is	 then	 only	 effective	 in	 reducing	 the	 energy	 if	 two
different	 sections	 of	 the	 Fermi	 surface	 can	 be	 brought	 into	 near	 coincidence	 by	 a	 rigid
translation	in	k-space.	A	section	in	the	kx,ky	plane	through	two	pieces	of	the	complicated
Fermi	surface	of	Cr	is	shown	in	Fig.	8.15(a);	translation	through	the	vector	Q	achieves	the
near	 coincidence	 shown	 in	 Fig.	 8.15(b),	 a	 phenomenon	 that	 is	 described	 as	nesting.	 A
SDW	of	wavefactor	Q	produces	energy	gaps	along	the	region	of	Fermi	surface	for	which
nesting	 is	 possible.	 The	 electrical	 resistivity	 of	 Cr	 increases	 just	 below	 the	 Néel
temperature	and	 this	can	be	 interpreted	as	arising	because	 the	formation	of	 these	energy
gaps	reduces	the	number	of	electrons	that	can	partake	in	the	conduction	process.

Fig.	8.15



8.6.3	Magnetic	ordering	in	rare-earth	metals
The	 rare-earth	 metals	 crystallize	 either	 into	 the	 hexagonal	 close-packed	 structure	 (Fig.
1.11)	 or	 into	 very	 similar	 structures	 of	 hexagonal	 symmetry	 with	 a	 more	 complicated
stacking	 sequence	 of	 close-packed	 layers.	 Neutron	 scattering	 experiments	 on	 single
crystals	have	revealed	a	great	variety	of	magnetic	ordering	arrangements	in	these	metals.
For	 example,	 dysprosium	 is	 a	 simple	 ferromagnet	 below	 85	 K	 with	 spontaneous
magnetization	along	a	direction	parallel	to	the	close-packed	planes,	that	is	perpendicular	to
the	 z	 axis.	 Between	 85	 and	 179	 K	 the	 ordering	 remains	 ferromagnetic	 within	 a	 close-
packed	 layer,	 but	 on	 going	 from	 one	 layer	 to	 its	 neighbour	 the	 direction	 of	 the
magnetization	rotates	through	a	temperature-dependent	angle	of	order	30°	about	the	z	axis
to	 produce	 a	 helical	 ordering	 of	 spins.	 Such	 ordering	may	 be	 described	 as	 a	 transverse
circularly	polarized	incommensurate	spin	density	wave	with	a	wavevector	parallel	to	the	z
axis.	Above	179	K	dysprosium	is	paramagnetic.	Most	rare-earth	metals	show	this	helical
ordering	under	some	conditions.	Even	more-complicated	arrangements	can	occur	in	which
helical	 ordering	 is	 accompanied	 by	 a	 component	 of	magnetization	 along	 the	 z	 axis	 that
may	also	show	periodic	behaviour.

8.7	FERROMAGNETIC	DOMAINS
Despite	 the	 existence	 of	 a	 spontaneous	 magnetization,	 macroscopic	 samples	 of
ferromagnetic	materials	often	have	a	negligible	total	dipole	moment	in	the	absence	of	an
applied	field.	This	is	because	of	the	tendency	of	such	materials	to	consist	of	a	number	of
small	 regions,	 known	 as	 domains,	 in	 which	 the	 magnetization	 points	 in	 different
directions.	Fig.	8.16	 shows	 the	domains	 in	a	50	μm	single	 crystal	 of	 iron.	 In	 this	 body-
centred	 cubic	 material,	 crystalline	 anisotropy	 favours	 directions	 for	 the	 magnetization
parallel	to	one	of	the	edges	of	the	unit	cell,	that	is	in	one	of	the	six	equivalent	directions	[1
0	 0],	 [0	 1	 0],	 [0	 0	 1],	 [ 0	 0],	 [0 0],	 [0	 0 ];	 this	 explains	 the	 directions	 adopted	 by	 the
magnetization	within	the	domains	in	Fig.	8.16	as	indicated	by	the	arrows.

Although	the	boundaries	between	the	domains	in	Fig.	8.16	appear	sharp,	there	is	in	fact
a	 narrow	 transition	 region,	 known	 as	 a	 Bloch	 wall,	 within	 which	 the	 magnetization
changes	smoothly	from	its	value	in	one	domain	to	that	in	another.	Fig.	8.17	shows	a	Bloch
wall	in	which	the	magnetization	rotates	smoothly	by	an	angle	180°	about	an	axis	normal	to
the	wall.

8.7.1	The	energy	and	thickness	of	a	Bloch	wall
To	calculate	 the	energy	of	a	Bloch	wall	 it	 is	necessary	 to	 take	account	of	 the	change	 in
exchange	energy	due	to	the	variation	of	the	magnetization	with	position	and	to	allow	for
the	fact	 that	within	 the	wall	 the	magnetization	is	not	pointing	in	a	direction	favoured	by
crystalline	 anisotropy.	We	 illustrate	 the	 principles	 of	 the	 calculation	 by	 taking	 a	 simple
example	 in	which	 the	spins	 lie	on	a	simple	cubic	 lattice	of	side	a	and	 there	 is	a	domain
wall	of	the	form	of	Fig.	8.17	in	the	yz	plane.	We	take	the	spins	to	rotate	about	the	x	axis



from	the	z	direction	to	the	−z	direction	in	a	distance	of	N	atomic	spacings	along	the	x	axis.
Such	a	domain	wall	is	appropriate	to	a	situation	where	±z	are	the	easy	directions	for	the
magnetization,	favoured	by	the	crystal	anisotropy.†

The	 anisotropy	 energy	 density	 will	 be	 a	 function	 of	 the	 angle	 θ	 between	 the	 local
direction	 of	 the	 magnetization	 and	 the	 z	 axis.	 In	 hexagonal	 close-packed	 cobalt,	 for
example,	 the	 easy	 directions	 for	 the	 magnetization	 are	 ±	 z	 and	 the	 anisotropy	 energy
density	is	of	the	form

(8.46)	

where	K1	=	4.1	×	105	J	m−3	and	K2	=	1	×	105	J	m−3;	in	this	material	therefore	a	state	with
spins	parallel	to	the	easy	axis	(θ	=	0)	is	lower	in	energy	by	K	=	K1	+	K2	=	5.1	×	105	J	m−3

than	a	state	with	spins	perpendicular	to	this	axis	(θ	=	90°).	Because	of	the	anisotropy	the
magnetization	will	spiral	most	rapidly	past	the	direction	(θ	=	90°	for	the	above	example)	at
which	the	energy	is	greatest,	but	we	will	ignore	this	effect	and	assume	a	uniform	rotation
angle	of	π/N	radians	between	neighbouring	spins	in	the	x	direction.	We	will	also	ignore	the
details	 of	 the	 anisotropy	 energy	 as	 represented	 for	 example	 by	 Eq.	 (8.46)	 and	 obtain	 a
crude	estimate	of	the	increased	anisotropy	energy	by	assuming	that	effectively	half	of	the
spins	in	the	wall	are	pointing	in	the	unfavourable	direction.	The	anisotropy	energy	per	unit
area	of	wall	is	then

Fig.	8.16	Photographs	showing	the	effect	of	an	applied	magnetic	field	on	the	domains	in	a
50	μm	iron	whisker:	(a)	and	(c)	show	reversible	domain	wall	motion	associated	with	small
applied	fields;	(d)	shows	that	a	stronger	field	causes	disappearance	of	domains,	a	process
that	is	not	perfectly	reversible.	(Reproduced	with	permission	from	R.	W.	DeBlois	and	C.
D.	Graham,	J.	Appl.	Phys.29,	931	(1958))



Fig.	8.17	Schematic	diagram	of	a	Bloch	wall	between	two	domains

(8.47)	

where	Na	is	the	volume	of	wall	per	unit	area	and,	from	above,	we	expect	K	≈	5	×	105	Jm
−3.

To	estimate	 the	 increase	 in	exchange	energy	associated	with	 the	 formation	of	 the	wall
we	take	into	account	only	nearest	neighbour	exchange	interactions.	Because	the	spins	lie
on	a	simple	cubic	lattice	a	spin	in	the	wall	has	four	parallel	nearest	neighbours	and	two	at
an	 angle	 π/N	 relative	 to	 it;	 from	 Eq.	 (8.1)	 its	 contribution	 to	 the	 exchange	 energy	 is
therefore

where	we	have	used	 the	small-angle	expansion	of	 the	cosine	function.	The	first	 term	on
the	right-hand	side	gives	the	exchange	energy	per	unit	volume	of	a	uniformly	magnetized
crystal	as



(8.48)	

where	1/a3	is	the	number	of	atoms	per	unit	volume	and	we	have	used	 	=	0.03	eV,	S	=	
and	 a	 =	 2.5	 Å	 to	 obtain	 the	 numerical	 estimate.	 The	 second	 term	 gives	 the	 change	 in
energy	 associated	 with	 the	 variation	 of	 magnetization	 with	 position	 and	 leads	 to	 a
contribution	to	the	wall	energy	per	unit	area

(8.49)	

where	N/a2	 is	 the	number	of	spins	per	unit	area	of	wall	and	we	have	used	Eq.	 (8.48)	 to
obtain	the	final	expression.

The	total	wall	energy	per	unit	area	obtained	by	adding	Eqs.	(8.47)	and	(8.49)	is

As	N	(and	hence	the	width	of	the	wall)	increases,	the	anisotropy	energy	increases	but	the
exchange	energy	decreases.	The	optimum	width	is	that	for	which	σ	is	minimized	and	this
leads	to

	or	

corresponding	to	a	wall	thickness

(8.50)	

and	a	wall	energy	per	unit	area

(8.51)	

According	 to	 our	 above	 estimates	 the	 exchange	 energy	W	 is	 much	 greater	 than	 the
anisotropy	energy	k	and	this	means	that	a	Bloch	wall	is	many	(≈	100)	atoms	thick.	Since
our	 calculation	 shows	 that	 a	 Bloch	 wall	 is	 higher	 in	 energy	 than	 a	 region	 of	 uniform
magnetization,	we	must	explain	why	such	walls	appear,	and	 this	we	do	 in	 the	following
section.

8.7.2	Why	do	domains	occur?
If	 a	 ferromagnetic	 crystal	 consists	 of	 a	 single	 domain,	 as	 in	 Fig.	 8.18(a),	 there	 is	 a
considerable	contribution	to	the	total	energy	(B2/2μ0	per	unit	volume)	from

Fig.	8.18	Reduction	of	the	energy	stored	in	the	external	field	by	the	formation	of	domains



the	magnetic	 field	 outside	 the	 crystal,	 and	 it	 is	 to	 reduce	 this	 energy	 that	 all	 but	 the
smallest	 samples	 find	 it	 preferable	 to	 split	 up	 into	 domains,	 as	 in	 Fig.	 8.18(b).	 The
optimum	size	of	domains	is	determined	by	minimizing	the	sum	of	the	external	field	energy
and	the	energy	of	the	Bloch	walls.	If	the	domains	are	larger	than	the	optimum	size	then	the
energy	 stored	 in	 the	 field	 is	 the	 dominant	 contribution,	 and	 if	 they	 are	 smaller	 than	 the
optimum	size	the	energy	of	the	domain	walls	is	very	large.

The	situation	is	different	in	cubic	crystals	such	as	iron	where	there	are	several	equivalent
easy	directions	for	the	magnetization.	The	external	field	can	be	reduced	almost	to	zero	by
the	formation	of	closure	domains,	like	those	shown	in	Fig.	8.19(a)	(see	also	Fig.	8.16(b)).
One	may	wonder	why	the	closure	domains	take	the	form	shown	in	Fig.	8.19(a)	rather	than
that	in	Fig.	8.19(b),	which	would	appear	to	have	a	significantly	smaller	area	of	Bloch	wall.
The	reason	 is	magnetostriction;	a	magnetized	crystal	 tends	 to	expand	or	contract	along
the	magnetization	direction.	The	distortions	of	 the	different	 domains	 in	Fig.	8.19(b)	 are
incompatible,	 resulting	 in	 a	 large	 positive	 stress	 energy.	 The	 elastic	 stress	 energy	 is
reduced	by	having	the	smaller	closure	domains	shown	in	Fig.	8.19(a);	 thus	 the	optimum
size	of	the	domains	in	this	case	is	determined	by	a	balance	between	Bloch	wall	energy	and
magnetoelastic	energy.

8.7.3	Magnetization	curves	of	ferromagnets
Although	the	total	dipole	moment	of	a	macroscopic	ferromagnetic	sample	may	be	small	in
zero	applied	field	because	of	domain	formation,	a	large	dipole	moment	is	often	produced
by	 a	 modest	 applied	 field.	 In	 this	 case	 the	 material	 has	 a	 high	 effective	 magnetic
permeability.	 The	magnetization	 process	 is	 illustrated	 in	 its	 simplest	 form,	 for	 a	 single-
crystal	 iron	 whisker,	 by	 the	 domain	 patterns	 shown	 in	 Fig.	 8.16.	 For	 the	 small	 fields
shown	 in	Figs.	8.16(a)–(c)	magnetization	 occurs	 by	 the	 almost	 reversible	movement	 of
domain	 walls,	 but	 for	 larger	 fields	 (Fig.	 8.16(d))	 irreversible	 changes	 of	magnetization
occur	by	the	disappearance	of	unfavourable	domains.	Eventually	a	situation	is	reached	in
which	the	crystal

Fig.	8.19	The	formation	of	closure	domains	leads	to	a	vanishingly	small	external	field:	(a)
and	(b)	share	this	property	but	(b)	has	more	magnetoelastic	energy	consists	of	a	single
domain	with	the	magnetization	along	the	nearest	easy	direction	to	that	of	the	applied	field.
Very	strong	fields	will	overcome	the	crystalline	anisotropy	and	cause	the	magnetization	to
rotate	from	the	easy	direction	towards	the	applied	field	if	these	are	not	already	parallel.



Fig.	8.20	Hysteresis	curve	for	Nd2Fe14B	containing	small	amounts	of	Dy.	NdFeB	alloys
are	used	for	making	high-performance	permanent	magnets.	(Reproduced	by	permission	of
H.	R.	Kirchmayer)

The	 magnetization	 processes	 are	 essentially	 the	 same,	 though	 less	 distinct,	 in	 bulk
polycrystalline	material.	Domain	 boundary	motion	may	 then	 be	much	more	 irreversible
because	of	inhomogeneities.	Indeed	an	important	technique	in	making	high-coercive-force
materials	 for	 permanent	 magnets	 is	 the	 deliberate	 introduction	 of	 inhomogeneities	 to
inhibit	 domain	boundary	motion,	 for	 example	by	 introducing	 a	 two-phase	 alloy	 system.
An	example	of	the	kind	of	hysteresis	curve	that	can	be	obtained	in	this	way	is	shown	in
Fig.	8.20.	 In	 contrast	 it	 is	 possible	 to	 prepare	 ferromagnetic	materials	with	 a	 very	 high
effective	permeability	and	almost	reversible	magnetization	curves;	such	materials	are	used
in	transformer	cores	and	for	magnetic	screening.

PROBLEMS	8
8.1	By	using	the	result

calculate	 the	 eigenvalues	 of	 s1.s2	 for	 the	 spin	 singlet	 and	 spin	 triplet	 states	 of	 two
electrons.	Hence	show	that	an	exchange	interaction	of	the	form	−2 s1.s2	implies	that
the	energy	of	the	singlet	state	exceeds	that	of	the	triplet	state	by	2 .

8.2	 State	 the	 assumptions	 of	 the	 Weiss	 molecular	 field	 theory	 of	 ferromagnetism.
Derive	Eq.	(8.4)from	Eq.	(8.1).

Use	 the	Hamiltonian	 (8.6)	 to	determine	 the	 internal	energy	and	hence	show	that	 the
magnetic	contribution	to	the	heat	capacity	of	a	ferromagnet	in	zero	applied	field	in	the
mean	field	approximation	is	Cm	=	− λμ0	d(M2)/)dT.	Give	the	limiting	forms	of	Cm	for
T	→	0	and	T	→	Tc.	What	is	the	thermodynamic	nature	of	the	transition	at	the	Curie



point	in	zero	applied	field?

8.3	Show	that	Eq.	(8.7)	can	be	written

where	h	=	tanh	(μBB/kBT).	Hence	use	the	small-angle	expansion	tanh	x	≈	x	−	x3/3	 to
show	that	 the	Weiss	model	predicts	 that	 the	magnetization	M	varies	as	B1/3	 in	small
applied	fields	at	T	=	Tc.	Would	you	expect	this	relation	to	hold	in	practice?

8.4	For	an	fcc	 lattice	of	magnetic	spins	 it	 is	 impossible	 to	find	an	antiferromagnetic
arrangement	in	which	all	the	nearest	neighbours	of	any	spin	are	antiparallel	to	it.	The
best	 that	can	be	achieved,	 for	example	by	having	spins	 in	alternate	 (2	0	0)	planes	↑
and	↓,	is	eight	antiparallel	and	four	parallel	neighbours.	(Miller	indices	are	referred	to
the	conventional	cubic	unit	cell.)

Develop	a	Néel	theory	appropriate	to	the	case	where	a	spin	has	za	antiparallel	nearest
neighbours	 and	 zp	 parallel	 nearest	 neighbours	 and	only	nearest	 neighbour	 exchange
interactions	 are	 important;	 the	 effective	 field	 acting	 on	 an	 ion	 on	 the	 A	 sublattice
would	then	be	 	=	μ0(H	−	λaMB	−	λpMA)with	a	similar	expression	for	 .	Show	that
λa/λp	=	za/zp	and	that	the	high-temperature	susceptibility	is	of	the	form	χ	=	C/(T	+	θ),
where	θ	is	related	to	the	Néel	temperature	TN	by

Hence	show	that	θ/TN	=	3	for	the	fcc	structure	mentioned	above.

8.5	 Calculate	 according	 to	 the	Néel	model	 the	 parallel	 and	 perpendicular	magnetic
susceptibilities	of	an	antiferromagnet	below	the	Néel	temperature.

8.6	Fig.	12.10	shows	the	measured	magnon	dispersion	relation	for	different	directions
in	an	fcc	cobalt	alloy	(92 	Co,	8 	Fe).	Deduce	a	value	for	 S	and	suggest	a	reason
for	the	finite	value	of	ω	at	k	=	0.

8.7	 The	 low-temperature	 heat	 capacity	 of	 Y3Fe5O12	 (yttrium	 iron	 garnet)	 gives	 a
straight	 line	 graph	 when	 C/T3/2	 is	 plotted	 against	 T3/2.	 What	 information	 can	 be
obtained	from	the	slope	and	intercept	of	this	line?

8.8	By	analogy	with	the	approach	used	in	section	8.5.2	for	a	ferromagnet,	develop	a
theory	 for	 spin	 waves	 in	 a	 one-dimensional	 antiferromagnet.	 Include	 only	 nearest
neighbour	exchange	interactions	and	assume	that	the	spins	on	the	↑	and	↓,	sublattices
may	be	written	as

	and	

Write	down	equations	of	motion	for	↑	and	↓	spins	and	assume	solutions	of	the	form

(Compare	with	Eqs.	 (2.8)	 and	 (2.17).)	Calculate	 the	 dispersion	 relation	 for	 the	 spin



waves	and	show	that	it	is	linear	(ω	∝	k)	for	small	k.	What	is	the	implication	of	this	for
the	heat	capacity	at	low	temperature?

8.9	The	experimental	results	illustrated	in	Fig.	8.12	were	obtained	at	9.7	GHz	on	a	Co
film	about	600	nm	thick.	Estimate	the	effective	mass	of	magnons	in	Co.	(Remember
that	the	graph	shows	the	absorption	derivative.)

†	 The	 factor	 2	 that	 appears	 in	 −2 S1.	S2	 does	 not	 appear	 in	 Eq.	 (8.1).	 This	 avoids
counting	each	interaction	twice;	we	regard	the	exchange	energy	as	being	equally	shared
between	the	two	atoms.

†	 Since	 S	 contains	 in	 general	 a	 contribution	 from	 both	 orbital	 and	 spin	 angular
momentum	(it	is	really	J)	we	retain	the	Landé	 -factor.

†	 In	 ferromagnetic	 materials	 it	 is	 not	 in	 general	 possible	 to	 ignore	 the	 differences
between	 the	 various	 fields	 and	 to	 take	Bloc	 =	 μ0H	 =	 applied	 field.	 The	 relationship
between	 these	 fields	 is	 discussed	 in	 appendix	B.	We	 show	 there	 that	 in	 the	 long	 rod
samples	often	used	in	experiments	it	is	μ0H	rather	than	the	macroscopic	B	field	(=	μ0(H
+	M))	that	equals	the	applied	field	(Eq.	(B5)).	The	relationship	of	Bloc	to	μ0H	depends
on	the	arrangement	of	atoms	within	 the	material;	 if	 the	arrangement	 is	 random	or	has
cubic	symmetry	then	Bloc	=	μ0(H	+	M/3)	(Eq.	(B18)).	Substituting	μ0H	for	Bloc	 in	Eq.
(8.8)	 in	 this	 case	 therefore	 corresponds	 to	 adding	 	 to	 λ;	 since	 λ	 	 1	 this	 change	 is
unimportant.

†	When	there	is	a	spontaneous	magnetization	Bloc	does	not	vanish	in	zero	applied	field,
but	 is	 of	 order	 μ0M.	 The	 term	 containing	 Bloc	 in	 Eq.	 (8.2)	 thus	 contributes	 a	 small
correction	to	the	Weiss	molecular	field	just	as	did	the	difference	between	Bloc	and	μ0H
in	 the	calculation	of	 the	high-temperature	susceptibility;	here,	as	 there,	we	 ignore	 this
contribution.

†	A	second-order	phase	transition	is	one	in	which	there	is	no	entropy	discontinuity	and
thus	 no	 latent	 heat	 (see	 problem	 8.2).	 Other	 examples	 of	 such	 transitions	 are	 the
superconducting	 transition	 in	 zero	magnetic	 field	 and	 the	 liquid–gas	 transition	 at	 the
critical	temperature	(but	not	at	lower	temperatures).

†	We	must	be	careful	 to	distinguish	 the	chemical	unit	cell	 (the	original	 simple	 cubic
cell)	 from	 the	magnetic	unit	 cell	 (fcc	 unit	 cell	 of	 the	NaCl	 structure);	 since	 ↑	 and	↓
spins	have	different	 scattering	 cross	 sections	 for	 a	 neutron	of	 spin	↑,	 it	 is	 possible	 to
deduce	 the	 magnetic	 unit	 cell	 from	 neutron	 diffraction	 experiments	 and	 thus	 to
determine	antiferromagnetic	structures	(see	section	12.5.1).

‡	Note	however	that,	in	bcc	solid3	He,	the	antiferromagnetic	arrangement	of	the	nuclear
moments	that	occurs	for	T	<	1	mK	does	not	correspond	to	this	‘obvious’	subdivision.

†	We	must	imagine	that	the	direction	of	the	sublattice	magnetizations	is	determined	by
electrostatic	fields	within	the	crystal	so	that	it	does	not	change	when	a	weak	magnetic
field	is	applied.

†	A	classical	approach	is	implicit	in	drawing	pictures	like	those	of	Fig.	8.8,	since	exact



specification	of	the	orientation	of	a	spin	conflicts	with	the	uncertainty	principle.

†	The	 condition	 that	σn,	 is	 perpendicular	 to	 	 follows	 from	 the	 requirement	 that	 |Sn|2

remains	constant	and	equal	to	S2;	to	first	order	in	σn	this	requires	S .σn	=	0.	We	take	the
spins	aligned	along	− 	because	this	corresponds	to	a	magnetization	along	+ .

†	The	dispersion	relation	for	spin	waves	in	antiferromagnetic	materials	is	linear	(ω	∝	k)
at	small	k	(see	problem	8.8).

†	We	assume	that	the	dispersion	relation	is	isotropic.

†	SDWs	of	wavevector	2π/a	 in	 either	 the	 [0	1	0]	or	 [0	0	1]	directions	give	 the	 same
antiferromagnetic	 structure	 at	 the	 lattice	 sites,	 as	 indeed	 does	 the	 more	 complicated
SDW	produced	by	a	sum	of	the	three	simple	SDWs	in	the	[1	0	0],	[0	1	0]	and	[0	0	1]
directions;	this	more	complicated	SDW	reflects	better	the	underlying	bcc	symmetry	of
the	lattice.

†	An	 incommensurate	charge	density	wave	can	also	 lead	 to	 the	appearance	of	energy
gaps	 at	 the	 Fermi	 surface	 in	 a	 one-dimensional	 solid.	 Peierls	 showed	 that	 a	 one-
dimensional	 metal	 would	 always	 be	 unstable	 against	 the	 formation	 of	 an
incommensurate	 CDW	with	 an	 associated	 lattice	 distortion;	 a	 one-dimensional	metal
cannot	 therefore	 exist.	 CDWs	 have	 been	 observed	 in	 the	 transition	 metal
dichalcogenides	 in	 which	 there	 are	 chains	 of	 atoms	 that	 exhibit	 one-dimensional
behaviour.

†	We	ignore	the	inconsistency	in	our	model	of	assuming	uniaxial	anisotropy	in	a	crystal
of	cubic	symmetry.



CHAPTER	9

Electric	properties	of	insulators

There	 is	 no	 plea	 which	 will	 justify	 the	 use	 of	 high	 tension	 and	 alternating
currents,	either	in	a	scientific	or	a	commercial	sense.	They	are	employed	solely	to
reduce	investment	in	copper	wire	and	real	estate.—Thomas	Edision	(1889)

9.1	DIELECTRICS
9.1.1	Dielectric	constant	and	susceptibility
Dielectric	materials	are	electrical	insulators†	for	which	the	response	to	a	weak	static	or

low-frequency	electric	field	is	given	by

(9.1)	

where	 P	 is	 the	 electric	 polarization	 (dipole	 moment	 per	 unit	 volume)	 and	 E	 is
conventionally	 the	macroscopic	 electric	 field	 inside	 the	material	 (see	 appendix	 B	 for	 a
discussion	 of	 the	 electric	 fields	 in	 matter).	 Comparison	 with	 Eq.	 (7.1)	 shows	 that
dielectrics	are	analogous	 to	diamagnets	and	paramagnets;	however,	as	 the	dimensionless
static	susceptibility	χ	 is	always	positive	for	dielectrics,	 it	would	be	more	consistent	with
magnetism	 if	 they	 were	 called	 paraelectrics.	 Pyroelectric	 materials	 (of	 which
ferroelectric	 materials	 are	 a	 subset)	 possess	 a	 spontaneous	 electric	 polarization	 in	 the
absence	of	an	applied	field;	we	discuss	them	further	in	section	9.2

The	 electric	 susceptibility	 of	 a	 dielectric	 is	 normally	 much	 larger	 than	 the	 magnetic
susceptibility	 and	 is	 typically	 of	 order	 unity	 or	 larger	 at	 room	 temperature.	 Eq.	 (9.1)
defines	 the	 SI	 susceptibility;	 as	 in	 the	 magnetic	 case,	 the	 reader	 is	 likely	 to	 encounter
tabulations	of	cgs	susceptibilities	related	by	(Eq.	(7.2))

We	consider	only	dielectrics	for	which	P	and	E	are	parallel	so	that	χ	is	a	scalar	quantity;
crystals	 of	 cubic	 symmetry	 possess	 this	 property.	 The	 relative	 permittivity	 (dielectric
constant)	ε	is	related	to	the	susceptibility	by

(9.2)	

A	theoretical	value	for	the	susceptibility	can	be	obtained	by	first	calculating	the	dipole
moment	of	an	isolated	atom

(9.3)	



produced	 by	 an	 applied	 field	E;	α	 is	 known	 as	 the	 polarizability	 of	 the	 atom.	 If	 the
behaviour	 of	 atoms	 is	 not	 greatly	 affected	 by	 their	 incorporation	 in	 a	 solid	 then	 the
polarization	 of	 the	 solid	 is	 obtained	 by	 summing	 Eq.	 (9.3)	 over	 the	 N	 atoms	 in	 unit
volume,

(9.4)	

where	the	subscript	i	refers	to	the	ith	atom	and	ELi	is	the	local	electric	field	at	the	atom.	To
deduce	 the	 susceptibility	 it	 is	 necessary	 to	 evaluate	 the	 relation	 between	 the	 local	 and
macroscopic	 electric	 fields,	 and	 this	 depends	 on	 the	 arrangement	 of	 atoms	 within	 the
crystal.	The	most	straightforward	situation	is	for	an	atom	in	a	position	of	cubic	symmetry
in	a	crystal	of	atoms	with	point-like	time-independent	dipole	moments.	The	local	field	at
the	centre	of	the	atom	is	then	given	by	the	Lorentz	relation	(appendix	B,	Eq.	(B31))

(9.5)

and	is	thus	the	same	at	all	such	atoms.	Using	Eqs.	(9.1),	(9.2),	(9.4)	and	(9.5),	we	deduce
the	following	relationships	between	ε,	χ	and	the	atomic	polarizabilities:

(9.6)	

This	is	the	Clausius–Mossotti	 relation.	The	Lorentz	 relation	(Eq.	 (9.5))	also	gives	 the
average	 local	 field	 at	 an	 atom	 or	 molecule	 in	 a	 random	 arrangement;	 the	 Clausius–
Mossotti	result	can	therefore	also	be	applied	to	gases,	liquids	and	amorphous	solids.	The
relation	works	well	 for	gases	but,	as	we	will	 find	 in	section	9.1.3,	 it	must	be	used	more
cautiously	in	systems	of	higher	density.

In	 the	 following	 sections	 we	 discuss	 three	mechanisms	 that	 lead	 to	 polarization	 of	 a
solid	by	an	electric	 field;	 the	 relative	displacement	of	 electrons	and	nuclei	 in	 individual
atoms;	the	orientation	of	the	permanent	dipole	moments	of	molecules	in	molecular	solids;
and	the	relative	displacement	of	positive	and	negative	ions	in	ionic	solids.



Eqs,	(9.1)	to	(9.6)	can	also	be	used	to	describe	the	response	of	a	dielectric	to	an
alternating	electric	field,	E0eiωt,	but	the	dielectric	constant	and	susceptibility
depend	on	the	frequency	ω	and	are	generally	complex;	the	imaginary	part	of	ε
indicates	the	existence	of	dissipation	as	can	be	seen	by	writing

(9.7)	

The	resulting	Maxwell	displacement	current	is

(9.8)	

The	first	term	is	90°	out	of	phase	with	the	applied	field	and	is	thus	reactive;	the
second	term	is	in	phase	with	the	field	and	therefore	resistive.	The	average
dissipation	associated	with	the	resistive	term	is

per	unit	volume.	The	dissipation	must	be	positive	and	hence	ε″	is	negative.	The	two
terms	in	Eq.	(9.8)	can	be	represented	on	a	phasor	diagram	as	shown	in	Fig.	9.1:	the
quality	of	the	dielectric	is	expressed	by	the	loss	tangent,	which	is	the	ratio	of	the
dissipative	term	to	the	reactive	term	and	is	thus	the	tangent	of	the	angle	δ	in	Fig.
9.1.	Hence

(9.9)	

The	frequency-dependent	refractive	index	n(ω)	for	the	passage	of	an
electromagnetic	wave	through	a	solid	is	defined	in	terms	of	the	dispersion	relation
by

(9.10)	

where	n(ω)	and	ε(ω)	are	related	by†	(problem	9.1)

(9.11)	

if	ε(ω)	is	complex,	so	is	n(ω).

In	the	very	strong	electric	fields	that	occur	in	a	focused	laser	beam	(≈1010	V	m−1),
Eq,	(9.1)	is	inadequate	and	must	be	replaced	by

(9.12)	

For	crystals	with	a	centre	of	symmetry	the	coefficient	b	vanishes	since	equal	and
opposite	fields	E	and	−E	must	produce	equal	and	opposite	polarizations.	The
science	of	non-linear	optics	depends	on	the	existence	of	the	higher-order	terms	in
Eq.	(9.12).	We	can	obtain	an	insight	into	the	type	of	novel	phenomena	caused	by
these	terms	by	noting	that	the	quadratic	term	implies	that	an	electric	field	of
frequency	ω	will	generate	a	contribution	to	the	polarization	varying	at	a	frequency
2ω.	The	crystal	re-radiates	at	this	frequency	and	thus	acts	as	a	source	of	radiation	at
a	frequency	double	that	of	the	original	laser.‡



Fig.	9.1	Phase	relationship	with	respect	to	E	of	the	reactive	and	resistive	contributions	to
the	displacement	current	 .	Note	that	ε″	is	negative

9.1.2	Polarization	due	to	relative	motion	of
electrons	and	nuclei
An	 order	 of	 magnitude	 estimate	 of	 the	 polarizability	 of	 an	 atom	 can	 be	 obtained	 by

assuming	 that	 the	 Z	 electrons	 in	 it	 are	 distributed	 with	 uniform	 density	 in	 a	 sphere	 of
radius	 r.	 A	 displacement	 of	 the	 nucleus	 from	 the	 centre	 of	 the	 sphere	 by	 a	 distance	 x
means	that	it	is	subject	to	a	restoring	electric	field	generated	by	electrons	within	a	sphere
of	radius	x	(Fig.	9.2);	the	charge	within	the	sphere	is	−Ze(x/r)3	so	that	the	field	is

(9.13)	

An	 applied	 field	EL	 causes	 a	 relative	 displacement	 of	 electrons	 and	 nucleus	 until	 the
restoring	field	 just	balances	 the	applied	field,	E	+	EL	=	0.	Eq.	 (9.13)	gives	 the	resulting
electric	dipole	moment	of	the	atom

(9.14)	

Comparison	with	Eq.	(9.3)	then	identifies	the	atomic	polarizability	as§

(9.15)	

Fig.	9.2	Model	of	an	atom	in	which	the	Z	electrons	are	uniformly	distributed	in	a	sphere	of
radius	r.	Displacement	of	the	nucleus	by	a	distance	x	as	shown	means	that	it	is	subject	to	a
restoring	force	provided	by	the	electrons	inside	the	sphere	of	radius	x	indicated.	The
electrons	outside	this	sphere	do	not	contribute	because	the	electric	field	inside	a	uniformly
charged	spherical	shell	is	zero



where	we	have	obtained	the	numerical	estimate	by	assuming	r	≈	1	Å.	Table	9.1	shows
measured	values	of	α/4πε0	for	various	atoms	and	molecules,	 together	with	the	value	of	r
deduced	using	Eq.	(9.15);	agreement	with	our	order	of	magnitude	estimate	is	reasonable.
A	more	 rigorous	 quantum	mechanical	 calculation	 of	α	 can	 be	made	 using	 second-order
perturbation	theory.

When	both	the	atomic	polarizabilities	and	the	relationship	between	the	macroscopic	and
local	electric	fields	are	known,	it	is	possible	to	calculate	the	dielectric	constant	of	liquids
and	 solids.	 For	 the	 random	 arrangement	 of	 atoms	 or	molecules	 in	 a	 liquid	 the	 Lorentz
local	 field	 relation	(Eq.	 (9.5))	and	hence	 the	Clausius–Mossotti	 result	 (Eq.	 (9.6))	 can	be
used.	The	validity	of	this	approach	is	checked	in	Table	9.1,	which	shows	that	there	is	good
agreement	between	experimental	and	predicted	values	of	the	dielectric	constant	of	various
liquids	at	their	normal	boiling	points.	The	molecular	polarizabilities	used	in	the	calculation
were	obtained	from	gas	phase	measurements	where	the	local	field	correction	is	very	small.

TABLE	9.1	Comparison	of	observed	values	of	the	electric	susceptibilities	of	various
liquids	at	their	normal	boiling	points	with	values	predicted	by	the	Clausius–Mossotti
equation	(9.6).	The	atomic	or	molecular	polarizability	used	to	obtain	the	predicted	value
was	deduced	from	gas	phase	measurements	of	the	susceptibility

TABLE	9.2	Comparison	of	measured	(upper	value)	and	predicted	(lower	value)	dielectric
constants	of	the	alkali	halide	crystals.	The	ionic	polarizabilities	(α/4πε0)	used	in	the
calculation	are	indicated	after	the	chemical	symbol	and	are	chosen	to	obtain	as	good	a	fit
between	measured	and	predicted	values	as	possible.	The	observed	values	were	measured
at	the	frequency	of	the	D	lines	in	the	spectrum	of	atomic	sodium



The	Clausius–Mossotti	 result	 can	 also	 be	 applied	when	 the	 atoms	 are	 in	 positions	 of
cubic	symmetry;	Table	9.2	compares	experimental	and	predicted	values	of	 the	dielectric
constant	 of	 the	 cubic	 alkali	 halide	 crystals.	 The	 experimental	 values	 of	 ε	 are	 at	 the
frequency	 (v	 =	 5	 ×	 1014	 Hz)	 of	 the	 D	 lines	 in	 the	 spectrum	 of	 atomic	 sodium;	 at	 this
frequency	the	contribution	to	e	from	ionic	motion	(section	9.1.4)	is	negligible.	The	values
used	 for	 the	 ionic	polarizabilities	are	 indicated	 in	 the	 table	and	were	chosen	 to	obtain	a
good	fit	between	the	experimental	and	calculated	values	of	ε;	except	for	the	fluorides	the
fit	is	better	than	about	3 .

The	 small	 differences	 between	 the	 experimental	 and	 fitted	 values	 arise	 partly	 because
the	polarizability	of	an	ion	depends	on	the	arrangement	of	the	electrons	in	it	and	hence	on
its	environment;	 this	 is	a	relatively	small	effect	 for	 ionic	crystals,	because	 the	electronic
arrangement	 is	 little	 affected	 by	 the	 formation	 of	 the	 solid.	When	 a	 covalently	 bonded
crystal	is	formed	the	effect	on	the	electrons	is	much	larger	and	using	the	polarizability	of
an	isolated	atom	does	not	give	a	good	value	for	the	dielectric	constant	of	the	solid.	It	is	the
outermost	 electrons	 that	 are	most	 affected	 by	 the	 formation	 of	 the	 covalent	 bonds,	 and
because	of	the	r3	dependence	in	Eq.	(9.15)	it	is	these	that	have	the	largest	influence	on	the
polarizability.	The	 large	dielectric	constants	of	diamond,	silicon	and	germanium	indicate
the	existence	of	a	significant	density	of	electrons	at	some	distance	from	the	nuclei	and	this
can	be	attributed	to	the	electrons	involved	in	the	formation	of	the	covalent	bonds.	A	proper
calculation	of	 the	dielectric	constant	 for	 these	materials	must	 take	band	structure	effects
into	account.

We	can	use	the	simple	atomic	model	of	Fig.	9.2	to	investigate	the	frequency
dependence	of	the	atomic	polarizability	arising	from	the	relative	displacement	of
electrons	and	nuclei.	The	model	predicts	(Eq.	(9.13))	a	restoring	force	proportional
to	the	displacement	and	this	suggests	that	the	response	of	the	electrons	to	an
alternating	field	EL	=	E0eiωt	should	be	described	by	the	driven	simple	harmonic
oscillator	equation,

(9.16)	



The	expression	for	the	restoring	force	has	been	obtained	from	Eq.	(9.13).	We	have
added	a	dissipative	term	Zmγ	dx/dt	to	the	equation	and	we	discuss	the	origin	of	this
later.

The	solution	of	Eq.	(9,16)	is

(9.17)	

where

(9.18)	

is	the	‘	natural’	resonant	frequency	of	our	model	atom.	The	dipole	moment	Zex	and
the	frequency-dependent	polarizability	can	be	deduced	by	proceeding	in	the	same
way	as	for	a	static	field	(Eq.	(9.14)	and	(9.15)).	For	weak	damping	the	response	of
the	atom	is	a	sharp	resonance	at	frequency	ω0	Fig.	9.3	shows	the	resulting
behaviour	of	the	dielectric	constant,	deduced	using	the	Clausius–Mossotti	relation
(Eq.	(9.6)).	At	low	frequencies,	ω	 	ω0,	the	real	part	ε′	tends	to	the	static	value
which	follows	from	Eq.	(9.15),	and	at	high	frequencies	it	tends	to	unity	from	below
as

(9.19)	

where	N	is	the	number	of	atoms	per	unit	volume.	We	show	in	section	13.6	that	the
dielectric	constant	of	free	electrons	at	high	frequencies	is	also	given	by	Eq.	(9.19).
and	this	indicates	that	at	high	frequencies	the	electrons	in	all	materials	behave	as
free	particles.	The	sharp	peak	in	the	imaginary	part	ε″	of	the	dielectric	constant
reflects	the	resonant	absorption	of	energy	that	occurs	in	the	vicinity	of	ω0.

The	physical	interpretation	of	the	resonant	frequency	ω0	becomes	apparent	if	we
note	from	Table	9.1	that	r	is	of	order	2a0,	where	a0	is	the	Bohr	radius.	The	energy	
ω0	is	thus	found	to	be	close	to	the	binding	energy	of	a	single-electron	atom	with	a
nucleus	of	charge	Ze	(problem	9.3);	this	identifies	the	frequency	ω0	with	electron
energy	levels	in	the	atom.	A	quantum	mechanical	calculation	of	the	polarizability	of
an	atom	predicts	several	resonances,	each	at	a	frequency	corresponding	to	a
transition	between	electronic	energy	levels	of	the	atom;	the	qualitative	behaviour	of
the	dielectric	constant	at	each	resonance	is	similar	to	that	shown	in	Fig.	9.3.	The
limiting	behaviour	at	high	frequencies	given	by	Eq.	(9.19)	is	only	attained	above
the	highest	of	the	resonant	frequencies,	which	is	usually	in	the	long-wavelength	x-
ray	region	of	the	spectrum.	The	dissipation	peak	associated	with	each	resonance
corresponds	to	resonant	absorption	of	photons	by	electrons	undergoing	the
corresponding	transition.



Fig.	9.3	Variation	of	the	real	and	imaginary	parts	of	the	dielectric	constant,	ε′	and	ε″,	with
frequency	as	predicted	by	Eqs.	(9.14)	and	(9.17).	The	Clausius–Mossotti	relation	(Eq.
(9.6))	was	used	to	relate	the	atomic	polarizability	to	the	dielectric	constant.	The	local	field
correction	embodied	in	this	relation	causes	the	peak	in	the	absorption	(ε″)	to	occur	at	a
frequency	just	below	ω0.	In	the	region	of	frequency	where	ε′	is	negative,	waves	incident
on	the	crystal	are	totally	externally	reflected	(see	section	9.1.4)

9.1.3	Orientation	of	permanent	dipole	moments
Molecules	without	 a	 centre	 of	 symmetry	 possess	 a	 permanent	 electric	 dipole	moment

and	are	said	to	be	polar.	The	interaction	energy,

(9.20)	

of	the	dipole	moment	p	with	an	electric	field	EL	tends	to	orient	the	moment	parallel	to	the
field.	If	the	dipoles	behave	independently	of	each	other	the	resulting	alignment	is	limited
by	thermal	disorder	and	the	probability	p(θ)	of	finding	a	dipole	at	an	angle	θ	 to	the	field
EL	is	given	by	the	Boltzmann	factor

(9.21)	

Eq.	(9.21)	describes	polar	liquids	and	gases	reasonably	well.	In	solids,	however,	it	is	not
possible	to	ignore	the	potential	energy	of	interaction	between	a	dipole	and	its	neighbours.
This	can	hinder	the	free	rotation	of	molecules	and	sometimes	suppress	it	completely	(see
section	9.2);	where	 rotation	 is	possible	 it	 is	often	between	one	 favoured	orientation	and
another.	To	get	a	rough	idea	of	what	to	expect	we	ignore	this	and	assume	that	the	average
component	of	dipole	moment	parallel	to	the	field	 ||	can	be	obtained	using	the	Boltzmann
factor	(Eq.	(9.21)).	Thus

The	factor	2π	sin	θ	is	a	solid	angle	weighting	factor	as	explained	in	Fig.	9.4.	Using	the
substitution	u	=	cos	θ	to	evaluate	the	integrals	gives



(9.22)	

where	x	=	pEL/kBT	is	a	dimensionless	measure	of	the	electric	field	strength.	A	neat	way	of
proceeding	is	to	note	that	Eq.	(9.22)	can	be	written

where

Fig.	9.4	The	shaded	ring	on	the	surface	of	the	sphere	of	unit	radius	is	the	solid	angle	for	all
the	possible	directions	between	θ	and	θ	+	dθ	from	the	z	axis.	The	circumference	of	the	ring
is	2π	sin	θ	so	that	the	area	is	2π	sin	θdθ

Thus

(9.23)	

The	Langevin	function	L(x),	defined	by	this	equation,	 is	 the	Brillouin	function	of	Eq.
(7.16)	 in	 the	 limit	of	 infinite	J;	 this	 is	 appropriate	 since	a	 large	angular	momentum	can
point	 in	 almost	 any	 direction	 and	 therefore	 behaves	 analogously	 to	 a	 freely	 rotating
electric	dipole	moment.

Using	 typical	 values	 of	 10−29	C	m	 for	 a	 permanent	 dipole	moment	 (equivalent	 to	 the
displacement	of	one	electronic	charge	through	0.6	Å)	and	107V	m−1	for	the	largest	electric
field	that	can	be	applied	to	a	solid	without	breakdown	gives	x	≈	0.02	at	room	temperature.
As	molecular	 rotation	 in	solids	 is	usually	absent	at	 significantly	 lower	 temperatures,	 the
small	x	limit	of	Eq.	(9.23)	is	appropriate;	using	coth	x	≈	1/x	+	x/3+	·	·	·	gives

The	equivalent	atomic	polarizability	defined	by	Eq.	(9.3)	is

(9.24)	

The	1/T	dependence	of	α	 is	 the	electrical	equivalent	of	Curie’s	 law	in	magnetism	(Eq.
(7.18)).	Using	p	≈	10−	29	C	m	we	find



(9.25)	

at	T	 =	 300	K.	We	 have	 divided	 by	 4πε0	 in	 order	 to	make	 comparison	 with	 Eq.	 (9.15)
easier;	we	thus	see	that	orientational	polarizabilities	are	normally	much	larger	than	those
associated	with	relative	displacement	of	electrons	and	nuclei	in	atoms.

For	 such	 large	 values	 of	 α	 the	 Clausius–Mossotti	 relation	 (Eq.	 (9.6))	 often	 gives
erroneous	results.	To	see	this	we	use	the	example	of	water.†	Inverting	Eq.	(9.6)	 to	obtain
the	dielectric	constant,

(9.26)	

predicts	the	divergence	of	ε	when	Σ	αi/ε0	→	3	and	negative	values	of	ε	for	Σ	αi/ε0	>	3.	The
permanent	dipole	moment	of	 the	water	molecule	is	0.62	×	10−29	C	m	and	 the	molecular
density	in	water	is	4	×	1028	m−3,	giving	Σ	αi/ε0	=	12	at	T	=	300	K.	However,	the	measured
static	dielectric	constant	is	positive	(ε	≈	80).	The	failure	of	Eq.	(9.26)	is	an	indication	that
the	Lorentz	 local	 field	 relation	(Eq.	 (9.5))	 is	 inadequate	 to	describe	 the	 large	space-	and
time-dependent	electric	field	in	the	neighbourhood	of	a	polar	molecule.



The	slowness	of	molecular	rotation	in	solids	means	that	the	orientational
contribution	to	the	dielectric	constant	disappears	at	a	low	frequency	compared	to
the	contribution	from	the	relative	displacement	of	electrons	and	nuclei	discussed	in
the	previous	section.	Debye	suggested	the	use	of	the	relaxation	equation

(9.27)	

to	calculate	the	frequency-dependent	susceptibility	χ(ω)	of	liquids	containing	polar
molecules.	PE	is	the	equilibrium	value	of	the	polarization	for	a	static	field	with	a
value	equal	to	the	instantaneous	applied	field;	thus	PE	=	χ(0)ε0E	where	χ(0)	is	the
static	susceptibility.	The	physical	meaning	of	Eq.	(9.27)	is	that	the	polarization	is
always	relaxing	towards	its	instantaneous	equilibrium	value	at	a	rate	determined	by
the	relaxation	time	τ;	we	expect	τ	to	represent	the	time	scale	for	molecular
rotation.	We	will	assume	that	Eq,	(9.27)	can	also	be	used	to	describe	polar
molecules	in	solids.

Taking	E	=	E0eiωt	we	find	that	Eq.	(9.27)	has	the	solution

from	which	χ(ω)	and	hence	ε(ω)	can	be	deduced	using	Eqs.	(9.1)	and	(9.2).	Thus

(9.28)	

the	frequency	dependence	of	the	real	and	imaginary	parts	of	ε	is	shown	in	Fig.	9.5.
Note	the	qualitative	difference	to	the	curves	in	Fig.	9.3;	since	there	is	no
equilibrium	position	for	the	rotating	dipoles	with	associated	restoring	forces	there	is
no	resonant-like	behaviour	in	Fig.	9.5.

Fig.	9.6	shows	the	dielectric	constant	of	ice	as	a	function	of	temperature	at	various
frequencies.	At	each	frequency	the	decrease	in	ε′	with	decreasing	temperature	and
the	maximum	in	−ε″	indicate	the	region	in	which	ωτ	≈	1;	the	results	can	therefore
be	used	to	investigate	the	temperature	dependence	of	the	relaxation	time	(problem
9.4).	Note	that	the	relevant	frequencies	are	low	(102	−	104	Hz),	indicating	that
molecular	rotation	in	solids	is	very	slow.

Fig.	9.5	Variation	of	the	real	and	imaginary	parts	of	the	dielectric	constant	with	frequency
as	predicted	by	Eq.	(9.28)



Fig.	9.6	Real	and	imaginary	parts,	ε′	and	ε″,	of	the	dielectric	constant	of	ice	as	a	function
of	temperature	at	different	frequencies	(in	Hz).	(Reprinted	with	permission	from	C.	P.
Smyth	and	C.	S.	Hitchcock,	J.	Am.	Chem.	Soc.	54,	4631	(1932).	Copyright	(1932)
American	Chemical	Society)



9.1.4	Dielectric	constant	and	lattice	vibrations	of
ionic	crystals
An	electric	 field	 applied	 to	 an	 ionic	 crystal	 causes	 a	displacement	of	 the	positive	 and

negative	ions	in	opposite	directions;	the	resulting	polarization	contributes	to	the	dielectric
constant.	 Since	 the	 optical	 lattice	 vibration	modes	 of	 long	wavelength	 in	 ionic	 crystals
have	 positive	 and	 negative	 ions	moving	 in	 antiphase	 (section	 2.3.2)	 an	 electric	 field	 of
appropriate	frequency	can	couple	strongly	to	these	modes.	To	investigate	this	coupling	and
its	effect	on	the	dielectric	properties	of	ionic	crystals	we	must	insert	the	electric	field	in	the
equations	of	motion	of	 the	 ions.	We	will	 find	 that	 there	 is	 a	 contribution	 to	 the	 electric
field	from	the	ionic	displacements,	which	enables	us	to	take	into	account	the	long	range	of
the	Coulomb	force	between	the	ions	that	we	ignored	in	section	2.3.2;	the	existence	of	this
contribution	modifies	strongly	the	frequency	of	the	longitudinal	optical	modes.

Coupling	 of	 the	 electric	 field	 to	 transverse	 optical	 lattice	 modes	 also	 affects	 the
propagation	of	electromagnetic	waves	in	an	ionic	crystal.	The	dispersion	relations	for	light
and	lattice	vibrations	in	the	absence	of	coupling	are	shown	in	Fig.	9.7.	Since	the	velocity
of	light	exceeds	that	of	sound	by	a	factor	of	order	105,	 the	intersection	of	 the	dispersion
relation	for	light	and	that	for	the	optical	modes	of	the	lattice,	indicated	by	point	A	on	Fig.
9.7,	 occurs	 at	 a	 very	 small	 wavenumber	 (wavelength	 long	 compared	 to	 the	 atomic
spacing).	 The	 coincidence	 of	 both	 frequency	 and	 wavelength	 at	 this	 point	 provides
essentially	 a	 resonance	 condition,	 which	 produces	 profound	 changes	 to	 the	 dispersion
curves	of	the	electromagnetic	wave	and	the	transverse	optical	modes.

Consider	 first	 the	 one-dimensional	 ionic	 crystal	 of	 Fig.	 2.6.	 We	 now	 modify	 the
equations	of	motion,	Eqs.	 (2.15)	 and	 (2.16),	 of	 the	 ions	 to	 allow	 for	 the	presence	of	 an
electric	field	E.	Since	we	are	interested	in	optical	modes	in	the	long-wavelength	limit	we
will	 approximate	 the	 terms	 representing	 the	 interaction	of	an	 ion	with	 its	neighbours	by
assuming	that	both	nearest	neighbours	have	the	same	displacement.	The	main	effect	of	this
approximation	is	to	eliminate	the	k	dependence	of	the	optical	mode	frequency	in	Fig.	9.7.
Thus,	taking	u+	and	u−	to	represent	the	local	displacements	of	positive	and	negative	ions,
Eqs.	(2.15)	and	(2.16)	become

Fig.	9.7	Dispersion	relations	near	k	=	0	for	uncoupled	atomic	vibrations	and	light	in	a
diatomic	crystal



(9.29)	

We	have	taken	the	positive	and	negative	ions	to	have	masses	M	and	m	respectively	and
the	final	terms	on	the	right-hand	sides	are	the	forces	exerted	by	the	electric	field	on	ions	of
charge	±e.	 If	we	subtract	M	 /(M	 +	m)	 times	 the	 second	of	Eqs.	 (9.29)	 from	m/(M	 +	m)
times	the	first	we	obtain	a	single	equation	for	the	relative	displacement	w	=	u+	−	u−:

(9.30)	

Here	M*	=	mM/(M	+	m)	 is	 the	reduced	mass	and	ω0	=	(2K/M*)1/2	 is	 the	optical	mode
frequency	at	k	=	0	as	calculated	in	section	2.3.2	using	the	assumption	of	short-range	forces
only.	We	have	written	w	and	E	as	vectors	because	we	wish	to	apply	Eq.	(9.30)	to	a	three-
dimensional	 crystal	 in	 order	 to	 discuss	 both	 longitudinal	 and	 transverse	 modes.	 In	 our
generalization	to	three	dimensions	we	assume	that	the	interaction	of	an	ion	with	its	nearest
neighbours	 can	 be	 described	 by	 an	 isotropic	 spring	 constant	 K;	 this	 means	 that	 the
transverse	and	longitudinal	optical	modes	are	degenerate	in	the	absence	of	the	field	E.

By	setting	 	=	0,	Eq.	 (9.30)	gives	 the	relative	displacement	of	 the	 ions	due	 to	a	static
electric	field	as

(9.31)	

Displacement	of	the	ions	causes	an	electric	polarization

(9.32)	

which	on	inserting	Eq.	(9.31)	becomes

(9.33)	

N	 is	 the	 density	 of	 the	 positive	 ions	 in	 the	 crystal	 and	 the	 term	 [ε(∞)	 −	 l]ε0	E	 is	 the
contribution	to	P	from	the	polarization	of	the	electron	clouds	on	each	ion	by	the	electric
field	 as	 discussed	 in	 section	 9.1.2;	 the	 notation	 ε(∞)	 indicates	 that	 this	 contribution



determines	the	dielectric	constant	ε(ω)	at	frequencies	large	compared	to	those	of	the	lattice
vibrations.	Eq.	 (9.33)	allows	us	 to	 identify	 the	contribution	of	 ionic	displacement	 to	 the
static	dielectric	constant	ε(0),

(9.34)	

and	thus	to	write	Eq.	(9.30)	as

(9.35)	

Note	that	in	this	section	we	are	ignoring	the	distinction	between	the	local	electrical	field
EL	at	the	positions	of	the	ions	and	the	macroscopic	electric	field	E.	Equations	of	the	form
of	(9.29)	are	still	valid	when	E	is	the	macroscopic	field	rather	than	the	local	field,	but	the
effective	values	of	the	spring	constant	K	and	the	charge	e	on	the	ions	are	modified	slightly.
The	 important	 results	 of	 our	 calculation,	 Eqs.	 (9.40),	 (9.42),	 (9.43)	 and	 (9.44),	 are
unaffected	by	this	approximation.

The	electromagnetic	fields	inside	the	crystal	are	related	by	Maxwell’s	equations:

(9.36)	

Taking	the	curl	of	the	first	of	Eqs.	(9.36)	and	the	time	derivative	of	the	second	enables
us	to	eliminate	B	between	them.	Then,	using	Eq.	(9.32)	to	eliminate	P,	we	obtain

(9.37)	

where	 c	 =	 (ε0μ0)−1/2	 is	 the	 velocity	 of	 light	 in	 free	 space.	 Eqs.	 (9.35)	 and	 (9.37)	 are
coupled	 equations	 for	 the	 electric	 field	 E	 and	 the	 relative	 ionic	 displacement	 w;	 the
coupling	is	through	the	second	terms	on	the	right-hand	side	of	each	equation,	and	in	the
absence	of	these	terms	the	equations	lead	to	the	dispersion	relations	shown	on	Fig.	9.7	for
the	 optical	 mode	 and	 light	 wave	 respectively.	 The	 nature	 of	 the	 coupling	 is	 such	 that
transverse	 and	 longitudinal	 lattice	 vibrations	 couple	 only	 to	 transverse	 and	 longitudinal
electric	field	waves	respectively.

We	 consider	 first	 the	 case	 of	 longitudinal	 lattice	 vibrations	 and	 the	 associated
longitudinal	 electric	 field	wave.	Since	 curl	E	 =	 0	 for	 a	 longitudinal	 electric	 field	wave,
there	 is	 no	 magnetic	 field	 associated	 with	 such	 a	 wave	 and	 no	 corresponding
electromagnetic	wave	in	free	space.	From	the	second	of	Eqs.	(9.36)	we	deduce	D	=	ε0E	+
P	=	0	for	a	longitudinal	wave	and	hence	Eq.	(9.32)	becomes

(9.38)	

Using	this	to	eliminate	E	from	Eq.	(9.35)	gives	the	following	equation	for	w:

(9.39)	



This	is	a	simple	harmonic	oscillator	equation	predicting	an	angular	frequency

(9.40)	

for	 the	 long-wavelength	 longitudinal	 optical	modes.	The	 effect	 of	 the	 long	 range	of	 the
Coulomb	field	is	therefore	to	change	the	frequency	by	a	factor	[ε(0)/ε(∞)]1/2.	The	second
term	in	the	brackets	in	Eq.	(9.39)	provides	the	modification	of	the	longitudinal	optic	mode
frequency	due	to	the	electric	field	of	distant	ions.	To	see	this	we	identify	the	electric	field
associated	with	this	term	from	Eq.	(9.38);	taking	the	divergence	of	Eq.	(9.38)	gives

which	 is	Gauss’	 law	for	 the	electric	 field	due	 to	a	charge	density	−div	 (New).	Recalling
that	−div	P	is	the	charge	density	equivalent	to	a	polarization	P,	we	deduce	from	Eq.	(9.32)
that	−div	(New)	is	the	charge	density	associated	with	the	ionic	displacements.

We	now	consider	transverse	waves,	for	which	div	E	=	0,	so	that	curl	curl	E	=	−∇2E.	For
a	transverse	wave	in	the	x	direction	Eq.	(9.37)	becomes

(9.41)	

If	we	now	try	a	solution

Eq.	(9.41)	gives

and	Eq.	(9.35)	becomes

Solving	these	equations	we	find	the	dispersion	relation

(9.42)	

for	transverse	waves,	which	is	sketched	in	Fig.	9.8,	together	with	that	of	the	longitudinal
mode	 we	 have	 already	 discussed.	 The	 general	 form	 of	 the	 dispersion	 curve	 is	 easily
obtained	by	noting	the	following	limits:

Fig.	9.8	The	effect	of	the	coupling	of	lattice	vibrations	to	an	electric	field	on	the	dispersion
relations	in	an	ionic	crystal	(–-)	longitudinal	mode;	(—)	transverse	modes



The	coupling	of	 the	 transverse	optical	modes	 to	 the	electric	field	has	produced	a	 large
change	 in	 the	 dispersion	 relations	 at	 long	wavelength;	 along	 each	of	 the	 two	 transverse
branches	of	the	dispersion	relation	the	motions	change	smoothly	from	being	purely	lattice
vibrations	 at	 one	 end	 to	 purely	 electromagnetic	 waves	 at	 the	 other.	 In	 the	 changeover
region	the	quantum	associated	with	the	motions	must	be	seen	as	a	linear	combination	of	a
photon	and	a	transverse	optical	phonon;	this	entity	is	called	a	polariton.	Polaritons	have
been	detected	by	Raman	effect	experiments	in	which	the	momentum	and	energy	change
of	 photons	 inelastically	 scattered	 by	 the	 crystal	 are	 measured	 and	 used	 to	 deduce	 the
energy–momentum	relation	of	the	excitations	within	it.

The	dispersion	 relation	can	also	be	observed	 through	 its	effect	on	 the	 refractive	 index
and	dielectric	constant,	the	predicted	values	of	which,	from	Eqs.	(9.10),	(9.11)	and	(9.42),
are

(9.43)	

Note	 that	Eq.	 (9.43)	has	 the	appropriate	values,	ε(0)	and	ε(∞),	as	ω	→	0	and	ω	→	∞
respectively.	 Note	 also	 that	 ε	 (ω)	→	∞	 as	ω	→	ω0	 and	 ε	 (ω)	→	 0	 as	ω	 tends	 to	 the
longitudinal	 optic	 mode	 frequency	 ωL	 of	 Eq.	 (9.40).	 Fig.	 9.9(a)	 shows	 the	 measured
refractive	index	of	LiF	as	a	function	of	wavelength.	The	predicted	divergence	of	n(ω)	at
ω0	is	clearly	seen;	the	rapidly	varying	refractive	index	near	this	frequency	is	made	use	of
in	 constructing	 prisms	 for	 infrared	 spectroscopy.	 The	 variation	 of	 n(ω)	 is	 the	 typical
anomalous	dispersion	associated	with	resonance	absorption	at	ω0	(compare	Fig.	9.3).	Our
model	contains	no	damping	and	thus	does	not	predict	the	absorption,	which	is	a	quantum
process	in	which	a	photon	is	absorbed	and	its	energy	transferred	to	the	lattice	vibrations.	It
is	apparent	from	Fig.	9.9(a)	 that	 the	dielectric	constant	for	ω	 	ω0	exceeds	 that	 for	ω	
ω0;	the	difference	according	to	the	theory	we	have	outlined	is	the	contribution	of	the	ionic



motion.

The	 further	 rise	 in	 refractive	 index	 at	 the	 left	 of	 Fig.	 9.9(a)	 heralds	 the	 approach	 of
absorption	associated	with	the	electronic	energy	levels	of	an	individual	ion	as	discussed	in
section	 9.1.2.	 Comparison	 of	 Figs.	 9.9(a)	 and	 9.3	 shows	 a	 strong	 qualitative	 similarity
between	 the	 frequency	 dependence	 for	 the	 contributions	 to	 the	 dielectric	 constant	 from
relative	 ionic	motion	 (an	 inter-ionic	 effect)	 and	 relative	motion	 of	 electrons	 and	 nuclei
inside	each	ion	(an	 intra-ionic	effect).	The	frequency	ranges	are	however	very	different;
the	former	contribution	to	ε′	normally	disappears	at	frequencies	in	the	infrared	region	of
the	spectrum	whereas	the	latter	does	so	in	the	ultraviolet	or	long-wavelength	x-ray	region.

Fig.	9.9

No	values	of	the	refractive	index	are	shown	in	Fig.	9.9(a)	for	the	frequency	range	ω0	<
ω	<	ωL,	where	ωL	is	the	frequency	of	the	longitudinal	optical	mode	given	by	Eq.	 (9.40).
In	this	region	we	have	k2	<	0	so	that	k	and	hence	n(ω)	are	imaginary;	this	means	that	no
wave	can	propagate.	Instead	there	is	an	evanescent	wave	 that	decays	exponentially	as	 it
goes	 into	 the	 crystal	 and	 there	 is	 total	 external	 reflection	 of	 radiation	 incident	 on	 the
crystal	 from	 outside.	 Fig.	 9.9(b)	 shows	 that	 measurements	 of	 reflection	 coefficient	 for
NaCl	 bear	 this	 out	 qualitatively,	 but	 the	 reflection	 is	 never	 total.	 This	 is	 another
consequence	of	our	neglect	of	damping;	 there	 is	no	 transmission	 through	a	crystal	more
than	a	few	wavelengths	thick	in	this	frequency	range,	but	some	of	the	energy	is	absorbed
rather	than	reflected.	Reflection	from	ionic	crystals	is	a	useful	way	of	selecting	a	band	of
wavelengths	of	infrared	radiation;	the	selected	radiation	is	known	as	Reststrahlen	(residual
waves).



Provided	the	wavenumber	is	not	so	small	as	to	take	us	into	the	polariton	region	of	the
dispersion	curve	of	Fig.	9.8	we	see	 that	 the	frequencies	of	 long-wavelength	 longitudinal
and	transverse	optical	vibrations	are	related	by

(9.44)	

This	 is	 the	Lyddane–Sachs–Teller	 (LST)	 relationship,	 which	 is	 rather	 more	 general
than	our	derivation	would	 suggest.	 It	 shows	 that	 the	 relationship	between	ωL	 and	ωT	 is
determined	only	by	the	macroscopic	dielectric	constant.

In	 section	 2.7.1	we	 explained	 that	 anharmonic	 effects	 cause	 the	 frequencies	 of	 lattice
vibration	modes	to	vary	with	temperature	and	that	a	displacive	phase	transition	can	occur
when	 the	 frequency	of	a	 transverse	optic	mode	of	 infinite	wavelength	goes	 to	zero.	The
Lyddane–Sachs–Teller	relation	predicts	that	the	disappearance	of	the	frequency	of	the	soft
mode	will	 be	 accompanied	 by	 a	 divergence	 of	 the	 static	 dielectric	 constant,	 ε(0)	→	∞.
Essentially	the	anharmonicity	causes	the	effective	spring	constant	K	in	Eq.	(9.29)	to	vanish
at	the	critical	temperature;	the	results	ε(0)	→	∞	and	ωT	→	0	follow	directly	from	this.

9.2	PYROELECTRIC	MATERIALS
Pyroelectric	 materials	 possess	 an	 electric	 polarization	 in	 the	 absence	 of	 an	 applied

electric	field.	Each	primitive	unit	cell	has	a	dipole	moment	associated	with	it.	The	prefix
pyro-	 comes	 from	 the	 Greek	 word	 for	 fire	 and	 is	 used	 in	 this	 context	 because	 a
macroscopic	dipole	moment	is	only	seen	when	the	material	is	heated;	the	dipole	moment
is	 normally	 neutralized	 by	 ions	 and	 electrons	 that	 collect	 on	 the	 surface	 of	 the	 sample.
Heating	removes	some	of	the	surface	charges	and	also	causes	the	volume	polarization	to
change	so	 that	 the	masking	 is	no	 longer	complete.	The	macroscopic	dipole	moment	can
also	 be	 small	 because	 of	 the	 existence	 of	 domains	 in	 the	material	 in	 each	of	which	 the
polarization	is	in	a	different	direction.

Ferroelectric	 materials	 are	 pyroelectric	 only	 below	 a	 certain	 temperature,	 which	 is
characteristic	of	the	material.	They	are	so	called	because	they	are	the	electrical	analogues
of	 ferromagnets,	 not	 because	 they	 are	 associated	with	 iron.	 Ferroelectric	 transitions	 can
arise	in	a	number	of	different	ways.	One	possibility	occurs	in	molecular	solids	containing
polar	molecules	that	are	able	to	rotate	at	high	temperatures	(see	section	9.1.3);	if	rotation
ceases	 on	 cooling	 the	 dipole	 moments	 can	 align	 to	 give	 a	 spontaneous	 electric
polarization.	 Ferroelectricity	 can	 also	 arise	 as	 a	 result	 of	 a	 displacive	 phase	 transition
(section	2.7.1);	the	ferroelectricity	of	barium	titanate	(BaTiO3),	which	occurs	through	this
mechanism,	 is	 illustrated	 in	 Fig.	 9.10.	 Above	 120°C	 BaTiO3	 has	 the	 cubic	 perovskite
structure	 and	 is	 paraelectric;	 below	 this	 temperature	 the	 structure	 distorts	 and	 becomes
tetragonal	(a	=	b	≠	c,	α	=	β	=	γ	=	90°)	due	to	a	relative	displacement	of	the	positive	(Ba2+

and	Ti4+)	and	negative	(O2−)	ions	along	the	[0	0	1]	direction†	as	indicated	in	the	figure.	As
the	displacement	grows	so	does	the	associated	spontaneous	electric	polarization	along	the
[0	 0	 1]	 direction.	 At	 lower	 temperatures,	 BaTiO3	 undergoes	 further	 displacive	 phase



transitions	 to	 structures	 of	 even	 lower	 symmetry;	 below	−5°C	 it	 becomes	orthorhombic
with	 polarization	 along	 the	 [0	 1	 1]	 direction	 of	 the	 original	 cube	 and	 below	 −	 90°C	 it
becomes	 rhombohedral	 with	 polarization	 along	 [1	 1	 1].	 In	 the	 following	 section	 we
describe	 a	 simple	model	 that	 reproduces	many	 of	 the	 observed	 features	 of	 ferroelectric
phase	transitions.

Fig.	9.10	The	cubic	perovskite	structure	of	BaTiO3	above	120°C.	Below	120°C	a
displacive	phase	transition	occurs	to	a	structure	of	tetragonal	symmetry	(a	=	b	≠	c,	α	=	β	=
γ	=	90°).	The	arrows	indicate	the	relative	sizes	and	directions	of	the	displacement	of	the
ions	along	the	z	direction;	the	oxygen	ions	at	z	=	c/2	are	taken	as	fixed.	The	crystal	also
shrinks	slightly	in	the	xy	plane.	The	displacement	of	positive	and	negative	ions	in	opposite
directions	is	responsible	for	the	spontaneous	polarization

9.2.1	The	Landau	model
Close	 to	 the	 transition	 the	 spontaneous	 polarization	 P	 is	 often	 small	 and	 the	 basic

assumption	of	the	Landau	model	is	that	under	these	circumstances	it	is	possible	to	expand
the	energy	density	of	the	material	as	a	power	series	in	P‡

(9.45)	

where	F0,	α	and	β	are	temperature-dependent	coefficients.	Only	even	powers	of	P	need	be
included	if	the	crystal	has	a	centre	of	symmetry	in	the	unpolarized	state	(P	=	0);	the	energy
density	must	 then	be	 invariant	under	 the	 change	P	→	−P.We	will	 assume	 that	 terms	of
order	higher	 than	P4	 in	 the	expansion	can	be	neglected	 (but	 see	problem	9.6).	This	will
only	be	the	case	if	β	>	0,	otherwise	the	minimum	of	F	will	correspond	to	P	→	±	∞,	which
is	unphysical.

The	form	of	F	as	a	function	of	P	for	positive	and	negative	α	is	shown	in	Fig.	9.11.	For



positive	α,	F	 takes	 its	minimum	value	 for	P	 =	 0,	whereas	 for	 negative	α,	 the	minimum
occurs	at	a	finite	value	of	P.	Thus,	if	we	assume	that	the	value	of	P	in	the	equilibrium	state
is	 that	 which	 minimizes	 F,then	 a	 transition	 to	 a	 ferroelectric	 state	 will	 occur	 at	 the
temperature	 TC	at	 which	 a	 decreases	 through	 zero.	We	 are	 interested	 in	 the	 behaviour
close	to	this	temperature	and	will	therefore	assume	that	the	temperature	dependences	of	α
and	 β	 can	 be	 adequately	 represented	 by	 the	 lowest-order	 terms	 in	 their	 Taylor	 series
expansion	about	T	=	TC:

(9.46)	

where	a	 and	b	 are	constants.	The	 term	 independent	of	T	 −	TC	 in	α	 is	 absent	 because	α
vanishes	at	T	=	TC.	According	to	our	discussion	above	b	is	positive	and,	if	the	ferroelectric
state	is	to	be	the	stable	one	below	TC,	then	a	is	positive	also.

Fig.	9.11	Effect	of	the	change	of	sign	of	α	on	the	Landau	energy	density

The	 spontaneous	 polarization	PS	 is	 obtained	by	 explicit	minimization	 of	F.	 From	Eq.
(9.45),

(9.47)	

where	we	have	used	Eqs.	(9.46).	Our	calculation	thus	predicts	a	spontaneous	polarization
growing	as	(TC	−	T)1/2	as	T	falls	below	TC.	Since	PS	 increases	continuously	from	zero	a
second-order	 phase	 transition	 is	 predicted.	 Note	 however	 that	 the	 ferroelectric	 phase
transition	at	120°C	in	BaTiO3	is	first	order	(see	problem	9.6).

The	Landau	model	can	be	used	to	predict	the	behaviour	of	the	susceptibility	above	TC	if
we	add	to	Eq.	(9.45)	the	interaction	energy	density	−EP	of	the	polarization	with	an	applied
field	E.	Above	the	transition,	in	weak	fields,	P	is	small	and	the	quartic	term	in	Eq.	(9.45)
can	be	ignored.	Minimization	of	the	energy	density	then	gives



from	which	the	susceptibility	can	be	identified	by	comparison	with	Eq.	(9.1)	as

(9.48)	

This	is	the	electrical	equivalent	of	the	Curie–Weiss	law	in	magnetism	(Eq.	(8.9)).

From	 Eq.	 (9.48)	 we	 see	 that	 the	 static	 susceptibility	 and	 hence	 dielectric	 constant
diverge	 as	 T	 →	 TC.	 The	 divergence	 of	 the	 dielectric	 constant	 at	 a	 displacive	 phase
transition	 has	 already	 been	 noted	 in	 section	 9.1.4.	We	 saw	 there	 that	 the	 transition	was
associated	with	 the	 vanishing	 of	 the	 frequency	of	 a	 transverse	 optic	mode	 in	 the	 lattice
vibration	spectrum,	and	this	implied	a	divergent	dielectric	constant	through	the	Lyddane–
Sachs–Teller	 equation,	 Eq.	 (9.44).	 The	 mode	 associated	 with	 the	 displacive	 phase
transformation	 in	 the	 perovskite	 structure	 can	 be	 directly	 observed	 by	 inelastic	 neutron
scattering	 measurements	 of	 the	 lattice	 vibration	 frequencies.	 Fig.	 9.12	 shows	 such
measurements	for	SrTiO3	as	a	function	of	temperature.

The	above	model	of	ferroelectricity,	like	the	Weiss	model	of	ferromagnetism,	is	a	mean
field	 theory.	 The	 polarization	 is	 assumed	 to	 be	 constant	 and	 equal	 to	 the	 value	 that
minimizes	the	energy	density.	Fluctuations	of	the	free	energy	about	this	value	are	ignored.
However,	such	fluctuations	are	large	near	a	second-order	phase	transition	and	modify	the
temperature	dependences	in	Eqs.	(9.47)	and	(9.48)	just	as	in	the	corresponding	equations
in	ferromagnetism	(see	section	8.3.2).

9.3	PIEZOELECTRICITY
In	piezoelectric	materials	the	polarization	is	changed	by	applying	a	stress	as	well	as	by

changing	 the	 electric	 field;	 for	 small	 stresses	 the	 polarization	 depends	 linearly	 on	 the
stress.	Conversely,	in	these	materials	the	application	of	an	electric	field	causes	a	strain.	All
ferroelectric	 materials	 are	 piezoelectric	 but	 the	 converse	 is	 not	 true;	 quartz	 is	 the	 best
known	example	of	a	material	that	is	piezoelectric	but	not	ferroelectric.	Fig.	9.13	illustrates
the	way	 in	which	 a	 uniaxial	 stress	 can	 produce	 a	 dipole	moment	 in	 a	molecule	with	 a
symmetry	that	implies	zero	dipole	moment	in	the	absence	of	stress.	It	is	essential	that	the
molecule	 should	 not	 possess	 a	 centre	 of	 symmetry	 and	 this	 is	 also	 a	 restriction	 on	 the
crystal	structures	that	can	exhibit	piezoelectricity.

Fig.	9.12	The	circles	and	triangles	show	inelastic	neutron	scattering	measurements	of	the
temperature	dependence	of	the	frequency	of	the	soft	mode	associated	with	the	displacive
phase	transition	in	SrTiO3.	TC	is	the	temperature	at	which	the	transition	occurs.	The	full
curve	is	theoretical.	(Reproduced	with	permission	from	J.	Feder	and	E.	Pytte,	Phys.	Rev.	B
1,	4803	(1970))



Fig.	9.13	Illustration	of	the	way	in	which	a	molecule	can	obtain	a	dipole	moment	as	a
result	of	uniaxial	strain

Piezoelectric	 materials	 are	 widely	 used	 as	 transducers	 for	 the	 interconversion	 of
electrical	 and	 mechanical	 energy.	 Important	 applications	 include	 the	 generation	 and
detection	 of	 ultrasonic	 waves,	 the	 electrical	 control	 of	 small	 displacements	 (in	 optical
systems	 and	 in	 the	 scanning	 tunnelling	 microscope,	 for	 example)	 and	 surface	 acoustic
wave	(SAW)	devices.

The	 behaviour	 of	 piezoelectrics	 is	 described	 by	 equations	 giving	 the	 strain	 e	 and
polarization	P	produced	by	simultaneously	applied	stress	Z	and	electric	field	E.	These	are
of	the	form

(9.49)	

where	d,	χ	and	s	are	the	piezoelectric	constant,	susceptibility	and	elastic	compliance	of	the
material.	 Note	 that	 the	 polarization	 produced	 by	 a	 stress	 is	 described	 by	 the	 same
coefficient	d	as	the	strain	produced	by	an	electric	field.	The	strength	and	direction	of	the
polarization	 induced	 by	 a	 stress	 depend	 on	 the	 type	 and	 direction	 of	 the	 stress;	 the
coefficient	d	is	therefore	tensorial	in	nature.	For	example,	three	components,	d13,	d33	and
d15,	 are	 required	 to	 specify	 completely	 the	 piezoelectric	 properties	 of	 ferroelectric
tetragonal	 BaTiO3;	 their	 values	 at	 25°C	 are	 quoted	 in	 Fig.	 9.14	 where	 the	 polarization
associated	 with	 some	 specific	 stress	 geometries	 is	 indicated.	 For	 an	 explanation	 of	 the
notation	 see	Crystal	 Symmetry	 and	 Physical	 Properties	 by	 S.	 Bhagavantam,	 Academic
Press,	London	(1966).	Values	of	d	 for	non-ferroelectric	piezoelectrics	such	as	quartz	are



typically	smaller	by	a	factor	of	100.

Fig.	9.14	Changes	in	the	electric	polarization	of	tetragonal	ferroelectric	BaTiO3	due	to:	(a)
uniaxial	stress	along	z;	(b)	uniaxial	stress	along	x;	(c)	shearing	stress	in	the	xz	plane.	The
stress	Z	is	the	applied	force	per	unit	area	in	each	case.	The	values	of	the	coefficients	at
25°C	in	10−10	m	V−1	are	d13	=	−0.35,	d33	=	0.86	and	d15	=	3.92

PROBLEMS	9
(9.1)	Show	that	if	n(ω)	is	defined	by	Eq.	(9.10)	and	ε(ω)	by	Eqs.	(9.1)	and	(9.2),	then
n(ω)	=	[ε(ω)]1/2.	Show	that	the	energy	of	a	wave	travelling	through	a	solid	decays	by
a	factor	e	in	a	distance

(9.2)	Show	that	the	group	and	phase	velocities,	νg	and	νp,	for	short-wavelength	x-rays
in	solids	satisfy	νg	νp	=	c2.

(9.3)	Compare	 ω0,	where	ω0	is	given	by	Eq.	(9.18),	with	the	Bohr	theory	result	for
the	binding	energy	of	an	electron	to	a	nucleus	of	charge	Ze.

(9.4)	 Use	 the	 data	 of	 Fig.	 9.6	 to	 estimate	 the	 relaxation	 time,	 as	 a	 function	 of
temperature,	 for	 the	 rotation	 of	 the	 molecules	 in	 ice.	 Show	 that	 the	 temperature
dependence	is	consistent	with	τ	=	τ0	exp(T0	/T)	and	find	values	for	τ0	and	T0.	What	is
the	physical	basis	for	a	temperature	dependence	of	this	kind?

(9.5)	 NaCl	 has	 unit	 cell	 side	 5.6	 Å,	 static	 dielectric	 constant	 5.89	 and	 Young’s
modulus	in	the	[1	0	0]	direction	5	×	1010	Nm−	2.	Estimate	 the	frequency	range	over
which	electromagnetic	radiation	is	strongly	reflected	by	a	NaCl	crystal	and	compare
your	answers	with	the	experimental	data	of	Fig.	9.9(b).

(9.6)	 The	 ferroelectric	 transition	 at	 120°C	 in	 BaTiO3	 is	 first	 order;	 PS	 jumps
discontinuously	at	TC	to	a	finite	value.	Show	that	such	behaviour	can	be	predicted	by
a	Landau	model	in	which	terms	up	to	sixth	order	in	P	are	included	in	the	free	energy
density:



By	 drawing	 graphs,	 as	 in	 Fig.	 9.11,	 deduce	 appropriate	 signs	 for	 the	 coefficients.
Evaluate	PS	at	T	=	TC.

†	The	response	of	a	conducting	material	to	a	low-frequency	electric	field	is	dominated
by	the	mobile	charge	carriers	(see	section	13.6).

†	We	assume	that	the	solid	is	non-magnetic,	μ	=	1.

‡	Further	information	on	the	application	of	solid	state	physics	to	non-linear	optics	can
be	found	in	Dalven.13

§	Exactly	the	same	order	of	magnitude	estimate	of	the	polarizability	is	obtained	if	 the
atom	 is	 regarded	as	behaving	 like	a	perfectly	conducting	sphere	of	 radius	r.	We	have
divided	 by	 4πε0	 because	 this	 gives	 values	 for	 the	 polarizability	 in	 m3	 that	 can	 be
compared	directly	with	cgs	values	quoted	in	cm3.

†	The	Clausius–Mossotti	result	cannot	be	applied	to	ice	since	the	molecules	are	not	in
positions	of	cubic	symmetry.

†	 Because	 of	 the	 cubic	 symmetry	 the	 spontaneous	 displacement	 is	 equally	 likely	 to
occur	along	the	[1	0	0]	or	[0	1	0]	directions.	In	practice	a	single	crystal	often	becomes
divided	 into	 a	 number	 of	 domains,	 each	 containing	 one	 of	 the	 possible	 polarization
directions.	 The	 presence	 of	 an	 electric	 field	 on	 cooling	 through	 the	 transition	 can
produce	a	single-domain	ferroelectric.

‡	 See	 Landau	 and	 Lifshitz,	 Statistical	 Physics,	 Chapter	 14	 for	 a	 discussion	 of	 this
expansion,	which	can	also	be	applied	to	other	types	of	phase	transition.



CHAPTER	10

Superconductivity

My	own	beliefs	are	that	the	road	to	a	scientific	discovery	is	seldom	direct	and	it
does	not	necessarily	require	great	expertise.	In	fact	I	am	convinced	that	often	a
newcomer	 to	a	 field	has	a	great	advantage	because	he	 is	 ignorant	and	does	not
know	all	the	reasons	why	a	particular	experiment	should	not	be	attempted.—Ivar
Giaever	 (discoverer	 of	 tunnelling	 between	 superconductors),	 Nobel	 prize	 address,
1973

10.1	INTRODUCTION
Superconductivity	was	discovered	by	H.	Kamerlingh	Onnes	in	1911,	three	years	after	his
first	 liquefaction	of	helium.	The	availability	of	 this	 liquid	enabled	him	to	 investigate	 the
electrical	 resistance	 of	metals	 at	 low	 temperatues.	 He	 chose	mercury	 for	 study	 since	 it
could	 be	 readily	 purified	 by	 distillation	 and	 there	was	 speculation	 at	 that	 time	 that	 the
resistance	of	very	pure	metals	might	tend	to	zero	at	T	=	0.	As	can	be	seen	from	Fig.	10.1.
the	observed	behaviour	was	much	more	dramatic	than	this;	an	abrupt	transition	to	a	state
of	apparently	zero	resistance	occurs	at	a	temperature	of	about	4.2	K.	Onnes	described	the
new	state	as	 the	 superconducting	state,	 and	 it	was	quickly	established	 that	 there	was	no
essential	 connection	with	 high	 purity;	 adding	 substantial	 amounts	 of	 impurity	 often	 has
little	effect	on	the	superconducting	transition,	although	the	resistance	of	the	normal	state
(Section	3.3.2)	is	increased	considerably.

Subsequently	many	metals	 and	 alloys	 have	 been	 shown	 to	 become	 superconducting.†
The	superconducting	transition	can	be	very	sharp,	with	a	width	of	less	than	10−3	K	in	well
annealed	 single	 crystals	 of	 a	metal	 such	 as	 tin.	 The	 element	with	 the	 highest	 transition
temperature,	Tc	=	9.2	K,	is	niobium	(Nb).	The	search	for	materials	with	higher	transition
temperatures	led	to	the	investigation	of	alloys	and	compounds.	In	1972	Nb3Ge	was	found
to	 have	 a	 Tc	 of	 23	 K.	 For	 the	 next	 14	 years	 this	 remained	 the	 record	 Tc	 and	 many
researchers	were	misled,	with	 some	 theoretical	 justification,	 into	believing	 that	 it	would
not	be	possible	to	find	materials	with	significantly	higher	transition	temperatures.	In	1986
there	was	a	dramatic	breakthrough	when	Bednorz	 and	Muller	 found	 that	La2−xBaxCuO4
had	a	Tc	of	about	35	K	for	x	≈	0.15.	This	discovery	was	followed	by	a	frenetic	search	for
other	materials.	 In	1987	YBa2Cu3O7−δ	 (δ	≈	0.1)	was	found	 to	have	a	Tc	of	92	K	and	 in
1988	Bi2Sr3−xCaxCu2O8+δ	(x	 	1)	raised	Tc	to	110	K.	At	the	time	at	which	this	book	was
written	Tl2Ba2Ca2Cu3O10,	 also	discovered	 in	1988,	has	 the	highest	known	Tc	of	125	K.
These	new	high-temperature	superconductors	are	discussed	further	in	Section	10.6.



Fig.	10.1	Superconducting	transition	of	mercury.	(After	H.	Kamerlingh	Onnes,	Leiden
Commun.	124c	(1911))

No	 one	 has	 succeeded	 in	 measuring	 a	 finite	 resistance	 to	 small	 currents	 in	 the
superconducting	 state.	 The	most	 sensitive	method	 for	 detecting	 a	 small	 resistance	 is	 to
look	for	the	decay	of	a	current	around	a	closed	superconducting	loop.	If	the	resistance	of
the	loop	is	R	and	the	self-inductance	L	then	the	current	should	decay	with	time	constant	τ
=	L/R.	Failure	to	observe	the	decay	of	a	persistent	current	has	enabled	an	upper	limit	of
about	10−26	Ω	m	to	be	put	on	the	resistivity	of	superconductors	as	compared	to	a	value	of
order	10−8	Ω	m	for	copper	at	room	temperature	(problem	10.1).

10.2	MAGNETIC	PROPERTIES	OF
SUPERCONDUCTORS
10.2.1	Type	I	superconductors
Superconductors	divide	into	two	classes	according	to	their	behaviour	in	a	magnetic	field.
In	 this	 section	 we	 describe	 the	 simpler	 behaviour	 of	 type	 I	 superconductors	 and	 in
Section	 10.2.3	 that	 of	 type	 II	 superconductors.	 All	 pure	 samples	 of	 superconducting
elements,	except	Nb,	exhibit	type	I	behaviour	and	their	superconductivity	is	destroyed	by
a	modest	applied	magnetic	field	Bc,	known	as	the	critical	field.	Bc	is	shown	as	a	function
of	 temperature	 for	 mercury	 in	 Fig.	 10.2.	 To	 a	 good	 approximation	 the	 temperature
dependence	of	Bc	is

(10.1)	

It	 follows	 from	 the	 existence	of	 a	 critical	 field	 that	 there	will	 be	 a	 critical	 current	 for
flow	along	a	wire,	which	occurs	when	the	field	due	to	the	current	equals	Bc;	this	is	known
as	the	Silsbee	hypothesis.

In	1933,	Meissner	 and	Ochsenfeld	 investigated	 the	variation	 in	 space	of	 the	magnetic



field	in	the	neighbourhood	of	a	superconductor	and	discovered	that	 the	field	distribution
was	consistent	with	the	field	inside	the	superconductor	being	zero.	This	exclusion	of	the
magnetic	 flux	 from	 the	 superconductor	 is	 known	 as	 the	Meissner	 effect	 and	 is	 due	 to
electric	 currents,	 known	 as	 screening	 currents,	 flowing	 on	 the	 surface	 of	 the
superconductor	in	such	a	way	as	to	generate	a	field	equal	and	opposite	to	the	applied	field.
The	expulsion	of	 the	 flux	when	 the	 field	 is	 reduced	below	Bc	at	constant	 temperature	 is
illustrated	in	Fig.	10.3	for	a	sample	in	the	form	of	a	long	cylinder;	expulsion	also	occurs	if
the	 sample	 is	 cooled	 into	 the	 superconducting	 state	 in	 a	 steady	 applied	 field.	 For	many
purposes	we	can	take	account	of	the	Meissner	effect	by	regarding	the	superconductor	as	a
magnetic	 material	 in	 which	 the	 screening	 currents	 are	 replaced	 by	 an	 equivalent
magnetization;	since	we	require	B	=	μ0(H	+	M)	=	0	we	must	have

(10.2)	

Fig.	10.2	Critical	field	curve	of	mercury

Fig.	10.3	Expulsion	of	flux	by	a	long	superconducting	cylinder	when	the	field	is	reduced
below	Bc.	In	equilibrium	there	is	no	trapped	flux

Comparison	of	Eq.	(10.2)	with	Eq.	(7.1)	shows	that	a	type	I	superconductor	behaves	as
though	it	has	a	magnetic	susceptibility	χ	=	−1	and	is	consequently	often	referred	 to	as	a
perfect	diamagnet.	Fig.	10.4	illustrates	how	closely	a	well	annealed	long	cylinder	of	lead
conforms	to	the	behaviour	predicted	by	Eq.	(10.2).



Non-annealed	 specimens	 often	 show	 an	 incomplete	Meissner	 effect;	magnetic	 flux	 is
trapped	within	the	material	in	metastable	regions	which	remain	in	the	normal	state	when
the	field	 is	 reduced	 through	Bc.	Flux	 trapping	offers	a	partial	explanation	of	 the	22	year
delay	between	the	first	observation	of	superconductivity	and	the	discovery	of	the	Meissner
effect.	 It	 was	 not	 realized	 that	 the	 trapped	 flux	 was	 only	 a	 manifestation	 of	 non-
equilibrium	behaviour;	instead	it	was	regarded	as	an	inevitable	consequence	of	the	infinite
conductivity	 of	 the	 superconducting	 state	 because	 of	 the	 following	 argument.	 Infinite
conductivity	 implies	 vanishing	 of	 the	 electric	 field	 inside	 a	 superconductor	 and	 hence
through	Faraday’s	 law,	curl	 ,	 it	 indicates	a	 time-independent	magnetic	 field.	This
was	erroneously	interpreted	as	implying	that	any	magnetic	field	within	a	sample	would	be
trapped	by	a	transition	to	the	superconducting	state.	The	discovery	of	the	Meissner	effect
showed	that	the	zero	flux	state	was	the	true	equilibrium	state	of	a	long	cylindrical	sample
at	all	fields	below	Bc.

Fig.	10.4	Almost	reversible	magnetization	curve	of	a	well	annealed	rod	of	pure
superconducting	lead.	(Reproduced	with	permission	from	J.	P.	Livingston,	Phys.	Rev.	129,
1943	(1963))

For	 other	 shapes	 of	 sample	 the	 complete	 exclusion	 of	 flux,	 even	 in	 well	 annealed
specimens,	does	not	occur	at	all	fields	less	than	Bc.	To	explain	this,	consider	the	spherical
sample	in	Fig.	10.5.	Because	the	flux	is	expelled	from	the	interior	of	the	sphere	the	field	at
the	equator	exceeds	the	applied	field.	Thus,	when	the	applied	field	reaches	the	value	 Bc,
the	field	at	the	equator	becomes	Bc	and	the	sphere	can	no	longer	remain	in	the	Meissner
state.	It	cannot	make	a	 transition	to	the	normal	state	because	this	would	reduce	the	field
everywhere	 to	 Bc,	 a	 value	 at	 which	 the	 normal	 state	 is	 not	 stable.	 For	 applied	 fields
between	 Bc	 and	 Bc	 the	 sphere	 is	 in	 the	 intermediate	 state	 in	 which	 it	 consists	 of
alternating	macroscopic	normal	and	superconducting	regions,	shown	schematically	in	Fig.
10.5(b);	the	field	is	Bc	in	the	normal	regions	and	zero	in	the	superconducting	regions.	The
intermediate	state	of	a	type	I	superconductor	should	not	be	confused	with	the	mixed	state
of	a	type	II	superconductor	(sections	10.2.3	and	10.5.3).

The	existence	of	the	critical	field	Bc	is	a	consequence	of	the	Meissner	effect.	The	energy
stored	in	the	field	(B2/2μ0	per	unit	volume)	 is	greater	for	 the	Meissner	state	 than	for	 the



normal	state	in	which	the	field	penetrates	the	material	uniformly†	(we	can	usually	ignore
the	weak	magnetism	of	the	normal	state).	Eventually,	with	increasing	magnetic	field,	the
increased	 magnetic	 field	 energy	 equals	 the	 energy	 difference	 between	 the	 normal	 and
superconducting	states	and	it	becomes	advantageous	for	the	material	to	make	a	transition
to	the	normal	state.	To	quantify	this	argument	we	must	do	some	simple	thermodynamics

Fig.	10.5	(a)	Superconducting	sphere	in	the	Meissner	state.	The	field	at	the	equator	is	50%
higher	than	the	applied	field,	(b)	Intermediate	state	of	a	type	I	superconducting	sphere,
appropriate	to	applied	fields	between	 Bc	and	Bc.	With	increasing	field	in	this	range	the
shaded	normal	regions	grow	at	the	expense	of	the	unshaded	superconducting	regions.	For
simplicity	the	field	lines	are	not	shown

10.2.2.	Thermodynamics	of	the	superconducting
transition
The	field	Bc	at	which	the	normal	(N)	and	superconducting	(S)	states	are	in	equilibrium	is
indicated	by	the	equality	of	their	Gibbs	free	energies.	We	take	the	magnetic	work	term	to
be	−M.dBe,	where	Be	 is	 the	applied	 field,	and	 the	Gibbs	 free	energy	per	unit	volume	 is
then‡

where	 E	 and	 S	 are	 the	 internal	 energy	 and	 entropy	 per	 unit	 volume.	 To	 see	 this	 we
calculate

(10.3)	

Thus	G	is	the	thermodynamic	function	that	is	minimized	in	thermal	equilibrium	at	fixed
temperature	and	applied	field.

Consider	a	long	cylinder	of	superconductor	parallel	to	the	applied	field.	Eq.	(10.3)	can
be	integrated	at	constant	 temperature	 to	deduce	the	effect	of	an	applied	field	on	the	free
energy	Gs	of	a	superconductor,

(10.4)	



For	a	long	cylinder	we	show	in	appendix	B	that	Be	=	μ0H,	where	H	is	the	field	inside	the
superconductor.	Inserting	M	=	−H	(Eq.	(10.2))	for	a	superconductor	in	its	Meissner	state,
we	obtain

(10.5)	

where	 the	 final	 term	 represents	 the	 additional	 magnetic	 energy	 associated	 with	 the
exclusion	 of	 the	 magnetic	 field,	 as	 discussed	 at	 the	 end	 of	 the	 previous	 section.	 If	 we
ignore	the	weak	magnetism	of	the	normal	state	then	the	Gibbs	free	energy	GN	of	this	state
is	field-independent,

Equating	the	Gibbs	free	energies	at	the	critical	field	then	gives

(10.6)	

so	 that	 the	critical	 field	 is	directly	 related	 to	 the	difference	 in	 free	energies	between	 the
normal	and	superconducting	states	in	zero	field;	for	this	reason	Bc	 is	often	referred	to	as
the	 thermodynamic	 critical	 field.	 The	 positive	 value	 of	 GN	 −	 Gs	 explains	 why	 the
superconducting	state	is	more	stable	than	the	normal	state	in	zero	field;	this	quantity	is	the
condensation	energy	of	the	superconducting	state.

Experimentally	it	is	found	approximately	that	Bc	∝	Tc	with	a	constant	of	proportionality
of	order	0.01	T	K−1;	thus,	from	Eq.	(10.6),	the	condensation	energy	is	of	order	40 	J	m−3.
This	 energy	 difference	 corresponds	 to	 a	 fraction	 kB	 Tc/εF	 of	 the	 conduction	 electrons
having	 their	 energy	 reduced	 by	 an	 amount	 kB	 Tc	 as	 result	 of	 the	 transition	 to
superconductivity,	 and	 is	 therefore	 smaller	by	a	 factor	 (kB	Tc/εF)2	∼	 10−7	 than	 the	 total
kinetic	energy	of	the	electrons.

Two	important	exact	results	for	type	I	superconductors	can	be	obtained	from	Eq.	(10.6).
Using	 S	 =	 −	 (∂G/∂T)	 (from	 Eq.	 (10.3))	 we	 find	 that	 the	 difference	 in	 entropy	 density
between	the	two	states	in	zero	field	is

(10.7)	

and	using	C	=	T∂S/∂T,	the	difference	in	heat	capacity	per	unit	volume	in	zero	field	is

(10.8)	

Using	Eqs.	(10.7)	and	(10.8)	in	conjunction	with	a	critical	field	curve	of	the	form	shown
in	Fig.	10.2	enables	us	to	make	some	important	qualitative	deductions:

(1)	The	entropy	difference	∆S	vanishes	at	Tc	since	Bc	=	0	there,	but	the	heat	capacity
difference	∆C	is	finite	since	dBc/dT	>	0;	the	discontinuity	of	the	specific	heat	at	Tc	 is
clearly	seen	in	Fig.	10.6,	which	shows	the	measured	heat	capacity	of	aluminium.	The



superconducting	 transition	 in	 zero	 applied	 field	 is	 therefore	 a	 second-order	 phase
transition.

(2)	∆S	and	∆C	vanish	at	T	=	0	in	accordance	with	the	third	law	of	thermodynamics.

(3)	For	 0	<	T	 <	Tc,	dBc/dT	 is	 negative	 so	 that	∆S	 <	 0;	 the	 superconducting	 state	 is
therefore	more	ordered	than	the	normal	state.	We	discuss	the	nature	of	the	ordering	in
Section	10.4.

Fig.	10.6	Heat	capacity	of	normal	and	superconducting	aluminium.	The	normal	state
measurements	were	made	by	applying	a	field	greater	than	Bc.	The	high	Debye	temperature
of	aluminium	means	that	the	lattice	contribution	to	the	heat	capacity	is	small	in	this
temperature	range	and	the	electronic	contribution	is	dominant.	Note	the	discontinuity	in
heat	capacity	at	Tc	and	the	exponential	fall-off	in	Cs	at	low	temperature.	(After	N.E.
Phillips,	Phys.	Rev.	114,	676	(1959))

(4)	 Because	 ∆S	 is	 finite	 for	 0	 <	T	 <	Tc	 there	 is	 a	 latent	 heat	 at	 the	 superconducting
transition	in	a	finite	field	given	by	T∆S;	strictly	Eq.	(10.7)	gives	the	entropy	difference	in
zero	 field	 but	 ∆S	 is	 field-independent.	 SN	 is	 field-independent	 because	 normal	 state
magnetism	 is	 very	weak	 and	Ss	 is	 field-independent	 because	 the	Meissner	 effect	means
that	the	interior	of	the	superconductor	remains	in	zero	field	up	to	Bc.

Deductions	(1),	(2)	and	(3)	remain	valid	for	a	type	II	superconductor	but	they	must	be
proved	by	a	different	method,	as	type	II	superconductors	do	not	exhibit	a	sharp	transition
from	the	Meissner	state	to	the	normal	state	at	a	field	Bc.

10.2.3	Type	II	superconductors
Although	Nb	is	the	only	element	that	is	type	II	in	its	pure	state,	other	elements	generally
become	type	II	when	the	electron	mean	free	path	is	reduced	sufficiently	by	alloying.	Fig.
10.7	compares	 the	magnetization	curves	of	 thin	cylinders	of	pure	Pb	and	a	Pb–In	alloy;
with	increasing	field	the	alloy	shows	a	complete	Meissner	effect	only	up	to	a	field	Bc1	that



is	 less	 than	 the	 thermodynamic	 critical	 field	of	 pure	Pb.	Above	Bc1	 there	 is	 partial	 flux
penetration	 into	 the	 alloy	 although	 it	 retains	 the	 ability,	 characteristic	 of	 the
superconducting	 state,	 to	 support	 dissipationless	 current	 flow.†	 The	 transition	 to	 the
normal	 state	 and	 complete	 flux	 penetration	 occur	 at	 the	 substantially	 higher	 field	 Bc2.
Between	its	lower	and	upper	critical	fields,	Bc1	and	Bc2,	the	alloy	is	in	the	mixed	state,
the	nature	of	which	will	be	explained	in	Section	10.5.3.

Fig.	10.7	Almost	reversible	magnetization	curves	for	well	annealed	long	rods	of:	(a)	pure
lead	(as	in	Fig.	10.4);	(b)	lead	made	type	II	by	alloying	with	8.23%	indium.	(Reproduced
with	permission	from	J.	P	Livingston,	Phys.	Rev.	129,	1943	(1963))

According	to	Eq.	(10.4)	the	increase	in	Gibbs	free	energy	associated	with	the	exclusion
of	 magnetic	 flux	 by	 a	 superconductor	 is	 equal	 to	 the	 area,	 ∫(−M).dBe,	 under	 the
magnetization	 curve.	 This	 equation	 is	 strictly	 applicable	 only	 to	 equilibrium	 states,
characterized	by	reversible	magnetization	curves.	We	can	however	apply	it	approximately
to	the	almost	reversible	curve	for	the	Pb–In	alloy	in	Fig.	10.7.	The	area	under	this	curve	is
almost	 equal	 to	 that	 under	 the	 curve	 for	 pure	 Pb;	we	 deduce	 that	 alloying	 produces	 no
substantial	 change	 in	 the	condensation	energy.	The	partial	 flux	penetration	 in	 the	mixed
state	allows	the	superconductivity	to	persist	to	significantly	higher	fields	in	the	alloy.	With
increasing	indium	concentration	Bc1	decreases	and	Bc2	increases.

In	extreme	type	II	superconductors	Bc1	is	so	small	and	the	flux	penetration	in	the	mixed
state	so	nearly	complete	that	very	large	values	of	Bc2	are	reached	before	the	area	under	the
magnetization	 curve	 becomes	 equal	 to	 the	 condensation	 energy.	 For	 large	 Bc2	 our
thermodynamic	 approach	 must	 be	 generalized	 to	 allow	 for	 the	 decrease	 in	 Gibbs	 free
energy	associated	with	the	weak	paramagnetism	of	the	normal	state.	This	decrease	puts	a
fundamental	 upper	 limit	 on	Bc2,	 the	Clogston	 limit,	 of	 about	 1.8Tc	 tesla	 (see	 problem
10.4).	Fig.	10.8	shows	values	of	Bc2	as	a	function	of	temperature	for	some	extreme	type	II
superconductors.

10.3	THE	LONDON	EQUATION
We	saw	in	Section	7.3.2	that	the	rigidity	of	an	electron	wavefunction	against	perturbation
by	a	magnetic	 field	 led	directly	 to	diamagnetism	with	 the	field	being	excluded	from	the



region	 occupied	 by	 the	 electron	 except	 for	 a	 surface	 layer	 about	 100	 Å	 thick.	 The
weakness	 of	 diamagnetic	 effects	 in	 most	 materials	 is	 then	 explained	 because	 ordinary
atomic	wavefunctions	are	small	in	extent	compared	to	this	screening	distance.	The	perfect
diamagnetism	 of	 superconductors	 implies	 that	 there	 are	 wavefunctions	 extending
throughout	the	material	that	are	not	readily	perturbed	by	a	magnetic	field.

Fig.	10.8	Upper	critical	field,	Bc2,	as	a	function	of	temperature	for	some	extreme	type	II
superconductors.	(Reproduced	with	permission	from	R.	Chevrel,	Superconductor
Materials	Science:	Fabrication	and	Applications,	ed.	S.	Foner	and	B.	Schwartz,	Plenum,
New	York	(1980))

This	possibility	was	first	suggested	by	Fritz	and	Heinz	London,	who	proposed	that	the
currents	responsible	for	the	screening	should	be	described	by

(10.9)	

Eq.	(10.9)	is	known	as	the	London	equation	and	it	is	the	curl	of

(10.10)	

which	 is	Eq.	 (7.32)	with	 the	replacement	n	→	ns	 to	allow	for	 the	possibility	 that	only	a
fraction	ns/n	of	 the	electrons	(the	superconducting	fraction)	have	a	 rigid	wavefunction.
Eq.	(10.9)	(or	its	equivalent,	Eq.	(10.10))	can	be	regarded	as	a	replacement	for	Ohm’s	law,
j	=	σE,	as	a	description	of	the	behaviour	of	the	superconducting	electrons.

To	see	that	Eq.	(10.9)	explains	the	Meissner	effect	we	apply	it	to	a	plane	boundary	(x	=
0)	separating	a	superconductor	(x	>	0)	from	a	vacuum	(x	<	0),	when	there	 is	a	magnetic
field	B	=	Be 	parallel	to	the	boundary	in	the	vacuum	(Fig.	10.9).	By	combining	Eq.	(10.9)
with	Maxwell’s	equations†	curl	B	=	μ0j	and	div	B	=	0,	we	find	 that	 the	field	B	 inside	a
superconductor	satisfies



Fig.	10.9	The	London	equation	predicts	the	exponential	decay	of	a	magnetic	field	into	a
superconductor	occupying	the	region	x	>	0

(10.11)	

where	λ2	=	m/μ0nse2	as	in	Section	7.3.2.	The	magnetic	field	in	the	superconductor	in	the
geometry	of	Fig.	10.9	is	therefore	of	the	form	B	=	B(x) ,	where	B(x)	satisfies

The	solution	of	this	equation	is

(10.12)	

where	a	 and	 b	 are	 constants	 of	 integration.	 The	 second	 term,	 which	 has	 B	 increasing
exponentially	with	x	at	large	distances	from	the	boundary,	is	unphysical	and	we	reject	it.
To	satisfy	B	=	Be	at	x	=	0	then	requires	a	=	Be	so	that

(10.13)	

The	magnetic	field	thus	decays	exponentially	with	distance	into	the	superconductor	with
a	characteristic	length	scale	λ,	kown	as	the	penetration	depth,	as	shown	in	Fig.	10.9.	To
estimate	 λ	 at	 T	 =	 0	 we	 suppose	 that	 all	 the	 electrons	 are	 superconducting	 at	 this
temperature	 and	 set	ns	=	n	=	1029	m−3,	 a	 typical	 conduction	 electron	 concentration	 in	 a
superconducting	metal,	to	obtain

(10.14)	

where	 the	 notation	 λL(0)	 indicates	 that	 this	 is	 the	 penetration	 depth	 as	 predicted	 by	 the
London	equation	at	T	=	0.	The	small	size	of	λ	means	that	the	magnetic	flux	is	effectively
excluded	from	the	 interior	of	macroscopic	samples	of	superconductors	and	the	Meissner
effect	is	explained.	Note	that	in	the	geometry	of	Fig.,	10.9	the	screening	currents	flow	in
the	y	direction	and	also	decay	exponentially	with	characteristic	depth	λ	from	the	surface	of
the	superconductor.

At	higher	temperatures	we	expect	ns	to	decrease	and	λ	to	increase.	This	is	seen	to	be	the
case	 in	Fig.	10.10,	which	shows	 the	measured	 temperature	dependence	of	λ	 for	 tin.	The
temperature	dependence	is	often	well	described	by



where	λ(0)	is	the	value	of	λ	at	T	=	0;	λ	thus	diverges	as	T	→	Tc	and	ns	→	0.

The	 measured	 value	 of	 λ(0)	 is	 often	 greater	 than	 λL(0).	 This	 does	 not	 signify	 a
fundamental	defect	of	the	London	theory;	the	discrepancy	can	be	explained	by	modifying
Eq.	(10.10)	slightly	so	that	the	current	density	j	at	a	point	r	does	not	depend	only	on	the
vector	potential	A	at	r	but	on	the	average	of	A	taken	over	all	points	in	the	neighbourhood
of	r.	This	modification	converts	the	local	current–field	relation	of	Eq.	(10.10)	into	a	non-
local	relation.	A	similar	change	has	to	be	made	to	Ohm’s	law	in	normal	metals	when	the
electric	 field	varies	 rapidly	on	 the	 length	 scale	of	 the	 electron	mean	 free	path	 l.	 Such	 a
situation	occurs	in	pure	normal	metals	at	high	frequencies	and	low	temperature	where	the
electromagnetic	skin	depth	 (which	gives	 the	 length	scale	 for	variation	of	E)	 is	 normally
shorter	 than	 l,	 and	 the	 current	 density	 at	 a	 point	 r	 then	 depends	 on	 the	 average	 of	 the
electric	field	over	a	region	of	size	~	l	surrounding	r;	the	necessary	generalization	of	Ohm’s
law	is	a	non-local	relation	between	j	and	E.	Pippard	exploited	the	analogy	with	the	normal
state	to	propose	that	the	penetration	depth	of	pure	superconductors	could	be	explained	if
there	 was	 a	 non-local	 relation	 between	 j	 and	 A†	 in	 which	 the	 vector	 potential	 was
averaged	over	a	distance	ξ,	where

Fig.	10.10	Superconducting	penetration	depth	λ	in	tin.	The	value	at	T	=	0	is	510	Å,	which
has	to	be	compared	with	the	London	prediction	λL	(0)	=	340	Å

(10.15)	

We	show	later	(Section	10.4)	that	a	characteristic	distance	of	this	form	arises	naturally	in
the	theory	of	superconductivity.	In	impure	superconducting	metals	where	l	is	less	than	ξ,
the	mean	free	path	 takes	over	 from	ξ	 in	determining	 the	 range	of	 the	non-locality	and	λ
then	depends	on	l.	Pippard’s	proposals	were	later	confirmed	in	essence	by	the	microscopic
theory	of	superconductivity.

It	is	interesting	to	investigate	the	extent	to	which	the	London	equation	can	be	deduced
from	an	assumption	of	infinite	conductivity;	to	do	so	we	allow	the	electron	scattering	time
τ	in	Eq.	(3.23)	to	become	infinite.	The	resulting	acceleration	equation



together	with	j	=	−nsev	and	Faraday’s	law,	curl	 ,	lead	to	the	time	derivative	of	Eq.
(10.9).	To	obtain	the	London	equation	by	integration	of	this	equation	involves	making	an
assumption	about	the	integration	constant,	which	is	equivalent	to	assuming	the	Meissner
effect.	 This	 again	 demonstrates	 that	 superconductivity	 is	 more	 than	 just	 infinite
conductivity.

10.4	THE	THEORY	OF
SUPERCONDUCTIVITY
We	will	give	only	a	brief	qualitative	description	of	the	very	successful	microscopic	theory
of	superconductivity	that	was	proposed	by	Bardeen,	Cooper	and	Schrieffer	(BCS)	in	1957;
the	quantitative	details	of	the	BCS	theory	involve	techniques	that	are	too	advanced	for	this
book.‡

10.4.1	The	energy	gap	and	electron	pairing
We	saw	in	the	previous	section	that	the	temperature	dependence	of	the	penetration	depth
suggests	a	density	nS	 of	 superconducting	electrons	 that	 increased	 from	zero	at	Tc	 to	 the
full	electron	density	at	T	=	0.	The	behaviour	is	consistent	with	the	existence	of	an	energy
gap	∆	 separating	 the	 states	of	 the	 superconducting	 electrons	 from	 those	of	 the	 ‘normal’
electrons.	There	is	a	considerable	amount	of	evidence	for	such	a	gap;	both	experiment	and
theory	 indicate	 that	 ∆	 is	 temperature-dependent,	 vanishing	 at	 Tc	 and	 attaining	 its
maximum	value	∆(0)	at	T	=	0.	At	 low	 temperatures	 (T	 	Tc)	 one	would	 expect	 that	 the
number	 of	 excited	 (normal)	 electrons	 would	 fall	 off	 as	 exp	 [−∆(0)/kBT]	 and	 that	 this
temperature	 dependence	 would	 be	 reflected	 in	 the	 electronic	 contribution	 to	 the	 heat
capacity;	 this	 is	 indeed	 found	 to	be	 the	case	 (see	Fig.	10.6)	 and	∆(0)	 turns	out	 to	be	of
order	kB	Tc.

Direct	 evidence	 for	 an	 energy	 gap	 is	 provided	 by	measurements	 of	 the	 absorption	 of
electromagnetic	waves.	At	low	temperature	(T	 	Tc)	the	absorption	is	vanishingly	small	at
low	 frequencies	 but	 increases	 sharply	 when	 the	 photon	 energy	 is	 sufficient	 to	 excite
electrons	across	the	energy	gap.	The	frequency	for	the	onset	of	absorption	is	given	by

(10.16)	

The	 factor	 2	 arises	 because	 absorption	 of	 a	 photon	 creates	 two	 excited	 electrons.	 A
natural	explanation	for	this	is	provided	by	the	BCS	theory	of	superconductivity,	according
to	 which	 the	 superconducting	 electrons	 are	 bound	 together	 in	 pairs,	 known	 as	Cooper
pairs.	Thus	2∆	 is	 the	binding	energy	of	a	Cooper	pair	 so	 that	Eq.	 (10.16)	 describes	 the
breaking	of	a	pair	by	absorption	of	a	photon.	The	attractive	interaction	that	binds	the	pairs
is	due	to	the	lattice	vibrations	(Section	10.4.3).

The	wavefunctions	of	all	the	pairs	have	to	be	identical	to	maximize	the	energy	reduction
due	to	the	attractive	interaction;	the	binding	energy	of	a	Cooper	pair	is	largest	when	all	the



pairs	 are	 in	 the	 same	 state.	 Superconductivity	 is	 therefore	 said	 to	 be	 a	 cooperative
phenomenon;	ferromagnetism	is	another	example	of	a	cooperative	phenomenon	since	the
better	the	alignment	of	the	spins,	the	greater	the	molecular	field	that	is	responsible	for	the
alignment	 (see	Section	8.3.1).	The	existence	of	a	common	wavefunction	 for	 the	Cooper
pairs	provides	 the	rigidity	of	 the	wavefunction	that	 leads	 to	 the	Meissner	effect	and	it	 is
also	responsible	for	the	infinite	conductivity	(Section	10.4.5).

At	T	 =	 0	 all	 the	 electrons	 are	 paired	 but	 at	T	 >	 0	 some	 pairs	 are	 broken	 by	 thermal
excitation.	Because	of	the	cooperative	nature	of	superconductivity,	the	binding	energy	of
the	remaining	pairs	falls.	The	resulting	decrease	in	the	measured	energy	gap	can	be	seen	in
Fig.	 10.11;	 ∆(T)	 falls	 to	 zero	 with	 infinite	 slope	 at	 T	 =	 Tc.	 The	 sharing	 of	 a	 common
wavefunction	by	the	pairs	is	present	at	all	temperatures	below	Tc	and	the	resulting	order	is
responsible	for	the	lower	entropy	of	the	superconducting	state.

The	average	distance	between	the	electrons	for	the	Cooper	pair	wavefunction	in	a	pure
metal	at	T	=	0	is	of	order

(10.17)	

ξ0	is	known	as	the	BCS	coherence	length	and	it	plays	an	important	role	in	the	theory	of
superconductivity.	Since	∆(0)	≈	kB	Tc	 (the	BCS	 theory	 predicts	∆(0)	 =	 1.76kB	Tc),	 it	 is
essentially	ξ0	 that	determines	 the	 range	of	non-locality	 (Eq.	 (10.15))	 in	 the	 current-field
relation	of	the	superconducting	electrons	in	a	pure	metal;	the	current	is	a	flow	of	Cooper
pairs	 and	 each	 Cooper	 pair	 responds	 to	 the	 vector	 potential	 averaged	 over	 its
wavefunction.

Fig.	10.11	Temperature	dependence	of	the	superconducting	energy	gap.	The	full	curve	is
the	BCS	theory	prediction.	(Reproduced	with	permission	from	P.	Townsend	and	J.	Sutton,
Phys.	Rev.	128,	591	(1962))

10.4.2	The	Cooper	problem



By	solving	a	simple	problem	in	1956,	Cooper	provided	the	inspiration	for	the	BCS	theory.
Cooper	solved	the	Schrödinger	equation	for	two	interacting	electrons	in	the	presence	of	a
Fermi	sphere	of	non-interacting	electrons,	as	shown	in	Fig.	10.12.	This	calculation	cannot
be	applied	directly	to	a	real	metal	since	it	is	impossible	to	turn	off	the	interaction	between
all	but	two	of	the	conduction	electrons,	but	it	serves	to	indicate	the	kind	of	effect	that	the
interaction	might	produce.	The	wavefunction	of	 the	 two	electrons	can	be	expanded	as	a
linear	combination	of	plane	waves	(see	Eq.	(3.3))

Fig.	10.12	The	Cooper	problem.	Two	interacting	electrons	are	restricted	to	states,	k1	and
k2,	outside	the	Fermi	surface	by	the	Fermi	sphere	of	non-interacting	electrons

(10.18)	

where	the	role	of	the	non-interacting	electrons	is	to	restrict	the	summation	to	plane	wave
states	outside	the	Fermi	sphere	(|k1|,	|k2|	>	kF).	Cooper	looked	for	states	of	this	form	with
an	energy	less	than	2εF,	 the	energy	of	 two	‘normal’	electrons	at	 the	Fermi	surface.	Such
states	would	 correspond	 to	 bound	 states	 of	 the	 two	 electrons	 and	 their	 existence	would
indicate	that	the	normal	state,	as	represented	by	the	Fermi	sphere,	was	unstable	against	the
formation	of	bound	pairs	of	electrons.

For	 the	 lowest	 energy,	 the	 centre	 of	 mass	 of	 the	 two	 electrons	 is	 at	 rest	 and	 this	 is
achieved	by	including	only	states	with	equal	and	opposite	momentum,	k1	=	−k2	=	k,	in	the
expansion	of	Eq.	(10.18),	which	then	simplifies	to

(10.19)	

where	 the	 summation	 is	 again	 restricted	 to	 states	 k	 outside	 the	 Fermi	 surface.	 Cooper
found	that	bound	states	existed	if	the	interaction	between	the	two	electrons	was	attractive,
no	matter	how	weak	the	attraction;	 this	was	surprising	in	that	bound	states	exist	for	 two
particles	in	a	vacuum	only	if	the	attractive	potential	exceeds	a	threshold	value.	BCS	made
the	 bold	 extrapolation	 from	 Cooper’s	 result	 that	 bound	 Cooper	 pairs	 would	 still	 result
when	all	the	electrons	interacted	with	each	other.

10.4.3	Origin	of	the	attractive	interaction
An	attractive	 interaction	 between	 electrons	 seems	 an	 unlikely	 possibility	 in	 view	of	 the
large	repulsive	force	between	two	isolated	electrons.	We	shall	see	in	Chapter	13	however
that	the	effective	Coulomb	interaction	between	two	electrons	in	a	metal	is	much	reduced



by	 the	 presence	 of	 the	 other	 electrons	 and	 the	 positive	 ions.	 Each	 electron	 repels	 other
electrons	from	its	neighbourhood	and	thereby	creates	a	hole	in	the	electron	‘fluid’	which	is
of	order	one	atom	in	size	and	on	average	contains	a	positive	charge	from	the	 ions	equal
and	opposite	to	the	electronic	charge	(Fig.	10.13(a)).	The	net	charge	in	the	neighbourhood
of	the	electron	is	therefore	approximately	zero	and	the	effective	interaction	of	the	electron
with	another	electron	outside	the	screening	hole	is	weak.

The	 attractive	 force	 arises	 because	 an	 electron	 attracts	 the	 positive	 ions	 so	 that,	 as	 it
moves	through	the	metal,	 it	 leaves	a	wake	of	enhanced	positive	charge	density	behind	it
(Fig.	10.13(a)).	Because	ions	move	more	slowly	than	electrons,	the	wake	persists	after	the
electron	moves	away	and	can	attract	another	electron.	The	attraction	is	of	very	short	range
since	the	wake	is	only	of	the	order	of	an	atomic	spacing	in	width,	but	it	is	retarded	because
the	electron	causing	the	wake	has	already	moved	away.	Since	ionic	motion	communicates
the	interaction	between	the	two	electrons,	the	attraction	is	said	to	result	from	the	exchange
of	virtual	phonons	(Fig.	10.13(b)).	The	detailed	nature	of	 the	 interaction	 is	 important	 in
determining	the	transition	temperature	of	the	superconductor	but	the	qualitative	behaviour
of	 the	 superconductor	 below	 Tc	 is	 determined	 almost	 entirely	 by	 the	 existence	 of	 the
Cooper	 pairs.	 Indeed,	 BCS	 calculated	 successfully	 most	 of	 the	 properties	 of
superconductors	by	 replacing	 the	 real	 short-range	 retarded	 interaction	by	a	 fictitious	but
simpler	instantaneous	interaction	spread	out	to	a	range	~	vF/ωD	 to	allow	for	 the	distance
moved	by	an	electron	during	the	characteristic	time	(~	1/ωD)	for	ionic	motion.

Fig.	10.13



10.4.4	Nature	of	the	superconducting	ground	state
According	to	the	BCS	theory	all	the	electrons	are	paired	at	T	=	0.	Since	the	wavefunctions
of	all	 the	pairs	are	identical,	superconductivity	is	often	described	as	arising	because	of	a
Bose	condensation	of	Cooper	pairs†	(see	Mandl,2	p.	292).	It	is	instructive	to	see	how	it	is
possible	 to	 write	 down	 a	 wavefunction	 that	 corresponds	 to	 such	 a	 ground	 state.	 The
common	wavefunction	of	all	the	pairs	can	be	expanded	in	plane	waves	as	in	Eq.	 (10.19)
except	 that	 the	 restriction	 to	 states	 with	 |k|	 >	 kF	 is	 removed	 as	 there	 is	 now	 no	 non-
interacting	 Fermi	 sphere.	 In	 most	 (perhaps	 all)	 known	 superconductors	 the	 pair
wavefunction	 is	 essentially	 spherically	 symmetric,	 ψ(r1,	 r2)	 =	 ψ(|r1	 –	 r2|),	 so	 that	 the
Cooper	pairs	possess	no	orbital	 angular	momentum;	 the	 spherical	 symmetry	 is	distorted
slightly	 by	 the	 anisotropy	of	 the	 crystal	 structure	 but	we	will	 ignore	 this.	The	 spherical
symmetry	 corresponds	 to	 g(k)	 depending	 only	 on	 the	 magnitude	 of	 k	 and	 the
wavefunction	 is	 therefore	 symmetric	 under	 interchange	 of	 r1	 and	 r2.	 An	 antisymmetric
pair	wavefunction	ϕ(1,	2)	can	be	obtained	by	combining	this	space	wavefunction	with	the
antisymmetric	spin	singlet	wavefunction.	Thus

(10.20)	

The	electrons	 in	 the	Cooper	pair	 therefore	have	opposite	 spins.	A	wavefunction	 for	N
electrons	which	has	N/2	pairs	all	in	the	same	state	can	be	written

(10.21)	

where	 P	 is	 an	 operator	 that	 makes	 the	 product	 wavefunction	 in	 the	 curly	 brackets
antisymmetric	 under	 interchange	 of	 any	 two	 electrons.	We	will	 not	 discuss	 how	 this	 is
done	 in	 general	 but	 will	 demonstrate	 how	 it	 works	 for	 two	 pairs	 by	 writing	 down	 the
wavefunction	explicitly	for	this	case:

Eq.	(10.21)	is	essentially	the	ground	state	wavefunction	of	the	BCS	theory.

In	all	superconductors	where	it	has	been	possible	to	elucidate	unambiguously	the	nature
of	the	pairing,	the	Cooper	pairs	have	been	found	to	have	zero	orbital	angular	momentum.
However,	the	nature	of	the	pairing	in	high-temperature	superconductors	has	not	yet	been
established.	 Some	 heavy	 fermion	 superconductors‡	 may	 also	 have	 finite	 angular
momentum	pairing.	Liquid	 3He	undergoes	 a	 superfluid	 transition	 due	 to	Cooper	 pairing
into	a	state	with	L	=	1	and	the	neutrons	in	neutron	stars	are	also	believed	to	be	in	a	Cooper
paired	state	of	finite	angular	momentum;	these	neutral	Fermi	systems	cannot	however	be
described	as	superconductors!

10.4.5	Explanation	of	infinite	conductivity



To	give	a	qualitative	explanation	of	infinite	conductivity	we	must	first	describe	how	it	is
possible	 to	obtain	 a	 current-carrying	 state	by	giving	all	 the	pairs	 a	 finite	 centre-of-mass
momentum.	A	uniform	current	density	corresponds	to	a	pair	wavefunction	of	the	form†

(10.22)	

where	 r	 =	 (r1	 +	 r2)/2	 is	 the	 centre-of-mass	 position	 of	 the	 two	 electrons	 and	 ϕ0	 is	 a
wavefunction	for	a	pair	at	rest.	Eq.	(10.22)	corresponds	to	a	centre-of-mass	momentum	 q
and	hence	to	a	velocity	v,	where

As	the	charge	on	a	Cooper	pair	is	−2e	the	resulting	current	density	is

(10.23)	

for	nS	superconducting	electrons	per	unit	volume	(nS/2	pairs).

Consider	a	wire	carrying	a	Cooper	pair	current	of	 this	kind.	We	must	explain	why	the
scattering	 of	 electrons	 by	 phonons	 and	 impurities	 is	 ineffective	 in	 producing	 electrical
resistance.	The	process	in	which	a	Cooper	pair	absorbs	a	phonon	of	energy	of	order	2∆(T)
and	two	normal	electrons	are	created	(Fig.	10.14)	undoubtedly	occurs,	as	does	the	inverse
process	in	which	two	normal	electrons	combine	with	the	emission	of	a	phonon	to	form	a
Cooper	pair.	Indeed	these	processes	occur	with	equal	rates	in	order	to	preserve	a	dynamic
equilibrium	between	the	concentrations	of	Cooper	pairs	and	normal	electrons.

Because	 the	energy	 is	 lower	when	all	 the	Cooper	pairs	are	 in	 the	same	state,	 the	pairs
created	 by	 phonon	 emission	 always	 have	 the	wavefunction	 of	 Eq.	 (10.22);	 unless	 their
centre-of-mass	 motion	 is	 the	 same	 as	 that	 of	 the	 existing	 pairs,	 their	 binding	 energy
vanishes.	The	current	is	thus	unaffected	by	phonon	scattering.	Since	impurity	scattering	is
elastic,	impurities	cannot	scatter	Cooper	pairs	at	all;	a	change	of	momentum	for	a	single
Cooper	pair	 involves	 the	 loss	of	 its	binding	energy	and	 is	 therefore	an	 inelastic	process.
The	pair	current	can	only	be	changed	by	an	influence	that	affects	all	the	pairs	equally	such
as	an	electric	field.

Fig.	10.14	Phonon	scattering	processes	in	a	wire	carrying	a	supercurrent:	(a)	absorption	of
a	phonon	by	a	Cooper	pair	of	momentum	 q	creates	two	normal	electrons;	(b)	two	normal
electrons	combine	with	the	emission	of	a	phonon	to	form	a	Cooper	pair	of	momentum	 q



10.5	MACROSCOPIC	QUANTUM
PHENOMENA
10.5.1	The	superconducting	order	parameter
Since	 the	 Cooper	 pairs	 share	 a	 common	 wavefunction,	 the	 behaviour	 of	 the
superconducting	electrons	is	completely	specified	by	this	function;	that	a	function	of	only
two	position	variables	is	needed	to	describe	~1029electrons/m3	 is	in	complete	contrast	to
the	situation	in	a	normal	metal	where	the	behaviour	is	only	determined	by	specifying	all	of
the	 single-particle	 states	 occupied.	 The	 coherence	 in	 the	 wavefunction	 associated	 with
macroscopic	 occupation	 of	 the	 same	 quantum	 state	 by	 Cooper	 pairs	 causes
superconductors	to	exhibit	quantum	mechanical	effects	on	a	macroscopic	scale.	A	similar
situation	occurs	for	photons;	the	macroscopic	occupation	of	a	single	quantum	state	leads
to	a	macroscopically	observable	electric	field.

For	many	purposes	 the	relative	motion	of	 the	 two	electrons	 in	 the	pair	can	be	 ignored
and	the	pair	regarded	as	a	point	particle.	Only	the	dependence	of	the	wavefunction	on	the
centre-of-mass	 coordinate	 needs	 to	 be	 considered	 and	 this	 is	 given	 by	 the	 order
parameter	ψ(r);†	 thus,	 for	 example,	we	 see	 from	Eq.	 (10.22)	 that	 the	 order	 parameter
describing	a	state	of	uniform	current	density	is

(10.24)	

Many	 of	 the	 properties	 of	 superconductors	 follow	 if	 ψ(r)	 is	 regarded	 as	 the
wavefunction	of	a	particle	of	charge	−2e	and	mass	2m	(appropriate	to	a	Cooper	pair).

The	 current	 density	 associated	 with	 such	 a	 wavefunction	 is	 given	 by	 making	 the
substitutions	e	→	2e,	m	→	2m	in	Eq.	(C8)	of	appendix	C:

(10.25)	

The	most	general	form	of	ψ(r)	is

(10.26)	

and	inserting	this	in	Eq.	(10.25)	we	find

(10.27)	

This	 equation	 will	 be	 the	 starting	 point	 for	 our	 discussion	 of	 macroscopic	 quantum
phenomena,	but	first	we	will	use	it	to	rederive	two	of	our	previous	results:

(1)	Inserting	θ(r)	=	q.r	(Eq.	 (10.24))	and	A	=	0	 (see	problem	10.8)	 into	Eq.	 (10.27)
gives	Eq.	(10.23)	if	the	order	parameter	is	normalized	so	that

(2)	Taking	the	curl	of	Eq.	(10.27)	and	assuming	that	the	Cooper	pair	density	|ψ(r)|2	is
independent	of	position	(i.e.	that	the	wavefunction	is	rigid)	gives	the	London	equation



(10.9).†

10.5.2	Flux	quantization
Far	from	the	surface	of	a	superconductor	in	its	Meissner	state	we	have	j	=	0.	Eq.	(10.27)
then	becomes

(10.28)	

We	integrate	this	equation	around	a	closed	curve	C	inside	the	superconductor,

(10.29)	

Since	 the	order	 parameter	ψ(r)	 behaves	 like	 a	wavefunction,	 it	must	 be	 single-valued
and	the	phase	change	Δθ	around	a	closed	loop	must	be	±2πn	where	n	is	a	positive	(or	zero)
integer.	The	 integral	∮CA.dl	may	be	 transformed	by	Stokes’	 theorem	as	 in	Eq.	 (7.28)	 to
show	that	it	is	equal	to	the	magnetic	flux	Ф	through	the	curve	C.	We	thus	obtain

(10.30)	

which	 shows	 that	 the	 flux	 through	 any	 closed	 curve	 on	 which	 j	 =	 0	 within	 a
superconductor	is	quantized	in	units	of	the	flux	quantum	Ф0	=	h/2e	=	2.07	×	10−15	T	m2.

Applying	this	result	 to	the	flux	associated	with	the	persistent	current	flowing	around	a
superconducting	ring	(Fig.	10.15)	we	see	that	the	current	is	also	quantized	and	this	sheds
new	light	on	its	stability.	A	change	in	current	corresponding	to	a	change	in	flux	through
the	 ring	 of	 one	 quantum	 involves	 a	 change	 in	 Δθ	 of	 2π.	 Such	 a	 change	 can	 only	 be
achieved	if	the	coherence	of	the	superconducting	wavefunction	is	temporarily	destroyed	in
some	way,	with	the	consequent	loss	of	condensation	energy	of	the	Cooper	pairs.	There	is
thus	a	large	energy	barrier	against	such	a	change.	Because	of	the	energy	associated	with
the	 current	 and	 the	 trapped	 flux,	 a	 state	 with	 a	 finite	 persistent	 current	 is	 strictly	 only
metastable,	but	with	an	effectively	infinite	lifetime.

Fig.	10.16	 illustrates	 schematically	 an	 experiment	 that	 used	 a	 superconducting	 ring	 to
measure	the	flux	quantum.	The	specimen	was	in	the	form	of	a	thin	film	of	tin	electroplated
onto	a	fine	copper	wire	a	few	millimetres	long	and	about	10	μm	diameter	(remember	that
copper	is	an	insulator	in	comparison	with	superconductors!);	the	small	diameter	was	used
so	that	one	flux	quantum	corresponded	to	a	reasonable	field	(~10	μT)	within	the	ring.	The
sample	 was	 placed	 in	 a	 magnetic	 field	 of	 this	 order	 and	 cooled	 through	 the	 transition
temperature;	 the	field	was	 then	removed	and	the	 trapped	flux	measured	by	vibrating	 the
sample	 between	 two	 search	 coils	 connected	 in	 series	 opposition.	 The	 experiment	 was
repeated	a	number	of	times	and	the	trapped	flux	as	a	function	of	the	initial	applied	field	is
shown	in	Fig.	10.16(b).	Quantization	in	units	of	h/2e	is	apparent;	the	number	of	quanta	is
such	 as	 to	 make	 the	 trapped	 field	 as	 close	 as	 possible	 to	 the	 initial	 applied	 field.	 The
higher	quanta	in	Fig.	10.16(b)	become	less	well	defined	probably	because	of	a	flaw	in	the
tin	film	part	way	along	its	length	through	which	one	or	more	flux	quanta	could	pass.



Fig.	10.15	Integration	of	Eq.	(10.28)	round	the	curve	C	proves	that	the	magnetic	flux
through	the	superconducting	ring	is	quantized.	The	persistent	current	I	that	gives	rise	to
the	flux	flows	on	the	inner	surface	of	the	ring

Fig.	10.16

The	magnitude	 of	 the	 flux	 quantum	provides	 very	 strong	 evidence	 of	 the	 presence	 of
Cooper	pairing	 in	superconductors.	The	factor	2	 in	 the	denominator	of	h/2e	comes	from
the	2	in	the	second	term	in	brackets	in	Eq.	(10.27),	and	thus	directly	from	the	charge	on	a
Cooper	 pair.	 We	 should	 reassure	 the	 reader	 worried	 about	 the	 lack	 of	 rigour	 in	 our
derivation	of	flux	quantization	(for	example	in	our	neglect	of	the	internal	structure	of	the
Cooper	 pair	 wavefunction)	 that	 a	 rigorous	 derivation	 can	 be	 given,	 based	 only	 on	 the
symmetry	properties	of	the	order	parameter.

10.5.3	Quantized	flux	lines	and	type	II
superconductivity



We	next	consider	 the	 implications	of	 flux	quantization	 through	a	curve	C	surrounding	a
region	 completely	 filled	 by	 superconductor.	We	 suppose	 that	 one	 flux	 quantum	 passes
through	C	so	 that	 the	phase	θ	of	 the	 superconducting	order	parameter	changes	by	2π	 in
one	complete	circuit	of	C.	Contours	of	constant	phase	could	then	appear	as	in	Fig.	10.17
and	this	creates	a	problem	at	a	point	P	within	C	where	θ	must	take	on	all	values	between	0
and	 2π	 simultaneously.	 As	 this	 is	 inconsistent	 with	 the	 requirement	 of	 a	 single-valued
order	 parameter	 it	 would	 appear	 to	 rule	 out	 the	 passage	 of	 quantized	 magnetic	 flux
through	the	interior	of	a	superconductor,	thereby	implying	that	the	superconductor	is	in	the
Meissner	state.

Fig.	10.17	Contours	of	constant	phase	of	the	order	parameter	for	a	curve	C	containing	one
quantum	of	magnetic	flux

There	is	an	alternative	possibility.	If	we	allow	|ψ|	to	go	to	zero	at	point	P,	then	the	order
parameter	 is	 again	 single-valued	 there	 (the	 single	 value	 is	 zero);	 the	 phase	 of	 the	 order
parameter	 is	 undefined	 at	 a	 point	 where	 |ψ|	 =	 0.	 If	 we	 repeat	 this	 argument	 for	 other
sections	through	the	superconductor	then	we	find	that	|ψ|	must	vanish	along	a	continuous
line	and	we	are	thus	led	to	the	concept	of	a	quantized	flux	line.	The	structure	of	such	a
line	is	shown	in	Fig.	10.18.	The	density	of	Cooper	pairs	|ψ|2	falls	to	zero	on	the	line	(Fig.
10.18(a)),	which	can	therefore	be	pictured	as	a	filament	of	non-superconducting	material.
There	is	a	circulating	current	around	the	line	(Fig.	10.18(b)),	which	generates	the	magnetic
field	(Fig.	10.18(c))	associated	with	the	quantized	flux.

An	array	of	quantized	flux	lines	provides	the	mechanism	for	the	flux	penetration	in	the
mixed	 state	 of	 type	 II	 superconductors	 (Section	 10.2.3);	 electron	 microscopy	 studies†
indicate	 that	 the	 flux	 lines	 tend	 to	 form	 a	 regular	 triangular	 lattice.	 In	 principle	 it	 is
possible	 to	have	 lines	containing	more	 than	one	quantum	of	 flux	but	 they	would	have	a
higher	 energy	 and	 only	 singly	 quantized	 lines	 are	 found	 in	 practice.	We	 see	 from	 Fig.
10.18	 that	 there	are	 two	length	scales	associated	with	a	flux	 line.	From	Section	10.3	we
expect	the	length	scale	for	the	current	and	field	variation	(Figs.	10.18(b)	and	(c))	to	be	the
penetration	 depth	 λ.	We	 might	 expect	 the	 length	 scale	 ξ	 for	 the	 variation	 of	 |ψ|2	 (Fig.
10.18(a))	to	be	associated	with	the	size	of	the	Cooper	pair	wavefunction;	this	indeed	turns
out	to	be	the	case	and	in	a	pure	superconductor

Fig.	10.18	Variation	of	|ψ|2,	j	and	B	through	a	quantized	flux	line



(10.31)	

where	ξ0	is	the	BCS	coherence	length	of	Eq.	(10.17).

We	can	now	answer	qualitatively	the	question	of	why	some	superconductors	are	type	I
and	others	 type	II	by	estimating	the	energy	cost	of	forming	a	plane	boundary	between	a
superconducting	 and	 normal	 region	 in	 a	 type	 I	 superconductor	 as	 shown	 in	 Fig.	 10.19;
since	the	superconducting	and	normal	phases	are	in	equilibrium	at	the	applied	field	Bc	the
free	energies	per	unit	volume	of	the	bulk	uniform	regions	on	either	side	of	the	boundary
are	 equal.	 In	 the	 boundary	 region	 itself	 however	 there	 is	 a	 loss	 of	 condensation	 energy
over	a	distance	ξ	at	the	boundary,	resulting	in	an	increase	in	free	energy

(10.32)	

per	unit	area	of	boundary,	where	GN	−	GS	is	the	condensation	energy	per	unit	volume.	The
presence	 of	 the	 boundary	 allows	 the	 field	Bc	 to	 penetrate	 the	 superconducting	 region	 a
distance	of	order	λ,	resulting	in	a	decrease	in	free	energy

Fig.	10.19	Boundary	between	a	normal	and	superconducting	region	in	a	type	I
superconductor.	The	boundary	can	only	be	in	equilibrium	at	an	applied	field	Bc.	The	order
parameter	decays	in	a	distance	of	order	ζ	and	the	field	penetrates	a	distance	of	order	λ	into
the	superconducting	region



(10.33)	

per	unit	area	of	boundary.	We	expect	type	I	behaviour	only	if	the	energy	associated	with
the	formation	of	the	boundary,	∆GC	+	∆GB,	is	positive.	From	Eq.	(10.6),	(GN	−	GS)	and	
/2μ0	are	equal,	so	that	the	condition	for	type	I	behaviour	is	approximately	ξ	>	λ.	When	ξ	<
λ	 it	 is	 energetically	 favourable	 for	 the	 superconductor	 in	 an	 applied	 field	of	order	Bc	 to
break	 up	 into	 a	 mixture	 of	 normal	 and	 superconducting	 regions;	 the	 energy	 decrease
associated	with	 the	 penetration	 of	 the	 field	 into	 the	 superconducting	 regions	more	 than
compensates	 for	 the	 loss	 of	 condensation	 energy.	 The	 arrangement	 of	 normal	 and
superconducting	regions	with	the	lowest	energy	is	the	lattice	of	quantized	flux	lines;	if	ξ	<
λ	 type	 II	 behaviour	 is	 therefore	 expected.	When	 the	mean	 free	 path	 of	 the	 electrons	 is
decreased,	λ	 increases	 and	 ξ	 decreases,	 and	 this	 explains	 the	 change	 in	 behaviour	 from
type	I	to	type	II	that	is	produced	by	alloying	in	many	metals.

The	existence	of	superconductivity	up	to	fields	of	order	40	T	in	some	type	II	alloys	and
compounds	(Fig.	10.8)	explains	the	use	of	these	materials	in	the	construction	of	solenoids
for	the	generation	of	large	magnetic	fields.	The	major	problem	is	to	find	materials	that	will
carry	a	large	dissipationless	current	in	high	fields.	To	explain	the	problem	we	consider	a
solenoid	with	 its	 ends	 connected	 together	 to	 form	a	 continuous	 superconducting	circuit;
the	 field	 is	 generated	 by	 a	 persistent	 current	 flowing	 in	 this	 circuit.	 In	 type	 II
superconductors	 such	 a	 field	 can	 unfortunately	 decay	 by	 the	 passage	 of	 quantized	 flux
lines	 across	 the	windings	 and	out	 of	 the	 coil	 and	 this	 is	 equivalent	 to	 the	 coil	 having	 a
finite	electrical	 resistance.	Some	mechanism	is	 required	 to	prevent	 the	 free	migration	of
flux	 lines.	 This	 is	 usually	 done	 by	 making	 the	 material	 inhomogeneous,	 either	 by
precipitation	 or	 work	 hardening;	 regions	where	 the	 flux	 line	 energy	 is	 low	 are	 thereby
produced	 and	 these	 act	 as	 pinning	 centres	 for	 the	 flux	 lines.	 Such	 materials	 are
characterized	 by	 highly	 irreversible	 magnetization	 curves.	 High-temperature
superconductors	have	even	larger	values	of	Bc2	than	the	materials	shown	in	Fig.	10.8	but
the	problem	of	flux	pinning	at	liquid	nitrogen	temperatures	has	yet	to	be	solved	in	these
materials.

Another	important	problem	in	superconducting	solenoids	is	the	possibility	that	a	small
region	may	revert	to	the	normal	state,	which	has	a	high	resistivity.	The	consequent	heating
rapidly	 causes	 the	whole	magnet	 to	 become	 normal;	 the	 energy	 stored	 in	 the	magnetic
field	 is	 dumped	 in	 the	 liquid	 helium	 bath	with	 disastrous	 consequences.	 In	 practice	 the
superconducting	wire	 is	a	composite	of	superconductor	and	copper,	such	 that,	 if	a	small
region	 does	 become	 normal,	 the	 copper	 carries	 the	 current	 with	 little	 dissipation,	 thus
preventing	rapid	growth	of	the	normal	region.

10.5.4	Josephson	effects
Josephson	 effects	 are	 probably	 the	most	 striking	manifestation	of	macroscopic	 quantum
phenomena.	 They	 occur	 when	 two	 macroscopic	 superconducting	 regions	 are	 weakly
coupled.	 To	 explain	 what	 this	 means	 we	 consider	 first	 two	 isolated	 samples	 of	 a



superconductor	with	spatially	constant	order	parameters	|ψ1|	exp	(iθ1)	and	|ψ2|	exp	(iθ2)	as
shown	in	Fig.	10.20(a).	If	the	temperature	of	both	samples	is	the	same	then

In	the	absence	of	interaction	between	the	two	samples	however	the	phases	θ1and	θ2	will
in	general	be	different;	 all	 that	 is	 required	 is	 that	 the	phase	 should	be	 spatially	 constant
within	each	region	corresponding	to	the	Cooper	pairs	being	at	rest.	Strongly	coupling	the
two	samples	by	bringing	them	into	contact	over	a	large	area	causes	the	phase	to	equalize,
θ1	=	θ2,	 so	 that	 all	 the	Cooper	pairs	 can	be	 in	 the	 same	 state;	 this	 equality	 is	 then	very
difficult	to	disturb.	If	there	is	weak	coupling,	the	lowest	energy	state	is	still	one	with	θ1	=
θ2,	but	it	is	possible	to	generate	a	phase	difference	between	the	two	regions	by	passing	a
small	 current	 though	 the	 coupling	 or	 applying	 a	 small	 voltage	 across	 it.	 Two
superconductors,	weakly	coupled	in	this	sense,	are	said	to	form	a	Josephson	junction;	the
coupling	between	them	is	decribed	as	a	weak	link.

There	 is	 more	 than	 one	 way	 of	 achieving	 weak	 coupling	 but	 we	 will	 restrict	 our
discussion	to	two	superconductors	separated	by	an	oxide	barrier	of	a	few	atoms	thickness
as	shown	in	Fig.	10.20(b);	the	coupling	arises	because	electrons	can	cross	the	barrier	by	a
quantum	 mechanical	 tunnelling	 process.	 When	 the	 metal	 is	 in	 its	 normal	 state	 the
tunnelling	 current	 through	 the	 barrier	 is	 proportional	 to	 the	 voltage	 across	 it;	 such
behaviour	is	described	as	ohmic	and	a	typical	junction	resistance	is	1	Ω.

Below	Tc	it	is	possible	for	Cooper	pairs	to	tunnel	through	the	oxide	barrier;	a	net	flow
can	take	place	in	the	absence	of	an	applied	potential	difference	and	this	corresponds	to	a
dissipationless	 supercurrent,	 which	 we	 now	 calculate.	 Because	 of	 the	 tunnelling	 of	 the
pairs,	 the	 superconducting	 order	 parameter	 extends	 throughout	 the	 barrier;	 inside	 the
barrier	we	 regard	 it	 as	 being	 the	 sum	 of	 the	 contributions	 shown	 in	 Fig.	 10.20(b):	 one
contribution	 originates	 in	 region	 1	 and	 decays	 exponentially	within	 the	 barrier,	 and	 the
other	originates	in	region	2	and	decays	within	the	barrier.	We	assume	that	the	contribution
from	region	1	is	very	small	by	the	time	it	reaches	region	2	and	vice	versa	so	that	we	can
regard	the	order	parameter	within	the	superconducting	region	as	retaining	its	‘bulk’	value
up	to	the	edge	of	the	barrier.	We	therefore	write	the	order	parameter	within	the	barrier	as

Fig.	10.20	(a)	Two	isolated	samples	of	a	superconductor,	(b)	The	contributions	to	the
superconducting	order	parameter	within	the	oxide	barrier	associated	with	the	tunnelling	of
Cooper	pairs	through	the	barrier



(10.34)	

where	the	barrier	extends	from	x	=	−d/2	to	x	=	d/2	and	K−1	is	the	characteristic	length	for
decay	 of	 the	 order	 parameter	 within	 the	 barrier.	 θ1	 and	 θ2	 are	 the	 phases	 of	 the	 order
parameter	on	 the	 two	sides	of	 the	 junction.	To	calculate	 the	pair	current	density	 through
the	barrier	we	use	Eq.	(10.25)	with	A	=	0	and	the	order	parameter	of	Eq.	(10.34)	to	find

(10.35)	

where	δ	=	θ1	−	θ2	is	the	phase	difference	between	the	two	sides	of	the	junction	and	j0	=	e
nsK	exp	(−Kd)/m.

If	a	current	is	caused	to	flow	through	the	junction	the	phase	difference	adjusts	itself	so
that	the	Josephson	equation	(10.35)	is	satisfied.	The	existence	of	dissipationless	flow	of
Cooper	 pairs	 through	 a	 weak	 link	 is	 called	 the	 dc	 Josephson	 effect	 and	 experimental
confirmation	of	this	effect	is	seen	in	Fig.	10.21.	The	maximum	current	density	in	the	oxide
barrier	is	j0,	corresponding	to	a	phase	difference	δ	of	π/2.	What	happens	when	this	current
is	 exceeded	 depends	 on	 the	 load	 line	 of	 the	 circuit	 used	 to	 provide	 the	 current;	 the
behaviour	for	the	circuit	used	to	obtain	the	results	of	Fig.	10.21	is	indicated	in	the	figure.

The	current	observed	at	finite	voltages	in	Fig.	10.21	coresponds	to	tunnelling	of	normal
electrons	 through	 the	oxide	barrier.	At	 low	 temperatures	where	all	 the	electrons	on	both
sides	of	the	barrier	are	paired,	the	tunnelling	of	a	normal	electron	requires	the	breaking	of
a	pair.	This	can	only	occur	if	the	electron	tunnelling	through	the	barrier	gains	an	energy	2∆
from	 the	 voltage	 difference	 across	 the	 barrier.	 The	 current	 is	 therefore	 small	 until	 the
voltage	reaches	a	value	2∆(T)/e.	The	increase	in	current	when	this	condition	is	satisfied	is
apparent	 on	 Fig.	 10.21	 and	 normal	 electron	 tunnelling	 provides	 an	 accurate	 and	 direct
method	for	measuring	∆(T);	the	measurements	of	Fig.	10.11	were	obtained	by	this	method.
At	 voltages	 above	 2∆(T)/e	 the	 current–voltage	 relation	 reverts	 to	 the	 ohmic	 behaviour
characteristic	of	the	normal	state.



What	happens	to	the	Cooper	pair	tunnelling	at	finite	voltages?	To	answer	this	question
we	must	consider	the	time	dependence	of	the	superconducting	order	parameter.	Since	the
order	 parameter	 acts	 as	 the	 wavefunction	 of	 the	 Cooper	 pairs	 we	 might	 expect	 a
dependence	of	the	form

Fig.	10.21	Current–voltage	characteristic	of	a	Pb–PbO–Pb	tunnel	junction	at	1.2	K.	The
current	spike	at	V	=	0	is	the	dc	Josephson	effect.	(Reproduced	with	permission	from	D.	N.
Langenburg	et	al.,	Proc.	IEEE	54,	560	(1966).	©	1966	IEEE)

where	μ	is	the	energy	of	a	pair;	the	relevant	energy	turns	out	to	be	the	chemical	potential
of	the	pair.	More	generally	if	μ	depends	on	time	we	have

where

(10.36)	

Ordinarily,	 because	 a	 superconductor	 cannot	 sustain	 a	 potential	 difference,	μ	 is	 uniform
and	 Eq.	 (10.36)	 has	 no	 observable	 consequences.	 It	 is	 however	 possible	 to	 maintain	 a
potential	 difference	V	 between	 two	weakly	 coupled	 superconductors,	 in	which	 case	we
deduce	from	Eq.	(10.36)	that

or

(10.37)	

where	δ	is	the	phase	difference	across	the	junction	as	in	Eq.	(10.35).

If	V	is	a	constant	we	can	integrate	Eq.	(10.37)	to	obtain

(10.38)	

Where	δ0	is	the	value	of	δ	at	t	=	0.	The	phase	difference	thus	increases	linearly	with	time
and	inserting	this	in	Eq.	(10.35)	for	the	current	gives



(10.39)	

At	 finite	potential	difference	 therefore	 there	 is	an	ac	supercurrent	of	Cooper	pairs	at	a
frequency	v	=	ω/2π	=	2eV/h	 and	 this	 is	known	as	 the	ac	Josephson	 effect;	 because	 the
current	 is	alternating	 it	 is	not	seen	 in	 the	dc	current–voltage	characteristic	of	Fig.	10.21.
The	ratio	of	the	voltage	to	the	frequency	is	h/2e	=	the	flux	quantum	=	2.07	×	10−15	V	Hz
−1,	and	the	ac	Josephson	effect	provides	a	very	accurate	method	of	measuring	this	ratio	of
fundamental	constants.

One	 way	 of	 observing	 the	 ac	 Josephson	 effect	 is	 to	 irradiate	 the	 junction	 with
microwaves	of	frequency	ω	 in	addition	to	applying	a	dc	potential	V0.	The	 total	potential
difference	is	then	V0	+	υ	cos	(ωt)	and	integrating	Eq.	(10.37)	gives

Fig.	10.22	Steps	induced	on	the	current–voltage	relation	of	a	point-contact	Josephson
junction	by	microwave	radiation	of	frequency	72	GHz.	The	junction	is	formed	by	contact
between	a	sharply	pointed	piece	of	niobium	and	a	flat	niobium	surface.	(Reproduced	with
permission	from	C.	C.	Grimes	and	S.	Shapiro,	Phys.	Rev.	169,	397	(1968))

The	resulting	pair	current	through	the	junction,	from	Eq.	(10.35),	is

which	is	a	frequency-modulated	current	containing	components	at	frequencies	(2e/ )V0	±
nω,	where	n	is	any	integer.	Thus	there	is	a	dc	current	(zero	frequency)	if

(10.40)	

Fig.	10.22	shows	 the	current–voltage	characteristic	of	a	microwave-irradiated	Josephson
junction,	which	shows	well	defined	steps	at	the	voltages	predicted	by	Eq.	(10.40).	It	is	the
steepness	 of	 the	 steps	 that	 enables	 h/2e	 to	 be	 determined	 with	 precision†	 (see	 W.	 H.
Parker,	et	al.,	Phys.	Rev.	177,	639	(1969)).

10.5.5	Quantum	interference



Consider	 a	 superconductor	 ring	 containing	 two	 identical	 Josephson	 junctions,	 labelled	 a
and	 b,	 as	 shown	 in	 Fig.	 10.23(a).	 From	 Eq.	 (10.35)	 the	 current	 I	 flowing	 through	 the
junctions	in	parallel	is

(10.41)	

where	δa	and	δb	are	the	phase	differences	across	junctions	a	and	b	respectively	and	A	is	the
area	 of	 each	 junction.	 We	 now	 show	 that	 δa	 −	 δb	 is	 determined	 by	 the	 magnetic	 flux
through	 the	 ring.	We	use	 an	 approach	 similar	 to	 that	 used	 to	prove	 flux	quantization	 in
Section	10.5.2.	Because	 the	 current	 density	 vanishes	 along	 the	 curves	C1	 and	C2	 in	 the
bulk	superconducting	regions,	Eq.	(10.28)	is	valid	and	integrating	this	along	these	curves
we	find

Fig.	10.23

where	θa1,	θb1,	θa2	and	θb2	are	the	phases	are	at	the	ends	of	curves	C1	and	C2	close	to	the
junctions	indicated	by	the	subscripts.	Adding	these	equations	gives

(10.42)	

where	Ф	is	the	flux	through	the	ring	and	δa	=	θa1	−	θa2	and	δb	=	θb1	−	θb2	are	 the	phase
differences	across	the	two	junctions.	In	order	to	obtain	the	integral	of	A	around	a	closed



curve	we	have	had	to	include	the	small	contributions	from	the	junctions	themselves;	this
introduces	 negligible	 error	 since	A	 varies	 smoothly	 through	 the	 very	 narrow	 junction
region.

Inserting	Eq.	(10.42)	into	Eq.	(10.41)	gives

(10.43)	

This	 resembles	 the	 supercurrent	 (Eq.	 (10.35))	 through	 a	 single	 junction;	 for	 the	 double
junction	it	is	(δa	+	δb)/2	that	varies	to	match	the	current	I	fed	into	the	ring.	The	maximum
supercurrent	that	the	junction	can	carry	is	now

(10.44)	

and	 thus	 varies	 periodically	 with	 Ф;	 the	 period	 is	 just	 the	 flux	 quantum	 h/2e.	 The
measured	 variation	 of	maximum	 supercurrent	 for	 a	 double	 junction	 can	 be	 seen	 in	 Fig.
10.23(b).	 If	 the	 two	 junctions	 are	 not	 identical	 then	 the	 maximum	 current	 varies
periodically	with	Ф	but	does	not	fall	to	zero	as	predicted	by	Eq.	(10.44).

We	designate	this	effect	quantum	interference	because	of	the	analogy	with	the	Young’s
slits	interference	experiment	in	optics	(Smith	and	Thomson,5	p.	127).	The	difference	δa	−
δb	is	analogous	to	the	phase	difference	between	the	rays	of	light	from	the	slits	to	the	screen
on	which	the	interference	pattern	is	observed;	Eq.	(10.44)	thus	corresponds	to	the	cosine
dependence	 of	 the	 light	 amplitude	 with	 position	 on	 the	 screen.	 Experiments	 with
superconducting	 interferometers	 have	 been	 performed	 with	 junctions	 separated	 by
distances	of	order	1	cm,	impressive	evidence	that	the	superconducting	order	parameter	is
phase	coherent	over	truly	macroscopic	distances.

Because	 of	 the	 smallness	 of	 the	 flux	 quantum,	 a	 pair	 of	 junctions	 as	 in	 Fig.	 10.23(a)
embracing	an	area	of	1	cm2	would	change	from	maximum	to	minimum	critical	current	for
a	change	of	field	of	only	10−11	T.	The	dc	SQUID	(superconducting	quantum	interference
device)	is	an	instrument	that	exploits	this	geometry	to	measure	very	small	magnetic	fields
with	great	precision.

10.6	HIGH-TEMPERATURE
SUPERCONDUCTORS
High-Tc	superconductors	are	all	oxides	and	have	many	other	features	in	common.	We	use
the	widely	studied	YBa2Cu3O7	−	δ	to	illustrate	their	behaviour;	this	material	has	Tc	=	92	K
and	 is	 referred	 to	 as	 a	 1−2−3	 superconductor	 because	 of	 the	 relative	 numbers	 of	metal
atoms	 in	 its	 chemical	 formula.	 The	 yttrium	 can	 be	 replaced	 by	 various	 other	 trivalent
atoms	 (e.g.	 holmium	 and	 neodymium)	 without	 any	 significant	 effect	 on	 the
superconducting	 properties.	 The	 crystal	 structure	 of	 YBa2Cu3O7	 −	 δ	 is	 shown	 in	 Fig.



10.24(a).	 It	 contains	 planes	 of	 Cu	 and	 O	 atoms	 with	 the	 chemical	 formula	 CuO2	 as
indicated;	all	superconductors	with	a	Tc	greater	than	50	K	discovered	up	to	1990	possess
CuO2	(or	NiO2)	planes	similar	to	these	and	it	is	believed	that	they	play	a	crucial	role	in	the
conductivity	and	 superconductivity	of	high-Tc	 superconductors.	YBa2Cu3O7	 −	 δ	 also	has
chains	of	alternate	Cu	and	O	atoms	as	identified	in	Fig.	10.24(a).

Fig.	10.24

The	electrical	resistivity	of	YBa2Cu3O7	−	δ	in	its	normal	state	is	very	anisotropic,	being
much	higher	for	current	flow	along	the	z	axis	than	for	current	flow	in	the	xy	plane.	This	is



normally	regarded	as	evidence	that	conduction	is	predominantly	due	to	motion	of	carriers
in	the	CuO2	planes.	Discussion	of	the	behaviour	of	YBa2Cu3O7	−	δ	is	often	simplified	by
regarding	each	CuO2	plane	as	an	isolated	two-dimensional	system.	When	we	do	this	 the
reader	should	remember	that	this	is	a	gross	oversimplification;	a	complete	understanding
of	 the	 properties	 of	 YBa2Cu3O7	 −	 δ	 can	 only	 be	 obtained	 by	 taking	 into	 account	 its
complicated	three-dimensional	structure.

It	is	instructive	to	consider	what	happens	as	the	amount	of	oxygen	in	YBa2Cu3O7	−	δ	 is
varied.	We	 start	with	YBa2Cu3O6,	 corresponding	 to	 δ	 =	 1.	 In	 this	 material	 the	 oxygen
atoms	 in	 the	 CuO	 chains	 in	 Fig.	 10.24(a)	 are	 completely	 absent.	 Since	 there	 is	 then
nothing	to	distinguish	the	x	direction	from	the	y	direction	the	structure	is	tetragonal	(a	=	b
≠	c,	α	=	β	=	γ	=	90°).	YBa2Cu3O6	is	an	electrical	insulator;	in	this	material	the	Cu02	plane
can	be	considered	approximately	as	being	made	of	Cu2+	and	O2−	ions.	The	Cu2+	ions	have
nine	 3d	 electrons	 in	 their	 outer	 shell	 with	 a	 total	 spin	 S	 =	 .†	 The	 Cu	 spins	 order
antiferromagnetically,	as	shown	in	Fig.	10.24(b),	with	a	Neel	temperature	just	above	400
K.	The	O2−	ions	have	a	filled	2p	outer	shell	and	therefore	no	magnetic	properties.

When	 oxygen	 is	 added	 to	YBa2Cu3O6,	 the	 additional	 atoms	 initially	 occupy	 the	 sites
marked	 O(4)	 and	 O(5)	 on	 Fig.	 10.24(a)	 randomly;	 the	 structure	 therefore	 remains
tetragonal.	 The	 added	 oxygen	 atoms	 act	 like	 acceptor	 impurities	 in	 a	 semiconductor
(Section	 5.3)	 and	 thus	 add	 holes	 to	 the	 crystal.	 Some	 of	 these	 holes	 are	 located	 on	 the
CuO2	planes	but	for	small	concentrations	there	is	no	conduction;	YBa2Cu3O7	−	δ	 remains
an	antiferromagnetic	 insulator	until	δ	decreases	 to	about	0.6.	This	can	be	understood	by
assuming	 that	 the	 holes	 are	 localized	 on	 oxygen	 atoms	 in	 the	CuO2	 planes.	An	 oxygen
atom	 with	 a	 hole	 has	 an	 outer	 shell	 with	 five	 2p	 electrons	 and	 thus	 spin	 S	 =	 .	 The
localization	of	the	holes	is	an	indication	that	electron-electron	interactions	are	important	in
the	CuO2	layers	(see	sections	4.3.2	and	13.5.6).

When	the	additional	oxygen	corresponds	to	a	reduction	in	δ	to	about	0.6	two	important
changes	 occur:	 the	 symmetry	 of	 the	 crystal	 structure	 changes	 from	 tetragonal	 to
orthorhombic	(a	≠	b	≠	c,	α	=	β	=	γ	=	90°)	and	an	insulator-metal	transition	occurs	(Section
13.5.6).	The	extent	 to	which	 these	changes	are	 related	 is	not	yet	known.	The	change	 in
crystal	structure	is	due	to	preferential	occupation	of	the	O(4)	sites	over	the	O(5)	sites,	thus
breaking	 the	 x	 −	 y	 symmetry	 and	 leading	 to	 the	 formation	 of	 the	 CuO	 chains	 in	 Fig.
10.24(a).	The	onset	of	conduction	is	due	to	derealization	of	the	holes;	it	is	not	clear	if	it	is
better	to	view	the	conduction	as	arising	because	of	the	hopping	of	a	hole	from	one	oxygen
atom	to	another	or	as	being	linked	with	the	formation	of	a	two-dimensional	energy	band
associated	with	 the	 hybridization	 (Section	 4.3.4)	 of	 3d	 states	 on	 the	Cu	 atoms	with	 2p
states	on	the	oxygen	atoms.

For	 δ	 just	 less	 than	 0.6	 the	 metallic	 YBa2Cu3O7	 −	 δ	 undergoes	 a	 superconducting
transition	at	about	40	K,	but	as	δ	decreases	further	Tc	 increases	and	reaches	92	K	at	δ	~
0.1.	 It	has	proved	 impossible	 to	prepare	YBa2Cu3O7	−	δwith	 the	 structure	 shown	 in	Fig.
10.24(a)	with	values	of	δ	any	smaller	than	about	0.1.	The	superconductivity	is	interpreted



as	 arising	 because	 of	Cooper	 pairing	 of	 the	 holes;	 flux	 quantum	measurements	 indicate
that	 pairing	 of	 particles	 with	 a	 charge	 of	 magnitude	 e	 is	 involved.	 The	 interaction
responsible	for	pair	formation	has	not	yet	been	identified;	the	binding	energy	of	the	pairs
is	rather	too	high	to	be	explained	only	by	the	mechanism	involving	the	lattice	vibrations
that	 is	 responsible	 for	 Cooper	 pairing	 in	 ‘conventional’	 superconductors.	 The
antiferromagnetic	order	of	the	Cu	atoms	disappears	at	the	insulator–metal	transition	but	it
is	possible	that	the	antiferromagnetic	interactions	between	the	Cu	spins	may	play	a	role	in
the	superconducting	transition.

Our	discussion	would	suggest	that	the	superconductivity	of	YBa2Cu3O7	−	δ	is	essentially
two-dimensional.	 In	 practice	 this	means	 that	 the	 properties	 of	 YBa2Cu3O7	 −	 δ	 are	 very
anisotropic.	The	critical	current,	for	example,	is	much	larger	for	flow	of	current	in	the	xy
plane	than	for	flow	along	z.	The	high	Tc	and	small	Fermi	velocity	of	YBa2Cu3O7	−	δ	mean
that	 the	 coherence	 length	 (Eq.	 (10.17)),	 which	 measures	 the	 size	 of	 the	 Cooper	 pair
wavefunction,	is	small,	comparable	to	the	size	of	the	unit	cell.	In	contrast	the	low	carrier
density	 implies	 through	 Eq.	 (10.14)	 that	 the	 penetration	 depth	 is	 large.	 The	 high-Tc
superconductors	are	therefore	extreme	type	II	with	very	large	values	of	Bc2.

Because	of	 this	and	 the	fact	 that	 they	are	superconducting	at	 the	 temperature	of	 liquid
nitrogen	 (77	 K)	 there	 are	 many	 potential	 applications	 for	 these	 materials.†	 Difficult
problems	 must	 however	 be	 overcome	 before	 the	 materials	 come	 into	 widespread	 use.
Paramount	among	the	problems	for	YBa2Cu3O7	−	δ	 is	that	it	 is	most	easily	prepared	as	a
ceramic,	 that	 is	as	many	small	crystallites	bonded	 together.	Although	 the	critical	current
parallel	to	the	xy	plane	within	each	crystallite	 is	high,	 the	performance	of	 the	ceramic	is
degraded	by	poor	contact	between	crystallites;	 it	 is	possible	 to	 improve	 this	by	aligning
the	 crystallites	 so	 that	 the	 xy	 planes	 in	 neighbouring	 crystallites	 are	 parallel.	 If	 the
materials	 are	 to	 carry	 large	 currents	 in	high	magnetic	 fields	 some	means	of	pinning	 the
quantized	 flux	 lines	 must	 be	 devised.	 This	 problem	 is	 more	 acute	 in	 high-Tc
superconductors	operating	at	liquid	nitrogen	temperature	because	more	thermal	energy	is
available	to	allow	the	flux	line	to	escape	from	its	pinning	centre.

PROBLEMS	10
10.1	A	current	is	induced	to	flow	around	the	walls	of	the	thin	lead	tube	shown	at	4.2K	(not
to	scale,	all	dimensions	in	cm):



The	 current	 decays	 by	 less	 than	 2%	 (the	 experimental	 sensitivity)	 in	 a	 time	 of	 7	 h.
Deduce	 an	 upper	 limit	 for	 the	 electrical	 resistivity	 of	 superconducting	 lead.	 Assume	 a
value	 5	 ×	 10−8	 m	 for	 the	 penetration	 depth	 of	 lead.	 (This	 problem	 is	 based	 on	 the
experiment	of	Quinn	and	Ittner,	J.	Appl.	Phys.	33,	748	(1962).)

10.2	The	superconductor	 tin	has	Tc	=	3.7	K	and	Bc	=	30.6	mT	at	T	=	0.	Calculate	 the
critical	current	for	a	tin	wire	of	diameter	1	mm	at	T	=	2	K.	What	diameter	of	wire	would
be	required	to	carry	a	current	of	100A?

10.3	Use	the	approximate	form	of	Eq.	(10.1)	for	Bc	to	deduce	approximate	temperature
dependences	for	the	differences	of	the	free	energy,	entropy	and	heat	capacity	between	the
normal	and	 superconducting	 states.	What	 is	 the	discontinuity	 in	 the	heat	 capacity	at	 the
superconducting	transition	in	zero	applied	field?

10.4	Show	that	the	Clogston	limiting	value	of	Bc2	for	a	type	II	superconductor	is	given
by	μBBc2	≈	kB	Tc.

10.5	Use	the	London	equation	to	show	that	the	penetration	of	a	parallel	magnetic	field
into	a	superconducting	film	of	thickness	d	in	the	xy	plane	is	described	by

where	Be	 is	 the	applied	 field	and	 the	centre	of	 the	 film	 is	at	z	=	0.Calculate	 the	 field	at
which	the	Gibbs	free	energies	of	the	normal	and	superconducting	states	are	equal	for	the
film.

10.6	The	effect	of	the	non-locality	of	the	current–field	relation	on	the	zero-temperature
penetration	depth	of	a	pure	type	I	superconductor	in	the	limit	λ	 	ξ	may	be	estimated	by
saying	that,	as	the	field	decays	on	a	length	scale	λ	but	the	current	depends	on	the	average
of	A	over	a	length	scale	ξ,	the	effective	value	of	A	to	insert	in	Eq.	(10.10)	is	λA/ξ	.Show
that	this	approach	predicts

(The	exact	result	from	the	BCS	theory	is	λ3	=	0.62 (0)ξ0.)

10.7	Suggest	reasons	for	the	following:

(a)	At	T	=	1	K	tin	strongly	absorbs	electromagnetic	radiation	of	wavelength	0.9	mm	but
only	weakly	absorbs	radiation	of	wavelength	1.1	mm.

(b)	Superconductors	are	poor	conductors	of	heat	for	T	 	Tc.

(c)	The	critical	field	at	T	=	0	of	different	superconductors	is	approximately	proportional
to	Tc.

(d)	For	different	isotopes	of	the	same	element	Tc	depends	on	the	isotopic	mass.

10.8	A	supercurrent,	corresponding	to	the	order	parameter	(nS/2)1/2	exp	(iqx),	flows	in	a
thin	film	in	the	xy	plane	of	thickness	d	 	λ	Calculate	the	vector	potential	within	the	film	in
a	gauge	for	which	A	=	0	in	the	centre	of	the	film	and	div	A	=	0.	Show	that	in	this	gauge
the	second	term	in	Eq.	(10.27)	is	smaller	by	a	factor	∼d2/ (T)	than	the	first	term.



10.9	 Eq.	 (10.10)	 cannot	 be	 generally	 valid	 since	 the	 left-hand	 side	must	 be	 invariant
under	a	gauge	change	A	→	A	 +	∇χ	 of	 the	vector	 potential	whereas	 the	 right-hand	 side
obviously	is	not	(both	A’s	give	the	same	field	B).	The	correct	gauge-invariant	equation	is
Eq.	(10.27).	Explain	why	the	gauge	in	which	Eq.	(10.10)	is	valid	satisfies	div	A	=	0.	Use
Eq.	(10.27)	to	deduce	the	change	in	the	order	parameter	due	to	the	gauge	transformation	A
→	A	+	∇χ.
10.10	Deduce:

(a)	the	condensation	energy,	GN	−	GS,	of	lead	from	Fig.	10.4;

(b)	dBc/dT	at	Tc	for	aluminium	(molar	volume	10−5	m3)	from	Fig.	10.6;

(c)	the	cross-sectional	area	of	the	tin	cylinder	from	Fig.	10.16(b);

(d)	the	energy	gap	of	lead	from	Fig.	10.21;

(e)	the	flux	quantum	from	Fig.	10.22;

(f)	the	area	of	the	loop	containing	the	double	junction	from	Fig.	10.23(b).

†	 Among	 common	 metallic	 elements	 that	 do	 not	 become	 superconducting	 at
temperatures	 currently	 accessible	 are	 copper,	 silver,	 gold,	 the	 alkali	 metals	 and
magnetically	ordered	metals	such	as	iron,	nickel	and	cobalt.

†	The	magnetic	energy	inside	the	material	is	smaller	for	the	Meissner	state	because	B	=
0	there,	but	the	increased	energy	outside	more	than	compensates.

‡	 See	 Mandl2	 for	 a	 discussion	 of	 magnetic	 work.	 It	 is	 more	 common	 in
superconductivity,	 although	 not	 in	 magnetism,	 to	 take	 the	 work	 term	 to	 be	 +Be.dM,
appropriate	 to	 an	 internal	 energy,	 E′	 =	 E	 +	M.Be,	 which	 includes	 the	 energy	 of
interaction,	 +M.Be,	 of	 the	 specimen	 with	 the	 sources	 of	 the	 external	 field.	 In	 this
approach	G	 is	written	G	=	E′	−	TS	−	M.Be.	By	not	 including	a	 term	PV	 in	G	we	 are
ignoring	the	effect	of	changes	in	pressure	and	volume	on	the	superconducting	transition.

†	The	critical	 current	 Ic	 is	not	 related	 to	 a	 critical	 field	by	 the	Silsbee	hypothesis	but
depends	on	the	metallurgical	state:	the	more	inhomogeneous	the	material,	the	higher	Ic
(see	Section	10.5.3	for	an	explanation).

†	It	is	important	to	note	that	in	this	section	we	take	the	screening	currents	explicitly	into
account	rather	than	replacing	them	by	their	equivalent	magnetization.	In	this	approach,
which	 is	more	 appropriate	 when	 investigating	 the	 behaviour	 of	 superconductors	 at	 a
microscopic	level,	we	put	M	=	0	and	B	=	μ0H.

†	Note	 that	high	frequencies	are	not	required	 to	cause	A	 to	vary	rapidly	 in	space	in	a
superconductor;	 even	 for	 a	 dc	 field,	 the	 Meissner	 effect	 ensures	 that	A	 varies	 on	 a
length	scale	λ

‡	 For	 an	 excellent	 series	 of	 review	 articles	 on	 superconductivity	 the	 reader	 is
recommended	to	consult	Superconductivity,	ed.	R.	D.	Parks,	Marcel	Dekker,	New	York
(1969).



†	Although	a	tightly	bound	pair	of	fermions	behaves	like	a	boson,	there	are	dangers	in
pushing	this	simple	idea	too	far	in	the	case	of	Cooper	pairs;	these	are	weakly	bound	and
there	is	a	strong	overlap	of	the	wavefunctions	of	neighbouring	pairs.

‡	Heavy	fermion	materials	such	as	UPt3	and	UBe13	are	so	called	because	they	have	a
very	 large	 electronic	 heat	 capacity	 at	 low	 temperatures,	 equivalent	 to	 a	 large	 heat
capacity	effective	mass	for	the	electrons	(Section	3.2.3).	This	seems	to	arise	because	of
a	contribution	to	the	density	of	states	at	the	Fermi	surface	from	the	5f	electrons	of	the	U
atoms.

†	We	 assume	 a	 uniform	 current	 density	 for	 simplicity.	 Note	 that	 a	 spatially	 uniform
current	density	can	only	be	obtained	in	practice	in	a	conductor	(such	as	a	thin	film	or
fine	wire)	with	one	or	more	dimensions	small	compared	to	the	penetration	depth	λ.

†	Like	the	Weiss	theory	of	ferromagnetism	(Section	8.3)	the	BCS	theory	is	a	mean	field
theory;	the	order	parameter	ψ(r)	is	the	mean	field	of	the	theory	and	is	thus	analogous	to
the	magnetization	 of	 the	 ferromagnet.	 The	mean	 field	 theory	 of	 superconductivity	 is
more	successful	than	that	of	ferromagnetism	because	fluctuation	effects	in	macroscopic
samples	of	superconductor	occur	so	close	to	Tc	that	they	are	difficult	to	observe.

†	The	price	we	pay	for	ignoring	the	internal	structure	of	the	Cooper	pair	wavefunction
is	 to	 obtain	 the	 local	 London	 current-field	 relation	 rather	 than	 the	 true	 non-local
relation.	 For	 an	 explanation	 of	 the	 difference	 between	 Eqs.	 (10.10)	 and	 (10.27)	 see
problem	10.9.

†	See,	 for	example,	U.	Essman	and	H.	Traiible,	Scientific	American,	224	 (March),	 74
(1971).

†	 The	 position	 of	 the	 steps	 can	 be	 determined	 with	 such	 great	 precision	 that	 the
accuracy	 of	 the	 h/2e	 measurement	 is	 limited	 by	 the	 accuracy	 with	 which	 standard
voltage	sources	can	be	calibrated.	This	has	led	to	the	use	of	the	Josephson	junction	as	a
means	of	establishing	a	voltage	standard	by	defining	a	value	of	h/2e;	the	defined	value
is	of	course	consistent	with	the	best	known	value	of	this	ratio.

†	 This	 follows	 from	 Hund’s	 rules	 (Section	 7.2.1).	 Presumably	 the	 orbital	 angular
momentum	of	the	ion	is	quenched	by	the	crystal	field.

†	 See	 ‘The	 new	 superconductors:	 prospects	 for	 applications’	 by	A.	M.	Wolsky,	R.	 F.
Geise	and	E.	J.	Daniels,	in	Scientific	American,	February	1989.



CHAPTER	11

Waves	in	crystals

X-rays	will	turn	out	to	be	a	hoax.—Lord	Kelvin	(1893)

11.1	INTRODUCTION
The	lattice	dynamics	of	a	chain	of	atoms	(section	2.3.1)	has	several	features	in	common
with	the	electron	states	of	the	chain	(section	4.3.3)	and	also	with	the	dynamics	of	a	chain
of	 magnetic	 moments	 (section	 8.5).	 In	 each	 case	 it	 is	 necessary	 to	 solve	 N	 coupled
equations	(Eqs.	(2.7),	(4.9)	and	(8.26)),	one	for	each	atom	in	the	chain,	and	the	wavelike
solution	 is	 of	 the	 form	 exp	 [i(kna	 –	ωt)],	 where	 the	 atomic	 positions	 are	 x	 =	 na;	 the
frequency	ω	is	periodic	in	k	with	period	2π/a.

In	this	chapter	we	discuss	the	generalization	of	these	ideas	to	arbitrary	crystal	structures
in	 three	 dimensions.	 We	 begin	 by	 considering,	 in	 more	 detail	 than	 in	 section	 1.4,	 the
diffraction	 of	waves	 incident	 on	 the	 crystal	 from	an	 external	 source.	This	 enables	 us	 to
introduce	the	important	and	useful	concept	of	the	reciprocal	lattice.	We	then	explain	why
the	internal	motions	of	the	crystal	are	expected	to	be	wavelike	and	how	the	regularity	of
the	dispersion	relations	of	the	waves	in	k-space	is	determined	by	the	reciprocal	lattice.

11.2	ELASTIC	SCATTERING	OF
WAVES	BY	A	CRYSTAL
11.2.1	Amplitude	of	the	scattered	wave
The	 Bragg	 law,	 Eq.	 (1.3),	 identifies	 the	 angles	 of	 the	 incident	 radiation	 relative	 to	 the
lattice	 planes	 for	 which	 diffraction	 peaks	 occur,	 but	 it	 gives	 no	 information	 on	 the
intensities	of	the	diffracted	beams.	To	calculate	the	intensities	a	more	detailed	approach	is
required.	 Suppose	 that	 a	 plane	 wave	A0	 exp	 [i(k	 .	 r	 −	ωt)]	 is	 incident	 on	 the	 atom	 at
position	r	within	 the	crystal	as	shown	in	Fig.	11.1.	To	make	our	 treatment	as	general	as
possible	we	do	not	specify	the	nature	of	the	radiation;	x-rays,	electrons	and	neutrons	are
the	 probes	 most	 often	 used	 in	 diffraction	 studies.	 Some	 of	 the	 incident	 radiation	 is
elastically	 scattered	by	 the	 atom.†	 If	 the	 scattering	 is	weak	 then	 the	 contribution	 of	 the
atom	at	r	to	the	scattered	wave	at	a	detector	at	a	large	distance	|R	−	r|	from	the	atom	(Fig.
11.1)	can	be	written	as	the	product	of	three	factors:



Fig.	11.1	Geometry	of	an	experiment	to	look	at	radiation	scattered	from	a	crystal.	For
elastic	scattering	|k′	|	=	|k|,	and	 K	=	ℏ(k′	–	k)	is	the	momentum	change	of	the	incident
particles.	The	notation	2θ	for	the	angle	of	deflection	is	consistent	with	that	used	in	section
1.4

(11.1)	

The	 first	 factor	 is	 the	 incident	 wave;	 for	 weak	 scattering	 the	 amplitude	A0	 of	 this	 is
effectively	 the	same	for	all	atoms	in	 the	crystal.	The	second	factor	 f	 is	the	atomic	form
factor	or	atomic	scattering	factor,	and	it	depends	on	the	details	of	the	interaction	of	the
radiation	with	the	atom;	the	magnitude	of	 f	reflects	the	strength	of	the	interaction	and	in
general	f	depends	on	the	scattering	angle	(2θ	in	Fig.	11.1).	The	final	 factor	 in	Eq.	 (11.1)
represents	the	amplitude	decrease	and	phase	change	associated	with	a	point	source	at	the
position	of	the	atom.	For	a	distant	detector	the	amplitude	decrease	is	effectively	the	same
for	 all	 atoms	 in	 the	 crystal	 and	 we	 can	 replace	 |R	 −	 r|	 in	 this	 denominator	 by	R,	 the
distance	of	the	detector	from	the	origin	of	the	crystallographic	axes;	we	must	not	make	the
same	replacement	in	the	phase	factor	since	the	variation	of	this	from	one	atom	to	another
causes	 large	 changes	 in	 the	 signal	 at	 the	 detector.	 Note	 that	 for	 elastic	 scattering	 the
wavenumber	and	frequency	of	the	scattered	radiation	are	identical	to	those	of	the	incident
radiation.

The	wave	at	a	distant	detector	approximates	to	a	plane	wave	of	wavevector	k′	(|k′	|	=	|k
|)	 which	 is	 approximately	 parallel	 to	 both	 R	 and	 R	 –	 r.	 To	 a	 good	 approximation,
therefore,	we	can	write

Eq.	(11.1)	can	then	be	written

where	K	=	k′	−	k	 is	known	as	 the	scattering	vector.	The	factor	A0	exp	[	 i(kR	−	ωt)]/R
same	for	all	atoms	 in	 the	crystal	and	 factorizes	out	when	 the	 total	 scattered	wave	at	 the
detector	 is	 evaluated	 by	 summing	 the	 contributions	 of	 all	 the	 atoms;	 we	 can	 therefore
ignore	 this	 factor.	 The	 important	 term	 is	 f	 exp	 (−iK.r),	 which	 contains	 the	 phase
differences	 between	 the	 contributions	 of	 the	 different	 atoms.	 The	 amplitude	 of	 the
scattered	wave	is	then	proportional	to



(11.2)	

where	the	sum	is	over	all	the	atoms	in	the	crystal	and	fn	is	the	atomic	scattering	factor	of
the	nth	atom.†

The	 regularity	 of	 the	 atomic	 structure	 in	 a	 crystal	 means	 that,	 for	 certain	 special
directions	of	the	incident	radiation,	the	scattering	from	the	atoms	adds	up	in	phase	to	give
a	large	scattered	amplitude	in	a	particular	direction.	We	will	use	Eq.	(11.2)	to	calculate	the
directions	and	intensities	of	 the	diffracted	beams.	Since	the	structure	can	be	made	up	by
associating	a	basis	of	atoms	with	each	 lattice	point	 (section	1.2),	 the	position	of	atom	n
may	be	written

(11.3)	

where	rl	 is	the	position	of	the	lattice	point	with	which	atom	n	is	associated	and	rp	 is	 the
position	of	 the	atom	relative	 to	 the	 lattice	point	as	shown	 in	Fig.	11.2.	Using	Eq.	 (11.3)
enables	Eq.	(11.2)	to	be	factorized	as

(11.4)	

Fig.	11.2	The	position	rn	of	any	atom	in	the	crystal	can	be	written	as	rl	+	rp,	where	rl	is	the
position	of	the	lattice	point	with	which	the	atom	is	associated	and	rp	is	the	position	of	the
atom	relative	to	the	lattice	point.	The	boundaries	of	the	primitive	unit	cell	containing	the
atom	are	also	shown

The	first	term,	which	can	also	be	regarded	as	a	sum	over	the	primitive	unit	cells	in	the
crystal,	 contains	 the	 information	 on	 the	 crystal	 lattice,	 and	 consequently	 it	 is	 this	 term
which	determines	the	directions	for	which	diffraction	occurs.	The	second	term,	which	is	a
sum	over	the	contents	of	a	primitive	unit	cell,	is	thus	a	sum	over	a	relatively	small	number
of	atoms	 (for	many	structures	only	one	atom)	and	 is	 the	 same	 for	all	 lattice	points;	 this
term	 is	 known	 as	 the	 structure	 factor	 and	 it	 determines	 the	 relative	 intensities	 of	 the
diffracted	beams.	We	consider	these	two	terms	in	turn.

11.2.2	Laue	conditions	for	diffraction	and	the
reciprocal	lattice



Using	Eq.	(1.2)

for	the	positions	of	the	lattice	points	enbles	us	to	write	the	first	term	in	Eq.	(11.4)	as

(11.5)	

A	 large	 scattering	 amplitude	 is	 obtained	 when	 the	 contributions	 from	 all	 the	 lattice
points	are	in	phase	and	this	is	the	case	if

(11.6a)	

(11.6b)	

(11.6c)	

where	h,	k	and	 l	are	 integers.	Eqs.	 (11.6)	are	 the	Laue	conditions	 for	diffraction.	When
they	are	satisfied,	each	term	in	Eq.	(11.5)	is	unity	and	the	sum	is	then	equal	to	N1N2N3	for
a	crystal	of	extent	N1,	N2	and	N3	lattice	spacings	in	the	x,	y	and	z	directions	respectively:
N1N2N3	is	of	course	just	the	number	of	primitive	unit	cells	within	the	crystal.	Eqs.	 (11.6)
are	 the	conditions	 for	diffraction	off	a	 three-dimensional	diffraction	grating;	comparison
with	the	results	for	a	one-dimensional	optical	grating	(Smith	and	Thomson,5	chapter	11)
shows	 that	 the	 scattered	 amplitude	 falls	 off	 very	 rapidly	 as	 K	 varies	 from	 a	 value
satisfying	these	equations.

The	directions	of	the	diffracted	beams	are	given	by	the	set	of	vectors	K	that	satisfy	Eqs.
(11.6).	These	can	be	represented	in	an	elegant	way	using	the	reciprocal	 lattice	concept.
To	 explain	 this	 important	 idea	 we	 first	 note	 that	k-space	 (sometimes	 called	 reciprocal
space)	 is	 the	 appropriate	 space	 for	 plotting	 wavevectors.	 The	 values	 of	 the	 scattering
vector	K	 that	satisfy	 the	Laue	conditions	 lie	on	a	regular	 lattice	 in	 this	space;	 this	 is	 the
reciprocal	 lattice.	 All	 the	 points	 of	 the	 reciprocal	 lattice	 can	 be	 generated	 from	 three
primitive	reciprocal	lattice	vectors	a*,	b*	and	c*	by	using	the	equation

(11.7)	

where	h,	k	and	l	are	integers;	this	is	analogous	to	the	use	of	the	three	primitive	translation
vectors	a,	b	and	c	to	define	the	lattice	points	rl	of	a	crystal	in	real	three-dimensional	space
using	Eq.	(1.2).	We	will	now	prove	that,	if

(11.8)	

where	Ghkl	is	any	reciprocal	lattice	vector,	and	we	choose	the	following	values	for	a*,	b*
and	c*

(11.9)	

then	K	satisfies	the	Laue	conditions.	To	do	this	we	evaluate	K.a	to	obtain

where	we	have	used	the	relations



(11.10)	

which	follow	from	the	definitions	(11.9).†	 If	K	 is	equal	 to	Ghkl	 it	 therefore	satisfies	Eq.
(11.6a);	evaluating	Ghkl.	b	and	Ghkl.c	shows	that	K	also	satisfies	Eqs.	(11.6b)	and	(11.6c).

The	relations	(11.10)	mean	that	b*	and	c*	are	perpendicular	to	a.	It	does	not	follow	that
a	 and	a*	 are	 parallel;	 this	 is	 only	 the	 case	 if	 crystal	 axes	 are	 orthogonal.	 It	 is	 easier	 to
remember	the	definitions	(11.9)	if	it	is	noted	that,	once	a*	has	been	defined,	b*	and	c*	can
be	written	down	by	cyclic	permutation	of	a,	b	and	c.	Note	that	the	denominator	a.(b	×	c)
in	the	definitions	is	unchanged	by	a	cyclic	permutation;	this	quantity	is	in	fact	the	volume
of	 a	 unit	 cell.	 It	 follows	 from	 the	 symmetry	 of	 Eqs.	 (11.9)	 that	 Eqs.	 (11.10)	 can	 be
supplemented	by	b*.	b	=	2π,	c*.	c	=	2π	and	relations	which	 indicate	 that	a*	and	c*	are
perpendicular	to	b	and	that	a*	and	b*	are	perpendicular	to	c.

Since	 the	 scattering	 vector	 of	 each	 diffracted	 beam	 corresponds	 to	 a	 point	 in	 the
reciprocal	lattice	of	the	form	of	Eq.	(11.7)	we	can	use	the	integers	(hkl)	to	label	that	beam.
We	now	show	that	 this	 labelling	 is	 identical	 to	 that	 introduced	 in	section	1.4,	where	 the
diffracted	beams	were	labelled	by	the	Miller	indices	of	the	lattice	planes	with	which	they
were	associated.	In	doing	this	we	will	also	demonstrate	that	Eqs.	(11.6)	or	Eq.	 (11.8)	are
equivalent	 to	 the	 Bragg	 law,	 Eq.	 (1.3).	 We	 first	 establish	 the	 relationship	 between	 the
reciprocal	 lattice	vector	Ghkl	 and	 the	 set	 of	 lattice	 planes	with	Miller	 indices	 (hkl).	 The
plane	of	the	(hkl)	set	nearest	 the	origin	is	shown	in	Fig.	11.3	and	we	see	 that	a	vector	d
perpendicular	to	the	planes	with	length	equal	to	the	plane	spacing	satisfies

(11.11)	

These	equations	for	d	 are	 similar	 in	 form	 to	Eqs.	 (11.6),	which	determine	 the	scattering
vectors	of	 the	diffracted	beams.	Exploiting	 this	 similarity	we	 find	 that,	by	analogy	with
Eq.	(11.8),	d	can	be	written

(11.12)	

This	 may	 be	 checked	 by	 direct	 substitution	 in	 Eqs.	 (11.11)	 and	 using	 Eqs.	 (11.9).	 Eq.
(11.12)	shows	that	 the	reciprocal	 lattice	vector	Ghkl	 is	perpendicular	 to	 the	lattice	planes
with	Miller	indices	(hkl)	and	has	a	length	2π/d,	where	d	is	the	spacing	of	the	planes.

Fig.	11.3	The	first	(hkl)	plane	out	from	the	origin	has	intercepts	a/h,	b/k	and	c/l	on	the	x,	y
and	z	axes	respectively.	The	vector	d	is	perpendicular	to	the	plane	and	its	length	is	equal	to
the	plane	spacing.	The	relation	a.d/h	=	d2	(Eq.	(11.11))	follows	because	the	component	of
a/h	along	the	d	direction	is	|d|



Fig.	11.4	The	Bragg	formulation	of	diffraction	has	the	incident	and	diffracted	beams
making	equal	angles	θ	to	the	lattice	planes.	Hence,	since	|k	|	=	|k′	|,	K	is	perpendicular	to
the	planes

The	 interpretation	 of	 the	 Bragg	 law	 as	 ‘reflection’	 of	 waves	 off	 lattice	 planes	 is
illustrated	in	Fig.	11.4.	The	use	of	some	simple	geometry	(recall	|k′|	=	|k|)	establishes	that
the	scattering	vector	K	is	perpendicular	to	the	planes	and	thus	parallel	to	the	vector	Ghkl	as
is	required	by	Eq.	(11.8).	The	magnitude	of	K	(|K|	=	2|k|	sin	θ	from	Fig.	11.4)	is	equal	to
that	of	Ghkl	if	2|k|	sin	θ	=	2π/d,	that	is	if	2d	sin	θ	=	λ,	which	is	just	the	Bragg	law	for	first-
order	diffraction.	The	Bragg	and	Laue	 formulations	of	 the	 conditions	 for	diffraction	are
thus	completely	equivalent,	as	is	the	use	of	reciprocal	lattice	vectors	and	Miller	indices	to
label	the	diffracted	beams.	As	already	indicated	in	section	1.4,	when	a	primitive	unit	cell	is
used	to	describe	the	lattice,	higher	orders	of	diffraction	are	indicated	by	the	appearance	of
a	common	factor	in	(hkl).	Thus	(1	0	0),	(2	0	0)	and	(3	0	0)	correspond	to	first-,	second-	and
third-order	diffraction	respectively.

The	 reciprocal	 lattice	 is	 such	 an	 important	 and	 widely	 used	 concept	 for	 discussing
diffraction	of	waves	by	a	crystal	 that	 it	 is	worth	while	 repeating	 the	main	conclusion	of
this	section.	For	incident	radiation	of	wavevector	k,	the	directions	of	the	diffracted	beams
are	 given	 by	wavevectors	k′	 =	k	 +	K,	where	 the	 scattering	 vector	K	 is	 any	 one	 of	 the
points	of	 the	 reciprocal	 lattice	 in	k-space.	The	 reciprocal	 lattice	points	are	given	by	Eq.
(11.7)	 and	 the	 primitive	 lattice	 vectors	 of	 the	 reciprocal	 lattice	 are	 determined	 from	 the
real	space	primitive	lattice	vectors	by	using	Eqs.	(11.9).

11.2.3	Examples	of	reciprocal	lattices



In	discussing	the	following	examples	we	will	find	it	useful	to	refer	to	a	set	of	Cartesian
axes	defined	by	mutually	perpendicular	unit	vectors	i,	j	and	k.

Simple	cubic	real	space	lattice

In	terms	of	the	Cartesian	axes,	we	have

(11.13)	

Thus	a.	(b	×	c)	=	a3and,	using	Eqs.	(11.19),†

(11.14)	

The	 reciprocal	 lattice	 is	 therefore	also	 simple	cubic	with	 side	2π/a	 and	 is	 in	 the	 same
orientation	as	the	real	space	lattice.

Face-centred	cubic	real	space	lattice

We	take	the	Cartesian	axes	to	be	along	the	sides	of	the	conventional	cubic	unit	cell.	The
primitive	translational	vectors,	shown	in	the	right-hand	cube	in	Fig.	11.5,	are	then

(11.15)	

where	a	is	the	side	of	the	conventional	cubic	unit	cell.	Thus	a.	(b	×	c)	=	a3/4	and,	using
Eqs.	(11.9),	we	find

(11.16)	

These	are	 the	primitive	 translational	vectors	for	a	body-centred	cubic	 reciprocal	 lattice
with	a	cubic	unit	cell	of	side	4π/a.	That	the	reciprocal	lattice	is	bcc	is	demonstrated	in	Fig.
11.5.	The	vector	a	×	b	which	is	parallel	to	c*	is	clearly	directed	towards	the	body-centered
position	of	the	left-hand	cube.	It	follows	that	the	conventional	cubic	unit	cells	of	the	real
space	 lattice	 and	 the	 reciprocal	 lattice	 have	 the	 same	 orientation.	Note	 that	 labelling	 of
diffracted	beams	based	on	the	above	primitive	translation	vectors	of	the	reciprocal	lattice
corresponds	 to	 labelling	based	on	Miller	 indices	for	 the	primitive	unit	cell	and	 therefore
differs	 from	 labelling	 based	 on	Miller	 indices	 for	 the	 conventional	 cubic	 unit	 cell	 (see
problem	11.5).

Body-centred	cubic	real	space	lattice

It	 is	a	general	result	 that	 taking	the	reciprocal	 lattice	of	 the	reciprocal	 lattice	gives	 the
real	 space	 lattice	 back	 again	 (problem	 11.2);	 the	 reciprocal	 lattice	 of	 a	 bcc	 lattice	 is
therefore	an	 fcc	 lattice.	 If	 the	conventional	unit	cell	has	 side	a,	 the	primitive	 translation
vectors	of	the	real	space	lattice	are

Fig.	11.5	Pairs	of	primitive	lattice	vectors	of	the	fcc	lattice	lie	in	{1	1	1}	planes.	The
reciprocal	lattice	vectors	are	perpendicular	and	are	therefore	in	directions	parallel	to	the
body	diagonals	of	the	cube	(for	example	the	[1	1	1]	direction).	These	are	the	directions	of
the	primitive	lattice	vectors	of	a	bcc	lattice



(11.17)	

so	that	a.	(b	×	c)	=	a3/2	and

(11.18)	

These	are	the	primitive	translation	vectors	for	an	fcc	reciprocal	lattice	with	a	cubic	unit
cell	of	side	4π/a.

Hexagonal	real	space	lattice

This	is,	for	example,	the	lattice	of	the	hexagonal	close-packed	structure	of	Fig.	1.11	and
the	primitive	lattice	vectors,	in	terms	of	the	Cartesian	axes,	are

(11.19)	

Thus	a.(b	×	c)	=	( /2)a2c	and

(11.20)	

These	are	 the	primitive	translation	vectors	of	a	hexagonal	reciprocal	 lattice.	The	relative
orientation	of	the	real	space	and	reciprocal	space	lattices	is	shown	in	Fig.	11.6.

Fig.	11.6	Relative	orientation	of	the	real	and	reciprocal	space	lattices	for	a	hexagonal
lattice;	the	vectors	c*	and	c	are	parallel

11.2.4	The	structure	factor
The	second	factor	in	Eq.	(11.4),	the	structure	factor



(11.21)	

is	a	sum	over	the	atoms	in	the	basis,	where	rp	 is	 the	position	of	 the	atom	relative	 to	 the
lattice	point.	The	simplest	 situation	 is	 for	a	basis	consisting	of	one	atom	on	each	 lattice
point.	S	then	contains	one	term,	for	which	rp	=	0.	Thus

and	the	only	variation	in	the	intensity	of	the	diffracted	peaks	is	due	to	the	angular	variation
of	 the	atomic	form	factor	ƒ.	This	 is	usually	smooth	and	monotonic	so	 that	neighbouring
diffraction	peaks	have	similar	intensities.	Fig.	11.7	shows	the	angular	dependence	of	ƒ	for
x-rays	for	cubic	close-packed	aluminium	as	deduced	from	the	diffraction	peaks	indicated;
ƒ	is	shown	as	a	function	of	(sin	θ)/λ	where	θ	is	the	Bragg	angle.

The	hexagonal	close-packed	structure	of	Fig.	1.11	has	a	basis	of	two	identical	atoms	at
r1	=	0	and	r2	=	 a	+	 b	+	 c.	Thus	for	the	(hkl)	diffracted	beam

(11.22)	

where	we	have	used	Eqs.	(11.7)	and	(11.8)	and	the	properties	of	 the	primitive	reciprocal
lattice	vectors	 (see	Eqs.	 (11.10)).	The	 intensity	of	 the	diffracted	beam	 is	proportional	 to
|S|2	 and	 this	 can	 take	 four	 possible	 values	 depending	 on	h,	k	 and	 l	 (problem	 11.3).	 For
some	diffracted	beams,	in	particular	the	(0	0	1)	beam,	the	intensity	vanishes.	Thus	some	of
the	 possible	 diffracted	 beams	 predicted	 by	 Eq.	 (11.8)	 are	 absent	 because	 of	 destructive
interference	of	the	scattering	from	the	two	atoms	in	the	basis.

Fig.	11.7	Atomic	form	factor	for	aluminium	determined	from	the	intensities	of	the
diffraction	peaks	indicated.	The	labelling	is	based	on	the	conventional	cubic	unit	cell.	The
full	curve	is	a	theoretical	prediction.	(Reproduced	with	permission	from	W.	Batterman,	D.
R.	Chipman	and	J.	J.	de	Marco,	Phys.	Rev.	122,	68	(1961))

This	 is	worthy	 of	 further	 comment.	The	 vanishing	 of	S	 for	 the	 hep	 structure	 depends
crucially	on	the	assumption	of	identical	form	factors	for	both	atoms	in	the	basis.	Although



the	 atoms	 are	 chemically	 identical,	 their	 environments	 within	 the	 crystal	 are	 different;
electron	states	within	the	atoms	are	distorted	slightly	by	the	neighbouring	atoms	and	this
distortion	 is	 reflected	 in	 the	 angular	 dependence	of	 ƒ.	Thus	 the	 form	 factors	 of	 the	 two
atoms	 differ	 slightly	 and	 very	 weak	 diffracted	 beams	 do	 occur	 in	 the	 ‘forbidden’
directions.	 For	 the	 approximately	 spherically	 symmetric	 atoms	 and	 ions	 that	 form
hexagonal	 close-packed	 structures,	 these	 diffracted	 beams	 are	 normally	 too	weak	 to	 be
seen,	but	a	beam	of	this	kind	is	observed	for	the	covalently	bonded	diamond	stucture,	as
discussed	below.	The	 important	 lesson	 to	be	 learned	 is	 that	 it	 is	necessary	 to	distinguish
between	results	that	are	derived	rigorously	by	symmetry	arguments	(such	as	prediction	of
the	direction	of	diffracted	beams	using	the	reciprocal	lattice)	and	results	that	follow	from
an	approximation	of	some	kind	(such	as	the	near-vanishing	of	predicted	diffraction	beams
due	to	approximate	equality	of	the	form	factors	of	the	atoms	in	the	basis).

Before	calculating	the	structure	factors	of	the	diamond	and	sodium	chloride	structures,
both	of	which	have	 an	 fcc	 lattice,	 it	will	 be	helpful	 for	 us	 to	discuss	diffraction	 from	a
simple	 fcc	 structure	when	 the	conventional	 cubic	unit	 cell	 rather	 than	 the	primitive	unit
cell	 is	used	 to	determine	 the	 reciprocal	 lattice.	To	do	 this	we	 regard	 the	 fcc	 structure	as
being	built	up	from	a	simple	cubic	lattice	of	side	a	with	 the	face-centred	atoms	forming
part	of	the	basis	of	atoms	associated	with	each	lattice	point.	The	reciprocal	lattice	of	the
simple	 cubic	 lattice	 is	 simple	 cubic	with	 side	 2π/a	 (Eq.	 (11.14)).	 The	 intensities	 of	 the
diffracted	beams	are	given	by	a	structure	factor	obtained	by	summing	over	basis	atoms	at:
r1	=	0,	r2	=	 (a	+	b),	r3	=	 (b	+	c),	r4	=	 (c	+	a),	where	a,	b	and	c	are	the	lattice	vectors
for	the	conventional	unit	cell.	Thus,	proceeding	as	for	the	hep	structure,

(11.23)	

where	ƒ	is	the	atomic	form	factor	of	the	atoms	in	the	basis;	note	that	ƒ	is	strictly	equal	for
the	four	atoms	since	their	environments	are	identical.	A	few	moments	thought	suffices	to
show	that	S	can	take	only	two	values:

(11.24)	

We	 see	 from	 Fig.	 11.8	 that	 the	 diffracted	 beams	 eliminated	 in	 this	 way	 are	 precisely
those	 required	 to	 convert	 the	 simple	 cubic	 reciprocal	 lattice	 of	 side	 2π/a	 into	 the	 body-
centred	 cubic	 reciprocal	 lattice	 of	 cube	 side	 4π/a	 of	 Eq.	 (11.16),	 obtained	 using	 the
primitive	unit	cell	of	the	fcc	lattice.	Both	approaches	therefore	lead	to	the	same	diffracted
beams	although	the	labelling	is	different	(see	problem	11.5).

Fig.	11.8	Selecting	points	of	a	simple	cubic	lattice	of	side	2π/a	for	which	the	coordinates
(hkl)	are	all	odd	or	all	even	generates	a	body-centred	cubic	lattice	(full	circles)	of	side	4π/a



For	the	diamond	and	sodium	chloride	structures	we	will	use	labelling	appropriate	to	the
conventional	 cubic	 unit	 cell.	As	 the	 diffracted	 beams	must	 correspond	 to	 the	 reciprocal
lattice	of	the	fcc	lattice,	we	know	from	our	analysis	above	that	diffracted	beams	will	only
occur	 if	 h,	 k	 and	 l	 are	 all	 even	 or	 all	 odd.	 For	 the	 diamond	 structure	 (Fig.	 1.15),	 the
intensities	of	the	beams	are	determined	by	the	structure	factor	of	the	basis,	r1	=	0,	r2	=	 (a
+	b	+	c),	of	two	atoms	associated	with	each	lattice	point.	Thus,	proceeding	as	for	the	hep
structure,

where	ƒ	is	the	form	factor	for	the	atoms.	Hence:

(1)	for	h,	k	and	l	all	odd,

(2)	for	h,	k	and	l	all	even,

The	observed	diffraction	is	in	general	agreement	with	these	predictions	but	a	very	weak
(2	2	2)	x-ray	beam	is	observed	for	diamond	in	contradiction	with	the	rules.	This	indicates
failure	of	the	assumption	that	the	form	factors	of	the	two	atoms	in	the	basis	are	identical;
the	two	atoms	have	their	tetrahedrally	arranged	covalent	bonds	(Fig.	1.15(b))	in	different
orientations	and,	since	a	significant	fraction	of	the	electrons	are	involved	in	the	bonding,
the	form	factors	are	sufficiently	different	to	cause	an	observable	diffracted	beam.

In	the	sodium	chloride	structure,	the	basis	of	atoms	is	Na+	at	r1	=	0	and	Cl−	at	r2	=	 a.
The	structure	factor	is	thus

where	ƒ+	and	ƒ−	are	the	form	factors	of	the	positive	and	negative	ions	respectively.	Hence:



This	generalizes	the	result,	noted	in	section	1.4,	that	the	(1	1	1)	diffracted	beam	is	not
observed	in	x-ray	diffraction	from	KC1.	Since	the	form	factors	of	the	K+	and	Cl−	ions	are
almost	 identical	 (ƒ+	 ≈	 ƒ−);	 we	 see	 that	 all	 the	 diffracted	 beams	 for	 odd	 h,	 k	 and	 l	 are
vanishingly	small	in	KC1.

11.3	WAVELIKE	NORMAL	MODES—
BLOCH’S	THEOREM
We	now	turn	our	attention	to	the	electron	states	and	lattice	vibrations	of	a	crystal.	We	are
interested	 in	 motions	 where	 the	 time	 dependence	 is	 of	 the	 form	 e−iωt	 throughout	 the
crystal,	that	is	in	the	normal	modes.	The	motions	are	therefore	specified	by	a	function	of
the	form

(11.25)	

We	will	show	that	the	motions	are	wavelike	in	character.	We	consider	first	the	situation
where	the	function	Ψ(r,	t)	only	needs	to	be	defined	at	the	lattice	sites.	This	is	the	case,	for
example,	 for	 the	 classical	 (Newtonian)	 dynamics	of	 the	 atoms	 in	 a	 crystal	 in	which	 the
lattice	and	stucture	are	identical	(only	one	atom	in	each	primitive	unit	cell);	in	this	case	the
function	Ψ(rl,	t)	gives	the	displacement	of	the	atom	that	occupies	the	lattice	position	r	=	rl
when	the	crystal	is	at	rest.

The	lattice	looks	identical	from	each	lattice	point	and	the	N	equations	of	motion	needed
to	determine	Ψ(rl,	t)	(one	for	each	atom	in	the	crystal)	must	therefore	be	identical	in	form.
This	implies	that	if	the	function	ψ(rl)	changes	by	a	factor	A	in	going	from	the	nth	to	the	(n
+	1)th	lattice	point	in	any	direction	it	must	change	by	the	same	factor	in	going	from	the	(n
+	1)th	to	(n	+	2)th	lattice	point	in	that	direction.	This	is	illustrated	for	a	two-dimensional
example	 in	 Fig.	 11.9,	 where	 we	 suppose	 that	ψ(rl)	 is	 equal	 to	 unity	 at	 the	 origin	 and
changes	by	a	factor	A	for	displacement	by	the	primitive	lattice	vector	a	and	a	factor	B	for
displacement	 by	 the	 primitive	 lattice	 vector	 b.	 It	 can	 be	 seen	 that	 for	 a	 general
displacement	rl	=	ua	+	vb	we	have

Fig.	11.9	Normal	mode	amplitude	for	a	two-dimensional	rectangular	lattice



Unless	we	choose	A	and	B	such	that	|A|	=	|B|	=	1,	we	will	have	an	unphysical	situation	in
which	ψ(rl)	increases	indefinitely	in	some	directions.	We	can	therefore	set

More	general	solutions	are	acceptable	near	a	boundary,	but	not	in	an	infinite	crystal.	We
thus	have

If	we	define	a	vector	k	such	that	k.a	=	θ	and	k.b	=	ϕ	then

(11.26)	

The	wavelike	nature	of	the	solution	is	thus	a	consequence	of	the	translational	symmetry
of	the	lattice.

We	must	 now	generalize	 this	 result	 to	 the	 case	where	 there	 is	more	 than	one	 atom	 in
each	primitive	unit	cell.	A	more	general	situation	has	already	been	considered	in	section
2.3.2,	namely	the	vibrations	of	a	 linear	chain	consisting	of	 two	types	of	atom.	There	we
had	 two	 types	 of	 equation	 of	motion,	 one	 for	 each	 type	 of	 atom,	 and	 the	 solution	was
specified	by	the	ratio	α(k),	giving	the	relative	displacements	of	the	two	atoms	in	each	cell,
as	well	as	by	a	wavelike	factor	equivalent	to	that	of	Eq.	(11.26).	For	each	value	of	k	there
were	two	possible	values	of	α(k)	and	consequently	two	different	normal	mode	frequencies
ω(k).	This	result	is	easily	generalized	to	the	case	of	s	atoms	per	primitive	unit	cell:	there
will	be	s	distinct	types	of	equation	of	motion;	s	−	1	ratios	α2(k),	…,	αs(k)	will	be	required
to	specify,	for	each	normal	mode,	the	relative	displacement	of	the	atoms	in	the	unit	cell;
there	will	be	 s	 normal	modes	 for	 each	value	of	k	 and	 thus	 s	 branches	of	 the	dispersion
relation	ω(k).	The	argument	is	not	specific	to	lattice	vibrations;	it	applies	to	any	situation
in	which	an	amplitude	has	to	be	defined	at	s	points	in	the	primitive	unit	cell.

Now	consider	 the	 case	 in	which	Ψ(r,	 t)	 is	 an	 electron	wavefunction,	 as	 in	Chapter	 4,
which	 has	 to	 be	 defined	 at	 all	 points	 in	 space.	 The	 appropriate	 generalization	 of	 Eq.
(11.26)	for	this	case	may	be	obtained	by	taking	the	limit	s	→	∞	in	 the	discussion	of	 the
previous	paragraph.	This	gives	an	infinite	number	of	branches	of	ω(k)	corresponding	to	an
infinite	number	of	energy	bands	for	the	electrons;	fortunately	only	a	small	number	of	these
will	be	important.	In	the	limit	s	→	∞,	the	set	of	numbers	α2,	…,	αs	tends	to	a	continuous
function	u(r)	defined	at	all	points	within	a	unit	cell;	the	values	of	u(r)	like	those	of	α2,	…,
αs	 repeat	within	 the	 next	 cell,	 so	 that	u(r)	 is	 a	 periodic	 function	with	 the	 period	 of	 the
lattice.	The	appropriate	generalization	of	Eq.	(11.26)	is	therefore

(11.27)	

where	we	have	added	a	suffix	k	to	indicate	that	the	form	of	the	function	u(r)	depends	on
k;	it	is	also	different	for	each	branch	of	the	frequency	spectrum.	For	convenience	we	have
written	a	normalization	factor	1/ 	in	Eq.	(11.27),	where	V	 is	 the	volume	of	 the	crystal
(cf.	Eq.	(3.3)).	The	wavefunction	(11.27)	is	known	as	a	Bloch	wavefunction	and	the	fact
that	wavefunctions	in	a	crystal	can	be	expressed	in	this	form	is	Bloch’s	theorem.



11.4	NORMAL	MODES	AND	THE
RECIPROCAL	LATTICE
11.4.1	Periodicity	of	the	dispersion	relation
In	this	section	we	derive	the	important	result	that	a	normal	mode	of	the	crystal	described
by	 a	 function	 of	 the	 form	 of	Eq.	 (11.26)	 or	 (11.27)	 for	 some	wavevector	k	 can	 also	 be
described	by	a	function	of	the	same	form	but	with	a	different	wavevector	k′	related	to	k	by

(11.28)	

where	G0	is	any	vector	of	the	reciprocal	lattice	of	the	crystal	as	given	by	Eq.	(11.7).	This
result	is	easy	to	establish	for	Eq.	(11.26)	where	the	function	is	defined	only	at	the	lattice
points.	From	Eq.	(1.2),	rl	=	ua	+	vb	+	wc,	so	that,	by	using	Eqs.	(11.7)	and	(11.9),	we	find
G0.rl	=	2π(uh	+	vk	+	wl).	Hence

and	Eq.	(11.26)	is	unaffected	by	the	substitution	k	→	k′.

This	 result	 can	 be	 extended	 to	 the	 functions	 of	 Eq.	 (11.27)	 that	 are	 defined	 at	 all
positions.	Since	this	extension	involves	more	complicated	algebra	and	the	introduction	of
new	ideas,	we	will	first	 indicate	the	importance	of	the	result	by	pointing	out	some	of	its
consequences:

(1)	Since	the	same	motions	are	described	by	any	k′	that	satisfies	Eq.	(11.28)	 it	 follows
that	 the	mode	frequency	 is	 the	same	for	all	 such	wavevectors	and	 therefore	 that	 for	any
branch	 of	 the	 dispersion	 relation	 the	 frequency	 is	 periodic	 in	 k-space	 with	 the	 same
periodicity	as	the	reciprocal	lattice.	We	have	already	encountered	this	result	for	the	lattice
vibrations	and	electron	states	of	a	one-dimensional	chain	(sections	2.3.1,	2.3.2	and	4.3.3),
where	we	found	the	dispersion	relations	to	be	periodic	in	k	with	period	2π/a,	which	is	the
reciprocal	lattice	spacing	for	a	one-dimensional	real	space	lattice	of	spacing	a.

(2)	 The	 flexibility	 of	 being	 allowed	 to	 add	 any	 reciprocal	 lattice	 vector	 to	 the
wavevector	used	to	represent	a	normal	mode	means	that	any	mode	can	be	represented	by	a
wavevector	inside	a	single	primitive	unit	cell	of	the	reciprocal	lattice;	Eq.	 (11.28)	 relates
any	wavevector	k	outside	this	cell	to	one	k′	inside	for	a	suitably	chosen	reciprocal	lattice
vector	G0.	 In	our	one-dimensional	calculations	 in	sections	2.3	and	4.3.3	we	saw	that	all
physically	 distinct	 lattice	 vibrations	 and	 electron	 states	 could	 be	 represented	 by
wavevectors	within	a	range	2π/a,	the	size	of	the	primitive	cell	of	the	reciprocal	lattice.	We
use	results	(1)	and	(2)	in	the	following	section	to	generalize	to	more	than	one	dimension
the	repeated,	reduced	and	extended	zone	plotting	schemes	for	dispersion	relations	of	Fig.
4.9.

(3)	The	number	of	normal	modes	associated	with	any	branch	of	the	dispersion	relation



is	 equal	 to	 the	 number	 Nc	 of	 the	 primitive	 unit	 cells	 in	 the	 crystal.	 For	 the	 periodic
boundary	 conditions	 that	 are	 consistent	with	 running	waves	of	 the	 form	of	Eqs.	 (11.26)
and	 (11.27)	we	 have	 already	 shown	 (Eq.	 (2.41))	 that	 possible	k	 vectors	 are	 distributed
uniformly	in	k-space	with	a	density	V/	(2π	)3,where	V	is	the	volume	of	the	crystal.	All	the
distinct	modes	can	be	represented	by	a	k	vector	inside	one	primitive	cell	of	the	reciprocal
lattice	which	has	a	volume	a*.(b*	×	c*);	using	Eq.	(11.9),	this	can	be	written	(2π)3/[a.(b	×
c)]	=	(2π)3/υc	where	υc	 is	 the	volume	of	 the	primitive	unit	 cell	 of	 the	 real	 space	 lattice.
Thus	there	are

(11.29)	

k	values	for	each	branch	of	the	dispersion	relation.

To	extend	our	proof	of	the	statement	at	the	beginning	of	this	section	to	cover
functions	of	the	form	of	Eq.	(11.27)	we	must	first	generalize	to	more	than	one
dimension	the	Fourier	series	expansion	of	a	periodic	function	of	position.	We	begin
by	looking	at	the	one-dimensional	expansion	in	a	different	way	to	that	normally
used.	If	a	function	of	x	has	period	a	then	we	can	associate	a	lattice	of	spacing	a
with	it;	the	function	looks	identical	when	viewed	from	points	this	distance	apart.
The	basis	functions	of	a	Fourier	series	expansion	are	all	the	sine	and	cosine
functions	with	periodicity	a;	these	have	the	general	form	cos	(Gnx)	and	sin	(Gnx)
where

(11.30)	

and	n	is	an	integer.	We	use	the	notation	Gn	because	Eq.	(11.30)	just	gives	the
reciprocal	lattice	vectors	of	the	one-dimensional	lattice	of	spacing	a.	Instead	of	cos
(Gnx)	and	sin	(Gnx)	the	complex	exponentials	exp	(iGnx)	and	exp	(−iGnx)	can	be
useds	and	thus	any	function	can	be	expanded

(11.31)	

where	the	sum	is	over	all	the	reciprocal	lattice	vectors	and	aG	are	the	Fourier
coefficients;	note	that	we	do	not	need	to	include	terms	in	exp	(−iGnx)	explicitly
since	the	sum	is	over	all	positive	and	negative	values	of	n.

The	function	uk(r)	in	Eq.	(11.27)	can	be	expanded	using	the	three-dimensional
equivalent	of	Eq.	(11.31),

(11.32)	

where	the	sum	is	over	all	reciprocal	lattice	vectors,	and	the	aG(k)	are	the	Fourier
coefficients.	If	we	insert	Eq.	(11.32)	into	Eq.	(11.27)	and	use	Eq.	(11.28)	to
substitute	for	k,	we	obtain



The	difference	G′	=	G	−	G0	is	also	a	reciprocal	lattice	vector	and	since	the	sum	is
over	all	reciprocal	lattice	vectors	it	can	be	written	as	a	sum	over	G′,	i.e.

where	the	replacement	of	aG(k′	–	G0)	by	bG′(k′)	represents	a	relabelling	of	the
Fourier	coefficients.	Thus	Ψ(r,	t)	is	again	in	the	form	of	Eq.	(11.27),	namely

except	that	it	is	represented	by	the	wavevector	k′	rather	than	k.

It	is	possible	to	use	Eq.	(11.28)	to	change	the	k	vector	used	to	represent	the	free
electron	wavefunction	of	Eq.	(3.3)	by	rewriting	this	equation	as

Since	exp	(−iG0.r)	has	the	periodicity	of	the	crystal	lattice	the	rewritten
wavefunction	is	in	the	form	of	Eq.	(11.27).	This	is	not	a	sensible	thing	to	do
because	there	is	an	obvious	choice	of	k	to	be	used	for	the	free	electron
wavefunction.	When	the	effect	of	the	periodic	lattice	potential	is	introduced	there	is
in	general	no	longer	an	obvious	choice	of	k	and	the	freedom	to	be	able	to	choose
which	primitive	unit	cell	of	the	reciprocal	lattice	is	to	be	used	becomes	very	useful
We	discuss	different	possible	choices	in	the	following	section.

11.4.2	Brillouin	zones	and	the	plotting	of
dispersion	relations
In	plotting	one-dimensional	electron	dispersion	relations	in	Chapter	4	we	found	it	useful	to
split	 k-space	 into	 Brillouin	 zones	 with	 boundaries	 at	 the	 k	 values	 for	 which	 Bragg
diffraction	 of	 the	 electron	wave	 occurs.	 The	 diffraction	 produces	 standing	waves	 rather
than	 running	waves	at	 the	zone	boundaries,	with	 the	consequent	vanishing	of	 the	group
velocity	 of	 wavelike	 normal	 modes.	 The	 energy	 gaps,	 produced	 by	 a	 periodic	 lattice
potential,	 in	 the	 free	 electron	 dispersion	 curve	 also	 appear	 at	 the	 Brillouin	 zone



boundaries.	In	a	one-dimensional	crystal	the	boundaries	of	the	nth	zone	are	given	in	terms
of	the	lattice	spacing	a	by

and	each	zone	consists	of	two	regions	each	of	width	π/a	symmetrically	disposed	about	the
origin	(see	Fig.	4.2).	The	first	zone	plays	a	special	role	in	that	it	is	a	primitive	unit	cell	of
the	 reciprocal	 lattice†	 and	 is	 the	 unit	 cell	 normally	 used	 when	 dispersion	 curves	 from
different	branches	of	the	dispersion	curve	are	plotted	in	the	same	cell	(as	in	Fig.	4.9(b)).

We	 now	 extend	 the	 Brillouin	 zone	 concept	 to	 two	 and	 three	 dimensions	 and	 find
analogues	for	most	of	 the	properties	mentioned	in	 the	previous	paragraph.	Although	our
discussion	is	phrased	in	terms	of	the	electron	states	of	the	crystal	it	can	be	applied	equally
well	 to	 the	 other	wavelike	 normal	modes.	We	 take	 the	Brillouin	 zone	 boundaries	 to	 be
given	by	 the	wavevectors	k	 that	 satisfy	 the	diffraction	 condition,	Eq.	 (11.8);	 to	 identify
these	we	write	this	equation	as	k′	=	k	+	G,	which	on	squaring	becomes	k′2	=	k2	+	2k.G	+
G2.	Recalling	that	k′2	=	k2	then	gives	2k.G	=	−G2;	if	G	is	a	reciprocal	lattice	vector	then	so
is	−G	and	this	allows	us	change	the	sign	in	this	equation	and	to	write	the	condition	that	k
must	satisfy	for	diffraction	to	occur	as

(11.33)	

where	G	is	any	vector	of	the	reciprocal	lattice.

Values	of	k	 that	satisfy	this	equation	have	the	simple	geometrical	interpretation	shown
in	Fig.	11.10;	they	lie	on	the	plane	that	perpendicularly	bisects	the	reciprocal	lattice	vector
G.	 The	Brillouin	 zone	 boundaries	 for	 a	 two-dimensional	 square	 lattice	 are	 therefore	 as
shown	in	Fig.	11.11.	Successive	zones	are	 indicated	by	numbering;	as	 in	one	dimension
we	regard	the	nth	zone	as	comprising	those	regions	of	k-space	that	can	be	reached	from
the	origin	by	crossing	a	minimum	of	n	−	1	boundaries.	In	contrast	to	the	one-dimensional
case	the	higher	zones	become	increasingly	fragmented.	The	first	Brillouin	zone	is	always
continuous	however;	by	its	construction	it	is	the	locus	of	points	nearer	to	the	origin	than	to
any	other	lattice	point.	It	is	thus	the	coordination	polyhedron	of	a	reciprocal	lattice	point,
that	 is	 the	 Wigner–Seitz	 unit	 cell	 of	 the	 reciprocal	 lattic.	 Fig.	 11.12	 shows	 how	 the
Wigner–Seitz	 cells	 of	 a	 general	 two-dimensional	 reciprocal	 lattice	 stack	 together	 to	 fill
space.	As	in	one	dimension	it	is	the	first	Brillouin	zone	that	is	identified	as	the	‘special’
zone	for	the	plotting	of	dispersion	relations.

To	 illustrate	 the	 different	 plotting	 schemes	 for	 dispersion	 relations	 we	 consider	 the
curves	 predicted	 by	 the	 nearly	 free	 electron	 theory	 for	 the	 two-dimensional	 reciprocal
lattice	of	Fig.	11.11.	Fig.	11.13	 shows	contours	of	constant	energy	superimposed	on	 the
Brillouin	zone	 structure;	 these	curves	have	been	obtained	by	distorting	 the	 free	electron
curves	 slightly	 to	 ensure	 that	 the	 contours	 intersect	 the	 zone	boundaries	 at	 right	 angles,
thus	 ensuring	 that	 the	 component	 of	 group	 velocity	 perpendicular	 to	 the	 boundary
vanishes.	By	comparison	with	Fig.	4.9	we	see	that	Fig.	11.13	is	the	generalization	of	the
extended	zone	scheme	to	two	dimensions;	successively	higher	zones	contain	successively
higher	energy	bands.	Two	difficulties	arise	in	connection	with	this	plotting	scheme.	First,
the	 fragmentation	 of	 the	 higher	 zones	makes	 it	 difficult	 to	 see	what	 is	 going	 on	 in	 the



higher	 energy	 bands.	 Secondly,	 it	 is	 only	 for	 the	 nearly	 free	 electron	 model	 that	 it	 is
possible	to	identify	particular	zones	with	particular	energy	bands	in	this	way;	in	this	model
the	 electron	 states	 are	 obtained	 by	 perturbation	 theory	 from	 free	 electron	 states	 and	 the
free	electron	k	vector	can	be	used	to	identify	the	Brillouin	zone	appropriate	to	the	state.

Fig.	11.10	Geometrical	interpretation	of	Eq.	(11.33).	If	k	lies	on	the	plane	that
perpendicularly	bisects	G,	then	the	component	of	k	along	G	is	k.G/|G|	=	|G|/2;	hence	2k
.G	=	G2

Fig.	11.11	Brillouin	zone	boundaries	for	a	two-dimensional	simple	square	reciprocal
lattice.	The	boundaries	are	the	perpendicular	bisectors	of	the	reciprocal	lattice	vectors	for
the	lattice	points	shown.	The	numbering	of	successive	Brillouin	zones	is	achieved	by
counting	the	number	of	boundaries	that	must	be	crossed	to	reach	them	from	the	origin

Fig.	11.12	The	first	Brillouin	zone	(shaded)	is	the	Wigner–Seitz	unit	cell	of	the	reciprocal
lattice



Fig.	11.13	Contours	of	equal	electron	energy	superimposed	on	the	Brillouin	zone
boundaries	of	Fig.	11.11.	The	first,	second,	third	and	part	of	the	fourth	zone	are	shown.
The	contours	are	obtained	by	distorting	free	electron	circles	slightly	to	obtain
perpendicular	intersections	with	zone	boundaries.	The	broken	curve	shows	an	undistorted
circle

To	 overcome	 these	 difficulties	 the	 reduced	 zone	 scheme	 can	 be	 used	 in	 which	 the
dispersion	 relation	 of	 all	 energy	 bands	 is	 plotted	 in	 the	 first	Brillouin	 zone.	The	 lowest
energy	 band	 in	 Fig.	 11.13	 is	 already	 plotted	 in	 this	 zone.	 Fig.	 11.14	 shows	 how	 the
electron	contours	from	the	second	zone	can	be	remapped	into	the	first	zone	by	translation
through	the	reciprocal	lattice	vectors	indicated;	the	justification	for	this	procedure	is	given
in	the	previous	section.	The	continuity	of	the	resulting	contours	is	guaranteed	because	the
states	 that	 become	 adjacent	 are	 separated	 by	 a	 reciprocal	 lattice	 vector	 in	 the	 original
extended	zone	scheme	and	are	therefore	the	same	state.	By	comparison	with	the	original
free	 electron	 circles	 on	Fig.	11.13	we	 see	 that	 there	 is	 a	maximum	 in	 the	 energy	 at	 the
centre	of	the	zone	for	this	band.

Fig.	11.14	Remapping	of	the	energy	contours	from	the	second	Brillouin	zone	into	the	first
by	translation	through	the	reciprocal	lattice	vectors	indicated



Because	the	dispersion	relations	are	periodic	with	periodicity	of	the	reciprocal	lattice	we
can	continue	 the	contours	 for	each	band	 throughout	k-space	 to	obtain	 the	 repeated	zone
scheme	for	the	first	two	bands	as	shown	in	Fig.	11.15.	Points	labelled	M	in	Fig.	11.15(a)
are	energy	maxima,	and	since	they	differ	by	reciprocal	lattice	vectors	they	all	correspond
to	 the	 same	 state;	 this	 is	 also	 true	 for	 the	 maxima	 labelled	M	 in	 Fig.	 11.15(b).	 Points
labelled	m1	in	Fig.	11.15(b)	are	energy	minima	corresponding	to	the	same	state;	the	points
labelled	m2correspond	 to	a	different	 state	which	 is	degenerate	with	 that	 labelled	m1,	 the
degeneracy	 arising	 because	 of	 the	 symmetry	 of	 the	 lattice.	We	 see	 that	 a	 great	 deal	 of
information	 about	 the	 likely	 form	 of	 the	 dispersion	 curves	 can	 be	 obtained	 from	 the
symmetry	of	the	reciprocal	lattice.	Our	approach	in	this	section	is	largely	two-dimensional
but	in	Chapter	13	we	show	that	it	can	be	extended	to	predict	the	likely	forms	of	the	Fermi
surface	of	real	three-dimensional	metals.

Thus	far	we	have	considered	only	the	effects	of	the	reciprocal	lattice	on	the	dispersion
relations.	For	crystal	structures	with	a	basis	of	more	than	one	atom	associated	with	each
real	 space	 lattice	 point,	 we	 saw	 in	 section	 11.2.4	 that	 the	 structure	 factor	 had	 a	 big
influence	on	 the	 intensities	of	 the	diffracted	beams;	 in	particular	 if	 the	basis	 consists	of
two	chemically	identical	atoms,	the	intensity	of	the	beams	associated	with	some	reciprocal
lattice	 vectors	 can	 become	 immeasurably	 small.	 The	 weakness	 of	 Bragg	 diffraction	 of
electron	 waves	 associated	 with	 certain	 reciprocal	 lattice	 vectors	 would	 result	 in	 the
appearance	 of	 a	 very	 small	 energy	 gap	 on	 the	 corresponding	 Brillouin	 zone	 boundary.
Thus,	for	example,	the	energy	gap	at	the	Brillouin	zone	boundary	corresponding	to	the	(0
0	1)	reciprocal	lattice	vector	would	be	very	small	in	an	hcp	metal.

Fig.	11.15	Repeated	zone	scheme	representation	of	(a)	the	lowest	and	(b)	the	next	lowest
energy	band	of	the	free	electron	model	of	Fig.	11.13.	Labels	M	and	m	represent	energy
maxima	and	minima	respectively



PROBLEMS	11
11.1	Apply	Newtonian	mechanics	to	the	elastic	scattering	of	a	light	object	off	a	stationary
heavy	object	to	show	that	the	momentum	change	of	the	light	object	can	be	large	whilst	its
energy	change	is	negligible.

11.2	Show	that	taking	the	reciprocal	lattice	of	the	reciprocal	lattice	gives	the	real	space
lattice	back	again.

11.3	 Calculate	 the	 four	 possible	 values	 of	 |S|2,	 where	 S	 is	 the	 structure	 factor	 of	 Eq.
(11.22),	for	the	hcp	structure.

11.4	Derive	the	conditions	that	must	be	satisfied	by	h,	k	and	l	for	diffraction	from	a	bcc
structure	when	the	conventional	cubic	unit	cell	is	used	to	label	the	beams.	Show	that	these
conditions	convert	the	simple	cubic	reciprocal	lattice	of	the	conventional	cell	into	the	fcc
reciprocal	lattice	of	the	primitive	cell.

11.5	Diffracted	beams	from	a	cubic	close-packed	structure	are	labelled	as	(1	0	0),	( 	0
0),	 (1	 1	 1),	 ( 	 1	 1),	 (1	 1	 0)	 and	 ( 	 1	 0)	 using	 the	 primitive	 translation	 vectors	 of	 the
reciprocal	lattice	given	by	Eq.	(11.16).	Deduce	the	labels	that	are	attributed	to	these	beams
if	 the	 conventional	 cubic	 unit	 cell	 is	 used.	Calculate	 values	 of	a(sin	θ)/λ	 for	 the	 beams
where	a	is	the	side	of	the	conventional	cell.	Discuss	the	relative	merits	of	the	two	labelling
systems.

11.6	Calculate	the	structure	factor	for	the	CsCl	structure	(Fig.	1.14).

11.7	The	Mo	Kα	radiation	used	to	obtain	the	data	in	Fig.	11.7	has	a	wavelength	0.713	Å.
Calculate	the	length	of	the	side	of	the	conventional	cubic	unit	cell	of	aluminium	from	the
figure.

11.8	Show	how	the	third	and	fourth	Brillouin	zones	on	Fig.	11.11	can	be	mapped	 into
the	 first	 zone	 by	 translation	 through	 appropriate	 reciprocal	 lattice	 vectors.	 Sketch	 the
nearly	free	electron	energy	contours	from	the	third	zone	when	this	has	been	done.	Identify
maxima	and	minima.

11.9	Calculate	the	ratio	kF/km	for	metals	of	valency	1	for	both	the	bcc	and	fcc	structures,
where	kF	 is	 the	 free	 electron	Fermi	wavenumber	 and	km	 is	 the	minimum	distance	 in	k-
space	from	the	origin	to	the	boundary	of	the	first	Brillouin	zone.	What	is	the	relevance	of
your	results	to	the	Fermi	surfaces	of	sodium	(bcc)	and	copper	(fcc)?

†	Because	 the	 crystal	 is	 a	massive	object	 it	 can	 absorb	 the	momentum	change	of	 the



incident	 particle	 without	 taking	 any	 energy	 from	 it	 (see	 problem	 11.1).	 Inelastic
scattering	is	considered	in	Chapter	12.

†	Eq.	(11.2)	is	valid	only	for	weak	scattering	since	multiple	scattering	and	attenuation	of
the	incident	wave	by	the	crystal	are	ignored;	this	is	normally	a	good	approximation	for
neutrons	and	x-rays	but	not	for	electrons.

†	Relations	(11.10)	are	 true	because	(b	×	c).a	=	a.(b	×	c)	and	(c	×	a).a	and	(a	×	b).a
vanish;	the	scalar	product	of	two	perpendicular	vectors	is	zero.

†	Recall	that	i	×	j	=	k,	j	×	k	=	i	and	k	×	i	=	j.

†	Note	that	the	lattice	point	is	in	the	middle	of	the	cell,	not	at	a	corner.



CHAPTER	12

Scattering	of	neutrons	and	electrons	from
solids

We	became	very	excited	about	this	experimental	challenge	and	the	opening	up	of
new	 possibilities.	Astonishingly	 it	 took	 us	 a	 couple	 of	weeks	 to	 realise	 that	 not
only	would	we	have	a	local	spectroscopic	probe,	but	that	scanning	would	deliver
spectroscopic	and	topographic	 images,	 i.e.	a	new	microscope.—Gerd	Binnig	and
Heinrich	Rohrer—on	the	discovery	of	the	scanning	tunnelling	microscope—Nobel
prize	address,	1986

12.1	INTRODUCTION
In	 section	 11.2	we	 presented	 a	 general	 approach	 to	 the	 problem	 of	 elastic	 scattering	 of
waves	 by	 crystals	 and	 showed	 how	 measurements	 of	 the	 directions	 and	 intensities	 of
diffracted	beams	enable	the	structure	to	be	determined.†	Experimental	arrangements	used
in	x-ray	diffraction	have	already	been	described	in	Chapter	1.	In	this	chapter	we	describe
methods	used	to	study	the	scattering	of	neutrons	and	electrons.	We	explain	how	inelastic
scattering	 of	 neutrons	 can	 be	 used	 to	 provide	 information	 on	 the	 energy–momentum
relation	 for	 the	 excitations	 in	 a	 solid,	 such	 as	 phonons	 and	magnons.	Finally	we	give	 a
brief	 survey	 in	 section	 12.6	 of	 a	 number	 of	 important	 techniques,	 in	 most	 of	 which
electrons	are	used,	for	studying	the	surfaces	of	solids.

12.2	COMPARISON	OF	X-RAYS,
NEUTRONS	AND	ELECTRONS
12.2.1	Interaction	of	x-rays,	neutrons	and	electrons
with	atoms
There	are	important	differences	in	the	way	x-rays,	neutrons	and	electrons	interact	with	the
atoms	 in	 a	 solid.	X-rays	 are	 scattered	primarily	by	 the	 atomic	electrons,	 and	 the	atomic
scattering	factor	f	(see	Eq.	(11.1)),	which	describes	the	strength	of	the	scattering,	therefore
increases	steadily	with	increasing	atomic	number	(Fig.	12.1);	this	makes	it	difficult	for	x-
rays	 to	 detect	 light	 atoms,	 particularly	 in	 solids	 in	 which	 there	 are	 also	 much	 heavier



atoms.	Because	of	destructive	interference	between	radiation	scattered	by	different	parts	of
the	electron	cloud,	f	also	falls	with	increasing	scattering	angle	(problem	12.1).

Neutrons	interact	with	atoms	in	two	ways.	Because	of	the	strong	nuclear	force	they	are
scattered	by	the	nucleus	and	the	strength	of	this	scattering	is	conventionally	represented	by
the	scattering	length	b	such	that	the	total	cross	section	for	scattering	is	4πb2;	the	scattered
wave	is	of	the	form	of	Eq.	(11.1)	with	f	replaced	by	b.	As	can	be	seen	from	Fig.	12.1	 the
scattering	length	does	not	increase	monotonically	with	atomic	number;	neutrons	are	thus
more	useful	 than	x-rays	for	determining	 the	structure	of	solids	containing	 light	elements
(particularly	hydrogen)	and	for	distinguishing	between	elements	of	similar	atomic	number.
Because	 the	 nucleus	 is	 much	 smaller	 than	 the	 neutron	 wavelength	 it	 acts	 as	 a	 point
scatterer	and	 the	scattering	 length	does	not	 fall	off	with	 increasing	scattering	angle.	The
second	 type	 of	 interaction	 of	 neutrons	 with	 atoms	 is	 the	 magnetic	 force	 between	 the
magnetic	moment	of	the	neutron	and	that	(if	any)	of	the	atom.†	The	force	depends	on	the
direction	of	the	atomic	moment	and	this	allows	neutron	diffraction	to	be	used	to	determine
the	nature	of	magnetic	ordering	in	solids	(section	12.5).

Fig.	12.1	Scattering	length	for	the	nuclear	scattering	of	neutrons	as	a	function	of	atomic
mass.	The	broken	curve	corresponds	to	scattering	by	a	hard	sphere	of	radius	equal	to	that
of	the	nucleus.	The	irregular	variation	about	this	curve	is	associated	with	resonant
scattering;	this	occurs	when	the	energy	is	such	that,	in	the	scattering	process,	a	neutron
and	nucleus	can	combine	to	form	an	intermediate	compound	nucleus.	The	scattering
length	for	x-rays	is	also	shown;	this	is	a	function	of	(sin	θ)/λ	where	θ	is	the	angle	of
scattering	and	λ	the	x-ray	wavelength	(problem	12.1).	(Reproduced	by	permission	of	the
Oxford	University	Press	from	G.	E.	Bacon,	Neutron	Diffraction,	Third	Edition,	1975)

Like	x-rays,	electrons	are	scattered	by	the	atomic	electrons.	The	scattering	of	electrons
is	 however	 very	much	 stronger,	 and	 this	 has	 two	 important	 consequences.	 First,	 a	 low-
energy	electron	beam,	suitable	for	diffraction	studies,	 is	 rapidly	attenuated	on	entering	a
solid	and	such	electrons	are	therefore	used	mainly	for	studying	the	chemical	and	physical
nature	of	 the	surfaces	of	solids.	Secondly,	 the	simple	scattering	theory	of	section	11.2	is
not	 valid	 because	 it	 assumes	 that	 the	 wave	 scattered	 by	 an	 atom	 is	 so	 weak	 that	 the
amplitude	 of	 rescattering	 by	 another	 atom	 can	 be	 ignored.	 The	 analysis	 of	 electron



scattering	experiments	is	considerably	complicated	by	the	need	to	take	account	of	multiple
scattering.	Because	electrons	are	charged,	electron	beams	can	be	focused	by	electric	and
magnetic	 fields;	electrons	can	 therefore	be	used	 to	 study	a	small	 localized	 region	of	 the
sample	surface.

12.2.2	Inelastic	scattering
To	 use	 inelastic	 scattering	 of	 x-rays,	 neutrons	 and	 electrons	 to	 investigate	 dispersion
curves	of	excitations	in	solids	it	is	necessary	to	measure	the	energy	(frequency)	change	of
the	 radiation.	The	 relative	difficulty	of	achieving	 this	can	be	 investigated	by	calculating
the	energies	of	photons,	neutrons	and	electrons	of	wavelength	2	Å	(k	=	1010π	m−1).	This
wavelength	is	comparable	to	the	atomic	spacing	and	therefore	ideal	for	structural	studies;
it	is	also	well	suited	to	investigating	excitations	of	comparable	wavelength	(why?).	These
energies	are:

Phonons	are	typical	examples	of	excitations	in	a	solid	and	have	energies	up	to	about	the
Debye	 energy	 (section	 2.6.4),	 which	 is	 usually	 in	 the	 range	 0.01−0.1	 eV;	 the	 energy
change	of	an	inelastically	scattered	particle	will	be	of	this	order.	Comparing	this	with	the
incident	 energy	 we	 see	 that	 much	 higher	 energy	 resolution	 is	 required	 to	 measure	 the
energy	change	 for	x-ray	photons	 than	 for	neutrons.	 If	photons	of	 lower	energy	are	used
their	wavelength	is	no	longer	comparable	to	the	interatomic	spacing.

From	 what	 we	 have	 said	 here	 and	 in	 the	 previous	 section	 it	 might	 be	 thought	 that
neutrons	are	a	generally	superior	tool	to	x-rays.	However,	small	and	cheap	x-ray	sources
are	 widely	 available.	 Neutrons	 are	 obtained	 either	 from	 a	 fission	 reactor	 or	 by
bombardment	 of	 a	 suitable	 target	with	 high-energy	 electrons	 or	 protons	 from	 a	 particle
accelerator;	 in	 either	 case	 the	 sources	 are	 large	 and	 very	 expensive.	 Also	 the	 neutron
intensity	from	such	sources	is	relatively	low	(typically	1015	cm−2	s−1	from	a	reactor)	and
the	range	of	neutron	energies	large,	so	that	the	intensity	has	often	to	be	reduced	further	by
selecting	a	narrow	band	of	energy.	In	practice	in	a	neutron	scattering	experiment	there	is
always	 some	 sacrifice	 of	 collimation	 and	 energy	 resolution	 for	 the	 sake	 of	 intensity.	 In
contrast,	 for	x-rays	an	intense	monochromatic	 incident	beam	is	easily	obtained	since	the
output	 of	 an	 x-ray	 tube	 is	 a	mixture	 of	 characteristic	 lines	 and	 continuous	 background;
with	 a	 suitable	 choice	 of	 operating	 voltage	 a	 large	 proportion	 of	 line	 emission	 can	 be
obtained.	X-rays	 are	 therefore	 normally	 used,	wherever	 possible,	 for	 precision	 structure
determination.



12.3	NEUTRON	SCATTERING
TECHNIQUES
A	 neutron	 scattering	 experiment	 in	 general	 requires	 a	 neutron	 source	 and	 detector,
collimation	to	define	the	directions	of	the	incident	and	scattered	beams,	and	some	means
of	 determining	 the	 energies	 of	 the	 incident	 and	 scattered	 particles.	 An	 apparatus	 for
studying	neutron	scattering	is	known	as	a	neutron	spectrometer.

12.3.1	Neutron	sources
A	 continuous	 neutron	 flux	 can	 be	 obtained	 from	 a	 fission	 reactor.	 Collisions	 of	 the
neutrons	 within	 the	 moderator	 (typically	 graphite)	 of	 the	 reactor	 give	 the	 neutrons	 a
Maxwell–Boltzmann	 distribution	 of	 speeds	 appropriate	 to	 a	 temperature	 of	 order	 room
temperature;	 such	 neutrons	 are	 described	 as	 thermal	 neutrons.	 Although	 the
corresponding	mean	energy	of	0.025	eV	is	very	suitable	for	many	scattering	experiments
(see	previous	section),	the	broadness	of	the	speed	distribution	means	that	some	method	of
energy	selection	must	be	incorporated	into	the	experimental	set-up.

In	 some	experiments	a	 short	pulse	of	neutrons	 is	used.	Pulses	can	be	obtained	 from	a
reactor	 source	 (see	 section	12.3.3)	but	 it	 is	 often	better	 to	 create	 them	by	 collision	of	 a
pulse	 of	 high-energy	 protons	 or	 electrons	with	 a	 suitable	 target.	 In	 a	proton	 spallation
source	pulses	of	protons	with	an	energy	of	order	800	MeV	from	a	synchrotron	are	used.	If
uranium	 is	 the	 target	material	 then	 each	 proton	 produces	 as	many	 as	 30	 neutrons.	 The
neutrons	 are	 produced	 as	 ‘chips’	 knocked	 off	 the	 uranium	 nuclei	 by	 the	 protons;†
additional	neutrons	are	produced	by	fission	of	the	nuclei.

The	energy	of	the	emitted	neutrons	is	typically	1	MeV—too	large	for	scattering	studies
of	solids.	A	slab	of	polyethylene	can	be	used	as	a	moderator;	the	thickness	of	the	slab	is
chosen	 to	 obtain	 a	 neutron	 energy	 distribution	 appropriate	 to	 the	 experiment	 being
performed.	Spallation	sources	are	particularly	useful	if	neutrons	of	higher	energy	than	the
thermal	neutrons	from	a	reactor	are	required;	neutrons	do	not	remain	within	the	moderator
long	 enough	 to	 become	 thermalized	 to	 the	 moderator	 temperature	 and	 are	 said	 to	 be
epithermal.	 The	 neutron	 pulse	 is	 typically	 of	 duration	 10	 μs	 and	 contains	 a	 broad
spectrum	of	neutron	energies.

12.3.2	Neutron	detectors
Neutrons	are	uncharged	and	therefore	difficult	to	detect	directly.	Low-energy	neutrons	can
however	 induce	 nuclear	 reactions	 in	 which	 high-energy	 ions	 are	 produced;	 these	 cause
strong	ionization,	which	can	be	detected.	One	such	reaction	that	has	a	high	cross	section
(2100	×	10−28	m2	for	neutrons	of	1	Å	wavelength)	is	with	the	boron	isotope	of	mass	10,

This	 reaction	 is	 exploited	 in	 the	 BF3	 proportional	 neutron	 counter	 in	 which	 the



ionization	in	BF3	gas	enriched	with	the	10B	isotope	is	detected.

12.3.3	Time-of-flight	methods
Two	methods	 are	 used	 for	 defining	 and	measuring	 neutron	 energies:	 in	 this	 section	we
describe	 time-of-flight	 techniques	 and	 in	 the	 following	 section	 we	 discuss	 crystal
monochromators.	The	velocity	of	a	neutron	of	wavelength	2	Å	is

(12.1)	

A	velocity	of	this	order	can	readily	be	determined	by	measuring	the	time	of	flight	of	a
neutron	 over	 a	 distance	 of	 a	 few	 metres.	 The	 time	 at	 which	 the	 flight	 ends	 can	 be
determined	by	noting	the	time	of	arrival	at	the	detector.	The	time	of	the	beginning	of	the
flight	 is	 known	 if	 the	 neutrons	 are	 introduced	 into	 the	 spectrometer	 in	 pulses.	Time-of-
flight	 methods	 are	 therefore	 particularly	 suited	 for	 use	 with	 pulsed	 neutron	 sources;
neutrons	of	different	energy	within	each	pulse	arrive	at	the	detector	at	different	times,	and
energy	discrimination	in	pulsed	experiments	is	thereby	achieved.

A	simple	spectrometer	for	neutron	diffraction	studies	based	on	time-of-flight	methods	is
shown	in	Fig.	12.2.	The	count	rate	at	the	detector	is	measured	as	a	function	of	the	time	of
arrival.	 For	 elastically	 scattered	neutrons	 the	 time	of	 flight	 of	 neutrons	 of	wavelength	λ
(momentum	p)	is	given	by

(12.2)	

where	L	 is	 the	 total	 length	 of	 the	 neutron	 path	 from	 the	 source	 to	 the	 detector	 via	 the
specimen.	Diffraction	occurs	when	the	Bragg	law	(Eq.	(1.3))

is	satisfied.	For	a	fixed	detector	position,	θ	is	determined	by	the	experimental	geometry	as
indicated	in	Fig.	12.2.

To	see	diffraction	from	a	given	set	of	lattice	planes	two	conditions	must	be	satisfied:	the
planes	 must	 be	 at	 the	 correct	 angle	 to	 the	 incident	 beam	 and	 the	 beam	 must	 include
neutrons	of	 the	wavelength	 required	 to	satisfy	 the	Bragg	 law.	The	 first	condition	can	be
satisfied	 by	 using	 a	 powder	 specimen	 (see	 section	 1.4)	 so	 that	 planes	 at	 all	 possible
incident	 angles	 occur.	 The	 second	 condition	 is	 fulfilled	 if	 the	 incident	 pulses	 contain
neutrons	with	a	wide	energy	range.	By	combining	Eqs.	(1.3)	and	(12.2)	we	find	 that	 the
times	of	flight	for	neutrons	undergoing	Bragg	diffraction	are	given	by

(12.3)	

Peaks	 therefore	 occur	 in	 the	 neutron	 count	 rate	 at	 times	 satisfying	 this	 equation.	 Fig.
12.3	shows	a	plot	of	count	rate	against	flight	time	for	such	an	experiment.	Eq.	(12.3)	has
been	 used	 to	 relabel	 the	 horizontal	 axis	 with	 the	 wavelength	 λ	 of	 the	 neutrons
corresponding	to	a	particular	flight	time.



Neutron	pulses	can	be	obtained	using	a	spallation	source	as	described	in	section	12.3.1.
They	can	also	be	obtained	from	the	continuous	beam	from	a	reactor	by	using	a	chopper.
Fig.	12.4	shows	two	types	of	chopper.	In	the	disc	type,	a	disc	opaque	to	neutrons	rotates
about	an	axis	parallel	to	the	beam,	allowing	bursts	of	neutrons	to	pass	through	one	or	more
slots	near	 the	periphery.	The	Fermi-type	chopper	consists	of	a	multilayer	 sandwich	of	a
material	with	high	neutron	absorption	(e.g.	cadmium	for	 low-energy	neutrons,	boron	for
neutrons	of	higher	energy)	and	a	material	with	 low	neutron	absorption	 (e.g.	aluminium)
rotated	about	an	axis	perpendicular	 to	 the	beam;	neutrons	are	 transmitted	only	when	the
sandwich	is	parallel	to	the	incident	beam.

Fig.	12.2	Time-of-flight	spectrometer	for	studying	elastic	scattering	of	neutrons.	To
investigate	inelastic	scattering	it	is	necessary	to	add	a	monochromator	to	define	the	energy
of	either	the	incident	or	scattered	neutrons

Fig.	12.3	Diffraction	pattern	of	silicon	powder,	measured	at	a	scattering	angle	2θ	of	90°
with	a	time-of-flight	spectrometer.	(From	Risø	Report	R164	(1967).	Reproduced	by
permission	of	Bente	Lebech,	Risø	National	Laboratory,	Denmark)

To	perform	inelastic	scattering	measurements	using	time-of-flight	methods	requires	the
addition	to	the	spectrometer	of	Fig.	12.2	of	a	monochromator	to	define	the	energy	of	either
the	incident	or	the	scattered	neutrons;	together	with	the	total	time	of	flight	this	enables	the
energy	of	both	incident	and	scattered	neutrons	to	be	determined.	Monochromation	of	the
incident	beam	can	be	achieved	by	placing	a	chopper	in	the	incident	beam	at	some	distance
from	 the	 source	of	 the	neutron	pulse.	The	 chopper	only	 transmits	 those	neutrons	which
arrive	 at	 a	 time	 when	 the	 chopper	 is	 transparent	 and	 in	 this	 way	 velocity	 selection	 is



achieved.	Monochromation	can	also	be	obtained	by	placing	a	crystal	monochromator	 in
either	the	incident	or	scattered	beam.	Monochromation	reduces	the	number	of	neutrons	in
the	 pulse	 and	 makes	 data	 collection	 slow.	 To	 compensate	 for	 this	 problem	 several
detectors	can	be	used	so	that	many	scattering	angles	are	studied	simultaneously.

Fig.	12.4	(a)	Disc-type	chopper,	(b)	Fermi-type	chopper

12.3.4	Crystal	monochromators
An	 alternative	 to	 time-of-flight	 methods	 for	 neutron	 energy	 selection	 is	 to	 use	 Bragg
reflection	 from	 a	 suitably	 oriented	 single	 crystal.	 This	 technique	 is	 used	 to	 make	 the
monochromator	 and	 analyser	 in	 the	 triple-axis	 spectrometer	 shown	 in	 Fig.	 12.5.	 The
monochromator	 diffracts	 neutrons	 of	 the	 desired	 wavelength	 (varied	 by	 changing	 θM)
towards	 the	 sample,	 allowing	 the	 undiffracted	 remainder	 of	 the	 neutron	 beam	 to	 be
absorbed	by	shielding,	not	shown	in	Fig.	12.5.	Commonly	a	(1	1	1)	reflection	from	a	Ge
crystal	 is	 used	 because	 there	 is	 effectively	 no	 second-order	 (2	 2	 2)	 reflection	 from	 the
diamond	structure	(section	11.2.4);	reflection	of	neutrons	of	half	the	desired	wavelength	is
thereby	 avoided.	 Pyrolitic	 graphite	 and	 Be	 single	 crystals	 are	 also	 used	 for	 neutron
monochromation.	Single	crystals	are	often	 too	perfect	and	need	 to	be	 strained	a	 little	 to
introduce	some	mosaic	structure;	this	increases	the	range	of	wavelengths	reflected	by	the
crystal	 and	 thus	 increases	 the	 intensity	 (Bacon33).	 If	 polarized	 neutrons	 are	 required,	 a
magnetized	ferromagnetic	crystal	can	be	used	for	the	monochromator	(section	12.5).

The	 analyser	 consists	 of	 another	 crystal	 adjusted	 for	 Bragg	 reflection	 and	 is	 used	 to
define	the	energy	of	the	scattered	neutrons	reaching	the	detector;	the	energy	is	varied	by
varying	 θA.	 For	 elastic	 scattering	 studies	 the	 analyser	 is	 not	 required.	 For	 inelastic
scattering	the	triple-axis	spectrometer	suffers	the	disadvantage	with	respect	to	the	time-of-
flight	 spectrometer	 that	only	one	 incident	 and	outgoing	energy	and	one	 scattering	angle
are	studied	at	any	particular	 time.	On	 the	other	hand	 the	neutron	 flux	 is	continuous,	not
pulsed,	 and	 as	 we	 shall	 now	 explain	 the	 triple-axis	 spectrometer	 allows	 the	 user	 the
convenience	of	 being	 able	 to	 study	 the	 energy	 changes	of	 neutrons	 for	 a	 fixed	value	of
scattering	 vector	K	 =	 k′	 −	 k.	 In	 the	 time-of-flight	 spectrometer,	 for	 neutrons	 of	 given
incident	wavevector	k,	 the	 scattered	wavevector	 depends	on	 the	 energy	of	 the	 scattered
neutrons	and	hence	so	does	K.	In	the	triple-axis	spectrometer	the	incident	energy	can	be
fixed	by	keeping	θM	 constant.	The	outgoing	energy	 is	 adjusted	by	changing	θA,	but	 the
consequent	 change	 in	 |k′|	 can	 be	 compensated	 by	 simultaneously	 altering	 the	 scattering
angle	ϕ	to	keep	|K|	=	|k′−k|	constant;	also	the	angle	ψ	of	the	sample	can	be	varied	so	that
K	maintains	 its	 orientation	with	 respect	 to	 the	 crystal	 axes	 (see	 Fig.	 12.5(b)).	 Thus	 by
simultaneously	 changing	 the	 three	 angles,	 θA,	ϕ	 and	ψ,	 it	 is	 possible	 to	 investigate	 the



variation	of	neutron	count	rate	with	the	energy	E′	(=	 2k′2/2Mn)	of	the	scattered	neutrons	at
fixed	values	of	 the	 incident	neutron	energy	E	(=	 2k2/2Mn)	and	scattering	vector	K.	Fig.
12.6	shows	data	obtained	 in	 this	way	for	scattering	from	a	single	crystal	of	magnesium;
the	explanation	of	the	data	is	given	in	section	12.4.

Fig.	12.5	(a)	Triple-axis	neutron	spectrometer,	so	called	because	simultaneous	rotations
about	three	axes	are	used	in	its	operation	(see	text),	(b)	Diagram	to	illustrate	the	constant
K	mode	of	operation	of	the	triple-axis	spectrometer.	For	a	fixed	incident	energy	(θM	=
constant,	|k1|	=	|k2|)	but	varying	scattered	energy	(θA	≠	constant,	| |	≠	| |)	it	is	possible	to
keep	|K|	constant	in	magnitude	and	direction	relative	to	the	sample	by	suitable	changes	in
ψ	and	ϕ

Fig.	12.6	Inelastic	neutron	scattering	from	a	magnesium	crystal	observed	using	a	triple-
axis	neutron	spectrometer	in	the	constant	K	mode	of	operation.	The	values	of	θA,	ψ	and	ϕ
required	to	keep	K	constant	are	also	indicated.	(Reproduced	with	permission	from	P.	K.
Iyengar	in	Thermal	Neutron	Scattering,	ed.	P.	A.	Egelstaff,	Academic	Press,	London
(1965))



12.4	DETERMINATION	OF	PHONON
SPECTRA
In	 section	 11.2	we	 considered	 diffraction	 of	 a	 wave	 by	 a	 perfectly	 periodic	 crystal.	 At
finite	temperature	a	real	crystal	is	not	perfectly	periodic	because	thermally	excited	lattice
vibrations	are	present.	We	now	generalize	our	approach	 to	allow	for	 this	possibility;	 for
simplicity	 we	 suppose	 that	 a	 single	 lattice	 wave	 of	 wavevector	 q	 and	 frequency	ω	 is
present	so	that	the	position	of	the	nth	atom	within	the	crystal	is†

(12.4)	

where	 	 is	 the	 equilibrium	 position,	 and	 the	 magnitude	 and	 direction	 of	 u0	 give	 the
amplitude	and	polarization	direction	of	 the	 lattice	wave.	We	shall	 find	 that	 this	periodic
perturbation	of	the	perfect	crystal	gives	rise	to	additional	scattering	maxima	analogous	to
the	‘ghosts’	that	occur	with	optical	diffraction	gratings	with	a	periodic	ruling	error	(Born
and	Wolf,	Principles	of	Optics,	Pergamon,	London	(1959),	p.	407).

The	amplitude	of	the	scattered	wave	is	given	by	Eq.	(11.2)	as

(12.5)	

where,	 since	 we	 wish	 to	 consider	 inelastic	 scattering,	 we	 have	 introduced	 the	 time
dependence	associated	with	the	energy	 Ω	of	the	incident	neutron.

Substituting	the	atomic	displacements	of	Eq.	(12.4)	gives

(12.6)	

where	the	term	in	curly	brackets	on	the	second	line	has	been	obtained	by	expanding	exp	[–
iK.u0	cos(q. 	−	ωt)];	this	is	justified	if	the	amplitude	of	the	vibrations	is	small.	By	writing



the	cosine	in	terms	of	complex	exponentials,	Eq.	(12.6)	becomes

(12.7)	

We	showed	in	section	11.2	that	the	first	term	gives	a	sharp	Bragg	diffraction	peak	when
K	=	G,	where	G	is	any	reciprocal	lattice	vector;	this	term	oscillates	at	the	same	frequency
Ω	 as	 the	 incident	 radiation	 and	 thus	 corresponds	 to	 elastic	 neutron	 scattering	 from	 a
perfectly	periodic	crystal.

Using	a	similar	argument	to	that	used	in	section	11.2	we	see	that	the	second	term	gives	a
sharp	maximum	when	K	−	q	=	G,	or

(12.8)	

The	amplitude	of	the	maximum	is	proportional	to	K.u0	and	oscillates	at	a	frequency	Ω′
given	by

(12.9)	

Eqs.	 (12.8)	 and	 (12.9),	 when	 multiplied	 by	 ,	 have	 the	 appearance	 of	 the	 laws	 of
conservation	of	momentum	and	energy	for	a	process	in	which	a	neutron	of	wavevector	k
absorbs	a	phonon	of	wavevector	q	and	is	scattered	into	a	state	of	wavevector	k′.	This	 is
the	 quantum	 interpretation	 of	 the	 above	 classical	 calculation.	 We	 should,	 however,	 be
cautious	 in	 interpreting	Eq.	 (12.8)	 as	 a	momentum	conservation	equation.	 It	 is	 certainly
true	that	in	the	scattering	process	the	crystal	receives	an	impulse	 (k	−	k′)	=	− K	=	 (−q
−G),	and	that	this	impulse	is	transmitted	to	the	crystal	mounting.	It	is	pure	convention	to
divide	 this	 into	 a	 part	 − G	 given	 to	 the	 whole	 lattice	 and	 a	 part	 − q	 associated	 with
absorption	of	 a	phonon.	The	division	 is	 arbitrary	 in	 that	 the	phonon	of	wavevector	q	 is
equally	well	represented	by	a	wavevector	q	+	G′	where	G′	is	any	reciprocal	lattice	vector
(see	section	11.4).	This	possibility	can	be	used,	by	setting	G′	=	G,	to	associate	the	whole
of	 the	momentum	change	with	 the	phonon	and	none	with	 the	 lattice	as	a	whole!	As	we
have	already	mentioned	the	quantity	 q	is	called	the	crystal	momentum	because	it	behaves
as	a	momentum	in	equations	such	as	Eq.	(12.8).

The	 third	 term	 in	 Eq.	 (12.7)	 represents	 neutron	 scattering	 in	 which	 a	 phonon	 of
wavevector	 q	 is	 emitted.	 The	 terms	 of	 order	 	 and	 higher	 correspond	 to	 quantum
processes	in	which	two	or	more	phonons	are	emitted	or	absorbed.†

We	see	from	Eq.	(12.7)	that	the	scattered	amplitude	due	to	single-phonon	emission	and
absorption	processes	is	proportional	to	u0,	and	hence	the	intensity	is	proportional	to	 ,i.e.
to	the	phonon	intensity	or	phonon	number.	Our	classical	calculation	is	not	quite	right	here;
a	 quantum	mechanical	 calculation	 gives	 the	 result	 that,	 if	 n	 is	 the	 number	 of	 phonons
present	initially	in	a	lattice	mode,	the	emission	probability	is	proportional	to	(n	+	1)	and
the	absorption	probability	to	n.‡	At	low	temperatures,	when	very	few	phonons	are	present
(n	 	1)	it	follows	that	only	the	phonon	emission	process	can	occur;	there	are	no	phonons
to	be	absorbed.



Because	 the	 triple-axis	 spectrometer	 can	 be	 used	 to	 investigate	 neutron	 scattering	 at
fixed	values	of	the	scattering	vector	K	=	k′	−	k,	it	is	an	excellent	tool	for	studying	phonon
dispersion	relations.	The	procedure	is	to	set	the	fixed	value	of	K	equal	to	the	wavenumber
q	for	which	the	energy	is	to	be	determined	(or	to	q	+	G	where	G	is	any	reciprocal	lattice
vector);	 this	 ensures	 that	 Eq.	 (12.8)	 is	 always	 satisfied.	 The	 neutron	 count	 rate	 as	 a
function	 of	 the	 energy	 of	 the	 scattered	 neutrons	 will	 peak	 whenever	 Eq.	 (12.9)	 is	 also
satisfied.	Such	a	peak	is	seen	in	Fig.	12.6	and	from	its	position	the	energy	of	the	phonons
of	 wavenumber	 q	 can	 be	 determined.	 The	 appearance	 of	 more	 than	 one	 peak	 is	 an
indication	 that	 phonons	 of	more	 than	 one	 energy	 occur	 for	 this	wavenumber.	Once	 the
energies	of	the	phonons	of	a	particular	wavenumber	have	been	determined,	the	experiment
can	 be	 repeated	 at	 other	 values	 of	K	 and	 hence	 of	 the	 phonon	wavenumber.	 It	 is	 thus
possible	 to	 obtain	 the	 complete	 phonon	 spectrum.	 Fig.	 12.7	 shows	 phonon	 dispersion
relations	for	potassium	that	have	been	obtained	in	this	way.

12.5	MAGNETIC	SCATTERING
12.5.1	Determination	of	magnetic	structure
We	have	already	mentioned	 that,	 in	addition	 to	 the	nuclear	scattering,	a	neutron	may	be
scattered	magnetically	by	the	electrons	in	a	solid.	This	scattering	has	been	calculated	by
treating	 the	 potential	 energy	 of	 the	 neutron	 in	 the	 magnetic	 field	 of	 the	 electrons	 as	 a
perturbation.	 The	 calculation	 is	 lengthy	 and	 the	 detailed	 interpretation	 of	 experimental
results	 is	 complicated	 by	 the	 interplay	 between	 magnetic	 and	 nuclear	 scattering	 (see
Bacon33).	 For	 the	 determination	 of	 magnetic	 structure	 the	 important	 result	 is	 that	 the
magnetic	 scattering	of	a	neutron	by	an	atom	with	a	magnetic	moment	 is	described	by	a
contribution

Fig.	12.7	Phonon	dispersion	relations	for	bcc	potassium	obtained	by	inelastic	neutron
scattering	using	a	triple-axis	spectrometer.	Curves	are	shown	for	the	phonon	wavevector	q
in	the	(a)	[1	0	0],	(b)	[1	1	1]	and	(c)	[1	1	0]	directions.	The	triangles	and	circles	denote
longitudinal	and	transverse	modes	respectively.	In	the	[1	0	0]	and	[1	1	1]	directions	the
two	transverse	modes	are	degenerate.	In	the	[1	1	0]	direction	only	the	initial	slope	of	one
of	the	transverse	modes	is	shown.	In	(a)	and	(c)	the	curves	are	plotted	up	to	the	first	Brillo
uin	zone	boundary.	In	(b)	the	position	of	the	first	Brillouin	zone	boundary	is	indicated	by
the	vertical	broken	line;	the	parts	of	the	curves	to	the	left	of	this	line	can	be	translated	into
the	first	Brillouin	zone	by	subtracting	a	suitable	reciprocal	lattice	vector.	The	conventional
cubic	unit	cell	of	the	fcc	reciprocal	lattice	has	been	used	to	define	the	reciprocal	lattice
vectors	G100,	G111	and	G110.	To	help	understanding	of	this	figure	the	reader	is
recommended	to	attempt	problem	12.4.	(Reproduced	with	permission	from	R.	A.	Cowley,
A.	D.	B.	Woods	and	G.	Dolling,	Phys.	Rev.	150,	487	(1966))



(12.10)	

to	the	scattering	length,	where	α	is	the	angle	between	the	atomic	magnetic	moment	and	the
scattering	vector	K.	The	+	or	−	sign	depends	on	the	orientation	of	the	neutron	spin.†	The
coefficient	p	is	proportional	to	the	atomic	magnetic	moment	and	the	neutron	moment,	and
it	 falls	 off	with	 increasing	 scattering	 angle	 in	 a	 similar	manner	 to	 the	 atomic	 scattering
factor	f	for	x-rays	(see	problem	12.1).

In	 a	paramagnetic	 crystal	 the	 atomic	magnetic	moments	 are	 randomly	orientated	with
respect	to	K;	α	thus	varies	randomly	from	atom	to	atom	so	that	the	total	scattering	length
for	 a	 neutron	varies	 randomly	between	b	 +	p	 and	b	 −	p,	where	b	 is	 the	 contribution	of
nuclear	 scattering	 to	 the	 scattering	 length.	 We	 saw	 in	 section	 11.2	 that	 sharp	 Bragg
diffraction	peaks	occur	because	a	crystal	looks	like	a	lattice	of	identical	repeat	units	to	the
incident	 waves;	 because	 the	 magnetic	 contribution	 to	 the	 scattering	 changes	 randomly
from	atom	to	atom,	magnetic	scattering	does	not	contribute	to	the	amplitude	of	the	Bragg
peaks	in	a	paramagnetic	solid.	The	magnetic	scattering	produces	a	finite	neutron	intensity
between	the	Bragg	peaks	which	varies	smoothly	with	scattering	angle.	Magnetic	scattering
by	paramagnetic	solids	is	said	to	be	incoherent.‡

In	a	ferromagnetically	ordered	crystal,	however,	α	does	not	vary	randomly	from	atom	to
atom	 and	 the	 magnetic	 scattering	 adds	 coherently	 to	 the	 nuclear	 scattering	 and	 does
contribute	 to	 the	 Bragg	 peaks.	 The	 essential	 features	 of	 the	 Bragg	 peaks	 are	 however
unmodified	 in	 this	 case.§	 In	 antiferromagnetic	 crystals	 more	 drastic	 effects	 are	 seen,
because	 the	value	of	α	 is	equal	and	opposite	 for	 the	magnetic	moments	on	 the	A	and	B
sublattices	 (section	 8.4);	 these	 behave	 towards	 a	 neutron	 as	 two	 different	 types	 of	 atom
with	coherent	scattering	lengths	b	+	p	sin	α	and	b	−	p	sin	α.	This	results	in	a	magnetic	unit
cell	that	is	in	general	larger	than	the	chemical	unit	cell.



To	 illustrate	 this	we	consider	MnO,	which	has	 the	NaCl	 structure	 (Fig.	1.13).	MnO	is
antiferromagnetic	 with	 a	 Néel	 temperature	 of	 120	 K.	 The	 results	 of	 neutron	 scattering
experiments	on	a	powdered	sample	of	MnO	at	80	K	and	at	room	temperature	are	shown	in
Fig.	12.8.	Below	 the	Néel	 temperature	extra	diffraction	peaks	are	visible,	 in	particular	a
strong	 peak	 at	 about	 12°.	This	 is	 approximately	 half	 the	 scattering	 angle	 of	 the	 (1	 1	 1)
peak	 that	 appears	 both	 above	 and	 below	 the	 Néel	 temperature,	 and	 thus	 indicates
scattering	from	lattice	planes	with	twice	the	spacing	of	the	(1	1	1)	planes.

Fig.	12.8	Neutron	diffraction	from	powdered	MnO	above	and	below	the	antiferromagnetic
Néel	temperature	of	120	K.	Note	particularly	the	extra	reflection	at	12°,	which	is	the	(1	1
1)	reflection	of	the	doubled	magnetic	unit	cell.	(Reproduced	with	permission	from	C.	G.
Shull	and	J.	S.	Smart,	Phys.	Rev.	76,	1256	(1949))

These	results	can	be	explained	by	the	structure	shown	in	Fig.	12.9,	in	which	alternate	(1
1	1)	planes	of	Mn	have	oppositely	aligned	magnetic	moments;	the	moments	within	a	(1	1
1)	plane	are	aligned	ferromagnetically	with	respect	to	each	other	but	antiferromagnetically
with	 respect	 to	 the	 moments	 on	 the	 neighbouring	 planes.	 Because	 of	 the	 opposite
orientation,	 the	 Mn	 atoms	 on	 successive	 planes	 have	 different	 scattering	 lengths	 for
neutrons,	 and	 a	 diffraction	 maximum	 can	 occur	 when	 the	 phase	 difference	 between
successive	planes	is	only	π	hence	the	peak	at	the	scattering	angle	of	12°	in	Fig.	12.8.	The
magnetic	 unit	 cell	 below	 the	 Néel	 temperature	 has	 double	 the	 linear	 dimension	 of	 the
chemical	unit	cell	shown	in	Fig.	12.9.	Precision	x-ray	measurements,	of	greater	resolution
than	 the	neutron	measurements,	 show	that	 the	unit	cell	 is	no	 longer	strictly	cubic	below
the	 Néel	 temperature;	 it	 is	 distorted	 by	 extension	 along	 a	 [1	 1	 1]	 direction.	 This	 is
consistent	 with	 the	 symmetry	 of	 the	 magnetic	 structure	 deduced	 from	 the	 neutron
measurements.

Although	 the	 determination	 of	 magnetic	 structures	 has	 been	 done	 predominantly	 by
neutron	diffraction	it	is	possible	to	use	x-rays	for	this	purpose.	As	the	scattering	of	x-rays
by	an	atom	depends	only	weakly	on	the	spin	and	orbital	angular	momentum	of	the	atom,	a
high-intensity	 source	 of	 x-rays	 such	 as	 a	 synchrotron	 (section	 1.4.2)	 is	 required.	More
information	 is	 obtained	 if	 the	 x-rays	 are	 circularly	 polarized;	 although	 synchrotron



radiation	in	the	direction	tangential	to	the	particle	motion	is	strongly	plane	polarized	in	the
plane	 of	 the	 orbit,	 circularly	 polarized	 x-rays	 of	much	 lower	 intensity	 are	 emitted	 at	 a
small	 angle	 to	 this	 direction.	 The	 intensity	 is	 still	 sufficiently	 high	 to	 enable	 the
investigation	of	magnetic	structures.

Fig.	12.9	The	antiferromagnetic	structure	of	MnO.	A	chemical	unit	cell	of	the	structure	is
shown;	the	magnetic	unit	cell	has	twice	the	linear	dimensions.	The	Mn	atoms	have
magnetization	oppositely	directed	in	alternate	(1	1	1)	planes

12.5.2	Determination	of	magnon	spectra
Because	 the	 magnetic	 scattering	 of	 neutrons	 depends	 on	 the	 orientation	 of	 the	 atomic
magnetic	moment,	 the	 presence	 of	 a	 spin	wave	 leads	 to	 a	modulation	 of	 the	 scattering
properties	 of	 the	 lattice.	 In	 view	 of	 our	 discussion	 of	 scattering	 of	 neutrons	 by	 lattice
vibrations	in	section	12.4,	the	reader	will	not	be	surprised	to	learn	that	the	scattering	of	a
neutron	 can	 be	 pictured	 as	 occurring	 by	 emission	 or	 absorption	 of	 a	 magnon	 with
conservation	of	momentum	and	energy:

(12.11)	

(12.12)	

where	the	upper	sign	refers	to	absorption,	the	lower	to	emission.	The	inelastic	scattering	of
neutrons	 thus	 makes	 it	 possible	 to	 determine	 experimentally	 the	 relation	 between	 the
magnon	frequency	ω	and	wavevector	q.	The	appearance	of	the	reciprocal	lattice	vector	G
in	Eq.	(12.11)	is,	as	in	Eq.	(12.8),	a	consequence	of	the	ambiguity	of	the	wavevector	of	the
excitations	 in	 a	 periodic	 lattice.	 A	 magnon	 of	 wavenumber	 q	 can	 be	 equally	 well
represented	by	a	wavenumber	q	+	G;	 q	is	the	crystal	momentum	of	the	magnon.



Fig.	12.10	Spin	wave	spectrum	of	ferromagnetic	Co0.92Fe0.08	obtained	using	inelastic
neutron	scattering.	Note	the	finite	energy	gap	at	q	=	0	due	to	crystalline	anisotropy.
(Reproduced	with	permission	from	R.	N.	Sinclair	and	B.	N.	Brockhouse,	Phys.	Rev.	120,
1638	(1960))

As	for	phonons,	 it	 is	convenient	 to	use	 the	 triple-axis	spectrometer	 in	 its	 ‘constant	K’
mode	 to	 determine	 magnon	 dispersion	 curves.	 From	 Eq.	 (12.11)	 we	 see	 that	 this	 is
equivalent	to	looking	for	absorption	of	magnons	of	wavenumber	q	=	K	−	G	(or	emission
of	magnons	of	wavenumber	G	−	K).	The	frequency	of	magnons	of	known	wavenumber
can	thus	be	determined	from	the	value	of	Ω′	−	Ω	at	which	a	peak	in	scattering	intensity	is
observed.	 Inelastic	 neutron	 scattering	was	used	 to	 determine	 the	 spin	wave	 spectrum	of
Fig.	12.10	for	a	ferromagnetic	cobalt–iron	alloy.	In	contrast	to	the	prediction	of	Eq.	(8.31)
the	 magnon	 energy	 does	 not	 vanish	 at	 q	 =	 0.	 This	 is	 a	 consequence	 of	 crystalline
anisotropy,	 which	 we	 neglected	 in	 section	 8.5.2.	 There	 is	 a	 preferred	 direction	 for	 the
spontaneous	magnetization	within	the	lattice	and	a	finite	amount	of	energy	is	required	to
cause	a	spatially	uniform	(q	=	0)	rotation	of	the	magnetization	from	this	direction.

12.6	ELECTRON	SCATTERING
As	we	 have	 already	mentioned,	 electron	 beams	 with	 an	 energy	 (≈	 100eV)	 suitable	 for
diffraction	studies	penetrate	only	a	short	distance	(≈	5Å)	into	a	crystal.	The	distribution	of
the	scattered	electrons	therefore	gives	information	only	about	the	region	of	the	crystal	that
lies	within	about	two	atomic	diameters	of	the	surface.	Electron	scattering	can	thus	be	used
to	study	the	surfaces	of	solids.

Electrons	 with	 a	 well	 defined	 energy	 of	 order	 100	 eV	 are	 readily	 produced	 by
accelerating	 the	 electrons	 from	 a	 hot	 filament.	 They	 can	 be	 electrostatically	 or
magnetically	focused	onto	the	surface	being	studied.	The	choice	of	detector	is	determined
by	 the	 requirements	of	 the	experiment.	For	electron	diffraction	 experiments	 the	detector
must	 eliminate	 the	 inelastically	 scattered	 electrons	 (usually	 the	 majority)	 and	 allow
measurement	of	the	angular	distribution	of	the	elastically	scattered	electrons.	In	inelastic
scattering	 experiments	 the	 distribution	 over	 energy	 of	 the	 scattered	 electrons	 must	 be
determined.	 The	 widespread	 use	 of	 electrons	 for	 surface	 studies	 has	 led	 to	 the



development	 of	 a	 number	 of	 standard	 experimental	 configurations,	 some	 of	 which	 we
mention	below.	Surface	studies	are	very	important	for	technological	purposes;	the	nature
of	the	surface	plays	a	crucial	role	for	example	in	semiconductor	physics,	in	corrosion	and
in	catalysis.

For	studies	of	surface	physics	it	is	desirable	to	be	able	to	produce	a	‘clean’	surface.	Such
a	surface	is	normally	very	reactive	and	impinging	atoms	and	molecules	tend	to	stick	to	it,
a	process	known	as	adsorption.	A	 ‘dirty’	 layer	one	atom	 thick	can	 form	on	 the	 surface
with	 great	 rapidity	 (problem	 12.7)	 even	 if	 the	 solid	 is	 in	 an	 ‘evacuated’	 container.	 To
maintain	a	‘clean’	surface	for	a	sufficient	time	to	study	it	requires	a	pressure	in	the	range
of	 10−12	 −	 10−13	 atmospheres;	 this	 region	 of	 pressure	 is	 known	 as	 ultrahigh	 vacuum
(UHV).	At	such	low	pressures	scattering	of	the	electrons	by	gas	molecules	is	also	avoided.

Various	methods	 have	 been	 used	 to	 produce	 a	 ‘clean’	 surface.	 Some	 crystals	may	 be
cleaved	inside	the	UHV	system.	Alternatively	bombardment	of	the	surface	by	gas	ions	of
energy	 of	 order	 102	 to	 103	 eV	may	 be	 used	 to	 erode	 the	 impure	 surface	 layers.	More
recently	the	molecular	beam	epitaxy	technique	(section	6.6)	has	allowed	chemically	pure
surfaces	to	be	prepared	under	UHV	conditions.	Other	techniques	are	also	available.

The	use	of	electron	scattering	 techniques	 for	 the	 study	of	 surfaces	 is	analogous	 to	 the
use	of	neutrons	for	studies	of	the	interior	of	crystals	described	earlier	in	this	chapter.	Thus
the	 structure	 of	 the	 two-dimensional	 crystal	 formed	 by	 the	 surface	 atoms	 can	 be
investigated	 using	 low-energy	 electron	 diffraction	 (LEED).†	 The	 directions	 of	 the
diffracted	 beams	 are	 related	 to	 the	 lattice	 by	 the	 two-dimensional	 version	 of	 the	 theory
presented	in	section	11.2;	calculation	of	the	intensities	of	the	beams	is	more	difficult	for
electrons	because	of	the	need	to	allow	for	multiple	scattering.

Inelastic	 electron	 scattering	 studies	 give	 information	 on	 the	 energy	 spectrum	 of	 the
excitations	 localized	 to	 the	 surface;	 the	 technique	 for	 doing	 this	 is	 known	 as	 high-
resolution	 electron	 energy	 loss	 spectroscopy	 (HREELS	 or	 sometimes	 just	 EELS).	An
example	 of	 a	 surface	 excitation	 is	 a	 vibrational	 mode	 of	 an	 adsorbed	 molecule,	 so
HREELS	 can	 detect	 chemical	 contamination	 of	 the	 surface.	 Typically	 HREELS
investigates	energy	losses	up	to	about	1	eV	in	5	eV	electrons.

The	 chemical	 composition	 of	 the	 surface	 can	 also	 be	 investigated	 by	Auger	 electron
spectroscopy	 (AES).	 In	 this	 technique	 an	 incident	 electron	 of	 energy	 typically	 3	 keV
excites	an	atom	on	the	surface	by	knocking	an	electron	out	of	an	inner	shell	state.	The	hole
in	the	inner	shell	is	then	filled	by	an	electron	falling	from	a	higher	level;	the	energy	lost	by
this	electron	can	be	released	either	as	a	photon†	or	by	emission	of	a	secondary	electron.
This	 latter	 possibility	 is	 the	 Auger	 process	 and	 in	 AES	 the	 energy	 distribution	 of	 the
emitted	electrons	is	measured.	An	example	of	the	Auger	process	would	be	the	filling	of	a
K	shell	vacancy	by	an	electron	from	the	L	shell	(this	electron	loses	energy	∆E	=	|EL	−	EK|)
with	emission	of	an	M	shell	electron	of	kinetic	energy	∆E	−	|EM|.	Since	the	energies	of	the
inner	shell	states	vary	from	one	element	to	another,	it	is	possible	to	identify	the	elements
on	the	surface	and	their	approximate	concentrations	from	the	Auger	emission	spectrum.

One	 of	 the	 most	 widely	 studied	 crystal	 surfaces	 is	 the	 (1	 1	 1)	 surface	 of	 silicon.



Continuation	of	the	bulk	structure	of	silicon	up	to	this	surface	would	suggest	the	structure
shown	 in	 Fig.	 12.11	 (compare	 with	 Fig.	 1.15(b),	 which	 shows	 a	 (1	 1	 1)	 slice	 of	 the
crystal).	Each	of	the	surface	atoms	in	Fig.	12.11	has	a	‘dangling	bond’	and	such	a	surface
will	seek	to	reduce	its	energy	by	reducing	the	number	of	these.	This	process	is	known	as
reconstruction	 and	 involves	a	 shift	 in	position	of	 the	atoms	near	 to	and	on	 the	surface.
The	reduction	in	energy	associated	with	the	decrease	in	the	number	of	unsatisfied	bonds	is
counterbalanced	 by	 the	 extra	 strain	 energy	 associated	 with	 distortion	 of	 the	 structure
below	the	surface.

More	than	one	ordered	reconstruction	of	the	Si	(1	1	1)	surface	has	been	observed	using
LEED.	 The	 different	 reconstructions	 are	 characterized	 by	 the	 dimensions	 of	 the	 two-
dimensional	unit	cell	of	the	surface	structure.	These	are	conveniently	specified	in	terms	of
the	number	of	repeat	units	of	the	unreconstructed	cell.	The	most	stable	structure	of	a	clean
Si	(1	1	1)	surface	at	room	temperature	is	believed	to	be	a	7	×	7	reconstruction;	the	repeat
distance	 of	 the	 reconstructed	 structure	 is	 seven	 times	 the	 unreconstructed	 unit	 cell	 side
along	both	crystallographic	axes.

Although	 the	 structure	 of	 the	 7	 ×	 7	 reconstruction	 of	 the	 Si	 (1	 1	 1)	 surface	 has	 been
determined	by	LEED,	 the	most	 impressive	confirmation	of	 this	 structure	 is	provided	by
the	scanning	tunnelling	microscope	(STM).	This	is	another	device	that	uses	electrons	to
investigate	surfaces,	although	it	is	not	strictly	scattering	that	is	involved.	In	the	STM	(Fig.
12.12)	 electrons	 tunnel	 quantum	 mechanically	 across	 the	 small	 gap	 between	 a	 sharp
tungsten	 tip	 and	 the	 surface	 under	 investigation.	 Piezoelectric	 transducers	 enable	 the
position	of	the	tip	to	be	adjusted.	The	effective	radius	of	the	tip	is	typically	10	Å	and	the
gap	between	the	surface	and	the	tip	is	also	of	this	order.	If	the	tip	is	moved	parallel	to	the
surface	the	tunnelling	current	varies	depending	on	whether	the	tip	is	over	an	atom	on	the
surface	 or	 a	 space	 between	 atoms;	 more	 precisely	 the	 current	 varies	 with	 the	 electron
density	on	 the	 surface.	The	variations	 in	 current	 thus	measure	 the	profile	of	 the	 surface
with	atomic	resolution.

Fig.	12.11	Plan	view	of	the	unreconstructed	(1	1	1)	surface	of	silicon.	Each	atom	in	the	top
layer	forms	only	three	covalent	bonds;	the	fourth	bond	in	the	direction	perpendicular	to
the	paper	is	broken	in	forming	the	surface.	The	unit	cell	of	the	two-dimensional	surface
structure	is	indicated

The	normal	mode	of	operation	is	in	fact	to	use	feedback	to	vary	the	spacing	between	the



tip	and	the	surface	in	order	to	keep	the	tunnelling	current	constant	as	the	probe	is	moved
across	the	surface;	the	feedback	signal	then	contains	the	information	on	the	surface.	Fig.
12.13(b)	 shows	 an	 image	 of	 the	 7	 ×	 7	 Si	 (1	 1	 1)	 surface	 obtained	 using	 an	 STM.	 Fig.
12.13(a)	shows	the	complex	atomic	structure	of	this	surface;	the	reader	should	not	worry
too	 much	 about	 the	 details	 but	 should	 note	 that	 the	 reconstructed	 surface	 differs
significantly	from	the	unreconstructed	surface	of	Fig.	12.11.

It	 is	 interesting	 to	 point	 out	 the	 difference	 between	 the	 LEED	 and	 STM	methods	 for
determining	surface	structures.	The	directions	of	the	diffracted	beams	in	LEED	essentially
allow	the	determination	of	the	two-dimensional	reciprocal	 lattice	of	the	surface	structure
through	 the	 use	 of	 the	 two-dimensional	 equivalent	 of	 Eq.	 (11.8).	 The	 STM	 allows	 the
direct	determination	of	the	real	space	structure.

Fig.	12.12	Schematic	diagram	of	the	scanning	tunnelling	microscope.	The	peizoelectric
transducers	allow	independent	motion	in	the	x,	y	and	z	directions	by	the	application	of
electric	fields

Fig.	12.13	The	7	×	7	reconstruction	of	the	(1	1	1)	surface	of	silicon,	(a)	The	positions	of
the	atoms	in	the	first	three	layers.	The	reader	should	check	that	the	atoms	in	the	top	layer
are	in	the	positions	indicated	by	the	STM	image,	(b)	STM	image	of	the	surface.	The
lighter	region	is	an	island	on	the	surface	one	monolayer	thick.	The	white	spots	are	the
positions	of	the	top	layer	of	atoms.	(Reproduced	with	permission	from	D.	King,	Physics
World,	March	1989,	p.	45)



The	STM	can	only	be	used	to	study	the	surfaces	of	conducting	solids.	A	related	device
that	can	be	used	to	investigate	the	surfaces	of	insulators	is	the	atomic	force	microscope
(AFM).	In	the	AFM	a	probe	with	a	sharp	tip	is	mounted	on	a	cantilevered	beam	and	this
enables	the	variations	in	the	force	between	the	surface	and	the	tip	to	be	monitored	as	the
latter	 is	 scanned	across	 the	 sample	 surface;	 atomic	 resolution	 is	 also	possible	using	 this
technique.†

In	our	brief	survey	of	methods	that	use	electrons	to	study	surfaces	we	have	mentioned
only	a	small	fraction	of	the	techniques	that	are	available	for	this	purpose.	As	readers	will
have	gathered,	the	field	of	surface	studies	is	riddled	with	acronyms.	To	allow	the	reader	to
learn	the	jargon	we	have	listed	in	table	12.1	the	acronyms	for	and	brief	details	of	some	of
the	 more	 important	 techniques.	 One	 problem	 with	 surface	 studies	 is	 that	 only	 a	 small
fraction	of	 the	atoms	 in	a	bulk	specimen	reside	on	or	near	 the	surface.	Particles	used	as
probes	 for	 looking	 at	 the	 surface	 must	 therefore	 either	 interact	 very	 strongly	 with	 the
surface	atoms	(as	is	the	case	with	electrons)	or	be	available	in	beams	of	very	high	intensity
so	 that	 the	 small	 amount	 of	 scattering	 associated	with	 the	 surface	 can	 be	 detected.	The
high	intensities	available	from	synchrotron	sources	has	led	to	a	revival	in	the	use	of	x-rays
for	probing	surfaces.

TABLE	12.1	Some	of	the	techniques	used	to	study	the	surfaces	of	solids



PROBLEMS	12
12.1	 (a)	 Calculate	 the	 dependence	 on	 scattering	 angle	 of	 the	 atomic	 form	 factor	 f	 for
scattering	of	x-rays	of	wavelength	λ	 from	an	 atom.	Assume	 that	 the	 atom	consists	 of	Z
electrons	uniformly	distributed	within	a	sphere	of	radius	R.	Assume	that	the	contribution
to	the	scattered	wave	from	a	point	within	the	atom	is	proportional	to	the	electron	density	at
that	point.

(b)	Calculate	the	angular	dependence	of	magnetic	scattering	of	neutrons	from	an	atomic
magnetic	 moment	 μ.	 Assume	 that	 the	 contribution	 from	 a	 point	 within	 the	 atom	 is
proportional	 to	 the	 local	magnetic	moment	density	and	 that	 this	 is	uniformly	distributed
over	 a	 spherical	 surface	 of	 radius	 R	 and	 zero	 elsewhere.	 This	 is	 often	 a	 reasonable
approximation	since	the	atomic	moment	is	associated	with	a	particular	shell	of	electrons
(e.g.	3d	or	4f).

12.3	 Neutrons	 of	 energy	 0.02	 eV	 are	 scattered	 at	 an	 angle	 of	 10°	 from	 solid	 helium
(speed	of	sound	=	300	m	s−1)	with	emission	of	a	phonon.	Estimate	the	energy	loss	of	the



neutrons.	 What	 is	 the	 time	 of	 flight	 over	 a	 10	 m	 path	 of	 unscattered	 and	 scattered
neutrons?

Why	will	a	small-angle	scattering	experiment	of	this	type	not	work	for	a	crystal	such	as
sapphire,	 for	 which	 the	 speed	 of	 sound	 (104	 m	 s−1)	 is	 greater	 than	 the	 speed	 of	 the
neutrons?	How	would	you	use	neutrons	to	investigate	the	phonon	spectrum	of	sapphire?

12.3	 Show	 that	 the	 data	 of	 Fig.	 12.3	 are	 consistent	 with	 the	 structure	 of	 silicon	 and
calculate	the	unit	cell	dimensions.

12.4	Calculate	G100,	G110	and	G111	and	explain	the	positions	of	the	first	Brillouin	zone
boundaries	on	Fig.	12.7.	Given	that	the	bcc	unit	cell	of	potassium	has	a	=	5.23	Å,	use	the
data	in	the	figure	to	calculate	the	velocities	of	transverse	and	longitudinal	sound	waves	in
the	[1	0	0],	[1	1	1]	and	[1	1	0]	directions.

Explain	why:

(i)	the	T	and	L	modes	are	degenerate	when	q	=	 G100,

(ii)	the	right-hand	end	of	(a)	matches	the	left-hand	end	of	(b),

(iii)	 the	 slope	 of	 the	 dispersion	 curves	 does	 not	 vanish	 at	 the	 first	 Brillouin	 zone
boundary	in	(b).

12.5	 Metallic	 dysprosium	 has	 a	 hexagonal	 structure.	 It	 is	 alleged	 that	 the	 atomic
moments	 are	 aligned	 ferromagnetically	 in	 the	 basal	 plane,	 but	 that	 the	 direction	 of
alignment	rotates	about	the	c	axis	through	an	angle	of	order	40°	from	one	layer	to	the	next.
What	 neutron	 scattering	 experiments	would	 you	make	 to	 confirm	 this,	 and	what	 results
would	you	expect?

12.6	Identify,	with	respect	to	(a)	the	magnetic	unit	cell	and	(b)	the	chemical	unit	cell,	the
Miller	indices	of	the	magnetic	reflections	at	11.9°,	30.2°	and	36.4°	on	Fig.	12.8.

12.7	 Estimate	 the	 time	 it	 takes	 for	 a	monolayer	 of	 oxygen	molecules	 to	 adsorb	 on	 a
surface	at	room	temperature	if	the	surface	is	exposed	to	oxygen	gas	at	a	pressure	of	(a)	1
bar,	(b)	10−6	bar	and	(c)	10−12	bar	(1	bar	=	105	N	m−2).

†	We	 use	 the	 term	 scattering	 to	 encompass	 both	 elastic	 and	 inelastic	 processes.	We
reserve	the	term	diffraction	to	refer	to	elastic	scattering	from	an	ordered	structure.

†	Magnetic	 scattering	 by	 the	 nuclear	magnetic	moment	 can	 be	 ignored	 since	 nuclear
magnetic	moments	are	typically	smaller	by	a	factor	2000	than	electronic	moments.

†	The	word	‘spallation’	comes	from	the	verb	to	spall,	meaning	to	splinter	or	chip.

†	 In	 this	 chapter	we	 follow	 the	usual	 practice	 of	 calling	 the	phonon	wavevector	q	 to
distinguish	it	from	the	electron	or	neutron	wavevector	k.

†	A	measurable	consequence	of	the	second-order	terms	is	the	reduction	in	the	intensity
of	 the	 Bragg	 diffraction	 peaks	 with	 increasing	 temperature	 by	 the	 Debye–Waller
factor;	this	factor	can	be	estimated	as	exp(−kB	T	|K|2/M )	where	M	is	the	atomic	mass
and	ωD	is	the	Debye	frequency.



‡	 This	 is	 shown	 for	 any	 particle	 obeying	 Bose–Einstein	 statistics	 in	 chapter	 4	 of
Feynman.6	In	the	particular	case	of	photons	(black-body	radiation,	see	Mandl2)	the	1	in
(n	+	1)	corresponds	to	spontaneous	emission.

†	The	neutron	spin	can	be	either	parallel	or	antiparallel	to	the	direction	perpendicular	to
both	K	and	the	atomic	moment.

‡	A	fraction	of	the	nuclear	scattering	may	also	be	incoherent,	i.e.	at	angles	between	the
Bragg	 peaks.	 Incoherent	 nuclear	 scattering	 arises	 because	 some	 elements	 have	 more
than	one	 isotope,	with	quite	different	nuclear	scattering	 lengths,	and	also	because,	 for
nuclei	with	a	finite	spin,	the	scattering	length	depends	on	the	relative	orientation	of	the
nuclear	 and	 neutron	 spins.	 The	 distribution	 of	 isotopes	 and	 nuclear	 spin	 orientations
normally	varies	randomly	within	a	crystal.

§	Ferromagnetic	crystals	can	be	used	 to	produce	a	monochromatic	beam	of	polarized
neutrons.	A	Bragg	peak	is	chosen	for	which	the	total	scattering	length	b	−	p	 sin	α	 for
neutrons	of	one	polarization	 is	close	 to	zero;	 the	diffracted	beam	then	consists	almost
entirely	of	neutrons	of	the	opposite	polarization.

†	Diffraction	of	~100	eV	electrons	is	designated	low-energy	to	distinguish	it	from	high-
energy	electron	diffraction	(HEED)	which	uses	~10	keV	electrons.

†	 The	 spectrum	 of	 the	 emitted	 photons	 contains	 the	 same	 information	 as	 that	 of	 the
Auger	 electrons.	 Studying	 the	 photon	 spectrum	 is	 known	 as	 appearance	 potential
spectroscopy	(APS).

†	 For	 more	 details	 of	 the	 STM,	 AFM	 and	 other	 devices	 for	 probing	 surfaces	 with
atomic	 resolution	 see	 ‘Scanned	 probe	 microscopes’	 by	 H.	 K.	 Wickramasinghe	 in
Scientific	American,	October	1989.



CHAPTER	13

Real	metals

Life	 gets	harder	 the	 smarter	 you	get,	 the	more	 you	know.—Katherine	Hepburn
(1987)

13.1	INTRODUCTION
In	Chapter	4	we	discussed	the	effect	of	a	periodic	lattice	potential	on	the	electron	states	in
one-	and	two-dimensional	metals,	and	in	Chapter	11	we	derived	the	general	form	for	an
electron	wavefunction	in	a	crystal	and	discussed	the	implications	of	 this	for	 the	electron
dispersion	 relation.	 In	 this	 chapter	 we	 combine	 the	 knowledge	 gained	 in	 these	 two
previous	 chapters	 to	 discuss	 the	 properties	 of	 electrons	 in	 real	 metals.	 In	 addition,	 in
Section	 13.5,	 we	 give	 a	 simple	 explanation	 of	 why	 this	 independent	 electron	 approach
gives	reasonable	answers	despite	the	strong	Coulomb	repulsion	between	the	electrons.

13.2	FERMI	SURFACES
13.2.1	Fermi	surface	of	a	nearly	free	electron	two-
dimensional	metal
The	 free	 electron	 model	 predicts	 that	 many	 properties	 of	 metals	 are	 determined	 by
electrons	close	to	the	Fermi	surface.	This	is	still	the	case	when	the	effect	of	the	periodic
lattice	potential	is	taken	into	account.	A	knowledge	of	Fermi	surface	geometry	is	therefore
essential	in	any	calculation	of	the	properties	of	a	metal.	The	electron	energies	can	be	close
to	the	free	electron	values,	even	though	the	wavefunctions	do	not	look	like	those	of	free
electrons	 (Section	 4.3.3);	 this	 suggests	 the	 use	 of	 the	 nearly	 free	 electron	 approach
(Section	4.1)	to	predict	Fermi	surface	geometry.	It	turns	out	that	this	method	often	gives
the	topology	of	the	surface	correctly,	even	when	it	does	not	give	a	good	approximation	to
the	energy.

We	have	already	used	 this	 approach	 in	Section	4.1	 to	generate	 the	Fermi	 surface	of	 a
two-dimensional	divalent	metal	with	a	simple	square	crystal	structure;	the	Fermi	surface	is
shown	in	the	extended	zone	scheme	in	Fig.	4.5(b)	and	in	the	repeated	zone	scheme	in	Fig.
4.10.	We	also	used	nearly	free	electron	theory	to	generate	the	constant	energy	contours	of
Figs.	11.13,	11.14	and	11.15	for	a	two-dimensional	metal	with	a	simple	square	reciprocal
lattice.	To	predict	the	Fermi	surface	it	is	necessary	to	identify	the	constant	energy	contour



that	contains	just	enough	electron	states	to	accommodate	all	the	conduction	electrons.	For
a	two-dimensional	metal	the	constant	energy	contours	in	the	extended	zone	scheme	of	Fig.
11.13	are	close	to	the	free	electron	circles	and	the	Fermi	surface	is	thus	close	to	the	free
electron	 Fermi	 surface.	 To	 obtain	 an	 approximate	 Fermi	 surface	 it	 is	 therefore	 only
necessary	 to	 draw	 a	 circle	 of	 the	 appropriate	 radius	 centred	 on	 the	 origin	 of	 reciprocal
space.

The	appropriate	radius	 is	conveniently	obtained	by	expressing	the	area	of	 the	circle	as
multiples	of	the	area	of	the	first	Brillouin	zone.	From	Section	11.4.1	we	know	that,	for	a
crystal	 of	Nc	 primitive	 unit	 cells,	 the	 first	 Brillouin	 zone	 contains	 2Nc	 electron	 states
(recall	 that	 the	 electron	 has	 two	 spin	 states).	 Thus,	 for	 example,	 for	 a	 two-dimensional
metal	with	 four	conduction	electrons	 in	each	primitive	unit	 cell,	 the	 free	electron	Fermi
surface	is	a	circle	with	an	area	equal	to	twice	that	of	the	first	Brillouin	zone.	This	circle	is
shown	 in	 Fig.	 13.1(a)	 together	 with	 the	 Brillouin	 zone	 boundaries	 for	 a	 simple	 square
reciprocal	lattice	(as	in	Fig.	11.11).	The	different	shadings	indicate	the	zones	to	which	the
electrons	inside	the	Fermi	surface	are	allocated.

In	 Section	 11.4.2	 we	 showed	 that,	 by	 translation	 through	 suitably	 chosen	 reciprocal
lattice	 vectors,	 the	 energy	 contours	 from	 any	 Brillouin	 zone	 in	 Fig.	 11.13	 could	 be
replotted	to	form	a	periodic	structure	in	k-space	as	in	Fig.	11.15.	Figs.	13.1(b)–(d)	show
the	sections	of	the	free	electron	Fermi	surface	from	the	second,	third	and	fourth	Brillouin
zones	in	Fig.	13.1(a)	replotted	into	the	periodic	zone	scheme	in	this	way.†	In	Figs.	13.1(c)
and	 (d)	 we	 have	 pockets	 of	 occupied	 states	 and	 we	 describe	 these	 sections	 of	 Fermi
surface	as	electron-like;	 in	Fig.	13.1(b)	 there	are	pockets	of	unoccupied	states	and	 these
sections	of	Fermi	surface	are	hole-like.	The	reason	for	this	notation	will	become	clear	in
Section	13.4.	Fig.	13.2	illustrates	the	way	in	which	the	sections	of	Fermi	surface	in	Figs.
13.1(b)–(d)	can	be	obtained	by	drawing	circles	centred	on	all	reciprocal	lattice	points	with
radii	 equal	 to	 that	 of	 the	 free	 electron	 Fermi	 circle;	 this	 is	 the	 basis	 of	 the	Harrison
construction	for	producing	the	free	electron	Fermi	surface.

The	 Harrison	 construction	 is	 the	 most	 straightforward	 way	 of	 generating	 the	 free
electron	Fermi	surface	of	a	three-dimensional	metal	and	we	shall	use	it	for	this	purpose	in
the	following	section.	To	understand	the	construction	we	will	explain	 its	use	 in	 the	 two-
dimensional	 case.	Note	 first	 that	 the	 circles	 in	Fig.	13.2	divide	k-space	 up	 into	 regions
covered	by	one,	two,	three	and	four	circles.	The	free	electron	Fermi	surface	is	obtained	by
applying	the	following	rules:

Fig.	13.1	(a)	The	free	electron	Fermi	circle	for	a	two-dimensional	metal	with	four
conduction	electrons	per	primitive	unit	cell	superimposed	on	the	Brillouin	zone
boundaries	for	a	simple	square	reciprocal	lattice.	The	sections	of	the	circle	are	associated
with	the	first,	second,	third	and	fourth	zones	as	indicated.	By	translation	through
appropriate	reciprocal	lattice	vectors	the	Fermi	circle	can	be	remapped	into	the	repeated
zone	scheme	to	give:	(b)	second	zone	hole-like	Fermi	surface,	(c)	third	zone	electron-like
surface	and	(d)	fourth	zone	electron-like	surface



(1)	 The	 Fermi	 surface	 in	 the	 nth	 Brillouin	 zone	 is	 the	 boundary	 dividing	 regions
covered	by	n	circles	from	regions	covered	by	n	−	1	circles.

(2)	 If	 the	 region	covered	by	 the	 larger	number	of	circles	 is	 inside	 this	boundary	we
have	an	electron	Fermi	surface	and,	if	it	is	outside,	a	hole	surface.

Fig.	13.2	Harrison	construction	for	obtaining	the	repeated	zone	representation	of	the	fermi
surface	of	the	two-dimensional	free	electron	metal	of	Fig.	13.1



The	 reader	 should	 check	 that	 the	 use	 of	 these	 rules	 does	 indeed	 identify	 the	 Fermi
surface	from	each	zone	as	indicated	in	Fig.	13.2.

The	 identification	 of	 different	 parts	 of	 the	 free	 electron	 Fermi	 surface	 with	 different
Brillouin	 zones	 only	 becomes	 significant	 when	 the	 energy	 gaps	 at	 the	 Brillouin	 zone
boundaries	produced	by	the	periodic	lattice	potential	are	taken	into	account.	The	sections
of	Fermi	surface	in	different	zones	then	correspond	to	different	energy	bands.	According
to	 the	 nearly	 free	 electron	 theory	 the	 Fermi	 surface	 is	 distorted	 slightly	 from	 its	 free
electron	 form	 so	 that	 it	 intersects	 the	 Brillouin	 zone	 boundaries	 at	 right	 angles	 (Fig.
11.13).	Comparison	of	Fig.	13.1(a)	with	Fig.	11.13	shows	that	this	causes	rounding	of	the
cusps	in	the	Fermi	surface	of	Figs.	13.1(b)–(d).	Even	with	this	rounding	the	Fermi	surface
from	 each	 zone	 is	 very	 non-circular	 in	 character.	 Increasing	 the	 perturbation	 due	 to	 the
lattice	potential	 causes	both	hole	and	electron	 regions	of	 the	Fermi	 surface	 to	 shrink.	A
sufficiently	 strong	 perturbation	 removes	 the	 Fermi	 surface	 from	 a	 particular	 zone
completely.	When	there	is	an	even	number	of	electrons	per	primitive	unit	cell,	the	ultimate
result	of	this	process	is	an	insulator	with	no	free	Fermi	surface;	thus	for	four	electrons	per
primitive	unit	cell	the	first	two	Brillouin	zones	become	full	and	all	the	others	empty.

13.2.2	Fermi	surface	of	three-dimensional	metals
Extension	 of	 the	Harrison	 approach	 to	 three	 dimensions	 is	 straightforward.	A	 sphere	 of
volume	equal	to	that	of	the	free	electron	Fermi	sphere	is	centred	on	each	reciprocal	lattice
point	and	the	two	rules	from	the	previous	section	are	applied	to	the	overlapping	regions.
To	illustrate	this	we	consider	the	particular	case	of	a	cubic	close-packed	metal	with	four
conduction	electrons	per	unit	cell	(lead,	for	example).†

The	first	Brillouin	zone	of	the	body-centred	cubic	reciprocal	 lattice	of	 this	structure	is
the	truncated	octahedron	of	Fig.	1.12(b).	The	volume	of	the	free	electron	Fermi	sphere	is
twice	that	of	the	first	zone;	this	means	that	it	is	just	big	enough	to	enclose	the	first	zone
completely.	 Two	 spheres	 overlap	 near	 zone	 faces,	 three	 near	 zone	 edges	 and	 four	 near



zone	corners.	Most	of	these	features	can	be	seen	on	a	(1	1	0)	cross	section	of	k-space	as	in
Fig.	13.3;	the	origin	of	a	second	zone	hole	surface	and	a	third	zone	electron	surface	can	be
seen	in	Fig.	13.3(b).	The	(1	1	0)	cross	section	misses	the	zone	corners	where	small	pockets
of	electrons	in	the	fourth	zone	occur.

Fig.	13.4	shows	schematic	views	of	the	Fermi	surface	after	the	sharp	corners	have	been
rounded	off	by	the	periodic	lattice	potential.	The	most	interesting	feature	is	the	third	zone
surface	 known	 as	 the	 ‘monster’.	 The	 three-dimensional	 view	 makes	 it	 clear	 that	 this
cannot	 be	 unambiguously	 called	 an	 ‘electron’	 surface	 or	 a	 ‘hole’	 surface	 because	 it	 is
multiply	connected;	cross	sections	can	be	drawn	that	look	electron-like	(as	in	Fig.	13.3(b))
or	hole-like.	We	consider	the	experimental	consequences	of	this	type	of	Fermi	surface	in
Section	13.4.	Note	that	monsters	are	essentially	three-dimensional	creatures;	they	cannot
exist	in	a	smaller	number	of	dimensions.

13.2.3	Density	of	states	at	the	Fermi	surface
A	number	 of	 properties	 of	 the	metal	 depend	 only	 on	 the	 density	 of	 states	 at	 the	 Fermi
surface.	Thus	Eq.	(3.19),

gives	quite	generally	the	electronic	heat	capacity	at	low	temperatures.	To	calculate	g(εF)	in
general	we	consider	 the	constant	energy	surface,	εF	+	dε.	This	surface	 is	displaced	from
the	Fermi	surface	by	a	perpendicular	distance	(see	Fig.	13.5)

where	 the	 Fermi	 velocity	vF	 is	 defined	 as	 the	 group	 velocity,	 −1∂ε/∂k,	 of	 the	 electron
waves	at	the	Fermi	surface	and	will	in	general	vary	with	position	on	the	surface.	For	the
element	of	area	dSF	of	Fermi	surface	shown	in	Fig.	13.5	the	volume	of	k-space	between
the	 two	 surfaces	 is	 dk⊥dSF.	 The	 total	 volume	 of	 k-space	 between	 the	 two	 contours	 is
therefore

Fig.	13.3



Fig.	13.4	Fermi	surface	for	a	cubic	close-packed	metal	with	four	conduction	electrons	per
atom,	as	predicted	using	the	nearly	free	electron	approach



Fig.	13.5	Volume	element	of	k-space	between	the	Fermi	surface	and	the	surface	of	energy
εF	+	dε

where	 the	 integral	 is	 over	 the	 Fermi	 surface.†	 From	Eq.	 (2.41)	 this	 volume	 of	k-space
contains

k	states	where	V	is	the	volume	of	the	metal.	The	number	of	electron	states	for	electrons	of
both	spins	per	unit	energy	range	is	therefore

(13.1)	



The	density	of	states	thus	increases	as	the	Fermi	surface	area	increases,	with	the	largest
contributions	 coming	 from	 the	 regions	 of	 the	 surface	 with	 the	 smallest	 Fermi	 velocity.
This	explains	 the	 large	electronic	heat	capacity	coefficients	γ	 for	some	transition	metals;
where	 the	 Fermi	 energy	 falls	 within	 the	 narrow	 3d	 bands	 the	 small	 Fermi	 velocity
associated	with	these	bands	gives	a	large	contribution	to	the	density	of	states.

13.3	ELECTRON	DYNAMICS	IN	A
THREE-DIMENSIONAL	METAL
13.3.1	Equation	of	motion	and	effective	mass
We	showed	in	Section	4.4	that	the	equation	of	motion	of	an	electron	wavepacket	in	a	one-
dimensional	crystal	in	a	electric	field	was	given	by	Eq.	(4.24)	as

in	the	absence	of	collisions.	This	is	generalized	to	three	dimensions	by	replacing	k	and	E
by	vectors	(we	have	already	used	this	generalization	in	Chapter	5)

(13.2)	

We	introduce	the	effect	of	collisions	in	Section	13.3.2.

Eq.	(13.2)	equates	the	change	of	momentum	of	the	crystal	to	the	force	on	the	electron.	It
is	tempting	to	identify	 k	as	the	momentum	of	the	electron,	but	this	is	misleading	since	the
momentum	 change	 due	 to	 the	 field	 is	 shared	 between	 the	 electron	 and	 the	 lattice	 as	 a
whole	in	a	way	that	in	general	cannot	be	unambiguously	unravelled.

To	see	this	we	evaluate	the	true	momentum	of	an	electron	with	a	Bloch
wavefunction,	which,	from	Eqs.	(11.27)	and	(11.32),	can	be	written

(13.3)	

This	is	not	a	momentum	eigenfunction	but	we	can	calculate	the	expectation	value
of	the	momentum	as

From	the	othogonality	of	plane	waves,	the	integral	is	equal	to	V	if	G′	=	G	and	is
zero	otherwise,	so	that



(13.4)	

where	the	last	step	follows	from	the	normalization	condition,	∑G|aG|2	=	1,	for	the
wavefunction	of	Eq.	(13.3).

The	result	(13.4)	is	just	what	we	would	expect	from	the	fact	that	the	plane	wave
ei(k+	G).r	is	a	momentum	eigenstate	of	eigenvalue	 (k	+	G),	and	|aG|2	is	the
probability	of	finding	the	electron	in	this	state	for	the	wavefunction	of	Eq.	(13.3).	If
the	electron	is	now	accelerated	so	that	its	wavevector	changes	to	k	+	δk,	the
expectation	value	of	its	momentum	changes	by

(13.5)	

A	physical	interpretation	of	the	second	term	in	Eq.	(13.5)	may	be	made	by	recalling
what	happens	when	a	free	electron,	incident	on	the	crystal	from	outside,	undergoes
Bragg	diffraction.	According	to	Eq.	(11.8)	its	wavefunction	changes	from	eik.r	to
ei(k	+	G).r	so	that	the	lattice	receives	a	recoil	momentum

The	more	general	process	in	which	the	coefficients	aG(k)	in	Eq.	(13.3)	change	by
amounts	other	than	1	can	be	regarded	as	a	series	of	partial	Bragg	reflections.

The	corresponding	recoil	momentum	is	then

(13.6)	

which	is	just	the	negative	of	the	second	term	in	Eq.	(13.5),	so	that	the	total	change
in	momentum	of	the	crystal	is	given	by

(13.7)	

This	can	be	used	to	justify	Eq.	(13.2);	because	 δK	is	the	change	in	the	total
momentum	of	the	system,	it	is	correct	to	equate	the	applied	force	to	 	dK/dt.

The	ambiguity	in	the	allocation	of	momentum	between	the	electron	and	the	lattice	as	a
whole	 arises	because	 an	 electron	of	wavevector	k	 can	 equally	well	 be	 represented	 by	 a
wavevector	k	 +	G	 and	 does	 not	 therefore	 have	 a	well	 defined	momentum.	As	we	have
already	indicated	 K	is	known	as	the	crystal	momentum	of	the	electron.

Just	 as	 in	 the	one-dimensional	 case,	 it	 is	possible	 to	 rewrite	Eq.	 (13.2)	 in	 the	 form	of
Newton’s	law	for	a	particle	of	effective	mass	me,

(13.8)	

Thus,	proceeding	as	in	Section	4.4,	we	find	that,	for	an	isotropic	dispersion	relation,	me
is	given	by



(13.9)	

As	in	one	dimension,	me	is	negative	near	the	top	of	an	energy	band	and	the	dynamics	of
such	 regions	of	k-space	are	best	 treated	by	 focusing	on	 the	 empty	 states,	which	behave
like	positive	charged	particles	with	a	positive	effective	mass	as	described	in	Section	5.2.

Eqs.	(13.8)	and	(13.9)	must	be	modified	if	the	dispersion	relation	is	anisotropic,	as
is	clearly	the	case	for	the	energy	surfaces	of	Fig.	13.4.	In	general	∂v/∂t	and	∂k/∂t
are	not	parallel;	more	precisely

(13.10)	

where	the	final	step	follows	from	Eq.	(13.2).	Comparison	with	Eq.	(13.8)	allows	the
definition	of	an	effective-mass	tensor

(13.11)	

such	that

(13.12)	

The	meaning	of	a	tensorial	effective	mass	is	that	the	electron	has	more	inertia	for
acceleration	in	some	directions	than	others.	If	an	electric	field	is	applied	in	the
direction	of	greatest	or	least	inertia,	acceleration	is	parallel	to	the	field,	but	for	a
general	field	direction	acceleration	is	preferentially	along	the	direction	of	least
inertia,	as	can	be	seen	from	Eq.	(13.12).	Eq.	(5.58)	for	the	frequency	of	cyclotron
resonance	of	conduction	band	electrons	in	silicon	can	equally	well	be	derived	using
the	tentorial	effective-mass	concept	(problem	13.2(b)).

13.3.2	Relation	of	the	electrical	conductivity	to	the
Fermi	surface
In	Section	3.3	we	explained	how	the	equation	of	motion	could	be	modified	 to	allow	for
collisions	and	that	the	effect	of	a	dc	electric	field	was	then	to	cause	a	small	displacement
of	the	free	electron	Fermi	sphere	in	k-space	(Eq.	(3.34)).	The	modification	of	Eq.	(13.2)	to
allow	for	a	relaxation	time	τ	due	to	collisions	is

(13.13)	

A	dc	electric	field	thus	causes	a	static	displacement	of	a	point	on	the	Fermi	surface



(13.14)	

as	shown	in	Fig.	13.6;	δk	may	vary	over	 the	Fermi	surface	 if	τ	 is	not	constant.	We	now
calculate	the	electrical	conductivity	from	this	Fermi	surface	perturbation	directly	without
using	the	effective-mass	concept.

Fig.	13.6	The	displacement	of	a	small	area	of	the	Fermi	surface	associated	with	the	flow
of	an	electric	current

Consider	the	element	dSF	of	Fermi	surface	displaced	by	δk	on	Fig.	13.6;	the	electrons	in
the	 volume	 dSF.δk	 of	 k-space	 move	 with	 the	 local	 Fermi	 velocity	 vFand	 thus	 carry	 a
current	density

(13.15)	

where	we	have	used	Eq.	(2.41)	to	obtain	the	value	2/(2π)3	for	the	number	of	electron	states
per	unit	volume	of	metal	in	unit	volume	of	k-space	(recall	that	there	are	two	spin	states).
Since	the	equilibrium	electron	distribution	in	the	absence	of	a	field	carries	no	current,	the
current	 is	 obtained	 by	 integrating	 dj	 over	 the	 Fermi	 surface.	 As	 vF	 is	 −1	 ∂ε/∂k,	 it	 is
perpendicular	to	the	Fermi	surface,	and	thus	parallel	to	dSF.	The	vectors	vF	and	dSF	in	Eq.
(13.15)	can	therefore	be	interchanged	and	Eq.	(13.14)	used	to	give

(13.16)	

This	 equation	 demonstrates	 that	 the	 conductivity	 in	 an	 anisotropic	 crystal,	 like	 the
effective	mass,	 is	 a	 tensor	 quantity,	with	 the	 current	 and	 field	 being	parallel	 only	 along
directions	of	high	symmetry.	The	quantity	σeff	=	|j|/|E|	 is	an	effective	scalar	conductivity
that	depends	on	the	direction	of	E.	It	is	given	by

(13.17)	

where	Ê	is	a	unit	vector	in	the	direction	of	E.	The	integral	in	Eq.	(13.17)	can	be	regarded
as	defining	a	mean	free	path	lel	averaged	over	the	Fermi	surface	such	that

(13.18)	



where	SF	is	the	total	free	area	of	Fermi	surface.	This	formula	is	more	informative	than	Eq.
(3.27);	 when	 the	 Fermi	 surface	 is	 restricted	 by	 contact	 with	 zone	 boundaries	 (e.g.	 Fig.
13.4)	it	is	the	total	free	area	that	matters	rather	than	the	total	number	of	electrons.	The	free
area	of	the	Fermi	surfaces	of	the	pentavalent	elements,	arsenic,	antimony	and	bismuth,	are
much	 reduced	 from	 their	 free	 electron	 values	 by	 the	 periodic	 lattice	 potential.
Consequently	these	materials	have	small	electrical	conductivities	and	low	electronic	heat
capacities;	they	are	referred	to	as	semimetals.

13.4	EXPERIMENTAL
DETERMINATION	OF	THE	FERMI
SURFACE
Because	 the	 force	on	an	electron	 in	a	magnetic	 field	 is	perpendicular	 to	 its	velocity,	 the
field	does	not	change	the	energy	of	the	electron.	An	electron,	which	is	initially	in	a	state
on	 the	Fermi	 surface,	moves	 through	 a	 sequence	 of	 states	 of	 constant	 energy	 under	 the
influence	 of	 the	 field	 and	 therefore	 remains	 on	 the	 Fermi	 surface;	 measurements	 that
provide	information	on	the	electron	trajectory	(referred	to	as	its	cyclotron	orbit)	thus	give
information	on	Fermi	surface	geometry.	In	this	section	we	consider	two	examples	of	such
measurements:

(1)	 cyclotron	 resonance,	 which	 we	 have	 already	 discussed	 in	 Section	 5.5.3	 for
semiconductors,	 where	 the	 carriers	 are	 non-degenerate	 and	 have	 a	 parabolic
dispersion	relation;

(2)	the	de	Haas–van	Alphen	effect,	which	is	an	oscillatory	variation	of	the	conduction
electron	 diamagnetism	 with	 magnetic	 field	 associated	 with	 the	 quantization	 of	 the
cyclotron	orbits.

13.4.1	Cyclotron	orbits
The	collisionless	equation	of	motion	of	an	electron	wavepacket	in	k-space	in	a	magnetic
field	is

(13.19)	

For	an	electron	on	the	Fermi	surface,	v	=	vF	=	 −1(∂ε/∂k)F	 is	normal	 to	 the	surface,	so
that	dk/dt	must	lie	in	the	surface.	Since	dk/dt	is	also	perpendicular	to	B,	it	follows	that	the
electron	trajectory	in	k-space	is	along	the	Fermi	surface	contour	in	a	plane	perpendicular
to	B	as	shown	in	Fig.	13.7(a).	From	the	final	part	of	Eq.	(13.19)	we	see	that	the	motion	in
real	 space	 is	 closely	 related	 to	 that	 in	k-space;	more	precisely	 the	projection	of	 the	 real
space	motion	onto	a	plane	perpendicular	 to	B	 is	an	orbit	of	 the	same	shape	and	rotation
direction	as	the	k-space	orbit	but	rotated	through	90°	as	shown	in	Fig.	13.7(b).	The	orbit



in	real	space	differs	in	size	from	that	in	k-space	by	a	scale	factor	 /eB.

Using	Eq.	(13.19),	the	period	T	of	the	orbit	is	given	by

(13.20)	

where	υ⊥	is	the	component	of	the	electron	group	velocity	in	the	plane	perpendicular	to	B;
this	can	be	written	as

(13.21)	

where	δk⊥	is	the	perpendicular	distance	between	the	energy	contours	εF	and	εF	+	δε	in	this
plane	as	shown	in	Fig.	13.7(a).	Thus,	inserting	Eq.	(13.21)	in	Eq.	(13.20),

Fig.	13.7

δk⊥	dk	is	the	shaded	area	in	Fig.	13.7(a)	so	that	 	δk⊥	dk	is	the	total	area	δAk	in	k-space
between	the	two	contours	in	the	plane	perpendicular	to	B.	In	the	limit	δε	→	0,	δAk/δε	can
be	written	dAk/dε	and	Ak	can	be	interpreted	as	the	area	of	the	cyclotron	orbit	in	k-space.
The	cyclotron	frequency	can	then	be	written

(13.22)	

Comparison	with	 the	value	ωc	 =	eB/m	 for	 free	 electrons	 enables	 a	 cyclotron	 effective



mass

(13.23)	

to	be	defined.	The	cyclotron	effective	mass	differs	from	the	effective	mass	me	introduced
in	Section	13.3.1:	mc	is	the	property	of	an	orbit	and	is	proportional	to	the	first	derivative
(dε/dk⊥)−1	averaged	around	the	orbit;	me	depends	on	the	second	derivative	(∂2ε/∂k2)	at	a
point	in	k-space.	The	two	masses	are	only	identical	for	an	isotropic	parabolic	dispersion
relation	ε	=	 2k2/2me	(problem	13.2(a)).

In	the	derivation	of	Eqs.	(13.22)	and	(13.23)	we	paid	no	attention	to	signs,	but	we	now
demonstrate	that	these	equations,	as	written,	give	the	sense	of	rotation	of	the	orbit	as	well
as	 its	 frequency.	 We	 continue	 to	 use	 the	 convention	 introduced	 in	 Section	 5.5.3	 that
clockwise	rotation	about	the	field	direction	corresponds	to	a	positive	ωc;	according	to	this
sign	 convention	 free	 electrons	 have	 a	 positive	ωc	 (see	Fig.	 5.10).	 From	Eq.	 (13.19)	we
deduce	that	if	the	velocity	v	associated	with	the	Fermi	surface	of	Fig.	13.7(a)	is	outwards
then	ωc	will	be	positive.	This	is	so	if	states	outside	the	Fermi	surface	have	a	higher	energy
than	states	inside;	dε/dAk	is	then	positive,	and	Eqs.	(13.22)	and	(13.23)	predict	the	sign	of
ωc	correctly.	A	section	of	Fermi	surface	with	positive	ωc	would	appropriately	be	classified
as	electron-like	by	 the	rules	given	 in	Section	13.2.1.	Alternatively,	 if	v	 is	 inwards,	ωc	 is
negative;	in	this	case	dε/dAk	is	also	negative	and	Eqs.	(13.22)	and	(13.23)	again	predict	the
correct	sign	for	ωc.	Such	a	surface	would	be	appropriately	classified	as	hole-like.

We	 will	 assume	 that	 cyclotron	 resonance	 measurements,	 like	 many	 other	 electronic
properties	of	metals,	are	dominated	by	electrons	near	the	Fermi	surface;	in	fact	the	Pauli
principle	 prevents	 electrons	 in	 lower	 lying	 states	 from	 absorbing	 energy	 in	 a	 cyclotron
resonance	experiment.	Even	so,	it	is	possible	that	the	frequency	predicted	by	Eq.	 (13.22)
will	be	different	for	different	cross	sections	of	Fermi	surface	perpendicular	to	the	field.	It
can	be	shown	that	 the	frequency	is	 the	same	for	all	sections	of	a	spherical	or	ellipsoidal
piece	 of	 Fermi	 surface.	 More	 generally,	 however,	 the	 behavour	 is	 dominated	 by	 those
cross	sections	of	the	surface	where	the	frequency	goes	through	a	maximum	or	a	minimum
as	a	function	of	position	along	the	kz	axis;	it	is	these	maximum	and	minimum	frequencies
that	 are	 actually	 observed.	 This	 is	 an	 example	 of	 a	 general	 result	 of	 combining	 a
continuous	spectrum	of	frequencies,	known	as	the	principle	of	stationary	phase.

We	 have	 assumed	 that	 sections	 through	 the	 Fermi	 surface	 perpendicular	 to	 the	 field
produce	a	closed	orbit	as	in	Fig.	13.7(a).	This	is	not	always	the	case;	for	Fermi	surfaces	of
complicated	 connectivity	 in	 a	 repeated	 zone	 scheme,	 such	 as	 that	 of	 Fig.	 13.4(b),	 it	 is
possible	 to	 have	 open	 orbits	 for	 which	 the	 electron	 never	 returns	 to	 its	 initial	k-state.
Cyclotron	 resonance	 cannot	 be	 seen	 for	 such	 orbits	 but	 their	 existence	 has	 important
implications	 for	 some	 properties,	 for	 example,	 magnetoresistance,	 which	 is	 the
dependence	of	the	electrical	resistivity	on	an	applied	magnetic	field.

13.4.2	Cyclotron	resonance	in	metals



Our	 treatment	 of	 cyclotron	 resonance	 in	 semiconductors	 (Section	 5.5.3)	 implicitly
assumed	 that	 the	 microwave	 electric	 field	 was	 uniform	 over	 the	 electron	 orbit.	 For
semiconductors	 this	 is	a	reasonable	assumption	since	the	small	carrier	density	 leads	 to	a
low	conductivity	and	hence	a	large	electromagnetic	skin	depth	at	microwave	frequencies.†
In	metals	the	carrier	density	is	much	larger	and	the	skin	depth	is	usually	smaller	than	the
real	 space	 radius	 of	 the	 cyclotron	 orbit.	 This	 necessitates	 the	 use	 of	 a	 different
experimental	 arrangement,	 the	 Azbel–Kaner	 geometry	 of	 Fig.	 13.8(a),	 for	 observing
cyclotron	 resonance	 in	 metals;	 this	 geometry	 resembles	 that	 of	 the	 cyclotrons	 used	 to
accelerate	fundamental	particles.

Fig.	13.8

The	steady	magnetic	field	B	is	applied	parallel	to	plane	surface	of	the	specimen,	so	that
in	performing	their	cyclotron	orbits	in	accordance	with	Eq.	(13.19),	some	of	the	electrons
enter	 the	 skin	 depth	where	 they	 sense	 the	microwave	 electric	 field	E0	 cos	 (ωt)	 once	 in
each	revolution.	Because	the	skin	depth	is	much	smaller	than	the	orbit	radius,	the	electrons
‘see’	 the	microwave	 field	 for	 a	 time	 short	 compared	 to	 the	 orbit	 period.	 The	 electrons
absorb	energy	from	the	microwaves	if	the	electric	field	is	in	the	same	direction	each	time
they	 enter	 the	 skin	 depth;	 this	 is	 the	 case	 if	 the	 microwave	 frequency	 is	 equal	 to	 any
harmonic	of	the	cyclotron	frequency

(13.24)	

where	l	is	a	positive	integer.	Since	the	normal	procedure	is	to	work	at	constant	microwave



frequency	and	to	vary	the	dc	magnetic	field,	we	expect	a	power	absorption	that	is	periodic
in	1/B	with	a	period	given	by

(13.25)	

Some	 measurements	 of	 the	 microwave	 surface	 resistance	 of	 copper	 (essentially	 a
measure	 of	 the	 energy	 absorption	 within	 the	 skin	 depth)	 showing	 this	 periodicity	 are
illustrated	 in	 Fig.	 13.8(b).	 As	 in	 semiconductors	 it	 is	 essential	 for	 the	 observation	 of
cyclotron	resonance	that	the	electronic	mean	free	path	is	much	longer	than	the	real	space
radius	of	the	orbit;	the	electron	must	undergo	more	than	one	complete	orbit	before	being
scattered.

13.4.3	Quantization	of	cyclotron	orbits
The	derivation	of	the	equation	of	motion	of	the	electrons	in	the	form	of	Eqs.	(4.24),	(13.2)
or	 (13.19)	 assumes	 that	 the	 trajectory	 of	 an	 electron	 wavepacket	 is	 that	 of	 a	 classical
particle.	Since	the	waves	forming	the	wavepacket	are	essentially	quantum	mechanical	in
origin,	 this	 approach	 is	often	described	as	quasi-classical.	The	quasi-classical	 equations
will	certainly	fail	when	B	is	large	enough	that	 ωc	∼	εF	since	the	real	space	radius	of	the
cyclotron	orbit	 is	 then	 smaller	 than	 the	 size	 of	 the	wavepacket	 (problem	13.4).	Even	 in
smaller	fields	we	might	expect	that	quasi-classical	periodic	motion	at	frequency	ωc	would
lead	 to	 quantization	 of	 electron	 energies	 in	 steps	 ωc.	 To	 investigate	 the	 nature	 of	 this
quantization	we	must	discuss	the	effect	of	a	magnetic	field	on	the	electron	energy	levels	in
more	detail.

We	begin	by	considering	free	electrons.	In	the	absence	of	a	field	the	wavefunction	is	a
plane	wave	(Eq.	(3.3))

with	energy	(Eq.	(3.5))

In	the	presence	of	a	field,	Schrödinger’s	equation	can	be	solved	exactly	(problem	13.5).
For	a	field	parallel	to	z	the	energy	levels	are	of	the	form†

(13.26)	

where	ωc	 =	eB/m	 is	 the	 cyclotron	 frequency	 of	 free	 electrons.	As	 in	 the	 corresponding
classical	problem,	the	motion	parallel	to	the	field	direction	is	unaffected	by	the	field;	the	z
dependence	of	the	wavefunction	remains	as	in	Eq.	(3.3)	and	the	dependence	of	the	energy
on	kz	is	the	same	in	Eqs.	(3.5)	and	(13.26).	Application	of	periodic	boundary	conditions	in
the	z	direction	gives	allowed	kz	values,	2πr/L,	as	before	(Eq.	(3.4)).	The	cyclotron	orbits	in
the	plane	perpendicular	to	the	field	manifest	themselves	through	a	dramatic	change	in	the



x	and	y	dependence	of	the	wavefunctions;	instead	of	being	plane	waves	extending	over	the
whole	xy	plane,	the	wavefunctions	are	localized	in	this	plane	on	a	length	scale	of	order	the
cyclotron	 radius.	 The	 first	 term	 in	 the	 energy	 eigenvalue	 of	 Eq.	 (13.26)	 reflects	 the
quantization	associated	with	the	periodic	motion	at	frequency	ωc.	The	energy	levels	given
by	this	equation	are	known	as	Landau	levels.

It	 is	 possible	 (and	 very	 useful)	 to	 identify	 each	 Landau	 level	 with	 the	 set	 of	 quasi-
classical	cyclotron	orbits	in	k-space	that	have	the	same	energy.	The	quasi-classical	orbits
are	 contours	 of	 constant	 (zero	 field)	 energy	 in	 a	 plane	 perpendicular	 to	 the	 field	 (i.e.
constant	kz).	Comparison	of	Eqs.	 (3.5)	and	(13.26)	 identifies	 the	orbits	corresponding	 to
the	nth	Landau	level	as	being	given	by

(13.27)	

This	equation	defines	a	 series	of	concentric	cylinders	parallel	 to	 the	 field	as	 shown	 in
Fig.	13.9.	The	nth	cylinder	corresponds	to	the	nth	Landau	level	and,	from	Eq.	(13.27),	has
an	area

(13.28)	

where	 we	 have	 used	 ωc	 =	 eB/m.	 From	 a	 quantum	 mechanical	 viewpoint,	 cyclotron
resonance,	as	described	by	Eq.	(13.24),	is	seen	as	the	excitation	of	electrons	from	the	nth
to	the	(n	+	l)th	Landau	level	cylinder	by	absorption	of	a	photon	of	energy	 ω	=	l ωc.

The	degeneracy	of	the	orbits‡	on	each	cylinder	for	a	given	kz	value	can	be	obtained,	as
in	 the	absence	of	a	 field,	by	applying	suitable	boundary	conditions	 in	 the	xy	 plane.	 It	 is
found	 that	 the	average	density	of	 states	 in	k-space	 is	 the	 same	as	 in	 the	 absence	of	 the
field.	This	is	illustrated	in	Fig.	13.10,	which	is	a	section	through	k-space	perpendicular	to
the	z	axis.	Fig.	13.10(a)	shows	the	simple	square	lattice	of	electron	states	in	this	plane	in
the	 absence	 of	 a	 field,	 with	 the	 Landau	 cylinder	 structure	 superimposed.	 Fig.	 13.10(b)
shows	the	states	on	the	Landau	level	cylinders	in	the	presence	of	a	field;	each	state	in	Fig.
13.10(a)	has	moved	to	the	nearest	Landau	cylinder	to	leave	the	average	density	of	states	in
k-space	unchanged.	According	to	Eq.	(13.28)	the	area	between	successive	cylinders	in	k-
space	is	2πeB/ ,	 independent	of	n.	The	density	of	states	per	unit	area	 in	Fig.	13.10(a)	 is
(L/2π)2	so	that	the	number	of	states	gn	associated	with	the	Landau	level	for	each	kz	value
and	each	spin	orientation	is

Fig.	13.9



Fig.	13.10	Effect	of	a	magnetic	field	on	the	allowed	free	electron	states



(13.29)	

which	is	also	independent	of	n.	From	Eq.	(10.30),	h/2e	is	the	flux	quantum	associated	with
a	Cooper	pair	of	electrons	in	a	superconductor;	h/e	can	therefore	be	interpreted	as	a	flux
quantum	for	individual	electrons.	BL2	is	the	magnetic	flux	passing	through	the	crystal,	so
that	gn	is	just	the	number	of	flux	quanta	passing	through	the	crystal.

13.4.4	The	de	Haas–van	Alphen	effect
If	we	take	typical	values	of	10	T	for	B	and	1	Å−2	=	1020	m−2	for	the	cross-sectional	area	of
the	Fermi	surface	in	k-space	then,	from	Eq.	(13.28),	there	will	be	of	order

Landau	levels	passing	through	the	free	electron	Fermi	sphere	in	Fig.	13.9;	the	separation
of	the	levels	is	thus	small	compared	to	the	radius	of	the	sphere.	Since	the	density	of	states
in	k-space	is	on	average	the	same	as	in	the	absence	of	a	field,	the	states	that	are	occupied



at	T	=	0	are	approximately	those	on	the	portions	of	the	cylindrical	tubes	that	lie	within	the
original	Fermi	sphere	as	shown	in	Fig.	13.9.

In	an	 increasing	magnetic	field	 the	radius	of	each	Landau	level	cylinder	 increases	and
eventually	becomes	greater	than	that	of	the	Fermi	sphere;	when	this	happens	the	number
of	 electrons	 on	 it	 decreases	 and	 goes	 to	 zero	 as,	 according	 to	 Eq.	 (13.29),	more	 states
become	available	on	lower	lying	levels.	It	is	apparent	from	Fig.	13.9	that	the	rate	of	loss	of
electrons	 is	greatest	when	 the	cylinder	 is	about	 to	pass	 through	 the	surface.	Under	 these
circumstances	it	 is	perhaps	not	surprising	that	 there	is	a	small	oscillatory	contribution	to
the	energy	of	the	electrons	as	the	magnetic	field	is	varied.	The	period	of	the	oscillation	is
determined	 by	 equality	 of	 the	 area	 An	 of	 successive	 Landau	 cylinders	 with	 the	 Fermi
surface	area	AF	=	π ;	from	Eq.	(13.28),	therefore,	the	oscillations	will	be	periodic	in	1/B
with	a	period

(13.30)	

The	oscillatory	dependence	of	energy	on	magnetic	field	implies	that	the	magnetization	is
also	oscillatory.†	The	 resulting	variation	of	 the	magnetic	moment	 of	 a	 specimen	 can	be
detected	and	is	known	as	the	de	Haas–van	Alphen	effect.

Fig.	13.11	 shows	 de	Haas–van	Alphen	 oscillations	 for	 copper.	 To	 interpret	 these	 it	 is
necessary	to	generalize	the	result	(13.28)	to	electrons	in	a	periodic	lattice	potential.	This	is
difficult	to	do	rigorously.	The	simplest	way	to	quantize	the	quasi-classical	cyclotron	orbits
is	 to	 use	 the	 correspondence	 principle	 that	 quantum	 mechanical	 results	 should	 go
smoothly	 to	classical	 results	 in	 the	appropriate	 limit.	Thus	 in	 the	 limit	of	 large	quantum
numbers	the	difference	in	energy	of	successive	quantized	orbits	should	equal	 	times	the
quasi-classical	orbit	frequency	of	Eq.	(13.22);	that	is

Fig.	13.11	De	Haas–van	Alphen	oscillations	in	copper.	The	oblique	line	shows	the
magnetic	field	variation	and	the	horizontal	lines	indicate	fields	of	10.47,	10.70,	10.93	and
11.16	T.	The	magnetic	field	was	obtained	by	discharging	a	large	capacitor	through	a
liquid-nitrogen-cooled	solenoid.	The	magnetic	field	decayed	from	a	peak	value	of	just
over	11	T	with	a	time	constant	of	a	few	milliseconds;	the	trace	on	the	oscilloscope	is	about
1	ms	wide.	The	oscillations	are	the	voltage	in	a	pick-up	coil	containing	the	specimen.
(Reproduced	with	permission	from	D.	Shoenberg,	Phil.	Trans.	R.	Soc.	A	255,	85	(1962))



(13.31)	

In	the	limit	of	large	quantum	numbers	we	can	approximate	the	derivative	as

in	which	case	Eq.	(13.31)	becomes

This	is	satisfied	if	An	is	of	the	form

(13.32)	

where	γ	is	independent	of	n.

The	 similarity	 of	 this	 result	 to	 the	 free	 electron	 result,	 Eq.	 (13.28),	 means	 that	 the
qualitative	 behaviour	 is	 little	 changed	 by	 the	 periodic	 lattice	 potential.	 The	 quantized
cyclotron	orbits	lie	on	a	series	of	tubes	along	the	field	direction;	the	cross	section	of	each
tube	 has	 an	 area	 given	 by	 Eq.	 (13.32)†	 and	 is	 a	 constant	 energy	 contour,	 but	 it	 is	 not
circular	in	general	and	its	shape	can	vary	along	the	field	direction.	The	periodicity	of	the
de	Haas–van	Alphen	oscillations	 is	determined	by	 the	equality	of	 the	area	of	successive
quantized	orbits	with	the	extremal	cross-sectional	areas	of	the	Fermi	surface	perpendicular
to	the	field	as	indicated	in	Fig.	13.12.	Measurement	of	the	period	δ(l/B)	of	the	oscillations
enables	the	extremal	areas	to	be	deduced	by	the	use	of	Eq.	(13.30).	Note	that	for	hole-like
regions	of	 the	Fermi	surface	 the	quantized	orbit	 tubes	will	 shrink	 rather	 than	grow	with
increasing	field.

The	de	Haas–van	Alphen	effect	was	 first	discovered	 in	 the	 semimetal	bismuth,	which



has	 small	 pockets	 of	 Fermi	 surface	 containing	 only	 about	 10−5	 electrons	 per	 atom	 and
consequently,	 from	Eq.	 (13.30),	 gives	 a	 large	 and	 readily	 observable	 period.	 The	much
shorter	 periods	 associated	 with	 Fermi	 surfaces	 containing	 about	 one	 electron	 per	 atom
mean	 that	 fields	 of	 order	 10	 T	 at	 1	 K	 are	 needed	 to	 observe	 the	 effect	 satisfactorily;
superconducting	solenoids	are	normally	used	to	provide	the	large	fields	required.	A	small
ac	field	B1	cos	(ωt)	is	added	at	a	convenient	frequency	ω	using	auxiliary	coils.	Specimens
are	typically	single-crystal	wires	a	few	millimetres	long	mounted	in	a	small	pick-up	coil
often	 with	 a	 similar	 dummy	 coil	 wound	 in	 series	 opposition	 to	 eliminate	 effects	 not
associated	with	the	specimen.	The	magnetization	of	the	specimen	in	the	modulated	applied
field	can	be	expanded	as	a	Taylor	series	about	the	average	field	B0,

Fig.	13.12	De	Haas–van	Alphen	oscillations	are	associated	with	the	passage	of	the
quantized	cyclotron	orbit	tubes	through	extremal	cross	sections	of	the	Fermi	surface
perpendicular	to	the	field.	The	figure	shows	a	portion	of	Fermi	surface	with	both	a
maximum	and	minimum	cross	section

The	emf	in	the	pick-up	coil	is	proportional	to

(13.33)	

The	 oscillations	 of	 the	magnetization	 associated	with	 the	 de	Haas–van	Alphen	 effect
imply	a	non-zero	value	for	(d2M/dB2),	which	oscillates	as	a	function	of	B0.	The	best	way
to	observe	the	effect	 is	 therefore	 to	employ	phase	sensitive	detection	at	frequency	2ω	in
this	way	the	signal-to-noise	ratio	is	improved	and	linear	pick-up	effects	at	frequency	ω	are
eliminated.	 The	modulation	 amplitude	B1	 is	 best	 chosen	 to	 be	 comparable	 with	 the	 de
Haas–van	Alphen	period.

The	 special	 value	 of	 the	 de	Haas–van	Alphen	 effect	 is	 that,	 for	 a	 complicated	 Fermi
surface	consisting	of	several	pieces,	 it	gives	a	separate	periodic	signal	for	each	extremal
area.	 The	 frequency	 of	 the	 signal	 shown	 in	 Fig.	 13.11	 is	 approximately	 that	 for	 a	 free
electron	sphere	containing	one	electron	per	atom	(problem	13.6),	but	other,	quite	different,
frequencies	 are	 also	 seen	 for	 copper	 (and	 silver	 and	 gold,	 which	 are	 also	 cubic	 close-



packed	 metals).	 This	 leads	 to	 the	 conclusion	 that	 in	 these	 metals	 the	 Fermi	 surface	 is
stretched	towards	all	the	faces	of	the	first	Brillouin	zone	and	actually	makes	contact	with
the	 hexagonal	 {111}	 faces	 as	 shown	 in	 Fig.	13.13(a).	 Thus	 as	well	 as	 the	main	 ‘belly’
orbit,	 there	 is	 a	 ‘neck’	 orbit	 of	 minimum	 area	 at	 the	 contact	 with	 the	 Brillouin	 zone
boundary.	Fig.	13.13(b)	 shows	a	 schematic	model	of	 the	Fermi	 surface	of	copper	 in	 the
repeated	zone	scheme;	a	hole	orbit	called	the	‘dog’s	bone’	is	indicated.	The	contact	with
the	 zone	 boundary	 makes	 the	 Fermi	 surface	 multiply	 connected	 in	 the	 repeated	 zone
scheme,	allowing	various	other	hole	orbits	that	cover	bits	of	several	spheres;	open	orbits
also	exist,	which	do	not	contribute	to	the	de	Haas–van	Alphen	effect.

The	de	Haas–van	Alphen	effect	can	also	disentangle	more	complicated	Fermi	surfaces.
Thus	it	has	been	used	to	show	that	the	Fermi	surface	of	lead	is	essentially	as	shown	in	Fig.
13.4.	The	observed	variation	of	the	measured	periods	with	field	orientation,	from	[1	0	0]
to	[1	1	0],	is	shown	in	Fig.	13.14.	The	α	oscillations	correspond	to	the	second	zone	holes
in	Fig.	13.4;	the	β	oscillations	come	from	a	hole	orbit	on	one	of	the	square	‘faces’	of	the
third	zone	monster;	the	γ	oscillations	come	from	the	pockets	of	electrons	in	the	fourth	zone
(in	general	 these	give	 three	periods	since	pockets	 in	 three	different	orientations	are	seen
for	any	field	direction).	Over	limited	ranges	of	angle,	beats	are	seen	on	the	γ	oscillations,
showing	that	two	periods,	γ1	and	γ2,	are	present;	the	γ2	period	is	due	to	orbits	around	limbs
of	the	third	zone	monster.

Fig.	13.13



Fig.	13.14	Angular	variation	of	the	de	Haas–van	Alphen	periods	in	lead.	(Reproduced
with	permission	from	A.	V.	Gold,	Phil.	Trans.	R.	Soc.	A	251,	85	(1958))



Our	discussion	of	the	de	Haas–van	Alphen	effect	has	ignored	electron	spin.	Because	of
the	splitting	of	the	energies	by	2µBB,	there	are	two	sets	of	Landau	level	tubes,	one	for	each
spin	state.	Each	set	moves	through	the	Fermi	surface	at	the	frequency	given	by	Eq.	(13.30)
so	that	the	periodicity	of	the	oscillations	is	unaffected.	The	magnitude	of	the	oscillations	is
however	 significantly	 reduced	 if	 the	 spin	 up	 levels	 pass	 through	 the	 Fermi	 surface
approximately	half-way	in	between	the	spin	down	levels.

13.5	WHY	DO	ELECTRONS	BEHAVE
INDEPENDENTLY?
In	our	discussion	of	metals	 and	 semiconductors	we	have	assumed	 that	 electrons	behave
independently.	In	particular	the	derivation	of	Bloch’s	theorem	in	Chapter	11	applies	only
to	single	particle	wavefunctions;†	the	validity	of	the	theory	of	metals	developed	earlier	in
this	chapter	therefore	rests	on	the	independent	electron	assumption.	A	comparison	of	the
energies	involved	suggests	that	this	is	a	bad	approximation;	the	Coulomb	repulsion	energy
e2/4πε0r	of	two	electrons	1	Å	apart	is	about	10	eV	and	this	is	comparable	to	both	the	Fermi
energy	and	the	interaction	energy	of	an	electron	with	the	nearest	positive	ion.	Because	of
the	Coulomb	interaction	the	electrons	behave	more	like	a	liquid	than	a	non-interacting	gas.
We	explain	in	this	section	why	the	behaviour	of	the	liquid	in	its	lowest	lying	excited	states
resembles	that	of	a	gas	of	almost	independent	particles.

13.5.1	Electrical	neutrality	in	metals
We	 found	 in	 Section	 5.6.2	 that	 a	 departure	 from	 electrical	 neutrality	 in	 a	 homogeneous
semiconductor	disappears	on	short	distance	and	 time	scales	 through	redistribution	of	 the
majority	carriers.	The	higher	electron	density	in	metals	makes	the	distance	and	time	scales



even	 smaller;	 they	 are	 so	 short	 that	 in	 deriving	 the	 equation	 of	motion	 of	 the	 electron
liquid	it	is	possible	to	ignore	collisions.†	Thus,	instead	of	using	the	electrical	conductivity
and	 diffusion	 constant	 to	 describe	 the	 response	 to	 an	 electric	 field	 and	 a	 concentration
gradient,	we	use	the	acceleration	equations

	and	

respectively,	where	∇p	is	the	pressure	gradient	associated	with	the	concentration	gradient.
Combining	both	terms	gives

(13.34)	

which	is	the	equation	of	motion	for	an	ideal	(i.e.	non-viscous)	charged	liquid.

By	using	 the	bare	electron	mass	 in	Eq.	 (13.34)	we	are	 ignoring	band	 structure	 effects
and	we	therefore	assume	a	spatially	uniform	charge	density	for	the	positive	ions.	Electron–
electron	repulsion	enters	the	calculation	through	the	use	of	Gauss’	law,

(13.35)	

for	the	electric	field	generated	by	departures	of	the	electron	density	from	its	average	value
n0.	We	assume	that	it	is	a	reasonable	approximation	to	take	the	pressure	in	Eq.	(13.34)	as
that	for	free	electrons,	which	is	calculated	in	problem	3.3.

(13.36)	

Hence

(13.37)	

where	we	have	used	Eq.	(3.9)	for	εF	as	a	function	of	n.	By	using	Eqs.	(13.35)	and	(13.37)
together	with	the	conservation	law	for	particle	number,

(13.38)	

it	is	possible	to	eliminate	v,	E	and	p	from	Eq.	(13.34)	to	obtain	the	following	equation	for
n

(13.39)	

We	have	linearized	this	equation	by	assuming	that	n	−	n0,	v	and	E	are	small.

Eq.	 (13.39)	 is	 the	 analogue	 for	 metals	 of	 Eq.	 (5.66)	 for	 semiconductors.	 It	 differs
qualitatively	in	having	a	second-	rather	than	first-order	time	derivative;	this	is	because	we
have	ignored	collisions	in	its	derivation.	We	now	describe	some	of	the	implications	of	this
equation.

13.5.2	Plasma	oscillations



In	the	limit	of	slow	spatial	variation	the	∇2n	term	can	be	ignored	and	Eq.	(13.39)	becomes

(13.40)	

where

(13.41)	

This	 is	 a	 simple	 harmonic	 oscillator	 equation	 with	 angular	 frequency	ωP.	 Any	 long-
wavelength	departure	from	electrical	neutrality	therefore	oscillates	at	this	frequency;	these
oscillations	are	known	as	plasma	oscillations	and	ωP	is	the	plasma	frequency.	The	finite
frequency	associated	with	 the	 long-wavelength	motions	arises	because	 the	1/r	 fall-off	of
the	Coulomb	interaction	makes	it	a	long-range	interaction.†

Inserting	n0	≈	1029	m−3	in	Eq.	(13.41)	gives	ωP	≈	1016	s−1.	The	quantum	of	energy	 ωP
associated	with	the	plasma	oscillations	is	therefore	of	order	10	eV	and	is	sufficiently	large
that	 plasma	 oscillations	 are	 not	 normally	 thermally	 excited	 in	 metals	 and	 the	 electron
liquid	 remains	 in	 its	 ground	 state	 as	 far	 as	 its	 long-wavelength	motions	 are	 concerned.
Quanta	of	plasma	oscillations,	known	as	plasmons,	can	however	be	excited	by	passing	a
beam	of	fast	electrons	through	a	thin	metal	foil.	The	electrons	are	found	to	emerge	with
discrete	 energy	 losses	 corresponding	 to	 the	 excitation	 of	 one	 or	 more	 plasmons	 (Fig.
13.15).	 Because	 plasma	 oscillations	 are	 long-range,	 many	 electrons	 are	 involved	 and
hence	plasmons	are	referred	to	as	collective	excitations	of	 the	electron	 liquid.	Note	 that
since	a	typical	collision	interval	τ	is	of	order	10−12	s,	we	have	ωPτ	 	1	and	our	neglect	of
collisions	in	deriving	Eq.	(13.39)	is	justified.

13.5.3	Screening
Because	the	collective	long-range	motions	of	the	electron	liquid	are	not	thermally	excited,
the	motion	of	the	electrons	is	highly	correlated;	the	other	electrons	adjust	in	such	a	way	as
to	cancel	the	long-range	Coulomb	field	of	any	individual	electron.	At	shorter	distances	the
screening	is	incomplete	and	we	can	use	Eq.	(13.39)	to	investigate	this.	Suppose	that	there
is	a	stationary	point	charge	−e	at	r	=	0.	By	putting	∂2n/∂t2	=	0	in	Eq.	(13.39)	we	find	that
the	spherically	symmetric	static	response	of	the	electron	liquid	to	this	charge	is	given	by

(13.42)	

Fig.	13.15	Energy	loss	of	2020	eV	electrons	after	scattering	through	90°	by	a	Mg	film.
The	large	peaks	indicate	the	energy	loss	to	be	a	multiple	of	 ωP.	The	minor	peaks	are	a
surface	effect	(see	Kittel7).	(Reproduced	with	permission	from	C.	J.	Powell	and	J.	B.
Swann,	Phys.	Rev.	116,	81	(1959))



where

(13.43)	

and	we	have	used	Eq.	(13.41)	for	ωp.

The	solution	of	Eq.	(13.42)	is	(see	problem	13.9)

(13.44)	

as	plotted	in	Fig.	13.16.	The	electron	 liquid	 is	excluded	from	a	region	of	order	λ	 in	size
around	the	charge	at	the	origin.	The	total	excluded	charge

just	balances	the	charge	at	the	origin	and	this	explains	the	compensation	of	its	long-range
Coulomb	 field.	 From	Eq.	 (13.43)	 the	 screening	 length	 λ	 is	much	 less	 than	 the	 electron
mean	free	path	and	this	is	further	justification	of	our	neglect	of	collisions	in	deriving	Eq.
(13.39).

Thus	each	electron	in	a	metal	 is	surrounded	by	a	screening	hole	in	the	electron	liquid.
As	 the	 electron	 moves	 through	 the	 metal	 the	 screening	 hole	 moves	 with	 it;	 the	 large
plasmon	energy	determines	that	the	screening	remains	effective	at	finite	velocity.	It	is	the
electron	 plus	 its	 associated	 screening	 hole	 which	 behaves	 as	 an	 almost	 independent
particle;	 the	 combination	 forms	 an	 entity	 known	 as	 a	 quasi-particle.	 Because	 of	 the
absence	of	collective	excitations,	the	low	lying	excited	states	of	metals	correspond	to	a	gas
of	weakly	interacting	quasi-particles.	It	is	the	wavefunction	of	a	quasi-particle	that	obeys
Bloch’s	theorem.

Fig.	13.16	The	static	response	of	the	electron	liquid	to	a	point	charge	−e	at	the	origin



Eq.	 (13.44)	 is	 the	Thomas–Fermi	equation	 for	 the	 static	 screening	of	 the	 long-range
Coulomb	field	of	an	electron	and	λ	is	the	Thomas–Fermi	screening	length.	The	result	is
normally	 derived	 in	 a	 slightly	 different	way	 (Kittel,7	 p.	 264)	 and	 is	 approximate	 in	 not
allowing	for	the	motion	of	the	electron	and	in	treating	the	electrons	as	a	continuous	liquid
on	an	atomic	 length	scale.	 It	 is	also	 inconsistent	 in	considering	each	electron	both	as	an
individual	 particle	 and	 as	 forming	 part	 of	 the	 background	 electron	 liquid.	 Improved
theories	 of	 various	 degrees	 of	 sophistication	 for	 dealing	 with	 electron–electron
interactions	are	available;	the	advantage	of	our	simple-minded	approach	is	that	it	provides
a	physical	picture	for	what	is	happening.

13.5.4	The	exclusion	principle	and	scattering
After	 allowing	 for	 the	 screening	 of	 the	 Coulomb	 interaction	 discussed	 in	 the	 previous
section,	there	is	a	residual	interaction	between	two	quasi-particles	with	a	range	of	order	1
Å;	 essentially	 the	 interaction	 vanishes	 unless	 there	 is	 overlap	 of	 the	 screening	 holes
associated	with	 the	 quasi-particles.	 This	 residual	 interaction	 should	 result	 in	 a	 collision
cross	 section	A	 for	 two	 quasi-particles	 of	 order	 1	 Å2.	 According	 to	 kinetic	 theory	 the
corresponding	mean	free	path	l	is	1/nA	and	the	relaxation	time	is

(13.45)	

The	resulting	broadening	of	the	single	particle	energy	levels	is	given	by	the	energy–time
uncertainty	relation	as

(13.46)	

With	A	≈	1	Å2,(nA/kF)	approaches	unity	so	that	the	level	broadening	is	of	order	εF,	even
with	 the	 screened	 interaction,	 and	 the	 independent	 quasi-particle	 picture	 appears	 to
collapse.

The	x-ray	emission	spectrum	of	metals	(Section	3.2.4)	 indicates	 that	 the	energy	of	 the
particles	is	not	subject	to	an	uncertainty	of	this	order	and	therefore	that	the	lifetime	must
be	longer	than	predicted	by	Eq.	(13.45).	The	independent	particle	picture	is	saved	by	the



Pauli	 exclusion	 principle.	A	 collision	 between	 two	 particles	 can	 only	 occur	 if	 there	 are
empty	 states	 into	which	 the	 particles	 can	 be	 scattered	with	 conservation	 of	 energy	 and
momentum.	This	is	the	case	only	if	both	colliding	particles	have	an	energy	within	about
kBT	 of	 the	Fermi	 energy;	 this	 is	 the	only	 region	where	both	occupied	and	vacant	 levels
may	be	found.	Without	the	exclusion	principle	the	total	collision	rate	per	unit	volume	is

When	the	exclusion	principle	is	allowed	for,	each	n	in	this	expression	is	multiplied	by	a
factor	of	order	T/TF	by	the	above	energy	restriction,	so	that	the	actual	collision	rate	is	of
order

and	the	relaxation	time	of	a	single	particle	is

From	Eq.	(13.46)	the	correct	level	broadening	now	becomes

with	nA/kF	≈	1,	as	before.	The	level	broadening	is	thus	small	compared	to	kBT,	the	thermal
broadening	 of	 the	 Fermi	 function,	 and	 the	 picture	 of	 independent	 quasi-particles	 is
restored.	At	room	temperature	TF/T	~	100	and	the	level	broadening	is	typically	kBT/100	≈
3	×	10−4eV	with	an	associated	relaxation	time

This	is	a	factor	of	~	100	longer	than	the	relaxation	time	deduced	from	a	typical	electrical
conductivity	 in	 Section	 3.3.2.	 Thus	 collisions	 between	 quasi-particles	 can	 normally	 be
ignored.

13.5.5	Fermi	liquid	effects
The	properties	of	the	nearly	independent	quasi-particles	are	modified	slightly	from	those
of	electrons.	For	example,	as	a	quasi-particle	moves	through	the	metal,	the	backflow	of	the
screening	 electron	 liquid	 contributes	 to	 its	 effective	mass	 (Fig.	 13.17).	More	 generally,
whenever	the	occupied	states	are	changed	in	some	coherent	way,	by	the	application	of	an
electric	or	magnetic	field	for	example,	an	electron	senses	the	perturbation	not	only	directly
but	 also	 through	 its	 interaction	with	 the	modified	 electron	 liquid.	Landau	 introduced	 an
approach,	 known	 as	 the	 Landau	 Fermi	 liquid	 theory,	 for	 taking	 into	 account	 the
resulting	 change	 in	 quasi-particle	 energy;	 the	 change	 is	 usually	 small	 for	 the	 electronic
quasi-particles	in	metals	but	is	much	larger	for	the	atomic	quasi-particles	in	liquid	3He	at
low	temperatures.



Fig.	13.17	Backflow	of	the	screening	electron	liquid	around	an	electron.	The	backflow
contributes	to	the	effective	mass	of	the	quasi-particle.	In	hydrodynamic	theory	the	mass
enhancement	of	an	object	due	to	backflow	is	called	the	hydrodynamic	virtual	mass.	We
have	depicted	a	sharp	cut-off	in	the	screening	liquid.	Fig.	13.16	indicates	that	this	is	an
approximation

13.5.6	The	Mott	transition
In	Section	4.3.2	we	suggested	that,	because	of	electron–electron	interactions,	there	might
be	 a	 critical	 electron	 density	 required	 for	 the	 existence	 of	 a	 metallic	 state;	 below	 this
density	 the	 electrons	 are	 localized	 on	 atoms.	 The	 transition	 from	 insulating	 to	metallic
behaviour	 is	 known	 as	 a	Mott	 transition	 and	 we	 can	 now	 give	 a	 semi-quantitative
explanation	 of	 it	 in	 terms	 of	 screening.	 Consider	 an	 array	 of	 hydrogen	 atoms;†	 in	 the
insulating	state	each	electron	is	bound	into	an	atomic	orbital	by	the	Coulomb	attraction	of
the	nearest	proton.	In	the	metallic	state	the	electrons	are	delocalized	and	the	electron	liquid
screens	the	Coulomb	field	of	the	protons	in	the	manner	described	in	Section	13.5.3.	The
resulting	screened	potential	of	a	proton	is	(problem	13.10)

(13.47)	

which	is	just	the	bare	Coulomb	potential	multiplied	by	a	screening	factor	e−r/λ	Solving	the
Schrödinger	equation	with	this	screened	potential	shows	that	bound	states	exist	only	if	the
screening	length	λ	is	greater	than	the	Bohr	radius	a0.	We	therefore	deduce	the	condition	λ
>	a0	 for	 localized	 (insulating)	 behaviour.	 Inserting	 the	 value	 of	 λ	 from	Eq.	 (13.43)	 and
using	Eq.	(3.9)	for	εF	gives	the	condition	for	insulating	behaviour	as

(13.48)	

where	we	have	also	used	a0	=	4πε0 2/me2.

In	fact	the	electron	density	in	most	metals	is	less	than	this,	indicating	that	the	bare	ionic
potential	 is	 not	 the	 simple	Coulomb	potential	 of	 a	 positive	 point	 charge.	 For	 a	 uniform
positive	 charge	 density,	 the	 critical	 electron	 density	 for	 localization	 is	 smaller.	Wigner
showed	that	in	this	case	localization	is	expected	to	occur	by	crystallization	of	the	electrons
into	a	regular	lattice,	which	is	now	called	a	Wigner	lattice.	It	is	instructive	to	discuss	why



localization	 occurs	 at	 low	 densities	 since	 it	might	 be	 expected	 to	 occur	 at	 high	 density
where	 the	 effect	 of	 the	 interactions	 between	 electrons	 is	 larger.	 The	 contribution	 of	 the
interactions	to	the	energy	in	fact	increases	as	n3/2	(this	can	be	deduced	by	calculating	the
zero	point	energy	of	the	plasma	oscillations).	However	the	kinetic	energy	of	free	electrons
is	 proportional	 to	 nεF	 and	 therefore	 varies	 as	 n5/3.	 Since	 5/3	 >	 3/2	 the	 kinetic	 energy
always	dominates	 at	 high	 electron	density	 and	 this	 favours	 extended	 states	 and	metallic
behaviour	(see	Section	3.2.5).

Fig.	13.18	Dependence	of	resistivity	of	germanium	on	impurity	concentration	at	2.5	K.
For	more	than	1023	impurity	atoms/m3	the	resistivity	is	independent	of	temperature	and
metallic	in	character.	(Reproduced	with	permission	from	N.	F.	Mott,	Phil	Mag.	6,	287
(1961))

A	 metal–insulator	 transition	 is	 most	 easily	 seen	 in	 semiconductors	 where	 the	 carrier
concentration	 can	 be	 changed	 by	 varying	 the	 doping	 level.	 Thus	 in	 Fig.	 5.9	 the	 most
heavily	 doped	 sample	 of	 germanium	 exhibits	 metallic	 behaviour	 at	 low	 temperatures,
indicating	 that	 the	 electrons	 are	 no	 longer	 localized	 on	 the	 donor	 impurities.	 Fig.	 13.18
shows	 an	 insulator–metal	 transition	 in	 the	 resistivity	 of	 germanium	 at	 2.5	 K	 as	 the
impurity	concentration	is	increased	above	1023	m−3.

13.6	ELECTROMAGNETIC	WAVES	IN
METALS
Plasma	oscillations	are	essentially	longitudinal	electromagnetic	waves	of	long	wavelength;
such	waves	do	not	propagate	in	free	space	and	for	propagation	in	metals	we	deduce	from
Eq.	(13.39)	that	 the	condition	ω	>	ωP	 is	 required.	 In	 this	section	we	consider	 transverse
electromagnetic	 waves;	 for	 these	 div	 E	 =	 0	 so	 that,	 from	 Eq.	 (13.35),	 there	 are	 no
asssociated	charge	density	fluctuations.	If	the	relative	electrical	permittivity	and	magnetic



permeability	of	 the	metal	are	unity,	 the	propagation	of	 transverse	waves	 is	described	by
the	Maxwell	equations:

(13.49)	

(13.50)	

Elimination	of	the	magnetic	field	between	these	equations	gives

(13.51)	

where	c	=	l/(ε0µ0)1/2	is	the	velocity	of	light	in	free	space.

At	 low	 frequencies	 j	 is	 given	by	Ohm’s	 law,	 j	 =	σE,	 and	 the	 term	containing	∂j/∂t	 is
much	larger	than	the	displacement	current	term	on	the	right-hand	side	of	Eq.	(13.51).	Eq.
(13.51)	 is	 then	 a	 diffusion	 equation	 for	 E	 and	 has	 solutions	 with	 an	 oscillatory	 time
dependence	of	the	form

(13.52)	

where

(13.53)	

is	 the	 electromagnetic	 skin	 depth	 (Grant	 and	 Phillips,3	 p.	 388).	 The	 amplitude	 of	 the
wave	thus	decays	exponentially	with	distance.	For	1	MHz	waves	in	copper	at	300	K	(σ	=
0.6	×	108	Ω−1	m−1)	the	decay	length	δ	is	65	µm.

In	 pure	metals	 at	 low	 temperatures	 the	 electronic	mean	 free	 path/is	 large	 and	 can	 be
comparable	 to	 or	 greater	 than	 the	 skin	 depth	 δ	 at	 microwave	 frequencies.	 The	 current
density	 is	 then	no	 longer	given	by	Ohm’s	 law	but	by	 a	non-local	 relation	 in	which	 j	 at
point	r	depends	on	the	value	of	E	at	all	points	in	the	neighbourhood	of	r,	within	a	distance
of	order	l.	Transverse	electromagnetic	waves	are	still	attenuated	but	the	skin	depth	tends	to
a	finite	value	in	the	infinite	conductivity	(≡	infinite	l)	limit	rather	than	tending	to	zero	as
predicted	by	Eq.	(13.53).	This	change	in	behaviour	is	referred	to	as	the	anomalous	skin
effect	and	the	limiting	value	of	δ	in	single	crystals	has	been	used	to	provide	information
on	the	Fermi	surface.

At	infrared	and	optical	frequencies	the	inertia	of	the	electrons	becomes	more	important
than	scattering	and	their	behaviour	is	then	described	by	the	acceleration	equation

Inserting	this	into	Eq.	(13.51)	gives

(13.54)	

where	ωP	 is	 the	 plasma	 frequency	 of	 Eq.	 (13.41).	 If	 we	 look	 for	 wavelike	 solutions
varying	asei(k.r–ωt)	then,	by	substitution,	we	find	the	dispersion	relation



(13.55)	

For	ω	<	ωP,	k	 is	 imaginary,	 and	 the	 electric	 field	decays	 exponentially	with	no	phase
change.	 Light	 incident	 on	 the	 crystal	 from	 outside	 is	 totally	 externally	 reflected	 as	 in
Reststrahlen	(Section	9.1.4).	For	ω	>	ωP,	k	is	real	and	the	wave	can	propagate	through	the
metal.	The	plasma	frequency	is	normally	in	the	ultraviolet,	and	thin	films	of	many	metals
do	 become	 transparent	 in	 this	 region	 of	 the	 spectrum.	Eq.	 (13.55)	 predicts	 that	 a	metal
behaves	as	though	it	has	a	dielectric	constant

(13.56)	

for	ω	>	ωP,	which	is	the	same	as	Eq.	(9.19).	The	effect	of	the	electron	scattering,	which
we	have	neglected,	is	to	cause	attenuation	of	the	wave.

PROBLEMS	13
13.1	Show	that	Eqs.	(13.1)	and	(13.17)	reduce	to	the	free	electron	results	of	Eqs.	(3.8)
and	(3.27)	when	the	dispersion	relation	is	ε	=	 2k2/2m.

13.2	(a)	Show	that	the	cyclotron	effective	mass	of	Eq.	(13.23)	is	equal	to	the	dynamic
effective	mass	of	Eq.	(13.9)	for	the	isotropic	dispersion	relation	ε	=	 2k2/2me.	(b)	Use
Eqs.	(13.11)	and	(5.54)	to	calculate	the	effective-mass	tensor	for	an	electron	near	the
conduction	 band	 minimum	 in	 silicon.	 Generalize	 Eq.	 (13.10)	 to	 the	 motion	 of
electrons	in	a	magnetic	field	and	hence	rederive	Eq.	(5.58)	for	the	cyclotron	resonance
frequency.

13.3	In	a	cyclotron	resonance	experiment	in	potassium	at	68	GHz,	three	consecutive
resonances	 are	 observed	 at	magnetic	 fields	 of	 0.74,	 0.59	 and	 0.49	 T.	 Calculate	 the
cyclotron	effective	mass	of	the	orbit	responsible	for	these	resonances.

13.4	 Show	 that	 ωc	 ≈	 εF	 implies	 that	 the	 cyclotron	 orbit	 radius	 is	 smaller	 than	 an
electron	wavepacket.

13.5	A	constant	magnetic	field	B	 in	the	z	direction	can	be	represented	by	the	vector
potential	A	=	(0,	Bx,	0).	Use	the	Hamiltonian	for	the	kinetic	energy	of	an	electron	in	a
magnetic	field	(Eq.	(C2)	of	appendix	C)	to	show	that	the	Schrodinger	equation	for	a
free	electron	in	this	field	is

Show	that	this	equation	has	a	solution	of	the	form

where	u(x)	satisfies



and	E′	=	E	–	 2 /2m.	The	equation	for	u(x)	is	the	Schrödinger	equation	for	a	simple
harmonic	oscillator	 centred	on	 the	point	x	=	 β/eB;	 deduce	 the	 frequency	 of	 the
oscillator	and	hence	the	energy	eigenvalues	E′	and	E.

13.6	Estimate	the	cross-sectional	area	of	Fermi	surface	responsible	for	the	de	Haas–
van	Alphen	oscillations	of	Fig.	13.11.	Compare	 your	 answer	with	 the	 value	 for	 the
free	electron	Fermi	sphere.	The	atomic	density	in	copper	is	8.5	×	1028	m−3.	Estimate
the	maximum	temperature	at	which	the	de	Haas–van	Alphen	effect	will	be	observed
in	 copper	 in	 a	 field	 of	 10	T.	 If	 the	 impurity	 density	ni	 and	 the	 collision	 time	 τ	 are
related	by	niτ	=	1014	m−3	s,	up	to	what	impurity	density	can	the	effect	be	observed?

13.7	Deduce	the	plasma	frequency	for	magnesium	from	Fig.	13.15	and	compare	your
answer	with	the	value	expected	from	Eq.	(13.41)	for	the	atomic	density	4.3	×	1028	m
−3.

13.8	Show	 that	 electron	 collisions	 cause	damping	of	 plasma	oscillations.	Show	 that
critical	 damping	 occurs	 at	 a	 sufficiently	 small	 electron	 concentration.	 Estimate	 the
critical	concentration	if	the	scattering	time	τ	=	10−12	s.	What	happens	when	ωPτ	 	1?

13.9	Show,	by	substitution,	that	Eq.	(13.44)	satisfies	Eq.	(13.42)	for	r	≠	0.	The	point
charge	 is	 at	 r	 =	 0	 and	 the	 solution	 of	 Eq.	 (13.44)	 diverges	 so	 that	∇2n	 cannot	 be
readily	calculated	 there.	Demonstrate	 the	correctness	of	 the	solution	at	 this	point	by
integrating	 Eq.	 (13.42)	 over	 a	 small	 sphere	 centred	 on	 r	 =	 0.	 As	 the	 radius	 of	 the
sphere	goes	to	zero,	the	right-hand	side	is	dominated	by	the	point	charge;	the	left-hand
side	can	be	converted	 to	a	surface	 integral.	Equality	of	 the	 two	sides	establishes	 the
l/4π	λ2	factor	in	Eq.	(13.44).

13.10	Show	that	Eq.	(13.47)	gives	the	screened	potential	of	a	proton.

13.11	 Derive	 a	 modified	 form	 of	 Eq.	 (13.48)	 appropriate	 for	 the	 non-degenerate
carriers	 in	 a	 semiconductor.	 Hence	 calculate	 the	 critical	 doping	 density	 for	 the
formation	 of	 an	 impurity	 energy	 band	 in	 germanium.	 (Take	me	 =	 0.22m	 and	 ε	 =
dielectric	 constant	=	16).	Are	 the	 experimental	 results	 of	Fig.	13.18	 consistent	with
this	prediction?

†	In	the	example	we	have	chosen	the	Fermi	surface	does	not	intersect	the	first	Brillouin
zone.

†	 For	 pictures	 of	 Fermi	 surfaces	 obtained	 using	 the	 Harrison	 construction,	 see
Pseudopotentials	 in	 the	 Theory	 of	Metals,	 by	W.	 A.	 Harrison,	 Benjamin,	 New	York
(1966).

†	To	avoid	overcounting	of	states	 the	area	can	be	 taken	over	 the	Fermi	surface	 in	 the
extended	zone	scheme	or	in	the	reduced	zone	scheme	by	summing	over	energy	bands.

†	See	Section	13.6	for	an	explanation	of	the	electromagnetic	skin	depth.

†	For	the	moment	we	ignore	the	effect	of	electron	spin	(see	Section	13.4.4).

‡	The	orbits	 can	be	degenerate	without	violating	 the	Pauli	 principle	because	 they	are



centred	at	different	points	in	the	xy	plane	in	real	space.

†	The	magnetization	M	is	(∂F/∂B)T	where	F	=	E	−	TS	is	the	Helmholtz	free	energy.

†	This	assumes	that	γ	in	Eq.	(13.32)	is	independent	of	kz.

†	 The	 consequences	 of	 lattice	 periodicity	 for	 a	 many	 particle	 wavefunction	 are	 less
straightforward.

†	This	requires	that	the	length	scale	should	be	short	compared	to	the	electron	mean	free
path	and	 the	 time	scale	 short	compared	 to	 the	 time	between	collisions.	We	explain	 in
Section	 13.5.4	 why	 the	 collisions	 are	 strong	 enough	 to	 cause	 liquid-like	 behaviour
without	introducing	a	very	short	relaxation	time.

†	In	contrast	we	have	seen	in	Chapter	2	that,	when	there	are	short-range	forces	between
particles,	the	long-wavelength	motions	are	sound	waves	for	which	ω	→	0	as	λ	→	∞.

†	We	suppose	that	molecule	formation	can	be	suppressed	by	some	means.



CHAPTER	14

Low-dimensional	systems

Up	 to	 1980	 nobody	 expected	 that	 there	 exists	 an	 effect	 like	 the	 quantized	Hall
effect,	which	depends	exclusively	on	fundamental	constants	and	is	not	affected	by
irregularities	 in	the	semiconductor	 like	 impurities	or	 lattice	defects.—Klaus	von
Klitzing,	Nobel	Prize	address,	1986

14.1	INTRODUCTION
So	 far	 in	 this	 book	 our	 discussion	 has	 been	 concerned	 almost	 entirely	 with	 the	 bulk
properties	 of	 crystalline	 solids.	 Such	 properties	 can	 normally	 be	 specified	 in	 terms	 of
coefficients	that	are	independent	of	the	shape	and	size	of	the	specimen.	Thus,	for	example,
the	 specific	 heat	 capacity	 (heat	 capacity	 per	 unit	 mass)	 is	 a	 coefficient	 that	 can	 be
multiplied	 by	 the	 mass	 of	 the	 sample	 to	 give	 the	 heat	 capacity	 of	 any	 bulk	 specimen.
When	one	or	more	of	the	dimensions	of	a	solid	are	reduced	sufficiently,	the	properties	are
no	 longer	 given	 by	 these	 bulk	 coefficients.	 The	 sample	 is	 then	 described	 as	 a	 low-
dimensional	system	(LDS).	Low-dimensional	systems	can	be	classified	according	to	the
number	of	dimensions	that	are	small:	 thin	films	are	 two-dimensional	since	only	the	film
thickness	is	reduced;	fine	wires	are	one-dimensional	since	only	one	dimension,	the	length,
is	 large;	dots	or	specks	are	zero-dimensional	since	all	 three	dimensions	are	small	 in	 this
case.

Departures	from	bulk	behaviour	occur	when	the	size	of	the	sample	becomes	comparable
to	 the	 wavelength	 of	 the	 important	 excitations	 in	 the	 solid,	 a	 phenomenon	 sometimes
described	as	a	quantum	size	effect.	The	nature	of	 the	excitations	 then	changes	and	as	a
result	 so	 does	 any	 property	 determined	 by	 those	 excitations.	 The	 properties	 of	 low-
dimensional	 systems	 can	be	very	different	 from	 those	of	 bulk	 specimens,	 often	 in	quite
unexpected	ways.	 In	 the	 following	 section	we	 illustrate	 this	 by	 considering	 the	 specific
example	 of	 electrons	 confined	 to	 a	 film;	 this	 system	 is	 called	 the	 two-dimensional
electron	gas	(2DEG).

A	 less	 fundamental	 effect	 of	 reduced	 specimen	 size	 is	 observed	 in	 the	 transport
properties	of	solids	when	the	specimen	size	becomes	comparable	to	the	mean	free	path	of
the	excitations.	In	this	case	the	phenomenon	is	described	as	a	size	effect.	An	example	of	a
size	effect	can	be	found	in	section	2.8.4.	The	phonon	mean	free	path	in	pure	single	crystals
at	 low	 temperatures	becomes	comparable	 to	 the	dimensions	of	 the	crystal.	The	effective
thermal	conductivity	then	depends	on	the	shape	and	size	of	the	sample.	Size	effects	can	be
calculated	 by	 taking	 into	 account	 the	 scattering	 of	 excitations	 by	 the	 sample	 surface.
Provided	the	wavelength	of	the	excitations	remains	short	compared	to	the	crystal	size,	the



nature	of	the	excitations	themselves	is	unchanged.

14.2	THE	TWO-DIMENSIONAL
ELECTRON	GAS
14.2.1	The	electron	states
For	simplicity	we	assume	initially	that	the	electrons	are	confined	to	a	film	of	thickness	d
by	 infinite	potential	barriers	at	z	=	0	and	z	=	d	 as	 shown	 in	Fig.	14.1(a).	Motion	of	 the
electrons	in	the	xy	plane	is	assumed	to	be	unconfined.	We	use	a	free	electron	approach	but
take	 account	 of	 possible	 band	 structure	 and	 other	 effects	 by	 giving	 the	 electrons	 an
effective	 mass	 me.	 The	 wavefunction	 of	 the	 electrons	 is	 determined,	 as	 in	 the	 three-
dimensional	 case	 (section	 3.2),	 by	 solving	 Schrödinger’s	 equation	 but	 now	 with	 the
boundary	conditions

Fig.	14.1	(a)	Wavefunctions	and	energies	of	the	three	lowest	bound	states	of	a	one-
dimensional	infinite	square	potential	well	of	width	d.	If	electrons	are	confined	to	move	in
a	film	in	the	xy	plane	by	such	a	well,	the	z	dependence	of	their	wavefunction	corresponds
to	one	of	the	bound	states	(Eq.	(14.3)).	(b)	The	shaded	areas	indicate	the	region	of	electron
energies	associated	with	each	bound	state	for	an	electron	in	the	film.	Increasing	energy
within	each	shaded	area	corresponds	to	increasing	motion	in	the	xy	plane	(increasing	p2	+
q2	in	Eq.	(14.5))

(14.1)	 	at	 	and	

at	the	edges	of	the	film.	For	convenience	we	continue	to	use	periodic	boundary	conditions
in	the	xy	plane	(see	Eq.	(3.2)),

(14.2)	



The	 resulting	 (unnormalized)	wavefunction	 looks	 like	 a	 travelling	wave	 for	motion	 in
the	xy	plane	and	a	standing	wave	for	motion	along	z,

(14.3)	

To	satisfy	the	boundary	conditions	of	Eqs.	(14.1)	and	(14.2)

(14.4)	

where	 p,	 q	 and	 n	 are	 integers.	 The	 values	 of	 kx	 and	 ky	 are	 the	 same	 as	 for	 three-
dimensional	 electrons.	 The	 z	 dependence	 of	 the	 wavefunction	 corresponds	 to	 the
stationary	 states	 of	 a	 one-dimensional	 infinite	 square	 potential	 well	 as	 shown	 in	 Fig.
14.1(a)	 and	 the	 allowed	 values	 of	 kz	 correspond	 to	 fitting	 an	 integral	 number	 of	 half-
wavelengths	into	the	well.

The	energy	associated	with	the	wavefunction	of	Eq.	(14.3)	is

(14.5)	

The	final	term	corresponds	to	the	energy	levels

(14.6)	

of	 the	one-dimensional	 infinite	 square	well	 potential	 as	 shown	 in	Fig.	14.1(a);	 the	 term
containing	p2	+	q2	is	the	additional	energy	associated	with	the	motion	in	the	xy	plane.	The
implications	of	this	energy	level	scheme	can	be	seen	from	Fig.	14.1(b).	The	lowest	state
with	n	=	2	(that	with	p	=	q	=	0)	 is	higher	 in	energy	by	3h2/8med2	 than	 the	 lowest	n	=	1
state.	For	d	less	than	about	60	Å	and	me	=	m	this	exceeds	kB	T	at	 room	temperature.	We
thus	 have	 the	 possibility	 that	 all	 the	 electrons	 can	be	 frozen	 into	 the	n	 =	 1	 state	 at	 low
temperature—the	z	dependence	of	the	wavefunction	is	then	that	of	the	ground	state	of	the
infinite	 square	 potential	 well.	 Motion	 of	 the	 electrons	 in	 the	 z	 direction	 is	 effectively
frozen	and	their	behaviour	is	that	of	free	particles	in	a	two-dimensional	space	consisting	of
the	xy	plane.

This	discussion	can	be	readily	generalized	to	a	more	realistic	potential	variation	in	the	z
direction.	An	arbitrary	one-dimensional	potential	well	has	one	or	more	bound	states	and
the	wavefunctions	and	energies	of	 these	can	be	calculated.	For	a	film	with	 this	potential
variation	in	the	z	direction,	 the	z	dependence	of	 the	wavefunction	corresponds	 to	one	of
these	bound	states	and	the	energy	is	of	the	form	of	Eq.	(14.5)	with	the	final	term	replaced
by	the	corresponding	one-dimensional	eigenenergy.	To	determine	the	states	of	the	2DEG
that	 are	 occupied	 at	T	 =	0	we	must	 take	 the	Pauli	 principle	 into	 account,	 that	 only	 two
electrons	 of	 opposite	 spin	 can	 have	 the	 same	 space	 wavefunction.	 To	 do	 this	 we	must
calculate	the	density	of	states	associated	with	each	bound	state	of	the	potential	well.

14.2.2	Density	of	states	of	the	two-dimensional
electron	gas



For	 states	 associated	 with	 the	 nth	 bound	 state	 of	 the	 potential	 well,	 the	 motion	 of	 the
electrons	 in	 the	 xy	 plane	 is	 described	 by	 the	 kx	 and	 ky	 values	 of	 Eq.	 (14.4).	 Using	 the
approach	introduced	in	section	2.6.2,	which	was	used	in	section	3.2	for	3D	free	electrons,
we	take	kx	and	ky	 to	be	the	components	of	a	2D	vector	k	and	plot	 the	allowed	values	of
this	in	a	2D	k-space	as	in	Fig.	14.2.	The	states	lie	on	a	simple	square	lattice	of	side	2π/L
and	the	area	of	k-space	per	k	state	is	therefore	(2π	/L)2.	The	magnitude	of	the	k	vector	is	k
=	( 	+	 )½.	In	the	area	2πk	dk	of	k-space	between	circles	of	radius	k	and	k	+	dk	there	are

(14.7)	

allowed	k	states.

Fig.	14.2	The	allowed	wavevectors	for	2D	motion	of	electrons	in	the	xy	plane.	The	states
form	a	simple	square	lattice	of	side	2π/L	To	calculate	the	density	of	states	the	number	of
wavevectors	in	the	shaded	circular	ring	between	k	and	k	+	dk	must	be	determined

Eq.	(14.5)	for	the	energies	of	the	states	can	be	written

(14.8)	

where,	 for	 electrons	 confined	 by	 an	 infinite	 square	 well	 potential,	 En	 is	 given	 by	 Eq.
(14.6).	To	obtain	the	density	of	states	per	unit	energy	range	g(ε)	in	unit	area	of	the	film	(L2
=	1)	we	use	g(ε)	dε	=	2g(k)	dk	where	the	factor	2	arises	because	of	the	two	possible	spin
states	for	the	electron.	Thus,	for	fixed	n,

(14.9)	

where	 we	 have	 used	 Eqs.	 (14.7)	 and	 (14.8).	 The	 density	 of	 states	 of	 the	 2D	 electrons
associated	with	each	bound	state	of	the	potential	well	is	thus	independent	of	energy.

Adding	together	the	densities	associated	with	all	the	bound	states	gives	the	total	density
shown	in	Fig.	14.3.	As	the	film	thickness	increases	the	bound	state	energies	become	more



closely	spaced	so	that	the	steps	in	the	density	of	states	are	more	difficult	to	observe.	The
density	 of	 states	 then	 approaches	 the	 smooth	 parabolic	 form	 appropriate	 to	 3D	 free
electrons	as	indicated	by	the	broken	curve	in	Fig.	14.3.

A	potential	well	for	confining	electrons	to	a	thin	layer	can	be	produced	in	semiconductor
heterojunction	structures	prepared	by	 the	MBE	 technique	 (see	 section	6.6).†	A	potential
well	 in	 the	 conduction	 band	 edge	 is	 obtained	by	 sandwiching	 a	 layer	 of	GaAs	between
macroscopic	 layers	 of	 Ga1−xAlxAs	 as	 in	 Fig.	 6.13.	 Fig.	 14.4	 shows	 the	 bound	 state
energies	 for	 electrons	 in	 a	 one-dimensional	well	 of	 this	 shape.	 The	 step	 in	 the	 valence
band	edge	acts	as	a	potential	well	for	holes	(recall	that	the	hole	energy	is	the	negative	of
the	electron	energy);	the	bound	state	energies	for	holes	are	also	shown	in	Fig.	14.4.

Fig.	14.3	Density	of	states	per	unit	area	for	free	electrons	in	a	thin	film.	E1,	E2,	…	are	the
bound	state	energies	for	the	potential	confining	the	electrons	to	the	film	(see	Fig.	14.1(a)).
The	broken	curve	shows	the	energy	dependence	of	the	density	of	states	for	the	three-
dimensional	electrons	in	a	film	of	large	thickness

Fig.	14.4	Bound	states	associated	with	a	thin	layer	of	GaAs	sandwiched	between	two	thick
Ga1−xAlxAs	layers	(the	energy	levels	are	not	drawn	to	scale).	The	allowed	photon
absorption	transitions	are	shown	and	lead	to	onset	of	absorption	at	frequencies	given	by
Eq.	(14.10)

The	density	of	states	in	the	GaAs	layer	can	be	investigated	by	measuring	the	absorption
of	electromagnetic	radiation	associated	with	the	excitation	of	an	electron	from	the	valence
band	to	the	conduction	band.	Because	the	wavelength	of	the	radiation	is	long	compared	to



the	width	of	the	well,	transitions	only	occur	between	states	for	which	the	spatial	variation
of	the	wavefunction	is	similar;	 this	 leads	to	the	selection	rule	∆n	=	0	 for	 the	absorption.
The	 allowed	 transitions	 are	 therefore	 those	 indicated	 in	 Fig.	 14.4.	 The	 frequency
dependence	 of	 the	 absorption	 should	 reflect	 the	 step-like	 dependence	 on	 energy	 of	 the
density	of	states;	steps	in	the	absorption	should	occur	at	frequencies	ωn	given	by

(14.10)	

where	ECn	−	EVn	is	the	energy	difference	between	the	nth	bound	states	in	the	conduction
and	valence	bands	as	 indicated	 in	Fig.	14.4.	The	measured	absorption	 spectra	 for	GaAs
layers	of	thicknesses	140,	210	and	4000	Å	are	shown	in	Fig.	14.5	and	the	expected	step
structure	is	clearly	visible	for	the	two	thinner	layers.

The	arrows	indicate	the	frequencies	at	which	steps	are	expected	(see	problem	14.1).	The
onset	of	absorption	is	marked	by	peaks	at	energies	just	below	these	predicted	values.	This
results	from	the	existence	of	a	bound	state	between	the	created	electron	and	hole,	and	the
reduction	in	energy	of	the	peak	relative	to	the	expected	value	allows	the	binding	energy	of
the	electron–hole	pair	to	be	determined.	The	bound	electron–hole	system	is	known	as	an
exciton	 (see	problem	14.2).	An	excitonic	peak	 is	clearly	visible	on	 the	absorption	curve
for	the	4000	Å	GaAs	layer	but	the	step-like	structure	has	disappeared,	indicating	that	the
density	of	states	is	the	smooth	curve	appropriate	to	3D	behaviour.

Fig.	14.5	Measured	absorption	of	electromagnetic	radiation	as	a	function	of	photon	energy
for	GaAs	layers	of	thicknesses	4000,	210	and	140	Å.	The	arrows	indicate	the	energies	at
which	onset	of	absorption	would	be	expected	to	occur	for	transitions	involving	the	nth
bound	state	as	shown	in	Fig.	14.4.	Above	the	excitonic	peak	the	absorption	curve	for	the
4000	Å	layer	is	smooth,	indicating	3D	behaviour.	(Reproduced	with	permission	from	R.
Dingle,	W.	Wiegmann	and	C.	H.	Henry,	Phys.	Rev.	Lett.	33,	827	(1974))

14.3	THE	QUANTUM	HALL	EFFECT
Perhaps	the	most	remarkable	property	of	2D	electron	systems	is	the	quantum	Hall	effect



observed	 when	 a	 large	 magnetic	 field	 is	 applied	 perpendicular	 to	 the	 2D	 layer	 at	 low
temperatures.	We	consider	the	geometry	of	Fig.	14.6.	A	rectangular	film	of	thickness	d	has
dimensions	L	and	W	in	the	x	and	y	directions	respectively.	A	current	Ix	is	applied	in	the	x
direction	and	voltmeters	are	used	to	measure	the	longitudinal	and	transverse	voltages,	Vx
and	Vy,	when	a	magnetic	field	is	applied	in	the	z	direction	perpendicular	to	the	film.	From
the	measured	voltages	the	longitudinal	and	transverse	electric	fields,	Ex	(=	Vx/L)	and	Ey	(=
Vy/W),	can	be	determined.	It	 is	convenient	to	present	the	results	of	the	measurements	by
quoting	 values	 for	 longitudinal	 and	 transverse	 2D	 resistivity	 coefficients,	 ρL	 and	 ρT,
defined	by

Fig.	14.6	Geometry	for	Hall	effect	measurement	in	a	2D	electron	system

(14.11)	 	and	

where	Jx	is	a	2D	current	density	defined	as	the	current	per	unit	width	of	film	(Jx	=	Ix/W).
Note	that	the	2D	resistivities	defined	in	this	way	are	measured	in	ohms	not	ohm	metres	as
are	3D	resistivities.	The	transverse	resistivity	ρT	quantifies	the	Hall	effect.

It	will	be	helpful	first	to	use	our	Hall	effect	calculation	of	section	3.3.5	to	calculate	the
behaviour	 that	would	be	expected	 for	classical	 free	particles.	The	electric	 fields	 in	 the	x
and	y	directions	are	given	by	Eqs.	(3.37),	which	can	be	written

(14.12)	

Comparison	 of	 Eqs.	 (14.11)	 with	 Eqs.	 (14.12)	 enables	 us	 to	 identify	 the	 classical
predictions	for	ρL	and	ρT:

(14.13)	

where	we	have	introduced	the	notation	nA	for	the	2D	electron	density;	nA	is	the	number	of
electrons	per	unit	area	and	is	related	to	the	volume	density	by	nA	=	nd.	Eqs.	(14.13)	differ
from	their	3D	equivalents,	as	given	by	Eqs.	(3.27)	and	(3.38),	only	by	the	replacement	n
→	nA.	Eqs.	(14.13)	predict	that	ρL	is	independent	of	B	and	ρT	increases	linearly	with	B.



Fig.	 14.7	 shows	 measured	 values	 for	 ρL	 and	 ρT	 as	 functions	 of	 magnetic	 field	 for
electrons	in	a	semiconductor	heterojunction	structure	like	that	of	Fig.	6.13	and	14.4.	The
electrons	are	in	the	thin	GaAs	layer	sandwiched	between	two	Ga0.71A10.29As	layers.	The
dashed	lines	 indicate	 the	classical	behaviour	predicted	by	Eqs.	 (14.13);	 the	experimental
results	are	very	different.	The	transverse	resistivity,	which	is	a	measure	of	the	Hall	effect,
increases	in	steps	at	high	fields.	The	value	of	ρT	along	the	horizontal	portions	of	the	steps
is	very	constant	at	a	value	related	to	the	fundamental	constants	h	and	e	by

Fig.	14.7	Transverse	and	longitudinal	resistivity	components	for	a	GaAs–Ga0.71Al0.29As
heterostructure	as	a	function	of	applied	magnetic	field	at	T	=	8	mK.	The	dashed	lines
indicate	the	behaviour	predicted	by	Eqs.	(14.13).	The	integers	i	determine	the	values	of	ρT
on	the	plateaux	by	Eq.	(14.14).	(Reproduced	with	permission	from	K.	von	Klitzing,
Physica	126,	B	+	C,	242	(1984))

(14.14)	

where	i	is	an	integer.	The	values	of	the	integer	i	for	the	steps	on	Fig.	14.7	are	indicated.	In
the	region	where	ρT	is	a	constant,	the	longitudinal	resistivity	ρL	is	vanishingly	small.

The	 reader	 might	 reasonably	 expect	 that	 the	 vanishing	 of	 ρL	 implies	 an	 infinite
longitudinal	conductivity.	To	see	that	 this	 is	not	so	we	must	generalize	Eqs.	 (14.11)	 to	a
situation	where	the	current	flow	is	in	an	arbitrary	direction	in	the	xy	plane:

(14.15)	

These	 equations	 can	be	 inverted	 to	 obtain	 the	 current	 density	 produced	by	 an	 electric
field	applied	in	an	arbitrary	direction.	Thus	we	obtain

(14.16)	

where	the	2D	conductivity	components	are	given	by



(14.17)	 	and	

Eqs.	(14.17)	have	the	intriguing	property	that	if	ρL	vanishes	but	ρT	remains	finite	then	σL
also	 vanishes.	 Thus	 the	 longitudinal	 conductivity	 and	 resistivity	 vanish	 simultaneously.
What	this	means	in	practice	is	that	an	imposed	current	generates	only	a	transverse	electric
field	and	an	imposed	electric	field	generates	only	a	transverse	current.

The	 strange	 behaviour	 of	 the	 2D	 electron	 gas	 exhibited	 in	 Fig.	 14.7	 is	 known	 as	 the
quantum	Hall	effect,	and	to	understand	it	we	must	investigate	the	nature	of	the	electron
states	 in	 a	 two-dimensional	 electron	 gas	 in	 a	 magnetic	 field.	 We	 assume	 the	 electron
density	is	sufficiently	low	that	all	the	electrons	are	accommodated	in	states	associated	with
the	 lowest	 bound	 state	 of	 the	 potential	 well.	 Motion	 of	 the	 electrons	 in	 the	 direction
perpendicular	to	the	2D	layer	is	then	completely	absent.	In	the	presence	of	a	perpendicular
field	the	motion	in	the	layer	is	no	longer	described	by	plane	waves	as	in	Eq.	(14.3)	for,	as
we	have	already	described	in	section	13.4,	the	effect	of	a	magnetic	field	on	free	electrons
is	 to	 cause	 them	 to	 move	 in	 circular	 cyclotron	 orbits	 perpendicular	 to	 the	 field.	 The
energies	of	these	Landau	levels	are	not	given	by	Eq.	(14.8)	but	by	the	2D	analogue	of	Eq.
(13.26),

(14.18)	

where	E1	is	the	lowest	bound	state	energy	of	the	potential	well	and

(14.19)	

is	the	cyclotron	frequency.	The	final	term	in	Eq.	(14.18)	allows	for	the	magnetic	moment
associated	with	the	spin	of	the	electron;	μB	is	the	Bohr	magneton	(Eq.	(7.5)).

The	 density	 of	 states	 associated	 with	 the	 Landau	 levels	 is	 shown	 in	 Fig.	 14.8
superimposed	on	top	of	the	constant	density	(Eq.	(14.9))	in	the	absence	of	the	field.	The
number	of	states	associated	with	each	Landau	level	is	finite	but,	because	the	width	of	the
level	 is	 zero,	 the	 density	 of	 states	 is	 infinite.	As	 in	 the	 three-dimensional	 case	 (section
13.4.3)	 the	 number	 of	 states	 associated	 with	 each	 Landau	 level	 can	 be	 determined	 by
requiring	 that	 the	average	density	of	states	 is	 the	same	with	and	without	 the	field.	From
Fig.	14.8	we	see	 that	 there	are	 two	Landau	 levels	 (one	 for	each	spin	state)	 in	an	energy
range	 ωC;	 if	 each	 level	 contains	NL	 states	 then	 the	 averaged	 density	 of	 states	 in	 the
presence	of	a	field	is	2NL/ ωC.	Equating	 this	 to	 the	density	of	states	 in	 the	absence	of	a
field	(Eq.	(14.9))	gives

(14.20)	

for	unit	area	of	the	2D	layer.



Fig.	14.8	Density	of	states	in	a	2D	electron	gas	in	a	magnetic	field.	The	vertical	lines
indicate	the	infinite	density	of	states	at	the	energies	of	the	Landau	levels	given	by	Eq.
(14.18).	The	arrows	are	the	direction	of	the	magnetic	moment	of	the	electron.	The	spin
splitting	and	the	cyclotron	splitting	are	equal	if	me	=	m	(then	 ωC	=	2μBB).	The	horizontal
line	at	g(ε)	=	me/π 2	shows	the	constant	density	of	states	in	the	absence	of	the	field	(cf.
Fig.	14.3	for	E1	<	ε	<	E2).	The	Landau	levels	are	identified	by	the	value	of	n	in	Eq.	(14.18)
and	the	spin	orientation;	the	level	1↑,	for	example,	corresponds	to	n	=	1	and	the	lower
(negative)	sign	in	Eq.	(14.18)

With	increasing	magnetic	field	the	number	of	states	associated	with	each	Landau	level
therefore	increases	and	hence	the	number	of	levels	required	to	accommodate	the	electrons
decreases.	If	the	temperature	is	sufficiently	low	(or	the	field	sufficiently	high)	that	thermal
excitation	of	an	electron	from	one	Landau	level	to	another	does	not	occur,	then	we	arrive
at	the	situation	illustrated	in	Fig.	14.9.	In	the	field	B1	(Fig.	14.9(a))	the	four	lowest	Landau
levels	are	full	and	the	fifth	is	partly	filled.	Since	occupied	and	unoccupied	states	coexist	at
the	 energy	 of	 this	 level,	 the	 chemical	 potential	 of	 the	 electrons	must	 coincide	with	 this
energy.	The	energy	of	the	fifth	level	increases	with	increasing	field	and	so	therefore	does
the	chemical	potential.	However,	the	number	of	electrons	in	this	level	decreases	because
more	can	be	accommodated	in	the	lower	four	levels.	Fig.	14.9(b)	illustrates	the	situation	at
the	field	B2	at	which	the	occupation	of	the	fifth	level	goes	to	zero.	At	an	even	higher	field
B3	 (Fig.	 14.9(c))	 it	 is	 the	 fourth	 Landau	 level	 that	 is	 partly	 occupied	 and	 the	 chemical
potential	is	then	pegged	to	this	level.

The	resulting	field	dependence	of	the	chemical	potential	is	shown	in	Fig.	14.10	with	the
discontinuous	 glitches	 occurring	 whenever	 an	 integral	 number	 of	 Landau	 levels	 are
exactly	filled.	If	there	are	nA	electrons	per	unit	area,	this	will	occur	when	nA	/NL	is	equal	to
an	 integer	 i;	Eq.	 (14.20)	 then	 identifies	 the	field	Bi	at	which	exactly	 i	Landau	 levels	are
full	as

(14.21)	

Fig.	14.9	Occupation	of	Landau	levels	in	successively	higher	fields	B1	<	B2	<	B3.	Here	μ0
is	the	chemical	potential	in	the	absence	of	the	field.	The	labelling	of	the	levels	is	explained
in	the	caption	of	Fig.	14.8



This	 result	 allows	 us	 to	 demonstrate	 that	 the	 filling	 of	 Landau	 levels	 is	 linked	 to	 the
quantum	Hall	 effect.	To	 do	 so	we	 calculate,	 using	 our	 result	 for	 classical	 particles	 (Eq.
(14.13)),	the	transverse	resistivity	at	the	fields	given	by	Eq.	(14.21),

(14.22)	

These	are	precisely	 the	values	of	ρT	 along	 the	horizontal	portions	of	 the	steps	on	Fig.
14.7.	That	the	longitudinal	conductivity	σL	and	hence	the	longitudinal	resistivity	ρL	should
vanish	 when	 an	 integral	 number	 of	 Landau	 levels	 are	 exactly	 filled	 is	 not	 unexpected
since,	as	we	have	already	seen	in	section	4.2,	electrical	conduction	requires	the	existence
of	unoccupied	electron	states	at	the	chemical	potential.

Fig.	14.10	Chemical	potential	as	a	function	of	magnetic	field	for	a	2D	electron	gas.	The
vertical	glitches	occur	when	the	chemical	potential	moves	from	one	Landau	level	to
another.	The	labels	identify	the	Landau	level	in	which	the	chemical	potential	lies;	the
caption	to	Fig.	14.8	explains	the	labelling

To	understand	fully	the	quantum	Hall	effect	it	is	necessary	to	explain	why	the	quantized
value	h/ie2	of	ρT	and	 the	vanishing	of	ρL	occur	not	only	at	 the	field	Bi	predicted	by	Eq.
(14.21)	but	over	a	range	of	fields	centred	on	Bi.	The	full	explanation	is	beyond	the	scope
of	this	book	but	we	will	give	an	outline	of	it	to	the	reader.



The	ideally	sharp	Landau	levels	of	Eq.	(14.18)	and	Fig.	14.8	arc	expected	only	in	a
perfect	2D	free	electron	gas.	In	practice	the	levels	are	broadened	by	imperfections
of	the	material	to	produce	a	density-of-states	curve	like	that	in	Fig.	14.11.	The
density	of	states	still	peaks	at	the	energies	given	by	Eq.	(14.18)	but	neighbouring
peaks	overlap	to	a	significant	extent.	States	close	to	the	peaks	are	believed	to
extend	throughout	the	crystal	and	thus	represent	mobile	electrons	whereas	states	in
the	troughs	are	those	of	localized	non-conducting	electrons.†

With	increasing	magnetic	field	the	spacing	of	the	peaks	and	their	size	increases	just
as	for	the	ideal	case.	The	chemical	potential	is	still	oscillatory	but	no	longer	has	the
discontinuous	glitches	of	Fig.	14.10.	Instead	it	increases	smoothly	when	it	lies	near
the	energy	of	one	of	the	peaks	in	the	density-of-states	curve	and	decreases	smoothly
when	it	is	near	a	trough.	When	the	chemical	potential	lies	within	a	region	of
localized	states	as	in	Fig.	14.11	the	2D	electron	system	would	be	expected	to
behave	as	an	insulator	and	it	is	thus	possible	to	explain	why	the	longitudinal
conductivity	σL	vanishes	over	a	range	of	magnetic	field.	To	explain	why	the
transverse	resistivity	ρT	remains	constant	for	the	range	of	magnetic	field	for	which
the	chemical	potential	lies	in	a	region	of	localized	states	is	more	difficult.	It	is	as
though	a	Landau	level	behaves	as	if	it	is	exactly	filled	whenever	all	the	mobile
states	within	it	are	completely	occupied.	It	is	remarkable	that	this	not	only	appears
to	be	the	case	but	that	the	resulting	value	of	ρT	appears	to	be	given	rigorously	in
terms	of	fundamental	constants	by	Eq.	(14.22).	The	quantization	of	the	Hall	effect
in	a	2D	electron	system	appears	to	depend	on	nothing	less	fundamental	than	the
quantization	of	the	elementary	charge	e!

Fig.	14.11	Density	of	states	associated	with	two	adjacent	Landau	levels	broadened	by
imperfections	within	the	layer.	Regions	of	localized	and	extended	states	are	identified.
Shading	indicates	which	states	are	occupied

Just	 as	 the	 Josephson	 effect	 in	 superconductivity	 provides	 an	 excellent	 method	 for
defining	a	voltage	 standard	 (section	10.5.4),	 the	quantum	Hall	 effect	of	 the	2D	electron
system	can	be	used	to	define	the	unit	of	resistance.	The	value	of	ρT	on	one	of	the	steps	is
constant	 to	an	accuracy	greater	 than	that	with	which	h/e2	 is	known,	so	 it	 is	necessary	to



define	a	value	for	h/e2	in	order	to	do	this.	The	value	that	is	chosen	is	of	course	consistent
with	the	best	known	value	of	h/e2.

14.4	RESONANT	TUNNELLING
DEVICES
In	most	of	the	semiconductor	devices	discussed	in	Chapter	6,†	the	dynamics	of	the	carriers
is	described	to	a	good	approximation	by	classical	equations	of	motion	such	as	Eqs.	(5.37);
these	predict	correctly	the	trajectory	of	the	wavepackets	representing	the	particles	and	the
wave	 nature	 of	 the	 particles	 plays	 no	 essential	 role	 in	 their	 behaviour.	 The	 continuing
quest	 for	 faster	 and	 smaller	 semiconductor	 devices	 will	 inevitably	 result	 in	 the	 use	 of
structures	in	which	quantum	effects	are	essential	or	unavoidable.	Quantum	effects	become
important	 if	 a	 carrier	 encounters	 structures	 in	 the	 direction	 of	 its	 motion	 which	 are
comparable	 in	 size	 to	 its	 de	 Broglie	 wavelength.	 For	 an	 electron	 of	 energy	 kB	 T	 this
wavelength	at	T	=	300	K	is

(14.23)	

For	the	flow	of	carriers	parallel	to	a	two-dimensional	layer,	such	as	in	the	high-electron-
mobility	transistor	of	Fig.	6.14,	the	geometry	of	the	gate	electrode	may	be	constructed	in
such	a	way	that	the	carriers	are	subjected	to	an	electrostatic	potential	varying	on	the	length
scale	of	the	de	Broglie	wavelength.	Such	a	gate	structure	is	shown	in	Fig.	14.12	and	can
be	prepared	by	a	process	similar	to	that	described	for	creating	the	electrode	pattern	in	Fig.
6.12.	The	production	of	a	mask	that	allows	the	definition	of	such	small	structures	cannot
however	be	achieved	by	optical	lithography,	since	fundamental	diffraction	effects	prevent
the	 focusing	 of	 light	 on	 a	 length	 scale	 of	 order	 nanometres.	 Very	 short	 wavelength
radiation	is	required	to	achieve	the	necessary	resolution;	focused	electron	beam	or	focused
ion	 beam	 lithography	 have	 both	 been	 used	 successfully	 for	 preparing	 masks	 with	 a
resolution	of	 this	order.	Exposure	of	 the	photoresist	 through	 the	mask	as	 in	Fig.	6.12.	 is
normally	 done	 with	 x-rays	 when	 such	 small	 length	 scales	 are	 involved.	 That	 quantum
effects	 are	 important	 in	 understanding	 the	 behaviour	 of	 the	 device	 of	 Fig.	 14.12	 is
demonstrated	by	the	observation	that	the	grid	acts	as	a	diffraction	grating	for	the	electrons
moving	through	the	layer.

For	 carriers	 travelling	perpendicular	 to	 the	 two-dimensional	 layers	 in	 hetero-junction
structures,	the	thickness	of	the	layer	can	be	comparable	to	the	wavelength	of	the	carriers;
resonant	tunnelling	devices	exploit	 this	possibility.	Fig.	14.13(a)	shows	 the	conduction
band	 in	 a	 resonant	 tunnelling	 diode.	 Two	 very	 thin	 layers	 of	GaAlAs	 provide	 potential
bariers,	which	 lead	 to	bound	states,	 as	 indicated,	within	 the	central	GaAs	 layer	 (cf.	Fig.
14.4).	 The	 heavily	 doped	 GaAs	 regions	 on	 the	 outside	 of	 the	 sandwich	 are	 contacts
through	which	carriers	can	be	injected	and	removed.	To	flow	from	one	contact	region	to
the	 other	 an	 electron	 must	 tunnel	 through	 the	 two	 potential	 barriers	 in	 series.	 The
probability	 of	 this	 is	 normally	 low	 and	 the	 current	 through	 the	 device	 produced	 by	 an



applied	 bias	 is	 small.	 The	 applied	 bias	 however	 alters	 the	 position	 of	 the	 bound	 state
energy	with	 respect	 to	 that	 of	 the	 tunnelling	 electrons	 as	 indicated	 in	Fig.	14.13(b);	 the
situation	depicted	 is	 that	 in	which	 the	 energy	of	 the	 tunnelling	 electrons	 is	 equal	 to	 the
energy	of	the	lowest	bound	level.	The	wavelength	of	the	electrons	is	then	double	the	layer
thickness	and	this	leads	to	the	phenomenon	of	resonant	tunnelling.	The	probability	of	an
electron	tunnelling	from	one	contact	region	to	the	other	can	approach	unity	at	this	bias	and
the	resulting	peak	in	the	current	is	shown	in	Fig.	14.13(c).

Fig.	14.12	(a)	High-electron-mobility	transistor	in	which	the	gate	electrode	is	made	from	a
Ti/Au	alloy	and	has	a	grid	structure,	(b)	Scanning	tunnelling	microscope	image	of	the	gate
structure.	(Reproduced	with	permission	from	Ismail	et	al,	Appi.	Phys.	Lett.	54,	460
(1989))

Fig.	14.13



The	 simplest	way	 to	understand	 resonant	 tunnelling	 is	 to	 exploit	 the	analogy	with	 the
Fabry–Pérot	etalon	used	in	optical	interferometry	(Smith	and	Thomson,5	chapter	13).	The
two	potential	barriers	act	as	the	low-transmissivity	high-reflectivity	mirrors	of	the	etalon
and	 the	 central	GaAs	 layer	 is	 the	 gap	 between	 them.	 For	 normal	 incidence,	 the	 Fabry–
Pérot	 etalon	 strongly	 transmits	 light	 only	 when	 the	 gap	 is	 an	 integral	 number	 of	 half-
wavelengths.	 The	 amplitude	 of	 the	 light	 in	 the	 gap	 then	 becomes	 large	 through	 the
constructive	interference	of	multiply	reflected	beams.	In	the	resonant	tunnelling	diode	the
corresponding	build-up	in	electron	charge	in	the	bound	level	raises	the	energy	of	the	level,
with	the	result	that,	with	increasing	bias,	it	remains	pinned	to	the	incident	electron	energy
over	a	wider	range	of	bias	than	would	be	the	case	without	resonant	charge	build-up.	The
negative	 resistance	 region	of	 the	current–voltage	characteristic	of	Fig.	14.13(c)	provides
an	application	for	the	resonant	tunnelling	diode	in	oscillator	circuits.	Devices	employing
resonant	tunnelling	diodes	have	been	constructed	that	will	operate	at	frequencies	of	order
1012	Hz.

It	 is	also	possible	 to	construct	a	resonant	 tunnelling	transistor	 in	which	the	position	of
the	 bound	 level	 in	 the	 potential	 well	 is	 influenced	 by	 a	 third	 (control)	 electrode.	 One
possibility	 is	 to	 incorporate	 the	 resonant	 tunnelling	 structure	 of	 Fig.	 14.13(a)	 into	 the



base–emitter	 junction	of	a	bipolar	 transistor	so	 that	 the	emitter–base	bias	determines	 the
position	of	the	level.	Current	peaks	like	those	of	Fig.	14.13(c)	then	appear	in	the	collector
current	as	a	function	of	base–emitter	voltage.

It	is	appropriate	that	this	book	should	conclude	with	this	glimpse	into	a	potential	growth
area	in	solid	state	physics.	The	possibility	of	using	solid	state	devices	to	do	physical	(as
opposed	 to	 geometric)	 optics	 with	 electron	 waves	 is	 just	 one	 area	 in	 which	 solid	 state
physics	 will	 continue	 to	 combine	 fundamental	 physics	 research	 with	 technological
progress.

PROBLEMS	14
(14.1)	Calculate	the	photon	energies	at	which	you	would	expect	onset	of	absorption	to
occur	for	the	140	and	210	Å	GaAs	layers	in	Fig.	14.5,	and	compare	your	answer	with
the	observed	values.	The	simplest	approach	is	to	assume	that	the	bound	state	energies
approximate	to	those	of	infinite	square	potential	wells.	Take	the	energy	gap	of	GaAs
to	 be	 1.519	 eV	 and	 the	 effective	masses	 of	 electrons	 and	 holes	 to	 be	 0.0665m	 and
0.45m	respectively,	where	m	is	the	bare	electron	mass.

To	obtain	more	accurate	values	of	the	photon	energies	it	is	necessary	to	allow	for	the
finite	depth	of	the	potential	wells.	If	you	wish	to	do	this	you	will	need	to	know	that
the	depth	of	the	wells	in	the	conduction	and	valence	band	edges	are	0.220	and	0.028
eV	respectively.

(14.2)	Use	the	Bohr	theory	to	calculate	the	binding	energy	of	an	exciton	in	bulk	GaAs.
Use	the	effective	masses	given	in	the	previous	question	and	take	the	value	13	for	the
dielectric	constant.

(14.3)	Confirm	that	the	values	of	ρT	on	the	steps	in	Fig.	14.7	agree	with	Eq.	 (14.14).
From	the	 low-field	data	on	 this	figure	obtain	values	for	 the	number	of	electrons	per
unit	area	and	the	scattering	time	of	the	electrons	(assume	me	=	0.07m).	Calculate	the
Fermi	energy	of	the	2Delectron	gas.	Estimate	the	field	at	which	an	electron	completes
one	 cyclotron	 orbit	 between	 collisions	 and	 comment	 on	 the	 answer.	 Estimate	 the
maximum	temperature	at	which	you	would	expect	to	see	the	step-like	structure	in	ρT.

†	 A	 two-dimensional	 electron	 gas	 can	 also	 be	 produced	 in	 the	 inversion	 layer	 of	 a
MOSFET	(section	6.5).	This	system	has	the	advantage	that	the	electron	concentration	can
be	easily	varied	by	changing	the	gate	potential.

†	An	 insight	 into	why	 a	 low	 electron	 density	 leads	 to	 immobility	 is	 given	 in	 section
13.5.6.	Why	 a	 low	 density	 of	 states	 should	 also	 have	 this	 effect	 can	 be	 understood	 by
picturing	 all	 the	 states	 as	 essentially	 localized	 but	 with	 the	 possibility	 of	 conduction
occurring	by	the	hopping	of	an	electron	from	one	localized	state	to	another.	Such	a	process
can	 only	 occur	 if	 there	 are	 sufficient	 states	 of	 approximately	 the	 same	 energy	 in	 the
vicinity	and	thus	only	if	the	density	of	states	at	that	energy	exceeds	a	critical	value.

†	The	tunnel	diode	is	an	exception.



APPENDIX	A

Coupled	probability	amplitudes
In	 this	 section	 we	 derive	 the	 coupled	 probability	 amplitude	 equations	 (4.9)	 from	 the
Schrödinger	equation

(A1)	

where	H	is	the	Hamiltonian	operator.	To	do	this	we	express	the	wavefunction	Ψ(r,	t)	as	a
series	 in	 some	 set	 of	 functions	 l(r)	 (which	 might,	 as	 in	 Eq.	 (4.7),	 be	 atomic
eigenfunctions)

(A2)	

Such	an	expansion	is	always	possible	provided	the	 l	form	a	complete	set	of	functions.
An	example	of	a	complete	set	is	the	sine	and	cosine	functions;	in	this	case	the	expansion
(A2)	 is	 known	 as	 a	 Fourier	 series,	 or,	 in	 the	 limit	 in	which	Ψ	 cannot	 be	 regarded	 as	 a
periodic	function	of	position,	as	a	Fourier	transform.	The	expansion	coefficients	al	in	Eq.
(A2)	are	time-dependent	because	Ψ	is	time-dependent.	We	will	not	worry	here	about	the
formal	question	of	what	constitutes	a	complete	set,	but	will	just	assume	for	the	derivation
of	 Eqs.	 (4.9)	 that	 we	 have	 a	 set	 of	 functions	 l	 such	 that	 the	 expansion	 (A2)	 is	 both
possible	 and	 unique.	 Later	 in	 this	 appendix	 we	 discuss	 how	 far	 the	 functions	 that	 we
actually	make	use	of	in	this	book	satisfy	this	condition.

If	we	assume	that	both	Ψ(r,	t)	and	the	 l	(r)	are	normalized,	the	probability	of	finding
the	system	in	the	state	 n	at	time	t	is	|cn(t)|2,	where	the	probability	amplitude	cn(t)	is	given
by

(A3)	

by	use	of	Eq.	(A2).	If	the	functions	 l	are	orthogonal	as	well	as	normalized,	the	integral	in
Eq.	(A3)	is	zero	when	m	≠	n	and	unity	when	m	=	n,	so	that	cn(t)	=	an(t).	We	shall	want	to
use	 atomic	wavefunctions	 centred	 on	 adjacent	 lattice	 sites,	which	 are	 not	 orthogonal	 to
each	other,	and	we	shall	therefore	continue	the	argument	without	assuming	orthogonality.
A	geometrical	analogy	may	help	to	clarify	Eq.	(A3).	Eq.	 (A2)	 is	 like	writing	a	vector	 in
terms	of	its	components	in	a	multidimensional	space.	In	this	analogy	the	an	correspond	to
the	components	and	the	cn	to	the	projections	on	the	coordinate	axes;	these	are	equal	only	if
the	coordinate	axes	are	orthogonal	(mutually	perpendicular).†

We	now	substitute	the	expansion	(A2)	in	the	Schrodinger	equation	(Al)	to	obtain

(A4)	

If	Eq.	(A4)	is	multiplied	on	the	left	by	 (r)	and	integrated	over	all	space	we	obtain,	by



use	of	Eq.	(A3),	an	expression	for	dcn/dt,

(A5)	

where	the	last	step	follows	from	the	Hermitian	property	of	the	Hamiltonian	operator.	This
property	is	obviously	true	for	the	potential	energy	term	in	H;	to	see	that	it	is	true	for	the
kinetic	energy	term	–	 2∇2/2m,	note	that	successive	integration	by	parts	gives

provided	only	 that	 1	and	 2	 and	 their	derivatives	vanish	at	 infinity,	 so	 that	 the	surface
integrals	vanish.

Notice	 now	 that	 (r)	 is	 just	 another	 function	 of	 position,	 so	 that	 it	 can	 also	 be
expanded	in	a	way	analogous	to	Eq.	(A2),

(A6)	

The	 only	 differences	 are	 that	 the	 expansion	 coefficients	Enm	 are	 independent	 of	 time,
and	we	have	chosen	to	expand	in	terms	of	the	complete	set	of	functions	 (r),	rather	than
the	set	 m(r).	Substitution	of	the	expansion	(A6)	in	Eq.	(A5)	now	gives

(A7)	

by	use	of	Eq.	(A3);	these	are	Eqs.	(4.9).	By	comparing	Eqs.	(A5)	and	(A7)	we	see	that	the
coefficients	Enm	may	be	calculated	by	solving	the	set	of	simultaneous	equations

(A8)	

In	the	special	case	where	the	 l(r)	are	all	mutually	orthogonal,	Eq.	(A8)	reduces	to

(A9)	

so	that	in	this	case	the	Enl	are	what	are	usually	called	the	matrix	elements	of	the	operator
H.	In	general	if	the	non-orthogonality	is	small,	the	Enl	are	quite	close	to	these	values.	The
formulation	 of	 quantum	mechanics	 in	 terms	 of	 coupled	 probability	 amplitudes	 through
Eqs.	(A7)	and	(A9)	is	taken	as	basic	by	Feynman,6	who	uses	it	 to	make	the	Schrödinger
equation	plausible,	the	converse	of	our	proof	in	this	appendix.

We	 now	 consider	 how	 to	 obtain	 a	 complete	 set	 of	 wavefunctions	 n(r)	 so	 that	 the
expansions	(A2)	and	(A6)	can	be	made.	All	 the	energy	eigenstates,	bound	and	unbound,
for	an	electron	in	the	field	of	a	single	positive	ion	constitute	a	complete	set,	by	a	general
theorem.	But	this	is	not	a	useful	complete	set,	because	very	many	terms	would	be	required



to	describe	an	electron	bound	to	another	ion	in	a	remote	part	of	the	crystal.	We	could	try	to
meet	 this	 difficulty	 by	 considering	 all	 the	 wavefunctions	 centred	 on	 every	 ion	 in	 the
crystal;	but	this	enlarged	set	is	clearly	overcomplete,	in	that	some	of	the	functions	can	be
expanded	in	terms	of	the	others.	This	has	the	unfortunate	consequence	that	the	expansions
(A2)	and	(A6)	are	not	unique.

In	this	book	we	use	a	limited	set	of	wavefunctions,	consisting	of	the	lowest	unoccupied
bound	state	on	each	ion.	This	set	is	incomplete	so	that	the	expansions	(A2)	and	(A6)	can
only	be	made	with	limited	accuracy.	However,	this	simplification	does	enable	us	to	obtain
qualitatively	 correct	 results	 with	 the	 minimum	 of	 algebra.	 To	 understand	 the
approximation	 involved,	 consider	 the	 application	 of	 Eq.	 (A6)	 to	 the	 problem	 of	 ,
considered	in	section	4.3.2.	The	Hamiltonian	for	this	problem	is

(A10)	

where	 V1	 and	 V2	 are	 Coulomb	 potentials	 centred	 at	 the	 nuclear	 positions,	R1	 and	R2
respectively.	If	 1(r)	is	the	atomic	ground	state	for	an	atom	centred	at	R1	then

(A11)	

where	E0	is	the	ground	state	energy.

The	 coupled	 equations	 (4.13)	 for	 this	 problem	 can	 be	 derived	 by	 the	 above	 method
provided	that	H 1	can	be	expanded	in	the	form	of	Eq.	(A6),

(A12)	

where	B	and	A	are	the	coefficients	that	appear	in	Eqs.	(4.13);	note	that	 1	and	 2	are	real
in	 this	 problem	 so	 that	 1	 =	 .	 Comparison	 of	 Eqs.	 (A11)	 and	 (A12)	 shows	 that	 the
expansion	is	possible	if	V2	 1	can	be	expanded	in	terms	of	 1	and	 2.	These	functions	are
plotted	in	Fig.	A.1,	which	shows	that	the	expansion	is	roughly	possible	because	V2	 1	has
peaks	near	R1	and	R2	where	 1	 and	 2	 respectively	 have	 peaks.	Detailed	 fitting	 of	 the
peaks	is	clearly	not	possible	since	V2	 1	diverges	at	R2	whereas	 2	 remains	finite	 there.
Eqs.	(A8)	suggest	 that	 the	criteria	for	choosing	optimum	values	for	A	and	B	are	 that	 the
values	of	∫ 1	H 1d3r	and	∫ 2H 1	d3r	should	be	the	same	for	both	the	exact	result	(A11)
and	the	approximate	result	(A12).

Fig.	A.l	(a)	Ground	state	wave	functions	 1	and	 2	and	potential	V2	for	isolated	hydrogen
atoms	at	R1	and	R2.	(b)	The	function	V2	 1,	which	has	to	be	represented	as	a	linear
combination	of	 1	and	 2	(Eq.	(A12))



A	little	thought	suffices	to	show	that	when	the	protons	are	far	apart

where	R	 =	 |R1	 –	R2|.	 The	 final	 term	 just	 cancels	 the	 internuclear	 repulsion	 so	 that	 the
splitting	 of	 the	 bonding	 and	 antibonding	 orbitals	 at	 large	 R	 is	 associated	 with	 the
coefficient	B	only.	This	explains	why	the	splitting	is	symmetric	in	Fig.	4.7(b).

†	Do	not	worry	that	the	total	probability	Σn|cn|2	≠	1	when	the	 n	are	not	orthogonal;	this
is	because	the	possibilities	are	not	mutually	exclusive	in	this	case.



APPENDIX	B

Electric	and	magnetic	fields	inside	materials†
Truth	is	rarely	pure	and	never	simple.—Oscar	Wilde

We	consider	magnetic	materials	first	and	will	attempt	to	clarify	the	relation	between:

(1)	 the	 local	 magnetic	 field	BL,	 which	 determines	 the	 energy	 of	 an	 atomic	 dipole
moment	through	Eq.	(7.8);

(2)	the	macroscopically	averaged	field	Bmac	inside	the	material;	and

(3)	the	applied	magnetic	field	Be.

For	 simplicity	 we	 consider	 only	 sample	 shapes	 for	 which	 the	 magnetization	M	 is
uniform	in	space.

Because	of	the	contribution	of	the	atomic	dipole	moments	the	real	microscopic	magnetic
field	Bmic	within	a	crystal	varies	rapidly	on	an	atomic	length	scale.	It	satisfies	the	Maxwell
equations

(B1)	 	and	

where	jmic	is	the	total	microscopic	current	density;	the	contribution	of	the	atomic	dipoles
to	jmic	 is	 the	source	of	 the	rapid	variation	of	Bmic.	The	field	Bmac	 is	 the	average	of	Bmic
over	a	region	containing	many	atoms.	From	Eqs.	(Bl),	Bmac	satisfies

(B2)	 	and	

where	 jave	 is	 the	average	of	 jmic.	The	macroscopic	H	 field,	used	 in	 the	definition	of	 the
susceptibility	χ,	is	defined	by

(B3)	

The	atomic	dipoles	behave	like	 little	current	 loops	(Fig.	7.1)	and	 it	 follows	 that,	 if	 the
magnetization	is	uniform,	jave	vanishes	except	at	the	surface	of	the	sample	where	there	is	a
current	per	unit	 length	 equal	 to	 the	discontinuity	 in	 the	 component	of	M	 parallel	 to	 the
surface	(see	Grant	and	Phillips,3	chapter	5).	The	field	Bmac	can	therefore	be	written	as

(B4)	

where	B1	is	the	contribution	from	this	surface	current.

We	now	calculate	Bmac	and	Hmac	for	the	three	important	sample	geometries	in	Fig.	B.l.

Long	cylinder	parallel	to	applied	field

B1	is	the	field	inside	a	long	solenoid	carrying	a	current	M	per	unit	length	in	the	direction
shown	in	Fig.	B.l(a).	Thus



(B5)	

and

(B6)	

Comparing	Eqs.	(B3)	and	(B6),	we	see	that,	in	this	geometry,

(B7)	

Thin	disc	perpendicular	to	applied	field

The	field	at	the	centre	of	the	current	loop	shown	in	Fig.	B.l(c)	is	inversely	proportional
to	the	radius.	The	current	flowing	round	the	loop	is	M	×	(disc	thickness).	For	a	very	thin
disc	we	can	therefore	take

(B8)	

so	that

(B9)	

and

(B10)	

Fig.	B.l	Current	distributions	equivalent	to	uniform	magnetization	in	various	shapes	of
specimen	for	the	field	direction	indicated.	The	currents	on	the	outer	surface	determine	the
field	B1	(Eq.	(B4)).	The	small	spherical	surfaces	are	the	regions	within	which	the
contribution	B3(0)	(Eq.	(B15))	of	atomic	dipoles	to	the	field	BL	is	considered	from	a
microscopic	viewpoint



Sphere

We	calculate	the	field	B1	at	the	center	of	the	sphere;	the	field	is	in	fact	uniform	over	the
interior	of	the	sphere	although	we	will	not	prove	this.	We	take	M	along	the	z	axis	in	Fig.
B.2	and	consider	the	element	of	surface	between	θ	and	θ	+	dθ	shown.	The	discontinuity	in
the	parallel	component	of	M	is	M	sin	θ	so	that	the	current	flowing	in	the	circular	element
is	M(sin	 θ)R	 dθ.	 Using	 the	 Biot–Savart	 law,	 the	 field	 due	 to	 a	 short	 length	 dl	 of	 the
element	is

Fig.	B.2	Calculation	of	the	field	at	the	centre	of	a	spherical	current	sheet



in	the	direction	shown	in	Fig.	B.2.	When	the	contributions	from	the	whole	of	the	circular
element	are	added	the	components	perpendicular	to	the	z	axis	cancel	giving	a	field	along
the	z	axis	equal	to

Integrating	this	over	the	sphere	gives	the	total	field

(B11)	

where	we	have	used	the	substitution	c	=	cos	θ.	For	a	sphere	therefore

(B12)	

and

(B13)	

To	calculate	BL,	the	value	of	Bmic	at	one	of	the	atomic	dipoles,	we	place	our	origin	at	the
centre	 of	 the	 atom.	The	 effect	 of	 distant	 atoms	 on	BL	will	 depend	 only	 on	 the	 average
magnetization	and	not	on	 the	detailed	arrangement	of	 those	atoms.	This	 suggests	 that	 it
will	be	advantageous	to	divide	the	sample	into	two	parts.	The	effect	of	the	‘near’	region,
within	 a	 radius	 r,	 we	 calculate	 from	 the	 detailed	 microscopic	 distribution	 of	 atomic
dipoles;	the	radius	r	is	chosen	large	compared	to	atomic	dimensions,	but	small	compared
to	the	size	of	the	sample.	The	contribution	to	BL	from	the	‘far’	region,	beyond	the	radius	r,
we	 calculate	 from	 the	 magnetization	M	 of	 that	 region.	 The	 small	 spherical	 surfaces
separating	the	near	and	far	regions	are	shown	for	the	three	sample	shapes	in	Fig.	B.l.



The	field	at	position	r	relative	to	our	origin	may	be	written

(B14)	

where	B1	 is	 the	 contribution	 from	 the	magnetization	 current	 on	 the	outer	 surface	of	 the
sample,	as	calculated	above;	B2	is	the	contribution	from	the	magnetization	current	in	the
opposite	sense	on	the	inner	boundary	of	the	‘far’	region;	B3	is	the	field	due	to	the	atoms	in
the	near	region	apart	from	the	atom	at	the	origin;	and	B4	is	the	contribution	from	the	atom
at	the	origin.

The	 effect	 of	B4	 on	 the	 atom	 at	 the	 origin	 has	 already	 been	 taken	 into	 account	 by
including	 terms	 like	 the	 spin–orbit	 interaction	 in	 the	 energy	 of	 the	 atom;	 it	 is	 this
interaction	 that	 is	 responsible	 for	 Hund’s	 third	 rule.	 We	 must	 therefore	 omit	B4	 when
calculating	BL.	It	is	usually	assumed	that	the	appropriate	value	of	the	field	to	insert	in	Eq.
(7.8)	is	that	at	the	nucleus	of	the	atom†	and	we	have	therefore

(B15)	

We	have	already	calculated	B1	for	the	sample	shapes	of	Fig.	B.l.	From	our	calculation	of
the	field	due	to	a	spherical	current	sheet	(Eq.	(B12))	we	see	that

(B16)	

In	general,	B3(0)	depends	on	 the	arrangement	of	atomic	dipoles	within	 the	sphere	and
must	 be	 calculated	 explicitly.	 A	 particular	 reason	 for	 using	 a	 spherical	 boundary	 to
separate	 the	 near	 and	 far	 regions	 is	 that	 in	 this	 case	B3(0)	 vanishes	 for	 two	 important
arrangements:	 (1)	a	random	arrangement	(as	 in	a	gas);	 (2)	uncorrelated	dipoles	arranged
with	cubic	symmetry	about	the	point	under	consideration	(as	in	many	paramagnetic	salts).
We	will	not	prove	this	result,	but	you	may	convince	yourself	of	its	validity	for	the	random
case	by	integrating	the	contributions	from	dipoles	in	spherical	shells.	For	the	case	B3(0)	=
0	therefore	we	have,	from	Eq.	(B15):

Long	cylinder	parallel	to	applied	field

(B17)	

Thin	disc	perpendicular	to	applied	field

(B18)	

Sphere

(B19)	

Note	that	the	relationships

(B20)	

are	 true	 for	 any	 sample	 shape	 provided	B3(0)	 =	 0.	 If	B3(0)	 is	 non-zero	 then	 it	must	 be
added	 to	Eqs.	 (B17)	 to	 (B20).	Note	 that	Eq.	 (8.43)	comes	 from	using	Eq.	 (B18)	 for	 the
component	 of	 magnetization	 normal	 to	 a	 metal	 foil	 and	 Eq.	 (B17)	 for	 the	 component



parallel	to	the	foil.

We	 now	 turn	 our	 attention	 to	 the	 electric	 field	 inside	materials.	We	will	 establish	 the
Lorentz	relation	(Eq.	(9.5))	between	the	electric	field	EL	at	an	atom	and	the	macroscopic
electric	 field	Emac	 inside	 the	 material.	 We	 use	 the	 analogy	 with	 the	 magnetic	 case	 to
eliminate	much	of	the	detail.	We	consider	only	sample	shapes	for	which	the	polarization	P
is	uniform	in	space.	The	microscopic	electric	field	Emic	varies	rapidly	on	an	atomic	scale
and	satisfies	the	Maxwell	equations

(B21)	 	and	

where	ρmic	 is	 the	microscopic	 charge	density.	Emac	 is	 the	average	of	Emic	 over	 a	 region
containing	many	atoms	and	therefore	satisfies

(B22)	 	and	

where	ρave	is	the	average	of	ρmic.

For	uniform	polarization,	the	positive	and	negative	regions	of	the	dipoles	contribute	to
ρave	with	 equal	magnitude	 but	 opposite	 sign	 except	 at	 the	 surface	 of	 the	 sample,	where
there	 is	 a	 surface	 charge	 density	 equal	 to	 the	 discontinuity	 in	 the	 component	 of	 P
perpendicular	to	the	surface	(see	Grant	and	Phillips,3	chapter	2).	The	field	Emac	can	thus
be	written	as

(B23)	

where	E1	is	the	contribution	from	this	surface	charge.	The	field	Dmac	is	defined	by	Dmac	=
ε0Emac	+	P.	The	major	difference	between	the	electric	and	magnetic	case	arises	because	it
is	 the	 component	 of	P	 perpendicular	 to	 the	 surface	 that	 determines	 the	 surface	 charge
density	 whereas	 it	 is	 the	 component	 of	M	 parallel	 to	 the	 surface	 that	 determines	 the
surface	 current	density.	For	 the	 three	 important	geometries	discussed	 above	we	 find	 the
following.

Long	cylinder	parallel	to	applied	field

ρave	is	non-zero	only	on	the	distant	ends	of	the	cylinder.	Hence

(B24)	

E1	is	the	field	inside	a	parallel-plate	capacitor	with	a	charge	P	per	unit	area	on	the	plates
(note	that	E1	is	oppositely	directed	to	P):

(B25)	

Using	Coulomb’s	law	to	evaluate	the	component	of	field	parallel	to	P	due	to	the	charge
P	cos	θ	per	unit	area	on	the	element	of	surface	between	θ	and	θ	+	dθ	in	Fig.	B.2	gives

(B26)	

where	we	have	used	the	substitution	c	=	cos	θ	as	before.	Hence



(B27)	

E1	 is	known	as	 the	depolarizing	field;	 in	all	 three	geometries	 it	can	be	written	 in	 the
form	 −NP/ε0,	 where	N	 is	 the	depolarizing	 factor.	We	 deduce	 that	N	 is	 0	 for	 the	 long
cylinder,	1	for	the	thin	disc	and	 	for	the	sphere.

To	 calculate	EL,	 the	 value	 of	 Emic	 at	 the	 centre	 of	 an	 atom,	 we	 proceed	 as	 in	 the
magnetic	case	by	dividing	the	material	 into	‘far’	and	‘near’	regions	separated	by	a	small
spherical	surface.	By	analogy	with	Eq.	(B14)	we	can	write

(B28)	

where	E2,	E3	and	E4	are	 the	analogues	of	 the	corresponding	magnetic	contributions.	We
disregard	E4	as	in	the	magnetic	case	and	assume	that	the	appropriate	value	of	the	field	is
that	at	the	centre	of	the	atom,†	r	=	0,	so	that

(B29)	

From	our	above	calculation	of	the	field	due	to	a	charged	spherical	surface	(Eq.	 (B26))
we	deduce

(B30)	

E3(0)	 like	 B3(0)	 vanishes	 for	 a	 random	 arrangement	 of	 atomic	 dipoles	 and	 for
uncorrelated	 atomic	 dipoles	 arranged	 with	 cubic	 symmetry	 about	 the	 point	 under
consideration.	If	E3(0)	=	0	the	Lorentz	local	field	relation

(B31)	

follows	from	Eqs.	(B29)	and	(B30)	and	is	the	electrical	analogue	of	Eq.	(B20).

There	is	an	even	closer	analogy	between	the	electric	and	magnetic	cases	if	a	more	old-
fashioned	approach	 to	magnetic	media	 is	used	 in	which	 the	effects	of	 the	magnetization
are	allowed	for	by	a	density	of	fictitious	magnetic	poles	on	the	surface	of	the	sample	equal
to	 the	 discontinuity	 in	 the	 perpendicular	 component	 of	M.	 In	 this	 approach	 magnetic
equivalents	for	all	the	equations	we	have	derived	for	the	electric	case	are	obtained	by	the
replacements:	E	→	H,	D	→	B,	P	→	μ0M,	ε0	→	μ0,	(ρ	→	μ0ρ).	We	mention	this	because	it
explains	why	the	reader	may	encounter	the	concept	of	demagnetizing	field	in	connection
with	 the	magnetic	 field	 inside	materials;	 this	 is	 the	H1	 field	 produced	 by	 the	 fictitious
magnetic	pole	density	on	the	surface	of	the	sample.	The	demagnetizing	factor	is	the	same
as	the	depolarizing	factor	for	the	same	geometry.	Readers	should	convince	themselves	that
this	 alternative	 approach	 gives	 the	 same	 answers	 as	 that	 in	 which	 the	 effects	 of	 the
magnetization	are	allowed	for	by	surface	currents.

†	For	a	more	extended	discussion,	see	Grant	and	Phillips3.

†	To	do	better	than	this	we	could	expand	the	magnetic	field	as	a	Taylor	series	about	the
nuclear	position.	Eq.	(7.8)	would	then	correspond	to	the	leading	order	in	the	expansion.
The	next	term	would	represent	a	coupling	between	the	magnetic	field	gradient	and	the
magnetic	 quadrupole	 moment	 of	 the	 atom;	 parity	 conservation	 implies	 that	 the



quadrupole	moment	vanishes	so	that	this	term	is	likely	to	be	small.	The	next	term	would
be	 coupling	 of	 second-order	 field	 gradients	 to	 the	magnetic	 octopole	moment	 of	 the
atom.

†	As	in	the	magnetic	case	we	can	expand	the	electric	field	as	a	Taylor	series	about	the
nuclear	 position.	 The	 coupling	 between	 the	 electric	 field	 gradient	 and	 the	 electric
quadrupole	 moment	 of	 the	 atom	 is	 important,	 for	 example,	 for	 f	 electrons	 since	 the
quadrupole	 moment	 is	 non-zero	 for	 an	 f	 wavefunction.	 The	 orientation	 of	 such	 a
wavefunction	is	therefore	determined	by	this	coupling	as	well	as	by	the	coupling	of	the
magnetic	dipole	moment	with	the	magnetic	field.



APPENDIX	C

Quantum	mechanics	of	an	electron	in	a
magnetic	field

According	to	classical	mechanics	the	momentum	conjugate	to	the	velocity	vector	v	of	a
particle	is	given	by	Eq.	(7.25).	Thus	for	an	electron

(C1)

The	transition	from	classical	mechanics	to	quantum	mechanics	is	made	by	replacing	the
momentum	p	by	the	operator	−i ∇.	Thus	the	operator	 	for	the	kinetic	energy	is	obtained
as	follows:

(C2)	

Expanding	the	bracket	and	recalling	that	div	A	=	0	gives

(C3)	

If	the	magnetic	field	is	uniform	we	leave	it	as	an	exercise	to	the	reader	to	check	that	the
vector	potential	A	that	satisfies	B	=	curl	A	and	div	A	=	0	is

(C4)	

Using	this	enables	the	second	term	in	 	to	be	written

The	operator	r	×	(−i ∇)	(≡	r	×	p)	is	the	operator	 l	for	the	orbital	angular	momentum	of
the	electron,	so	that	the	kinetic	energy	(C3)	in	a	uniform	field	is

(C5)	

where	μB	=	e 2m	is	the	Bohr	magneton.

The	first	term	in	 	is	the	kinetic	energy	in	the	absence	of	a	field.	From	Eq.	(7.4),	–μBl	is
the	magnetic	moment	from	the	orbital	angular	momentum;	the	second	term	in	 	is	thus	the
contribution	of	the	orbital	angular	momentum	of	the	electron	to	the	part	HP	(Eq.	(7.8))	of
the	Hamiltonian	 that	 is	 responsible	 for	paramagnetism.	The	 third	 term	is	 responsible	 for
the	induced	diamagnetism	discussed	in	section	7.3.	The	contribution	of	the	electron	to	the
diamagnetic	susceptibility	of	Eq.	(7.39)	can	be	calculated	by	taking	the	expectation	value
of	the	third	term	and	using	Eq.	(C4);	thus



(C6)	

where	〈ρ2〉	is	the	mean	square	distance	of	the	electron	from	the	z	axis.	The	contribution	δμ
of	the	electron	to	the	magnetization	is	then	obtained	from	δμ	=	−d〈HD〉 dB,	which	gives
the	same	answer	for	χ	as	our	alternative	approach	in	section	7.3.

The	 contribution	 of	 the	 electron	 to	 the	 electric	 current	 density	 is	 given	 by	 the
expectation	value	of	−ev	=	−e(p	+	eA)/m,	that	is	by	the	integral

(C7)	

where	we	have	taken	the	mean	of	the	expectation	value	and	its	complex	conjugate	in	order
to	ensure	 that	 the	 integrand	is	real.	The	integrand	can	be	interpreted	as	 the	 local	current
density	j	asociated	with	the	wavefunction	 .

Hence

(C8)	

This	interpretation	is	confirmed	in	books	on	quantum	mechanics	where	it	is	shown	that
this	is	the	current	density	required	to	satisfy	conservation	of	probability	when	 	satisfies
Schrödinger’s	time-dependent	equation	 	=	i 	∂ ∂t	with	 	given	by	Eq.	(C2).



APPENDIX	D

The	exchange	energy

Truth	is	the	most	valuable	thing	we	have.	Let	us	economize	it.—Mark	Twain

We	 will	 use	 first-order	 perturbation	 theory	 to	 calculate	 the	 effect	 of	 the	 Coulomb
interaction	between	two	electrons.	Our	aim	is	to	demonstrate	that,	although	the	Coulomb
interaction	 does	 not	 depend	 explicitly	 on	 electron	 spin,	 the	 energy	 of	 the	 two	 electrons
does	depend	on	their	relative	spin.	The	unperturbed	Hamiltonian	is	of	the	form

(D1)	

where	∇1	and	∇2	represent	the	operations	of	differentiation	with	respect	to	the	positions	r1
and	r2	of	the	two	electrons.	The	potential	energy	V	can	be	that	of	a	single	atom,	a	group	of
atoms	or	the	periodic	potential	of	a	crystal	lattice.

We	will	take	the	unperturbed	state	to	be	one	in	which	the	electrons	occupy	states	 a(r)
and	 b(r)	of	the	unperturbed	Hamiltonian.	Thus	 a(r)	and	 b(r)	satisfy

(D2)	

For	an	atomic	potential,	the	states	 a	and	 b	will	be	single	particle	atomic	eigenstates;
for	a	periodic	potential	they	will	be	Bloch	states	(see	Chapter	11).	Taking	into	account	the
spin	of	the	electrons,	the	unperturbed	Hamiltonian	has	four	degenerate	states	of	energy	Ea
+	 Eb.	 Four	 properly	 antisymmetrized†	 wavefunctions	 corresponding	 to	 this	 energy,
suitable	for	performing	a	first-order	perturbation	calculation	of	the	Coulomb	energy,	are:

(D3)	

where	s1	and	s2	are	the	spin	variables	of	the	electrons	and	α	and	β	are	spin	eigenstates	with
Sz	=	+ 	and	Sz	=	− 	respectively.	The	unperturbed	state	ΨS	is	the	product	of	a	symmetric
space	 function	 with	 the	 antisymmetric	 spin	 singlet	 wavefunction	 (S	 =	 0)	 and	 thus
corresponds	to	‘antiparallel’	spins	for	 the	two	electrons.	The	other	three	states	consist	of
products	 of	 an	 antisymmetric	 space	 function	 with	 the	 three	 symmetric	 spin	 triplet



wavefunctions	(S	=	1)	with	Sz	=	+1,	0	and	−1	respectively;	these	are	states	for	which	the
electrons	 spins	 are	 ‘parallel’.	Note	 that	 these	 three	wavefunctions	 vanish	 if	 a	 =	 b	 so
that,	in	accordance	with	the	Pauli	principle,	two	electrons	can	occupy	the	same	state	only
if	they	have	opposite	spins.

It	is	perhaps	worth	digressing	slightly	to	point	out	why	the	above	states	are	suitable	for
the	 perturbation	 calculation.	Because	 of	 the	Coulomb	 interaction	 the	 singlet	 state	 has	 a
different	energy	to	the	three	triplet	states.	When	a	perturbation	H′	breaks	the	degeneracy	of
two	 unperturbed	 states,	 the	 splitting	 can	 only	 be	 correctly	 calculated	 by	 using	 the	 two
linear	combinations,	 1	and	 2,	 of	 those	 states	 that	 satisfy	?	 ∫ H′ 2	dτ	 =	 0,	where	 the
volume	 element	 di	 contains	 in	 general	 summation	 over	 spin	 variables	 as	 well	 as
integration	over	space	variables.	Explicit	calculation	shows	that

for	i	=	1,	2	or	3,	so	that	the	necessary	condition	is	satisfied	for	each	of	the	triplet	states.
Two	examples	of	antisymmetric	unperturbed	states	of	energy	Ea	+	Eb	which	are	unsuitable
are

and

The	expectation	value	of	the	Coulomb	interaction	depends	only	on	the	spatial	part	of	the
wavefunction.	For	each	of	the	three	triplet	states	we	find	an	energy	shift

(D4)	

where

(D5)	

is	 the	 ‘obvious’	 contribution	 from	a	 charge	density	−e| a(r1)|2	 interacting	with	 a	 charge
density	−e| b(r1)|2,	and

(D6)	

is	the	exchange	contribution.	The	tendency	for	 	to	be	positive	can	be	seen	by	looking	at
the	integrand	in	the	region	r1	≈	r2	where	the	Coulomb	interaction	is	large.	When	r1	=	r2



we	see	that	the	product	of	the	four	wavefunctions	in	Eq.	(D6)	becomes	| a(r1)|2| b(r1)|2	so
that	the	integrand	tends	to	be	positive	in	this	limit.	The	expectation	value	of	the	Coulomb
interaction	for	the	singlet	state	is

(D7)	

so	 that	 the	 difference	 in	 energy	 between	 the	 parallel	 spin	 state	 and	 the	 antiparallel	 spin
state	is

(D8)	

Note	that,	for	the	exchange	contribution	(Eq.	(D6))	 to	 the	energy	 to	be	 important,	 it	 is
necessary	 that	 there	 is	 some	 region	 of	 space	 in	 which	 (r) b(r)	 is	 appreciable.	 This
requires	that	there	should	be	a	significant	overlap	between	the	wavefunctions	 a(r)	and	
b(r).	The	highly	localized	nature	of	the	4f	wavefunctions	in	rare-earth	atoms	explains	why
there	 is	 little	direct	exchange	 interaction	energy	between	neighbouring	 rare-earth	atoms.
The	overlap	is	large	however	for	two	4f	wavefunctions	on	the	same	atom	where	exchange
energies	are	responsible	for	the	first	of	Hund’s	rules.

†	Note	 that	 the	wavefunctions	must	be	antisymmetric	under	simultaneous	 interchange
of	both	space	and	spin	coordinates:	r1,	s2	↔	r2	s2.



Solutions	to	problems

Being	a	philospher,	I	have	a	problem	for	every	solution—Robert	Zend



CHAPTER	1
1.1	Three	neighbouring	atoms	in	one	close-packed	plane	and	their	common	neighbour	in

the	adjacent	plane	form	a	regular	 tetrahedron	of	side	a	and	height	c/2.	Simple	geometry
then	gives	c/a	=	(8/3)1/2.

1.2	See	Fig.	1.6.

1.3	The	plane	of	the	(h	k	l)	set	nearest	the	origin	has	the	equation	hx	+	ky	+	lz	=	a	(this
has	the	correct	intercepts	on	the	three	axes).	The	plane	parallel	to	this	through	the	origin	is
hx	+	ky	+	lz	=	0;	an	arbitrary	vector	in	this	plane	is	(x,	y,	–(hx	+	ky)/l).	The	scalar	product
of	this	with	[h,	k,	l]	is	hx	+	ky–	(hx	+	ky)	=	0.

1.4	d	is	the	normal	distance	from	the	origin	of	the	plane	hx	+	ky	+	lz	=	a	(see	previous
problem).	The	direction	cosines	of	the	normal	to	the	plane	are	d	÷	(a/h),	etc.	Therefore

	or	

1.5

1.6	(a)	See	Fig.	1.11(b)	for	help	in	doing	this.

(b)	fcc	(0,	0,	0);	bcc	(0,	0,	0);	hep	(0,	0,	0),	( ,	 ,	 );	diamond	(0,	0,	0),	( ,	 ,	 ).

(c)

1.7	Note	that	if	c′	=	3k	then	c	=	 (a	+	b	+	c′)	which	 is	 the	body-centred	position	of	a
cubic	 unit	 cell	 defined	 by	 a,	 b	 and	 c′.	 The	 Bravais	 lattice	 is	 therefore	 bcc	 with	 a
conventional	cubic	unit	cell	of	volume	27	Å3.	The	primitive	cell	is	half	this	volume	since
the	non-primitive	cell	contains	two	lattice	points.	The	most	densely	packed	planes	are	the
{1	1	0}	planes	of	the	cubic	unit	cell.

1.8	The	primitive	unit	cells	of	fcc	and	bcc	are	shown	in	Figs.	1.8(b)	and	1.12(b).	For	fcc



the	directions	of	 the	primitive	a,	b	and	c	 are	 [1	 1	 0],	 [0	 1	 1]	 and	 [1	 0	 1];	 thus	 cos	α	=
_b.c/|b|	|c|	=	 	and	α	=	60°.	For	bcc	the	directions	of	the	primitive	a,	b	and	c	are	[1	1	1],	[1
1	1]	and	[1	1	1],	so	cos	α	=	b.c	/|b||c|	=	− 	and	α	=	109°27’.

1.9	Differentiating	the	Bragg	law	sin	θ	=	nλ/2d	gives	cos	θ	δθ	=	–nλ	δd/2d2,	which	can
be	written	δd/d	=	–2d(cos	θ)	δθ/nλ	=	–(cot	θ)δθ;	thus	for	the	data	given	/d d	=	(cot	47°	)
(1.15π/180)	=	0.0187	(δθ	must	be	expressed	in	radians).	The	coefficient	of	linear	thermal
expansion	is	therefore	(1/d)(δd/δT)	=	0.0187/(1273	–	293)	=	1.91	×	10−5	K−1.



CHAPTER	2
2.1	The	equation	of	motion	of	the	atoms	(2.7),	as	modified	to	include	the	forces	due	to

the	second	nearest	neighbours,	is

Inserting	a	wavelike	solution	of	the	form	of	Eq.	(2.8)	and	proceeding	as	in	section	2.3.1
leads	to	the	dispersion	relation

(a)	For	ka 	1,	this	becomes	Mω2	≈	(K	+	4K2)k2a2	corresponding	to	a	sound	velocity	υs	=
ω/k	=	a	[(K	+	4K2)/M]1/2.	The	elastic	modulus	C	can	be	determined	from	the	increase	in
energy	of	the	crystal	∆E	=	 NK(r	–	a)2	+	 NK2(2r	–	2a)2	on	stretching	the	length	L	of	the
crystal	 from	Na	 to	Nr.	 (Note	 that	 there	 are	 equal	 numbers	 of	 each	 type	of	 spring.)	The
force	required	is

from	which	C	=	(K	+	4K2)a.	Thus	the	velocity	of	sound	is	(C/ρ)1/2	(Eq.	(2.14))	as	required.

(b)∂ω/∂k	is	zero	because	both	sin	(ka)	and	sin	(2ka)	vanish	at	k	=	±π/a.

(c)	cos	(2ka)	has	period	π/a.

Forces	 between	 an	 atom	 and	 its	 nth	 nearest	 neighbours	 introduce	 a	 term	Kn[1	 –	 cos
(nka)]	in	the	expression	for	Mω	2.

2.2	The	equations	of	motion	are	(cf.	Eqs.	(2.15)	and	(2.16))

These	are	solved	by	taking	wavelike	solutions	of	the	form:

	and	

Note	 that	we	 can	 put	kna	 in	 both	 exponents;	 the	 separation	 between	 the	n	 and	 n	 –	 1
atoms	relative	to	the	lattice	spacing	a	does	not	enter	the	equations.	The	solution	proceeds
as	in	section	2.3.2	and	the	dispersion	curves	are	as	in	Fig.	2.7,	except	that	points	A,	B	and
C	correspond	to	frequencies	(2K1/M)1/2,	(2K2/M)1/2	and	[2(K1	+	K2)/M]1/2	respectively.

2.3	From	Eqs.	(2.29)	and	(2.33)	the	exact	result	is

The	Debye	frequency	determined	from	 	(cf.	Eq.	(2.49))	is	ωD	=	π(K/M)1/2

so	that	ΘD	=	 π(K/M)1/2/kB	(cf.	Eq.	(2.53)).	In	terms	of	ΘD	and	x	=	 ω/kBT	the	exact	heat
capacity	is



The	constant	density	of	states	in	the	Debye	approximation	is	(2N/π)(M/4K)1/2	and	in	this
approximation	the	heat	capacity	becomes

Because	 the	 average	 frequency	 is	 lower	 for	 the	 exact	 density	 of	 states	 the	 exact	 heat
capacity	 is	 higher	 than	 the	 Debye	 approximation	 at	 all	 T.	 When	 T	 	 ΘD	 only	 low-
frequency	 modes	 are	 excited	 for	 which	 the	 two	 densities	 of	 states	 are	 the	 same;	 the
integrals	may	then	be	taken	to	infinity,	so	that

2.4	 In	 two	 dimensions	 the	 density	 of	 states	 ρR(k)	 in	k-space	 for	 running	 waves	 in	 a
system	of	size	L	×	L	is	(L/2π)2	(section	2.6.2)	so	that	the	number	of	states	between	circles
of	radii	k	and	k	+	dk	is	(L/2π)22πk	dk	=	Ak	dk/2π	=	g(k)	dk,	where	A	=	L2	is	the	area	of	the
system.	For	ω2	=	σk3/ρ	the	density	of	states	per	unit	frequency	range	is	therefore	given	by

With	Eq.	(2.26)	for	the	average	energy	of	a	harmonic	oscillator	this	gives

for	the	energy	per	unit	area	of	surface;	E0	is	the	zero	point	energy,	x	=	 ω/kBT	and	ωD	is	a
suitable	 cut-off	 frequency.	This	 cut-off	 is	 hard	 to	determine	 since	we	do	not	know	how
many	degrees	of	freedom	to	associate	with	the	surface,	though	we	expect	the	number	to	be
of	the	same	order	as	the	number	of	atoms	per	unit	area	of	surface.	However	in	the	limit	of
low	temperature	this	does	not	matter	since	we	can	take	the	integral	to	infinity	to	obtain	E
=	E0	 +	aT7/3,	where	a	 is	 independent	 of	 temperature.	 The	 surface	 heat	 capacity	 at	 low
temperatures	is	then	C	=	dE/dT	=	 aT4/3.	The	entropy	S	is	 	 so	 that	σ,	 the
surface	free	energy	density,	is	given	by

2.5	For	a	long-wavelength	acoustic	mode	 ω	 	kBT	so	Eq.	(2.26)	can	be	approximated	to
Eq.	 (2.28);	 thus	 	≈	kBT.	Roughly,	 for	T	 	ΘD,	only	modes	 for	which	 ω	 	kBT	will	 be
excited,	 that	 is	 those	with	 a	wavenumber	 k	 	 k0	 =	 kBT/ υs,	 where	 υs	 is	 the	 velocity	 of
sound.	 We	 define	 a	 ‘Debye	 wavenumber’	 kD	 =	 ωD/υs	 =	 kBΘD/ υs.	 Since	 modes	 are
uniformly	distributed	in	k-space	the	fraction	of	modes	excited	is	(k0/kD)3	and	the	number
is	 thus	3N(k0/kD)3	 =	 3N(T/ΘD)3.	 If	we	make	 the	 approximation	 that	modes	with	 k	<	 k0
have	energy	kBT	and	modes	with	k	>	k0	are	entirely	unexcited,	the	internal	energy	is	E	=
3NkBT(T/ΘD)3	so	that	the	heat	capacity	C	=	dE/dT	=	12NkB(T/ΘD)3.	This	has	the	correct
dependence	on	temperature	but	is	about	20	times	smaller	than	the	exact	result	(Eq.	(2.54)).



A	good	numerical	answer	cannot	be	expected	because	C	∝	 	and	k0	 is	a	rather	arbitrary
quantity.

2.6	The	Debye	theory	estimates	(Eq.	(2.51))	the	zero	point	energy	as	 ωD	per	atom	=	
kBΘD	=	0.0079	eV,	about	10 	of	the	binding	energy.

2.7	The	Lennard-Jones	potential	is	 (r)	=	ε	[(σ/r)12−2(σ/r)6]	where	σ	is	the	equilibrium
separation.	Thus	evaluating	the	derivatives	in	Eq.	(2.67)	at	r	=	σ	gives

2.8	 (a)	 Assume	 that	 the	 phonon	 mean	 free	 path	 is	 about	 the	 same	 as	 the	 specimen
diameter	d;	the	effective	thermal	conductivity	Keff	is	then	 Cvsd.	Thus	inserting	the	given
values	 for	 C	 and	 υs	 gives	 	 W	 m−1	 K−1.	 The	 low-temperature	 thermal
conductivities	of	the	three	specimens	are	fitted	by	0.6	T3,	0.9T3	and	1.9T3,	so	we	estimate
the	diameters	as	1.8,	2.7	and	5.7	mm	respectively.

(b)	The	thermal	conductivity	decreases	by	about	a	factor	of	10	between	50	K	and	100	K.
The	temperature	variation	in	this	region	is	T3	exp	(ΘD/bT)	so	that

from	which	b	=	2.3.



CHAPTER	3
3.1	The	electron	wavefunction	satisfies

outside	the	metal.	For	an	electron	at	the	Fermi	surface	E	–	V	is	–	3	eV	and	the	solution	of
the	Schrödinger	equation	therefore	decays	exponentially	with	a	decay	length

3.2	The	width	of	the	K	emission	band	is	given	by	εF	(section	3.2.4).	From	Eq.	(3.9)	and
N/V	=	2/a3	for	a	body-centred	cubic	structure

The	width	will	increase	slightly	with	increasing	temperature	as	conduction	electrons	are
excited	above	the	Fermi	energy.

3.3	The	energy	is	 .	Inserting	g(ε)	(Eq.	(3.7))	and	integrating	gives

or	E	=	 Nε	F	if	Eq.	(3.8)	is	used.	Hence

Since	εF	∝	V−2/3	(Eq.	(3.9)),	∂εF/∂V	=	– p/V	and	thus	p	=	 NεF/V.

From	this,	p	∝	V−5/3,	so	that	∂p/∂V	=	−	 p/V	and	B	=	−V	∂p/∂V	=	 p	=	 NεF/V.	Inserting
N/V	and	εF	for	potassium	(section	3.2.1)	gives	B	=	0.32	×	1010N	m−2;	comparison	with	the
experimental	bulk	modulus	0.37	×	1010N	m−2suggests	that	most	of	this	is	associated	with
the	conduction	electron	pressure.

3.4	The	increase	in	internal	energy	of	the	conduction	electrons	from	its	value	at	absolute
zero	is

(we	use	γ‘	 for	 the	 electron	 specific	heat	 coefficient	 to	distinguish	 it	 from	 the	Gruneisen
parameter	γ);	the	entropy	of	the	electrons	at	temperature	T	is

The	increase	in	Helmholtz	free	energy	is	therefore	∆E	–	TS	=	–γ‘T2/2.	From	Eq.	 (2.58)
this	gives	a	temperature-dependent	addition	to	the	pressure	(∂	γ‘/∂V)TT2/2;	from	Eqs.	(3.9)



and	 (3.16),	 γ’∝	 V2/3,	 so	 that	 (∂γ‘/∂V)T	 =	 2γ	 ‘/3V.	 The	 additional	 term	 in	 the	 pressure,
through	Eq.	(2.56),	contributes

to	the	thermal	expansion	coefficient,	where	Cel	is	the	electronic	heat	capacity.	Adding	this
contribution	to	that	(Eq.	(2.64))	from	the	lattice	vibrations	gives

for	a	free	electron	metal.

3.5	The	change	in	momentum	along	the	original	direction	of	motion	is	δk	=	 kF(1	–	cos
θ)	≈	 kFθ2/2	≈	 kF(q/kF)2/2	(for	small	θ).

3.6	(a)N/V	for	liquid	3He	is	ρ/mHe	=	81/(3	×	1.7	×	10−27)	=	1.6	×	1028	m−3.	Thus,	from
Eq.	(3.9),

(b)	N/V	for	neutrons	in	a	neutron	star	is	ρ/mN	=	1017/1.7	×	10−27	=	6	×	1043	m−3.	Thus



CHAPTER	4
4.1	Consider	two	arbitrary	linear	combinations	 1	=	a	eikx	+	b	e−ikx	and	 2	=	c	eikx	+	d	e

−ikx.	Orthogonality	requires	∫	 2	dx	=	0;	exploiting	the	fact	that	∫	eiαx	dx	=	0	unless	α	=	0,
this	becomes	a*c	+	b*d	=	0.	Similarly	∫	 V 2	dx	=	0	requires	a*d	+	b*c	=	0	(expand	the
cosine	 terms	 in	 the	 potential	 as	 complex	 exponentials).	 From	 these	we	 deduce	a*/b*	 =
b*/a*	=	–c/d	=	–d/c	and	thus	either	 1	∝	sin	(kx)	and	 2	∝	cos	(kx)	or	vice	versa.

4.2	Consider	waves	 in	 the	 plane	 of	 the	 crystal	 incident	 at	 angle	θ	 to	 the	 (1	 0)	 planes
which	have	spacing	a.	The	Bragg	condition	is	satisfied	if	2a	sin	θ	=	nλ	=	n2π/k,	that	is	if
kx	=	k	 sin	θ	=	nπ/a.	Similarly	 the	Bragg	condition	 for	diffraction	off	 the	 (0	1)	planes	 is
satisfied	if	ky	=	nπ/a.

4.3	The	substitution	of	ψ	 in	 the	Schrödinger	equation	 is	straightforward.	The	 term	cos
(2nπ/a)	can	be	expanded	as	(ei2πx/a	+	e−i2πx/a)/2;	in	integrating	over	all	space	use	is	made
of	the	fact	that	the	integrals	of	the	form	∫	eicx	vanish	unless	c	=	0.	The	resulting	equations
are:

These	 simultaneous	 equations	 for	 α	 and	 β	 have	 non-zero	 solutions	 only	 if	 the
determinant	of	coefficients	vanishes	and	this	determines	the	energy	ε.

4.4	 	=	 (3π2N/V)	=	3π2/a3	 for	 a	 simple	 cubic	 structure,	 so	 that	kF	 =	 3.09/a.	 The	 first
Brillouin	zone	is	a	cube	of	side	2π/a,	so	the	Fermi	sphere	is	just	contained	within	it;	 the
distance	of	closest	approach	is	0.05/a.

Because	 the	 free	 electron	Fermi	 sphere	 is	 so	 close	 to	 the	 zone	boundary,	 the	periodic
lattice	potential	would	almost	certainly	cause	the	Fermi	surface	to	make	contact	with	the
zone	boundary	as	 in	Fig.	4.5.	However	 there	would	be	more	unoccupied	 states	near	 the
zone	corner	than	in	Fig.	4.5	and	there	would	not	be	enough	electrons	to	occupy	any	states
in	 the	 second	 zone.	 In	 three	 dimensions	 such	 contact	 with	 the	 zone	 boundary	 gives	 a
multiply	connected	Fermi	surface:	compare	copper,	Fig.	13.13.

4.5	The	corners	of	a	tetrahedron	are	in	the	directions	[1	1	1],	[ 	 	1],	[1	 	 ]	and	[ 	1	 ];
the	sets	of	coefficients	(ax,	ay,	az)	must	be	proportional	to	these	vectors.	For	normalization

since	the	p	states	are	orthonormal.	The	required	sets	of	coefficients	are	therefore	(1/ ,	1/
,	1/ ),	(−1/ ,	−1/ ,	1/ ),	(1/ ,	−1/ ,	−1/ )	and	(−1/ ,	1/ ,	−1/ ).

For	the	first	of	these	we	have



For	normalization

For	orthogonality,	for	example,

That	is

These	are	satisfied	by	b	=	1/2,	c	=	 /2	so	that	 111	=	 (s	+	px	+	py	+	pz).	The	other	 ’s
can	be	calculated	similarly.

4.6	Normalized	vectors	(β,	λ)	at	120°	to	each	other	are	(1,	0),	(−1/2,	 /2)	and	(−1/2,	−
/2).	Consider	unnormalized	states,	χ1	=	αs	+	Px	and	χ2	=	αs	−	(1/2)px	+	( /2)py;	α	may

be	taken	the	same	in	both	cases	because	the	wavefunctions	differ	only	in	orientation.	For
orthogonality	∫	χ1χ2	dV	=	α2	−	 	=	0	so	that	α	=	1/ .	∫	|χ1|2	dV	=	∫	|s/ 	+	px|2	dV	=	3/2,	so
that	for	normalization	our	states	must	be	multiplied	by	 .	The	required	values	of	(α,	β,
γ)	 are	 (1/ ,	 ,	 0),	 (1/ ,	 −1/ ,	 1/ )	 and	 (1/ ,	 −1/ ,	 −1/ ).	 The	 other
orthogonality	and	normalization	integrals	may	be	checked	in	a	similar	way.

4.7	From	Eq.	(4.20),	d2ε/dk2	=	2Aa2	cos	(ka),	so	that,	using	Eq.	(4.27),

Near	k	=	π/a,	cos	(ka)	≈	−1	so	that	me	≈	− 2/(2Aa	2).

Eq.	(4.20)	can	be	written	ε	=	B	+	2A	cos	(kα	−	π).	Thus	for	k	near	π/a,



CHAPTER	5
5.1	With	the	approximation	 	=	10−34	J	s:

(a)	mh	=	+	5	×	10−32	kg	(Eq.	(5.2)),

(b)	εh	=	+	l0−19	J	(Eq.	(5.3)),

(c)	ph	=	−10−25 	kg	m	s−1	(Eq.	(5.4)),	and

(d)	vh	=	−2	×	106 	m	s−1	(Eq.	(5.5)).

5.2	 The	 intrinsic	 carrier	 concentration	 at	 temperature	 T	 is	 (Eq.	 (5.23))	 AT3/2	 exp
(−EG/2kBT)	=	7	×	1021T	3/2	exp	(−6400/T);	the	constant	A	has	been	chosen	 to	obtain	 the
correct	 answer	 at	 300	 K.	 The	 sample	 will	 cease	 to	 show	 intrinsic	 behaviour	 when	 the
intrinsic	 carrier	 concentration	becomes	of	 the	 same	order	 as	 the	 impurity	 concentration,
i.e.	7	×	1021T3/2	exp	(−6400/T)	 	1018,	which	gives	T	 	360	K.

5.3	(a)	From	Eq.	(5.12)	ED	=	−(me/mε2)	×	13.6	eV	=	6.6	×	10−4	eV.

(b)	From	Eq.	(5.13)	r	=	(εm/me)	×	0.53	Å	=	650	Å.

(c)	 Overlap	 is	 significant	 when	 ND	 ∼	 l/(2r)3	 ∼	 1021	 m−3.	 At	 about	 this
concentration	an	impurity	band	of	mobile	states	is	formed;	see	Section	5.5.1.

5.4	Consider	the	curve	for	donor	concentration	1022	m−3.	The	slope	at	low	temperature
(large	1/T)	corresponds	to	a	decrease	in	σ	by	a	factor	of	100	for	an	increase	in	1/T	of	about
0.04	K−1;	thus

If	we	assume	that	the	temperature	dependence	of	the	conductivity	is	dominated	by	that
of	the	electron	density	as	given	by	Eq.	(5.36),	then	ED/2kB	=	115	K	and	ED	=	3.2	×	10−21	J
=	0.020eV.

5.5	For	sodium

For	InSb	ni	=	0.86	×	1022	m−3	(from	Eqs.	(5.23),	(5.17)	and	(5.21))	so	RH	=	−7.2	×	10−4

m3	C−1;	electrons	are	the	only	effective	carrier	because	their	small	effective	mass	means
they	have	a	high	mobility.

The	Hall	voltage	generated	across	a	sample	of	width	w	and	thickness	t	is	given	by	VH/w
=	RHBi/wt	(inserting	EH	=	VH/w	and	j	=	i/wt	in	Eq.	(3.36));	thus	VH	=	RHBi/t,	independent
of	w.	For	sodium,	VH	=	2.45	×	10−9	V;	and	for	InSb,	VH	=	7.2	×	10−3	V.	This	 illustrates



how	the	smaller	number	of	carriers	in	semiconductors	makes	them	suitable	for	measuring
magnetic	fields	by	the	Hall	effect

5.6	For	a	 single	 type	of	carrier	 the	Hall	effect	gives	 the	 sign	and	concentration	of	 the
carriers.	Measurement	of	the	conductivity	then	enables	the	mobility	to	be	determined	from
Eq.	(5.41).	Cyclotron	resonance	gives	the	effective	mass.

The	condition	for	observation	of	cyclotron	resonance	is	ωcτ	=	eBτ/me	 	1,	i.e.	B	 	me/eτ.
The	 scattering	 time	 is	 l/ 	=	 l/(3kBT/2me)1/2,	where	 the	mean	 free	path	 l	 is	 related	 to	 the
scattering	 cross	 section	 by	 l	 =	 1/NDA.	 The	 condition	 thus	 becomes	 B/T1/2	
NDA(1.5kBme)1/2/e	 ≈	 6	 ×	 10−4	T	K−1/2.	 Thus	 at	 a	 temperature	 of	 4	K	 a	 field	 of	 0.01	 T
should	be	adequate.	At	room	temperature	the	minimum	field	would	be	more	like	0.1	T.	At
4	K	optical	excitation	of	carriers	would	be	necessary.

5.7	The	magnetic	field	is	at	an	angle	θ1	=	30°	to	the	long	axis	of	the	z	axis	ellipsoids	on
Fig.	5.13.	The	direction	θ2	to	the	long	axis	of	x	and	y	axis	ellipsoids	is	given	by	cos2	θ1	+	2
cos2	θ2	=	1;	thus	cos2	θ2	=	1/8.	The	two	electron	resonances	on	Fig.	5.12	occur	at	 fields
0.184	T	and	0.290	T;	since	mL	>	mT	(Fig.	5.13)	and	the	field	makes	a	smaller	angle	to	z
than	 to	x	and	y,	we	 can	 identify	 the	 lower	 field	 resonance	with	 the	 z	 axis	 ellipsoid.	Eq.
(5.58)	then	becomes	for	this	resonance

The	other	resonance	is	associated	with	the	x	and	y	ellipsoids	and	a	similar	equation	can
be	written;	solving	the	two	equations	simultaneously	gives	mT	=	1.75	×	10−31	kg	=	0.19m
and	mL	=	7.8	×	10−31	kg	=	0.86m.

5.8	(a)	For	no	time	dependence,	Eq.	(5.66)	becomes

Assume	the	semiconductor	occupies	the	space	x	>	0,	n‘	−	p‘	has	a	non-zero	value	n0	at	x
=	0	and	p‘	varies	slowly	in	space	on	the	length	scale	λD;	the	solution	is	n‘	=	p‘	+	n0	exp
(−x/λD),	which	has	the	stated	qualitative	behaviour.

(b)	For	no	space	dependence,	Eq.	(5.66)	becomes

with	solution	for	slowly	varying	p‘,	n‘(t)	=	p‘	+	n0	exp	(−t/τD);	this	again	has	the	stated
qualitative	behaviour.

5.9	Differentiating	Eq.	(5.75)	gives

Substitution	shows	that	these	satisfy	Eq.	(5.70b)	when	E	=	0.



The	number	of	holes	per	unit	area	of	cross	section	remaining	at	time	t	is



CHAPTER	6
6.1	 From	 Eqs.	 (6.10)	 the	 carrier	 concentrations	 change	 by	 a	 factor	 2	 when	 eΔ 	 =

0.69kBT,	i.e.	when	Δ 	≈	0.018	V.	From	Eqs.	(6.7)	and	(6.9)	with	NA	=	ND,	 (x)	=	2Δ 0(x
+	wp)2/(wn	+	wp)2	on	the	p	side	of	the	junction;	the	fractional	distance	from	the	edge	of	the
depletion	layer	for	decrease	by	a	factor	2	is	therefore

6.2	Using	data	given,	Δ 0	=	0.68	V	(Eq.	(6.2)),	thus,	from	Eq.	(6.17),	C	=	1.59	×	10−10	F
when	V	=	−1	V	and	C	=	0.63	×	10−10	F	when	V	=	−10	V.	(Do	not	forget	to	multiply	by	the
area	of	the	junction.)	The	resonant	frequency,	l/2π(LC)1/2,	thérefore	changes	from	1262	to
2005	kHz.

6.3	The	electric	charge	density	is	e(ND	−	NA)	=	ekx;	inserting	this	in	Poisson’s	equation
(6.4)	and	integrating	gives

where	 A	 and	 B	 are	 constants	 of	 integration.	 Symmetry	 considerations	 imply	 that	 the
depletion	layer	is	symmetrical	about	x	=	0,	with	width	2w	say.	A,	B	and	w	are	determined
by	the	boundary	conditions:

The	solution	is

6.4	At	V	=	−0.15	V	and	300	K,	exp	(eV/kBT)	 	1	so	that	I	≈	−I0	in	Eq.	(6.22);	thus	I0	≈	5
μA.	With	V	=	+0.15	V,	I	≈	I0	exp	(eV/kBT)	=	1.65	mA.

6.5	From	Eq.	 (5.74)	we	can	write	 the	excess	electron	concentration	on	 the	p	side	as	a
function	of	distance	x	from	the	depletion	layer	edge	as

where	np0	is	the	equilibrium	concentration	in	p	far	from	the	junction.	The	injected	current
is

If	Eqs.	(6.10)	remain	valid	within	the	depletion	layer	then	np(0)	=	nn0	exp	(−eΔ	 /kBT),
where	Δ	 	=	Δ	 0	−	V	is	the	total	potential	drop	across	the	depletion	layer;	we	assume	that
the	electron	concentration	on	the	n	side	is	unchanged	from	its	equilibrium	value	nn0.	In	the
absence	of	a	bias,	nn0	=	np0	exp	(eΔ 0/kBT),	so	that	np(0)	=	np0	exp	(eV/kBT).	Using	this,



Je	becomes

If	the	electrons	are	injected	into	a	base	region	of	width	w,	small	compared	to	Le,	then	the
exponentially	increasing	term	in	Eq.	(5.73)	cannot	be	ignored.	If	w	 	Le	and	n‘	=	0	at	x	=
w,	Eq.	(5.73)	approximates	to	n‘	≈	[np(0)	−	np0](l	−	x/w).	The	above	calculation	then	yields
the	same	expression	for	the	current	except	that	Le	is	replaced	by	w.

6.6	From	Eqs.	 (6.5)	 the	maximum	 field	Emax	 =	NAewp/εε0	 occurs	 at	x	 =	 0.	 For	 finite
reverse	bias,	wp	 is	 given	 by	Eqs.	 (6.9)	with	 Δ 0	 replaced	 by	Δ 0	 +	 |V|;	 for	 |V|	 	 Δ 0,
therefore,	Emax	∝	wp	∝	 |V|1/2.	The	maximum	slope	of	 the	 energy	bands	 in	 the	depletion
layer	 is	 eEmax;	 to	 get	 from	 the	 valence	 band	 to	 the	 conduction	 band	 an	 electron	 must
therefore	 tunnel	 a	 distance	 of	 order	 T	 where	 eEmaxT	 ≈	EG.	 Thus	 T	∝	 1/|V|1/2	 and	 the
tunnelling	current	contains	a	factor	exp	(−b/|V|1/2).	For	an	explanation	of	the	exp	(−2αT)
factor,	see	French	and	Taylor.4

In	time	τ	between	collisions	an	electron	can	acquire	a	velocity	eEmaxτ/me	and	hence	an
energy	 meυ2	 =	 e2 τ2/2me;	 if	 this	 exceeds	 EG	 then	 avalanche	 breakdown	 can	 occur.
Using	Emax	from	above	and	Eq.	(6.9),	with	NA	=	ND,	for	wp,	this	condition	can	be	written
e3τ2ND|V|/2meεε0	>	EG.	The	critical	doping	level	 for	avalanche	breakdown	at	100	V	in	a
silicon	diode	is	therefore	ND	=	8	×	1018	m−3.



CHAPTER	7
7.1	According	to	the	Bohr	model	the	ground	state	of	the	hydrogen	atom	corresponds	to

an	electron	 in	a	circular	orbit	 (mυ2/r	=	e2/4πε0r2)	with	angular	momentum	mυr	=	 .	The
circulating	electron	is	equivalent	 to	a	circular	coil	carrying	a	current	 i	=	eυ/2πr	and	 thus
produces	a	magnetic	 field	at	 the	proton	B	=	μ0i/2r.	 Inserting	values	 for	 i	and	r	 from	the
previous	equations	gives	B	=	πμ0m2e7/8 h5	=	12.6	T.

7.2	See	Fig.	7.2	 for	 assistance.	 For	 the	 4f	 shell,	 l	 =	 3	 and	 lz	 can	 take	 seven	 possible
values:	3,	2,	1,	0,	−1,	−2,	−3.	Calculating	S	 is	 straightforward;	note	 that	S	 is	 symmetric
about	n	=	7.	For	n	 	7,	L	=	3	+	2	+	···	 (n	 terms	 in	all);	 this	 is	an	arithmetic	series	of	n
terms	with	an	average	value	{3	+	[3	−	(n	−	1)]}/2	=	(7	−	n)/2.	Thus	L	=	n(7	−	n)/2	and	L	=
0	when	n	=	7.	On	reaching	the	eighth	electron	the	maximum	L	 is	achieved	by	assigning
this	to	lz	=	3.	For	n	 	7,	therefore,	L	=	3	+	2	+	···;	there	are	n	−	7	terms	of	average	value
(14	−	n)/2.	J	is	obtained	by	use	of	Hund’s	third	rule.

7.3	The	components	of	−μBL	and	−2μBS	along	J	are	−μB	|	L	|	cos	θ	and	−2μB	|	S	|	cos	 .
The	effective	moment	is	therefore

Applying	the	cosine	rule	to	the	triangle	gives:

Using	these	in	the	expression	for	μeff	and	replacing	|L|2,	|S|2	and	|J|2	by	their	eigenvalues
L(L	+	1),	S(S	+	1)	and	J(J	+	1)	gives

7.4	A	single	unpaired	spin	can	have	component	+μB	or	−μB	parallel	 to	 the	field;	 these
states	have	energies	−μBB	and	+μBB	and	thus	probabilities	proportional	to	exp	(+μBB/kBT)
and	exp	(−μBB/kBT)	respectively.	The	magnetization	of	N	ions	per	unit	volume	is	therefore

From	Eq.	 (7.8),	 the	 internal	 energy	E	 is	−M.B	 per	 unit	 volume,	 i.e.	E	 =	−NμBB	 tanh
(μBB/kBT).	The	magnetic	work	−M.dB	 is	zero	in	constant	B,	 so	 that	 the	heat	capacity	at
constant	B	is

For	kBT	 	μBB,



For	kBT	 	μBB,

In	drawing	your	 sketch	make	use	of	 these	 limiting	 forms	and	also	of	 the	 fact	 that	CB
goes	 through	 a	maximum	 value	 ≈	 0.4NKB	 at	μBB/kBT	 ≈	 1.2.	 For	 CuS04	 the	maximum
occurs	at	a	temperature	of	order	0.5	K	in	a	field	of	1	T.

7.5	Write	the	density	of	states	(Eq.	(3.7))	as	g(ε)	=	Aε1/2	per	unit	volume;	in	zero	field	B
the	electron	concentration	is	given	by

from	which	A	can	be	conveniently	written	A	=	3N/2 .	In	finite	B	and	at	T	=	0	the	energy
ε’F	of	the	highest	occupied	level	(Fig.	7.5)	is	no	longer	equal	to	εF	but	must	be	determined
from

Thus

The	magnetization	is

From	 these	 equations	 	 ±	 μBB	 =	 εF(l	 ±	M/Ms)2/3	 where	Ms	 =	NμB	 is	 the	 saturation
magnetization	corresponding	to	N	perfectly	aligned	spins.	Hence

The	field	required	to	achieve	saturation	(M	=	Ms)	is	therefore	Bs	=	εF/21/3μB.	From	Eq.
(3.11),	εF	for	potassium	is	2.12	eV	so	that	Bs	≈	3	×	104	T,	much	higher	than	fields	that	can
be	 applied	 in	 a	 laboratory.	 For	 the	 3He/4He	 mixture	 the	 3He	 concentration	 is	 0.001	 ×
130/(4	×	1.67	×	10−27)	=	1.95	×	1025	m−3;	the	3He	mass	 is	3	×	1.67	×	10−27	kg,	so	 that,
from	Eq.	(3.9),	εF	=	4.8	μeV.	Bs	is	therefore	2.9	T	and	is	achievable	in	a	laboratory;	note
however	that	the	mixture	must	be	cooled	to	below	its	degeneracy	temperature	TF	≈	0.06	K.

7.6	 |A|	 is	 constant	 along	 C	 and	 equal	 to	Φ/2πρ,	 where	 ρ	 is	 the	 radius	 of	 C.	We	 can
conveniently	write	A	=	 Φ/2πρ,	where	 	is	a	unit	vector	parallel	to	C.	Using	the	expression
for	div	in	cylindrical	polar	coordinates	(ρ,	θ,	z)	gives

Note	that,	in	terms	of	the	vector	r	=	(x,	y,	z)	in	Fig.	7.7,	Eq.	(7.35)	can	be	written	A	=	−
r	×	B	=	 B(−y,	x,	0);	thus	curl	A	=	(0,	0,	B)	and	div	A	=	0	for	constant	B.

7.7	The	solution	satisfies	d2A/dx2	=	A/λ2	as	required;	the	solution	∝	exp	(+x/λ)	can	be



discounted	on	the	grounds	that	it	diverges	as	x	→	∞.	The	magnetic	field	is	curl	A	=	 	∂Ay/
∂x	=	−A0 	exp	(−x/λ)/λ	The	current	density,	obtained	using	the	Maxwell	equation	curl	B	=
μ0j,	is	−A0ŷ	exp	(−x/λ)/μ0λ2.

7.8	We	apply	Eq.	(7.39)	to	the	six	electrons	per	molecule	with	extended	wavefunctions;
the	number	of	such	electrons	per	unit	volume	is

and	 for	 randomly	oriented	planar	molecules	 〈r2〉	 =	 〈ρ2〉	 =	 (1.4	Å	 )2.	 Hence	 Eq.	 (7.39)
gives

The	 relatively	 large	 contribution	 of	 the	 electrons	 in	 extended	 orbitals	 to	 the	 total
susceptibility	is	due	to	the	large	〈ρ2〉	for	these	electrons.



CHAPTER	8
8.1	 	and	 	have	the	eigenvalue	 ( 	+	1)	=	 ;	S2	has	the	eigenvalue	0	for	a	singlet	state

and	1(1	+	1)	=	2	for	a	triplet	state.	Thus	for	a	singlet	state	s1	.s2	=	(S2	−	 	−	 )/2	=	(0	−	 	−
)/2	=	−	 ;	 similarly	 for	 a	 triplet	 state	 s1.s2	 =	 (2	 −	 	 −	 )/2	 =	 .	 The	 energy	 difference
between	singlet	and	triplet	states	is	therefore	ET	−	Es	=	−2 [ 	−	(− )]	=	−2

8.2	The	major	 assumption	of	 the	Weiss	model	 is	 that	 a	 spin	 is	 subject	 to	 a	molecular
field	λμ0M	that	depends	only	on	the	average	magnetization	of	the	sample.

Substituting	Eqs.	(8.5)	in	Eq.	(8.1)	and	ignoring	the	term	quadratic	in	the	deviation	of	S
from	〈S〉	gives

where	we	have	used	μi	=	−gμBSi,	M	=	−NgμB	〈S〉	and	defined	λ	by	Eq.	(8.4).

The	internal	energy	E	is	the	average	value	of	H.	Thus

The	magnetic	contribution	to	the	heat	capacity	is

Using	the	limiting	forms	of	Eqs.	(8.13)	and	Eq.	 (8.14)	 for	 the	magnetization	gives	 the
following	mean	field	predictions	for	Cm:

where	we	have	used	Eq.	 (8.10).	The	 heat	 capacity	 increases	 discontinuously	 by	 NkBon
cooling	through	Tc.	We	deduce	that	the	entropy	∫Cm	dT/T	is	continuous	and	the	latent	heat
zero;	mean	field	theory	therefore	predicts	that	the	ferromagnetic	transition	is	second	order
in	zero	applied	field.	In	practice	the	above	results	are	modified	by	fluctuation	effects	near
Tc	and	spin	waves	near	T	=	0	(Eq.	(8.37)).

8.3	Using	Eqs.	(8.2)	and	(8.10)	enables	Eq.	(8.7)	to	be	written

(We	have	used	tanh	(A	+	B)	=	(tanh	A	+	tanh	B)/(l	+	tanh	A	tanh	B).)	Put	t	=	1,	solve	for
h	 and	use	 the	small-argument	expansion	 tanh	x	≈	x	−	 x3	 to	obtain	µBB/kBTc	=	 m	3	 to



lowest	order	in	m.	Hence	M	≈	NµB(3µBB/kBT)l/3.	The	mean	field	exponent	 	is	modified
by	fluctuations.

8.4	λa/λp	=	za/zp	follows	from	Eq.	(8.16).	Inserting	expressions	for	 	and	 (	=	µ0(H	−
λaMA	−	λPMB))	into	Eqs.	(8.17)	and	using	tanh	x	≈	x	gives,	instead	of	Eq.	(8.18),

	and	

Solving	for	the	high-temperature	susceptibility	gives	χ	=	M/H	=	(MA	+	MB)/H	=	C/(T	+
θ),	where	θ	=	(λa	+	λp)C/2.	The	Néel	temperature	TN	is	the	highest	temperature	at	which	a
solution	of	Eqs.	 (i)	with	MA,	MB	≠	0	exists	 in	zero	H:	 thus	 equating	 the	determinant	of
coefficients	to	zero	gives	TN	=	C(λa	−	λp)/2.	Hence	θ/TN	=	(λa	+	λp)/(λa	−	λp)	=	(za	+	zp)/(za
−	zp)	=	3	for	za	=	8	and	zp	=	4.

8.5	For	H	parallel	to	MA

From	Eqs.	(8.17),	the	change	in	MA	induced	by	a	small	field	is

where	M0	is	the	value	of	M	A	in	zero	field	and	C	is	the	Curie	constant.	Similarly	for	the	B
sublattice

From	Eqs.	(8.15),	δ 	=	µ0(H	−	λδMB)	and	δ 	=	µ0(H	−	λδMA);	 inserting	 these	 into
the	above	equations	and	solving	for	δMA	and	δMB	gives

Hence

As	T	→	0,	α	→	0	and	hence	χ	→	0.	As	T	→	TN,	α	→	1	and	χ	→	C/2TN.

For	H	perpendicular	to	MA

To	first	order	 in	H,	 |MA|	and	 |MB|	do	not	change;	 instead	 they	 rotate	 so	as	 to	attain	a
component	parallel	to	the	field.	By	symmetry	and	the	definition	of	χ,	δMA	=	δMB	=	χH/2.
Hence,	from	Eqs.	(8.15),	δ 	=	µ0	(H	−	λδMB)	=	µ0(H	−	λχH/2).	Since	MAand	 	must
remain	parallel



from	which	(1	−	λχ/2)	=	λχ/2,	i.e.	χ	=	1/λ	=	C/2TN	and	is	independent	of	T.

8.6	From	Eq.	 (8.31),	 ω	=	4 S[l	−	cos	 (ka)].	From	Fig.	12.10,	 ω	=	0.0012	eV	when
ka/2π	 =	 0	 and	 ω	 =	 0.045	 eV	 when	 ka/2π	 =	 0.2.	 If	 the	 dispersion	 relation	 correctly
describes	the	difference	between	these	values,	then

	or	

The	 finite	 value	 of	 ω	 at	 k	 =	 0	 suggests	 that	 there	 is	 a	 preferred	 direction	 for	 the
spontaneous	magnetization	within	the	crystal	so	that	a	finite	energy	is	needed	to	rotate	a
spatially	uniform	(i.e.	k	=	0)	magnetization.

8.7	The	straight	line	shows	that	the	heat	capacity	C	=	AT3	+	BT3/2.	The	first	term	is	the
lattice	heat	capacity	(section	2.6)	and	the	second	term	is	the	spin	wave	contribution.	The
slope	of	the	graph	gives	information	on	the	sound	velocity	(Eq.	(2.48))	and	the	intercept
gives	 S	(Eq.	(8.37)).

8.8	Eq.	(8.24)	is	valid	for	both	↑	and	↓	spins.	The	linearized	equations	for	 	and	 	are:

Taking	components,	writing	equations	for	 	and	 	and	 inserting	solutions	as
indicated	gives

which	can	be	written	(cf.	Eq.	(2.19))

The	dispersion	relation	for	antiferromagnetic	spin	waves	is	thus

	or	

For	 small	 ka,	 ω	 =	 4 Ska	 so	 that	 the	 dispersion	 relation	 is	 linear,	 just	 as	 for	 long-
wavelength	phonons.	Hence	the	spin	wave	contribution	to	the	heat	capacity	should	vary	as
T3	at	low	temperatures.

8.9	 The	 film	 thickness	 corresponds	 to	 an	 odd	 number	 of	 half-wavelengths	d	 =	 (2n	 +
l)λ/2,	so	that	k	=	2π/λ	=	π(2n	+	l)/d	and,	from	Eqs.	(8.45)	and	Eq.	(8.34),

From	Fig.	8.12,	(2n	+	1)	=	3	to	(2n	+	1)	=	21	(corresponding	to	δ(2n	+	l)2	=	432)	occurs
for	δBe	≈	0.27	T.	Thus,	inserting	γ	=	e/m,	we	obtain	m*	≈	14m.



CHAPTER	9
9.1	Maxwell’s	equations	governing	the	propagation	of	electromagnetic	waves	through	a

dielectric	medium	are:	curl	H	=	 	and	curl	E	=	–µ0 	(assume	µ	=	1).	Inserting	solutions	D
=	ε(ω)ε0iE0	exp	[i(kz	−	ωt)]	and	H	=	 jH0	 exp	 [i(kz	 −	ωt)]	 gives	ω/k	 =	 l/[ε(ω)ε0µ0]1/2	=
c/[ε(ω)]1/2,	corresponding	to	n(ω)	=	[ε(ω)]1/2.

Let	k	=	k′	+	ik″;	the	amplitude	of	the	wave	then	decays	as	exp	(−k″z)	and	the	energy	as
exp(−2k″z).	 The	 distance	 in	 which	 the	 energy	 decays	 by	 1/e	 is	 thus	 (2k″)−1	 =	 c/	 2ωn″
where	n″	is	the	imaginary	part	of	n(ω).	To	evaluate	n″	use	[n(ω)]2	=	n′2	+	2in′n″	−	n″2	=	ε′
=	iε″;	equating	real	parts	and	imaginary	parts	on	either	side	and	solving	for	n″	gives	n″	=
{[(ε′2	+	ε″2)1/2	−	ε′]/2}1/2	and	hence	the	answer	given	for	the	decay	length.

9.2	From	Eq.	(9.19),	the	refractive	index	n	=	ε1/2	≈	1	−	NZe2/2ε0mω2	(assuming	ε	–	1	is
small);	write	this	as	n	=	1	–	A/ω2.	The	phase	velocity	vp	is	c/(l	–	A/ω2).	Using	k	=	ωn/c	=
(ω	–	A/ω)/c	gives	dk/dω	=	(1	+	A/ω2)/c	=	 .	Hence	vgvp	≈	c2	to	terms	of	order	A/ω2.

9.3	The	Bohr	theory	result	for	the	ground	state	energy	of	an	electron	bound	to	a	nucleus
of	 charge	Ze	 is	E0	 =	Z2me4/32π2 2;	 the	 radius	 of	 the	 orbit	 is	 a	 =	 4πε0 2/Zme2.E0	 can
therefore	be	written	E0	=	(Ze2 2/16πε0ma3)1/2.	Comparison	with	Eq.	(9.18)	shows	that	 ω0

=	E0	if	we	identify	r	=	4l/3a.

9.4	 The	 peaks	 in	 −ε″	 occur	when	ωτ	 =	 1	 (see	 Fig.	 9.5);	 identifying	 −6.5,	 −22.9	 and
−32.9°C	 as	 the	 positions	 of	 the	 peaks	 at	 5000,	 1000	 and	 300	 Hz,	 we	 deduce	 that	 the
relaxation	times	are	31.8,	159.2	and	530.5	µs	at	these	temperatures.	These	are	fitted	well
by	a	temperature	dependence	of	the	form	τ	=	τ0	exp	(T0/T)	with	τ0	=	2.408	×	10−16	s	and	T0
=	6827	K.	Such	a	temperature	dependence	arises	if	rotation	occurs	by	thermal	activation
over	 an	 energy	barrier;	 the	probability	 that	 a	molecule	 has	 sufficient	 energy	 to	 rotate	 is
then	given	by	a	Boltzmann	factor.

9.5	The	reflection	occurs	between	the	frequencies,	ω0	and	ωL,	defined	in	section	9.1.4.
We	use	the	value	of	Young’s	modulus	Y	to	estimate	the	spring	constant	K.	The	spacing	of
ions	in	the	sodium	chloride	structure	(Fig.	1.13)	is	a/2	so	a	slice	perpendicular	 to	 [10	0]
cuts	(2/a)2	springs	per	unit	area.	The	force	per	unit	area	required	to	extend	each	spring	by
δx	 in	 the	 [10	 0]	 direction	 is	 therefore	 (2/a)2Kδx	 =	 Y	 ×	 (extension)/(original	 length)	 =
Yδx/(a/2);	 hence	K	 =	Ya/2	 (note	 that	we	 are	 ignoring	 the	 lateral	 contraction	 that	 occurs
when	a	crystal	is	stretched	in	one	direction).	The	wavelength	λ0	of	light	corresponding	to
the	frequency	ω0	is

From	Eq.	(9.34),



from	Eq.	(9.40),	the	wavelength	λL	of	light	corresponding	to	the	frequency	ωL	is

This	corresponds	reasonably	well	to	the	experimental	data	of	Fig.	9.9(b).

9.6	If	α	is	positive,	β	negative	and	γ	positive	then	F	has	two	minima:	one	at	P	=	0,	the
other	where	 	=	[|β|	+	(|β|2	−	3γα	)1/2]/3γ.	The	value	of	F	at	 this	other	minimum	can	be
written	F	=	F0	+	 (2α/3	−	|β| /3);	this	minimum	is	thus	lower	than	that	at	P	=	0	if	 	>
2α/|β|,	a	condition	that	can	be	rewritten	4αγ	<	|β|2.	4αγ	and	|β|2	are	therefore	equal	at	Tc	and
	is	then	given	by	 	=	(α/γ)l/2	=	|β|/2γ	=	2α/|β|.



CHAPTER	10
10.1	The	decay	of	the	current	is	governed	by	I	=	I0	exp	(−tR/L),	where	R	is	the	resistance

and	L	the	inductance.	Since	I/I0	>	0.98	after	a	time	of	7	×	3600	=	25	200	s	we	deduce	that
L/R	>	–25	200/ln	0.98	=	1.25	×	106	s.

The	current	flows	on	the	inner	walls	of	the	tube.	To	estimate	L	we	calculate	the	field	due
to	 two	 parallel	 current	 sheets	 of	 dimensions	 0.003	 m	 and	 0.02	 m	 parallel	 and
perpendicular	to	the	current;	using	Ampere–s	law	∮B.dl	=	0.02B	=	µ0I	gives	B	=	µ0I/0.02.
The	 flux	 linked	 with	 the	 tube	 is	 Φ	 =	B	 ×	 0.003	 ×	 d	 where	d	 is	 the	 effective	 distance
between	the	sheets,	which	we	estimate	as	the	actual	gap	(5	×	10−7	m)	plus	two	penetration
depths	(10−7	m);	hence	L	=	Φ/I	=	µ0	×	0.003	×	6	×	10−7/0.02.	To	relate	R	to	the	resistivity
we	use	R	=	ρl/A	=	ρ	×	2	×	0.003/(0.02	×	λ);0.02	×	λ	is	the	effective	area	since	the	current
flows	only	within	λ	of	the	surface.

Thus	L/R	=	µ0	×	6	×	10−7	×	10−7/2ρ	>	1.25	×	106	s,	so	that	ρ	<	4	×	10−26	Ω	m.	The	value
for	copper	at	room	temperature	is	1.6	×	10−8	Ω	m.

10.2	The	field	B	at	the	surface	of	a	wire	of	radius	a	carrying	a	current	I	is	µ0I/2πa.	The
critical	field	of	tin	at	2	K	is	(Eq.	(10.1))	Bc(2)	≈	Bc(0)[l−(T/Tc)2]	=	21.7	mT.	The	critical
current	that	gives	this	field	is	Ic	=	2πaBc/µ0	=	54	A.	Since	Ic	∝	a,	a	wire	of	diameter	100	×
1/54	mm	=	1.85	mm	would	have	Ic	=	100	A.

10.3	Inserting	Eq.	(10.1)	into	Eqs.	(10.6),	(10.7)	and	(10.8)	gives

At	T	=	Tc,

10.4	We	assume	that	the	flux	penetration	in	the	mixed	state	is	almost	perfect	so	that	M	≈
0	and,	from	Eq.	(10.4),	Gs(Be,	T)	≈	Gs(0,	T).	The	Cooper	pairing	of	opposite-spin	electrons
reduces	 the	Pauli	spin	susceptibility	 (section	7.2.4)	of	 the	superconductor	 to	zero	at	 low
temperatures.	For	the	normal	(N)	state	M	=	χpH	=	χpB/µ0	so	that	Eq.	(10.4)	gives	GN(Be,
T)	=	GN(0,	T)	–	χpB2/2µ0.	The	upper	critical	field	Bc2	is	then	given	by

The	free	energy	difference	GN	−	Gs	corresponds	approximately	to	a	fraction	kBTc/εF	of



the	N	electrons	per	unit	volume	having	 their	energy	reduced	by	kBTc	 so	 that	GN(0,	T)	−
Gs(0,	T)	 ≈	N(kBTc)2/εF.	 Using	 χp	 from	Eq.	 (7.23)	 then	 allows	 us	 to	 write	 the	 Clogston
limiting	field	as	Bc2	≈	kBTc/µB.

10.5	For	a	thin	film,	both	terms	in	Eq.	(10.12)	must	be	retained	and	the	constants	a	and	b
chosen	to	satisfy	the	boundary	conditions	B	=	Be	at	z	=	±	d/2.	B	=	Be	cosh	(z/λ)/cosh	(d/2λ)
is	the	appropriate	solution.

There	is	a	screening	current	density	j	=	curl	B/µ0	in	the	plane	and	this	is	equivalent	to	a
magnetization	M,	 where	 curl	M	 =	 j;	 we	 deduce	µ0M	 =	B	 −	Be	 (Be	 is	 the	 integration
constant	 chosen	 to	 ensure	 that	 M	 =	 0	 when	 B	 =	 Be).	 With	 a	 spatially	 varying
magnetization,	Eq.	(10.4)	becomes

where	the	1/d	factor	ensures	that	the	free	energy	difference	is	per	unit	volume.	Inserting
M	=	(B	−	Be)/µ0	with	B	as	obtained	above	and	integrating	gives

The	free	energies	of	the	S	and	N	states	are	equal	when	∆G	is	given	by	Eq.	(10.6).	The
critical	field	for	the	film	is	therefore	given	by

where	Bc	 is	 the	 bulk	 critical	 field.	 For	d	 	λ	 this	 becomes	Be	 ≈	Bc λ/d	 so	 that	 the
penetration	of	the	field	into	the	film	increases	the	critical	field.	Our	calculation	is	not	very
good	 quantitatively	 because	 it	 ignores	 the	 effect	 of	 the	 field	 on	 the	 density	 of
superconducting	electrons.

10.6	Eq.	(10.10)	becomes

so	 that,	 proceeding	 as	 in	 section	 10.3,	 Eq.	 (10.14)	 for	 the	T	 =	 0	 penetration	 depth	 is
modified	to

Hence	λ3	=	 (0)ζ

10.7	(a)	 Photons	 of	wavelength	 0.9	mm	 are	 energetic	 enough	 to	 break	Cooper	 pairs;
photons	of	wavelength	1.1	mm	are	not.	Using	Eq.	(10.16),	we	deduce	that	the	energy	gap
satisfies	0.56	meV	<	∆	<	0.69	meV.

(b)	 The	 superconducting	 (paired)	 electrons	 are	 highly	 ordered	 and	 cannot	 transport
entropy.	 The	 conduction	 electron	 contribution	 to	 the	 thermal	 conductivity	 is	 therefore
absent	in	superconductors	for	T	 	Tc.



(c)	The	critical	field	is	given	by	Eq.	(10.6)	where	the	free	energy	difference	corresponds
approximately	to	a	fraction	kBTc/εF	of	the	N	electrons	per	unit	volume	having	their	energy
reduced	by	kBTc	so	that	GN(0,	T)	−	Gs(0,	T)	≈	N(kBTc)2/εF.	Since	N/εF	is	approximately	the
same	for	metals	we	deduce	that	Bc	is	approximately	proportional	to	Tc.

(d)	 This	 is	 an	 indication	 that	 lattice	 vibrations	 are	 involved	 in	 the	 superconducting
transition.	Lattice	vibration	frequencies	are	lower	in	heavier	isotopes.

10.8	 Substituting	 the	 given	 order	 parameter	 into	 Eq.	 (10.27)	 gives	 j	 =	 –ens q/2m	 −
nse2A/m.	Maxwell’s	 equation	 curl	H	 =	 j	 can	 be	written	 –∇2A	 =	µ0j	 if	 div	A	 =	 0,	 and
inserting	 the	expression	for	j	 into	 this	enables	A	 to	be	calculated.	 If	we	assume	 that	 the
second	term	in	j	is	small	then	A	≈	µ0ens z2q/4m	(this	satisfies	div	A	=	0	and	A	=	0	at	z	=
0).	Inserting	this	in	the	expression	for	j	gives	the	ratio	of	the	first	and	second	terms	as	1:
µ0nse2z2/2m,	which	1:	z2/2 (T)	(λL(T)is	given	by	Eq.	(10.14)	with	n	→	ns).

10.9	The	requirement	div	A	=	0	follows	from	applying	charge	conservation,	div	j	=	0,	to
Eq.	 (10.10).	 If	 the	change	A	→	A	+	∇χ	 is	 to	 leave	 j	unchanged	 then	∇θ	 in	Eq.	 (10.27)
must	change	in	accordance	with	∇θ	→	∇θ	–	2e∇χ/ ,	that	is	θ	→	θ	−	2eχ/ .	The	change	in
order	parameter	is	thus	 (r)	e−2ieχ/ .

10.10	(a)	1108	J	m−3	(insert	Bc	=	53	mT	in	Eq.	(10.6)).

(b)	From	Fig.	10.6,	ΔC	 =	Cs	 −	CN	 =	 2.1	mJ	mol−1	 K−1	 =	 210	 J	m−3	 K−1.	 From	Eq.
(10.8),	dBc/dT	=	–(µ0ΔC/Tc)1/2	=	–0.015	T	K−1	at	T	=	Tc.

(c)	The	‘average’	slope	of	Fig.	10.16(b)	corresponds	to	15.2	µT	per	flux	quantum.	The
area	is	therefore	Φ0/15.2	×	10−6	=	1.36	×	10−10	m2.

(d)	The	onset	of	single-particle	tunnelling	at	V	=	2.7	mV	corresponds	to	eV	=	2Δ.	Hence
Δ	=	1.35	meV	=	2.16	×	10−22	J.

(e)	From	Eq.	(10.40),	the	steps	occur	at	voltage	intervals	ΔV	=	hv/2e	=	vΦ0.	Thus	Φ0	=
ΔV/v	=	150	×	10−6/72	×	109	=	2.08	×	10−15	T	m2.

(f)	For	two	junctions	with	different	critical	currents	the	total	current	is	I	=	Ia	sin	δa	+	Ib
sin	δb;	δa	−	δb	is	equal	to	2πΦ/Φ0	(Eq.	(10.42))	but	δa	+	δb	adjusts	itself	to	match	the	input
current.	It	is	straightforward	to	show	that	the	maximum	supercurrent	is	Ia	+	Ib	when	Φ	=
nΦ0	and	the	minimum	supercurrent	is	|Ia	−	Ib|	when	Φ	=	(n	+	 )Φ0.	The	distance	between
maxima	on	Fig.	10.23(b)	is	4.04	µT	and	since	this	corresponds	to	Φ0	we	deduce	the	area
of	the	loop	is	5.1	×	10−10	m2.



CHAPTER	11
11.1	Solving	the	equations,	mu	=	mυ	+	MV	and	 mu2	=	 mυ2	+	 MV2,	for	conservation

of	momentum	and	energy	we	find:

fraction	of	momentum	carried	away	by	M	is

fraction	of	energy	carried	away	by	M	is

11.2	To	prove	that

insert	a*,	b*	 and	 c*	 from	 Eqs.	 (11.9)	 and	 use	 the	 vector	 identities:	A	 ×	 (B	 ×	C)	 =
(A.C)B	−	(A.B)C,	A.(B	×	C)	=	B.(C	×	A)	and	A	×	A	=	0.

11.3	The	four	possible	values	of	|S|2	are:

11.4	The	structure	factor,	obtained	by	summing	over	atoms	at	r1	=	0	and	r2	=	 (a	+	b	+
c)	is	S	=	f{l	+	exp	[−iπ(h	+	k	+	l)]}.	Thus	S	=	0	if	(h	+	k	+	l)	is	odd	and	S	=	2f	if	(h	+	k	+	l)
is	even.	This	eliminates	alternate	points	in	the	simple	cubic	reciprocal	lattice	and	turns	it
into	the	fcc	reciprocal	lattice	of	the	bcc	structure.

11.5	 Let	 ,	 ,	 	 and	 ,	 ,	 	 be	 the	 reciprocal	 lattice	 vectors	 of	 the	 primitive	 and
conventional	 lattice	vectors	 as	given	by	Eqs.	 (11.16)	and	(11.14)	 respectively.	The	 (hkl)
reflection	referred	to	the	primitive	lattice	vectors	has	scattering	vector	Δk	=	h 	+	k 	+	l .
Using	Eqs.	(11.16)	and	(11.14),	this	can	be	written	Δk	=	(−h	+	k	+	l) 	+	(h	−	k	+	l) 	+	(h
+	k	−	l) .	Thus:

To	calculate	 the	values	of	a(sin	θ)/λ,	we	have	used	2d	 sin	θ	=	λ	with	d	=	a/(h2	+	k2	+
l2)1/2	 (problem	 1.4),	 where	 the	 Miller	 indices	 are	 for	 the	 conventional	 unit	 cell.	 The



conventional	 labels	have	 the	advantage	 that	 the	Miller	 indices	are	similar	 for	 reflections
related	by	symmetry.

11.6	Taking	a	Cs+	ion	of	form	factor	f+	at	(0,	0,	0)	and	a	Cl−	ion	of	form	factor	f−	at	( ,	 ,
)	gives	S	=	f+	+	f−	exp	[−iπ(h	+	k	+	l)].	Hence	S	=	f+	+	f–	if	(h	+	k	+	l)	is	even	and	S	=	f+	−
f−	if	(h	+	k	+	l)	is	odd.

11.7	The	spacing	of	the	(hkl)	planes	is	d	=	a/(h2	+	k2	+	l2)1/2	(problem	1.4).	The	Bragg
law	can	therefore	be	written	a	=	(h2	+	k2	+	l2)1/2λ/2	sin	θ.	The	average	value	of	a	obtained
using	this	formula	is	a	=	4.05	Å.

11.8	 The	 diagram	 below	 shows	 the	 mapping	 of	 the	 third	 (left)	 and	 fourth	 (right)
Brillouin	zones	into	the	first:

The	 diagram	 below	 shows	 the	mapping	 into	 the	 first	 zone	 of	 the	 nearly	 free	 electron
energy	contours	from	the	third	zone.	Maxima	(M),	minima	(m)	and	saddle	points	(S)	are
identified:

11.9	 The	 shortest	 reciprocal	 lattice	 vector	 in	 the	 bcc	 reciprocal	 lattice	 (unit	 cell	 side
4π/a)	of	an	fcc	real	space	lattice	is	from	the	cube	corner	to	the	body-centred	position	and
has	length	 	 	is	half	this.	Since	there	are	four	electrons	per	cubic	unit	cell	
	=	3π2N/V	=	12π2/a3.	Thus,	for	fcc,

The	shortest	reciprocal	lattice	vector	in	the	fcc	reciprocal	lattice	(unit	cell	side	4π/a)	of	a
bcc	real	space	lattice	is	from	the	cube	corner	to	the	face-centred	position	and	has	length	

	 so	 that	 .	With	 two	 electrons	 per	 cubic	 unit	 cell	 	 =	 3π2N/V	 =	 6π2/a3.
Thus,	for	bcc,

The	lower	value	of	the	ratio	for	bcc	accounts	(at	least	in	part)	for	the	fact	that	sodium
has	an	almost	spherical	Fermi	surface,	but	that	of	copper	touches	the	hexagonal	faces	of



the	Brillouin	zone	(see	Fig.	13.13).



CHAPTER	12
12.1	(a)	f	is	proportional	to	∫n	exp	(−iK.r)	dV,	where	n	=	3Z/4πR3	is	the	electron	density,

the	 integral	 is	over	 the	volume	occupied	by	 the	atom,	K	 is	 the	scattering	vector	and	 the
phase	factor	arises	in	the	same	way	as	in	Eq.	(11.2).	To	evaluate	the	integral	use	spherical
polar	coordinates	centred	on	the	atom	with	K	along	z;	thus	K.r	=	Kr	cos	θ,	dV	=	2πr2	sin	θ
dr	dθ	and

The	dependence	on	scattering	angle	follows	from	Fig.	11.4,	which	shows	that	K	=	2k	sin
θB	 =	 4π(sin	 θB)/λ;	 we	 use	 the	 notation	 θB	 to	 distinguish	 the	 Bragg	 angle	 θB	 from	 the
spherical	polar	angle	θ	used	in	evaluating	the	integral.	The	form	factor	f	is	thus	a	function
of	(sin	θB)/λ	of	the	form	of	Fig.	11.7:

(b)	b	is	proportional	to	∫	n′	exp	(−iK.r)	dA,	where	n′	=	μ/4πR2	and	the	integral	is	over	the
surface	of	the	sphere.	Introducing	spherical	polar	coordinates	as	above,

Inserting	K	=	2k	sin	θB	shows	that	this	falls	off	in	a	similar	way	to	the	form	factor	for	the
scattering	of	x-rays.

12.2	Momentum	conservation,	k1	=	k2	+	q,	gives

Energy	conservation	gives	 qc	=	 2( 	−	 )/2m,	where	c	is	the	velocity	of	sound	and	m
the	neutron	mass.	Elimination	of	q	gives

For	0.02	eV	neutrons	k1	=	3.1	×	1010	m−1	so	that	 k1/mc	≈	6.8,	which	implies	k1	≈	k2	and
q	≈	k1θ.	Hence	ΔE	≈	– k1θc	=	–1.71	×	10−22	J	=	–1.07	×	10−3eV.

Initial	 time	 of	 flight	 t	 =	 5.2	 ms.	 Since	 t	 is	 inversely	 proportional	 to	 velocity,	 the
fractional	change	Δt/t	=	– (ΔE/E)	=	+1.07/(2	×	20)	and	Δt	=	+0.14	ms.

For	sapphire	 k1	<	mc	 and	 a	 small-angle	 solution	 to	 the	 above	equations	with	k1	 ≈	k2
cannot	be	found,	and	there	is	no	scattering	near	the	origin	of	reciprocal	space.	But	if	we
choose	a	 larger	 scattering	angle	 so	 that	k1	–	k2	≈	G	 a	 phonon	of	 small	wavevector	 and
hence	small	energy	can	be	created.	That	 is	why	 inelastic	neutron	scattering	experiments



are	usually	done	near	reciprocal	lattice	points	other	than	the	origin.

12.3	 The	 observed	 reflections	 and	 their	 relative	 intensities	 obey	 the	 rules	 derived	 in
Section	11.2.4	for	the	diamond	structure.	The	Bragg	angle	for	the	peaks	is	45°	so	that	the
Bragg	 law	 is	 ,	 which	 can	 be	 written	 a	 =	 (h2	 +	 k2	 +	 l2)1/2λ/ 	 (see	 solution	 to
problem	11.7).	The	average	value	of	a	obtained	from	this	formula	is	5.385	Å.

12.4	The	cubic	unit	cell	of	the	fcc	reciprocal	 lattice	of	the	bcc	structure	has	side	4π/a;
the	 first	 Brillouin	 zone	 is	 the	 rhombic	 dodecahedron	 (Fig.	 1.9)	 with	 boundaries	 at
distances	2π/a	(=	|G100|/2),	 π/a	(=	|G111|/4)	and	 π/a	(=	|G110|/4)	from	the	origin	in	the
[1	0	0],	[1	1	1]	and	[1	1	0]	directions	respectively.	The	magnitudes	of	the	reciprocal	lattice
vectors	 can	 be	 calculated	 from	 information	 given	 in	 the	 previous	 sentence	 and	 thus	 the
sound	velocities	 2πv/q	 can	 be	 obtained	 from	 the	 initial	 (q	→	0)slopes	 of	 the	 dispersion
curves.	Hence:

(i)	The	atomic	displacements	are	unchanged	if	any	reciprocal	lattice	vector	is	added	to
q.	 If	we	add	the	reciprocal	 lattice	vector	(2π/a)(j	−	i)	 (this	gives	one	of	 the	face-centred
reciprocal	 lattice	 points)	 to	 q	 =	 (2π/a)i	 (this	 is	 the	 point	 on	 the	 first	 Brillouin	 zone
boundary	in	the	[1	0	0]	direction)	we	obtain	q′	=	(2π/a)j,	which	must	give	the	same	atomic
displacements	as	q.	Since	q	and	q′	are	orthogonal	such	a	change	converts	a	 longitudinal
mode	 into	 a	 transverse	mode	and	vice	versa.	Longitudinal	 and	 transverse	modes	 cannot
therefore	be	distinguished	at	the	point	q	=	(2π/a)i.

(ii)	q	 =	 	G111	 =	 (2π/a)(i	 +	 j	 +	k)	 and	q	 =	 G100	 =	 (2π/a)i	 are	 equivalent	 points	 in
reciprocal	space	separated	by	the	reciprocal	lattice	vector	(2π/a)(i	+	j).

(iii)	 Only	 the	 component	 of	 Δω	 perpendicular	 to	 the	 Brillouin	 zone	 boundary	 must
vanish:	the	direction	[1	1	1]	does	not	intersect	the	Brillouin	zone	boundary	at	right	angles.

12.5	The	 helical	modulation	 of	 the	magnetic	 structure	 has	 a	 similar	 effect	 on	 neutron
scattering	to	that	of	a	spin	wave.	Thus	additional	(satellite)	peaks	occur	close	to	the	Bragg
peaks	at	angles	determined	by	Eq.	(12.11),	k′	=	k	+	q	+	G.	The	wavevector	q	of	the	spiral
is	in	the	z	direction	and	the	pitch	of	the	spiral	is	2π/|q|;	the	details	of	the	magnetic	structure
can	therefore	be	deduced	from	the	positions	of	the	satellites.	Since	the	spiral	structure	is
static,	the	scattering	is	elastic.

12.6	The	Bragg	angle	θ	is	half	the	scattering	angle	and	sin2	θ	is	proportional	to	(h	2+	k	2

+	l	2)	for	a	cubic	structure	(problem	11.7).	Since	the	reflection	at	2θ	=	11.9°	is	identified	as
the	(1	1	1)	reflection	of	the	magnetic	unit	cell,	we	deduce	(h	2+	k	2	+	l	2)	≈	19	and	27	for
the	other	two	peaks;	these	are	the	(3	1	1)	and	(5	1	1)	reflections	from	the	magnetic	cell.
The	 chemical	 unit	 cell	 has	 half	 the	 linear	 dimension	 of	 the	 magnetic	 cell;	 the	 Miller
indices	for	the	chemical	cell	are	thus	( , , ),	( , , )	and	( , , ).

12.7	Suppose	a	monolayer	consists	of	one	O2	molecule	per	(3	Å)2,	i.e.	about	1019	mole-
cules/m2.	Molecules	collide	with	the	surface	at	a	rate	of	order	 n 	per	unit	area	per	second



where	n	 is	 the	 concentration	 in	 the	 gas	 and	 	 the	mean	 speed.	Using	p	=	 nkBT	 for	 the
pressure	and	 	≈	(kBT/M)l/2	we	obtain	times	of	order:	6	×	10−9	s,	6	×	10−3	s	and	6	×	10−3	s
at	pressures	of	1,	10−6	and	10−12	bar.



CHAPTER	13
13.1

Take	E	along	z	and	use	spherical	polars;	j	is	along	z	so	we	need	the	z	component	of	dSF,
which	is	|dSF|	cos	θ	=	 	sin	θ	cos	θ	dθ	d ).	Also	vF.	Ê	is	vF	cos	θ.	Thus

13.2	 (a)	 The	 area	 of	 a	 constant	 energy	 circle	 in	 a	 plane	 perpendicular	 to	 B	 is	
	the	energy	is	ε	=	 2k2/2me.	Thus

Note	 that	 this	 is	 independent	 of	 which	 cross	 section	 perpendicular	 to	 the	 field	 is
considered.

(b)	 (1/me)xx	 =	 (1/me)yy	 =	 1/mT,	 (1/me)zz	 =	 1/mL.	 All	 other	 components	 (e.g.	 (1/me)xy)
vanish.	Magnetic	 field	 is	 included	 in	 Eq.	 (13.12)	 by	 replacement	Ej	→	 Ej	 +	 (v	 ×	B)j;
writing	 the	 resulting	 equation	 in	 component	 form	 with	 B	 =	 B(sin	 θ,	 0,	 cos	 θ),	 and
substituting	a	solution	of	the	form	vx	=	v1eiωtvy	=	v2	eiωt,	vz	=	v3eiωt,	leads	to	Eq.	(5.58).

13.13	From	Eqs.	 (13.23)	 and	 (13.25),	 δ(1/B)	=	 e/ωmc.	 From	 the	 data	 given	 δ(1/B)	 =
0.345	T−1	whence	mc	=	1.08	×	10−30	kg.

13.4	Consider	 the	 cyclotron	orbit	 corresponding	 to	 the	n	 =	 0	Landau	 level.	 From	Eq.
(13.28),	its	radius	in	k-space	is	(eB/ )1/2.	From	section	13.3.1	the	radius	rc	in	real	space	is	
/eB	 times	 this;	 thus	 rc	 =	 ( /eB)1/2.	 For	 free	 electrons	 ωc	 ≈	 εF	 implies	 εF	 /m	≈	 εF	 and
hence	rc	≈	( /mεF)l/2≈	 .	A	wavepacket	with	a	well	defined	energy	of	order	εF	must	have
a	size	 	 .

13.5	Use	Eq.	(C2),	 	=	(–i ∇	+	eA)2/2m,	to	obtain	the	Schrodinger	equation	in	the	form
given.	Since

and	∂2 /∂z2	 =	− ,	 substituting	 the	 proposed	 solution	 and	 cancelling	 exp	 [i(βy	 +	 kzz)]
gives	 the	 required	 equation	 for	 u(x).	 The	 substitution	 x′	 =	 x	 –	 βy/eB	 shows	 that	 the



particle	is	moving	in	a	potential	 m(eB/m)2x′2	=	 ,	where	ωc	=	eB/m	is	the	cyclotron
frequency.	Comparison	with	the	potential	energy	of	a	simple	harmonic	oscillator	identifies
ωc	as	the	frequency;	the	energy	levels	E′	are	therefore	(n	+	 )	 ωc	and	the	total	energy	E	is
given	by	Eq.	(13.26)

13.6	 Estimating	 108	 oscillations	 between	 fields	 10.70	 and	 10.93	 T	 and	 using	 Eq.
(13.30),	δ(1/B)	=	−δB/B2	=	0.23/(108	×	10.82)	=	2πe/ AF.	Thus	AF	=	5.2	×	1020	m−2.	For
free	 electrons,	 kF	 =	 (3π2N/V)1/3	 so	 that	AF	 =	 π 	 =	 5.8	 ×	 1020	m−2.	 The	 Landau	 level
spacing	 ωc	must	be	large	compared	to	kBT;	thus	T	 	 ωc/kB	=	eB /mckB	≈	13	K.	Electrons
must	complete	many	cyclotron	orbits	between	collisions,	ωcτ	 	1;	thus	1/τ	=	ni/1014	 	ωc,
whence	ni	 	1.8	×	1026	m−3.

13.7	Averaging	the	peak	separations	gives	 ωP	=	10.7	eV	so	that	ωP	=	1.62	×	1016	S−1.
The	conduction	electron	density	is	2	×	4.3	×	1028	m−3	so	that,	from	Eq.	(13.41),	ωP	=	1.65
×	1016	S−1.

13.8	Including	a	collision	term	–mnv/τ	on	the	left-hand	side	of	Eq.	 (13.34)	means	 that
Eq.	 (13.40)	 is	modified	 to	d2n/dt2	+(1/τ)	dn/dt	+	 (n	–	n0)	=	0.	This	 is	 the	 equation	of
motion	of	a	damped	simple	harmonic	oscillator;	the	plasma	oscillations	have	a	frequency	(
	–	1/4τ	2)1/2	and	their	amplitude	decays	as	exp	(–t/2τ).	Critical	damping	corresponds	to

zero	 frequency;	 thus,	 for	 oscillatory	 behaviour,	 	 >	 1/4τ2	 or,	 using	 Eq.	 (13.41),	 n0	 >
mε0/4e2τ2.	For	τ	=	10−12	s,	the	critical	concentration	is	8	×	1019	m−3.	The	limit	ωPτ	 	1	is
that	discussed	for	semiconductors	in	section	5.6.2;	at	such	low	concentrations	the	carriers
are	no	longer	degenerate	at	room	temperature.

13.9

The	 point	 charge	 –e	 contributes	 a	 charge	 density	 –eδ(r)	where	δ(r)	 is	 the	Dirac	 delta
function	(zero	everywhere	except	r	=	0	and	infinite	at	r	=	0	so	that	∫(–e)δ(r)4πr2	dr	=	–e).
The	point	charge	contributes	a	term	–eδ(r)/ε0	to	the	right-hand	side	of	Eq.	(13.35);	hence	it
contributes	δ(r)/A	2	to	the	right-hand	side	of	Eq.	(13.42)	and	integrating	this	over	a	small
sphere	of	radius	r	gives	∫δ(r)4π	r2	dr/λ2	=	1/λ2.	Integrating	the	left-hand	side	of	Eq.	(13.42)
gives



using	the	value	of	dn/dr	calculated	above.

13.10	 The	 response	 of	 the	 electrons	 to	 a	 point	 charge	 +e	 is	 the	 negative	 of	 that,	 Eq.
(13.44),	to	a	point	charge	–e.	Thus	n	–	n0	=	exp	(–r/λ)4πλ	2r.	The	potential	associated	with
this	charge	distribution	is	given	by	Poisson’s	equation∇2 	=	–ρ/ε0	=	–	[∇e(n	–	n0)]/ε	0	=	e
exp	(∇r/λ	)4π	ε0λ	2r.	We	have	seen	in	solution	13.9	that	∇2[exp	(∇r/λ)/r]	=	exp	(∇r/λ)/rλ	2
so	 that	 the	 potential	 that	 satisfies	 Poisson’s	 equation	 is	 	 =	 e	 exp	 (–r/λ)/4πε0r.	 Our
discussion	in	 the	previous	problem	shows	that	 	also	obeys	Poisson’s	equation	at	r	=	0,
where	ρ(r)	=	+	e	δ(r).

13.11	Since	the	carriers	in	a	semiconductor	are	non-degenerate,	we	use	the	classical	gas
result	p	=	nkBT	rather	than	Eq.	(13.36)	in	deriving	the	equation	for	n;	we	also	include	the
dielectric	constant	ε	in	Eq.	(13.35).	The	screening	length	λ	of	Eq.	(13.43)	is	modified	to	λ
=	(kBTεε0/n0e	2)1/2,	which	is	just	the	Debye	length	of	Eq.	(5.68).	The	‘Bohr	radius’	r1	 for
the	 impurity	bound	state	 is	given	by	Eq.	 (5.13).	The	condition	 for	metallic	behaviour	 is
thus	λ	<	r1,	which	gives	n0	>	1.3	×	1022	m−3at	T	=	2.5	K,	 in	 reasonable	agreement	with
Fig.	13.18.



CHAPTER	14
14.1	Using	Eq.	(14.6)	for	an	infinite	well,	the	photon	energy	for	a	transition	between	the

nth	bound	states	in	the	conduction	and	valence	bands	is

The	calculation	of	the	bound	states	of	a	finite	well	 is	discussed	in	chapter	4	of	French
and	Taylor.4

14.2	The	binding	energy	is	E	=	μe4/8h2ε2 ,	where	μ	=	memh/(me	+	mh)	 is	 the	reduced
mass;	thus	E	=	0.0046	eV.

14.3	The	slope	of	the	dashed	line	on	Fig.	14.7	is	1.623	kΩ	T−1	K	From	Eq.	(14.13)	 the
slope	is	1/nAe;	we	deduce	nA	=	3.85	×	1015	m−2.	From	Eq.	 (14.13)	 the	scattering	 time	 is
me/nAe2ρL	 =	 7.9	 ×	 10−12	 s.	 Using	 the	 constant	 density	 of	 states	 g	 (ε)	 =	me/π	 2	 of	 Eq.
(14.9),	 εF	 =	 nA/g(ε)	 =	 0.0132	 eV	 and	 hence	 vF	 =	 (2εF/me)1/2	 =	 2.57	 ×	 105	 m	 s−1.	 The
cyclotron	frequency	ωc	is	eB/me,	so	that	VCτ	=	ωc/2π	=	1	when	B	=	0.3	T.	Departures	from
the	classical	Hall	effect	begin	to	appear	on	Fig.	14.7	at	a	field	of	this	order.	The	separation	
	ωc	between	Landau	levels	must	exceed	kBT	for	observation	of	the	steps;	this	requires	B	>
0.01	T	at	T	=	8	mK	and	B	>	10	T	at	T	=	8K.
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Landé	g-factor

Langevin	susceptibility	calculation

Laser

Lattice

diffraction	from

planes

potential

vectors

vibrations

dependence	of	frequency	on	volume

Laue	conditions	for	diffraction

photograph

Law	of	mass	action

Lead

de	Haas–van	Alphen	frequencies

Fermi	surface

magnetization	curves

LEED

Lennard–Jones	potential

Light	emitting	diode	(LED)

Linar	combination	of	atomic	orbitals

Liquid	phase	epitaxy

Lithium	fluoride,	refractive	index

Lithography

Local	current-field	relation

Local	field

electric

magnetic

Localization

Lodestone

London	equation



force

Longitudinal	lattice	vibrations

Lorentz

force

local-field	relation

Lorenz	number

Loss	tangent	of	dielectric

Low–dimensional	systems	(LDS)

Lyddane–Sachs–Teller	relation

Macroscopic	electric	field

magnetic	field

Macroscopic	quantum	phenomena

Magnesium	inelastic	neutron	scattering	from

plasmons

Magnetic

susceptibility,	see	Susceptibility

vector	potential

work

Magnetite

Magnetization

Magnetoresistivity

Magnetostriction

Magnons

Majority	carrier

Manganese	difluoride,	magnetic	susceptibility

oxide,	antiferromagnetic

structure

Matrix	elements

Matthiesen’s	rule

Mean	field	theory

failure	of



of	antiferromagnetism

of	ferroelectricity

of	ferromagnetism

of	superconductors

Mean	free	path

electron

phonon

Meissner	effect

Mercury

superconducting	transition

critical	field

Metallic	bonding

Miller	indices

Minority	carrier

lifetime

Mixed	bonding

Mobility

Molecular	beam	epitaxy	(MBE)

MOS	technology

MOSFET

Mott	transition

Multiple	scattering

n-channel	depletion	MOSFET

n–channel	enhancement	MOSFET

n–p–n	transistor

n-type	semiconductor

Nearly	free	electron	theory

Néel	model	of	antiferromagnetism

temperature

Negative	resistance

Neodymium–iron–boron,	hysteresis	curve



Nesting	of	Fermi	surfaces

Neutron

choppers

detectors

moderator

monochromators

polarized

scattering

by	phonons

coherent	and	incoherent

inelastic

magnetic

nuclear

sources

spectrometers

Nickel	spontaneous	magnetization

Non-crystalline	solids
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