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&PREFACE

Single processor supercomputers have achieved great speeds and have been pushing

hardware technology to the physical limit of chip manufacturing. But soon this trend

will come to an end, because there are physical and architectural bounds, which limit

the computational power that can be achieved with a single processor system. In this

book, we study advanced computer architectures that utilize parallelism via multiple

processing units. While parallel computing, in the form of internally linked

processors, was the main form of parallelism, advances in computer networks has

created a new type of parallelism in the form of networked autonomous computers.

Instead of putting everything in a single box and tightly couple processors to

memory, the Internet achieved a kind of parallelism by loosely connecting every-

thing outside of the box. To get the most out of a computer system with internal

or external parallelism, designers and software developers must understand the

interaction between hardware and software parts of the system. This is the reason

we wrote this book. We want the reader to understand the power and limitations

of multiprocessor systems. Our goal is to apprise the reader of both the beneficial

and challenging aspects of advanced architecture and parallelism. The material in

this book is organized in 10 chapters, as follows.

Chapter 1 is a survey of the field of computer architecture at an introductory level.

We first study the evolution of computing and the changes that have led to obtaining

high performance computing via parallelism. The popular Flynn’s taxonomy of

computer systems is provided. An introduction to single instruction multiple data

(SIMD) and multiple instruction multiple data (MIMD) systems is also given.

Both shared-memory and the message passing systems and their interconnection

networks are introduced.

Chapter 2 navigates through a number of system configurations for multi-

processors. It discusses the different topologies used for interconnecting multi-

processors. Taxonomy for interconnection networks based on their topology is

introduced. Dynamic and static interconnection schemes are also studied. The

bus, crossbar, and multi-stage topology are introduced as dynamic interconnections.

In the static interconnection scheme, three main mechanisms are covered. These are

the hypercube topology, mesh topology, and k-ary n-cube topology. A number of

performance aspects are introduced including cost, latency, diameter, node

degree, and symmetry.

Chapter 3 is about performance. How should we characterize the performance of

a computer system when, in effect, parallel computing redefines traditional

xi



measures such as million instructions per second (MIPS) and million floating-point

operations per second (MFLOPS)? New measures of performance, such as speedup,

are discussed. This chapter examines several versions of speedup, as well as other

performance measures and benchmarks.

Chapters 4 and 5 cover shared memory and message passing systems, respect-

ively. The main challenges of shared memory systems are performance degradation

due to contention and the cache coherence problems. Performance of shared

memory system becomes an issue when the interconnection network connecting

the processors to global memory becomes a bottleneck. Local caches are typically

used to alleviate the bottleneck problem. But scalability remains the main drawback

of shared memory system. The introduction of caches has created consistency

problem among caches and between memory and caches. In Chapter 4, we cover

several cache coherence protocols that can be categorized as either snoopy protocols

or directory based protocols. Since shared memory systems are difficult to scale up

to a large number of processors, message passing systems may be the only way to

efficiently achieve scalability. In Chapter 5, we discuss the architecture and the net-

work models of message passing systems. We shed some light on routing and net-

work switching techniques. We conclude with a contrast between shared memory

and message passing systems.

Chapter 6 covers abstract models, algorithms, and complexity analysis. We

discuss a shared-memory abstract model (PRAM), which can be used to study

parallel algorithms and evaluate their complexities. We also outline the basic

elements of a formal model of message passing systems under the synchronous

model. We design and discuss the complexity analysis of algorithms described in

terms of both models.

Chapters 7–10 discuss a number of issues related to network computing, in

which the nodes are stand-alone computers that may be connected via a switch,

local area network, or the Internet. Chapter 7 provides the basic concepts of

network computing including client/server paradigm, cluster computing, and grid

computing. Chapter 8 illustrates the parallel virtual machine (PVM) programming

system. It shows how to write programs on a network of heterogeneous machines.

Chapter 9 covers the message-passing interface (MPI) standard in which portable

distributed parallel programs can be developed. Chapter 10 addresses the problem

of allocating tasks to processing units. The scheduling problem in several of its

variations is covered. We survey a number of solutions to this important problem.

We cover program and system models, optimal algorithms, heuristic algorithms,

scheduling versus allocation techniques, and homogeneous versus heterogeneous

environments.

Students in Computer Engineering, Computer Science, and Electrical Engineer-

ing should benefit from this book. The book can be used to teach graduate courses in

advanced architecture and parallel processing. Selected chapters can be used to

offer special topic courses with different emphasis. The book can also be used as

a comprehensive reference for practitioners working as engineers, programmers,

and technologists. In addition, portions of the book can be used to teach short

courses to practitioners. Different chapters might be used to offer courses with
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different flavors. For example, a one-semester course in Advanced Computer

Architecture may cover Chapters 1–5, 7, and 8, while another one-semester

course on Parallel Processing may cover Chapters 1–4, 6, 9, and 10.

This book has been class-tested by both authors. In fact, it evolves out of the class

notes for the SMU’s CSE8380 and CSE8383, University of Saskatchewan’s (UofS)

CMPT740 and KFUPM’s COE520. These experiences have been incorporated into

the present book. Our students corrected errors and improved the organization of the

book. We would like to thank the students in these classes. We owe much to many

students and colleagues, who have contributed to the production of this book. Chuck

Mann, Yehia Amer, Habib Ammari, Abdul Aziz, Clay Breshears, Jahanzeb Faizan,

Michael A. Langston, and A. Naseer read drafts of the book and all contributed to

the improvement of the original manuscript. Ted Lewis has contributed to earlier

versions of some chapters. We are indebted to the anonymous reviewers arranged

by John Wiley for their suggestions and corrections. Special thanks to Albert Y.

Zomaya, the series editor and to Val Moliere, Kirsten Rohstedt and Christine

Punzo of John Wiley for their help in making this book a reality. Of course, respon-

sibility for errors and inconsistencies rests with us.

Finally, and most of all, we want to thank our wives and children for tolerating all

the long hours we spent on this book. Hesham would also like to thank Ted Lewis

and Bruce Shriver for their friendship, mentorship and guidance over the years.

HESHAM EL-REWINI

MOSTAFA ABD-EL-BARR

May 2004
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&CHAPTER 1

Introduction to Advanced
Computer Architecture and
Parallel Processing

Computer architects have always strived to increase the performance of their

computer architectures. High performance may come from fast dense circuitry,

packaging technology, and parallelism. Single-processor supercomputers have

achieved unheard of speeds and have been pushing hardware technology to the phys-

ical limit of chip manufacturing. However, this trend will soon come to an end,

because there are physical and architectural bounds that limit the computational

power that can be achieved with a single-processor system. In this book we will

study advanced computer architectures that utilize parallelism via multiple proces-

sing units.

Parallel processors are computer systems consisting of multiple processing units

connected via some interconnection network plus the software needed to make the

processing units work together. There are two major factors used to categorize such

systems: the processing units themselves, and the interconnection network that ties

them together. The processing units can communicate and interact with each other

using either shared memory or message passing methods. The interconnection net-

work for shared memory systems can be classified as bus-based versus switch-based.

In message passing systems, the interconnection network is divided into static and

dynamic. Static connections have a fixed topology that does not change while

programs are running. Dynamic connections create links on the fly as the program

executes.

The main argument for using multiprocessors is to create powerful computers by

simply connecting multiple processors. A multiprocessor is expected to reach faster

speed than the fastest single-processor system. In addition, a multiprocessor consist-

ing of a number of single processors is expected to be more cost-effective than build-

ing a high-performance single processor. Another advantage of a multiprocessor is

fault tolerance. If a processor fails, the remaining processors should be able to

provide continued service, albeit with degraded performance.

1
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1.1 FOUR DECADES OF COMPUTING

Most computer scientists agree that there have been four distinct paradigms or eras

of computing. These are: batch, time-sharing, desktop, and network. Table 1.1 is

modified from a table proposed by Lawrence Tesler. In this table, major character-

istics of the different computing paradigms are associated with each decade of

computing, starting from 1960.

1.1.1 Batch Era

By 1965 the IBM System/360 mainframe dominated the corporate computer cen-

ters. It was the typical batch processing machine with punched card readers, tapes

and disk drives, but no connection beyond the computer room. This single main-

frame established large centralized computers as the standard form of computing

for decades. The IBM System/360 had an operating system, multiple programming

languages, and 10 megabytes of disk storage. The System/360 filled a room with

metal boxes and people to run them. Its transistor circuits were reasonably fast.

Power users could order magnetic core memories with up to one megabyte of

32-bit words. This machine was large enough to support many programs in

memory at the same time, even though the central processing unit had to switch

from one program to another.

1.1.2 Time-Sharing Era

The mainframes of the batch era were firmly established by the late 1960s when

advances in semiconductor technology made the solid-state memory and integrated

circuit feasible. These advances in hardware technology spawned the minicomputer

era. They were small, fast, and inexpensive enough to be spread throughout the

company at the divisional level. However, they were still too expensive and difficult

TABLE 1.1 Four Decades of Computing

Feature Batch Time-Sharing Desktop Network

Decade 1960s 1970s 1980s 1990s

Location Computer room Terminal room Desktop Mobile

Users Experts Specialists Individuals Groups

Data Alphanumeric Text, numbers Fonts, graphs Multimedia

Objective Calculate Access Present Communicate

Interface Punched card Keyboard and CRT See and point Ask and tell

Operation Process Edit Layout Orchestrate

Connectivity None Peripheral cable LAN Internet

Owners Corporate computer

centers

Divisional IS shops Departmental

end-users

Everyone

LAN, local area network.
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to use to hand over to end-users. Minicomputers made by DEC, Prime, and Data

General led the way in defining a new kind of computing: time-sharing. By the

1970s it was clear that there existed two kinds of commercial or business computing:

(1) centralized data processing mainframes, and (2) time-sharing minicomputers. In

parallel with small-scale machines, supercomputers were coming into play. The first

such supercomputer, the CDC 6600, was introduced in 1961 by Control Data

Corporation. Cray Research Corporation introduced the best cost/performance

supercomputer, the Cray-1, in 1976.

1.1.3 Desktop Era

Personal computers (PCs), which were introduced in 1977 by Altair, Processor

Technology, North Star, Tandy, Commodore, Apple, and many others, enhanced

the productivity of end-users in numerous departments. Personal computers from

Compaq, Apple, IBM, Dell, and many others soon became pervasive, and changed

the face of computing.

Local area networks (LAN) of powerful personal computers and workstations

began to replace mainframes and minis by 1990. The power of the most capable

big machine could be had in a desktop model for one-tenth of the cost. However,

these individual desktop computers were soon to be connected into larger complexes

of computing by wide area networks (WAN).

1.1.4 Network Era

The fourth era, or network paradigm of computing, is in full swing because of rapid

advances in network technology. Network technology outstripped processor tech-

nology throughout most of the 1990s. This explains the rise of the network paradigm

listed in Table 1.1. The surge of network capacity tipped the balance from a

processor-centric view of computing to a network-centric view.

The 1980s and 1990s witnessed the introduction of many commercial parallel

computers with multiple processors. They can generally be classified into two

main categories: (1) shared memory, and (2) distributed memory systems. The

number of processors in a single machine ranged from several in a shared

memory computer to hundreds of thousands in a massively parallel system.

Examples of parallel computers during this era include Sequent Symmetry, Intel

iPSC, nCUBE, Intel Paragon, Thinking Machines (CM-2, CM-5), MsPar (MP),

Fujitsu (VPP500), and others.

1.1.5 Current Trends

One of the clear trends in computing is the substitution of expensive and specialized

parallel machines by the more cost-effective clusters of workstations. A cluster is a

collection of stand-alone computers connected using some interconnection network.

Additionally, the pervasiveness of the Internet created interest in network computing

and more recently in grid computing. Grids are geographically distributed platforms
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of computation. They should provide dependable, consistent, pervasive, and inex-

pensive access to high-end computational facilities.

1.2 FLYNN’S TAXONOMY OF COMPUTER ARCHITECTURE

The most popular taxonomy of computer architecture was defined by Flynn in 1966.

Flynn’s classification scheme is based on the notion of a stream of information. Two

types of information flow into a processor: instructions and data. The instruction

stream is defined as the sequence of instructions performed by the processing

unit. The data stream is defined as the data traffic exchanged between the memory

and the processing unit. According to Flynn’s classification, either of the instruction

or data streams can be single or multiple. Computer architecture can be classified

into the following four distinct categories:

. single-instruction single-data streams (SISD);

. single-instruction multiple-data streams (SIMD);

. multiple-instruction single-data streams (MISD); and

. multiple-instruction multiple-data streams (MIMD).

Conventional single-processor von Neumann computers are classified as SISD

systems. Parallel computers are either SIMD or MIMD. When there is only

one control unit and all processors execute the same instruction in a synchronized

fashion, the parallel machine is classified as SIMD. In a MIMD machine, each

processor has its own control unit and can execute different instructions on differ-

ent data. In the MISD category, the same stream of data flows through a linear

array of processors executing different instruction streams. In practice, there is

no viable MISD machine; however, some authors have considered pipe-

lined machines (and perhaps systolic-array computers) as examples for MISD.

Figures 1.1, 1.2, and 1.3 depict the block diagrams of SISD, SIMD, and

MIMD, respectively.

An extension of Flynn’s taxonomy was introduced by D. J. Kuck in 1978. In his

classification, Kuck extended the instruction stream further to single (scalar and

array) and multiple (scalar and array) streams. The data stream in Kuck’s clas-

sification is called the execution stream and is also extended to include single

Control
Unit

Instruction Stream

Processor
(P)

Memory
(M)I/O

Instruction Stream Data Stream

Figure 1.1 SISD architecture.
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(scalar and array) and multiple (scalar and array) streams. The combination of these

streams results in a total of 16 categories of architectures.

1.3 SIMD ARCHITECTURE

The SIMD model of parallel computing consists of two parts: a front-end computer

of the usual von Neumann style, and a processor array as shown in Figure 1.4. The

processor array is a set of identical synchronized processing elements capable of

simultaneously performing the same operation on different data. Each processor

in the array has a small amount of local memory where the distributed data resides

while it is being processed in parallel. The processor array is connected to the

memory bus of the front end so that the front end can randomly access the local

Figure 1.2 SIMD architecture.

P1
Control
Unit-1

M1

Data StreamInstruction Stream

Instruction Stream

Pn
Control
Unit-n Mn

Data StreamInstruction Stream

Instruction Stream

Figure 1.3 MIMD architecture.
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processor memories as if it were another memory. Thus, the front end can issue

special commands that cause parts of the memory to be operated on simultaneously

or cause data to move around in the memory. A program can be developed and

executed on the front end using a traditional serial programming language. The

application program is executed by the front end in the usual serial way, but

issues commands to the processor array to carry out SIMD operations in parallel.

The similarity between serial and data parallel programming is one of the strong

points of data parallelism. Synchronization is made irrelevant by the lock–step syn-

chronization of the processors. Processors either do nothing or exactly the same

operations at the same time. In SIMD architecture, parallelism is exploited by apply-

ing simultaneous operations across large sets of data. This paradigm is most useful

for solving problems that have lots of data that need to be updated on a wholesale

basis. It is especially powerful in many regular numerical calculations.

There are two main configurations that have been used in SIMD machines (see

Fig. 1.5). In the first scheme, each processor has its own local memory. Processors

can communicate with each other through the interconnection network. If the inter-

connection network does not provide direct connection between a given pair of

processors, then this pair can exchange data via an intermediate processor. The

ILLIAC IV used such an interconnection scheme. The interconnection network in

the ILLIAC IV allowed each processor to communicate directly with four neighbor-

ing processors in an 8 � 8 matrix pattern such that the i th processor can communi-

cate directly with the (i2 1)th, (iþ 1)th, (i2 8)th, and (iþ 8)th processors. In the

second SIMD scheme, processors and memory modules communicate with each

other via the interconnection network. Two processors can transfer data between

each other via intermediate memory module(s) or possibly via intermediate

processor(s). The BSP (Burroughs’ Scientific Processor) used the second SIMD

scheme.

1.4 MIMD ARCHITECTURE

Multiple-instruction multiple-data streams (MIMD) parallel architectures are made

of multiple processors and multiple memory modules connected together via some

Figure 1.4 SIMD architecture model.
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interconnection network. They fall into two broad categories: shared memory or

message passing. Figure 1.6 illustrates the general architecture of these two cat-

egories. Processors exchange information through their central shared memory in

shared memory systems, and exchange information through their interconnection

network in message passing systems.

A shared memory system typically accomplishes interprocessor coordination

through a global memory shared by all processors. These are typically server sys-

tems that communicate through a bus and cache memory controller. The bus/
cache architecture alleviates the need for expensive multiported memories and inter-

face circuitry as well as the need to adopt a message-passing paradigm when devel-

oping application software. Because access to shared memory is balanced, these

systems are also called SMP (symmetric multiprocessor) systems. Each processor

has equal opportunity to read/write to memory, including equal access speed.

Control Unit

P1

M1

P2

M2

P3

M3

Pn

Mn

Pn-1

Mn-1

Interconnection Network

Control Unit

P1

M1

P2

M2

P3

M3

Pn

Mn

Pn-1

Mn-1

Interconnection Network

Figure 1.5 Two SIMD schemes.
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Commercial examples of SMPs are Sequent Computer’s Balance and Symmetry,

Sun Microsystems multiprocessor servers, and Silicon Graphics Inc. multiprocessor

servers.

Amessage passing system (also referred to as distributed memory) typically com-

bines the local memory and processor at each node of the interconnection network.

There is no global memory, so it is necessary to move data from one local memory to

another by means of message passing. This is typically done by a Send/Receive pair
of commands, which must be written into the application software by a programmer.

Thus, programmers must learn the message-passing paradigm, which involves data

copying and dealing with consistency issues. Commercial examples of message pas-

sing architectures c. 1990 were the nCUBE, iPSC/2, and various Transputer-based

systems. These systems eventually gave way to Internet connected systems whereby

the processor/memory nodes were either Internet servers or clients on individuals’

desktop.

It was also apparent that distributed memory is the only way efficiently to

increase the number of processors managed by a parallel and distributed system.

If scalability to larger and larger systems (as measured by the number of processors)

was to continue, systems had to use distributed memory techniques. These two

forces created a conflict: programming in the shared memory model was easier,

and designing systems in the message passing model provided scalability. The

Interconnection Network

P

MM M M

P P P

Interconnection Network

P P P P

MM M M

Shared Memory MIMD Architecture

Message Passing MIMD Architecture

Figure 1.6 Shared memory versus message passing architecture.
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distributed-shared memory (DSM) architecture began to appear in systems like the

SGI Origin2000, and others. In such systems, memory is physically distributed; for

example, the hardware architecture follows the message passing school of design,

but the programming model follows the shared memory school of thought. In

effect, software covers up the hardware. As far as a programmer is concerned, the

architecture looks and behaves like a shared memory machine, but a message pas-

sing architecture lives underneath the software. Thus, the DSM machine is a hybrid

that takes advantage of both design schools.

1.4.1 Shared Memory Organization

A shared memory model is one in which processors communicate by reading and

writing locations in a shared memory that is equally accessible by all processors.

Each processor may have registers, buffers, caches, and local memory banks as

additional memory resources. A number of basic issues in the design of shared

memory systems have to be taken into consideration. These include access control,

synchronization, protection, and security. Access control determines which process

accesses are possible to which resources. Access control models make the required

check for every access request issued by the processors to the shared memory,

against the contents of the access control table. The latter contains flags that

determine the legality of each access attempt. If there are access attempts to

resources, then until the desired access is completed, all disallowed access attempts

and illegal processes are blocked. Requests from sharing processes may change the

contents of the access control table during execution. The flags of the access control

with the synchronization rules determine the system’s functionality. Synchroniza-

tion constraints limit the time of accesses from sharing processes to shared

resources. Appropriate synchronization ensures that the information flows properly

and ensures system functionality. Protection is a system feature that prevents pro-

cesses from making arbitrary access to resources belonging to other processes. Shar-

ing and protection are incompatible; sharing allows access, whereas protection

restricts it.

The simplest shared memory system consists of one memory module that can be

accessed from two processors. Requests arrive at the memory module through its

two ports. An arbitration unit within the memory module passes requests through

to a memory controller. If the memory module is not busy and a single request

arrives, then the arbitration unit passes that request to the memory controller and

the request is granted. The module is placed in the busy state while a request is

being serviced. If a new request arrives while the memory is busy servicing a

previous request, the requesting processor may hold its request on the line until

the memory becomes free or it may repeat its request sometime later.

Depending on the interconnection network, a shared memory system leads to

systems can be classified as: uniform memory access (UMA), nonuniform

memory access (NUMA), and cache-only memory architecture (COMA). In the

UMA system, a shared memory is accessible by all processors through an intercon-

nection network in the same way a single processor accesses its memory. Therefore,

1.4 MIMD ARCHITECTURE 9



all processors have equal access time to any memory location. The interconnection

network used in the UMA can be a single bus, multiple buses, a crossbar, or a

multiport memory. In the NUMA system, each processor has part of the shared

memory attached. The memory has a single address space. Therefore, any processor

could access any memory location directly using its real address. However, the

access time to modules depends on the distance to the processor. This results in a

nonuniform memory access time. A number of architectures are used to interconnect

processors to memory modules in a NUMA. Similar to the NUMA, each processor

has part of the shared memory in the COMA. However, in this case the shared

memory consists of cache memory. A COMA system requires that data be migrated

to the processor requesting it. Shared memory systems will be discussed in more

detail in Chapter 4.

1.4.2 Message Passing Organization

Message passing systems are a class of multiprocessors in which each processor has

access to its own local memory. Unlike shared memory systems, communications in

message passing systems are performed via send and receive operations. A node in

such a system consists of a processor and its local memory. Nodes are typically able

to store messages in buffers (temporary memory locations where messages wait until

they can be sent or received), and perform send/receive operations at the same time

as processing. Simultaneous message processing and problem calculating are

handled by the underlying operating system. Processors do not share a global

memory and each processor has access to its own address space. The processing

units of a message passing system may be connected in a variety of ways ranging

from architecture-specific interconnection structures to geographically dispersed

networks. The message passing approach is, in principle, scalable to large pro-

portions. By scalable, it is meant that the number of processors can be increased

without significant decrease in efficiency of operation.

Message passing multiprocessors employ a variety of static networks in local

communication. Of importance are hypercube networks, which have received

special attention for many years. The nearest neighbor two-dimensional and

three-dimensional mesh networks have been used in message passing systems as

well. Two important design factors must be considered in designing interconnection

networks for message passing systems. These are the link bandwidth and the net-

work latency. The link bandwidth is defined as the number of bits that can be trans-

mitted per unit time (bits/s). The network latency is defined as the time to complete

a message transfer. Wormhole routing in message passing was introduced in 1987 as

an alternative to the traditional store-and-forward routing in order to reduce the size

of the required buffers and to decrease the message latency. In wormhole routing, a

packet is divided into smaller units that are called flits (flow control bits) such that

flits move in a pipeline fashion with the header flit of the packet leading the way to

the destination node. When the header flit is blocked due to network congestion, the

remaining flits are blocked as well. More details on message passing will be

introduced in Chapter 5.
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1.5 INTERCONNECTION NETWORKS

Multiprocessors interconnection networks (INs) can be classified based on a number

of criteria. These include (1) mode of operation (synchronous versus asynchronous),

(2) control strategy (centralized versus decentralized), (3) switching techniques

(circuit versus packet), and (4) topology (static versus dynamic).

1.5.1 Mode of Operation

According to the mode of operation, INs are classified as synchronous versus asyn-

chronous. In synchronous mode of operation, a single global clock is used by all

components in the system such that the whole system is operating in a lock–step

manner. Asynchronous mode of operation, on the other hand, does not require a

global clock. Handshaking signals are used instead in order to coordinate the

operation of asynchronous systems. While synchronous systems tend to be slower

compared to asynchronous systems, they are race and hazard-free.

1.5.2 Control Strategy

According to the control strategy, INs can be classified as centralized versus decen-

tralized. In centralized control systems, a single central control unit is used to over-

see and control the operation of the components of the system. In decentralized

control, the control function is distributed among different components in the

system. The function and reliability of the central control unit can become the bottle-

neck in a centralized control system. While the crossbar is a centralized system, the

multistage interconnection networks are decentralized.

1.5.3 Switching Techniques

Interconnection networks can be classified according to the switching mechanism as

circuit versus packet switching networks. In the circuit switching mechanism,

a complete path has to be established prior to the start of communication between

a source and a destination. The established path will remain in existence during

the whole communication period. In a packet switching mechanism, communication

between a source and destination takes place via messages that are divided into

smaller entities, called packets. On their way to the destination, packets can be

sent from a node to another in a store-and-forward manner until they reach their des-

tination. While packet switching tends to use the network resources more efficiently

compared to circuit switching, it suffers from variable packet delays.

1.5.4 Topology

An interconnection network topology is a mapping function from the set of pro-

cessors and memories onto the same set of processors and memories. In other

words, the topology describes how to connect processors and memories to other

1.5 INTERCONNECTION NETWORKS 11



processors and memories. A fully connected topology, for example, is a mapping in

which each processor is connected to all other processors in the computer. A ring

topology is a mapping that connects processor k to its neighbors, processors

(k2 1) and (kþ 1).

In general, interconnection networks can be classified as static versus dynamic

networks. In static networks, direct fixed links are established among nodes to

form a fixed network, while in dynamic networks, connections are established as

needed. Switching elements are used to establish connections among inputs and

outputs. Depending on the switch settings, different interconnections can be estab-

lished. Nearly all multiprocessor systems can be distinguished by their inter-

connection network topology. Therefore, we devote Chapter 2 of this book to

study a variety of topologies and how they are used in constructing a multiprocessor

system. However, in this section, we give a brief introduction to interconnection

networks for shared memory and message passing systems.

Shared memory systems can be designed using bus-based or switch-based INs.

The simplest IN for shared memory systems is the bus. However, the bus may get

saturated if multiple processors are trying to access the shared memory (via the

bus) simultaneously. A typical bus-based design uses caches to solve the bus conten-

tion problem. Other shared memory designs rely on switches for interconnection.

For example, a crossbar switch can be used to connect multiple processors to

multiple memory modules. A crossbar switch, which will be discussed further in

Chapter 2, can be visualized as a mesh of wires with switches at the points of

intersection. Figure 1.7 shows (a) bus-based and (b) switch-based shared memory

systems. Figure 1.8 shows bus-based systems when a single bus is used versus the

case when multiple buses are used.

Message passing INs can be divided into static and dynamic. Static networks

form all connections when the system is designed rather than when the connection

is needed. In a static network, messages must be routed along established links.

P C

P C

P C

P C

M M M M

Global Memory

P

 C

P

 C

P

 C

(a) (b)

Figure 1.7 Shared memory interconnection networks.
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Dynamic INs establish a connection between two or more nodes on the fly as mess-

ages are routed along the links. The number of hops in a path from source to destina-

tion node is equal to the number of point-to-point links a message must traverse to

reach its destination. In either static or dynamic networks, a single message may

have to hop through intermediate processors on its way to its destination. Therefore,

the ultimate performance of an interconnection network is greatly influenced by the

number of hops taken to traverse the network. Figure 1.9 shows a number of popular

static topologies: (a) linear array, (b) ring, (c) mesh, (d ) tree, (e) hypercube.

Figure 1.10 shows examples of dynamic networks. The single-stage interconnec-

tion network of Figure 1.10a is a simple dynamic network that connects each of the

inputs on the left side to some, but not all, outputs on the right side through a single

layer of binary switches represented by the rectangles. The binary switches can

direct the message on the left-side input to one of two possible outputs on the

right side. If we cascade enough single-stage networks together, they form a

completely connected multistage interconnection network (MIN), as shown in

Figure 1.10b. The omega MIN connects eight sources to eight destinations. The con-

nection from the source 010 to the destination 010 is shown as a bold path in

Figure 1.10b. These are dynamic INs because the connection is made on the fly,

as needed. In order to connect a source to a destination, we simply use a function

of the bits of the source and destination addresses as instructions for dynamically

selecting a path through the switches. For example, to connect source 111 to desti-

nation 001 in the omega network, the switches in the first and second stage must be

set to connect to the upper output port, while the switch at the third stage must be set

P P P

M M M

P P

M M M

P

Figure 1.8 Single bus and multiple bus systems.

Linear Array Ring Mesh Tree Hypercube

Figure 1.9 Examples of static topologies.
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to connect to the lower output port (001). Similarly, the crossbar switch of

Figure 1.10c provides a path from any input or source to any other output or destina-

tion by simply selecting a direction on the fly. To connect row 111 to column 001

requires only one binary switch at the intersection of the 111 input line and 011

output line to be set.

The crossbar switch clearly uses more binary switching components; for

example, N 2 components are needed to connect N � N source/destination pairs.

The omega MIN, on the other hand, connects N � N pairs with N/2 (log N) com-

ponents. The major advantage of the crossbar switch is its potential for speed. In

one clock, a connection can be made between source and destination. The diameter

of the crossbar is one. (Note: Diameter, D, of a network having N nodes is defined as

the maximum shortest paths between any two nodes in the network.) The omega

Figure 1.10 Example dynamic INs: (a) single-stage, (b) multistage, and (c) crossbar switch.
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MIN, on the other hand requires log N clocks to make a connection. The diameter of

the omega MIN is therefore log N. Both networks limit the number of alternate paths

between any source/destination pair. This leads to limited fault tolerance and net-

work traffic congestion. If the single path between pairs becomes faulty, that pair

cannot communicate. If two pairs attempt to communicate at the same time along

a shared path, one pair must wait for the other. This is called blocking, and such

MINs are called blocking networks. A network that can handle all possible connec-

tions without blocking is called a nonblocking network.

Table 1.2 shows a performance comparison among a number of different dynamic

INs. In this table, m represents the number of multiple buses used, while N represents

the number of processors (memory modules) or input/output of the network.
Table 1.3 shows a performance comparison among a number of static INs. In this

table, the degree of a network is defined as the maximum number of links (channels)

connected to any node in the network. The diameter of a network is defined as the

maximum path, p, of the shortest paths between any two nodes. Degree of a node, d,

is defined as the number of channels incident on the node. Performance measures

will be discussed in more detail in Chapter 3.

1.6 CHAPTER SUMMARY

In this chapter, we have gone over a number of concepts and system configurations

related to obtaining high-performance computing via parallelism. In particular, we

have provided the general concepts and terminology used in the context of multipro-

cessors. The popular Flynn’s taxonomy of computer systems has been provided. An

introduction to SIMD and MIMD systems was given. Both shared-memory and the

message passing systems and their interconnection networks were introduced. The

TABLE 1.2 Performance Comparison of Some

Dynamic INs

Network Delay Cost (Complexity)

Bus O(N) O(1)

Multiple-bus O(mN) O(m)

MINs O(log N) O(N log N)

TABLE 1.3 Performance Characteristics of Static INs

Network Degree Diameter Cost (#links)

Linear array 2 N2 1 N2 1

Binary tree 3 2([log2 N]2 1) N2 1

n-cube log2 N log2 N nN/2
2D-mesh 4 2(n2 1) 2(N2 n)
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rest of the book is organized as follows. In Chapter 2 interconnection networks will

be covered in detail. We will study performance metrics in Chapter 3. Shared-

memory and message passing architectures are explained in Chapters 4 and 5,

respectively. We cover abstract models to study shared memory and message pas-

sing systems in Chapter 6. We then study network computing in Chapter 7. Chapters

8 and 9 are dedicated to the parallel virtual machine (PVM) and message passing

interface (MPI), respectively. The last chapter gives a comprehensive coverage of

the challenging problem of task scheduling and task allocation.

PROBLEMS

1. What has been the trend in computing from the following points of views:

(a) cost of hardware;

(b) size of memory;

(c) speed of hardware;

(d) number of processing elements; and

(e) geographical locations of system components.

2. Given the trend in computing in the last 20 years, what are your predictions

for the future of computing?

3. What is the difference between cluster computing and grid computing?

4. Assume that a switching component such as a transistor can switch in zero-

time. We propose to construct a disk-shaped computer chip with such a com-

ponent. The only limitation is the time it takes to send electronic signals from

one edge of the chip to the other. Make the simplifying assumption that elec-

tronic signals can travel at 300,000 km/s. What is the limitation on the diam-

eter of a round chip so that any computation result can by used anywhere on

the chip at a clock rate of 1 GHz? What are the diameter restrictions if the

whole chip should operate at 1 THz ¼ 1012 Hz? Is such a chip feasible?

5. Compare uniprocessor systems with multiprocessor systems for the follow-

ing aspects:

(a) ease of programming;

(b) the need for synchronization;

(c) performance evaluation; and

(d) run time system.

6. Provide a list of the main advantages and disadvantages of SIMD and MIMD

machines.

7. Provide a list of the main advantages and disadvantages of shared-memory

and message-passing paradigm.

8. List three engineering applications, with which you are familiar, for which

SIMD is most efficient to use, and another three for which MIMD is most

efficient to use.
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9. Assume that a simple addition of two elements requires a unit time. You are

required to compute the execution time needed to perform the addition of a

40 � 40 elements array using each of the following arrangements:

(a) A SIMD system having 64 processing elements connected in nearest-

neighbor fashion. Consider that each processor has only its local

memory.

(b) A SIMD system having 64 processing elements connected to a shared

memory through an interconnection network. Ignore the communication

time.

(c) A MIMD computer system having 64 independent elements accessing a

shared memory through an interconnection network. Ignore the com-

munication time.

(d) Repeat (b) and (c) above if the communication time takes two time units.

10. Conduct a comparative study between the following interconnection net-

works in their cost, performance, and fault tolerance:

(a) bus;

(b) hypercube;

(c) mesh;

(d) fully connected;

(e) multistage dynamic network;

(f) crossbar switch.
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&CHAPTER 2

Multiprocessors Interconnection
Networks

As we have seen in Chapter 1, a multiprocessor system consists of multiple

processing units connected via some interconnection network plus the software

needed to make the processing units work together. There are two major factors

used to categorize such systems: the processing units themselves, and the intercon-

nection network that ties them together. A number of communication styles exist for

multiprocessing networks. These can be broadly classified according to the com-

munication model as shared memory (single address space) versus message passing

(multiple address spaces). Communication in shared memory systems is performed

by writing to and reading from the global memory, while communication in message

passing systems is accomplished via send and receive commands. In both cases, the

interconnection network plays a major role in determining the communication

speed. In this chapter, we introduce the different topologies used for interconnecting

multiple processors and memory modules. Two schemes are introduced, namely

static and dynamic interconnection networks. Static networks form all connections

when the system is designed rather than when the connection is needed. In a static

network, messages must be routed along established links. Dynamic interconnection

networks establish connections between two or more nodes on the fly as messages

are routed along the links. The hypercube, mesh, and k-ary n-cube topologies are

introduced as examples for static networks. The bus, crossbar, and multistage inter-

connection topologies are introduced as examples for dynamic interconnection net-

works. Our coverage in this chapter will conclude with a section on performance

evaluation and analysis of the different interconnection networks.

2.1 INTERCONNECTION NETWORKS TAXONOMY

In this section, we introduce a topology-based taxonomy for interconnection

networks (INs). An interconnection network could be either static or dynamic. Con-

nections in a static network are fixed links, while connections in a dynamic network
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are established on the fly as needed. Static networks can be further classified accord-

ing to their interconnection pattern as one-dimension (1D), two-dimension (2D), or

hypercube (HC). Dynamic networks, on the other hand, can be classified based on

interconnection scheme as bus-based versus switch-based. Bus-based networks

can further be classified as single bus or multiple buses. Switch-based dynamic net-

works can be classified according to the structure of the interconnection network as

single-stage (SS), multistage (MS), or crossbar networks. Figure 2.1 illustrate this

taxonomy. In the following sections, we study the different types of dynamic and

static interconnection networks.

2.2 BUS-BASED DYNAMIC INTERCONNECTION NETWORKS

2.2.1 Single Bus Systems

A single bus is considered the simplest way to connect multiprocessor systems.

Figure 2.2 shows an illustration of a single bus system. In its general form, such

a system consists of N processors, each having its own cache, connected by a

Figure 2.1 A topology-based taxonomy for interconnection networks.

Figure 2.2 Example single bus system.
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shared bus. The use of local caches reduces the processor–memory traffic. All pro-

cessors communicate with a single shared memory. The typical size of such a system

varies between 2 and 50 processors. The actual size is determined by the traffic per

processor and the bus bandwidth (defined as the maximum rate at which the bus can

propagate data once transmission has started). The single bus network complexity,

measured in terms of the number of buses used, is O(1), while the time complexity,

measured in terms of the amount of input to output delay is O(N).

Although simple and easy to expand, single bus multiprocessors are inherently

limited by the bandwidth of the bus and the fact that only one processor can

access the bus, and in turn only one memory access can take place at any given

time. The characteristics of some commercially available single bus computers

are summarized in Table 2.1.

2.2.2 Multiple Bus Systems

The use of multiple buses to connect multiple processors is a natural extension to the

single shared bus system. A multiple bus multiprocessor system uses several parallel

buses to interconnect multiple processors and multiple memory modules. A number

of connection schemes are possible in this case. Among the possibilities are the

multiple bus with full bus–memory connection (MBFBMC), multiple bus with

single bus memory connection (MBSBMC), multiple bus with partial bus–

memory connection (MBPBMC), and multiple bus with class-based memory

connection (MBCBMC). Illustrations of these connection schemes for the case of

N ¼ 6 processors, M ¼ 4 memory modules, and B ¼ 4 buses are shown in

Figure 2.3. The multiple bus with full bus–memory connection has all memory

modules connected to all buses. The multiple bus with single bus–memory connec-

tion has each memory module connected to a specific bus. The multiple bus with

partial bus–memory connection has each memory module connected to a subset

of buses. The multiple bus with class-based memory connection has memory mod-

ules grouped into classes whereby each class is connected to a specific subset of

buses. A class is just an arbitrary collection of memory modules.

One can characterize those connections using the number of connections required

and the load on each bus as shown in Table 2.2. In this table, k represents the

number of classes; g represents the number of buses per group, and Mj represents

the number of memory modules in class j.

TABLE 2.1 Characteristics of Some Commercially Available Single Bus Systems

Machine Name

Maximum

No. of

Processors Processor

Clock

Rate

Maximum

Memory Bandwidth

HP 9000 K640 4 PA-8000 180 MHz 4,096 MB 960 MB/s
IBM RS/6000 R40 8 PowerPC 604 112 MHz 2,048 MB 1,800 MB/s
Sun Enterprise 6000 30 UltraSPARC 1 167 MHz 30,720 MB 2,600 MB/s
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In general, multiple bus multiprocessor organization offers a number of desirable

features such as high reliability and ease of incremental growth. A single bus failure

will leave (B2 1) distinct fault-free paths between the processors and the memory

modules. On the other hand, when the number of buses is less than the number of

memory modules (or the number of processors), bus contention is expected to

increase.

P P P P P P

M M M M

a

P P P P P P

MMMM

b

c

Figure 2.3 (a) Multiple bus with full bus–memory connection (MBFBMC); (b) multiple

bus with single bus-memory connection (MBSBMC); (c) multiple bus with partial bus–

memory connection (MBPBMC); and (d) multiple bus with class-based memory

connection (MBCBMC).
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2.2.3 Bus Synchronization

A bus can be classified as synchronous or asynchronous. The time for any trans-

action over a synchronous bus is known in advance. In accepting and/or generating
information over the bus, devices take the transaction time into account. Asynchro-

nous bus, on the other hand, depends on the availability of data and the readiness of

devices to initiate bus transactions.

In a single bus multiprocessor system, bus arbitration is required in order to

resolve the bus contention that takes place when more than one processor competes

to access the bus. In this case, processors that want to use the bus submit their

requests to bus arbitration logic. The latter decides, using a certain priority

scheme, which processor will be granted access to the bus during a certain time

interval (bus master). The process of passing bus mastership from one processor

to another is called handshaking and requires the use of two control signals: bus

request and bus grant. The first indicates that a given processor is requesting master-

ship of the bus, while the second indicates that bus mastership is granted. A third

signal, called bus busy, is usually used to indicate whether or not the bus is currently

being used. Figure 2.4 illustrates such a system.

In deciding which processor gains control of the bus, the bus arbitration logic

uses a predefined priority scheme. Among the priority schemes used are random

d

Figure 2.3 Continued.

TABLE 2.2 Characteristics of Multiple Bus Architectures

Connection Type No. of Connections Load on Bus i

MBFBMC B(NþM) NþM

MBSBMC BNþM NþMj

MBPBMC B(NþM/g) NþM/g

MBCBMC BN þPk
j¼1 Mj( jþ B� k) N þPk

j¼max (iþk�B,1) Mj, 1 � i � B
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priority, simple rotating priority, equal priority, and least recently used (LRU) pri-

ority. After each arbitration cycle, in simple rotating priority, all priority levels

are reduced one place, with the lowest priority processor taking the highest priority.

In equal priority, when two or more requests are made, there is equal chance of any

one request being processed. In the LRU algorithm, the highest priority is given to

the processor that has not used the bus for the longest time.

2.3 SWITCH-BASED INTERCONNECTION NETWORKS

In this type of network, connections among processors and memory modules are

made using simple switches. Three basic interconnection topologies exist: crossbar,

single-stage, and multistage.

2.3.1 Crossbar Networks

A crossbar network represents the other extreme to the limited single bus network.

While the single bus can provide only a single connection, the crossbar can provide

                                      Requesting                                             Current
                                            Bus                                                    Bus
                                         Master    Master

 Bus

questBus Re

GrantBus

BusyBus

(a)
questBus Re

GrantBus

BusyBus

(b)

Figure 2.4 Bus handshaking mechanism (a) the scheme; and (b) the timing.
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simultaneous connections among all its inputs and all its outputs. The crossbar

contains a switching element (SE) at the intersection of any two lines extended

horizontally or vertically inside the switch. Consider, for example the 8 � 8 crossbar

network shown in Figure 2.5. In this case, an SE (also called a cross-point) is pro-

vided at each of the 64 intersection points (shown as small squares in Fig. 2.5). The

figure illustrates the case of setting the SEs such that simultaneous connections

between Pi and M8�iþ1 for 1 � i � 8 are made. The two possible settings of an

SE in the crossbar (straight and diagonal) are also shown in the figure.

As can be seen from the figure, the number of SEs (switching points) required is

64 and the message delay to traverse from the input to the output is constant, regard-

less of which input/output are communicating. In general for an N � N crossbar, the

network complexity, measured in terms of the number of switching points, is O(N 2)

while the time complexity, measured in terms of the input to output delay, is O(1). It

should be noted that the complexity of the crossbar network pays off in the form of

reduction in the time complexity. Notice also that the crossbar is a nonblocking net-

work that allows a multiple input–output connection pattern (permutation) to be

achieved simultaneously. However, for a large multiprocessor system the complex-

ity of the crossbar can become a dominant financial factor.

2.3.2 Single-Stage Networks

In this case, a single stage of switching elements (SEs) exists between the inputs and

the outputs of the network. The simplest switching element that can be used is the

Figure 2.5 An 8�8 crossbar network (a) straight switch setting; and (b) diagonal switch setting.
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2 � 2 switching element (SE). Figure 2.6 illustrates the four possible settings that an

SE can assume. These settings are called straight, exchange, upper-broadcast, and

lower-broadcast. In the straight setting, the upper input is transferred to the upper

output and the lower input is transferred to the lower output. In the exchange setting

the upper input is transferred to the lower output and the lower input is transferred

to the upper output. In the upper-broadcast setting the upper input is broadcast to

both the upper and the lower outputs. In the lower-broadcast the lower input is

broadcast to both the upper and the lower outputs.

To establish communication between a given input (source) to a given output

(destination), data has to be circulated a number of times around the network. A

well-known connection pattern for interconnecting the inputs and the outputs of a

single-stage network is the Shuffle–Exchange. Two operations are used. These

can be defined using an m bit-wise address pattern of the inputs,

pm�1pm�2 . . . p1p0, as follows:

S( pm�1pm�2 . . . p1p0) ¼ pm�2pm�3 . . . p1p0pm�1

E( pm�1pm�2 . . . p1p0) ¼ pm�1pm�2 . . . p1 p0

With shuffle (S) and exchange (E) operations, data is circulated from input to

output until it reaches its destination. If the number of inputs, for example, pro-

cessors, in a single-stage IN is N and the number of outputs, for example, memories,

is N, the number of SEs in a stage is N/2. The maximum length of a path from an

input to an output in the network, measured by the number of SEs along the path, is

log2 N.

Example In an 8-input single stage Shuffle–Exchange if the source is 0 (000) and

the destination is 6 (110), then the following is the required sequence of Shuffle/
Exchange operations and circulation of data:

E(000) ! 1(001) ! S(001) ! 2(010) ! E(010) ! 3(011) ! S(011) ! 6(110)

The network complexity of the single-stage interconnection network is O(N) and the

time complexity is O(N).

In addition to the shuffle and the exchange functions, there exist a number of

other interconnection patterns that are used in forming the interconnections

among stages in interconnection networks. Among these are the Cube and the

Plus-Minus 2i(PM2I) networks. These are introduced below.

Straight             Exchange Upper-broadcast Lower-broadcast

Figure 2.6 The different settings of the 2 � 2 SE.
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The Cube Network The interconnection pattern used in the cube network is

defined as follows:

Ci( pm�1pm�2 � � � piþ1pipi�1 � � � p1p0) ¼ pm�1pm�2 � � � piþ1 pipi�1 � � � p1p0

Consider a 3-bit address (N ¼ 8), then we have C2(6) ¼ 2, C1(7) ¼ 5 and C0(4) ¼ 5.

Figure 2.7 shows the cube interconnection patterns for a network with N ¼ 8.

The network is called the cube network due to the fact that it resembles the

interconnection among the corners of an n-dimensional cube (n ¼ log2 N) (see

Fig. 2.16e, later).

The Plus–Minus 2i (PM2I) Network The PM2I network consists of 2k inter-

connection functions defined as follows:

PM2þi(P) ¼ Pþ 2i mod N(0 � i , k)

PM2�i(P) ¼ P� 2i mod N(0 � i , k)

For example, consider the case N ¼ 8, PM2þ1(4) ¼ 4þ 21 mod 8 ¼ 6. Figure 2.8

shows the PM2I for N ¼ 8. It should be noted that PM2þ(k�1)(P) ¼
PM2�(k�1)(P)8P, 0 � P , N. It should also be noted that PM2þ2 ¼ C2. This last

observation indicates that it should be possible to use the PM2I network to perform

at least part of the connections that are parts of the Cube network (simulating the

Cube network using the PM2I network) and the reverse is also possible. Table 2.3

provides the lower and the upper bounds on network simulation times for the

three networks PM2I, Cube, and Shuffle–Exchange. In this table the entries at the

intersection of a given row and a given column are the lower and the upper

Figure 2.7 The cube network for N ¼ 8 (a) C0; (b) C1; and (c) C2 .
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bounds on the time required for the network in the row to simulate the network in the

column (see the exercise at the end of the chapter).

The Butterfly Function The interconnection pattern used in the butterfly

network is defined as follows:

B( pm�1pm�2 � � � p1p0) ¼ p0pm�2 � � � p1pm�1

Consider a 3-bit address (N ¼ 8), the following is the butterfly mapping:

B(000) ¼ 000

B(001) ¼ 100

a

b

c

Figure 2.8 The PM2I network for N ¼ 8 (a), PM2þ0 for N ¼ 8; (b) PM2þ1 for N ¼ 8; and

(c) PM2þ2 for N ¼ 8.

TABLE 2.3 Network Simulation Time for Three Networks

Simulation Time PM2I Cube Shuffle–Exchange

PM2I Lower 1 2 k

Upper 1 2 kþ 1

Cube Lower k 1 k

Upper k 1 k

Shuffle–Exchange Lower 2k2 1 kþ 1 1

Upper 2k kþ 1 1
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B(010) ¼ 010

B(011) ¼ 110

B(100) ¼ 001

B(101) ¼ 101

B(110) ¼ 011

B(111) ¼ 111

2.3.3 Multistage Networks

Multistage interconnection networks (MINs) were introduced as a means to improve

some of the limitations of the single bus system while keeping the cost within an

affordable limit. The most undesirable single bus limitation that MINs is set to

improve is the availability of only one single path between the processors and the

memory modules. Such MINs provide a number of simultaneous paths between

the processors and the memory modules.

As shown in Figure 2.9, a general MIN consists of a number of stages each con-

sisting of a set of 2 � 2 switching elements. Stages are connected to each other using

Inter-stage Connection (ISC) Pattern. These patterns may follow any of the routing

functions such as Shuffle–Exchange, Butterfly, Cube, and so on.

Figure 2.10 shows an example of an 8 � 8MIN that uses the 2 � 2 SEs described

before. This network is known in the literature as the Shuffle–Exchange network

(SEN). The settings of the SEs in the figure illustrate how a number of paths can

be established simultaneously in the network. For example, the figure shows how

three simultaneous paths connecting the three pairs of input/output 000 ! 101,

101 ! 011, and 110 ! 010 can be established. It should be noted that the intercon-

nection pattern among stages follows the shuffle operation.

In MINs, the routing of a message from a given source to a given destination is

based on the destination address (self-routing). There exist log2 N stages in an

Switches Switches Switches

ISC
1

ISC
x-1

Figure 2.9 Multistage interconnection network.
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N � NMIN. The number of bits in any destination address in the network is log2 N.

Each bit in the destination address can be used to route the message through one

stage. The destination address bits are scanned from left to right and the stages

are traversed from left to right. The first (most significant bit) is used to control

the routing in the first stage; the next bit is used to control the routing in the next

stage, and so on. The convention used in routing messages is that if the bit in the

destination address controlling the routing in a given stage is 0, then the message

is routed to the upper output of the switch. On the other hand if the bit is 1, the mess-

age is routed to the lower output of the switch. Consider, for example, the routing of

a message from source input 101 to destination output 011 in the 8 � 8 SEN shown

in Figure 2.10. Since the first bit of the destination address is 0, therefore the mess-

age is first routed to the upper output of the switch in the first (leftmost) stage. Now,

the next bit in the destination address is 1, thus the message is routed to the lower

output of the switch in the middle stage. Finally, the last bit is 1, causing the message

to be routed to the lower output in the switch in the last stage. This sequence causes

the message to arrive at the correct output (see Fig. 2.10). Ease of message routing in

MINs is one of the most desirable features of these networks.

The Banyan Network A number of other MINs exist, among these the Banyan

network is well known. Figure 2.11 shows an example of an 8 � 8 Banyan network.

The reader is encouraged to identify the basic features of the Banyan network.

Figure 2.10 An example 8 � 8 Shuffle–Exchange network (SEN).
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If the number of inputs, for example, processors, in an MIN is N and the number

of outputs, for example, memory modules, is N, the number of MIN stages is log2 N

and the number of SEs per stage is N/2, and hence the network complexity,

measured in terms of the total number of SEs is O(N � log2 N). The number of

SEs along the path is usually taken as a measure of the delay a message has to

encounter as it finds its way from a source input to a destination output. The time

complexity, measured by the number of SEs along the path from input to output,

is O(log2 N). For example, in a 16 � 16 MIN, the length of the path from input to

output is 4. The total number of SEs in the network is usually taken as a measure

for the total area of the network. The total area of a 16 � 16 MIN is 32 SEs.

The Omega Network The Omega Network represents another well-known type

of MINs. A size N omega network consists of n (n ¼ log2 N single-stage) Shuffle–

Exchange networks. Each stage consists of a column of N=2, two-input switching
elements whose input is a shuffle connection. Figure 2.12 illustrates the case of

an N ¼ 8 Omega network. As can be seen from the figure, the inputs to each

stage follow the shuffle interconnection pattern. Notice that the connections are

identical to those used in the 8 � 8 Shuffle–Exchange network (SEN) shown in

Figure 2.10.

Owing to its versatility, a number of university projects as well as commercial

MINs have been built. These include the Texas Reconfigurable Array Computer

(TRAC) at the University of Texas at Austin, the Cedar at the University of Illinois

at Urbana-Champaign, the RP3 at IBM, the Butterfly by BBN Laboratories, and the

NYU Ultracomputer at New York University. The NYU Ultracomputer is an exper-

imental shared memory MIMD architecture that could have as many as 4096 pro-

cessors connected through an Omega MIN to 4096 memory modules. The MIN is

an enhanced network that can combine two or more requests bound for the same

memory address. The network interleaves consecutive memory addresses across

the memory modules in order to reduce conflicts in accessing different data

Figure 2.11 An 8 � 8 Banyan network.

2.3 SWITCH-BASED INTERCONNECTION NETWORKS 31



elements. The switch nodes in the NYU Ultracomputer are provided with queues

(queue lengths of 8 to 10 messages) to handle messages collision at the switch.

The system achieves one-cycle processor to memory access.

2.3.4 Blockage in Multistage Interconnection Networks

A number of classification criteria exist for MINs. Among these criteria is the

criterion of blockage. According to this criterion, MINs are classified as follows.

Blocking Networks Blocking networks possess the property that in the presence

of a currently established interconnection between a pair of input/output, the arrival
of a request for a new interconnection between two arbitrary unused input and output

may or may not be possible. Examples of blocking networks include Omega,

Banyan, Shuffle–Exchange, and Baseline. Consider, for example the SEN shown

in Figure 2.10. In the presence of a connection between input 101 and output 011,

a connection between input 100 and output 001 is not possible. This is because

the connection 101 to 011 uses the upper output of the third switch from the top

in the first stage. This same output will be needed by the requested connection

100 to 001. This contention will lead to the inability to satisfy the connection 100

to 001, that is, blocking. Notice however that while connection 101 to 011 is estab-

lished, the arrival of a request for a connection such as 100 to 110 can be satisfied.

Rearrangeable Networks Rearrangeable networks are characterized by the

property that it is always possible to rearrange already established connections in

order to make allowance for other connections to be established simultaneously. The

Benes is a well-known example of rearrangeable networks. Figure 2.13 shows an

example 8 � 8 Benes network. Two simultaneous connections are shown established

in the network. These are 110 ! 100 and 010 ! 110. In the presence of the

Figure 2.12 The Omega network for N ¼ 8.
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connection 110 ! 100, it will not be possible to establish the connection 101 ! 001

unless the connection 110 ! 100 is rearranged as shown in part (b) of the figure.

Nonblocking Networks Nonblocking networks are characterized by the prop-

erty that in the presence of a currently established connection between any pair of

input/output, it will always be possible to establish a connection between any arbi-

trary unused pair of input/output. The Clos is a well-known example of nonblocking

networks. It consists of r1n1 � m input crossbar switches (r1 is the number of input

crossbars, and n1 � m is the size of each input crossbar), mr1 � r2 middle crossbar

switches (m is the number of middle crossbars, and r1 � r2 is the size of each middle

crossbar), and r2m� n2 output crossbar switches (r2 is the number of output

crossbars and m� n2 is the size of each output crossbar). The Clos network is not

blocking if the following inequality is satisfied m � n1 þ n2 � 1.

A three-stage Clos network is shown in Figure 2.14. The network has the follow-

ing parameters: r1 ¼ 4, n1 ¼ 2,m ¼ 4, r2 ¼ 4, and n2 ¼ 2. The reader is encouraged

to ascertain the nonblocking feature of the network shown in Figure 2.14 by working

out some example simultaneous connections. For example show that in the presence

of a connection such as 110 to 010, any other connection will be possible. Note that

Clos networks will be discussed again in Chapter 7.

2.4 STATIC INTERCONNECTION NETWORKS

Static (fixed) interconnection networks are characterized by having fixed paths, uni-

directional or bidirectional, between processors. Two types of static networks can be

identified. These are completely connected networks (CCNs) and limited connection

networks (LCNs).

000                                                                                                                                    000
001                                                                                                                                    001
010                                                                                                                                    010
011                                                                                                                                    011
100                                                                                                                                    100
101                                                                                                                                    101
110         110
111         111

(a)

000                                                                                                                                    000
001                                                                                                                                    001

010         010010
011         011
100                                                                                                                                    100
101                                                                                                                                    101
110                                                                                                                                    110
111                                                                                                                                    111

(b)

Figure 2.13 Illustration of the rearrangeability of the Benes network (a) Benes network with

two simulataneously established paths; and (b) the rearrangement of connection 110 ! 100

in order to satisfy connection 101 ! 001.
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2.4.1 Completely Connected Networks

In a completely connected network (CCN) each node is connected to all other nodes

in the network. Completely connected networks guarantee fast delivery of messages

from any source node to any destination node (only one link has to be traversed).

Notice also that since every node is connected to every other node in the network,

routing of messages between nodes becomes a straightforward task. Completely

Figure 2.14 A three-stage Clos network.
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connected networks are, however, expensive in terms of the number of links needed

for their construction. This disadvantage becomes more and more apparent for

higher values of N. It should be noted that the number of links in a completely con-

nected network is given by N(N � 1)=2, that is, O(N2). The delay complexity of

CCNs, measured in terms of the number of links traversed as messages are routed

from any source to any destination is constant, that is, O(1). An example having

N ¼ 6 nodes is shown in Figure 2.15. A total of 15 links are required in order to

satisfy the complete interconnectivity of the network.

2.4.2 Limited Connection Networks

Limited connection networks (LCNs) do not provide a direct link from every node to

every other node in the network. Instead, communications between some nodes have

to be routed through other nodes in the network. The length of the path between

nodes, measured in terms of the number of links that have to be traversed, is

expected to be longer compared to the case of CCNs. Two other conditions seem

to have been imposed by the existence of limited interconnectivity in LCNs.

These are: the need for a pattern of interconnection among nodes and the need for

a mechanism for routing messages around the network until they reach their desti-

nations. These two items are discussed below.

A number of regular interconnection patterns have evolved over the years for

LCNs These patterns include:

. linear arrays;

. ring (loop) networks;

. two-dimensional arrays (nearest-neighbor mesh);

. tree networks; and

. cube networks.

Simple examples for these networks are shown in Figure 2.16.

3

45

6

1 2

Figure 2.15 Example completely connected network.
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In a linear array, each node is connected to its two immediate neighboring nodes.

The two nodes at the extreme ends of the array are connected to their single immedi-

ate neighbor. If node i needs to communicate with node j, j . i, then the message

from node i has to traverse nodes iþ 1, iþ 2, . . . , j� i. Similarly, when node i

needs to communicate with node j, where i . j, then the message from node i has

to traverse nodes i� 1, i� 2, . . . , i� j. In the worst possible case, when node 1

has to send a message to node N, the message has to traverse a total of N21

nodes before it can reach its destination. Therefore, although linear arrays are

simple in their architecture and have simple routing mechanisms, they tend to be

slow. This is particularly true when the number of nodes N is large. The network

complexity of the linear array is O(N) and its time complexity is O(N). If the two

nodes at the extreme ends of a linear array network are connected, then the resultant

network has ring (loop) architecture.

In a tree network, of which the binary tree (shown in Fig. 2.16d) is a special case,

if a node at level i (assuming that the root node is at level 0) needs to communicate

with a node at level j, where i . j and the destination node belongs to the same root’s

(a)                                                                           (b)

(c)                                                                                        (d)

(e)

Figure 2.16 Examples of static limited connected networks (a) a linear array network;

(b) a ring network; (c) a two-dimensional array (mesh) network; (d ) a tree network; and

(e) a three-cube network.
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child subtree, then it will have to send its message up the tree traversing nodes at

levels i� 1, i� 2, . . . , jþ 1 until it reaches the destination node. If a node at

level i needs to communicate with another node at the same level i (or with node

at level j = i where the destination node belongs to a different root’s child subtree),

it will have to send its message up the tree until the message reaches the root node at

level 0. The message will have to be then sent down from the root nodes until it

reaches its destination. It should be noted that the number of nodes (processors)

in a binary tree system having k levels can be calculated as:

N(k) ¼ 20 þ 21 þ 22 þ � � � þ 2k

¼ (2k � 1)

2� 1
¼ 2k � 1

Notice also that the maximum depth of a binary tree system is dlog2 Ne, where N is

the number of nodes (processors) in the network. Therefore, the network complexity

is O(2k) and the time complexity is O( log2 N).

The cube-connected and the mesh-connected networks have been receiving

increasing interest and, therefore, we discuss them in more detail in the following

subsections.

2.4.3 Cube-Connected Networks

Cube-connected networks are patterned after the n-cube structure. An n-cube

(hypercube of order n) is defined as an undirected graph having 2n vertices labeled

0 to 2n � 1 such that there is an edge between a given pair of vertices if and only if

the binary representation of their addresses differs by one and only one bit. A 4-cube

is shown in Figure 2.17. In a cube-based multiprocessor system, processing elements

are positioned at the vertices of the graph. Edges of the graph represent the point-to-

point communication links between processors. As can be seen from the figure, each

D

S

Figure 2.17 A 4-cube.
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processor in a 4-cube is connected to four other processors. In an n-cube, each pro-

cessor has communication links to n other processors. Recall that in a hypercube,

there is an edge between a given pair of nodes if and only if the binary representation

of their addresses differs by one and only one bit. This property allows for a simple

message routing mechanism. The route of a message originating at node i and des-

tined for node j can be found by XOR-ing the binary address representation of i and

j. If the XOR-ing operation results in a 1 in a given bit position, then the message has

to be sent along the link that spans the corresponding dimension. For example, if a

message is sent from source (S) node 0101 to destination (D) node 1011, then the

XOR operation results in 1110. That will mean that the message will be sent only

along dimensions 2, 3, and 4 (counting from right to left) in order to arrive at the

destination. The order in which the message traverses the three dimensions is not

important. Once the message traverses the three dimensions in any order it will

reach its destination. The three possible disjoint routes that can be taken by the mess-

age in this example are shown in bold in Figure 2.17. Disjoint routes do not share

any common links among them.

In an n-cube, each node has a degree n. The degree of a node is defined as the

number of links incident on the node. The upper limit on the number of disjoint

paths in an n-cube is n. The hypercube is referred to as a logarithmic architecture.

This is because the maximum number of links a message has to traverse in order

to reach its destination in an n-cube containing N ¼ 2n nodes is log2 N ¼ n links.

One of the desirable features of hypercube networks is the recursive nature of

their constructions. An n-cube can be constructed from two subcubes each having

an (n2 1) degree by connecting nodes of similar addresses in both subcubes.

Notice that the 4-cube shown in Figure 2.17 is constructed from two subcubes

each of degree three. Notice that the construction of the 4-cube out of the two

3-cubes requires an increase in the degree of each node. It is worth mentioning

that the Intel iPSC is an example of hypercube-based commercial multiprocessor

systems. A number of performance issues of hypercube multiprocessors will be dis-

cussed in Section 2.5.

A number of variations to the basic hypercube interconnection have been pro-

posed. Among these is the cube-connected cycle architecture. In this architecture,

2nþr nodes are connected in an n-cube fashion such that groups of r nodes each

form cycles (loops) at the vertices of the cube. For example, a 3-cube connected

cycle network with r ¼ 3 will have three nodes (processors) forming a loop (ring)

at each vertex of the 3-cube. The idea of cube-connected cycles has not been

widely used.

2.4.4 Mesh-Connected Networks

An n-dimensional mesh can be defined as an interconnection structure that has K0 �
K1 � � � � � Kn�1 nodes where n is the number of dimensions of the network and Ki is

the radix of dimension i. Figure 2.18 shows an example of a 3� 3� 2 mesh net-

work. A node whose position is (i, j, k) is connected to its neighbors at dimensions

i+ 1, j+ 1, and k+ 1. Mesh architecture with wrap around connections forms a
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torus. A number of routing mechanisms have been used to route messages around

meshes. One such routing mechanism is known as the dimension-ordering routing.

Using this technique, a message is routed in one given dimension at a time, arriving

at the proper coordinate in each dimension before proceeding to the next dimension.

Consider, for example, a 3D mesh. Since each node is represented by its position

(i, j, k), then messages are first sent along the i dimension, then along the j dimen-

sion, and finally along the k dimension. At most two turns will be allowed and these

turns will be from i to j and then from j to k. In Figure 2.18 we show the route of a

message sent from node S at position (0, 0, 0) to node D at position (2, 1, 1). Other

routing mechanisms in meshes have been proposed. These include dimension rever-

sal routing, the turn model routing, and node labeling routing. Readers are referred

to the bibliography for more information on those, and other routing mechanisms. It

should be noted that for a mesh interconnection network with N nodes, the longest

distance traveled between any two arbitrary nodes is O(
ffiffiffiffi
N

p
).

Multiprocessors with mesh interconnection networks are able to support many

scientific computations very efficiently. It is also known that n-dimensional

meshes can be laid out in n dimensions using only short wires and built using iden-

tical boards, each requiring only a small number of pins for connections to other

boards. Another advantage of mesh interconnection networks is that they are scal-

able. Larger meshes can be obtained from smaller ones without changing the

node degree (a node degree is defined as the number of links incident on the

node). Because of these features, a large number of distributed memory parallel

computers utilize mesh interconnection networks. Examples include MPP from

Goodyear Aerospace, Paragon from Intel, and J-Machine from MIT.

2.4.5 The k-ary n-Cube Networks

The k-ary n-cube network is a radix k cube with n dimensions. The radix implies

that there are k nodes in each dimension. An 8-ary 1-cube is simply an eight node

ring, while an 8-ary 2-cube is eight 8-node rings connected such that nodes are

connected to all nodes with an address that differs in only one digit (see

Figure 2.18 A 3� 3� 2 mesh network.
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Fig. 2.19). It should be noted that the number of nodes in a k-ary n-cube is N ¼ kn

nodes and that when k ¼ 2, the architecture becomes a binary n-cube. Routing of

messages in a k-ary n-cube network can be done in a similar way to that used in

mesh networks. Figure 2.19 illustrates a possible path for a message sent from a

source node (S) to a destination node (D). Notice that, depending on the direction-

ality of links among nodes the possible route(s) will be decided. Another factor

involved in the selection of route in a k-ary n-cube network is the minimality of

the route, measured in terms of the number of hops (links) traversed by a message

before reaching its destination. The length of the route between S and D in

Figure 2.19b is 6. Notice that other routes exist between S and D but they are

longer than the indicated route. The longest distance traveled between any two

arbitrary nodes in a k-ary n-cube network is O(nþ k).

K = 8
 (a)

S

                                                                                          D

 (b)

Figure 2.19 Examples of k-ary n-cube networks (a) 8-ary 1-cube (8 nodes ring) network;

and (b) 8-ary 2-cube (eight 8-node rings) network.
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2.5 ANALYSIS AND PERFORMANCE METRICS

Having introduced the main architecture of multiprocessors, we now turn our

attention to a discussion on the analysis and performance issues related to those

architectures. We provide an introduction to the basic performance issues and per-

formance metrics related to both static and dynamic interconnection networks. For

dynamic networks, we discuss the performance issues related to cost, measured in

terms of the number of cross points (switching elements), the delay (latency), the

blocking characteristics, and the fault tolerance. For static networks, we discuss

the performance issues related to degree, diameter, and fault tolerance. A more

detailed discussion on assessing the performance of these networks will be given

in Chapter 3.

2.5.1 Dynamic Networks

The Crossbar The cost of the crossbar system can be measured in terms of the

number of switching elements (cross points) required inside the crossbar. Recall that

for an N � N crossbar, the network cost, measured in terms of the number of switch-

ing points, is N 2. This is because in an N � N crossbar a cross point is needed at the

intersection of every two lines extended horizontally and vertically inside the

switch. We, therefore, say that the crossbar possesses a quadratic rate of cost (com-

plexity) given by O(N2). The delay (latency) within a crossbar switch, measured in

terms of the amount of the input to output delay, is constant. This is because the

delay from any input to any output is bounded. We, therefore, say that the crossbar

possesses a constant rate of delay (latency) given by O(1). It should be noted that the

high cost (complexity) of the crossbar network pays off in the form of reduction in

the time (latency). However, for a large multiprocessor system the cost (complexity)

of the crossbar can become a dominant financial burden. The crossbar is however a

nonblocking network; that is, it allows multiple output connection pattern (permu-

tation) to be achieved (see Fig. 2.5). The nonblocking property of the crossbar is

a highly desirable feature that allows concurrent (simultaneous) processor–

memory accesses to take place.

A fault-tolerant system can be simply defined as a system that can still function

even in the presence of faulty components inside the system. Fault tolerance is a

desirable feature that allows a system to continue functioning despite the fact that

it contains some faulty elements. The crossbar can be affected by a single-point fail-

ure. This is because a failure of a single cross point inside the switch can lead to the

crossbar being unable to provide simultaneous connections among all its inputs and

all its outputs. Consider, for example the cross-point failure shown in Figure 2.20. In

this case, a number of simultaneous connections are possible to make within the

switch. However, a connection between P5 and M4 cannot be made. Nevertheless,

segmenting the crossbar and realizing each segment independently can reduce the

effect of a single-point failure in a crossbar. It may also be possible to introduce

routing algorithms such that more than one path exists for the establishment of a
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connection between any processor–memory pair. Therefore, the existence of a

faulty cross point and/or link along one path will not cause the total elimination

of a connection between the processor–memory pair.

Multiple Bus In Section 2.2.2 we considered a number of different multiple bus

arrangements. A general multiple bus arrangement is shown in Figure 2.21. It

consists ofMmemory modules, N processors, and B buses. A given bus is dedicated

Figure 2.20 An 8 � 8 crossbar network with a single-point failure.

1P 2P NP

• • •

1B

2B

BB

• • •

1M 2M MM

Figure 2.21 Example multiple bus system.
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to a particular processor for the duration of a bus transaction. A processor–memory

transfer can use any of the available buses. Given B buses in the system, then up to B

requests for memory use can be served simultaneously. The cost of a multiple-bus

system such as the ones shown in Figure 2.3 is measured in terms of the number

of buses used, B. We therefore say that a multiple bus possesses an O(B) rate of

cost (complexity) growth. The delay (latency) of a multiple bus, measured in

terms of the amount of the input to output delay, is proportional to B� N. We there-

fore say that the multiple bus possesses an O(B� N) rate of delay (latency) growth.

Multiple bus multiprocessor organization offers the desirable feature of being highly

reliable and fault-tolerant. This is because a single bus failure in a B bus system will

leave (B2 1) distinct fault-free paths between the processors and thememorymodules.

On the other hand, when the number of buses is less than the number of memory mod-

ules (or the number of processors), bus contention is expected to increase.

Multistage Interconnection Networks As mentioned before, the number of

stages in an N � N MIN is log2 N. Each stage consists of N/2, 2� 2 switching

elements (SEs). The network cost (complexity), measured in terms of the total

number of SEs, is O(N � log2 N). The number of SEs along a path from a given

input to a given output is usually taken as a measure for the delay a message has to

encounter as it finds its way from a source to a destination. The latency (time) complex-

ity, measured by the number of SEs along the path from input to output, is O( log2 N).

Simplicity of message routing inside a MIN is a desirable feature of such net-

works. There exists a unique path between a given input–output pair. However,

this feature, while simplifying the routing mechanism, causes the MIN to be vulner-

able to single-point failure. The failure of a component (a switch or a link) along a

given path will render the corresponding path inoperable, thus causing the discon-

nection of the corresponding input–output pair. Therefore, MINs are characterized

as being 0-fault tolerant; that is, a MIN cannot tolerate the failure of a single com-

ponent. A number of solutions have been suggested in order to improve the fault-

tolerance characteristics of MINs. One such solution has been to add an extra

stage of SEs such that the number of stages becomes ( log2 N þ 1). The addition

of such a stage leads to the creation of two paths between an input–output pair

and requires a minor modification in the routing strategy.

Based on the above discussion, Table 2.4 provides an overall performance

comparison among different dynamic interconnection networks. Notice that in

TABLE 2.4 Performance Comparison of Dynamic Networks

Network

Delay

(Latency)

Cost

(Complexity) Blocking

Degree of Fault

Tolerance

Bus O(N) O(1) Yes 0

Multiple bus O(mN) O(m) Yes (m2 1)

MINs O(log N) O(N log N) Yes 0

Crossbar O(1) O(N 2) No 0
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this table N represent the number of inputs (outputs) while m represents the number

of buses.

2.5.2 Static Networks

Before discussing performance issues related to static interconnection networks, we

need to introduce a number of definitions and topological characteristics:

. Degree of a node, d, is defined as the number of channels incident on the node.

The number of channels into the node is the in-degree, din. The number of chan-

nels out of a node is the out-degree, dout. The total degree, d, is the sum,

d ¼ din þ dout.

. Diameter, D, of a network having N nodes is defined as the longest path, p, of

the shortest paths between any two nodes D ¼ max (minp[pij length( p)). In this

equation, pij is the length of the path between nodes i and j and length (p) is a

procedure that returns the length of the path, p. For example, the diameter of a

4 � 4 Mesh D ¼ 6.

. A network is said to be symmetric if it is isomorphic to itself with any node

labeled as the origin; that is, the network looks the same from any node.

Rings and Tori networks are symmetric while linear arrays and mesh networks

are not.

Having introduced the above definitions, we now proceed to introduce the basic

issues related to the performance of a number of static networks.

Completely Connected Networks (CCNs) As mentioned before, in a com-

pletely connected network each node is connected to all other nodes in the network.

Thus, the cost of a completely connected network having N nodes, measured in

terms of the number of links in the network, is given by N(N � 1)=2, that is,
O(N2). The delay (latency) complexity of CCNs, measured in terms of the

number of links traversed as messages are routed from any source to any destination,

is constant, that is, O(1). Notice also that the degree of a node in CCN is N2 1, that

is, O(N), while the diameter is O(1).

Linear Array Networks In this network architecture, each node is connected to

its two immediate neighboring nodes. Each of the two nodes at the extreme ends of

the network is connected only to its single immediate neighbor. The network cost

(complexity) measured in terms of the number of nodes of the linear array is

O(N). The delay (latency) complexity measured in terms of the average number

of nodes that must be traversed to reach from a source node to a destination node

is N/2, that is, O(N). The node degree in the linear array is 2, that is, O(1) and

the diameter is (N2 1), that is, O(N).
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Tree Networks In a tree-connected network, a given node is connected to both

its parent node and to its children nodes. In a k-level complete binary tree network,

the network cost (complexity) measured in terms of the number of nodes in the net-

work is O(2k) and the delay (latency) complexity is O( log2 N). The degree of a node

in a binary tree is 3, that is, O(1), while the diameter is O( log2 N).

Cube-Connected Networks An n-cube network has 2n nodes where two nodes

are connected if the binary representation of their addresses differs by one and only

one bit. The cost (complexity) of an n-cube measured in terms of the number of

nodes in the cube is O(2n) while the delay (latency) measured in terms of the

number of nodes traversed while going from a source node to a destination node

is O( log2 N). The node degree in an n-cube is O( log2 N) and the diameter of an

n-cube is O( log2 N).

Mesh-Connected Networks A 2Dmesh architecture connects n� n nodes in a

2D manner such that a node whose position is (i, j) is connected to its neighbors at

positions (i+ 1, j+ 1). The cost (complexity) of a 2D mesh measured in terms of

the number of nodes is O(n2), while the delay (latency) measured in terms of the

number of nodes traversed while going from a source to a destination is O(n).

The node degree in a 2D mesh is 4 and the diameter is O(n).

The k-ary n-Cube Networks The k-ary n-cube architecture is a radix k cube

with n dimensions. The number of nodes in a k-ary n-cube is N ¼ kn. The cost (com-

plexity) measured in terms of the number of nodes is O(kn) and the delay (latency)

measured in terms of the number of nodes traversed while going from a source to a

destination is O(nþ k). The node degree of a k-ary n-cube is 2n and the diameter is

O(n� k). The relationship among the topological characteristics introduced above

for a k-ary n-cube network is summarized below.

din ¼ dout ¼ n

d ¼ 2n

D ¼ nk

2

Having briefly discussed the basic performance characteristics of a number of static

interconnection networks, Table 2.5 summarizes those topological characteristics.

In this table, N is the number of nodes and n is the number of dimensions.

2.6 CHAPTER SUMMARY

In this chapter, we have navigated through a number of system configurations for

multiprocessors. We have discussed the different topologies used for inter-

connecting multiprocessors. Taxonomy for interconnection networks based on
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their topology is introduced. Dynamic and static interconnection schemes have been

studied. In the dynamic interconnection scheme, three main mechanisms have been

covered. These are the bus topology, the crossbar topology, and the multistage top-

ology. In the static interconnection scheme, three main mechanisms have been cov-

ered. These are the hypercube topology, the mesh topology, and the k-ary n-cube

topology. A number of basic performance aspects related to both dynamic and

static interconnection networks have been introduced. These include the cost (com-

plexity), delay (latency), diameter, node degree, and symmetry. Illustrative

examples have been used throughout the chapter in introducing new concepts and

system configurations. In Chapter 3, we will elaborate on the performance aspects

of parallel architectures.

PROBLEMS

1. Design a nonblocking Clos network that connects 16 processors and 16

memory modules. Show clearly the number of crossbar switches needed,

together with their interconnection pattern.

2. Consider the case of an 8 � 8 single-stage recirculating Shuffle–Exchange

network. Determine all input–output combinations that require the maxi-

mum number of passes through the network.

3. Consider the case of an 8�8 Banyan multistage interconnection network

similar to the one shown in Figure 2.8. Determine whether it is possible to

connect input #I to output (i mod 8) for all I simultaneously. If it is possible

show the routing in each case.

4. Consider a simple cost comparison between an n � n crossbar and an n � n

Shuffle–Exchange MIN. While the crossbar uses cross points, the Shuffle

network uses 2 � 2 switching elements (SEs). Assume that the cost of a

2 � 2SE is four times that of a cross point. What is the relative cost of an

n � n Shuffle–Exchange network with respect to that of a crossbar of the

same size? Determine the smallest value of n for which the cost of the cross-

bar is four times that of the Shuffle–Exchange.

TABLE 2.5 Performance Characteristics of Static Networks

Network

Degree

(d)

Diameter

(D)

Cost

(No. of Links) Symmetry

Worst

Delay

CCNs N2 1 1 N(N � 1)=2 Yes 1

Linear array 2 N2 1 N2 1 No N

Binary tree 3 2(dlog2 Ne � 1) N2 1 No log2 N

n-cube log2 N log2 N nN=2 Yes log2 N

2D-mesh 4 2(n� 1) 2(N � n) No
ffiffiffiffi
N

p
k-ary n-cube 2n Nbk=2c n� N Yes k � log2 N
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5. In computing the number of connections for different multiple-bus systems,

it is noticed that all multiple-bus systems require at least BN connections.

However, they differ in the number of additional connections required. For

example, while the MBFBMC requires BM additional connections, the

MBSBMC requires only M additional connections. You are required to

compare the four multiple-bus systems in terms of the additional number

of connections required for each. You may assume some numerical values

for B, N, M, g, and k. Consider the case of connecting N ¼ 100 processors

to M ¼ 400 memory modules using B ¼ 40 buses. Determine the optimal

values for g and k such that the MBCBMC system is always better that the

MBPBMC in terms of the number of additional connections.

6. Consider the two MINs shown in Figures 2.10 and 2.11. At first glance one

can notice the difference between these two networks. In particular, while

the first one (the Shuffle–Exchange) uses straight connections between the

input processors and the network inputs and straight connections between

the output of the network and the output memory modules, the second

network (the Banyan network) uses straight connections at the inputs but

a shuffle connection at the output. If we generalize that principle such

that at the input and the output we can have either straight or shuffle

connections while keeping the connection among stages as shown, how

many different types of networks will result? Characterize the resulting

networks in terms of their ability to interconnect all inputs to all outputs

simultaneously.

7. Repeat Problem 6 above for the cases whereby the interstage connection

patterns can be either straight or shuffle.

8. Assume that we define a new operation, call it inverse shuffle (IS), which is

defined as

IS( pm�1 pm�2 � � � p1 p0) ¼ p0 pm�1 pm�2 � � � p1

Repeat Problems 7 and 8 above if the IS is used instead of the shuffle

operation.

9. Determine the maximum speedup of a single-bus multiprocessor system

having N processors if each processor uses the bus for a fraction f of every

cycle.

10. Discuss in some details the fault-tolerance features of dynamic INs such as

multiple-bus, MINs, and crossbar. In particular, discuss the effect of failure

of nodes and/or links on the ability of routing in each network. Repeat the

same for static networks such as hypercubes, meshes, and tree networks.

11. Determine the condition under which a binary tree of height h has a larger

diameter and larger number of links than each of the followings: (a) an

n-dimensional hypercube, (b) an r � r 2D mesh with r ¼ ffiffiffiffi
N

p
, and (c) a

k-ary n-cube.
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12. What are the minimum and the maximum distances a message has to travel

in an n-dimensional hypercube? Can you use such information to compute

the average distance a message has to travel in such cube? Show how?

13. Repeat Problem 12 for the case of an r � r 2D mesh with r ¼ ffiffiffiffi
N

p
.

14. Repeat Problem 12 for the case of a binary tree whose height is h and

assuming that all possible source/destination pairs are equally likely.

15. Routing of messages between two nodes A and B in a binary tree has been

described in general terms in Section 2.4 of this chapter. You are required

to obtain a step-by-step algorithm for routing messages between any two

nodes in a binary tree given the following information:

(a) the root node is numbered as 1 and is considered at level 1;

(b) the left and right nodes of a node whose number is x are respectively 2x

and 2xþ 1;

(c) the binary representation of the numbers of nodes at level i are i bits

long; and

(d) the left and right children of a node are having a 0 or a 1 appended to

their parent’s number, respectively.

Show how to apply your algorithm to route messages between node number

8 and node number 13 in a 4 level binary tree.
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&CHAPTER 3

Performance Analysis of
Multiprocessor Architecture

In the previous chapter, we introduced the fundamental concepts related to the

design and analysis of multiple-processor systems. We have also touched upon

some of the basic issues in the performance analysis of static and dynamic inter-

connection networks. In this Chapter, we will build on this foundation by providing

an in-depth analysis of the performance measures of parallel architectures. Our

coverage in this chapter starts by introducing the concept of computational

models as related to multiprocessors. The emphasis here is on the computational

aspects of the processing elements (processors). Two computational models are

studied, namely the equal duration processes and the parallel computation with

serial sections models. In studying these models, we discuss two measures.

These are the speedup factor and the efficiency. The impact of the communication

overhead on the overall speed performance of multiprocessors is emphasized in

these models. Having introduced the computational models, we move on to present

a number of arguments in support of parallel architectures. Following that, we

study a number of performance measures (metrics) of interconnection networks.

We define performance metrics such as the bandwidth, worst-case delay, utiliz-

ation, average distance traveled by a message, cost, and interconnectivity. We

will show how to compute those measures for sample dynamic and static networks.

Our coverage continues with a discussion on the scalability of parallel systems.

A discussion on the important topic of benchmark performance concludes our

coverage in this chapter.

3.1 COMPUTATIONAL MODELS

In developing a computational model for multiprocessors, we assume that a

given computation can be divided into concurrent tasks for execution on the multi-

processor. Two computational models, thus, arise. These are discussed below.
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3.1.1 Equal Duration Model

In this model, it is assumed that a given task can be divided into n equal subtasks,

each of which can be executed by one processor. If ts is the execution time of

the whole task using a single processor, then the time taken by each processor to

execute its subtask is tm ¼ ts=n. Since, according to this model, all processors are

executing their subtasks simultaneously, then the time taken to execute the whole

task is tm ¼ ts=n. The speedup factor of a parallel system can be defined as the

ratio between the time taken by a single processor to solve a given problem instance

to the time taken by a parallel system consisting of n processors to solve the same

problem instance.

S(n) ¼ speedup factor

¼ ts

tm
¼ ts

ts=n
¼ n

The above equation indicates that, according to the equal duration model, the speedup

factor resulting from using n processors is equal to the number of processors used, n.

One important factor has been overlooked in the above derivation. This factor is

the communication overhead, which results from the time needed for processors to

communicate and possibly exchange data while executing their subtasks. Assume

that the time incurred due to the communication overhead is called tc then

the actual time taken by each processor to execute its subtask is given by

tm ¼ ðts=nÞ þ tc.

S(n) ¼ speedup factor with communication overhead

¼ ts

tm
¼ ts

ts

n
þ tc

¼ n

1þ n� tc

ts

The above equation indicates that the relative values of ts and tc affect the achieved

speedup factor. A number of cases can then be contemplated: (1) if tc � ts then the

potential speedup factor is approximately n; (2) if tc � ts then the potential speedup

factor is ts=tc � 1; (3) if tc ¼ ts then the potential speedup factor is n=nþ 1 ffi 1, for

n� 1.

In order to scale the speedup factor to a value between 0 and 1, we divide it by the

number of processors, n. The resulting measure is called the efficiency, j. The effi-
ciency is a measure of the speedup achieved per processor. According to the simple

equal duration model, the efficiency j is equal to 1 if the communication overhead is

ignored. However if the communication overhead is taken into consideration, the

efficiency can be expressed as

j ¼ 1

1þ n� tc

ts

:
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Although simple, the equal duration model is however unrealistic. This is because it

is based on the assumption that a given task can be divided into a number of equal

subtasks that can be executed by a number of processors in parallel. However, it is

sufficient here to indicate that real algorithms contain some (serial) parts that cannot

be divided among processors. These (serial) parts must be executed on a single pro-

cessor. Consider, for example, the program segments given in Figure 3.1. In these

program segments, we assume that we start with a value from each of the two

arrays (vectors) a and b stored in a processor of the available n processors. The

first program block (enclosed in a square) can be done in parallel; that is, each pro-

cessor can compute an element from the array (vector) c. The elements of array c are

now distributed among processors, and each processor has an element. The next pro-

gram segment cannot be executed in parallel. This block will require that the

elements of array c be communicated to one processor and are added up there.

The last program segment can be done in parallel. Each processor can update its

elements of a and b.

This illustrative example shows that a realistic computational model should

assume the existence of (serial) parts in the given task (program) that cannot be

divided. This is the basis for the following model.

3.1.2 Parallel Computation with Serial Sections Model

In this computational model, it is assumed that a fraction f of the given task

(computation) is not dividable into concurrent subtasks. The remaining part

(12 f ) is assumed to be dividable into concurrent subtasks. Performing similar

–a

–a

Figure 3.1 Example program segments.
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derivations to those done in the case of the equal duration model will result in the

following.

The time required to execute the task on n processors is tm ¼ fts þ (1� f )ðts=nÞ.
The speedup factor is therefore given by

S(n) ¼ ts

fts þ (1� f )
ts

n

¼ n

1þ (n� 1)f

According to this equation, the potential speedup due to the use of n processors is

determined primarily by the fraction of code that cannot be divided. If the task

(program) is completely serial, that is, f ¼ 1, then no speedup can be achieved

regardless of the number of processors used. This principle is known as Amdahl’s

law. It is interesting to note that according to this law, the maximum speedup

factor is given by limn!1 S(n) ¼ 1=f . Therefore, according to Amdahl’s law

the improvement in performance (speed) of a parallel algorithm over a sequential

one is limited not by the number of processors employed but rather by the frac-

tion of the algorithm that cannot be parallelized. A first glance at Amdahl’s law

indicates that regardless of the number of processors used, there exists an intrinsic

limit on the potential usefulness of using parallel architectures. For some time

and according to Amdahl’s law, researchers were led to believe that a substantial

increase in speedup factor would not be possible by using parallel architectures.

We will discuss the validity of that and similar postulates in the next section.

However, let us show the effect of the communication overhead on the speedup

factor, given that a fraction, f, of the computation is not parallelizable. As stated

earlier, the communication overhead should be included in the processing time.

Considering the time incurred due to this communication overhead, the speedup

factor is given by

S(n) ¼ ts

fts þ (1� f )(ts=n)þ tc
¼ n

f (n� 1)þ 1þ n(tc=ts)

The maximum speedup factor under such conditions is given by

lim
n!1 S(n) ¼ lim

n!1
n

f (n� 1)þ 1þ n(tc=ts)
¼ 1

f þ (tc=ts)

The above formula indicates that the maximum speedup factor is determined not

by the number of parallel processors employed but by the fraction of the compu-

tation that is not parallelized and the communication overhead.

Having considered the speedup factor, we now touch on the efficiency measure.

Recall that the efficiency is defined as the ratio between the speedup factor and the
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number of processors, n. The efficiency can be computed as:

j (no communication overhead) ¼ 1

1þ (n� 1)f

j (with communication overhead) ¼ 1

f (n� 1)þ 1þ n(tc=ts)

As a last observation, one has to notice that in a parallel architecture, processors must

maintain a certain level of efficiency. However, as the number of processors increases,

it may become difficult to use those processors efficiently. In order to maintain a cer-

tain level of processor efficiency, there should exist a relationship between the fraction

of serial computation, f, and the number of processor employed (see Problem 6).

After introducing the above two computational models, we now turn our attention

to a discussion on some performance laws (postulates) that were hypothesized

regarding the potential gain of parallel architectures. Among these are Grosch’s,

Amdahl’s and Gustafson–Brasis’s laws.

3.2 AN ARGUMENT FOR PARALLEL ARCHITECTURES

In this section, we introduce a number of postulates that were introduced by some

well-known computer architects expressing skepticism about the usefulness of

parallel architectures. We will also provide rebuttal to those concerns.

3.2.1 Grosch’s Law

It was as early as the late 1940s that H. Grosch studied the relationship between the

power of a computer system, P, and its cost, C. He postulated that P ¼ K � Cs,

where s and K are positive constants. Grosch postulated further that the value of s

would be close to 2. Simply stated,Grosch’s law implies that the power of a computer

system increases in proportion to the square of its cost. Alternatively, one can express

the cost of a system as C ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
(P=K)
p

assuming that s ¼ 2. The relation between com-

puting power and cost according to Grosch’s law is shown in Figure 3.2.

Power

Cost

Figure 3.2 Power–cost relationship according to Grosch’s law.
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According to Grosch’s law, in order to sell a computer for twice as much, it must

be four times as fast. Alternatively, to do a computation twice as cheaply, one has to

do it four times slower. With the advances in computing, it is easy to see that

Grosch’s law is repealed, and it is possible to build faster and less expensive

computers over time.

3.2.2 Amdahl’s Law

Recall that in Section 3.1.2 we defined the speedup factor of a parallel system as the

ratio between the time taken by a single processor to solve a given problem instance

to the time taken by a parallel system consisting of n processors to solve the same

problem instance.

S(n) ¼ ts

fts þ (1� f )(ts=n)
¼ n

1þ (n� 1)f

lim
n!1 S(n) ¼ 1

f

Similar to Grosch’s law, Amdahl’s law made it so pessimistic to build parallel com-

puter systems due to the intrinsic limit set on the performance improvement (speed)

regardless of the number of processors used. An interesting observation to make

here is that according to Amdahl’s law, f is fixed and does not scale with the problem

size, n. However, it has been practically observed that some real parallel algorithms

have a fraction that is a function of n. Let us assume that f is a function of n such that

limn!1 f (n) ¼ 0. Hence,

lim
n!1 S(n) ¼ lim

n!1
n

1þ (n� 1)f (n)
¼ n

This is clearly in contradiction to Amdahl’s law. It is therefore possible to achieve a

linear speedup factor for large-sized problems, given that limn!1 f (n) ¼ 0, a con-

dition that has been practically observed. For example, researchers at the Sandia

National Laboratories have shown that using a 1024-processor hypercube multi-

processor system for a number of engineering problems, a linear speedup factor

can be achieved.

Consider, for example, the well-known engineering problem of multiplying a large

square matrix A(m � m) by a vector X(m) to obtain a vector, that is, C(m) 
A(m� m) � X(m). Assume further that the solution of such a problem is performed

on a binary tree architecture consisting of n nodes (processors). Initially, the root

node stores the vector X(m) and the matrix A(m� m) is distributed row-wise among

the n processors such that the maximum number of rows in any processor is m
n

� �þ 1.

A simple algorithm to perform such computation consists of the following three steps:

1. The root node sends the vector X(m) to all processors in O(m log n)
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2. All processors perform the product ci  
Pm

j¼1 aij � xj in

O m� m

n

j k
þ 1

� �� �
¼ O(m)þ O

m2

n

� �

3. All processors send their ci values to the root node in O(m log n).

According to the above algorithm, the amount of computation needed is

O(m log n)þ O(m)þ O
m2

n

� �

þ O(m log n) ¼ O(m2)

The indivisible part of the computation (steps 1 and 3) is equal to O(m)þO(m log n).

Therefore, the fraction of computation that is indivisible f (m) ¼ (O(m)þ O(m log n))=
O(m2) ¼ O((1þ log n)=m). Notice that limm!1 f (m) ¼ 0. Hence, contrary to

Amdahl’s law, a linear speedup can be achieved for such a large-sized problem.

It should be noted that in presenting the above scenario for solving the matrix

vector multiplication problem, we have assumed that the memory size of each pro-

cessor is large enough to store the maximum number of rows expected. This assump-

tion amounts to us saying that with n processors, the memory is n times larger.

Naturally, this argument is more applicable to message passing parallel architectures

than it is to shared memory ones (shared memory and message passing parallel

architectures are introduced in Chapters 4 and 5, respectively). The Gustafson–

Barsis law makes use of this argument and is presented below.

3.2.3 Gustafson–Barsis’s Law

In 1988, Gustafson and Barsis at Sandia Laboratories studied the paradox created by

Amdahl’s law and the fact that parallel architectures comprised of hundreds of pro-

cessors were built with substantial improvement in performance. In introducing their

law, Gustafson recognized that the fraction of indivisible tasks in a given algorithm

might not be known a priori. They argued that in practice, the problem size scales

with the number of processors, n. This contradicts the basis of Amdahl’s law. Recall

that Amdahl’s law assumes that the amount of time spent on the parts of the program

that can be done in parallel, (12 f ), is independent of the number of processors, n.

Gustafson and Brasis postulated that when using a more powerful processor, the pro-

blem tends to make use of the increased resources. They found that to a first approxi-

mation the parallel part of the program, not the serial part, scales up with the

problem size. They postulated that if s and p represent respectively the serial and

the parallel time spent on a parallel system, then sþ p� n represents the time

needed by a serial processor to perform the computation. They therefore, introduced

a new factor, called the scaled speedup factor, SS(n), which can be computed as:

SS(n) ¼ sþ p� n

sþ p
¼ sþ p� n ¼ sþ (1� s)� n ¼ nþ (1� n)� s
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This equation shows that the resulting function is a straight line with a

slope ¼ (12 n). This shows clearly that it is possible, even easier, to achieve effi-

cient parallel performance than is implied by Amdahl’s speedup formula. Speedup

should be measured by scaling the problem to the number of processors, not by

fixing the problem size.

Having considered computational models and rebutted some of the criticism set

forth by a number of computer architects in the face of using parallel architectures,

we now move to consider some performance issues in dynamic and static intercon-

nection networks. The emphasis will be on the performance of the interconnection

networks rather than the computational aspects of the processors (the latter was

considered in Section 3.1).

3.3 INTERCONNECTION NETWORKS PERFORMANCE ISSUES

In this section, we introduce a number of metrics for assessing the performance of

dynamic and static interconnection networks. In introducing the metrics, we will

show how to compute them for sample networks chosen from those introduced in

Chapter 2. The reader is reminded to review the definitions given in Chapter 2

before proceeding with this section. In particular, the reader should review the defi-

nitions given about the diameter D, the degree d, and the symmetry of a network. In

addition to those definitions, we provide the following definition.

. Channel bisection width of a network, B, is defined as the minimum number

of wires that, when cut, divide the network into equal halves with respect to

the number of nodes. The wire bisection is defined as the number of wires

crossing this cut of the network. For example, the bisection width of a

4-cube is B ¼ 8.

Table 3.1 provides some numerical values of the above topological charac-

teristics for sample static networks. General expressions for the topological

characteristics of a number of static interconnection networks are summarized

in Table 3.2. It should be noted that in this table, N is the number of nodes and n

is the number of dimensions. In presenting these expressions, we assume that

the reader is familiar with their topologies as given in Chapter 2.

TABLE 3.1 Topological Characteristics of Static Networks

Network

Configuration

Bisection

Width (B)

Node

Degree (d)

Diameter

(D)

8-ary 1-cube 2 2 4

8-ary 2-cube 16 4 8

4-cube 8 4 4

3 � 3 � 2 Mesh 9 3 5
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. Bandwidth The bandwidth of a network can be defined as the data transfer

rate of the network. In a more formal way, the bandwidth is defined as the

asymptotic traffic load supported by the network as its utilization approaches

unity.

3.3.1 Bandwidth of a Crossbar

We will define the bandwidth for the crossbar as the average number of requests that

can be accepted by a crossbar in a given cycle. As processors make requests for

memory modules in a crossbar, contention can take place when two or more pro-

cessors request access to the same memory module. Consider, for example, the

case of a crossbar consisting of three processors p1, p2, and p3 and three memory

modules M1, M2, and M3. As processors make requests for accessing memory

modules, the following cases may take place:

1. All three processors request access to the same memory module: In this case,

only one request can be accepted. Since there are three memory modules, then

there are three ways (three accepted requests) in which such a case can arise.

2. All three processors request access to two different memory modules: In this

case two requests can be granted. There are 18 ways (36 accepted requests) in

which such a case can arise.

3. All three processors request access to three different memory modules: In this

case all three requests can be granted. There are six ways (18 accepted

requests) in which such a case can arise.

From the above enumeration, it is clear that of the 27 combinations of 3 requests

taken from 3 possible requests, there are 57 requests that can be accepted (causing

no memory contention). Therefore, we say that the bandwidth of such a crossbar is

BW ¼ 57=27 ¼ 2:11. It should be noted that in computing the bandwidth in this

simple example, we made a simplified assumption that all processors make requests

for memory module access in every cycle.

In general, for M memory modules and n processors, if a processor generates a

request with probability r in a cycle directed to each memory with equal probability,

then the expression for the bandwidth can be computed as follows. The probability

that a processor requests a particular memory module is r/M. The probability that a

TABLE 3.2 Topological Characteristics of a Number of Static Networks

Network Degree (d ) Diameter (D) Bisection Width (B) Symmetry

CCNs N2 1 1 (N/2)2 Yes

Linear array 2 N2 1 1 No

Binary tree 3 2� (dlog2 Ne � 1) 1 No

Binary cube log2 N log2 N N/2 Yes

2D-mesh 4 2(n2 1)
ffiffiffiffi
N
p

No

k-ary n-cube 2n nbk=2c 2� kn�1 Yes
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processor does not request that memory module during a given cycle is (12 r/M).

The probability that none of the P processors request that memory module during a

cycle is (1� (r=M))n. The probability that at least one request is made to that

memory module is (1� (1� (r=M))n). Therefore, the expected number of distinct

memory modules with at least one request (the bandwidth) is BW ¼ M(1�
(1� (r=M))n).

Notice that in case there is equal probability that any module be requested by a

processor, then the term r/M in the above equation will become 1/M. Now, consid-

ering the case M ¼ 3 and n ¼ 3, the BW ¼ 19/9 ¼ 2.11, the same as before.

In deriving the above expression, we have assumed that all processors generate

requests for memory modules during a given cycle. A similar expression can be

derived for the case whereby only a fraction of processors generate requests

during a given cycle (see the exercise at the end of the chapter).

3.3.2 Bandwidth of a Multiple Bus

We will develop an expression for the bandwidth of the general multiple bus

arrangement shown in Figure 3.3. It consists of M memory modules, n processors,

and B buses. A given bus is dedicated to a particular processor for the duration of

a bus transaction. A processor–memory transfer can use any of the available

buses. Given B buses in the system, then up to B requests for memory use can

be served simultaneously. In order to resolve possible conflicts in accessing a

given memory module out of the available M modules, M arbiters, one for

each memory module, are used to arbitrate among the requests made for a given

memory module. The set of M arbiters accepts only one request for each memory

module at any given time. Let us assume that a processor generates a request

with probability r in a cycle directed to each memory with equal probability. There-

fore, out of all possible memory requests, only up to M memory requests can be

accepted. The probability that a memory module has at least one request is given

by (see the crossbar analysis) b ¼ 1� (1� (r=M))n. Owing to the availability

of only B buses, then of all memory requests, only B request can be satisfied. The

Figure 3.3 A multiple bus system.
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probability that exactly k different memory modules are requested during a given

cycle can be expressed as a ¼ N

k

� �

� bk � (1� b)N�k. Two cases have to be con-

sidered. These are the case where fewer than B different requests being made while

fewer than B buses are being used and the case where B or more different requests

are made while all B buses are in use. Given these two cases, the bandwidth of the B

buses system can be expressed as

BW ¼
XB

k¼1
k � bþ

XN

k¼Bþ1
B� b

3.3.3 Bandwidth of a Multistage Interconnection Network (MIN)

In this subsection, we compute the bandwidth of a MIN. A simplifying assumption

that we make is that the MIN consists of stages of a � b crossbar switches. One such

MIN is theDelta network. This assumption is made such that the results we obtained

for the bandwidth of the crossbar network can be utilized.

Let us assume that the request rate at the input of the first stage is given by r0. The

number of requests accepted by the first stage and passed on to the next stage is

R1 ¼ (1� (1� (r0=b))
a). The number of requests at any of the b output lines of

the first stage is r1 ¼ 1� (1� (r0=b))
a. Since these requests become the input to

the next stage, then by analogy the number of requests at the output of the second

stage is given by r2 ¼ 1� (1� (r1=b))
a. This recursive relation can be extended to

compute the number of requests at the output of stage j in terms of the rate of input

requests passed on from stage j2 1 as follows: rj ¼ 1� (1� (rj�1=b))a for 1 � j �
nwhere n is the number of stages. Based on this, the bandwidth of the MIN is given by

BW ¼ bn � rn.

. Latency is defined as the total time required to transmit a message from a source

node to a destination node in a parallel architecture machine.

It should be noted that parallel machines attempt to minimize the communication

latency by increasing the interconnectivity. In our discussion, we will show the

latency caused by the time spent in switching elements. Latency caused by software

overhead, routing delay, and connection delay are overlooked in this discussion.

The latency of a k-ary n-cube is k � log2 N, that of binary hypercube is given by

( log2 N), while that of a 2D mesh is given by
ffiffiffiffi
N
p

.

. Average distance, da, traveled by a message in a static network, is a measure of

the typical number of links (hops) a message has to traverse as it makes its way

from any source to any destination in the network. In a network consisting of N

nodes, the average distance can be computed using the following relation:

da ¼
Pmax

d¼0 d � Nd

N � 1
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In the above relation Nd is the number of nodes separated by d links and max is the

maximum distance necessary to interconnect two nodes in the network. Consider,

for example, a 4-cube network. The average distance between two nodes in such

a network can be computed as follows. We compute the distance between node

(0000) and all other 15 nodes in the cube. These are shown in Table 3.3. From

these, therefore, the average distance for a 4-cube is (32=15) ffi 2:13.

. Complexity (Cost) of a static network can be measured in terms of the number

of links needed to realize the topology of the network.

The cost of a k-ary n-cube measure in terms of the number of links is given by n� N,

that of a hypercube is given by (n� N)=2, that of a 2D mesh (having N nodes) is

given by 2(N2 2), and that of a binary tree is given by (N2 1).

. Interconnectivity of a network is a measure of the existence of alternate paths

between each source–destination pair. The importance of network connectivity

is that it shows the resistance of the network to node and link failures. Network

TABLE 3.3 Distance fromNode 0000 to all Other Nodes

Path Distance

0000! 0001 1

0000! 0010 1

0000! 0011 2

0000! 0100 1

0000! 0101 2

0000! 0110 2

0000! 0111 3

0000! 1000 1

0000! 1001 2

0000! 1010 2

0000! 1011 3

0000! 1100 2

0000! 1101 3

0000! 1110 3

0000! 1111 4

Total 32

TABLE 3.4 Performance Measure for a Number of Dynamic Networks

Network

Worst-Case

Delay Bandwidth

Complexity

(Cost)

Bus O(N) 1/N O(1)

Multiple bus O(N/k) BW ¼PB
k¼1 k � bþPN

k¼B�1 B� b O(k)

Multistage O(log N) BW ¼ bn � rn O(N log N)

Crossbar O(1) BW ¼ M(1� (1� (r=M)n) O(N2)
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connectivity can be represented by the two components: node connectivity and

link connectivity.

Consider, for example, the binary tree architecture. The failure of a node, for

example, the root node, can lead to the partitioning of the network into two disjoint

halves. Similarly, the failure of a link can lead to the partitioning of the network. We

therefore say that the binary tree network has a node connectivity of 1 and a link

connectivity of 1.

Based on the above discussion and the information provided in Chapter 2, the fol-

lowing two tables, Tables 3.4 and 3.5, provide overall performance comparison

among different dynamic interconnection networks and different static networks,

respectively. Having presented a number of performance measures for static and

dynamic networks, we now turn our attention to the important issue of parallel

architecture scalability.

3.4 SCALABILITY OF PARALLEL ARCHITECTURES

A parallel architecture is said to be scalable if it can be expanded (reduced) to a larger

(smaller) system with a linear increase (decrease) in its performance (cost). This gen-

eral definition indicates the desirability for providing equal chance for scaling up a

system for improved performance and for scaling down a system for greater cost-

effectiveness and/or affordability. Unless otherwise mentioned, our discussion in

this section will assume the scaling up of systems. In this context, scalability is

used as a measure of the system’s ability to provide increased performance, for

example, speed as its size is increased. In other words, scalability is a reflection of

the system’s ability to efficiently utilize the increased processing resources. In prac-

tice, the scalability of a system can be manifested in a number of forms. These

forms include speed, efficiency, size, applications, generation, and heterogeneity.

In terms of speed, a scalable system is capable of increasing its speed in

proportion to the increase in the number of processors. Consider, for example, the

case of adding m numbers on a 4-cube (n ¼ 16 processors) parallel system.

Assume for simplicity that m is a multiple of n. Assume also that originally each

TABLE 3.5 Performance Measure for a Number of Static Networks

Network

Worst-Case

Delay

Cost

(No. of Links)

Connectivity

(Nodes and Links)

CCNs 1 N(N2 1)/2 (1, 1)

Linear array N N2 1 (1, 1)

Binary hybercube log2 N N/2 � log2 N (log2 N, log2 N)

2D-mesh
ffiffiffiffi
N
p

2(N2 n) (4, 4)

Binary tree log N N2 1 (1, 1)

k-ary n-cube k � log2 N nN (2k, 2k)
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processor has (m=n) numbers stored in its local memory. The addition can then

proceed as follows. First, each processor can add its own numbers sequentially in

(m=n) steps. The addition operation is performed simultaneously in all processors.

Secondly, each pair of neighboring processors can communicate their results to

one of them whereby the communicated result is added to the local result. The

second step can be repeated ( log2 n) times, until the final result of the addition

process is stored in one of the processors. Assuming that each computation and

the communication takes one unit time then the time needed to perform the addition

of these m numbers is Tp ¼ (m=n)þ 2� log2 n. Recall that the time required to per-

form the same operation on a single processor is Ts ¼ m. Therefore, the speedup is

given by

S ¼ m

(m=n)þ 2� log2 n

Table 3.6 provides the speedup S for different values of m and n. It is interesting to

notice from the table that for the same number of processors, n, a larger instance of

the same problem, m, results in an increase in the speedup, S. This is a property of a

scalable parallel system.

In terms of efficiency, a parallel system is said to be scalable if its efficiency can

be kept fixed as the number of processors is increased, provided that the problem

size is also increased. Consider, for example, the above problem of adding m num-

bers on an n-cube. The efficiency of such a system is defined as the ratio between the

actual speedup, S, and the ideal speedup, n. Therefore, j ¼ (S=n) ¼ m=(mþ 2n �
log2 n). Table 3.7 shows the values of the efficiency, j, for different values of m

and n. The values in the table indicate that for the same number of processors, n,

higher efficiency is achieved as the size of the problem, m, is increased. However,

as the number of processors, n, increases, the efficiency continues to decrease.

Given these two observations, it should be possible to keep the efficiency fixed by

increasing simultaneously both the size of the problem, m, and the number of pro-

cessors, n. This is a property of a scalable parallel system.

It should be noted that the degree of scalability of a parallel system is determined

by the rate at which the problem size must increase with respect to n in order to

maintain a fixed efficiency as the number of processors increases. For example, in

a highly scalable parallel system the size of the problem needs to grow linearly

TABLE 3.6 The Possible Speedup for Different m and n

m n ¼ 2 n ¼ 4 n ¼ 8 n ¼ 16 n ¼ 32

64 1.88 3.2 4.57 5.33 5.33

128 1.94 3.55 5.82 8.00 9.14

256 1.97 3.76 6.74 10.67 14.23

512 1.98 3.88 7.31 12.8 19.70

1024 1.99 3.94 7.64 14.23 24.38
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with respect to n to maintain a fixed efficiency. However, in a poorly scalable

system, the size of the problem needs to grow exponentially with respect to n to

maintain a fixed efficiency.

Recall that the time spent by each processor in performing parallel execution in

solving the problem of adding m numbers on an n-cube is given by

(m=n)þ 2� log2 n. Of this time, approximately (m=n) is spent performing the

actual execution, while the remaining portion of the time, Toh, is an overhead

incurred in performing tasks such as interprocessor communication. The following

relationship applies: Toh ¼ n� Tp � Ts. For example, the overall overhead for the

addition problem considered above is given by Toh ¼ 2n� log2 n. It is interesting

to note that a sequential algorithm running on a single processor does not suffer

from such overhead. Now, we can rewrite the expression for the efficiency as

j ¼ m=(mþ Toh), which leads to the equation m ¼ z=(1� z)Toh. Consider again

the problem of adding m numbers using an n-cube. For this problem the problem

size m ¼ 2� z=(1� z)� n� log2 n ¼ Kn� log2 n ¼ Q(n� log2 n). The rate at

which the problem size, m, is required to grow with respect to the number of pro-

cessors, n, to keep the efficiency, j, fixed is called the isoefficiency of a parallel

system and can be used as a measure of the scalability of the system. A highly scal-

able parallel system has a small isoefficiency, while a poor parallel system has a

large isoefficiency. Theoretically speaking, a parallel system is considered scalable

if its isoefficiency function exists; otherwise the system is considered not scalable.

Recall that Gustafson has shown that by scaling up the problem size, m, it is possible

to obtain near-linear speedup on as many as 1024 processors (see Section 3.2).

Having discussed the issues of speedup and efficiency of scalable parallel sys-

tems, we now conduct a discussion on their relationship. It is useful to indicate at

the outset that typically an increase in the speedup of a parallel system (benefit),

due to an increase in the number of processors, comes at the expense of a decrease

in the efficiency (cost). In order to study the actual behavior of speedup and effi-

ciency, we need first to introduce a new parameter, called the average parallelism

(Q). It is defined as the average number of processors that are busy during the

execution of given parallel software (program), provided that an unbounded

number of processors are available. The average parallelism can equivalently be

defined as the speedup achieved assuming the availability of an unbounded

number of processors. A number of other equivalent definitions exist for the average

parallelism. It has been shown that once Q is determined, then the following bounds

TABLE 3.7 Efficiency for Different Values of m and n

m n ¼ 2 n ¼ 4 n ¼ 8 n ¼ 16 n ¼ 32

64 0.94 0.8 0.57 0.33 0.167

128 0.97 0.888 0.73 0.5 0.285

256 0.985 0.94 0.84 0.67 0.444

512 0.99 0.97 0.91 0.8 0.62

1024 0.995 0.985 0.955 0.89 0.76
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are attainable for the speedup and the efficiency on an n-processor system:

S(n) � nQ

nþ Q� 1
, lim

Q!1
S(n) ¼ n, and lim

n!1 S(n) ¼ Q

z(n) � Q

nþ Q� 1

The above two bounds show that the sum of the attained fraction of the maximum

possible speedup, S(n)=Q, and attained efficiency, must always exceed 1. Notice also

that, given a certain average parallelism, Q, the efficiency (cost) incurred to achieve

a given speedup is given by z(n) � (Q� S(n))=(Q� 1). It is therefore fair to say that

the average parallelism of a parallel system, Q, determines the associated speedup

versus efficiency tradeoff.

In addition to the above scalability metrics, there has been a number of other

unconventional metrics used by some researchers. A number of these are explained

below.

Size scalability measures the maximum number of processors a system can

accommodate. For example, the size scalability of the IBM SP2 is 512, while that

of the symmetric multiprocessor (SMP) is 64.

Application scalability refers to the ability of running application software with

improved performance on a scaled-up version of the system. Consider, for example,

an n-processor system used as a database server, which can handle 10,000 trans-

actions per second. This system is said to possess application scalability if the

number of transactions can be increased to 20,000 using double the number of

processors.

Generation scalability refers to the ability of a system to scale up by using next-

generation (fast) components. The most obvious example for generation scalability

is the IBM PCs. A user can upgrade his/her system (hardware or software) while

being able to run their code generated on their existing system without change on

the upgraded one.

Heterogeneous scalability refers to the ability of a system to scale up by using

hardware and software components supplied by different vendors. For example,

under the IBM Parallel Operating Environment (POE) a parallel program can run

without change on any network of RS6000 nodes; each can be a low-end PowerPC

or a high-end SP2 node.

In his vision on the scalability of parallel systems, Gordon Bell has indicated that

in order for a parallel system to survive, it has to satisfy five requirements. These are

size scalability, generation scalability, space scalability, compatibility, and compe-

titiveness. As can be seen, three of these long-term survivability requirements have

to do with different forms of scalability.

As can be seen from the above introduction, scalability, regardless of its form, is

a desirable feature of any parallel system. This is because it guarantees that with suf-

ficient parallelism in a program, the performance, for example, speedup, can be

improved by including additional hardware resources without requiring program
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change. Owing to its importance, there has been an evolving design trend, called

design for scalability (DFS), which promotes the use of scalability as a major

design objective. Two different approaches have evolved as DFS. These are overde-

sign and backward compatibility. Using the first approach, systems are designed

with additional features in anticipation for future system scale-up. An illustrative

example for such approach is the design of modern processors with 64-bit address,

that is, 264 bytes address space. It should be noted that the current UNIX operating

system supports only 32-bit address space. With memory space overdesign, future

transition to 64-bit UNIX can be performed with minimum system changes. The

other form of DFS is the backward compatibility. This approach considers the

requirements for scaled-down systems. Backward compatibility allows scaled-up

components (hardware or software) to be usable with both the original and the

scaled-down systems. As an example, a new processor should be able to execute

code generated by old processors. Similarly, a new version of an operating

system should preserve all useful functionality of its predecessor such that appli-

cation software that runs under the old versionmust be able to run on the new version.

Having introduced a number of scalability metrics for parallel systems, we now

turn our attention to the important issue of benchmark performance measurement.

3.5 BENCHMARK PERFORMANCE

Benchmark performance refers to the use of a set of integer and floating-point

programs (known collectively as a benchmark) that are designed to test different

performance aspects of the computing system(s) under test. Benchmark programs

should be designed to provide fair and effective comparisons among high-

performance computing systems. For a benchmark to be meaningful, it should

evaluate faithfully the performance for the intended use of the system. Whenever

advertising for their new computer systems, companies usually quote the benchmark

ratings of their systems as a trusted measure. These ratings are usually used for per-

formance comparison purposes among different competing systems.

Among the first known examples of benchmarks are the Dhrystone and

Whetstone benchmarks. These are synthetic (not real) benchmarks intended to

measure performance of real machines. The Dhrystone benchmark addresses inte-

ger performance. It consists of 100 statements and does not use floating-point

operations or data. The rate obtained from Dhrystone is used to compute the

MIPS index as a performance measure. This makes the Dhrystone rather unreli-

able as a source for performance measure. The Whetstone, on the other hand, is a

kernel program that addresses floating-point performance for arithmetic opera-

tions, array indexing, conditional branch, and subroutine calls. The execution

speed obtained using Whetstone is used solely to determine the system perform-

ance. This leads to a single figure measure for performance, which makes it unre-

liable. Synthetic benchmarks were superseded by a number of application software

segments that reflect real engineering and scientific applications. These include

PERFECT (Performance Evaluation for Cost-Effective Transformations), TPC
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measure for database I/O performance and SPEC (Standard Performance Evalu-

ation Corporation) measure.

The SPEC is a nonprofit corporation formed to “establish, maintain, and endorse

a standardized set of relevant benchmarks that can be applied to the newest gener-

ation of high-performance computers”1. The first SPEC benchmark suite was

released in 1989 (SPEC89). It consisted of ten engineering/scientific programs.

Two measures were derived from SPEC89. The SPECmark measures the ten pro-

grams’ execution rates and SPECthruput, which examines the system’s throughput.

Owing to its unsatisfactory results, SPEC89 was replaced by SPEC92 in 1992.

The SPEC92 consists of two suites: CINT92, which consists of six integer inten-

sive C programs (see Table 3.8), and CFP92, which consists of 14 floating-point

intensive C and Fortran programs (see Table 3.9).

In SPEC92, the measure SPECratio represents the ratio of the actual execution

time to the predetermined reference2 time for a given program. In addition,

SPEC92 uses the measure SPECint92 as the geometric mean of the SPECratio for

the programs in CINT92. Similarly, the measure SPECfp92 is the geometric

mean of the SPECratio for the programs in CFP92. In using SPEC for performance

measures, three major steps have to be taken: building the tools, preparing auxiliary

files, and running the benchmark suites. The tools are used to compile, run, and

evaluate the benchmarks. Compilation information such as the optimization flags

and references to alternate source code is kept in what is called makefile wrappers

and configuration files. The tools and the auxiliary files are then used to compile and

execute the code and compute the SPEC metrics.

The use of the geometric mean to obtain the average time ratio for all programs in

the SPEC92 has been subject to a number of criticisms. The premise for these criti-

cisms is that the geometric mean is bound to cause distortion in the obtained results.

For example, Table 3.10 shows the execution times (in seconds) obtained using the

14 floating-point programs in SPEC92 for two systems: Silicon Graphics’ Challen-

ger XL/Onyx and the Sun Sparc Center with eight CPUs.

As can be observed from Table 3.10 the SG XL/Onyx runs the SPEC92 bench-

marks 13.8% (1772.12 1557.3/1557.3) faster than the Sun Sparc. However, the

TABLE 3.8 SPEC Integer Programs

Program Description/Area

Compress Adaptive compression

eqntott Logic design

espresso Functional minimization

gcc GNU C compiler

sc Spreadsheet

xlisp Lisp interpreter

1From SPEC’s Bylaw, Netnews posting, October 1994.
2The predetermined reference time is usually taken as that of the VAX 11/780.
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Sun Sparc is ranked as 12.5% (109.22 97.1/97.1) higher on the SPECrate using the
geometric mean. It is such a drawback that causes skepticism among computer

architects for the use of the geometric mean in SPEC92. This is because a large

improvement of only one program can boost the geometric mean significantly. It

was because of this observation that Giladi and Ahituv have suggested that the

geometric mean be replaced by the harmonic mean.

TABLE 3.9 SPEC Floating-Point Programs

Program Description/Area

Alvinn Neural networks/robotics
Doduce Nuclear reactor sim/physics
Ear Ear simulation/medicine

Fpppp Electron integral/chemistry

Hydro2d Jet computation/astrophysics
Mdljdp2 Motion equation/Chem (D. precis.)

Mdljsp2 Motion equation/Chem (S. precis.)

nasa7 Floating-point kernels

Ora Ray tracing/optics
Spice Circuit simulator/circuit design
su2cor Mass of particles/quantum physics

Swm256 Water equation solver/simulation

Tomcatv Mesh-generation program

Wave5 Maxwell’s equation solver

TABLE 3.10 SPEC92 Execution Time (in Seconds) for Two Systems

SG XL/Onyx Sun Sparc Center 2000

Program Time Ratio Time Ratio

Alvinn 67.6 113.8 52.2 147.3

Doduce 22.4 83.0 38.2 48.7

Ear 120.3 212.0 329.9 77.3

Fpppp 111.4 82.6 130.9 70.3

hydro2d 116.0 118.1 58.4 234.6

mdljdp2 54.7 129.6 107.7 65.8

mdljsp2 50.3 66.6 103.6 32.3

nasa7 142.9 117.6 206.1 81.5

Ora 66.6 111.4 13.0 570.8

Spice 364.8 65.8 571.4 42.0

Su2cor 116.2 111.0 49.8 259.0

swm256 250.4 50.7 37.4 339.6

Tomcatv 25.0 106.0 17.0 155.9

wave5 48.7 56.5 65.5

Total time 1557.3 1772.1

Geometric mean 97.1 109.2
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Subsequently, there arose a concern about the sensitivity of SPEC metrics to

compiler flags. For example, Mirghafori and others have computed the average

improvement of SPECpeak with respect to PSECbase for CINT92 and CFP92 on

a number of platforms. Recall that PSECpeaks are those ratings that are reported

by vendors in their advertisement of new products. The SPECbase is a new measure-

ment to the SPEC92, which has been designed to accurately reflect the typical usage

of compiler technology (introduced by PSEC in 1994). The Mirghafori study

revealed that compiler flag tunings have brought about 11% increase in the SPEC

ratings. In addition, it has been reported that a number of tuning parameters are

usually used by vendors in obtaining their reported SPECpeak and SPECbase ratings

and that reproducibility of those ratings is sometimes impossible. To show the dis-

crepancy between the reported SPECbase and SPECpeak performance by a number

of vendors, Table 3.11 shows a sample of eight CFP92 results reported in the SPEC

newsletter (the June and September 1994 issues). As can be seen from the table,

while some machines show superior performance to other machines based on the

reported SPECbase, they show inferior performance using the SPECpeak, and

vice versa.

For the abovementioned observations, it became apparent to a number of compu-

ter architects that SPEC92 does not predict faithfully the performance of computers

on random software for a typical user.

In October 1995, SPEC announced the release of the SPEC95 suite, which

replaced the SPEC92 suite fully in September 1996. SPEC95 consists of two

CPU-intensive applications: CINT95, a set of eight integer programs and CFP95,

a set of 10 floating-point programs. According to SPEC, all SPEC95 performance

results published consider the SUN SPARC station 10/40 as the reference machine.

Performance results are therefore shown as ratios compared to that machine. Each

metric used by SPEC95 is the aggregate overall benchmark of a given suite by

taking the geometric mean of the ratios of the individual benchmarks. In presenting

the performance results, SPEC takes the speed metrics to measure the ratios to exe-

cute a single copy of the benchmark, while the throughput metrics measure the ratios

to execute multiple copies of the benchmark. For example, the SPEC95 performance

results of a Digital AlphaStation 500, which uses a 500 MHz Alpha 21164 processor

with 8 MB cache and 128 MB memory, are shown in the Table 3.12. In this table,

TABLE 3.11 Five Misleading Reported CFP92

Machine Peak Base Machine Peak Base

IBM RISC/6000
66.67 MHz

255.7 211.7 Digital DEC 3000

225 MHz

230.6 213.3

SUN SuperSparc 60 MHz 127.1 111.0 HP 9000 80 MHz 120.9 114.0

Hitachi 3500 80 MHz 121.3 107.7 HP 9000 80 MHz 120.9 114.0

Hitachi 3500 50 MHz 81.9 72.8 SUN SPARC 50 MHz 78.8 73.2

IBM RISC/6000
66.67 MHz PowerPC

76.0 65.5 Intel Pentium 735/90 72.7 67.8
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the SPECint_rate_base95 is obtained by taking the geometric mean of the rates of

the eight benchmarks of the CIT95, where each benchmark is compiled with a

low optimization. The rate of each benchmark is measured by running multiple

copies of the benchmark for a week, and normalizing the execution time with respect

to the SUN SPARCstation 10/40. Therefore, the number 113 means that the

AlphaStation executes 112 times more copies of the CINT95 than the SUN in a

week.

The SPECfp is obtained by taking the geometric mean of the ratios of the ten

benchmarks of the CFP95, where each benchmark is compiled with aggressive

optimization. The rate of each benchmark is measured by running a single copy

of the benchmark for a week, and normalizing the execution time with respect to

the SUN SPARCstation 10/40. Therefore, the number 20.4 means that the Alpha-

Station is 19.4 times faster than the SUN in executing a single copy of the CFP95.

On June 30, 2000, SPEC retired the SPEC95 and replaced it with SPEC

CPU2000. The new benchmark suite consists of 26 benchmarks in total (12 integer

and 14 floating-point benchmarks). It has 19 applications that have never been in a

SPEC CPU suite. The CPU2000 integer and floating-point benchmark suites are

shown in Tables 3.13 and 3.14, respectively. Three subjective criteria are achieved

TABLE 3.12 Sample SPEC95 Performance Results

Speed Throughput

Metric 95 _base95 _rate95 _rate_base95

SPECint 15 12.6 135 113

SPECfp 20.4 18.3 18.3 165

TABLE 3.13 The CPU2000 Integer Benchmark Suite

Benchmark Language

Resident Size

(Mbytes)

Virtual Size

(Mbytes) Description

SPECint2000

164.gzip C 181 200 Compression

175.vpr C 50 55.2 FPGA application

176.gcc C 155 158 C compiler

181.mcf C 190 192 Combinatorial optimization

186.crafty C 2.1 4.2 Chess game

197.parser C 37 62.5 Word processing

252.eon Cþþ 0.7 3.3 Computer visualization

253.perlbmk C 146 159 Perl programming

254.gap C 193 196 Interpreter (group theory)

255.vortex C 72 81 OOB database

256.bzip2 C 185 200 Compression

300.twolf C 1.9 4.1 Place and route simulator
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in the CPU2000. These are confidence in the benchmark maintainability, transpar-

ency, and vendor interest.

Performance results of the 26 CPU2000 benchmarks (both integer and floating-

point) were reported for three different configured systems using the Alpha 21164

chip. These systems are the AlphaStation 500/500 (System #1), the Personal Work-

station 500au (System #2), and the AlphaServer 4100 5/533 (System #3). The per-

formance is stated relative to a reference machine, a 300 MHz Sun Ultra5_10, which

gets a score of 100. It was reported that the performance of the 26 benchmarks on the

21164 systems ranges from 92.3 (for the 172.mgrid) to 331 (for the 179.art). It was

also found that the 500 MHz Systems # and System #2 differ by more than 5% on 17

of the 26 benchmarks. The 533 MHz (system #3), with a 7% megahertz advantage,

wins by more than 10% three times (176.gcc, 253.perlbmk, 199.art), by less than 3%

three times (197.parser, 253.eon, 256.bzip2), and loses to the 500 MHz three times

(181.mcf, 172.mgrid, 188.ammp).

3.6 CHAPTER SUMMARY

In this chapter, we have covered a number of important issues related to the perfor-

mance of multiprocessor systems. Two computational models: equal duration and

parallel computations with serial sections have been first introduced. In each case

TABLE 3.14 The CPU2000 Floating-Point Benchmark Suite

Benchmark Language

Resident Size

(Mbytes)

Virtual Size

(Mbytes) Description

SPECfp2000

168.wupwise F77 176 177 Quantum chromo-dynamics

171.swin F77 191 192 Shallow water modeling

172.mgrid F77 56 56.7 3D potential filed

173.applu F77 181 191 Partial differential equations

177.mesa C 9.5 24.7 3D graphics library

178.galgel F90 63 155 Computational fluid

dynamics

179.art C 3.7 5.9 Neural networks applications

183.equake C 49 51.1 Seismic wave propagation

simulation

187.facerec F90 16 18.5 Image processing: Face

recognition

188.ammp C 26 30 Computational chemistry

189.lucas F90 142 143 Number theory

191.fma3d F90 103 105 Finite element simulation

200.sixtrack F77 26 59.8 Nuclear physics applications

301.apsi F77 191 192 Meteorology: Pollutant

distribution
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the speedup and efficiency have been computed with and without the effect of the

communication overhead. A rebuttal to a number of critical views about the effec-

tiveness of parallel architectures has been made. This includes Grosch’s and

Amdahl’s laws. In addition, the Gustafson–Barsis law, which supports the use of

multiprocessor architecture, has been introduced. A number of performance metrics

for static and dynamic interconnection networks has then been provided. The

metrics include the bandwidth, delay, and complexity. The scalability of parallel

architectures in terms of speed and efficiency has been discussed, followed by the

issue of isoefficiency. A number of unconventional metrics for scalability has also

been discussed. Finally, the issue of benchmark performance measurement has

been introduced. The main shortcomings and the advantages of the SPEC bench-

mark software have then been identified.

PROBLEMS

1. Consider the case of a multiple-bus system consisting of 50 processors, 50

memory modules, and 10 buses. Assume that a processor generates a

memory request with probability r in a given cycle. Compute the bandwidth

of such system for r ¼ 0.2, 0.5, and 1.0. Show also the effect on the band-

width if the number of buses is increased to B ¼ 20, 30, and 40 for the

same request probability values.

2. In deriving the expression for the bandwidth of a crossbar system, we have

assumed that all processors generate requests for memory modules during a

given cycle. Derive a similar expression for the case whereby only a fraction

of processors, f, generate requests during a given cycle. Consider the two

cases whereby a processor generates a memory request with probability r
in a given cycle and whereby a processor can request any memory module.

3. Consider the recursive expression developed for the bandwidth of a Delta

MIN network consisting of stages of a � b crossbar switches. Assuming

that a ¼ 2, b ¼ 4, and ra ¼ 0.5, compute the bandwidth of such a network.

4. Consider the case of a binary n-cube having N nodes. Compute the bandwidth

of such a cube given that r is the probability that a node receives an external

request and n is the probability that a node generates a request (either internally
or passes on an external request). Assume that a fraction f of the external

requests received by a node is passed onwards to another node.

5. Consider the expressions obtained for efficiency under the two compu-

tational models presented in the chapter. Compute the expected efficiency

values for different values of tc and ts.

6. Starting from the equation for the speedup factor given by

S(n) ¼ 1

f þ (1� f )

n

,
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show the inequality that relates the fraction of serial computation, f, and the

number of processors employed, n, if a 50% efficiency is to be achieved.

7. Contrast the following two approaches for building a parallel system. In this

first approach, a small number of powerful processors is used in which each

processor is capable of performing serial computations at a given rate, C. In

the second approach, a large number of simple processors are used in which

each processor is capable of performing serial computations at a lower rate,

F , C. What is the condition under which the second system will execute a

given computation more slowly than a single processor of the first system?

8. Consider a parallel architecture built using processors each capable of sus-

taining 0.5 megaflop. Consider a supercomputer capable of sustaining 100

megaflops. What is the condition (in terms of f ) under which the parallel

architecture can exceed the performance of the supercomputer?

9. Consider an algorithm in which (1=a) th of the time is spent executing com-

putations that must be done in a serial fashion. What is the maximum

speedup achievable by a parallel form of the algorithm?

10. Show that the lower bound on the isoefficiency function of a parallel system

is given byQ(n). Hint: If the problem size m grows at a rate slower thanQ(n)

as the number of processors increases, then the number of processors can

exceed the problem size m.

11. Compute the isoefficiency of a parallel system having an overhead

Toh ¼ n4=3 þ m3=4 � n3=2.

12. In addition to the two definitions offered in Section 3.4, one can also define

the average parallelism, Q, as the intersection point of the hardware bound

and the software bound on speedup. Show that the three definitions are

equivalent.
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&CHAPTER 4

Shared Memory Architecture

Shared memory systems form a major category of multiprocessors. In this category,

all processors share a global memory. Communication between tasks running on

different processors is performed through writing to and reading from the global

memory. All interprocessor coordination and synchronization is also accomplished

via the global memory. A shared memory computer system consists of a set of inde-

pendent processors, a set of memory modules, and an interconnection network as

shown in Figure 4.1.

Two main problems need to be addressed when designing a shared memory

system: performance degradation due to contention, and coherence problems. Per-

formance degradation might happen when multiple processors are trying to access

the shared memory simultaneously. A typical design might use caches to solve the

contention problem. However, having multiple copies of data, spread throughout the

caches, might lead to a coherence problem. The copies in the caches are coherent if

they are all equal to the same value. However, if one of the processors writes over

the value of one of the copies, then the copy becomes inconsistent because it no

longer equals the value of the other copies. In this chapter we study a variety of

shared memory systems and their solutions of the cache coherence problem.

Interconnection Network

P

MM M M

P P P

Figure 4.1 Shared memory systems.
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4.1 CLASSIFICATION OF SHARED MEMORY SYSTEMS

The simplest shared memory system consists of one memory module (M) that can be

accessed from two processors (P1 and P2); see Figure 4.2. Requests arrive at the

memory module through its two ports. An arbitration unit within the memory

module passes requests through to a memory controller. If the memory module is

not busy and a single request arrives, then the arbitration unit passes that request

to the memory controller and the request is satisfied. The module is placed in the

busy state while a request is being serviced. If a new request arrives while the

memory is busy servicing a previous request, the memory module sends a wait

signal, through the memory controller, to the processor making the new request.

In response, the requesting processor may hold its request on the line until the

memory becomes free or it may repeat its request some time later. If the arbitration

unit receives two requests, it selects one of them and passes it to the memory con-

troller. Again, the denied request can be either held to be served next or it may be

repeated some time later. Based on the interconnection network used, shared

memory systems can be categorized in the following categories.

4.1.1 Uniform Memory Access (UMA)

In the UMA system a shared memory is accessible by all processors through an

interconnection network in the same way a single processor accesses its memory.

All processors have equal access time to any memory location. The interconnection

network used in the UMA can be a single bus, multiple buses, or a crossbar switch.

Because access to shared memory is balanced, these systems are also called SMP

(symmetric multiprocessor) systems. Each processor has equal opportunity to

read/write to memory, including equal access speed. Commercial examples of

SMPs are Sun Microsystems multiprocessor servers and Silicon Graphics Inc. multi-

processor servers. A typical bus-structured SMP computer, as shown in Figure 4.3,

attempts to reduce contention for the bus by fetching instructions and data directly

from each individual cache, as much as possible. In the extreme, the bus contention

might be reduced to zero after the cache memories are loaded from the global

memory, because it is possible for all instructions and data to be completely con-

tained within the cache. This memory organization is the most popular among

M

P2P1

Figure 4.2 Shared memory via two ports.
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shared memory systems. Examples of this architecture are Sun Starfire servers, HP

V series, and Compaq AlphaServer GS.

4.1.2 Nonuniform Memory Access (NUMA)

In the NUMA system, each processor has part of the shared memory attached. The

memory has a single address space. Therefore, any processor could access any

memory location directly using its real address. However, the access time to mod-

ules depends on the distance to the processor. This results in a nonuniform

memory access time. A number of architectures are used to interconnect processors

to memory modules in a NUMA. Among these are the tree and the hierarchical bus

networks. Examples of NUMA architecture are BBN TC-2000, SGI Origin 3000,

and Cray T3E. Figure 4.4 shows the NUMA system organization.

Figure 4.4 NUMA shared memory system.
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Figure 4.3 Bus-based UMA (SMP) shared memory system.
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4.1.3 Cache-Only Memory Architecture (COMA)

Similar to the NUMA, each processor has part of the shared memory in the COMA.

However, in this case the shared memory consists of cache memory. A COMA

system requires that data be migrated to the processor requesting it. There is no

memory hierarchy and the address space is made of all the caches. There is a

cache directory (D) that helps in remote cache access. The Kendall Square

Research’s KSR-1 machine is an example of such architecture. Figure 4.5 shows

the organization of COMA.

4.2 BUS-BASED SYMMETRIC MULTIPROCESSORS

Shared memory systems can be designed using bus-based or switch-based inter-

connection networks. The simplest network for shared memory systems is the bus.

The bus/cache architecture alleviates the need for expensive multiported memories

and interface circuitry as well as the need to adopt a message-passing paradigm

when developing application software. However, the bus may get saturated if mul-

tiple processors are trying to access the shared memory (via the bus) simultaneously.

A typical bus-based design uses caches to solve the bus contention problem. High-

speed caches connected to each processor on one side and the bus on the other side

mean that local copies of instructions and data can be supplied at the highest possible

rate. If the local processor finds all of its instructions and data in the local cache, we

say the hit rate is 100%. The miss rate of a cache is the fraction of the references that

cannot be satisfied by the cache, and so must be copied from the global memory,

across the bus, into the cache, and then passed on to the local processor. One of

the goals of the cache is to maintain a high hit rate, or low miss rate under high

processor loads. A high hit rate means the processors are not using the bus as much.

Hit rates are determined by a number of factors, ranging from the application

programs being run to the manner in which cache hardware is implemented.

C

P

D

C

P
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D
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P
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Interconnection Network

Figure 4.5 COMA shared memory system.
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A processor goes through a duty cycle, where it executes instructions a certain

number of times per clock cycle. Typically, individual processors execute less

than one instruction per cycle, thus reducing the number of times it needs to

access memory. Subscalar processors execute less than one instruction per cycle,

and superscalar processors execute more than one instruction per cycle. In any

case, we want to minimize the number of times each local processor tries to use

the central bus. Otherwise, processor speed will be limited by bus bandwidth.

We define the variables for hit rate, number of processors, processor speed, bus

speed, and processor duty cycle rates as follows:

. N ¼ number of processors;

. h ¼ hit rate of each cache, assumed to be the same for all caches;

. (12 h) ¼ miss rate of all caches;

. B ¼ bandwidth of the bus, measured in cycles/second;

. I ¼ processor duty cycle, assumed to be identical for all processors, in fetches/
cycle; and

. V ¼ peak processor speed, in fetches/second.

The effective bandwidth of the bus isBI fetches/second. If each processor is running at
a speed of V, then misses are being generated at a rate of V(12 h). For an N-processor

system, misses are simultaneously being generated at a rate ofN(12 h)V. This leads to

saturation of the bus when N processors simultaneously try to access the bus. That is,

N(12 h)V � BI. The maximum number of processors with cache memories that the

bus can support is given by the relation,

N � BI

ð1� hÞV

Example 1 Suppose a shared memory system is constructed from processors that

can execute V ¼ 107 instructions/s and the processor duty cycle I ¼ 1. The caches

are designed to support a hit rate of 97%, and the bus supports a peak bandwidth of

B ¼ 106 cycles/s. Then, (12 h) ¼ 0.03, and the maximum number of processors N

is N � 106/(0.03 * 107) ¼ 3.33. Thus, the system we have in mind can support only

three processors!

We might ask what hit rate is needed to support a 30-processor system. In this

case, h ¼ 12 BI/NV ¼ 12 (106(1))/((30)(107)) ¼ 12 1/300, so for the system

we have in mind, h ¼ 0.9967. Increasing h by 2.8% results in supporting a factor

of ten more processors.

4.3 BASIC CACHE COHERENCY METHODS

Multiple copies of data, spread throughout the caches, lead to a coherence problem

among the caches. The copies in the caches are coherent if they all equal the same
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value. However, if one of the processors writes over the value of one of the copies,

then the copy becomes inconsistent because it no longer equals the value of the other

copies. If data are allowed to become inconsistent (incoherent), incorrect results will

be propagated through the system, leading to incorrect final results. Cache coherence

algorithms are needed to maintain a level of consistency throughout the parallel

system.

4.3.1 Cache–Memory Coherence

In a single cache system, coherence between memory and the cache is maintained

using one of two policies: (1) write-through, and (2) write-back. When a task

running on a processor P requests the data in memory location X, for example,

the contents of X are copied to the cache, where it is passed on to P. When P updates

the value of X in the cache, the other copy in memory also needs to be updated

in order to maintain consistency. In write-through, the memory is updated every

time the cache is updated, while in write-back, the memory is updated only when

the block in the cache is being replaced. Table 4.1 shows the write-through versus

write-back policies.

4.3.2 Cache–Cache Coherence

In multiprocessing system, when a task running on processor P requests the data in

global memory location X, for example, the contents of X are copied to processor

P’s local cache, where it is passed on to P. Now, suppose processor Q also accesses

X. What happens if Q wants to write a new value over the old value of X?

There are two fundamental cache coherence policies: (1) write-invalidate, and

(2) write-update. Write-invalidate maintains consistency by reading from local

caches until a write occurs. When any processor updates the value of X through a

write, posting a dirty bit for X invalidates all other copies. For example, processor

Q invalidates all other copies of X when it writes a new value into its cache. This sets

the dirty bit for X. Q can continue to change X without further notifications to other

caches because Q has the only valid copy of X. However, when processor P wants to

read X, it must wait until X is updated and the dirty bit is cleared. Write-update

maintains consistency by immediately updating all copies in all caches. All dirty

bits are set during each write operation. After all copies have been updated, all

TABLE 4.1 Write-Through vs. Write-Back

Serial

Write-Through Write-Back

Event Memory Cache Memory Cache

1 X X

2 P reads X X X X X

3 P updates X X0 X0 X X0
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dirty bits are cleared. Table 4.2 shows the write-update versus write-invalidate

policies.

4.3.3 Shared Memory System Coherence

The four combinations to maintain coherence among all caches and global memory

are:

. Write-update and write-through;

. Write-update and write-back;

. Write-invalidate and write-through; and

. Write-invalidate and write-back.

If we permit a write-update and write-through directly on global memory location X,

the bus would start to get busy and ultimately all processors would be idle while

waiting for writes to complete. In write-update and write-back, only copies in all

caches are updated. On the contrary, if the write is limited to the copy of X in

cache Q, the caches become inconsistent on X. Setting the dirty bit prevents the

spread of inconsistent values of X, but at some point, the inconsistent copies must

be updated.

4.4 SNOOPING PROTOCOLS

Snooping protocols are based on watching bus activities and carry out the appropri-

ate coherency commands when necessary. Global memory is moved in blocks, and

each block has a state associated with it, which determines what happens to the

entire contents of the block. The state of a block might change as a result of the oper-

ations Read-Miss, Read-Hit, Write-Miss, and Write-Hit. A cache miss means that

the requested block is not in the cache or it is in the cache but has been invalidated.

Snooping protocols differ in whether they update or invalidate shared copies in

remote caches in case of a write operation. They also differ as to where to obtain

the new data in the case of a cache miss. In what follows we go over some examples

of snooping protocols that maintain cache coherence.

TABLE 4.2 Write-Update vs. Write-Invalidate

Write-Update Write-Invalidate

Serial Event P’s Cache Q’s Cache P’s Cache Q’s Cache

1 P reads X X X

2 Q reads X X X X X

3 Q updates X X0 X0 INV X0

4 Q updates X0 X00 X00 INV X00
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4.4.1 Write-Invalidate and Write-Through

In this simple protocol the memory is always consistent with the most recently

updated cache copy. Multiple processors can read block copies from main

memory safely until one processor updates its copy. At this time, all cache copies

are invalidated and the memory is updated to remain consistent. The block states

and protocol are summarized in Table 4.3.

Example 2 Consider a bus-based shared memory with two processors P and Q as

shown in Figure 4.6. Let us see how the cache coherence is maintained using Write-

Invalidate Write-Through protocol. Assume that that X in memory was originally

set to 5 and the following operations were performed in the order given:

(1) P reads X; (2) Q reads X; (3) Q updates X; (4) Q reads X; (5) Q updates X;

(6) P updates X; (7) Q reads X. Table 4.4 shows the contents of memory and the

TABLE 4.3 Write-Invalidate Write-Through Protocol

State Description

Valid [VALID] The copy is consistent with global memory.

Invalid [INV] The copy is inconsistent.

Event Actions

Read-Hit Use the local copy from the cache.

Read-Miss Fetch a copy from global memory. Set the state of this copy to Valid.

Write-Hit Perform the write locally. Broadcast an Invalid command to all

caches. Update the global memory.

Write-Miss Get a copy from global memory. Broadcast an invalid command to all

caches. Update the global memory. Update the local copy and set its

state to Valid.

Block replacement Since memory is always consistent, no write-back is needed when a

block is replaced.

C

P

C

Q

M

Figure 4.6 A bus-based shared memory system with two processors P and Q.
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two caches after the execution of each operation when Write-Invalidate Write-

Through was used for cache coherence. The table also shows the state of the

block containing X in P’s cache and Q’s cache.

4.4.2 Write-Invalidate and Write-Back (Ownership Protocol)

In this protocol a valid block can be owned by memory and shared in multiple

caches that can contain only the shared copies of the block. Multiple processors

can safely read these blocks from their caches until one processor updates its

copy. At this time, the writer becomes the only owner of the valid block and all

other copies are invalidated. The block states and protocol are summarized in

Table 4.5.

Example 3 Consider the shared memory system of Figure 4.6 and the following

operations: (1) P reads X; (2) Q reads X; (3) Q updates X; (4) Q reads X; (5) Q

updates X; (6) P updates X; (7) Q reads X. Table 4.6 shows the contents of

memory and the two caches after the execution of each operation when Write-

Invalidate Write-Back was used for cache coherence. The table also shows the

state of the block containing X in P’s cache and Q’s cache.

4.4.3 Write-Once

This write-invalidate protocol, which was proposed by Goodman in 1983, uses a

combination of write-through and write-back. Write-through is used the very first

TABLE 4.4 Example 2 (Write-Invalidate Write-Through)

Memory
P’s Cache Q’s Cache

Serial Event Location X Location X State Location X State

0 Original value 5

1 P reads X

(Read-Miss)

5 5 VALID

2 Q reads X

(Read-Miss)

5 5 VALID 5 VALID

3 Q updates X

(Write-Hit)

10 5 INV 10 VALID

4 Q reads X

(Read-Hit)

10 5 INV 10 VALID

5 Q updates X

(Write-Hit)

15 5 INV 15 VALID

6 P updates X

(Write-Miss)

20 20 VALID 15 INV

7 Q reads X

(Read-Miss)

20 20 VALID 20 VALID

4.4 SNOOPING PROTOCOLS 85



time a block is written. Subsequent writes are performed using write-back. The

block states and protocol are summarized in Table 4.7.

Example 4 Consider the shared memory system of Figure 4.6 and the following

operations: (1) P reads X; (2) Q reads X; (3) Q updates X; (4) Q reads X; (5) Q

updates X; (6) P updates X; (7) Q reads X. Table 4.8 shows the contents of

memory and the two caches after the execution of each operation when Write-

Once was used for cache coherence. The table also shows the state of the block

containing X in P’s cache and Q’s cache.

4.4.4 Write-Update and Partial Write-Through

In this protocol an update to one cache is written to memory at the same time it is

broadcast to other caches sharing the updated block. These caches snoop on the bus

TABLE 4.5 Write-Invalidate Write-Back Protocol

State Description

Shared (Read-Only) [RO] Data is valid and can be read safely. Multiple copies can be

in this state.

Exclusive (Read-Write) [RW] Only one valid cache copy exists and can be read from and

written to safely. Copies in other caches are invalid.

Invalid [INV] The copy is inconsistent.

Event Action

Read-Hit Use the local copy from the cache.

Read-Miss If no Exclusive (Read-Write) copy exists, then supply a

copy from global memory. Set the state of this copy to

Shared (Read-Only). If an Exclusive (Read-Write) copy

exists, make a copy from the cache that set the state to

Exclusive (Read-Write), update global memory and

local cache with the copy. Set the state to Shared (Read-

Only) in both caches.

Write-Hit If the copy is Exclusive (Read-Write), perform the write

locally. If the state is Shared (Read-Only), then

broadcast an Invalid to all caches. Set the state to

Exclusive (Read-Write).

Write-Miss Get a copy from either a cache with an Exclusive (Read-

Write) copy, or from global memory itself. Broadcast an

Invalid command to all caches. Update the local copy

and set its state to Exclusive (Read-Write).

Block replacement If a copy is in an Exclusive (Read-Write) state, it has to be

written back to main memory if the block is being

replaced. If the copy is in Invalid or Shared (Read-Only)

states, no write-back is needed when a block is replaced.
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and perform updates to their local copies. There is also a special bus line, which is

asserted to indicate that at least one other cache is sharing the block. The block states

and protocol are summarized in Table 4.9.

Example 5 Consider the shared memory system of Figure 4.6 and the following

operations: (1) P reads X; (2) P updates X; (3) Q reads X; (4) Q updates X; (5) Q

reads X; (6) Block X is replaced in P’s cache; (7) Q updates X; (8) P updates

X. Table 4.10 shows the contents of memory and the two caches after the execution

of each operation when Write-Update Partial Write-Through was used for cache

coherence. The table also shows the state of the block containing X in P’s cache

and Q’s cache.

4.4.5 Write-Update and Write-Back

This protocol is similar to the previous one except that instead of writing through to

the memory whenever a shared block is updated, memory updates are done only

when the block is being replaced. The block states and protocol are summarized

in Table 4.11.

Example 6 Consider the shared memory system of Figure 4.6 and the following

operations: (1) P reads X; (2) P updates X; (3) Q reads X; (4) Q updates X; (5) Q

reads X; (6) Block X is replaced in Q’s cache; (7) P updates X; (8) Q updates

X. Table 4.12 shows the contents of memory and the two caches after the execution

TABLE 4.6 Example 3 (Write-Invalidate Write-Back)

Memory
P’s Cache Q’s Cache

Serial Event Location X Location X State Location X State

0 Original value 5

1 P reads X

(Read-Miss)

5 5 RO

2 Q reads X

(Read-Miss)

5 5 RO 5 RO

3 Q updates X

(Write-Hit)

5 5 INV 10 RW

4 Q reads X

(Read-Hit)

5 5 INV 10 RW

5 Q updates X

(Write-Hit)

5 5 INV 15 RW

6 P updates X

(Write-Miss)

5 20 RW 15 INV

7 Q reads X

(Read-Miss)

20 20 RO 20 RO
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TABLE 4.7 Write-Once Protocol

State Description

Invalid [INV] The copy is inconsistent.

Valid [VALID] The copy is consistent with global memory.

Reserved [RES] Data have been written exactly once and the copy is consistent with

global memory. There is only one copy of the global memory block

in one local cache.

Dirty [DIRTY] Data have been updated more than once and there is only one copy in

one local cache. When a copy is dirty, it must be written back to

global memory.

Event Actions

Read-Hit Use the local copy from the cache.

Read-Miss If no Dirty copy exists, then supply a copy from global memory. Set the

state of this copy to Valid. If a dirty copy exists, make a copy from the

cache that set the state toDirty, update globalmemory and local cache

with the copy. Set the state to VALID in both caches.

Write-Hit If the copy is Dirty or Reserved, perform the write locally, and set the

state to Dirty. If the state is Valid, then broadcast an Invalid command

to all caches. Update the global memory and set the state to Reserved.

Write-Miss Get a copy from either a cache with a Dirty copy or from global

memory itself. Broadcast an Invalid command to all caches. Update

the local copy and set its state to Dirty.

Block replacement If a copy is in a Dirty state, it has to be written back to main memory if

the block is being replaced. If the copy is in Valid, Reserved, or

Invalid states, no write-back is needed when a block is replaced.

TABLE 4.8 Example 4 (Write-Once Protocol)

Memory
P’s Cache Q’s Cache

Serial Event Location X Location X State Location X State

0 Original value 5

1 P reads X

(Read-Miss)

5 5 VALID

2 Q reads X

(Read-Miss)

5 5 VALID 5 VALID

3 Q updates X

(Write-Hit)

10 5 INV 10 RES

4 Q reads X

(Read-Hit)

10 5 INV 10 RES

5 Q updates X

(Write-Hit)

10 5 INV 15 DIRTY

6 P updates X

(Write-Miss)

10 20 DIRTY 15 INV

7 Q reads X

(Read-Miss)

20 20 VALID 20 VALID
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of each operation when Write-Update Write-Back was used for cache coherence.

The table also shows the state of the block containing X in P’s cache and Q’s cache.

4.5 DIRECTORY BASED PROTOCOLS

Owing to the nature of some interconnection networks and the size of the shared

memory system, updating or invalidating caches using snoopy protocols might

become unpractical. For example, when a multistage network is used to build a

large shared memory system, the broadcasting techniques used in the snoopy proto-

cols becomes very expensive. In such situations, coherence commands need to be

sent to only those caches that might be affected by an update. This is the idea

behind directory-based protocols. Cache coherence protocols that somehow store

information on where copies of blocks reside are called directory schemes. A direc-

tory is a data structure that maintains information on the processors that share a

memory block and on its state. The information maintained in the directory could

TABLE 4.9 Write-Update Partial Write-Through Protocol

State Description

Valid Exclusive

[VAL-X]

This is the only cache copy and is consistent with global memory.

Shared [SHARE] There are multiple cache copies shared. All copies are consistent

with memory.

Dirty [DIRTY] This copy is not shared by other caches and has been updated. It is

not consistent with global memory. (Copy ownership.)

Event Action

Read-Hit Use the local copy from the cache. State does not change.

Read-Miss If no other cache copy exists, then supply a copy from global

memory. Set the state of this copy to Valid Exclusive. If a cache

copy exists, make a copy from the cache. Set the state to Shared in

both caches. If the cache copy was in a Dirty state, the value must

also be written to memory.

Write-Hit Perform the write locally and set the state to Dirty. If the state is

Shared, then broadcast data to memory and to all caches and set

the state to Shared. If other caches no longer share the block, the

state changes from Shared to Valid Exclusive.

Write-Miss The block copy comes from either another cache or from global

memory. If the block comes from another cache, perform the

update and update all other caches that share the block and global

memory. Set the state to Shared. If the copy comes from memory,

perform the write and set the state to Dirty.

Block replacement If a copy is in a Dirty state, it has to be written back to main memory

if the block is being replaced. If the copy is in Valid Exclusive or

Shared states, no write-back is needed when a block is replaced.
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be either centralized or distributed. A Central directory maintains information about

all blocks in a central data structure. While Central directory includes everything in

one location, it becomes a bottleneck and suffers from large search time. To alleviate

this problem, the same information can be handled in a distributed fashion by

allowing each memory module to maintain a separate directory. In a distributed

directory, the entry associated with a memory block has only one pointer one of

the cache that requested the block.

4.5.1 Protocol Categorization

A directory entry for each block of data should contain a number of pointers to

specify the locations of copies of the block. Each entry might also contain a dirty

bit to specify whether or not a unique cache has permission to write this memory

block. Most directory-based protocols can be categorized under three categories:

full-map directories, limited directories, and chained directories.

Full-Map Directories In a full-map setting, each directory entry contains

N pointers, where N is the number of processors. Therefore, there could be

N cached copies of a particular block shared by all processors. For every memory

block, an N-bit vector is maintained, where N equals the number of processors in

TABLE 4.10 Example 5 (Write-Update Partial Write-Through)

Memory
P’s Cache Q’s Cache

Serial Event Location X Location X State Location X State

0 Original value 5

1 P reads X

(Read-Miss)

5 5 VAL-X

2 P updates X

(Write-Hit)

5 10 DIRTY

3 Q reads X

(Read-Miss)

10 10 SHARE 10 SHARE

4 Q updates X

(Write-Hit)

15 15 SHARE 15 SHARE

5 Q reads X

(Read-Hit)

15 15 SHARE 15 SHARE

6 Block X is

replaced in

P’s cache

(Replace)

15 – – 15 VAL-X

7 Q updates X

(Write-Hit)

15 – – 20 DIRTY

8 P updates X

(Write-Miss)

25 25 SHARE 25 SHARE
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the shared memory system. Each bit in the vector corresponds to one processor. If

the i th bit is set to one, it means that processor i has a copy of this block in its

cache. Figure 4.7 illustrates the fully mapped scheme. In the figure the vector

associated with block X in memory indicates that X is in Cache C0 and Cache

C2. Clearly the space is not utilized efficiently in this scheme, in particular if not

many processors share the same block.

Limited Directories Limited directories have a fixed number of pointers per

directory entry regardless of the number of processors. Restricting the number of

TABLE 4.11 Write-Update Write-Back Protocol

State Description

Valid Exclusive

[VAL-X]

This is the only cache copy and is consistent with global memory.

Shared Clean

[SH-CLN]

There are multiple cache copies shared.

Shared Dirty

[SH-DRT]

There are multiple shared cache copies. This is the last one being

updated. (Ownership.)

Dirty [DIRTY] This copy is not shared by other caches and has been updated. It is

not consistent with global memory. (Ownership.)

Event Action

Read-Hit Use the local copy from the cache. State does not change.

Read-Miss If no other cache copy exists, then supply a copy from global

memory. Set the state of this copy to Valid Exclusive. If a cache

copy exists, make a copy from the cache. Set the state to Shared

Clean. If the supplying cache copy was in a Valid Exclusion or

Shared Clean, its new state becomes Shared Clean. If the

supplying cache copy was in a Dirty or Shared Dirty state, its new

state becomes Shared Dirty.

Write-Hit If the sate was Valid Exclusive or Dirty, perform the write locally

and set the state to Dirty. If the state is Shared Clean or Shared

Dirty, perform update and change state to Shared Dirty. Broadcast

the updated block to all other caches. These caches snoop the bus

and update their copies and set their state to Shared Clean.

Write-Miss The block copy comes from either another cache or from global

memory. If the block comes from another cache, perform the

update, set the state to Shared Dirty, and broadcast the updated

block to all other caches. Other caches snoop the bus, update their

copies, and change their state to Shared Clean. If the copy comes

from memory, perform the write and set the state to Dirty.

Block replacement If a copy is in a Dirty or Shared Dirty state, it has to be written back

to main memory if the block is being replaced. If the copy is in

Valid Exclusive, no write back is needed when a block is replaced.
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simultaneously cached copies of any block should solve the directory size problem

that might exist in full-map directories. Figure 4.8 illustrates the limited directory

scheme. In this example, the number of copies that can be shared is restricted to

two. This is why the vector associated with block X in memory has only two

locations. The vector indicates that X is in Cache C0 and Cache C2.

TABLE 4.12 Example 6 (Write-Update Write-Back)

Memory
P’s Cache Q’s Cache

Serial Event Location X Location X State Location X State

0 Original value 5

1 P reads X

(Read-Miss)

5 5 VAL-X

2 P updates X

(Write-Hit)

5 10 DIRTY

3 Q reads X

(Read-Miss)

5 10 SH-DRT 10 SH-CLN

4 Q updates X

(Write-Hit)

5 15 SH-CLN 15 SH-DRT

5 Q reads X

(Read-Hit)

5 15 SH-CLN 15 SH-DRT

6 Block X is

replaced in

Q’s cache

(Replace)

15 15 VAL-X – –

7 P updates X

(Write-Hit)

15 20 DIRTY – –

8 Q updates X

(Write-Miss)

15 25 SH-CLN 25 SH-DRT

Figure 4.7 Fully mapped directory.
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Chained Directories Chained directories emulate full-map by distributing the

directory among the caches. They are designed to solve the directory size problem

without restricting the number of shared block copies. Chained directories keep

track of shared copies of a particular block by maintaining a chain of directory poin-

ters. Figure 4.9 shows that the directory entry associated with X has a pointer to

Cache C2, which in turn has a pointer to Cache C0. That is, block X exists in the

two Caches C0 and Cache C2. The pointer from Cache C0 is pointing to terminator

(CT), indicating the end of the list.

4.5.2 Invalidate Protocols

Centralized Directory Invalidate When a write request is issued, the central

directory is used to determine which processors have a copy of the block.

Interconnection Network

X:

X:

Directory

C0 DataX: CT Data

C2 Data

Cache C0 Cache C1 Cache C2 Cache C3

Memory

Figure 4.9 Chained directory.

Interconnection Network

X:

X:

Directory

DataX: Data

C0 C2 Data

Cache C0 Cache C1 Cache C2 Cache C3

Memory

Figure 4.8 Limited directory (maximum sharing ¼ 2).
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Invalidating signals and a pointer to the requesting processor are forwarded to all

processors that have a copy of the block. Each invalidated cache sends an

acknowledgment to the requesting processor. After the invalidation is complete,

only the writing processor will have a cache with a copy of the block. Figure 4.10

shows a write-miss request from Cache C3. Upon receiving the request, the

memory sends invalidating signals and a pointer to the Cache C3 to Cache C0

and Cache C2. These caches invalidate themselves and send invalidation acknowl-

edgment to Cache C3. After the invalidation is done, Cache C3 will have exclusive

read-write access to X.

Scalable Coherent Interface (SCI) The scalable coherent interface (SCI)

protocols are based on a doubly linked list of distributed directories. Each cached

block is entered into a list of processors sharing that block. For every block address,

the memory and cache entries have additional tag bits. Part of the memory tag ident-

ifies the first processor in the sharing list (the head). Part of each cache tag identifies

the previous and following sharing list entries. Without counting the number of bits

needed in the local caches for the pointers, the directory size in memory equals the

number of memory blocks times log2 (number of caches).

Initially memory is in the uncached state and cached copies are invalid. A read

request is directed from a processor to the memory controller. The requested data

is returned to the requester’s cache and its entry state is changed from invalid to

the head state. This changes the memory state from uncached to cached. When a

new requester directs its read request to memory, the memory returns a pointer to

the head. A cache-to-cache read request (called Prepend) is sent from the requester

to the head cache. On receiving the request, the head cache sets its backward pointer

to point to the requester’s cache. The requested data is returned to the requester’s

cache and its entry state is changed to the head state. The head of the list has the

authority to purge other entries in the list to obtain an exclusive (read-write)

entry. The initial transaction to the second sharing list entry purges that entry and

Figure 4.10 Centralized directory invalidation.
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returns its forward pointer. The forward pointer is used to purge the next entry and so

on. Entries can also delete themselves from the list when they are needed to cache

other block addresses. Figure 4.11 shows the sharing list addition and removal

operations in SCI.

Stanford Distributed Directory (SDD) The Stanford distributed directory

(SDD) protocol is based on a singly linked list of distributed directories. Similar

to the SCI protocol, memory points to the head of the sharing list. Each processor

points only to its predecessor. The sharing list additions and removals are handled

differently from the SCI protocol.

On a read-miss, a new requester sends a read-miss message to memory. The

memory updates its head pointers to point to the requester and send a read-miss-

forward signal to the old head. On receiving the request, the old head returns the

requested data along with its address as a read-miss-reply. When the reply is

received, at the requester’s cache, the data is copied and the pointer is made to

point to the old head.

On a write-miss, a requester sends a write-miss message to memory. The memory

updates its head pointers to point to the requester and sends a write-miss-forward

signal to the old head. The old head invalidates itself, returns the requested data

Memory

Cache C0
(head)

Cache C2
(Invalid)

1) read

2) prepend

Before

Memory

Cache C0
(middle)

Cache C2
(head)

After

(a)

Cache C0
(tail)

Cache C2
(middle)

Cache C3
(head)

Memory

Purge

Purge

(b)

Figure 4.11 Scalable coherent interface (a) sharing list addition (SCI); and (b) head purging

other entries (SCI).
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as a write-miss-reply-data signal, and send a write-miss-forward to the next cache in

the list. When the next cache receives the write-miss-forward signal, it invalidates

itself and sends a write-miss-forward to the next cache in the list. When the

write-miss-forward signal is received by the tail or by a cache that no longer has

a copy of the block, a write-miss-reply is sent to the requester. The write is complete

when the requester receives both write-miss-reply-data and write-miss-reply.

Figure 4.12 shows the sharing list addition and removal operations in SDD.

4.6 SHARED MEMORY PROGRAMMING

Shared memory parallel programming is perhaps the easiest model to understand

because of its similarity with operating systems programming and general multipro-

gramming. Shared memory programming is done through some extensions to exist-

ing programming languages, operating systems, and code libraries. In a shared

memory parallel program, there must exist three main programming constructs:

(1) task creation, (2) communication, and (3) synchronization.

Memory

Cache C0
(middle)

Cache C2
(head)

After

(a)

Memory

Cache C0
(head)

Cache C2
(Invalid)

1) read

3) read-miss-reply

Before

2) read- miss-
   forward

(b)

Cache C3
(exclusive)

Memory

After

Cache C0
(tail)

Cache C2
(head)

Cache C3
(invalid)

Memory

1) write

3) write miss-forward

2) write miss-forward

3) write miss-reply-data

4) write miss-reply

Before

Figure 4.12 Stanford distributed directory (a) sharing list addition (SDD); and (b) write

miss sharing list removal (SDD).
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4.6.1 Task Creation

At the large-grained level, a shared memory system can provide traditional time-

sharing. Each time a new process is initiated, idle processors are supplied to run

the new process. If the system is loaded, the processor with least amount of work

is assigned the new process. These large-grained processes are often called heavy

weight tasks because of their high overhead. A heavy weight task in a multitasking

system like UNIX consists of page tables, memory, and file description in addition to

program code and data. These tasks are created in UNIX by invocation of fork, exec,

and other related UNIX commands. This level is best suited for heterogeneous tasks.

At the fine-grained level, lightweight processes makes parallelism within a single

application practical, where it is best suited for homogeneous tasks. At this level, an

application is a series of fork-join constructs. This pattern of task creation is called

the supervisor–workers model, as shown in Figure 4.13.

4.6.2 Communication

In general, the address space on an executing process has three segments called the

text, data, and stack. The text is where the binary code to be executed is stored; the

data segment is where the program’s data are stored; and the stack is where acti-

vation records and dynamic data are stored. The data and stack segments expand

and contract as the program executes. Therefore, a gap is purposely left in between

the data and stack segments. Serial processes are assumed to be mutually indepen-

dent and do not share addresses. The code of each serial process is allowed to access

data in its own data and stack segments only. A parallel process is similar to the

serial process plus an additional shared data segment. This shared area is allowed

to grow and is placed in the gap between private data and stack segments.

Figure 4.14 shows the difference between a serial process and a parallel process.

Figure 4.13 Supervisor–workers model used in most parallel applications on shared

memory systems.
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Communication among parallel processes can be performed by writing to and read-

ing from shared variables in the shared data segments as shown in Figure 4.15.

4.6.3 Synchronization

Synchronization is needed to protect shared variables by ensuring that they are

accessed by only one process at a given time (mutual exclusion). They can also

be used to coordinate the execution of parallel processes and synchronize at certain

points in execution. There are two main synchronization constructs in shared

memory systems: (1) locks and (2) barriers. Figure 4.16a shows three parallel pro-

cesses using locks to ensure mutual exclusion. Process P2 has to wait until P1

unlocks the critical section; similarly P3 has to wait until P2 issues the unlock

statement. In Figure 4.16b, P3 and P1 reach their barrier statement before P2, and

Serial Process Parallel Process

Code

Private Data

Private Stack

Shared Data

Code

Data

Stack

Code

Private Data

Private Stack

Shared Data

Code

Data

Stack

Figure 4.14 Serial process vs. parallel process.

Shared Data

Code

Private Data

Private Stack

Code

Private Data

Private Stack

AccessAccess

Process 1 Process 2

Figure 4.15 Two parallel processes communicate using the shared data segment.
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they have to wait until P2 reaches its barrier. When all three reach the barrier state-

ment, they all can proceed.

4.7 CHAPTER SUMMARY

A shared memory system is made of multiple processors and memory modules that

are connected via some interconnection network. Shared memory multiprocessors

are usually bus-based or switch-based. In all cases, each processor has equal

access to the global memory shared by all processors. Communication among pro-

cessors is achieved by writing to and reading from memory. Synchronization among

processors is achieved using locks and barriers. The main challenges of shared

memory systems are performance degradation due to contention and cache coher-

ence problems. The performance of a shared memory system becomes an issue

when the interconnection network connecting the processors to global memory

becomes a bottleneck. Local caches are typically used to alleviate the bottleneck

problem. However, scalability remains the main drawback of a shared memory

system. The introduction of caches has created a consistency problem among

caches and between memory and caches. Cache coherence schemes can be categor-

ized into two main categories: snooping protocols and directory-based protocols.

Snooping protocols are based on watching bus activities and carry out the appropri-

ate coherency commands when necessary. In cases when the broadcasting tech-

niques used in snooping protocols are unpractical, coherence commands need to

be sent to only those caches that might be affected by an update. This is the idea

behind directory-based protocols. Cache coherence protocols that somehow store

information on where copies of blocks reside are called directory schemes.

Lock
…
…

Unlock

Lock
…
…

Unlock

Lock
…
…

Unlock

P1 P2 P3

wait

wait

(a)

Barrier-3

Barrier-3

Barrier-3

P1 P2 P3

wait wait

Proceed

(b)

Figure 4.16 Locks and barriers.
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The programming model in shared memory systems has proven to be easier to

program compared to message passing systems. Therefore distributed-shared

memory architecture began to appear in systems like the SGI Origin2000, and

others. In such systems, memory is physically distributed; for example, the hardware

architecture follows the message passing school of design (see Chapter 5), but the

programming model follows the shared memory school of thought. In effect, soft-

ware covers up the hardware. As far as a programmer is concerned, the architecture

looks and behaves like a shared memory machine, but a message passing architec-

ture lives underneath the software.

PROBLEMS

1. Explain mutual exclusion and its relation to the cache coherence problem.

2. Discuss the advantages and disadvantages of using the following interconnec-

tion networks in the design of a shared memory system.

(a) Bus;

(b) Crossbar switch;

(c) Multistage network.

3. Some machines provide special hardware instructions that allows one to swap

the contents of two words in one memory cycle. Show how the swap instruc-

tion can be used to implement mutual exclusion.

4. Consider a bus-based shared memory multiprocessor system. It is constructed

using processors with speed of 106 instructions/s, and a bus with a peak band-
width of 105 fetches/s. The caches are designed to support a hit rate of 90%.

(a) What is the maximum number of processors that can be supported by this

system?

(b) What hit rate is needed to support a 20-processor system?

5. Determine the maximum speedup of a single-bus multiprocessor system

having N processors if each processor uses the bus for a fraction f of every

cycle.

6. Consider the two tasks T0 and T1 that are executed in parallel on processors P1
and P2, respectively, in a shared memory system. Assume that the print state-

ment is uninterruptible, and A, B, C, D are initialized to 0.

T0 T1

A ¼ 1; C ¼ 3;
B ¼ 2; D ¼ 4;
Print A, D; Print B, C;

Show four different possible outputs of the parallel execution of these two

tasks.
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7. Consider a bus-based shared memory system consisting of three processors.

The shared memory is divided into four blocks x, y, z, w. Each processor

has a cache that can fit only one block at any given time. Each block can

be in one of two states: valid (V ) or invalid (I ). Assume that caches are

initially flushed (empty) and that the contents of the memory are as follows:

Memory block x y z w

Contents 10 30 80 20

Consider, the following sequence of memory access events given in order:

1) P1: Read(x), 2) P2: Read(x), 3) P3: Read(x),
4) P1: x ¼ xþ 25, 5) P1: Read(z), 6) P2: Read(x),
7) P3: x ¼ 15, 8) P1: z ¼ zþ 1

Show the contents of the caches and memory and the state of cache blocks

after each of the above operations in the following cases: (1) write-through

and write-invalidate and (2) write-back and write-invalidate.

8. Repeat Problem 7 assuming the following:

(a) Each processor has a cache that has four block frames labeled 0, 1, 2, 3.

The shared memory is divided into eight blocks 0, 1, . . . , 7. Assume that

the contents of the shared memory are as follows:

Block number 0 1 2 3 4 5 6 7

Contents 10 30 80 20 70 60 50 40

(b) To maintain cache coherence, the system uses the write-once protocol.

(c) Memory access events are as follows:

1) P1: Read(0), 2) P2: Read(0), 3) P3: Read(0),
4) P2: Read(2), 5) P1: Write(15 in 0),
6) P3: Read(2), 7) P1: Write(25 in 0), 8) P1: Read(2),
9) P3: Write(85 in 2), 10) P2: Read(7),
11) P3: Read(7), 12) P1: Read(7)

(Note that Write(x in i) means the value x is written in block i.)
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&CHAPTER 5

Message Passing Architecture

Message passing systems provide alternative methods for communication and

movement of data among multiprocessors (compared to shared memory multipro-

cessor systems). A message passing system typically combines local memory and

the processor at each node of the interconnection network. There is no global

memory so it is necessary to move data from one local memory to another by

means of message passing. This is typically done by send/receive pairs of

commands, which must be written into the application software by a programmer.

Figure 5.1 shows a high-level description of a message passing system. Each

processor has access to its own local memory and can communicate with other pro-

cessors using the interconnection network. These systems eventually gave way to

Internet-connected systems where the processor/memory nodes are cluster nodes,

servers, clients, or nodes in a greater grid, as will be discussed in Chapter 7. In

this chapter, we discuss different aspects of message passing systems including a

programming model, message routing, network switching, processor support for

message passing, and examples of message passing systems.

5.1 INTRODUCTION TO MESSAGE PASSING

A message passing architecture is used to communicate data among a set of pro-

cessors without the need for a global memory. The basis for the scheme is that

each processor has its own local memory and communicates with other processors

using messages. The elimination of the need for a large global memory together with

its synchronization requirement, gives message passing schemes an edge over

shared memory schemes.

Figure 5.1 shows the main components of a message passing multiprocessor archi-

tecture. There are n nodes in the figure numberedN1 toNn . A nodeNi consists of a pro-

cessor Pi and a local memory Mi . Each processor has its own address space. Nodes

communicate with each other by links (called external channels) and via an intercon-

nection network, normally a static-type network. In particular, hypercubes and the

nearest-neighbor two-dimensional and three-dimensional mesh interconnection
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networks have received considerable attention over the years. As shown in Chapter 2,

two important factors must be considered in designing message passing interconnec-

tion networks: link bandwidth and the network latency. The link bandwidth is defined

as the number of bits that can be transmitted per unit of time (bits/s). Network latency
is defined as the time to complete a message transfer through the network.

In executing a given application program, the program is divided into concurrent

processes; each is executed on a separate processor. If the number of processes is

larger than the number of processors, then more than one process will have to be

executed on a processor in a time-shared fashion. Processes running on a given pro-

cessor use what is called internal channels to exchange messages among them-

selves. Processes running on different processors use the external channels to

exchange messages. Data exchanged among processors cannot be shared; it is

rather copied (using send/receive messages). An important advantage of this

form of data exchange is the elimination of the need for synchronization constructs,

such as semaphores, which results in performance improvement. In addition,

a message passing scheme offers flexibility in accommodating a large number

of processors in addition to being readily scalable. It should be noted that a given

node can execute more than one process, each at a given time.

Figure 5.2 shows an example message passing system consisting of four pro-

cesses. In this figure, a horizontal line represents the execution of each process

and lines extended among processes represent messages exchanged among these

processes. A message is defined as a logical unit for internode communication;

it is considered as a collection of related information that travels together as

an entity. A message can be an instruction, data, synchronization, or interrupt

signals. A message passing system interacts with the outside world by receiving

input message(s) and/or outputting message(s). It is essential that the outside

world perceives a consistent behavior of a given message passing system.

Process Granularity The size of a process in a message passing system can be

described by a parameter called process granularity. This is defined as follows.

Process Granularity¼ computation time

communication time

1P 1M 2
P

2M nP nM

Interconnection Network

Link 1 Link 2
Link n

Figure 5.1 Message passing systems.
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Three types of granularity can be distinguished. These are:

1. Coarse granularity: Each process holds a large number of sequential instruc-

tions and takes a substantial amount of time to execute.

2. Medium granularity: Since the process communication overhead increases as

the granularity decreases, medium granularity describes a middle ground

where communication overhead is reduced.

3. Fine granularity: Each process contains a few sequential instructions (as few

as just one instruction).

Message passing multiprocessors uses mostly medium or coarse granularity.

5.2 ROUTING IN MESSAGE PASSING NETWORKS

Routing is defined as the techniques used for a message to select a path over the

network channels. Formally speaking, routing involves the identification of a set

of permissible paths that may be used by a message to reach its destination, and a

function, h, that selects one path from the set of permissible paths.

A routing technique is said to be adaptive if, for a given source and destination

pair, the path taken by the message depends on network conditions, such as network

congestion. Contrary to adaptive routing, a deterministic routing technique, also

called oblivious, determines the path using only the source and destination, regard-

less of the network conditions. Although simple, oblivious routing techniques make

inefficient use of the bandwidth available between the source and destination.

Routing techniques can also be classified based on the method used to make the

routing decision as centralized (self ) or distributed routing. In centralized routing,

Outside World

1P

1m

2P

4m

3P

2m 3m

4P

Figure 5.2 An example of a message passing system.

5.2 ROUTING IN MESSAGE PASSING NETWORKS 105



the routing decisions regarding the entire path are made before sending the message.

In distributed routing, each node decides by itself which channel should be used to

forward the incoming message. Centralized routing requires complete knowledge of

the status of the rest of the nodes in the network. Distributed routing requires knowl-

edge of only the status of the neighboring nodes.

Examples of the deterministic routing algorithms include the e-cube or dimension

order routing used in the mesh and torus multicomputer networks and the XOR rout-

ing in the hypercube. The following example illustrates the use of a deterministic

routing technique in a hypercube network.

Example 1 Assume that S ¼ S5S4 . . . S1S0 to be the source node address, and that
D ¼ D5D4 . . . D1D0 is the destination node address in a six-dimensional hypercube

message passing system. Let R ¼ S� D be the exclusive OR function executed

bitwise for each node in the path. The results of the XOR-ing operation indicate

the dimension in which the message should be sent in order to reach the destina-

tion. Consider the case whereby S ¼ 10(001010) and D ¼ 39(100111). Then

R ¼ (101101); that is, the message has to be sent along dimensions 0, 2, 3, and 5

in order to reach the destination. The order in which these dimensions are traversed

is not important. Let us assume that the message will follow the route by traversing

the following dimensions 5, 3, 2, and 0. Then the route is totally determined as:

10(001010) ! 42(101010) ! 34(100010) ! 38(100110) ! 39(100111).

5.2.1 Routing for Broadcasting and Multicasting

There are two types of communication operations in message passing systems, that

is, one-to-one (point-to-point or unicast) and collective communications. In unicast

a node is allowed to communicate a message to only a single destination, which may

be its immediate neighbors. A number of routing operations are defined under col-

lective communication. Among these, broadcast and multicast are the most widely

used. In broadcast, also known as the one-to-all operation, one node sends the same

message to all other nodes. In multicast, also known as the one-to-many operation,

one node sends its messages to k distinct destinations.

Broadcast is mainly used to distribute data from one node to others during com-

putation of a distributed memory program. Multicast has several uses in large-scale

multiprocessors, including parallel search algorithms and single program multiple

data (SPMD) computation. Practical broadcast and multicast routing algorithms

must be deadlock-free (see below) and should transmit the message to each destina-

tion node in as little time and using as short a path as possible. One technique to

achieve this is to deliver the message along a common path to as many destinations

as possible and then replicate the message and forward each copy on a different

channel band for a unique set of destination nodes. The path followed by each

copy may further branch in this manner until the message is delivered to every

destination node. In such a tree-based communication model, the destination set

is partitioned at the source and separate copies are sent on one or more outgoing

links. A message may be replicated at intermediate nodes and forwarded along
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multiple outgoing links towards disjoint subsets of destinations. Another method to

implement a multicast operation uses separate addressing. In this case, a separate

copy of the message is sent directly from the source to every destination. Clearly,

this is an inefficient technique. A hypercube broadcast tree-based nearest-neighbor

communication is shown in Figure 5.3.

5.2.2 Routing Potential Problems

A number of possible problems can result from the use of certain routing mechan-

isms in message passing systems. These include deadlock, livelock, and starvation,

which are explained below.

Deadlock When two messages each hold the resources required by the other in

order to move, both messages will be blocked. This is called a deadlock. It is a

phenomenon that occurs whenever there exists cyclic dependency for resources.

Management of resources in a network is the responsibility of the flow controlmech-

anism used. Resources must be allocated in a manner that avoids deadlock.

A straightforward, but inefficient, way to solve the deadlock problem is to allow

rerouting (maybe discarding) of the messages participating in a deadlock situation.

Rerouting of messages gives rise to nonminimal routing, while discarding messages

requires that messages be recovered at the source and retransmitted. This preemptive

technique leads to long latency and, therefore, is not used by most message passing

networks.

A more common technique is to avoid the occurrence of deadlock. This can be

achieved by ordering network resources and requiring that messages request use

of these resources in a strict monotonic order. This restricted way for using network

resources prevents the occurrence of circular wait, and hence prevents the occur-

rence of deadlock. The channel dependency graph (CDG) is a technique used

to develop a deadlock-free routing algorithm. A CDG is a directed graph

D ¼ G(C, E ), where the vertex set C consists of all the unidirectional channels in

the network and the set of edges E includes all the pairs of connected channels,
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001                                  010                                        100

011 101    110          011             101        110
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   111           010        100                111            100                111         001

001

110                                  101                                    011                     010

Figure 5.3 Hypercube broadcast tree-based communication.
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as defined by the routing algorithm. In other words, if (ci, cj) [ E, then ci and cj are,

respectively, an input channel and an output channel of a node and the routing algor-

ithm may only route messages from ci to cj . A routing algorithm is deadlock-free if

there are no cycles in its CDG. Consider, for example, the 4-node network shown in

Figure 5.4a. The CDG of the network is shown in Figure 5.4b. There are two cycles

in the CDG and therefore this network is subject to deadlock. Figure 5.4c shows one

possible way to avoid the occurrence of deadlock, that is, disallowing messages to be

forwarded from channel c1 to c2 and from c7 to c8 .

Livelock Livelock describes a situation in which a message keeps going around

the network and never reaches its destination. It is a phenomenon that results

from using adaptive routing algorithms where messages are rerouted in the hope

to find another path to their destinations. When nodes need to communicate, they

inject their messages into the network. A static injection model results when all

nodes inject their messages at the same moment, with the network clear of messages.

This is to be compared to dynamic injection, according to which nodes can inject

their messages at arbitrary times. Livelock can take place if dynamic injection is

used. It cannot occur if static injection is used. A number of routing policies can

1c
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4c 6c 8c 2c

7c

3c

(a)                                                                    (b)

 (c)

0

3 2

1

1c 2c 4c3c

6c5c 7c 8c

1c 2c 4c3c

6c
5c

7c 8c

Figure 5.4 A 4-node network and its CDGs (a) a 4-node network; (b) channel dependency

graph; and (c) CDG for a deadlock-free version of the network.
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be used to avoid livelock. They are based on the following. Let S be a set of priorities

that is totally ordered. Whenever a message is injected into the network, some

priority is assigned to it. In order to avoid livelock, the following must hold.

1. Messages are routed according to their priorities;

2. Once a message has been injected, only a finite number of messages will be

injected with higher or equal priority.

Starvation A node is said to suffer from starvation if it has a message to inject into

the network but is never allowed to do so. Starvation cannot arise if static injection is

used. A number of routing policies can be used in order to avoid starvation taking

place. The simplest among them is to allow each node to have its injection queue,

where it stores the messages it wants to inject into the network. This queue is

considered in the same way as the queues of the incoming links to that node and it

competes with them. As long as a fair queue management policy is used, this

method prevents starvation from happening. The main disadvantage is that a node

with a high message injection rate can slow down all the other nodes in the network.

5.3 SWITCHING MECHANISMS IN MESSAGE PASSING

Switching mechanisms refer to the mechanisms used to remove data from an input

channel and place it on an output channel. Network latency is highly dependent on

the switching mechanism used. A number of switching mechanisms have been in

use. These are the store-and-forward, circuit-switching, virtual cut-through, wormhole,

and pipelined circuit-switching. In this section, we study some of these techniques.

In circuit-switching networks, the path between the source and destination is first

determined, all links along that path are reserved, and no buffers are needed in each

node. After data transfer, reserved links are released for use by other messages. An

important characteristic of the circuit-switching technique is that the source and

destination are guaranteed a certain bandwidth and maximum latency when com-

munication is established between them. This static bandwidth allocation regardless

of the actual use is the main drawback of the circuit-switching approach. However,

static bandwidth allocation leads to a simple buffering strategy. In addition, circuit-

switching networks are characterized by having the smallest amount of delay. This is

because message routing overhead is only needed when the circuit is set up;

subsequent messages suffer no, or minimal, additional delay. Therefore, circuit-

switching networks can be advantageously used in the case of a large number of

message transfers.

The store-and-forward switching mechanism provides an alternate data transfer

scheme. The main idea is to offer dynamic bandwidth allocation to messages

as they flow through the network, thus avoiding the main drawback of the circuit-

switching mechanism. Two main types of store-and-forward networks are common.

These are packet-switched and virtual cut-through networks. In packet-switched
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networks, each message is divided into smaller fixed size parts, called packets,

before being transmitted. Each node must contain enough buffers to hold received

packets before transmitting them. A complete path from source to destination

may not be available at the start of transmission. As links become available, packets

are moved from node to node until they reach the destination node. Since packets are

routed separately through the network, they may follow different paths to the desti-

nation node. This may lead to packets arriving out of order at the destination. There-

fore, an end-to-end message assembly scheme is needed, incurring additional

overhead. Packet-switched networks suffer also from the need for routing overhead

for each packet, rather than message, sent into the network. In addition to dynami-

cally allocating bandwidth, packet-switched networks have the advantage of

reduced buffer requirements in each node.

In virtual cut-through, a packet is stored at an intermediate node only if the next

required channel is busy. Virtual cut-through is similar to the packet-switching tech-

nique, with the following difference. In contrast to packet switching, when a packet

arrives at an intermediate node and its selected outgoing channel is free, the packet

is sent out to the adjacent node towards its destination before it is completely received.

Therefore, the delay due to unnecessary buffering in front of an idle channel is avoided.

In order to reduce the size of the required buffers and decrease the incurred

network latency, a technique called wormhole routing has been introduced. Here,

a packet is divided into smaller units called flits (flow control bits). These flits

move in a pipeline fashion with a header flit leading the way to the destination

node. When the header flit is blocked due to network congestion, the remaining

flits are also blocked. Only a buffer that can store a flit is required for a successful

operation of the wormhole routing technique. The technique is known to produce a

latency that is independent of the path length and it requires less storage at all nodes

compared to the store-and-forward packet-switching technique.

Figures 5.5 and 5.6 illustrate the difference in performance between the store-

and-forward (SF) and wormhole (WH) routing in terms of communication latency.

W
L

W
L

W
L

D

SFT
 Time

Figure 5.5 Communication latency in the store-and-forward (SF) technique.
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In these figures, L represents the packet length in bits, W represents the channel

bandwidth in bits/cycle, D is the number of channels, and Tc is the cycle time.

As can be seen from the figures, the latency of the SF and that of the WH are

given respectively by

TSF ¼ Tc
L

W
� D

� �

and TWH ¼ Tc
L

W
þ D

� �

Table 5.1 shows an overall comparison of a number of switching mechanisms.

W
L

                                                                  D

WHT                                                                                                            Time

Figure 5.6 Communication latency in the wormhole (WH) technique.

TABLE 5.1 Comparison Among a Number of Switching Techniques

Switching

Mechanism Advantages Disadvantages

Circuit switching 1. Suitable for long messages Wasting of bandwidth

2. Deadlock-free

Store-and-forward 1. Simple 1. Buffer for every packet

2. Suitable for interactive traffic 2. Potential long latency

3. Bandwidth on demand 3. Potential deadlock

Virtual cut-through 1. Good for long messages

2. Possible deadlock avoidance

1. Need for multiple message

buffers

3. Elimination of data-link

protocol

2. Wasting of bandwidth

3. Mainly used with

profitable routing

Wormhole 1. Good for long messages 1. Possibility for deadlock

2. Reduced need for buffering 2. Inability to support

backtracking3. Reduced effect of path length
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5.3.1 Wormhole Routing in Mesh Networks

An n-dimensional mesh is defined as the interconnection structure that has K0 �
K1 � � � � � Kn�1 nodes, where n is the number of dimensions of the network and

Ki is the radix of dimension i. Each node is identified by an n-coordinate vector

(x0, x1, . . . , xn�1), where 0 � xi � Ki � 1. A number of routing techniques have

been used for mesh networks. These include dimension-ordered, dimension rever-

sal, turn model, and message flow model. In the following, we introduce the

dimension-ordered of X-Y routing.

Dimension-Ordered (X-Y) Routing A channel numbering scheme often used

in n-dimensional meshes is based on the dimension of channels. In dimension-

ordered routing, each packet is routed in one dimension at a time, arriving at the

proper coordinate in each dimension before proceeding to the next dimension. By

enforcing a strict monotonic order on the dimensions traversed, deadlock-free

routing is guaranteed. In a two-dimensional mesh, each node is represented by its

position (x, y); the packets are first sent along the x-dimension and then along the

y-dimension, hence the name X-Y routing.

In X-Y routing, messages are first sent along the X-dimension and then along the

Y-dimension. In other words, at most one turn is allowed and that turn must be

from the X-dimension to the Y-dimension. Let (sx, sy) and (dx, dy) denote the

addresses of a source and destination node, respectively. Assume also that

(gx, gy) ¼ (dx � sx, dy � sy). The X-Y routing can be implemented by placing gx
and gy in the first two flits, respectively, of the message. When the first flit arrives

at a node, it is decremented or incremented, depending on whether it is greater

than 0 or less than 0. If the result is not equal to 0, the message is forwarded in

the same direction in which it arrived. If the result equals 0 and the message arrived

on the Y-dimension, the message is delivered to the local node. If the result equals 0

and the message arrived on the X-dimension, the flit is discarded and the next flit is

examined on arrival. If that flit is 0, the packet is delivered to the local node; other-

wise, the packet is forwarded in the Y-dimension. Figure 5.7 shows an example of

the X-Y routing between a source node and a destination node in an 8 � 8 mesh

network.

5.3.2 Virtual Channels

The principle of virtual channel was introduced in order to allow the design of

deadlock-free routing algorithms. Virtual channels provide an inexpensive method

to increase the number of logical channels without adding more wires. A number

of adaptive routing algorithms are based on the use of virtual channels.

A network without virtual channels is composed of single lane streets. Adding

virtual channels to an interconnection network is analogous to adding lanes to a

street network, thus allowing blocked messages to be passed. In addition to

increasing throughput, virtual channels provide an additional degree of freedom
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in allocating resources to messages in a network. Consider the simple network

shown in Figure 5.8.

In this case, two paths X-A-B-Z and Y-A-B-W share the common link AB. It is,

therefore, required to multiplex link AB between the two paths (two lanes). A pro-

vision is also needed such that data sent over the first path (lane) is sent from X to Z

and not to W and similarly data sent over the second path (lane) is sent from Y to W

and not to Z. This can be achieved if we assume that each physical link is actually

divided into a number of unidirectional virtual channels. Each channel can carry

data for one virtual circuit (one path). A circuit (path) from one node to another con-

sists of a sequence of channels on the links along the path between the two nodes.

When data is sent from node A to node B, then node B will have to determine

the circuit associated with the data such that it can decide whether is should route

the data to node Z or to node W. One way that can be used to provide such infor-

mation is to divide the AB link into a fixed number of time slots and statically

assign each time slot to a channel. This way, the time slot on which the data arrives

Destination node                            Source node

Figure 5.7 Dimension-ordered (X-Y) routing in an 8 � 8 mesh network.

X

W
Y

Z

BA

Figure 5.8 Path multiplexing through the same link.
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identifies the sending channel and therefore can be used to direct the data to the

appropriate destination.

One of the advantages of the virtual channel concept is deadlock avoidance. This

can be done by assigning a few flits per node of buffering. When a packet arrives at a

virtual channel, it is put in the buffer and sent along the appropriate time slot.

5.4 MESSAGE PASSING PROGRAMMING MODELS

A message passing architecture uses a set of primitives that allows processes to

communicate with each other. These include the send, receive, broadcast, and barrier

primitives. The send primitive takes a memory buffer and sends it to a destination

node. The receive primitive accepts a message from a source node and stores it in a

specified memory buffer. The basic programming model used in message passing

architectures is based on the idea of matching a send request on one processor with

a receive request on another. In such scheme, send and receive are blocking; that

is, send blocks until the corresponding receive is executed before data can be

transferred.

Implementation of the send/receive among processes requires a three-way

protocol as shown in Figure 5.9. In this case, the sending process issues a request-

to-send message to the receiver process. The latter stores the request and sends a

reply message back. When the corresponding receive is executed, the sender process

receives the reply and finally transfers the data. The blocking send/receive is simple;

it requires no buffering at the source or the destination. However, the three-way hand-

shaking used in blocking send/receive requires that both the sender and the receiver

be blocked for at least a full round-trip time. During this time the processors are idle,

thus leading to an increase in the network communication latency. In addition, with

blocking send/receive, it is impossible to overlap communication with computation

and thus the network bandwidth cannot be fully utilized.

The use of nonblocking operation is utilized by most message passing implemen-

tations in order to avoid the drawbacks of the three-phase protocol. In this case, send

appears immediately to the user program. However, the message is buffered by the

message layer until the network port is available. Only then, would the message be

transmitted to the recipient. In there, the message is again buffered until a matching

receive is executed.

Table 5.2 shows the performance of the send/receive on a number of message

passing machines. In this table, Ts represents the message start-up cost, Tb represents

the per-byte cost, and Tfp is the average cost of a floating-point operation. It should

be noted that the CM-5 is blocking and uses a three-phase protocol. The iPSC long

1
P (sender)

1
m (request to send) 2

m (ready to receive)          
3
m (data transfer)

2
P (receiver)

Figure 5.9 Blocking send/receive handshaking protocol.
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messages also use a three-phase protocol in order to guarantee that enough buffer

space is available at the receiving node.

Example 2 Let us try to compute y ¼ (aþ b) * (cþ d) on a single processor and

on a message architecture consisting of two processors. In presenting illustrative

solutions to this problem, we will use simple and self-explanatory notations.

(a) Using Single Processor

Time step

1 Load 1000 ; load a

2 Add 2000 ; add b to a 999

3 Store 1000 ; store aþb in 1000 1000 a

4 Load 3000 ; load c

5 Add 4000 ; add d to c 2000 b

6 Mult 1000 ; multiply (aþ b)�(cþ d)

7 Write 999 ; store the result in 999 3000 c

8 Halt ; done

4000 d

Number of time steps (polynomial complexity) ¼ 8

Asymptotic complexity T(n) ¼ O(1)

(b) Message Passing With Two Processors P1 and P2

Assume that the operands are distributed between the two processors as shown.

P1 P2

999 999

1000 a 1000 c

2000 b 2000 d

TABLE 5.2 Performance of Send/Receive on a Number of

Message Passing Machines

Machine Ts (ms/mesg) Tb (ms/mesg) Tfp (ms/mesg)

iPSC 4100 2.8 25

nCUBE/10 400 2.6 8.3

iPSC/2 700 0.36 3.4

nCUBE/2 160 0.45 0.50

iPSC/860 160 0.36 0.033

CM-5 86 0.12 0.33
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Time step P1 Operations in P1 P2 Operations in P2

1 Load 1000 ; load a Load 1000 ; load c

2 Add 2000 ; add b to a Add 2000 ; add d to c

3 Send 2000! ; send aþb to P2 Store 1000 ; store cþd in 1000

4 Halt ; done Receive 2000? ; receive aþb from P1

5 Mult 1000 ; multiply (aþ b)�(cþ d)

6 Write 999 ; store result in 999 in P2

7 Halt ; done

Number of time steps (polynomial complexity) T(n, 2) ¼ 7

Asymptotic complexity T(n, 2) ¼ O(1)

Speedup SP(n, 2) ¼ 8=7 ¼ 1:19

Example 3 It is required to sum all components of a vector A, having n com-

ponents (for simplicity assume that n is a power of 2) using p processors, assuming

that the vector components are distributed among the p processors.

. Initialization step: Each processor performs the partial sum of the vector com-

ponents it has.

. Repeat using index k ¼ 1 to n/2 in powers of 2.

. Processor j and processor jþ k send and receive data in pairwise fashion and

perform the summation.

Figure 5.10 shows how the process can be performed in log2 n steps.

76543210
PPPPPPPP

Figure 5.10 Summation in log2 n steps using a message passing system.
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5.5 PROCESSOR SUPPORT FOR MESSAGE PASSING

Processors that support message passing are those processors that contain the special

instructions needed to support interprocess message communications. In order to

support interprocess communications, a number of features are required. Among

these, the following features are needed:

1. A port is a communication channel. It is a reference object for tasks and

threads. Two main operations can be performed on ports: send and receive.

2. Messages are used as communication among objects. A message is divided

into a header and a body. The size of the body is variable while that of the

header is fixed. A message holds information exchanged between processes.

3. Port sets: A task can hold multiple access rights (send and receive) on ports.

Multiple tasks can hold send access to a single port. On the other hand, one

task can hold receive access at a given time. In port set, a task can have

either all or none of the access rights to a group of ports. Ports must be

mutually exclusive in the sense that a port cannot be in two different sets at

a given time.

The Intel iPAX 432 uses message passing communications and supports them

directly. It also uses port objects that work as a competitor to the path of the mess-

age. The processor contains a message queue. A message communication can be

arranged depending on the following:

1. Time of arrival (such as the “first-in-first-out”, FIFO);

2. Priority;

3. Deadline within priority.

The iPAX 432 produces a nonblocking message passing by using specific process

that has conditional SEND and RECEIVE operations. The operand of these con-

ditional operations is a specific Boolean flag. Thus, if the unconditional operation

corresponding to the conditional one was blocking, the conditional operation

result will be false and if it is nonblocking then the conditional operation will be

true. In this case of the conditional operations, to support message passing, a correct

communication and interaction between and within each process must be satisfied.

This must be because the processor will continue executing a specific operation in

case it cannot complete the communication operation. Therefore, a good program

must be able to decide whether to retry the operation by testing the returned flag.

There are also other kinds of message passing operations that are not blocking,

such as the SURROGATE-SEND and SURROGATE-RECEIVE. These operations

hold the operation in a waiting queue and are sufficient for use with high-level

language interprocess communication. The operand of these operations is an

event called DONE. These operations do the send and receive operations and put

the message in the port’s queue. The end or the completion of these operations
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has DONE (event) when the SURROGATE received the desired service. The orig-

inal process is responsible for checking the completion of the operation by searching

for the DONE event.

The IBM AS/400 supports message passing by having an event object type that

contains a field supporting the contents of the message. This field is called the event-

data field. AS/400 processor operations are send and receive. The send operation is

used to send the interprocess message by a processor operation called SIGNAL-

EVENT (PROC, EV, DATA). This processor operation has three parameters. The

first two are essential to exist such that the event EV will be signaled within

the processor PROC. The third parameter is unessential for that event. To receive

the interprocess message, the WAIT-ON-EVENT, TEST-EVENT, MONITOR-

EVENT, and RETRIEVE-EVENT-DATA are used. Note that an exactly blocking

receive operation does not exist because the value of the timeout should be deter-

mined with every operation that might block the execution of a process.

5.6 EXAMPLE MESSAGE PASSING ARCHITECTURES

Examples of message passing machines include Caltech Hypercube, the Inmos

Transputer systems, Meiko CS-2, Cosmic Cube, nCUBE/2, iPSC/2, iPSC/860,
CM-5. Other recent systems include the IBM Scalable Power Series (IBM

POWERparallel 3, SP 3).

The Caltech Hypercube (the Cosmic Cube) was an n-dimensional hypercube

system with a single host, known as the Intermediate Host (IH), for global control.

The original system was based on the simple store-and-forward routing mechanism.

The system started with a set of routine libraries known as the crystalline operating

system (CrOS), which supported C and FORTRAN. The system supported only col-

lective operations (broadcast) to/from the IH. Two years later, the Caltech project

team introduced a hardware wormhole routing chip. The Cosmic Cube is managed

using a host runtime system called the Cosmic environment (CE). The processes of a

given computation are called the process group. The system can be used by more

than one user. Users have to specify the cube size needed using a CE routine.

Allocation will be granted based on the available hypercube nodes. In this

system, C programming is supported by the help of a dynamic process structure

with active process scheduling.

The Cosmic Cube is considered the first working hypercube multicomputer mess-

age passing system. The Cosmic cube system has been constructed using 64 node for

the Intel iPSC. Each node has 128 KB of dynamic RAM that has parity checking for

error detection but no correction. In addition, each node has 8 KB of ROM in order

to store the initialization and bootstrap programs. The basic packet size is 64 bits

with queues in each node. In this system, messages are communicated via trans-

missions (send/receive). When a message request is made, the calls will return.

In case the message request is not finished (pending), the calls will not return and

the program will continue. Each node in this system has a kernel that requires

about 9 KB of code and 4 KB of tables. This kernel, called the Reactive Kernel,
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is divided in two: an inner kernel, which is responsible for performing messages

such as send, receive, queue, and handling messages, and an outer kernel, which

includes processes to create, copy, and stop the processes.

The Meiko Computing Surface CS-1 was the first Inmos Transputer T800-based

system. The Transputer was a 32-bit microprocessor with fast task-switching

capability through hardware intercommunication. The system was programmed

using a communication sequential processes (CSP) language called Occam. The

language used abstract links known as channels and supported synchronous block-

ing send and receive primitives.

T9000 represented another version of the Inmos Transputer processor T800.

T9000 has the ability to perform both integer and floating-point operations.

Although T9000 is a RISC processor, it uses microprogramming. Instructions

take one or more processor cycles to execute. Its internal memory capacity is at

least 64 KB. It also has 16 KB instruction and data cache. The memory interface cir-

cuitry can generate a variety of signals to match the external memory chips. With the

T9000, data transfers are synchronized using a two-way hand-shaking mechanism.

According to this technique, synchronization is achieved using two different pack-

ets. The first one, called the data packet, is sent from the source to the destination

transputer process. The other packet, called the acknowledge packet, is sent from

the destination to the source transputer. When the destination transputer is ready

to get the data from the data packet, it should send an acknowledge signal rep-

resented by the acknowledge packet telling the source transputer to send the data

packet.

The Intel iPSC is a commercial message passing hypercube developed after the

Cosmic Cube. The iPSC/1 used Intel 286 processors with a 287 floating-point

coprocessor. Each node consists of a single board computer having two buses, a pro-

cess bus and I/O bus. Nodes are controlled by the Cube manager. Each node has

seven communication channels (links) to communicate with other nodes and a

separate channel for communication with the Cube Manager. FORTRAN message

passing routines are supported. The software environment used in iPSC1 was

called NX1, and has a more distributed processes environment than those included

in the Caltech CrOS. The NX1 was based on the Caltech Reactive Kernel. It

provided the typical set of features needed in a message passing environment.

These include communication topology hiding, multiple processes per node, any-

to-any message passing, asynchronous messaging, and nonblocking communication

primitives. Later, Intel machines implemented an improved version of NX, called

NX2. In the case of the Paragon, NX2 was implemented upon an OSF/1 Unix

microkernel.

The nCUBE/2 has up to a few thousand nodes connected in a binary hypercube

network. Each node consists of a CPU-chip and DRAM chips on a small double-

sided printed circuit board. The CPU chip contains a 64 bit integer unit, an IEEE

floating-point unit, a DRAM memory interface, a network interface with 28 DMA

channels, and routers that support cut-through routing across a 13-dimensional

hypercube. The processor runs at 20 MHz and delivers roughly 5 MIPS or

1.5 MFLOPS.
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The Thinking Machine CM-5 had up to a few thousand nodes interconnected in a

hypertree (incomplete fat tree). Each node consists of a 33 MHz SPARC RISC

processor chip-set, local DRAM memory, and a network interface to the hypertree

and broadcast/scan/prefix control networks. Compared to its predecessors, CM-5

represented a true distributed memory message passing system. It featured two

interconnection networks, and Sparc-based processing nodes. Each node has four

vector units for pipeline arithmetic operations. The CM-5 programming environ-

ment consisted of the CMOST operating system, the CMMD message passing

library, and various array-style compilers. The latter includes CMF, supporting a

F90-like SIMD programming style. The CMMD message passing system offered

users access to routines from the lowest level, the Active Message Layer (AML),

a point-to-point library, channels, and a cooperative functions library.

Having briefly reviewed a number of the early introduced message passing

systems, we now discuss in some detail the features of a recent message passing

system, the IBM Scalable POWERparallel 3 system.

5.6.1 The IBM Scalable POWERparallel 3

The IBM POWER3 (SP 3) is the most recent IBM supercomputer series (1999/
2000). The SP 3 consists of 2 to 512 POWER3 Architecture RISC System/6000 pro-
cessor nodes. Each node has its own private memory and its own copy of the AIX

operating system. The POWER3 processor is an eight-stage pipeline processor. Two

instructions can be executed per clock-cycle except for the multiply and divide. A

multiply instruction takes two clock cycles while a divide instruction takes 13 to

17 cycles. The FPU contains two execution units using double precision (64 bit).

Both execution units are identical and conform to the IEEE 754 binary floating-

point standard. Figure 5.11 shows a block diagram of a typical SP 3 node.

Nodes are connected by a high-performance scalable packet-switched network in

a distributed memory and message passing. The network’s building block is a two-

staged 16 � 16 switch board, made up of 4 � 4 bidirectional crossbar switching

elements (SEs). Each link is bidirectional and has a 40 MB/s bandwidth in each

direction. The switch uses buffered cut-through wormhole routing. This intercon-

nection arrangement allows all processors to send messages simultaneously. For

full connectivity, at least one extra stage is provided. This stage guarantees that

there are at least four different paths between every pair of nodes. This form of

path redundancy helps in reducing network congestion as well as recovery in the

presence of failures.

The communication protocol supports end-to-end packet acknowledgment. For

every packet sent by a source node, there is a returned acknowledgment after the

packet has reached the destination node. This allows source nodes to discover

packet loss. Automatic retransmission of a packet is made if the acknowledgment

is not received within a preset time interval.

A message passing programming style is the preferred style for performance on

the SP 3. Several message passing libraries used by FORTRAN and C are supported
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on the SP 3. The SP 3 also supports the data parallel programming model with high-

performance FORTRAN.

The message passing model in SP assumes that any task can send a message to

any other task using message passing communication mechanism. The main mess-

age passing operations are the send and receive operations. The send operation can

be either synchronous (returns only when a matching receive is called) or asynchro-

nous (returns immediately without waiting for a matching receive call) and blocking

(returns as soon as the send buffer has been cleared) or nonblocking (returns without

waiting for clearing the send buffer). The receive operation can be either blocking

(returns only after the data has been received) or nonblocking (returns immediately

a flag that the data either are not available or are in the receive buffer). Particular

implementation of the different message passing libraries in SP 3 is presented below.

The IBM SP 3 programming environment offers three message passing libraries:

PVM, MPL, and MPI. The native library in the IBM SP-2 Parallel Operating

Environment is MPL. It is implemented on top of HPS and IP protocols. The MPI

implementation MPICH is implemented on top of MPL. The MPL is designed for

SP-2 and, therefore, there is no special software initialization and messages are

passed directly to hardware. Single-step asynchronous blocking subroutines are

called mpc_bsend( ) and mpc_brecv( ). There are also dual asynchronous blocking

subroutines mpc_bvsend( ) and mpc_bvrecv( ) for exchanging noncontiguous pieces

of data. The MPI subroutine design for SP-2 is very similar to MPL; only the sub-

routine names and parameters differ. No encoding is needed and all messages are

passed directly to hardware through MPL subroutines. Single-step asynchronous

blocking subroutines are called MPI_Send( ) and MPI_Recv( ).

The PVM is aimed at heterogeneous parallel systems. The asynchronous block-

ing send subroutine is pvm_send( ). Sending a message requires three steps. First,

the PVM sending buffer has to be initialized by pvm_initsend( ). There are three

defined input parameters, which determine a mechanism of data coding and packing:

POWER3 POWER3
CPU CPU

L2 Cache                                                             L2 Cache
4MB 4MB

Memory I/O             256 MB to 4 G
Controller                    Memory

PCI PCI                    PCI                      Switch
Bridge Bridge                Bridge                    Adapter

Figure 5.11 Typical SP 3 node.
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PvmDataDefault, the data is packed into PVM buffer and encoded according to the

XDR format; PvmDataRaw, the data is packed into the PVM buffer with no encod-

ing; PvmDataInPlace, the data is not copied to the PVM buffer, but it is fetched from

user space memory during execution pvm_send( ). Then the message is packed into

the PVM buffer by using any combination of pvm_pack�( ) routines. Finally, the
pvm_send( ) subroutine is called. The matching subroutine to pvm_send( ) is block-

ing pvm_recv( ). Receiving a message requires two steps. The incoming message

has to be accepted by pvm_recv( ) and then it has to be unpacked into user data

space using pvm_unpack�( ) functions.
The PVM and MPI message passing libraries are covered in more details in

Chapters 8 and 9, respectively.

5.7 MESSAGE PASSING VERSUS SHARED MEMORY
ARCHITECTURES

As indicated in Chapter 4, shared memory enjoys the desirable feature that all

communications are done using implicit loads and stores to a global address

space. Another fundamental feature of shared memory is that synchronization and

communication are distinct. Special synchronization operations (mechanisms), in

addition to the loads and stores operations, need to be employed in order to detect

when data have been produced and/or consumed. On the other hand, message pas-

sing employs an explicit communication model. Explicit messages are exchanged

among processors. Synchronization and communication are unified in message pas-

sing. The generation of remote, asynchronous events is an integral part of the mess-

age passing communication model. It is important, however, to indicate that shared

memory and message passing communication models are universal; that is, it is

possible to employ one to simulate the other. However, it is observed that it is

easier to simulate shared memory using message passing than the converse. This

is basically because of the asynchronous event semantics of message passing as

compared to the polling semantics of the shared memory.

A number of desirable features characterize shared memory architectures (see

Chapter 4). The shared memory communication model allows the programmer to con-

centrate on the issues related to parallelism by relieving him/her of the details of the
interprocessor communication. In that sense, the shared memory communication

model represents a straightforward extension of the uniprocessor programming para-

digm. In addition, shared memory semantics are independent of the physical location

and therefore they are open to the dynamic optimization offered by the underlying

operating system. On the other hand, the shared memory communication model is in

essence a polling interface. This is a drawback as far as synchronization is concerned.

This fact has been recognized by a number of multiprocessor architects and their

response has always been to augment the basic shared memory communication

model with additional synchronization mechanisms. An additional drawback of

shared memory is that in order for data to cross the network, a complete round trip

has to be made. One-way communication of data is not possible.
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Message passing can be characterized as employing an interrupt-driven com-

munication model. In message passing, messages include both data and synchroni-

zation in a single unit. As such, the message passing communication model lends

itself to those operating system activities in which communication patterns are

explicitly known in advance, for example, I/O, interprocessor interrupts, and task

and data migration. The message passing communication model lends itself also

to applications that have large synchronization components, for example, solution

of systems of sparse matrices and event-driven simulation. In addition, message

passing communication models are natural client–server style decomposition. On

the other hand, message passing suffers from the need for marshaling cost, that

is, the cost of assembling and disassembling of the message.

One natural conclusion arising from the above discussion is that shared memory

and message passing communication models each lend themselves naturally to

certain application domains. Shared memory manifests itself to application writers

while message passing manifests itself to operating systems designers. It is therefore

natural to consider combining both shared memory and message passing in general-

purpose multiprocessor systems. This has been the main driving force behind

systems such as the Stanford FLexible Architecture for SHared memory (FLASH)

system (see Problems). It is a multiprocessor system that efficiently integrates sup-

port for shared memory and message passing while minimizing both hardware and

software overhead.

5.8 CHAPTER SUMMARY

Shared memory systems may be easier to program, but are difficult to scale up to a

large number of processors. If scalability to larger and larger systems (as measured

by the number of processing units) was to continue, systems had to use message pas-

sing techniques. It is apparent that message passing systems are the only way to effi-

ciently increase the number of processors managed by a multiprocessor system.

There are, however, a number of problems associated with message passing systems.

These include communication overhead and difficulty of programming. In this chap-

ter, we discussed the architecture and the network models of message passing

systems. We shed some light on routing and network switching techniques. We con-

cluded with a contrast between shared memory and message passing systems.

PROBLEMS

1. Contemplate the advantages and disadvantages of message passing architec-

tures and compare them with those found in shared memory architectures.

2. Based on your finding in Problem 1, you may conclude that an architecture

that combines the best of two worlds should be preferred over either of the

two systems. Discuss the advantages and disadvantages of a combined

shared memory message passing architecture.

PROBLEMS 123



3. In connection with Problem 2 above, an architecture that combines shared

memory and message passing has been introduced by Stanford University. It

is called the FLASH system. Write a complete report on that architecture, dis-

cussing its hardware and software features as well as its programming model.

Support your report with illustrations, tables, and examples, whenever possible.

4. Discuss the conditions that lead to the occurrence of the deadlock problems in

multicomputermessage passing systems. Suggest ways to avoid the occurrence

of such a problem. Provide some examples to support your suggestions.

5. Repeat Problem 4 considering the livelock problem instead.

6. Repeat Problem 4 considering the starvation problem instead.

7. Show how to perform the matrix-vector multiplication problem using collec-

tive communications in message passing systems. Compare the time complex-

ity and the speedup resulting from using a multicomputer message passing as

compared to using a single processor. Provide an illustrative example.

8. Repeat Problem 7 above for the problem of finding the min (A(1), A(2), . . . ,
A(n)) in an n-element vector A.

9. Repeat Problem 7 considering execution of the following simple loop on a single

processor compared with k , n processors in a message passing arrangement.

for i ¼ 1, n

C½i� ¼ A½i� þ B½i�,

10. Design a message passing routing algorithm for an n-dimensional hypercube

network that broadcasts a host message to all nodes in the hypercube at the

greatest speed. Show how this algorithm can be implemented with message

passing routines.

11. Repeat Problem 10 for the case where a node in the n-dimensional hypercube

can broadcast a message to all other nodes. Show how this algorithm can be

implemented with message passing routines.

12. Repeat Problem 10 for the case of an n-dimensional mesh network.

13. Repeat Problem 11 for the case of an n-dimensional mesh network.
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&CHAPTER 6

Abstract Models

In previous chapters, we learned that parallel architecture could be categorized into

shared memory and message passing systems. In a shared memory system, proces-

sing elements communicate with each other via shared variables in the global

memory, while in message passing systems, each processing element has its own

local memory and communication is performed via message passing. In this chapter,

we study abstract models for both shared memory and message passing systems. We

will study several parallel and distributed algorithms and evaluate their complexities

using these models.

At first glance, abstract models may appear to be inappropriate in real-world situ-

ations due to their idealistic nature. However, abstract machines have been very

useful in studying parallel and distributed algorithms and evaluating their antici-

pated performance independent of real machines. Clearly, if the performance of

an algorithm is not satisfactory on an abstract system, it is meaningless to implement

it on a real system. Although abstract models do not consider some practical con-

siderations in real parallel and distributed systems, they focus on the computational

aspects of the algorithmic complexity, which makes it less difficult to find perform-

ance bounds and complexity estimates.

We begin by discussing a model of shared memory systems called PRAM (Par-

allel Random Access Machine). We will study the PRAM model and the relation-

ships between its different variations. We will also present a computational model

for synchronous message passing systems. We will discuss complexity analysis

of algorithms described in terms of both PRAM and message passing models.

A number of algorithms for both models will be presented and evaluated.

6.1 THE PRAM MODEL AND ITS VARIATIONS

The purpose of the theoretical models for parallel computation is to give frameworks

by which we can describe and analyze algorithms. These ideal models are used to

obtain performance bounds and complexity estimates. One of the models that has

been used extensively is the parallel random access machine (PRAM) model. The

PRAMmodel was introduced by Fortune and Wyllie in 1978 for modeling idealized
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parallel computers in which communication cost and synchronization overhead are

negligible.

A PRAM consists of a control unit, a global memory shared by p processors, each

of which has a unique index as follows: P1 , P2 , . . . , Pp . In addition to the global

memory via which the processors can communicate, each processor has its own

private memory. Figure 6.1 shows a diagram illustrating the components in the

PRAM model.

The p processors operate on a synchronized read, compute, and write cycle.

During a computational step, an active processor may read a data value from a

memory location, perform a single operation, and finally write back the result into

a memory location. Active processors must execute the same instruction, generally,

on different data. Hence, this model is sometimes called the shared memory, single

instruction, multiple data (SM SIMD) machine. Algorithms are assumed to run with-

out interference as long as only one memory access is permitted at a time. We say

that PRAM guarantees atomic access to data located in shared memory. An oper-

ation is considered to be atomic if it is completed in its entirety or it is not performed

at all (all or nothing).

There are different modes for read and write operations in a PRAM. These differ-

ent modes are summarized as follows:

. Exclusive read (ER): Only one processor can read from any memory location at

a time.

. Exclusive write (EW): Only one processor can write to any memory location at

a time.

. Concurrent read (CR): Multiple processors can read from the same memory

location simultaneously.

Figure 6.1 PRAM model for parallel computations.
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. Concurrent write (CW): Multiple processors can write to the same memory

location simultaneously. Write conflicts must be resolved using a well-defined

policy such as:

Common: All concurrent writes store the same value.

Arbitrary: Only one value selected arbitrarily is stored. The other values are

ignored.

Minimum: The value written by the processor with the smallest index is

stored. The other values are ignored.

Reduction: All the values are reduced to only one value using some

reduction function such as sum, minimum, maximum, and so on.

Based on the different modes described above, the PRAM can be further divided into

the following subclasses:

. EREW PRAM: Access to any memory cell is exclusive. This is the most restric-

tive PRAM model.

. ERCW PRAM: This allows concurrent writes to the same memory location by

multiple processors, but read accesses remain exclusive.

. CREW PRAM: Concurrent read accesses are allowed, but write accesses are

exclusive.

. CRCW PRAM: Both concurrent read and write accesses are allowed.

6.2 SIMULATING MULTIPLE ACCESSES ON AN EREW PRAM

The EREWPRAMmodel is considered the most restrictive among the four subclasses

discussed in the previous section. Only one processor can read from or write to a given

memory location at any time. An algorithm designed for such a model must not rely

on having multiple processors access the same memory location simultaneously in

order to improve its performance. Obviously, an algorithm designed for an EREW

PRAM can run on a CRCW PRAM. The algorithm simply will not use the concurrent

access features in the CRCW PRAM. However, the contrary is not true, an algorithm

designed for CRCW cannot run on an EREW PRAM.

Is it possible to simulate concurrent access in the EREW model? The answer is

yes. In general, any algorithm designed to run on a given model can be simulated on

a more restrictive model at the price of more time and/or memory requirements

(Cosnard and Trystram, 1996). Clearly, the EREW PRAMmodel is the most restric-

tive among the four PRAM subclasses. Hence, it is possible to simulate the concur-

rent read and write operations on an EREW PRAM. In what follows, we show that

this simulation can be done at the price of O(log p) time and O(p) memory, where p

is the number of processors, using a broadcasting procedure.

Suppose that a memory location x is needed by all processors at a given time in a

PRAM. Concurrent read by all processors can be performed in the CREW and

CRCW cases in constant time. In the EREW case, the following broadcasting mech-

anism can be followed (Akl, 1997; Kronsjo, 1996):
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1. P1 reads x and makes it known to P2 .

2. P1 and P2 make x known to P3 and P4, respectively, in parallel.

3. P1, P2, P3, and P4 make x known to P5, P6, P7, and P8, respectively, in parallel.

4. These eight processors will make x known to another eight processors, and so on.

In order to represent this algorithm in PRAM, an array L of size p is used as a work-

ing space in the shared memory to distribute the contents of x to all processors.

Initially P1 will read x in its private memory and writes it into L[1]. Processor P2 ,

will read x from L[1] into its private memory and write it into L[2]. Simultaneously,

P3 and P4 read x from L[1] and L[2], respectively, then write them into L[3] and L[4],

respectively. Processors P5 , P6 , P7 , and P8 will then simultaneously read L[1], L[2],

L[3], and L[4], respectively, in parallel and write them into L[5], L[6], L[7], and

L[8], respectively. This process will continue until eventually all the processors

have read x. Figure 6.2 illustrates the idea of Algorithm Broadcast_EREW, when

p ¼ 8.

Algorithm Broadcast_EREW
Processor P1

y (in P1’s private memory) x
L[1] y

for i=0 to log p - 1 do
forall Pj, where 2i + 1 � j � 2i+1 do in parallel

y (in Pj’s private memory) L[j - 2i]
L[j] y
endfor

endfor

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x P1

x P2

x P3

x P4
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x
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Figure 6.2 Simulating concurrent read on EREW PRAM with eight processors using

algorithm broadcast_EREW.
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Since the number of processors having read x doubles in each iteration, the

procedure terminates in O(log p) time. The array L is the price paid in terms of

memory, which is O(p).

6.3 ANALYSIS OF PARALLEL ALGORITHMS

The complexity of a sequential algorithm is generally determined by its time and

space complexity. The time complexity of an algorithm refers to its execution

time as a function of the problem’s size. Similarly, the space complexity refers to

the amount of memory required by the algorithm as a function of the size of the pro-

blem. The time complexity has been known to be the most important measure of the

performance of algorithms. An algorithm whose time complexity is bounded by a

polynomial is called a polynomial–time algorithm. An algorithm is considered to

be efficient if it runs in polynomial time. Inefficient algorithms are those that require

a search of the whole enumerated space and have an exponential time complexity.

For parallel algorithms, the time complexity remains an important measure of

performance. Additionally, the number of processors plays a major role in determin-

ing the complexity of a parallel algorithm. In general, we say that the performance of

a parallel algorithm is expressed in terms of how fast it is, and how many resources it

uses when it runs. These criteria can be measured quantitatively as follows:

1. Run time, which is defined as the time spent during the execution of the algorithm.

2. Number of processors the algorithm uses to solve a problem.

3. The cost of the parallel algorithm, which is the product of the run time and the

number of processors.

The run time of a parallel algorithm is the length of the time period between the time

the first processor to begin execution starts and the time the last processor to finish

execution terminates. However, since the analysis of algorithms is normally

conducted before the algorithm is even implemented on an actual computer, the

run time is usually obtained by counting the number of steps in the algorithm.

The cost of a parallel algorithm is basically the total number of steps executed

collectively by all processors. If the cost of an algorithm is C, the algorithm can

be converted into a sequential one that runs in O(C) time on one processor. A par-

allel algorithm is said to be cost optimal if its cost matches the lower bound on the

number of sequential operations to solve a given problem within a constant factor. It

follows that a parallel algorithm is not cost optimal if there exists a sequential algor-

ithm whose run time is smaller than the cost of the parallel algorithm.

It may be possible to speed up the execution of a cost-optimal PRAM algorithm

by increasing the number of processors. However, we should be careful because

using more processors may increase the cost of the parallel algorithm. Similarly,

a PRAM algorithm may use fewer processors in order to reduce the cost. In this

case the execution may be slowed down and offset the decrease in the number of

processors. Therefore, using fewer processors requires that we make them work
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more efficiently. Further details on the relationship between the run time, number of

processors, and optimal cost can be found in Brent (1974).

In order to design efficient parallel algorithms, one must consider the following

general rules. The number of processors must be bounded by the size of the problem.

The parallel run time must be significantly smaller than the execution time of the

best sequential algorithm. The cost of the algorithm is optimal.

6.3.1 The NC-Class and P-Completeness

In the theory of sequential algorithms, we distinguish between tractable and intract-

able problems by categorizing them into different classes. For those who are not

familiar with these classes, we define them in simple terms. A problem belongs to

class P if a solution of the problem can be obtained by a polynomial–time algorithm.

A problem belongs to class NP if the correctness of a solution for the problem can be

verified by a polynomial–time algorithm. Clearly, every problem in P will also be in

NP, or P # NP. It remain an open problem whether P , NP or P ¼ NP. However, it

is not likely that P ¼ NP since this would imply that solving a problem is as easy as

verifying whether a given solution to the problem is correct. A problem is in the

class NP-hard if it is as hard as any problem in NP. In other words, every NP pro-

blem is polynomial–time reducible to any NP-hard problem. The existence of a

polynomial–time algorithm for an NP-hard problem implies the existence of poly-

nomial solutions for every problem in NP. Finally, NP-complete problems are the

NP-hard problems that are also in NP.

The NP-complete problems are the problems that are strongly suspected to be

computationally intractable. There is a host of important problems that are roughly

equivalent in complexity and form the class of NP-complete problems. This class

includes many classical problems in combinatorics, graph theory, and computer

science such as the traveling salesman problem, the Hamilton circuit problem,

and integer programming. The best known algorithms for these problems could

take exponential time on some inputs. The exact complexity of these NP-complete

problems has yet to be determined and it remains the foremost open problem

in theoretical computer science. Either all these problems have polynomial–time

solutions, or none of them does.

Similarly, in the world of parallel computation, we should be able to classify pro-

blems according to their use of the resources: time and processors. Let us define the

class of the well-parallelizable problems, called NC, as the class of problem that

have efficient parallel solutions. It is the class of problems that are solvable in

time bounded by a polynomial in the log of the input size using a number of pro-

cessors bounded by a polynomial in the input size. The time bound is sometimes

referred to as polylogarithmic because it is polynomial in the log of the input

size. In other words, the problems that can be solved by parallel algorithms that

take polylogarithmic time using a polynomial number of processors, are said to

belong to the class NC. The problems in the class NC are regarded as having efficient

parallel solutions. The question now is: what is the relation between NC and P? It

remain an open question whether NC , P or NC ¼ P. It appears that some problems
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in P cannot be solved in polylogarithmic time using a polynomial number of pro-

cessors. Thus, it is not likely that NC ¼ P.

We finally discuss the P-complete problems. A problem is in the class P-complete

if it is as hard to parallelize as any problem in P. In other words, every P problem is

polylogarithmic–time reducible to any P-complete problem using a polynomial

number of processors. Also, the existence of a polylogarithmic–time algorithm

for a P-complete problem implies the existence of polylogarithmic solutions for

every problem in P using a polynomial number of processors. In other words,

a P-complete problem is the problem that is solvable sequentially in polynomial

time, but does not lie in the class NC unless every problem solvable in sequential

polynomial time lies in NC. Among examples of P-complete problems are a

depth-first search of an arbitrary graph, the maximum-flow problem, and the circuit

value problem. The relationships between all these classes are illustrated in

Figure 6.3, if we assume that P , NP and NC , P.

6.4 COMPUTING SUM AND ALL SUMS

In this section, we design a PRAM algorithm to compute all partial sums of an array

of numbers. Given n numbers, stored in array A [1 . . n], we want to compute the par-

tial sums A[1], A[1]þ A[2], A[1]þ A[2]þ A[3], . . . , A[1]þ A[2]þ � � � þ A[n]. At

first glance, one might think that accumulating sums is an inherently serial process,

because one must add up the first k elements before adding in element kþ 1. We will

show that parallelism can be exploited in solving this problem.

To make it easy for the reader to understand the algorithm, we start by developing a

similar algorithm for the simpler problem of computing the simple sum of an array of n

values. Then we extend the algorithm to compute all partial sums using what is learned

from the simple summation problem. In all cases we provide description of the algor-

ithm, complexity analysis, and an example that illustrates how the algorithm works.

NC

P-Complete

P

NP NP-Hard

NP-Complete

Figure 6.3 The relationships among P, NP, NP-complete, NP-hard, NC, and P-complete

(if P , NP and NC , P).
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6.4.1 Sum of an Array of Numbers on the EREW Model

In this section, we discuss an algorithm to compute the sum of n numbers. Sum-

mation can be done in time O(log n) by organizing the numbers at the leaves of a

binary tree and performing the sums at each level of the tree in parallel.

We present this algorithm on an EREWPRAMwith n/2 processors because we will
not need to perform anymultiple read orwrite operations on the samememory location.

Recall that in an EREW PRAM, read and write conflicts are not allowed. We assume

that the arrayA[1 . . n] is stored in the global memory. The summationwill end up in the

last location A[n]. For simplicity, we assume that n is an integral power of 2. The algor-

ithm will complete the work in log n iterations as follows. In the first iteration, all the

processors are active. In the second iteration, only half of the processors will be active,

and so on. The details are described in Algorithm Sum_EREW given below.

Algorithm Sum_EREW
for i=1 to log n do

forall Pj, where 1 � j � n/2 do in parallel
if (2j modulo 2i)=0 then

A[2j] A[2j] + A[2j2 2i21]
endif

endfor
endfor

Complexity Analysis The for loop is executed log n times, and each iteration

has constant time complexity. Hence the run time of the algorithm is O(log n).

Since the number of processors used is n/2, the cost is obviously O(n log n). The

complexity measures of Algorithm Sum_EREW are summarized as follows:

1. Run time, T(n) ¼ O(log n).

2. Number of processors, P(n) ¼ n/2.

3. Cost, C(n) ¼ O(n log n).

Since a good sequential algorithm can sum the list of n elements in O(n), this algor-

ithm is not cost optimal.

Example 1 Figure 6.4 illustrates the algorithm on an array of eight elements: 5, 2,

10, 1, 8, 12, 7, 3. In order to sum eight elements, three iterations are needed as fol-

lows. In the first iteration, processors P1, P2, P3, and P4 add the values stored at

locations 1, 3, 5, and 7 to the numbers stored at locations 2, 4, 6, and 8, respectively.

In the second iteration, processors P2 and P4 add the values stored at locations 2 and

6 to the numbers stored at locations 4 and 8, respectively. Finally, in the third iter-

ation processor P4 adds the value stored at location 4 to the value stored at location

8. Thus, location 8 will eventually contain the sum of all numbers in the array.

6.4.2 All Partial Sums of an Array

Take a closer look at Algorithm Sum_EREW and notice that most of the processors

are idle most of the time. However, by exploiting the idle processors, we should be
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able to compute all partial sums of the array in the same amount of time it takes to

compute the single sum. We present Algorithm AllSums_EREW to calculate all par-

tial sums of an array on an EREW PRAM with n21 processors (P2, P3, . . . , Pn).

Again the elements of the array A[1 . . n] are assumed to be in the global shared

memory. The partial sum algorithm replaces each A[k] by the sum of all elements

preceding and including A[k].

In Algorithm Sum_EREW presented earlier, during iteration i, only n/2i pro-
cessors are active, while in the algorithm we present here, nearly all processors

are in use. The details of the algorithm are shown in Algorithm AllSums_EREW:

Algorithm AllSums_EREW
for i=1 to log n do

forall Pj, where 2i21 + 1 � j � n do in parallel
A[j] A [j] + A[j2 2i21]
endfor

endfor

The picture given in Figure 6.5 illustrates the three iterations of the algorithm on an

array of eight elements named A[1] through A[8].

Complexity Analysis The complexity measures of Algorithm AllSums_EREW

are summarized as follows:

1. Run time, T(n) ¼ O(log n).

2. Number of processors, P(n) ¼ n2 1.

3. Cost, C(n) ¼ O(n log n).

Is Algorithm AllSums-EREW cost optimal? (See Problem 5.)

5 2 10 1 8 12 7 3

8 20 7 105 7 10 11

8 20 7 3010 185 7

8 20 7105 7 18 48

P2, P4

P4

P1, P2, P3, P4

A[1] A[2] A[3] A[4] A[5] A[6]A[7] A[8]
Active Processors

Figure 6.4 Example of Algorithm Sum-EREW when n ¼ 8.
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6.5 MATRIX MULTIPLICATION

In this section, we study matrix multiplication in parallel. We present an algorithm for

multiplying two n � nmatrices. For clarity, we assume that n is a power of 2. We use

the CREW PRAM model to allow multiple read operations from the same memory

locations. Recall that in a CREW PRAM, multiple read operations can be conducted

concurrently, but multiple write operations are performed exclusively.We start by pre-

senting the algorithm on aCREWPRAMwith n3 processors.Wewill then showhow to

reduce the cost by using fewer processors. We assume that the two input matrices are

stored in the shared memory in the arrays A[1 . . n, 1 . . n], B[1 . . n, 1 . . n].

6.5.1 Using n3 Processors

We consider the n3 processors as being arranged into a three-dimensional array. Pro-

cessor Pi,j,k is the one with index (i, j, k). A three-dimensional array C[i, j, k], where

1 � i, j, k � n, in the shared memory will be used as working space. The resulting

matrix will be stored in locations C[i, j, n], where 1 � i, j � n.

The algorithm consists of two steps. In the first step, all n3 processors operate in

parallel to compute n3 multiplications. For each of the n2 cells in the output matrix, n

products are computed. In the second step, the n products computed for each cell in

the output matrix are summed to produce the final value of this cell. This summation

can be performed in parallel in O(log n) time as shown in Algorithm Sum_EREW

discussed earlier. The two steps of the algorithm are given as:

1. Each processor Pi,j,k computes the product of A[i, k] * B[k, j] and stores it in

C[i, j, k].

2. The idea of Algorithm Sum_EREW is applied along the k dimension n2 times

in parallel to compute C[i, j, n], where 1 � i, j � n.

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Σ 1
2

A[1]

A[1]

A[1]

Σ 2
3 Σ 3

4 Σ 4
5 Σ 5

6 Σ 6
7 Σ 7

8

Σ 1
2 Σ 1

3 Σ 1
4 Σ 2

5 Σ 3
6 Σ 4

7 Σ 5
8

2 3 4 5 6 7 8

P
2
, P

3
,...,P

8

P
3
, P

4
,...,P

8

P
5
, P

6
,...,P

8

Active Processors

Σ 1 Σ 1 Σ 1 Σ 1 Σ 1 Σ 1 Σ 1

Figure 6.5 Computing partial sums of an array of eight elements.
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The details of these two steps are presented in Algorithm MatMult_CREW:

Algorithm MatMult_CREW
/* Step 1 */
forall Pi,j,k, where 1 � i, j, k � n do in parallel

C[i,j,k] A[i,k]*B[k,j]
endfor

/* Step 2 */
for l=1 to log n do

forall Pi,j,k, where 1 � i, j � n & 1 � k � n/2 do in parallel
if (2k modulo 2l)=0 then

C[i,j,2k] C[i,j,2k] + C[i,j, 2k2 2l21]
endif

endfor
/* The output matrix is stored in locations

C[i,j,n], where 1 � i,j � n */
endfor

Figure 6.6 shows the activities of the active processors after each of the two steps of

Algorithm MatMult_CREW when used to multiply two 2 � 2 matrices.

Complexity Analysis In the first step, the products are conducted in parallel in

constant time, that is, O(1). These products are summed in O(log n) time during the

second step. Therefore, the run time is O(log n). Since the number of processors

used is n3, the cost is O(n3 log n). The complexity measures of the matrix multipli-

cation on CREW PRAM with n3 processors are summarized as:

1. Run time, T(n) ¼ O(log n).

2. Number of processors, P(n) ¼ n3.

3. Cost, C(n) ¼ O(n3 log n).

Since an n � n matrix multiplication can be done sequentially in less than O(n3

log n), this algorithm is not cost optimal. In order to reduce the cost of this parallel

algorithm, we should try to reduce the number of processors.

6.5.2 Reducing the Number of Processors

In the above algorithm, although all the processors were busy during the first step,

not all of them performed addition operations during the second step. As you can

see, the second step consists of log n iterations. During the first iteration, only

n3/2 processors performed addition operations, only n3/4 performed addition oper-

ations in the second iteration, and so on. With this understanding, we may be able to

use a smaller machine with only n3/log n processors. But how can this be done? The
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idea is to arrange the processors in n � n � n/log n three-dimensional array. The

two steps of the Algorithm MatMult_CREW can be modified as:

1. Each processor Pi,j,k , where 1 � k � n/log n, computes the sum of log n

products. This step will produce (n3/log n) partial sums.

2. The sum of products produced in step 1 are added to produce the resulting

matrix as discussed before.

Complexity Analysis Since each processor is responsible for computing log n

product terms and obtaining their sum in step 1, each processor performs log n mul-

tiplications and log n21 additions during this step. These products are summed in

log(n/log n) time during step 2. Therefore, the execution time of step 1 and step 2

Figure 6.6 Multiplying two 2 � 2 matrices using Algorithm MatMult_CREW.
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of the algorithm is 2 log n2 1þ log(n/log n), which can be approximated as

O(log n) for large values of n. The complexity measures of the matrix multiplication

on CREW PRAM with n3/log n processors are summarized as:

1. Run time, T(n) ¼ O(log n).

2. Number of processors, P(n) ¼ n3/log n.

3. Cost, C(n) ¼ O(n3).

Is Algorithm MatMult_CREW after modification cost optimal? (See Problem 5.)

6.6 SORTING

The sorting algorithm we present here is based on the enumeration idea. Given an

unsorted list of n elements a1 , a2 , . . . , ai , . . . , an , an enumeration sort determines

the position of each element ai in the sorted list by computing the number of

elements smaller than it. If ci elements are smaller than ai , then it is the (ciþ 1)th

element in the sorted list. If two or more elements have the same value, the element

with the largest index in the unsorted list will be considered as the largest in the

sorted list. For example, suppose that ai ¼ aj , then ai will be considered the

larger of the two if i . j, otherwise aj is the larger.

We present this simple algorithm on a CRCW PRAM with n2 processors. Recall

that in a CRCW PRAM multiple read operations can be conducted concurrently; so

are multiple write operations. However, write conflicts must be resolved according

to a certain policy. In this algorithm, we assume that when multiple processors try to

write different values into the same address, the sum of these values will be stored in

that address.

Consider the n2 processors as being arranged into n rows of n elements each. The

processors are numbered as follows: Pi, j is the processor located in row i and

column j in the grid of processors. We assume that the sorted list is stored in the

global memory in an array A[1 . . n]. Another array C[1 . . n] will be used to store

the number of elements smaller than every element in A.

The algorithm consists of two steps:

1. Each row of processors i computes C[i], the number of elements smaller than

A[i]. Each processor Pi,j compares A[i] and A[ j], then updates C[i] appropriately.

2. The first processor in each row Pi,1 places A[i] in its proper position in the

sorted list (C[i]þ 1).

The details of these two steps are presented in Algorithm Sort_CRCW:

Algorithm Sort_CRCW

/* Step 1 */
forall Pi,j, where 1 � i, j � n do in parallel
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if A[i] > A[j] or (A[i]=A[j] and i > j) then
C[i] 1

else
C[i] 0

endif
endfor

/* Step 2 */
forall Pi,1, where 1 � i � n do in parallel

A[C[i] + 1] A[i]
endfor

Complexity Analysis The complexity measures of the enumerating sort on

CRCW PRAM are summarized as:

1. Run time, T(n) ¼ O(1).

2. Number of processors, P(n) ¼ n2.

3. Cost, C(n) ¼ O(n2).

The run time of this algorithm is constant because each of the two steps of the algor-

ithm consumes a constant amount of time. Since the number of processors used is n2,

the cost is obviously O(n2). Since a good sequential algorithm can sort a list of n

elements in O(n log n), this algorithm is not cost optimal. Although the above algor-

ithm sorts n elements in constant time, it has no practical value because it uses a very

large number of processors in addition to its reliance on a very powerful PRAM

model (CRCW). How can you reduce the cost? (See Problem 7.)

Example 2 Let us sort the array A ¼ [6, 1, 3]. As shown in Figure 6.7, we need

nine processors to perform the sort. The figure shows the contents of the shared

memory and the elements that each processor compares.

6.7 MESSAGE PASSING MODEL

An algorithm designed for a message passing system consists of a collection of local

programs running concurrently on the different processing units in a distributed

system. Each local program performs a sequence of computation and message

passing operations. Message passing in distributed systems can be modeled using

a communication graph. The nodes of the graph represent the processors (or the

processes running on them) and the edges represent communication links between

processors. Throughout this chapter, we will not distinguish between a processor

and its process. Each node representing a process has a set of neighbors with

which it can communicate. The communication graph may be directed or undir-

ected. A directed edge indicates unidirectional communication, while an undirected

edge implies bidirectional communication. The two graphs of Figure 6.8 are

examples of unidirectional and bidirectional communication. For example, it can

be seen in Figure 6.8a that the outgoing neighbors of P3 are P1 and P5, while its
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incoming neighbors are P2 and P4 . In Figure 6.8b, processes P1 , P2 , P4 , and P5 are

incoming as well as outgoing neighbors of P3 .

A message passing distributed system may operate in synchronous, asynchro-

nous, or partially synchronous modes. In the synchronous extreme, the execution

is completely lock–step and local programs proceed in synchronous rounds. For

example, in one round each local program sends messages to its outgoing neighbors,

waits for the arrival of messages from its incoming neighbors, and performs some

computation upon the receipt of the messages. In the other extreme, in asynchronous

mode the local programs execute in arbitrary order at arbitrary rate. The partially

Figure 6.7 Enumeration sort of [6,1,3] on a CRCW PRAM.

Figure 6.8 Unidirectional and bidirectional communication graphs (a) directed

communication graph; and (b) unidirected communication graph.
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synchronous systems work at an intermediate degree of synchrony, where there are

restrictions on the relative timing events.

In this section we focus on studying synchronous message passing systems. We out-

line the basic elements of a formal model of a distributed system as described by Lynch

(1996). The models presented here may be more detailed than needed in some cases,

but they help give the reader a good idea of the formal representation of different and

more general systems.We also discuss the complexity analysis of algorithms described

in terms of these formal models as we define the time and message complexity.

6.7.1 Synchronous Message Passing Model

Given a message passing system consisting of n processes, each of which is running

on a separate processor, we show how to model such a system in the synchronous

mode. As mentioned earlier, the communication among processors is represented

using a communication graph G ¼ (V,E). The behavior of this system can be

described as follows:

1. System is initialized and set to an arbitrary initial state.

2. For each process i [ V, repeat the following two steps in synchronized rounds

(lock–step fashion):

(a) Send messages to the outgoing neighbors by applying some message

generation function to the current state.

(b) Obtain the new state by applying a state transition function to the current

state and the messages received from incoming neighbors.

An execution of this synchronized system can be represented as a sequence of

(1) states, (2) sent messages, and (3) received messages as follows:

state0, sent-msg1, rcvd-msg1, state1, sent-msg2, rcvd-msg2,
state2, . . . , sent-msgj, rcvd-msgj, statej, . . .

The system changes its current state to a new state based on the messages sent and

received among the processes. Note that the messages received may not be the same

as the messages sent because some of them may be lost as a result of a faulty chan-

nel. For example, the system starts at state0 and is changed to state1 after the

sending and receiving of sent-msg1 and rcvd-msg1. The system then changes

from state1 to state2, and so on.

Thus, a synchronous system can be modeled as a state machine with the follow-

ing components:

1. M, a fixed message alphabet.

2. A process i can be modeled as:

(a) Qi, a (possibly infinite) set of states. The system state can be represented

using a set of variables.
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(b) q0,i, the initial state in the state set Qi. The state variables have initial

values in the initial state.

(c) GenMsgi, a message generation function. It is applied to the current

system state to generate messages to the outgoing neighbors from

elements in M.

(d) Transi, a state transition function that maps the current state and the

incoming messages into a new state.

Suppose that the communication links are reliable and the messages received by pro-

cess i are the same as the ones sent by its incoming neighbors. Figure 6.9 shows a

simple example of a state diagram for process i. Starting at state q0,i, process i

receives the messages Msg1 from its incoming neighbors and changes to state

q1,i. Process i at state q1,i now receives the messages Msg2 from its incoming

neighbors and changes its state to q2,i. This process is repeated any number of

times as shown in the figure. Note that after k rounds process i will be at state qk,i.

In order to provide a description for algorithms studied under the synchronous

model, the following is a template that we will be using in this chapter. The

template, which is referred to as S_Template, describes the computation carried

out by process i [ V. The prefix S_ in the algorithm’s name is meant to indicate

that it is synchronous.

Algorithm S_Template
Qi

<state variables used by process i>
q0,i

<state variables> <initial values>
GenMsgi

<Send one message to each of a (possibly empty) subset of
outgoing neighbors>

Transi

<update the state variables based on the incoming messages>

6.7.2 Complexity Analysis

As discussed earlier, complexity analysis of algorithms is usually expressed in terms

of the amount of resources needed by the computation to be completed. In addition

Figure 6.9 An example of a state diagram for process i.
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to the run time, the amount of communication is an important resource in message

passing systems. The complexity of algorithms in such systems will be measured

quantitatively using time complexity and message complexity. The measures of

complexity will be expressed in the usual asymptotic fashion as functions of the

number of nodes and edges in the communication graph representing the distributed

system.

Message Complexity Themessage complexity is defined as the number of mess-

ages sent between neighbors during the execution of the algorithm. We usually con-

sider the worst-case message complexity, which is the maximum number of messages.

Time Complexity The time complexity is defined generally as the time spent

during the execution of the algorithm. The definition of the time complexity in

the synchronous model is rather simple, and amounts to the number of rounds

until the termination of the algorithm. Defining the time complexity of an algorithm

in asynchronous executions is not so straightforward. The time complexity in this

case only considers messages that happen sequentially. It can be obtained by assign-

ing occurrence times to events in the execution under some restrictions.

Example 3 Consider a synchronous hypercube made of n processors. Assume that

each link connecting two adjacent processors can perform communication in both

directions at the same time (bidirectional communication). Suppose that each pro-

cess i has its own data xi, and we would like to compute the summation of data at

all processes. The summation can be computed in log n rounds. At each round

each process sends its data to one of its neighbors along one of the hypercube

dimensions. At the end, each process will have the summation stored in its local

space. A formal description of this method using the above model is shown

below in Algorithm S_Sum_Hypercube:

Algorithm S_Sum_Hypercube
Qi

buff, an integer
dim, a value in f1, 2, . . . , log ng

q0,i

buff xi

dim log n
GenMsgi

If the current value of dim ¼ 0, do nothing. Otherwise,
send the current value of buff to the neighbor along the
dimension dim.

Transi

if the incoming message is v & dim > 0, then
buff buff + v, dim dim - 1
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Figure 6.10 illustrates the rounds of the algorithm for a hypercube of dimension 3.

Assume that the data values 1, 2, 3, 3, 9, 5, 4, 22 are distributed to the eight pro-

cesses as shown in Figure 6.10a. The states after each of the first three rounds are

shown in Figures 6.10b, c, and d.

Complexity Analysis Given n processors connected via a hypercube, S_Sum_

Hypercube needs log n rounds to compute the sum. Since n messages are sent and

received in each round, the total number of messages is O(n log n).

Therefore, the complexity of Algorithm S_Sum_Hypercube is summarized:

1. Time complexity: O(log n).

2. Message complexity: O(n log n).

6.8 LEADER ELECTION PROBLEM

A leader among n processors is the processor that is recognized by all other processors

as distinguished to perform a special task. The leader election problem arises when the

Figure 6.10 Computing the summation synchronously on a three-dimensional hypercube

(a) initial states; (b) after first round; (c) after second round; and (d) after third round.
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processors of a distributed systemmust choose one of them as a leader. Each processor

should eventually decide whether or not it is a leader, given that each processor is only

aware of its identification and not aware of any other processes.

The problem of electing a leader in a distributed environment is most important in

situations in which coordination among processors becomes necessary to recover

from a failure or topological change. A leader in such situations is needed, for

example, to coordinate the reestablishment of allocation and routing functions.

For example, consider a token ring network, in which a token moves around the net-

work giving its current owner the right to initiate communication. If the token is lost,

a leader in this case is needed to coordinate the regeneration of the lost token.

The leader election problem is meaningless in the context of anonymous systems.

A system is anonymous if the processes on all processors are identical and the pro-

cessors do not have access to their identifications.

Theorem 6.1 There is no algorithm for leader election in anonymous rings

(Angluin).

Proof For simplicity, we prove this theorem in synchronous rings. Assume that all

processes in the anonymous ring start in the same state. Since an algorithm in a synchro-

nous system proceeds in rounds, we use induction on the number of rounds that have

been executed (r). It is straightforward to verify that all the processes will be in identical

states immediately after r rounds. Consequently, if any process reaches a state where its

status is leader, then all other processes will also reach such a state at the same time.

The above result can be extended to hold for any system in which the communi-

cation graph is regular such as a complete graph. Moreover, even if the system is

not anonymous, the leader election problem can only be solved if every processor’s

identification is unique.

Now, let us explore the basic idea behind the different leader election algorithms.

Suppose that the communication graph is an arbitrary graph G ¼ (V, E). The follow-

ing two steps summarize our first attempt to solve the problem:

1. Each node in the graph would broadcast its unique identifier to all other nodes.

2. After receiving the identifiers of all nodes, the node with the highest identifier

declares itself as the leader.

Let us study the complexity of the above solution for an arbitrary graph. Since each

node sends its identifier to all other nodes, the number of messages sent to deliver

only one identifier to all other nodes is equal to the number of edges in the graph

jEj. Since there are jVj identifiers that need to be broadcast, the message complexity

(total number of messages) is O(jVj.jEj).
How does this algorithm work under the synchronous model? Suppose that the

communication graph is a complete graph. The following two steps summarize

the algorithm:
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1. At the first round, each node sends its unique identifier to all other nodes.

2. At the end of the first round, every node has the identifiers of all nodes, the

node with the highest identifier declares itself as the leader.

Since there is only one round, the time complexity of the synchronous algorithm is

O(1). The message complexity is O(n2) since the number of messages is equal to the

number of edges in the graph. In order to decrease the message complexity, a pro-

cess does not have to send its unique identifier to all of its neighbors during the same

round. Instead, a process may first communicate with one neighbor then with two

other neighbors, then with four, and so on.

6.9 LEADER ELECTION IN SYNCHRONOUS RINGS

In this section we present two algorithms to solve the leader election problem under

the synchronous model in a distributed system whose communication graph is a

ring. Let us assume that the process with the largest identifier (ID) is the one that

will always be elected as a leader.

6.9.1 Simple Leader Election Algorithm

The idea of this simple algorithm is that each process sends its identifier all the way

around the ring. The process that receives its identifier back is declared as a leader.

This algorithm was presented in Chang and Roberts (1979), Le Lann (1977) and

Lynch (1996). We assume the following:

1. Communication is unidirectional (clockwise).

2. The size of the ring is not known.

3. The identification of each processor is unique.

The algorithm can be summarized as follows:

1. Each process sends its identifier to its outgoing neighbor.

2. When a process receives an identifier from its incoming neighbor, then:

(a) The process sends null to its outgoing neighbor, if the received identifier

is less than its own identifier.

(b) The process sends the received identifier to its outgoing neighbor, if the

received identifier is greater than its own identifier.

(c) The process declares itself as the leader, if the received identifier is equal

to its own identifier.

Assuming that the message alphabet M is the set of identifiers, the above method is

described in terms of the synchronous model in Algorithm S_Elect_Leader_Simple:
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Algorithm S_Elect_Leader_Simple
Qi

u, some ID
buff, some ID or null
status, a value in funknown, leaderg

q0,i

u IDi

buff IDi

status unknown
GenMsgi

Send the current value of buff to clockwise-neighbor
Transi

buff null
if the incoming message is v and is not null, then
case

v < u: do nothing
v ¼ u: status leader
v > u: buff v

endcase

Complexity Analysis Given n processors connected via a ring, Algorithm

S_Elect_Leader_Simple needs n rounds to elect a leader in the worst case. Since

n messages are sent and received in each round, total number of messages is O(n2).

Therefore, the complexity of Algorithm S_Elect_Leader_Simple is summarized:

1. Time complexity: O(n).

2. Message complexity: O(n2).

Example 4 Suppose that we have four processes running on four processors

connected via a synchronous ring. The processes (processors) have the IDs 1, 2,

3, and 4. Message passing is performed in a unidirectional fashion. The ring is

oriented such that process i sends messages to its clockwise neighbor. Figure 6.11

illustrates the state of each process after each of the four rounds.

6.9.2 Improved Leader Election Algorithm

In order to decrease the message complexity, a process does not have to send its ID

all the way around the ring. Instead, a process may send its messages to neighbors

within a certain distance, which will successively increase. This is the idea behind

the algorithm described here, which was first introduced by Hirschberg and Sinclair

(1980). We assume the following:

. Communication is bidirectional.

. The size of the ring is not known.

. The identification of each processor is unique.
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The algorithm can be summarized as follows:

1. k 0.

2. Each process sends its identifier in messages to its neighbors in both directions

intending that they will travel 2k hops and then return to their origin.

Figure 6.11 Leader election in a synchronous ring using Algorithm S_Elect_Leader_Simple

(a) initial states; (b) after first round; (c) after second round; (d) after third round; and (e) after

fourth round.
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3. If the identifier is proceeding in the outbound direction, when a process on the

path receives the identifier from its neighbor, then:

(a) The process sends null to its outneighbor, if the received identifier is less

than its own identifier.

(b) The process sends the received identifier to its outneighbor, if the received

identifier is greater than its own identifier.

(c) The process declares itself as the leader, if the received identifier is equal

to its own identifier.

4. If the identifier is proceeding in the inbound direction, when a process on the

path receives the identifier, it sends the received identifier to its outgoing

neighbor on the path, if the received identifier is greater than its own identifier.

5. If the two original messages make it back to their origin, then k kþ 1; Go

to Step 2.

Figure 6.12 shows the paths of messages initiated at process i for the different values

of k. Note that in this algorithm, we assume that the processors are numbered

1, 2, . . . , n. The clockwise neighbor of processor i is processor (iþ 1). However,

we assume that processor n is also known as 0. That is, processor (iþ 1) is 1

when i ¼ n; and processor (i2 1) is n, when i ¼ 1.

Let us assume that the message alphabet is defined as follows:

M
The set of triples consisting (ID, F, H) as follows:
ID, a process identifier
F, flag value in fin, outg
H, a positive integer indicating the number of hops.

Figure 6.12 Messages initiated at process i using the improved leader election algorithm.
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The improved algorithm is described in terms of the synchronous model in

Algorithm S_Elect_Leader_Improved:

Algorithm S_Elect_Leader_Improved
Qi

u, some ID
buff+, containing either an element of M or null
buff-, containing either an element of M or null
status, a value in funknown, leaderg
k, a non negative integer

q0,i

u IDi

buff+ (IDi, out, 1)
buff- (IDi, out, 1)
status unknown
k 0

GenMsgi

Send the current value of buff+ to clockwise-neighbor
(process i + 1).
Send the current value of buff- to counter-clockwise-
neighbor (process i - 1).

Transi

buff+ null
buff- null
if the message from i - 1 is (v,out,h), then
case

v > u & h > 1: buff+ (v,out,h2 1)
v > u & h = 1: buff- (v,in,1)
v = u: status leader

endcase
if the message from i + 1 is (v,out,h), then
case

v > u & h > 1: buff- (v,out,h2 1)
v > u & h = 1: buff+ (v,in,1)
v = u: status leader

endcase
if the message from i - 1 is (v,in,1) & v > u, then

buff+ (v,in,1)
if the message from i + 1 is (v,in,1) & v > u, then

buff- (v,in,1)
if both messages from (i-1) and (i+1) are (u,in,1), then

k k + 1
buff- (u,out,2k)
buff+ (u,out,2k)
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Complexity Analysis Suppose that the ring has n processors. In Algorithm

S_Elect_Leader_Improved, the value of k at any processor starts at 0 and can go

up to dlog ne. To simplify our discussion of the time complexity analysis, let us

first assume that n is a power of 2. When k ¼ 0, there are two rounds before it

can be incremented at any of the processes. Similarly, k ¼ 1 will last four rounds

before it can be incremented by any of the processes. The following table shows

the number of rounds associated with each value of k.

k Rounds

0 2

1 4

2 8

. . . . . .

l 2 * 2l

. . . . . .

dlog ne2 1 2 * 2dlog ne21

dlog ne n

Note that when k ¼ log n, the messages will travel only in the outbound direction,

which implies that the number of rounds in this case is only n. From the above table,

we compute the total number of rounds R as follows:

R ¼ nþ 2(1þ 2þ � � � þ 2dlog ne�1) ¼ nþ 2(2log n � 1)

R ¼ nþ 2(n� 1) ¼ 3n� 2

(Note that if n is not a power of 2 then R ¼ 5n2 2.) Hence, the total number of

rounds R is O(n).

Now, let us analyze the number of messages. When k ¼ 0, the number of mess-

ages sent by all processes is 4n. However, when k ¼ l (l . 0), not all processes will

initiate messages. Only those processes that received their messages back when

k ¼ l2 1 will initiate messages for the next value of k. Only one process among

the consecutive 2l21þ 1 processes will be able to do that. This is the process

with the highest identifier. Therefore, the number of processes that will initiate

messages in this case is

n

2l�1 þ 1

� �

Note that when k ¼ l, the number of messages involved with each process initiating

messages is 4 � 2l. Thus the total number of messages for k ¼ 1 is

4� 2l � n

2l�1 þ 1

� �

� 8n

Since there are dlog ne þ 1 values of k, then the total number of messages is bounded

by 8n(dlog ne þ 1), which is O(n log n). Therefore, the complexity of Algorithm

S_Elect_Leader_Improved can be summarized as:
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1. Time complexity: O(n).

2. Message complexity: O(n log n).

Example 5 In this example, we apply Algorithm S_Elect_Leader_Improved to a

system of four processes running on a synchronous ring with four processors.

Figure 6.13 shows the initial states and the states after each of the first three

rounds. It is left as an exercise to show the states after each of the remaining

rounds until a leader is elected (see Problem 11).

6.10 CHAPTER SUMMARY

The migrations to parallel and distributed platforms have increased the need for a

better understanding of computational models and algorithms for such systems. In

Figure 6.13 The states of the synchronous ring after each of the first three rounds using

algorithm S_Elect_Leader_Improved (a) initial states; (b) after first round; (c) after second

round; and (d) after third round.
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this chapter, we studied the PRAM model for studying shared memory systems. We

also outlined the basic elements of a formal framework of message passing systems

under the synchronous model. We designed and discussed the complexity analysis

of algorithms described in terms of both models.

The PRAMhas played an important role in the introduction of parallel programming

paradigms and design techniques that have been used in real parallel systems. Since the

PRAM is conceptually easy to work with when developing parallel algorithms, a lot of

effort has been spent in finding efficient ways to simulate PRAM computation on other

models that do not necessarily follow the PRAM assumptions. This way, parallel algor-

ithms can be designed using the PRAM and then translated into real machines. A large

number of PRAM algorithms for solving many fundamental problems have been intro-

duced in the literature and efficiently implemented on real systems.

An important characteristic of a message system is the degree of synchrony,

which reflects the different types of timing information that can be used by an algor-

ithm. In this chapter, we focused our attention to synchronous systems, where com-

putation and communication are performed in a lock–step manner. Message passing

in such systems happens in synchronized rounds. The complexity of algorithms is

measured quantitatively using message complexity and time complexity. The mess-

age complexity is defined as the number of messages sent between neighbors during

the execution of the algorithm. The time complexity is defined generally as the time

spent during the execution of the algorithm.

PROBLEMS

1. Conduct a comparison between the different variations of the PRAM model

and the physical models of real parallel and distributed systems.

2. Show that a fully connected topology with n processors is equivalent to an

EREW PRAM with n processors and exactly n memory locations.

3. Prove that the best parallel algorithm designed for an EREW PRAM with p

processors can be no more than O(log p) slower than any algorithm for

a p-processor CRCW PRAM.

4. Explain why Algorithm Broadcast_EREW, which we used to simulate con-

current read, is not appropriate to use in all cases. What are the situations

in which the algorithm will not be efficient? Show how to deal with these

situations.

5. Indicate whether or not Algorithm AllSums_EREW (Section 6.4.2) and

Algorithm MatMult_CREW after modification (Section 6.5.2) are cost opti-

mal. Justify your answer.

6. Give a PRAM implementation of matrix multiplication of two n � n

matrices using p processors, where 1 , p � n3/log n. Use an appropriate

variation of the PRAM model to design the fastest algorithm. Obtain the

complexity measures.
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7. Devise an algorithm to sort n elements in O(log n) steps on a CREW PRAM.

The number of processors should be bounded by a polynomial in n. Is it cost

optimal?

8. Devise a PRAM algorithm to merge two sorted lists of length n in

O(log log n) time.

9. Distributed algorithms arise in a wide range of applications. Make a list of at

least five applications that use distributed algorithms.

10. Modify Algorithm S_Sum_Hypercube to find the minimum.

11. Given the states shown in Figure 6.13, apply Algorithm A_Elect_Leader_

Improved to show the states after each of the remaining rounds until a

leader is elected.
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&CHAPTER 7

Network Computing

The proliferation of the Internet has stimulated rapid growth of interest in large-

scale network computing that may span the entire globe. The Internet is the

most widely used distributed system in the world. Nodes in the Internet may be

single-processor workstations, shared-memory MIMD machines, massively paral-

lel SIMD machines, or other types. Links are TCP/IP packet-switched connections

and the bandwidth varies with load, number of hops, and underlying communi-

cation technology. When one node connects with another, the packets of data

may be sent through a wireless link, fiber optical cable, coaxial cable, digital tele-

phone line, and so on. These physical layers introduce delays and may be errors,

which must be corrected by retransmission and dynamic reconfiguration of the

Internet’s links.

In previous chapters, we studied computing systems consisting of multiple pro-

cessing units connected via some interconnection network. There are two major fac-

tors that differentiate such systems: the processing units and the interconnection

network that ties them together. We learned that the processing units could commu-

nicate and interact with each other using either shared memory or message passing

methods. In this chapter we discuss network computing, in which the nodes are

stand-alone computers that could be connected via a switch, local area network,

or the Internet. The main idea is to divide the application into semi-independent

parts according to the kind of processing needed. Different nodes on the network

can be assigned different parts of the application. This form of network computing

takes advantage of the unique capabilities of diverse system architectures. For

example, the fine-grained SIMD part of the application would be shipped off to

the SIMD machine and the graphical presentation and I/O portions to one or

more single-processor workstations. The overall coordination may be done by a

PC on someone’s desk. It also maximally leverages potentially idle resources

within a large organization. Therefore, unused CPU cycles may be utilized during

short periods of time resulting in bursts of activity followed by periods of inactivity.

In what follows, we discuss the utilization of network technology in order to create a

computing infrastructure using commodity computers.
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7.1 COMPUTER NETWORKS BASICS

Networks can be divided into the following four categories based on their sizes and

the geographic distances they cover:

. Wide area network (WAN);

. Metropolitan area network (MAN);

. Local area network (LAN);

. System or storage area network (SAN).

AWAN connects a large number of computers that are spread over large geographic

distances. It can span sites in multiple cities, countries, and continents. A LAN con-

nects a small number of computers in a small area within a building or campus. The

MAN is an intermediate level between the LAN and WAN and can perhaps span a

single city. A SAN connects computers or storage devices to make a single system.

The major factor that distinguishes WAN from other network types is the scalability

factor. A WAN must be able to grow as long as there are more computers to be

added to the network. A message sent over WAN uses intermediate nodes in its

route from the source to the destination. Computers hooked to a LAN often commu-

nicate using a shared medium. Also, LAN technologies provide higher speed con-

nections compared to WAN because they cover short distances and hence offer

lower delay than WANs.

Network routing schemes can be classified as connection-oriented and connec-

tionless. In connection-oriented, the entire message follows the same path from

source to destination. Only the first packet holds routing information such as the des-

tination address. In connectionless schemes, a message is divided into packets. The

packets of a given message may take different routes from source to destination.

Therefore, the header of every packet holds routing information. Using a serial

number, the message can be reassembled in the correct order at the destination as

packets may arrive in a different order.

7.1.1 Network Performance

The following are two popular laws that predict the advances in network technologies.

Gilder’s Law George Gilder projected that the total bandwidth of communi-

cation systems triples every 12 months.

Metcalfe’s Law Robert Metcalfe projected that the value of a network is pro-

portional to the square of the number of nodes.

Gilder’s law tells us that networking speed is increasing faster than processing

power. While this remains true for the backbone network, end-to-end performance

is likely to be limited by bottlenecks. For example, over about 15 years, LAN tech-

nology has increased in speed from 10 Megabits per second (10 Mbps) to 10 Giga-
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bits per second (10 Gbps), which is a factor of 1000 increase. Over a similar time

period, advances in silicon technology, driven by Moore’s Law, have allowed the

CPU clock frequency in an average PC to increase from roughly 25 MHz to

2.5 GHz (a factor of about 100 increase in processing power). Metcalfe’s law also

explains the prolific growth of the Internet. As a network grows, the value of

being connected to it grows exponentially, while the cost per user remains the

same or even reduces.

7.1.2 Internet

Internet is the collection of networks and routers that form a single cooperative virtual

network, which spans the entire globe. The Internet relies on the combination of the

Transmission Control Protocol and the Internet Protocol or TCP/IP. The majority of

Internet traffic is carried using TCP/IP packets. Internet has evolved from a research

prototype to become the largest communication media in the world. The explosive

usage of the Internet and the World Wide Web (WWW) has stimulated rapid growth

of interest in electronic publishing, browsing, and distributed computing. Table 7.1

TABLE 7.1 Top Ten Countries with Highest Number of Internet Users

Country

Internet Users

Latest Data

Population

(2004 Est.)

% of

Population

Source of

Latest Data

% of World

Usage/Users

United

States

209,518,183 294,540,100 71.1 Nielsen//NR
Mar/04

27.7

China 79,500,000 1,327,976,227 6.0 CNNIC Dec/03 10.5

Japan 63,884,205 127,944,200 49.9 Nielsen//NR
Mar/04

8.4

Germany 45,315,166 82,633,200 54.8 Nielsen//NR
Mar/04

6.0

United

Kingdom

35,089,470 59,157,400 59.3 Nielsen//NR
Mar/04

4.6

South

Korea

29,220,000 47,135,500 62.0 KRNIC Dec/03 3.9

France 22,534,967 59,494,800 37.9 Nielsen//NR
Mar/04

3.0

Brazil 20,551,168 183,199,600 11.2 Nielsen//NR
Mar/04

2.7

Italy 19,900,000 56,153,700 35.4 ITU Dec/02 2.6

Canada 16,841,811 32,026,600 52.6 Nielsen//NR
May/02

2.2

Top ten

countries

542,354,970 2,270,261,327 23.9 IWS–Apr.6/04 71.6

Rest of the

world

215,175,767 4,183,049,740 5.1 IWS–Mar.19/04 28.4

Totals 757,530,737 6,453,311,067 11.7 IWS–Apr.6/04 100.0
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shows some statistics by InternetWorld Stats (www.internetworldstats.com) about the

top 10 countries with the highest number of Internet users. As you can see from the

table, in the United States alone, 71% of the population use the Internet. Also,

close to 12% of the entire world population use the Internet. With the projections

of Gilder and Metcalfe, the number of users is expected to grow even more.

7.1.3 Other Network Technologies

In addition to the popular TCP/IP protocol, many more protocols and combinations

of protocols exist. Some of these protocols are briefly mentioned below. Figure 7.1

shows different network technologies and their speed in relation to the network tax-

onomy provided above.

Fast Ethernet and Gigabit Ethernet Fast Ethernet (100Base-T) is a high-

speed LAN that allows a computer to transmit or receive data at 100 Megabits

per second (100 Mbps). The demand for a bandwidth that is even higher than

100 Mbps has motivated the extension of Ethernet to a bit rate of 1 Gbps. Gigabit

Ethernet (1000Base-T) has become an attractive choice for corporate backbone

networks and high-performance clusters of workstations.

The Fiber Distributed Data Interface (FDDI) The FDDI specifies a 100 Mbps

token-passing, dual-ring LAN using fiber-optic cable. The FDDI is frequently used

as high-speed backbone technology because of its support for high bandwidth and

greater distances than copper.

High-Performance Parallel Interface (HiPPI) The HiPPI is a point-to-point

communication channel and it does not support multidrop configurations. HiPPI

Figure 7.1 Representation of network technologies.
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is capable of transferring data at 800 Mbps using 32 parallel line or 1.6 Gbps over

64 parallel lines.

Asynchronous Transfer Mode (ATM) The ATM is a connection-oriented

scheme that is suitable for both LANs and WANs. It transfers data in small fixed-

size packets called cells. It can handle multimedia in an integrated way. Cells are

allowed to transfer using several different media such as both copper and fiber-

optic cables. It is designed to permit high-speed data. The fastest ATM hardware

can switch data at a gigabit rate.

Scalable Coherent Interface (SCI) The SCI is an IEEE standard that is quite

popular for PC clusters. It represents a point-to-point architecture with directory-

based cache coherence. It provides a cluster-wide shared memory system. A

remote communication in SCI takes place as just part of a simple load or store

process in a processor.

7.2 CLIENT/SERVER SYSTEMS

A Client/Server is a distributed system whereby the application is divided into at

least two parts: one or more servers perform one part and the other part is performed

by one or more clients. Furthermore, the clients are connected to the servers by some

kind of network. A client computer may do very little more than simply display data

accessed from the server, or a more sophisticated client may run a full application,

which uses data provided by the server. Client/Server systems are often categorized

as two-tier or three-tier. A two-tier system separates clients from servers: all clients

are on one tier, and all servers are on the second tier. For example, client PCs may

access a database on one or more servers. A three-tier system separates the clients

from the servers as does a two-tier system, but in addition, servers are divided

into two more tiers. The application servers fit into a middle level, called the

second tier, and the database servers fit into a third level called tier 3. For example,

client PCs might be connected to a web server (tier 2) that in turn accesses a database

server (tier 3) to handle storage.

Modern programming languages provide constructs for building client/server-
based distributed applications. These applications are divided into clients and

servers, which are allocated to different computers in a network. A client sends a

request to the server and waits for a response. At the other end, when the server

receives a request, it processes it and sends the results back to the client. In a tra-

ditional client/server environment, a powerful machine acts as a server, serving

requests from multiple clients. For example, in a database system, several clients

send queries to the server that has access to the database. The server executes the

queries on behalf of the clients and sends each client its respective result. A multi-

threaded process is considered an efficient way to provide server applications. A

server process can service a number of clients as shown in Figure 7.2. Each client

request triggers the creation of a new thread in the server.
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7.2.1 Sockets

Sockets are used to provide the capability of making connections from one appli-

cation running on one machine to another running on a different machine. A

socket abstraction consists of the data structure that holds the information needed

for communication, and the system calls that manipulate the socket structure.

Once a socket is created, it can be used to wait for an incoming connection (passive

socket), or can be used to initiate connection (active socket).

A client can establish an active connection to a remote server by creating an

instance of a socket. To establish a server connection and bind it to a particular

port number, we should create an instance of a server socket. A server socket listens

on a TCP port for a connection from a client (passive socket). When a client con-

nects to that port, the server accepts the connection. Figure 7.3 visualizes the

socket connection. Once the connection is established, the client and server can

read from and write to the socket using input and output streams. Streams are

ordered sequences of data that have a source (input stream), or destination (output

stream). Once the client or server finishes using the socket, the socket structure is

de-allocated.

Interconnection
Network

Server Threads

Figure 7.2 A multithreaded server in a client server system.

Client Server

Figure 7.3 A socket connection.
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Example 1 In this example, we write a small segment of a simple Client/Server
Java program, in which the client reads from the server. This simple example does

not require prior knowledge of Java as we will explain the main Java constructs

needed in this example.

Java programs, like programs written in other object-oriented languages, are built

from classes. You can create any number of objects from a class. These objects are

known as instances of that class. Think of a class as a template or blueprint for the

creation of objects. When a house is constructed from a blueprint, it is one of many

possible instances of the same blueprint. Thus, an object is the actual thing, but a

class is only a blueprint. A class contains functions called methods or behavior

and states called fields or instance variables. Fields are data belonging to either a

class or the objects that belong to a class. Methods are program statements that oper-

ate on the field to manipulate the state.

CLIENT/SERVER JAVA STATEMENT

The Socket class provides a client-side socket interface. A client can establish

an active connection to a remote server by creating an instance of Socket as fol-

lows:

Socket <connection> = new Socket(<hostname>,<portnumber>);

The variable <hostname> gives the name of the server to connect to; and <port-
number> should match the port number at the server end.

The ServerSocket class provides a server-side socket interface. To establish

a server connection and bind it to a particular port number, we should create an

instance of ServerSocket as follows:

ServerSocket<connection> = newServerSocket(<portnumber>);

Once the connection is established, the client and server can read from and write

to the socket using input and output streams. Streams in Java are used for Input/
Output. They are ordered sequences of data that have a source (input stream), or des-

tination (output stream). For example, the DataInputStream and DataOut
putStream are classes that provide the implementations for methods to transmit

Java primitive types across a stream. Input and output streams can be used to read

from and write to a socket connection as follows:

DataInputStream in = new DataInputStream(<connection>.
getInputStream());

DataOutputStream out = new
DataOutputStream(<connection>.getOutputStream());

CLIENT STEPS

1. The client tries to establish a connection with the server.

2. When the connection is established, the client receives a string from the server.

3. The client displays the string received.
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JAVA MAIN STATEMENTS

.....

Socket connect = new Socket (host, 8888);
.....

DataInputStream in = new DataInputStream(connect.getInput
Stream());

.....

msg = in.readByte();
connect.close();

SERVER STEPS

1. The server waits for a connection from a client.

2. When the connection is established, the server sends a string to the client.

3. The server closes the connection.

JAVA MAIN STATEMENTS

.....

Socket connect = null;
.....

ServerSocket sconnect = new ServerSocket(8888);
connect = sconnect.accept();
DataOutputStream out = new DataOutputStream(connect.get

OutputStream());
out.writeByte(message);
sconnect.close();
.....

7.2.2 Remote Procedure Call (RPC)

Remote procedure call (RPC) is the basis of most client/server systems. Think of

RPC as a procedure call where the procedure is located on a different computer

than the caller. Thus, when the procedure is called, its parameters are passed

(sent) via the network to the remote computer, and then the remote computer exe-

cutes the procedure, returns the result(s), and continues on its way.

The RPC can be constructed on top of sockets. That is, the socket mechanism can

be used to pass parameters and the name of the procedure to be activated on the

remote computer, and so on. The remote procedure call mechanism is simple to

use because it looks much like any other procedure call familiar to programmers.

However, it covers up many complexities.

The RPC can be blocking or nonblocking. A blocking RPC means that the

program that places the call is stopped in its tracks while waiting for a reply. The

nonblocking RPC, however, allows the calling program to continue without waiting

for a reply. In this case, the caller must explicitly ask for the reply at some later time,

or else the return value will never get back to the caller.
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7.2.3 Middleware

Middleware is an important part of client/server systems because it solves many

interoperability problems, opens the door for multiple servers, and in general pro-

vides great flexibility. Middleware is an important intermediate layer of software,

for the following reasons:

. It makes it possible for new systems to coexist with legacy systems, which

means we can use it to glue together new clients with old mainframe

databases;

. It solves a number of interoperability problems because it can simultaneously

convert formats and gain access without code rewriting;

. It isolates system components so that changes in one component have little

effect on other components; and

. It lowers effort and time to develop and deploy systems because programmers

do not need to know network and distributed programming details.

7.2.4 A Client Server Framework for Parallel Applications

Parallel applications can be designed using the client/server model. A client may

divide a big application into several smaller problems that can be processed by mul-

tiple servers simultaneously. All the servers compute the solution to their respective

problems and send their results to the client. The client assembles the results

from each server and outputs the final result to the user. The client acts as the

master (supervisor) while the servers act as the slaves (workers) in the master–

slave (supervisor–workers) model as shown in Figure 7.4. The steps taken at the

client and each server are summarized as follows.

Interconnection
Network

Master (Supervisor)

Server 1 Server 2 Server 3 Server n

Client

Slaves (Workers)

Figure 7.4 Supervisor workers model in client server.
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Client (Supervisor)
1. Client creates an array of sockets and input/output data streams with all the

servers. Optimally, the client should spawn a thread for each available

server, which would then make connections with an individual server.

2. Client passes control to the client body, which contains the code specific to the

application being executed in parallel. Mainly, it divides the main task into

smaller portions and passes one small portion of the task to each server. It

then waits for all the servers to send back the result of their smaller compu-

tations. Finally it merges the results of each server and computes the final sol-

ution to the big problem.

3. Client closes all the streams and sockets with all the servers.

Server (Worker)
1. Server creates a server socket on an unused port number.

2. Server waits for connections on that port. Once it gets a request from a client,

it accepts that connection.

3. Server creates input and output data streams for that socket. This establishes

the foundation for communication between the server socket and the client.

4. Server passes control to the server body, which contains the code specific to

the application executed in parallel. The main server would accept the connec-

tion from the client, create a socket, and invoke the server body thread to

handle that client.

5. Server goes back and waits for another connection from a client.

7.3 CLUSTERS

The 1990s have witnessed a significant shift from expensive and specialized parallel

machines to the more cost-effective clusters of PCs and workstations. Advances in

network technology and the availability of low-cost and high-performance commod-

ity workstations have driven this shift. Clusters provide an economical way of

achieving high performance. Departments that could not afford the expensive

proprietary supercomputers have found an affordable alternative in clusters.

A cluster is a collection of stand-alone computers connected using some intercon-

nection network. Each node in a cluster could be a workstation, personal computer,

or even a multiprocessor system. A node is an autonomous computer that may be

engaged in its own private activities while at the same time cooperating with

other units in the context of some computational task. Each node has its own

input/output systems and its own operating system. When all nodes in a cluster

have the same architecture and run the same operating system, the cluster is

called homogeneous, otherwise, it is heterogeneous. The interconnection network

could be a fast LAN or a switch. To achieve high-performance computing, the inter-

connection network must provide high-bandwidth and low-latency communication.

The nodes of a cluster may be dedicated to the cluster all the time; hence
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computation can be performed on the entire cluster. Dedicated clusters are normally

packaged compactly in a single room. With the exception of the front-end node, all

nodes are headless with no keyboard, mouse, or monitor. Dedicated clusters usually

use high-speed networks such as fast Ethernet and Myrinet. Alternatively, nodes

owned by different individuals on the Internet could participate in a cluster only

part of the time. In this case, the cluster can utilize the idle CPU cycles of each

participating node if the owner’s permission is granted.

Figure 7.5 shows the architecture of a homogeneous cluster made of similar

nodes, where each node is a single-processor workstation. The middleware layer

in the architecture makes the cluster appears to the user as a single parallel machine,

which is referred to as the single system image (SSI). The SSI infrastructure offers

unified access to system resources by supporting a number of features including:

. Single entry point: A user can connect to the cluster instead of to a particular node.

. Single file system: A user sees a single hierarchy of directories and files.

. Single image for administration: The whole cluster is administered from a

single window.

. Coordinated resource management: A job can transparently compete for the

resources in the entire cluster.

In addition to providing high-performance computing, clusters can also be used to

provide high-availability environment. High availability can be achieved when

Programming Environment and Tools
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Network
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Figure 7.5 A cluster made of homogenous single-processor computers.
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only a subset of the nodes is used in the computation and the rest is used as a backup

in case of failure. In cases when one of the main objectives of the cluster is high

availability, the middleware will also support features that enable the cluster ser-

vices for recovery from failure and fault tolerance among all nodes of the cluster.

For example, the middleware should offer the necessary infrastructure for check-

pointing. A checkpointing scheme makes sure that the process state is saved

periodically. In the case of node failure, processes on the failed node can be restarted

on another working node.

The programming environment and tools layer provide the programmer with por-

table tools and libraries for the development of parallel applications. Examples of

such tools and libraries are Threads, Parallel Virtual Machine (PVM), and Message

Passing Interface (MPI). Note that PVM and MPI will be covered in detail in

Chapters 8 and 9, respectively.

7.3.1 Threads

An important aspect of modern operating systems is their support for threads within

processes. A thread, sometimes called a lightweight process, is a basic unit of pro-

cessor utilization. It runs sequentially on a processor and is interruptible so that the

processor can switch to other threads. A process does nothing if it has no threads in

it, and a thread must be in exactly one process. A thread is different from the

traditional or heavy-weight process, which is equivalent to a task with one thread.

Context switching among peer threads is relatively inexpensive, compared with

context switching among heavy-weight processes.

Concurrency among processes can be exploited because threads in different pro-

cesses may execute concurrently. Moreover, multiple threads within the same pro-

cess can be assigned to different processors. Threads can be used to send and receive

messages while other operations within a task continue. For example, a task might

have many threads waiting to receive and process request messages. When a mess-

age is received by one thread, it is processed by this thread concurrently with other

threads processing other messages. Java has support for multithreading built in the

language. Java threads are usually mapped to real operating system threads if the

underlying operating system supports multithreads. Thus, applications written in

Java can be executed in parallel on a multiprocessor environment.

Example 2: Creating Threads in Java Here is a simple example of how Java

creates multiple threads. This program is the multithreaded version of the program

HelloWorld, which is normally the first program in most programming languages

books. Two threads are created, each of which prints a message of the form

“Hello World from thread i”, where i is in f1, 2g, a number of times (three times

in this example). Again, this simple example does not require prior knowledge of

Java. We will explain the main Java constructs needed in this example.

The class Thread is one of the classes in the standard Java libraries. This class

supports a number of methods to handle threads. For example, the method start
spawns a new thread of control, which can be stopped or suspended by invoking the
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methods stop or suspend. The class Thread also supports the method run,
which is invoked by start to make the thread active. The standard implementation

of Thread.run does nothing, but the class Thread can be extended to provide a

new run method. The Java code is shown below:

class HelloWorld extends Thread {
int myId; // a thread id
int count; // how many times
int sleepTime; // how long to pause
HelloWorld (int id, int cnt, int slp){

myId = id;
count = cnt;
sleepTime = slp;

}
public void run() {

while (count– – > 0) {
System.out.println(‘Hello World from thread’ + id);
try {

Thread.sleep(sleepTime);
catch (Exception e) {

return;
}

}
public static void main (String[] args) {

new HelloWorld(1,3,100).start();
new HelloWorld(2,3,300).start();

}
}

This example illustrates a number of features in Java. The program first creates a

class called HelloWorld, which extends the class Thread. The input for this

class is an identifier for the thread, how many times the message will be printed,

and a time interval to sleep between the times the message is printed. Its run

method loops the required number of times, printing its message, and waiting the

specified amount of sleep time.

Finally, the main function creates two HelloWorld objects, each with its own

identifier and sleep time, and invokes each object’s start method. A possible result (rem-

ember that the order of the messages is unpredictable) when you run this program is:

Hello World from thread 1
Hello World from thread 2
Hello World from thread 1
Hello World from thread 1
Hello World from thread 2
Hello World from thread 2
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7.4 INTERCONNECTION NETWORKS

The overall performance of a cluster system can be determined by the speed of its

processors and the interconnection network. Many researchers argue that the inter-

connection network is the most important factor that affects cluster performance.

Regardless of how fast the processors are, communication among processors, and

hence scalability of applications, will always be bounded by the network bandwidth

and latency. The bandwidth is an indication of how fast a data transfer may occur

from a sender to a receiver. Latency is the time needed to send a minimal size mess-

age from a sender to a receiver. In the early days of clusters, Ethernet was the main

interconnection network used to connect nodes. Many solutions have been intro-

duced to achieve high-speed networks. Key solutions in high-speed interconnects

include Gigabit Ethernet, Myrinet, and Quadrics. While Ethernet resides at the

low end of the performance spectrum, it is considered a low-cost solution. Other sol-

utions add communication processors on the network interface cards, which provide

programmability and performance. Table 7.2 shows the relative performance and

other features of different high-speed networks.

In this section, we will cover the evolution of Ethernet and discuss a sample of

switches used in connecting computers to form a cluster. The most important dis-

tinguishing factor among the different switches will be the bandwidth and the

latency time.

7.4.1 Ethernet

Ethernet is a packet-switched LAN technology introduced by Xerox PARC in the

early 1970s. Ethernet was designed to be a shared bus technology where multiple

hosts are connected to a shared communication medium. All hosts connected to

an Ethernet receive every transmission, making it possible to broadcast a packet

to all hosts at the same time. Ethernet uses a distributed access control scheme

called Carrier Sense Multiple Access with Collision Detect (CSMA/CD). Multiple

machines can access an Ethernet at the same time. Each machine senses whether a

carrier wave is present to determine whether the network is idle before it sends a

packet. Only when the network is not busy sending another message can trans-

mission start. Each transmission is limited in duration and there is a minimum

TABLE 7.2 Data Rate, Switching Method, and Routing Scheme for

Interconnection Networks

Interconnection Network Data Rate Switching Routing

Ethernet 10 Mbit/s Packet Table-based

Fast Ethernet 100 Mbit/s Packet Table-based

Gigabit Ethernet 1 Gbit/s Packet Table-based

Myrinet 1.28 Gbit/s Wormhole Source-path

Quadrics 7.2 Gbyte/s Wormhole Source-path
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idle time between two consecutive transmissions by the same sender. In the early

days of LAN technology, an Ethernet speed of 10 million bits per second

(10 Mbps) (10Base-T ) was quite sufficient. However, with the dramatic increase

in CPU speed and advances in network technology, a 10 Mbps Ethernet became

an obvious bottleneck. Fast Ethernet, which uses twisted-pair wiring, was later intro-

duced with speed of 100 Mbps (100Base-T ). Dual-speed Ethernet (10/100 Ethernet)
was also introduced to accommodate both 10 or 100 Mbps connections. By the late

1990, demand has increased for even higher speed Ethernet. Therefore Gigabit

Ethernet was introduced. Gigabit Ethernet (1000Base-T ) extended the Ethernet

technology to a bit rate of 1 gigabit per second (1 Gbps).

Each computer connected to an Ethernet network is assigned a unique 48-bit

address known as its Ethernet address. Ethernet manufacturers assign unique

Ethernet addresses as they produce hardware interfaces. The Ethernet address,

which is also called a media access (MAC) address, is fixed in a machine-readable

form on the host interface hardware. The address can specify the physical address of

one network interface, the network broadcast address, or a multicast. In addition to

its MAC address, an interface must recognize a broadcast address (all 1s) and the

group addresses in the case of multicast. The Ethernet interface hardware is

usually given the set of addresses to recognize by the operating system during

boot time. The host interface hardware, which receives a copy of every packet

that passes by, will use the destination address to determine the packets that

should be passed to the host. Other packets addressed to other hosts will be

ignored.

In order to achieve an acceptable level of performance and to eliminate any

potential bottleneck, there must be some balance between the Ethernet speed and

the processor speed. The initial Beowulf prototype cluster in 1994 was built with

DX4 processors and 10 Mbit/s Ethernet. The processors were too fast for this

kind of Ethernet. In late 1997, a good choice for a cluster system was sixteen

200 MHz P6 processors connected by Fast Ethernet. The network configuration of

a high-performance cluster is dependent on the size of the cluster, the relationship

between processor speed and network bandwidth and the current price list for

each of the components.

7.4.2 Switches

An n1 � n2 switch consists of n1 input ports, n2 output ports, links connecting each

input to every output, control logic to select a specific connection, and internal buf-

fers. Although n1 and n2 do not have to be equal, in practice and in most cases they

have the same value, which is usually power of two. A switch is used to establish

connections from the input ports to the output ports. These connections may be

one-to-one, which represent point-to-point connections, or one-to-many, which rep-

resent multicast or broadcast. The case of many-to-one should cause conflicts at the

output ports and therefore needs arbitration to resolve conflicts if allowed. When

only one-to-one connections are allowed, the switch is called crossbar. An n � n

crossbar switch can establish n! connections. The proof is quite simple. To allow
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only one-to-one connections, the first input port should have n choices of output

ports, the second input port will have (n2 1) choices, the third input port will

have (n2 2) choices, and so on. Thus, the number of one-to-one connections is

n * (n2 1) * (n2 2) � � � * 2 * 1 ¼ n! If we allow both one-to-one as well as one-

to-many in an n � n switch, the number of connections that can be established is

nn (see Problem 3). For example, a binary switch has two input ports and two

output ports. The number of one-to-one connections in a binary switch is two

(straight and crossed), while the number of all allowed connections is four (straight,

crosses, lower broadcast, and upper broadcast).

Routing can be achieved using two mechanisms: source-path and table-based. In

source-path, the entire path to the destination is stored in the packet header at the

source location. When a packet enters the switch, the outgoing port is determined

from the header. Used routing data is stripped from the header and routing infor-

mation for the next switch is now in the front. In table-based routing, the switch

must have a complete routing table that determines the corresponding port for

each destination. When a packet enters the switch, a table lookup will determine

the outgoing port. Figure 7.6 illustrates the difference between source-path routing

and table-based routing in the case when a packet enters an 8-port switch at port 0. In

the source-path case, the header contains the entire path and the next port is port 6.

In the table-based case, the destination address dest-id is looked up in the routing

table and port 6 is followed.

7.4.3 Myrinet Clos Network

Myrinet is a high-performance, packet-communication and switching technology. It

was produced by Myricom as a high-performance alternative to conventional Ether-

net networks. Myrinet switches are multiple-port components that route a packet

entering on an input channel of a port to the output channel of the port selected

by the packet. Myrinet switches have 4, 8, 12, 16 ports. For an n-port switch, the

ports are addressed 0, 1, 2, . . . , n2 1. For any switching permutation, there may

be as many packets traversing a switch concurrently as the switch has ports.

These switches are implemented using two types of VLSI chips: crossbar-switch

chips and the Myrinet-interface chip.

Figure 7.6 Source-path routing vs. table-based routing.
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The basic building block of the Myrinet-2000 network is a 16-port Myrinet cross-

bar switch, implemented on a single chip designated as Xbar16. It can be intercon-

nected to build various topologies of varying sizes. The most common topology is

the Clos network. Figure 7.7 shows a 128-host Clos network, which includes 24

Xbar16s. Each Xbar16 switch is represented using a circle. The eight switches form-

ing the upper row is the Clos network spine, which is connected through a Clos

spreader network to the 16 leaf switches forming the lower row. The Clos network

provides routes from any host to any other host. There is a unique shortest route

between hosts connected to the same Xbar16. Routes between hosts connected to

different Xbar16s traverse three Xbar16 switches.

Figure 7.8 shows a 64-host Clos network. Please note that a network of 64 hosts or

fewer would require eight-port switches for the spine. In the figure, an Xbar16 switch

can serve the purpose of two 8-port switches. The thick line connecting a spine switch

to a leaf switch represents two links. Similarly, Figure 7.9 shows a 32-host Clos net-

work. Each thick line connecting a spine switch to a leaf switch represents four links.

The routing of Myrinet packets is based on the source routing approach. Each

Myrinet packet has a variable length header with complete routing information.

When a packet enters a switch, the leading byte of the header determines the

Figure 7.7 A 128-host Clos network using 16-port Myrinet switch.

2 links each

Figure 7.8 A 64-host Clos network using 16-port Myrinet switch (each line represents

two links).
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outgoing port before being stripped off the packet header. At the host interface, a

control program is executed to perform source-route translation.

7.4.4 The Quadrics Network

According to Petrini et al. (2002), the Quadrics network (QsNet) consists of two

hardware building blocks: a programmable network interface called Elan and a

high-bandwidth, low-latency communication switch called Elite. The Elan network

interface connects the Quadrics network to a processing node containing one or

more CPUs. In addition to generating and accepting packets to and from the net-

work, Elan provides substantial local processing power to implement high-level

message passing protocols such as the Message Passing Interface (MPI), which

we will study in Chapter 9.

QsNet connects Elite switches in a quaternary fat-tree topology. A quaternary fat

tree of dimension n is composed of 4n processing nodes and n � 4n21 switches inter-

connected as a delta network. It can be recursively built by connecting four quatern-

ary fat trees of dimension n2 1. Figures 7.10 and 7.11 show quaternary fat trees of

dimensions 1 and 2, respectively. When n ¼ 1, the network consists of one switch

and four processing nodes. When n ¼ 2, the network consists of eight switches

and 16 processing nodes.

4 links each

Network Spine

Figure 7.9 A 32-host Clos network using 16-port Myrinet switch (each line represents

four links).

Processing Nodes

Figure 7.10 Quaternary fat tree of dimension 1.

174 NETWORK COMPUTING



Elite networks are source routed. The Elan network interface attaches route infor-

mation to the packet header before transmitting the packet into the network. The route

information is a sequence of Elite link tags. As the packet moves inside the network,

each switch removes the first route tag from the header and forwards the packet to the

next switch in the route or the final destination. The routing tag can identify either a

single output link or a group of links. Packets are routed using wormhole routing flow

control. As discussed in Chapter 5, each packet is divided into flow control digits

(flits). In QsNet, the size of each flit is 16 bits. Network nodes can send packets to

multiple destinations using the network’s broadcast capability.

7.5 CLUSTER EXAMPLES

7.5.1 Berkeley Network of Workstations (NOW)

The Berkeley Network of Workstations (NOW) is an important representative of

cluster systems. In 1997, the NOW project achieved over 10 Gflops on the Linpack

benchmark, which made it one of the top 200 fastest supercomputers in the world.

The hardware/software infrastructure for the project included 100 SUN Ultrasparcs

and 40 SUN Sparcstations running Solaris, 35 Intel PCs running Windows NT or a

PC Unix variant, and between 500 and 1000 disks, all connected by a Myrinet

switched network. The programming environments used in NOW are sockets,

MPI, and a parallel version of C, called Split C. Active Messages is the basic

communication primitive in Berkeley NOW. The Active Messages communication

is a simplified remote procedure call that can be implemented efficiently on a wide

range of hardware. Figure 7.12 shows the different components of NOW.

Processing Nodes

Figure 7.11 Elite switch of Quadrics networks.
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7.5.2 The Beowulf Cluster

The idea of the Beowulf cluster project was to achieve supercomputer processing

power using off-the-shelf commodity machines. One of the earliest Beowulf clusters

contained sixteen 100 MHz DX4 processors that were connected using 10 Mbps

Ethernet. The second Beowulf cluster, built in 1995, used 100 MHz Pentium pro-

cessors connected by 100 Mbps Ethernet. The third generation of Beowulf clusters

was built by different research laboratories. JPL and Los Alamos National Labora-

tory each built a 16-processor machine incorporating Pentium Pro processors. These

machines were combined to run a large N-body problem, which won the 1997

Gordon Bell Prize for high performance.

The communication between processors in Beowulf has been done through TCP/IP
over the Ethernet internal to the cluster. Multiple Ethernets were also used to satisfy

higher bandwidth requirements. Channel bonding is a technique to connect multiple

Ethernets in order to distribute the communication traffic. Channel bonding was able

to increase the sustained network throughput by 75% when dual networks were used.

Two of the early successful Beowulf clusters are Loki and Avalon. In 1997, Loki

was built using 16 Pentium Pro Processors connected using Fast Ethernet switches.

It achieved 1.2 Gflops. In 1998, the Avalon was built using one hundred and forty

533 MHz Alpha Microprocessors connected. Avalon achieved 47.7 Gflops.

7.5.3 FlashMob I

In April 2004, the University of San Francisco hosted the first Flash Mob Computing

computer; FlashMob I, with the purpose of creating one of the fastest supercomputers

on the planet. A FlashMob supercomputer was created by connecting a large number

of computers via a high-speed LAN, to work together as a single supercomputer. A

FlashMob computer, unlike an ordinary cluster, is temporary and organized ad hoc

Myrinet Scalable Interconnect

Global Layer Unix (Process migration, Resource Management, etc.)

Sockets, MPI, Split C

Large Sequential
Apps.

Parallel Apps.

Unix
Workstation

PCUnix
Workstation

PC

Figure 7.12 Berkeley Network of Workstations (NOW).
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for the purpose of working on a single problem. It used volunteers and ordinary laptop

PCs, and was designed to allow anyone to create a supercomputer in a matter of hours.

Over 700 computers came into the gym and they were able to hook up 669 to the

network. The best Linpack result was a peak rate of 180 Gflops using 256 compu-

ters; however, a node failed 75% through the computation. The best completed

result was 77 Gflops using 150 computers. The biggest challenge was identifying

flaky computers and determining the best configuration for running the benchmark.

Each of the 669 computers ran Linpack at some point in the day.

7.6 GRID COMPUTING

While clusters are collections of computers tied together as a single system, grids

consist of multiple systems that work together while maintaining their distinct iden-

tities. In their article “The grid grows up”, Fred Douglis and Ian Foster (2003)

defined the term Grid to denote middleware infrastructure, tools, and applications

concerned with integrating geographically distributed computational resources.

Owing to the decentralized and heterogeneous nature of the grid, the middleware

that glues the different components is more complicated compared with that of clus-

ters. Resembling an electric power grid, the computing grid is expected to become a

pervasive computing infrastructure that supports large-scale and resource-intensive

applications. Grid resources, which span the entire globe, include hardware, soft-

ware, data, and instruments. The significant increase in application complexity

and the need for collaboration have made grids an attractive computing infrastruc-

ture. Applications will continue to be complex, multidisciplinary, and multidimen-

sional, and collaboration will become the default mode of operation. Thus, the need

for the distributed grid infrastructure will continue to be an important resource.

An important concept in grids is the virtual organization, which offers a unified

view of resources. Although the resources in a grid might be in separate administra-

tive domains, they are made available as virtual local resources to any node on the

grid. A user signing on at one location would view computers at other remote

locations as if they were part of the local system. Grid computing works by polling

the resources available, and then allocating them to individual tasks as the need

arise. Resources are returned to the pool upon completion of the task. Grid gives

an illusion of a big virtual computer capable of carrying out enormous tasks. The

challenge is to allow meaningful sharing of resources without compromising local

autonomy. Support of grids requires innovative solutions to a number of challenging

issues including: resource management, resource monitoring, interoperability,

security, billing and accounting, communication, and performance.

There are several examples of grid platforms and tools such as Globus and Tera-

Grid. The Globus Toolkit is an enabling technology for the grid. It allows users to

share computing power, databases, and other tools securely on line across corporate,

institutional, and geographic boundaries, without sacrificing local autonomy. The

toolkit includes software services and libraries for resource monitoring, discovery,

and management, plus security and file management. It also includes software for
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communication, fault detection, and portability. The Globus Toolkit has grown through

an open-source strategy. Version 1.0 was introduced in 1998 followed by the 2.0

release in 2002. The latest 3.0 version is based on new open-standard Grid services.

TeraGrid is a large high-performance computing project headed by the National

Center for Supercomputing Applications at the University of Illinois at Urbana-

Champaign. The TeraGrid uses thousands of Intel Itanium 2 processors located at

four sites in the United States. The TeraGrid is an effort to build and deploy the

world’s largest, fastest distributed infrastructure for open scientific research. The Ter-

aGrid is expected to include 20 teraflops of computing power, facilities capable of

managing and storing nearly 1 petabyte of data, high-resolution visualization environ-

ments, and toolkits for grid computing. These components will be tightly integrated

and connected through a network that will operate at 40 gigabits per second.

7.7 CHAPTER SUMMARY

The recent migrations to distributed platforms have increased the need for a better

understanding of network computing. Distributed platforms may be connected in a

variety of ways ranging from geographically dispersed networks to architecture-

specific interconnection structures. A processing unit in such systems is an auton-

omous computer that may be engaged in its own private activities while at the

same time cooperating with other units in the context of some computational task.

Network computing is concerned with how to use multiple computers to solve

single or multiple problems, more or less simultaneously. The infrastructure

includes desktop machines connected by a WAN, workstation clusters and Ethernet-

connected or switch-connected workstations. A number of models exist to aggre-

gate the resources of multiple compute engines for large-scale processing tasks.

Multiprocessor systems incorporate multiple processors into a single machine,

whether it is a desktop workstation, a mainframe, or something in between. Clusters

aggregate many machines into a large, centrally managed entity. Grid computing

allows each node to access resources on other nodes as if they were local. Whatever

the choice, it is clear that as processor power becomes less expensive, capable stand-

alone commodity processors connected via some type of high-speed network will

become a standard part of computing in the future.

PROBLEMS

1. Read the Ethernet Standard and find the details including:

(a) CSMA/CD.

(b) What happens when multiple machines access an Ethernet at the same

time?

(c) The minimum idle time between two consecutive transmissions.

178 NETWORK COMPUTING



2. Explain the following:

(a) Two-tier client/server.

(b) Three-tier client/server.

(c) Thin client.

(d) Fat client.

(e) Sockets.

(f) Port.

3. Prove that the number of one-to-one and one-to-many connections in an

n � n switch is nn.

4. How many switches are needed in a Clos network in each of the following

cases?

(a) Number of hosts is 256.

(b) Number of hosts is 192.

(c) Number of hosts is 1042.

5. Draw a QsNet of dimension 3. How many switches? How many processing

units?

6. Find a lower bound on the time it takes to transfer a 100 MB file

across a network that operates at 1.5 Mbps, 10 Mbps, 100 Mbps, 1 Gbps,

2.4 Gbps.

7. Which of the following applications are better suited for clusters and which

are better for a grid? Justify your answer.

(a) Parallel computation with minimal interprocess communication and

workflow dependencies.

(b) Interactive.

(c) Noninteractive (batch jobs).

(d) Simulation.

(e) Games.

8. Compare shared memory systems, distributed memory systems, clusters, and

grids in the following aspects:

(a) Advantages and disadvantages.

(b) Cost and benefits.

(c) Applications.

(d) Performance.

9. Draw a block diagram that shows the most important modules in basic grid

architecture. Show the main function of each module and the relationship

between the different modules.

10. Conduct a literature search to find five grid platforms. Construct a table that

shows the similarities and differences among the platforms you found. What

is the most distinguishing feature of each platform?
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&CHAPTER 8

Parallel Programming in the
Parallel Virtual Machine

The Parallel Virtual Machine (PVM) was originally developed at Oak Ridge

National Laboratory and the University of Tennessee. It makes it possible to develop

applications on a set of heterogeneous computers connected by a network that

appears logically to the users as a single parallel computer. The PVM offers a power-

ful set of process control and dynamic resource management functions. It provides

programmers with a library of routines for the initiation and termination of tasks,

synchronization, and the alteration of the virtual machine configuration. It also

facilitates message passing via a number of simple constructs. Interoperability

among different heterogeneous computers is a major advantage in PVM. Programs

written for some architecture can be copied to another architecture, compiled and

executed without modification. Additionally, these PVM executables can still com-

municate with each other. A PVM application is made from a number of tasks that

cooperate to jointly provide a solution to a single problem. A task may alternate

between computation and communication with other tasks. The programming

model is a network of communicating sequential tasks in which each task has its

own locus of control, and sequential tasks communicate by exchanging messages.

8.1 PVM ENVIRONMENT AND APPLICATION STRUCTURE

The computing environment in PVM is the virtual machine, which is a dynamic set

of heterogeneous computer systems connected via a network and managed as a

single parallel computer. The computer nodes in the network are called hosts,

which could be uniprocessor, multiprocessor systems, or clusters running the

PVM software. PVM has two components: a library of PVM routines, and a

daemon that should reside on all the hosts in the virtual machine. Before running

a PVM application, a user should start up PVM and configure a virtual machine.

The PVM console allows the user to interactively start and then alter the virtual

machine at any time during system operation. The details of how to set up the
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PVM software, how to configure a virtual machine, and how to compile and run

PVM programs can be found at http://www.epm.ornl.gov/pvm and in Geist et al.

(1994).

The PVM application is composed of a number of sequential programs, each of

which will correspond to one or more processes in a parallel program. These pro-

grams are compiled individually for each host in the virtual machine. The object

files are placed in locations accessible from other hosts. One of these sequential pro-

grams, which is called the initiating task, has to be started manually on one of the

hosts. The tasks on the other hosts are activated automatically by the initiating

task. The tasks comprising a PVM application can all be identical but work on differ-

ent ranges of data. This model of parallel programming is called SPMD, which

stands for Single Program Multiple Data. Although SPMD is common in most

PVM applications, it is still possible to have the tasks perform different functions.

A pipeline of parallel tasks that perform input, processing, and output is an example

of parallel tasks that are performing different functions. Parallel virtual machine par-

allel applications can take different structures. One of the most common structures is

the star graph in which the middle node in the star is called the supervisor and the

rest of the nodes are workers. The star structure is often referred to as a supervisor–

workers or a master–slavesmodel. In this model, the supervisor is the initiating task

that activates all the workers. A tree structure is another form of a PVM application.

The root of the tree is the top supervisor and underneath there are several levels in

the hierarchy. We will use the terms supervisor–workers and hierarchy to refer to

the star and the tree structures, respectively.

8.1.1 Supervisor–Workers Structure

There is only one level of hierarchy in this structure: one supervisor and many workers.

The supervisor serves as the initiating task that is activated manually on one of the

hosts. The supervisor, which is also called the master, has a number of special respon-

sibilities. It normally interacts with the user, activates the workers on the virtual

machine, assigns work to the workers, and collects results from the workers.

The workers, which are also called slaves, are activated by the supervisor to

perform calculations. The workers may or may not be independent. If they are

not independent, they may communicate with each other before sending the result

of the computation back to the supervisor.

For example, a simple idea to sort an array of numbers using the supervisor–

workers structure can be described as follows. The supervisor creates a number of

workers and divides the array elements among them such that each worker gets

an almost equal number of elements. Each worker independently sorts its share of

the array and sends the sorted list back to the supervisor. The supervisor collects

the sorted lists from the workers and merges them into one sorted list. Figure 8.1

shows an example of sorting an array of elements using one supervisor (S) and

four workers (W1, W2, W3, and W4). Note that in this example the workers are

entirely independent and communicate only with the supervisor that performs the

merge procedure on the four sorted sublists while the workers remain idle.
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Another way of sorting a list using the supervisor–workers structure is to make

the workers help in the merge process and let the supervisor eventually merge only

two sorted sublists. Figure 8.2 illustrates how this procedure works using one super-

visor (S) and four workers (W1, W2, W3, and W4). First, the supervisor divides the

list among the four workers. Each worker sorts its sublist independently. Workers

W2 and W4 then send their sorted sublists to W1 and W3, respectively. Worker

W1 will merge its sorted sublist with the one received from W2. Similarly, W3

will merge its sorted sublist with the one received from W4. Eventually the super-

visor receives two sorted sublists from W1 and W3 to perform the final merge.

8.1.2 Hierarchy Structure

Unlike the supervisor–workers structure, the hierarchy structure allows the workers

to create new levels of workers. The top-level supervisor is the initiating task, which

creates a set of workers at the second level. These workers may create other sets of

W1 W2 W3 W4

S

(a) The supervisor creates four workers and send them four sublists to sort

S

W1 W2 W3 W4

(b) The supervisor is idle and the four workers are sorting their sublists

W1 W2 W3 W4

S

sort sort sort sort

(c) The four workers are sending their sorted sublists to the supervisor

S

W1 W2 W3 W4

merge

Figure 8.1 Supervisor–workers structure of sorting using a supervisor S and four independent

workers W1, W2, W3, and W4. The solid edges indicate message passing. The dashed edges

between S and W1, W2, W3, and W4 indicate that the workers were created by S.
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workers at the next level, and so on. (A task that creates another task is also called its

parent.) This task creation process can continue to any number of levels, forming a

tree structure. The leaves of the tree are the workers at the lowest level. This struc-

ture matches very well with the organization of divide and conquer applications.

W1 W2 W3 W4

S

(a) The supervisor creates four workers and send them four sublists

S

W1 W2 W3 W4

(b) The supervisor is idle and the four workers are sorting their sublists

W1 W2 W3 W4

S

sort sort sort sort

(e) Workers W1 and W3 send two sorted sublists to the supervisor

S

W1 W2 W3 W4

merge

S

W1 W2 W3 W4

(d)  Workers W1 and W3 are merging two sublists each and W2 and W4 are idle
merge merge

W1 W2 W3 W4

S

(c) Workers W2 and W4 send their sorted sublists to W1 and W3, respectively

Figure 8.2 Supervisor–workers sorting using the supervisor S and four communicating

workers W1, W2, W3, and W4. The dashed lines indicate that W1, W2, W3, and W4 were

created by S.
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For example, sorting an array of elements using the hierarchy structure can be

performed as follows. The top supervisor creates two workers and passes to each

of them one-half of the array to sort. Each worker will in turn create two new

workers and send to each of them one-half of the already halved array to sort.

This process will continue until the leaf workers have an appropriate number of

elements to sort. These leaf workers will independently sort their lists and send

them up to their parent to perform the merge operation. This process will continue

upward until finally the top supervisor merges two sorted lists into the final sorted

array. Figure 8.3 illustrates the sorting algorithm using the hierarchy structure

when eight leaf workers are used for sorting. Note that dashed edges in the tree

signify a parent–child relationship between the tasks.

8.2 TASK CREATION

A task in PVM can be started manually or can be spawned from another task. The

initiating task is always activated manually by simply running its executable code on

one of the hosts. Other PVM tasks can be created dynamically from within other

tasks. The function pvm_spawn() is used for dynamic task creation. The task

that calls the function pvm_spawn() is referred to as the parent and the newly cre-

ated tasks are called children. To create a child from a running parent, a programmer

must at least specify the following:

1. The machine on which the child will be started.

2. A path to the executable file on the specified machine.

3. The number of copies of the child to be created.

4. An array of arguments to the child task(s).

As all PVM tasks are identified by an integer task identifier, when a task is created it

is assigned a unique identifier (TID). Task identification can be used to identify sen-

ders and receivers during communication. They can also be used to assign functions

to different tasks based on their TIDs.

8.2.1 Task Identifier Retrieval

Parallel virtual machine provides a number of functions to retrieve TID values so

that a particular task can identify itself, its parent, and other tasks in the system.

Task’s TID A running task can retrieve its own TID by calling the PVM function

pvm_myid() as follows:

mytid ¼ pvm_mytid(); /� get my own tid �/

8.2 TASK CREATION 185



Child’s TID When a task calls the function pvm_spawn(), an array contai-

ning the TIDs of the children created by this call will be returned. For example,

the array tid in the following pvm_spawn() call will have the TIDs of all the

children.

sort sort

S

W1 W2

W3 W4 W5 W6

W7 W8 W9 W10 W11 W12 w13 w14

S

W1 W2

W3 W4 W5 W6

W7 W8 W9 W10 W11 W12 w13 w14

S

W1 W2

W3 W4 W5 W6

W7 W8 W9 W10 W11 W12 w13 w14

S

W1 W2

W3 W4 W5 W6

W7 W8 W9 W10 W11 W12 w13 w14

S

W1 W2

W3 W4 W5 W6

W7 W8 W9 W10 W11 W12 w13 w14

 S creates W1 and W2 and passes
to each of them one half of the list.
Each

(a)

 of W1 and W2 creates two
new workers and passes to each of 
them one half of its sublist. This
process continues as shown.

ach of the eight leaf workers
sorts its sublist and sends the sorted
sublist to its parent.

sort sort sort sort sortsort

merge merge merge merge

merge merge

merge

 W3, W4, W5, and W6 merge two
sublists each

 and W2 merge two sublists each

 The supervisor merges two sublists

(b)

(c)

(d )

(e)

Figure 8.3 Sortingusing thehierarchy structurewith the supervisorSand theworkersW1–W14.
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pvm_spawn(. . .,. . .,. . .,. . .,. . .,&tid)
/� The TIDs of the children created by this call are saved in

the array tid �/

Parent’s TID A task can retrieve the TID of its parent (the task from which it was

spawned) by calling the function pvm_parent() as follows:

my_parent_tid ¼ pvm_parent(); /� get my parent’s tid �/

The value PvmNoParent will be returned if the calling task is the one that was

created manually and does not have a parent. This is an easy way to distinguish

the supervisor from the workers in an application.

Daemon’s TID A task can retrieve the TID of the daemon running on the same

host as another task whose TID is id by calling the function pvm_tidtohost()
as follows:

daemon_tid ¼ pvm_tidtohost(id);
/� get tid of daemon running on the same host as the task whose

TID is id�/

This function is useful for determining on which host a given task is running.

8.2.2 Dynamic Task Creation

The pvm_spawn() function is used to create one task or more on the same or a

different machine in the PVM configuration. The format of this function is given

as follows:

num ¼ pvm_spawn(Child,Arguments,Flag,Where,HowMany,&Tids)

This function has six parameters and returns the actual number of the successfully

created tasks in the variable num. The first two parameters are the executable file

name of the program to be activated and the arguments to be passed to the execu-

table (in standard argv format, terminated with a NULL).

The next two parameters specify where to start the process. The Flag parameter

controls the target of the spawn operation. A value of zero lets PVM decides on the

appropriate machine on which to start the task. Other values specify that the where
parameter signifies a machine name, or an architecture type. Specifying a machine

name gives the programmer ultimate control over the task allocation process. Spe-

cifying an architecture type may be more appropriate in some cases, especially when

the virtual machine is configured from a widely dispersed set of architectures. One

of the requirements of the spawn command is that the executable must already exist

on whatever machine it is to run on.
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The final two parameters contain control information, such as the number of pro-

cesses to spawn with this call, and an array in which to return information, such as

task identifiers and error codes. The different parameters and their meanings are

summarized in Table 8.1.

Example 1 Suppose that we want to create two and four copies of the program

“worker” on the two hosts: homer and fermi, respectively. Assume that the execu-

table file “worker” resides in the directory “/user/rewini” in both machines. The

following two statements in the initiating task should create the required tasks:

n1 ¼ pvm_spawn(“/user/rewini/worker”,0,1,“homer”,2,&tid1)
n2 ¼ pvm_spawn(“/user/rewini/worker”,0,1,“fermi”,4,&tid2)

The second parameter is 0 when there is no arguments to “worker”. The third par-

ameter is the spawn type flag, which was set to 1 so that we can specify homer and

fermi as our target hosts. The TID values of the created tasks are returned in tid1
and tid2. Finally n1 and n2 are the actual number of created tasks on homer and

fermi, respectively.

8.3 TASK GROUPS

PVM allows running tasks to belong to named groups, which can change at any time

during computation. Groups are useful in cases when a collective operation is per-

formed on only a subset of the tasks. For example, a broadcast operation, which

sends a message to all tasks in a system, can use a named group to send a message

to only the members of this group. A task may join or leave a group at any time with-

out informing other tasks in the group. A task may also belong to multiple groups.

PVM provides several functions for tasks to join and leave a group, and retrieve

information about other groups.

TABLE 8.1 Parameters for Dynamic Task Creation

Parameter Meaning

Child The executable file name of the program to be started. The executable

must reside on the host on which it will run.

Arguments A pointer to an array of arguments to the program. If the program takes

no arguments this pointer should be NULL.

Flag A flag value of zero lets the PVM system decides what machine will

run the spawned task(s). Other values signify that a particular host

name or architecture type will be specified to run the spawned tasks.

Where A host name or an architecture type to run the created tasks depending

on the value of the above flag.

HowMany The number of identical children to be started.

Tids The TIDs of the children created by this call.
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A task can join a group by calling the function pvm_joingroup() as follows:

i ¼ pvm_joingroup(group_name)

This function adds the task that calls it to the group named group_name. It returns
the instance number of the task that just joined the group. The group itself is created

when pvm_joingroup is called for the first time. In this case, the first caller gets 0

as instance number. The returned instance number starts at 0 and is incremented by 1

every time a new task joins the group. However, this set of instance numbers may

have gaps as a result of having one or more tasks leave the group. When a task

joins a group with gaps in the set of instance numbers, this new member will get

the lowest available instance number. Maintaining a set of instance numbers without

gaps is the programmer’s responsibility.

A member of a group may leave the group by calling the function

pvm_lvgroup() as follows:

info ¼ pvm_lvgroup(group_name)

The task that successfully calls this function will leave the group group_name. In
case of an error, info will have a negative value. If this task decides to rejoin this

group at a later time, it may get a different instance number because the old number

may have been assigned to another task that may have joined.

There are a number of other functions that can be called by any task to retrieve

information without having to be a member of the specified group. For example,

the function pvm_gsize() can be used to retrieve the size of a group. It takes as

input the group name and returns the number of members in the group. The function

pvm_gettid() is provided to retrieve the TID of a task given its instance number

and its group name. Similarly, the function pvm_getinst() retrieves the instance

number of a task given its TID and the name of a group to which it belongs.

Example 2 Suppose that tasks T0, T1, T2, and T3 have TIDs 200, 100, 300, and

400, respectively. Let us see what happens after the execution of each of the follow-

ing statements.

1. Task T0 calls the function i1 ¼ pvm_joingroup(“slave”)
The group “slave” is created, T0 joins this group and T0 is assigned the

instance number 0 (i1 ¼ 0).

2. Task T1 calls the function i2 ¼ pvm_joingroup(“slave”)
T1 joins the group “slave” and is assigned instance number 1 (i2 ¼ 1).

3. Task T2 calls the function i3 ¼ pvm_joingroup(“slave”)
T2 joins the group “slave” and is assigned the instance number 2 (i3 ¼ 2).

4. Task T1 calls the function info ¼ pvm_lvgroup(“slave”)
T1 leaves the group “slave” and the instance number 1 becomes available

to other tasks that may wish to join the group “slave” in the future.
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5. Some task calls the function size ¼ pvm_gsize(“slave”)
The variable size will be assigned the value 2, which is the number of tasks

that currently belong to the group “slave”.

6. Task T3 calls the function i4 ¼ pvm_joingroup(“slave”)
T3 joins the group “slave” and is assigned instance number 1 (i4 ¼ 1).

7. Task T1 calls the function i5 ¼ pvm_joingroup(“slave”)
T1 rejoins the group “slave” and is now assigned the instance number 3

(i5 ¼ 3).

8. Some task calls the function tid ¼ pvm_gettid(“slave”,1)
The variable tid will be assigned the value 400, which is the TID of the task

T3 whose instance number is 1.

9. Some task calls the function inst ¼ pvm_getinst(“slave”,100)
The variable inst will be assigned the value 3, which is the instance number

of the task T1 whose TID is 100.

8.4 COMMUNICATION AMONG TASKS

Communication among PVM tasks is performed using the message passing approach,

which is achieved using a library of routines and a daemon. During program execution,

the user program communicates with the PVM daemon through the library routines.

The daemon, which runs on each machine in the PVM environment, determines the

destination of each message. If the message is sent to a task on the local machine,

the daemon routes the message directly. If the message is for a task on a remote

host, the daemon sends the message to the corresponding daemon on the remote

machine. The remote daemon then routes the message to the right receiving task.

The operations Send and Receive are the heart of this communication scheme,

which is generally asynchronous. A message can be sent to one or more destinations

by calling one of the PVM send functions. A message can be received by calling

either a blocking or nonblocking receive function. Figure 8.4 schematically illus-

trates communication in PVM. The arrows from the user applications to the dae-

mons represent communication calls (crossing the API boundary). The arrows

from the daemons back to the user applications represent the return from the API

calls. The thread of control of the user task briefly blocks on the daemon.

Using standard PVM asynchronous communication, a sending process issues a

send command (point 1 in Fig. 8.4). The message is transferred to the daemon

(point 2), then control is returned to the user application (points 3 and 4). The

daemon will transmit the message on the physical link sometime after returning con-

trol to the user application (point 3). At some other time, either before or after the send

command, the receiving task issues a receive command (point 5 in Fig. 8.4). In the

case of a blocking receive, the receiving task blocks on the daemonwaiting for a mess-

age (point 6). After the message arrives, control is returned to the user application

(points 7 and 8). In the case of nonblocking receive, control is returned to the user

application immediately (points 7 and 8) even if the message has not yet arrived.
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A sender task can send a message to one or more receivers in three steps as follows:

1. A send buffer must be initialized.

2. The message is packed into this buffer.

3. The completed message is sent to its destination(s).

Similarly, receiving a message is done in two steps as follows:

1. The message is received.

2. The received items are unpacked from the receive buffer.

8.4.1 Message Buffers

Before packing a message for transmission, a send buffer must be created and

prepared for data to be assembled into it. PVM provides two functions for buffer

creation; pvm_initsend() and pvm_mkbuf(). These two functions agree on

the input and output parameters. They take as input an integer value to specify the

next message’s encoding scheme, and they return an integer value specifying the

message buffer identifier. The two functions are listed below.

bufid ¼ pvm_initsend(encoding_option)
bufid ¼ pvm_mkbuf(encoding_option)

There are three encoding options in creating the buffer. The default encoding option

is XDR, which is useful when a message is sent to a different machine that may not

be able to read the message native format. However, if this is not the case, another

option is to skip the encoding step and a message is sent using its original format. A

third option is to leave data in place and to make the send operation copy items

directly from the user’s memory. The buffer is used only to store the message

size and pointers to the data items in this case. Clearly, the third option saves

time by reducing the copying time but it requires that the user does not modify

Daemon Daemon

User
Application Library

User
Application Library

1 4 5

2 3 6 7

8

Sending Task Receiving Task

Figure 8.4 Communication in PVM.
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data before they are sent. The different values and the meanings of the different

encoding options are summarized in Table 8.2.

If the user is using only one send buffer, pvm_initsend() should be the only

required function. It clears the send buffer and prepares it for packing a new mess-

age. The function pvm_mkbuf(), on the other hand, is useful when multiple mess-

age buffers are required in an application. It creates a new empty send buffer every

time it is called. In PVM 3, there is only one active send buffer and one active

receive buffer at any time. All packing, sending, receiving, and unpacking functions

affect only the active buffer. PVM provides the following functions to set the active

send (or receive) buffers to bufid. They save the state of the previous buffer and

return its identifier in oldbuf.

oldbuf ¼ pvm_setsbuf(bufid)
oldbuf ¼ pvm_setrbuf(bufid)

PVM also provides the functions pvm_getsbuf() and pvm_getrbuf() to

retrieve the identifier of the active send buffer and the active receive buffer, respectively.

8.4.2 Data Packing

PVM provides a variety of packing functions pvm_pk�() to pack an array of a given

data type into the active send buffer. Each of the packing functions takes three argu-

ments as input. The first argument is a pointer to where the first item is, and the second

argument specifies the number of items to be packed in an array. The third argument is

the stride to use when packing (that is, how many items to skip between two packed

items). For example, a stride of 1 means a contiguous array is packed, a stride of 2

means every other item is packed, and so on. The packing functions return a status

code, which will have a negative value in case of an error.

There are several packing functions for all kinds of data types such as byte,

double, string, and so on. All the functions have the same number of arguments

except the string packing function pvm_pkstr(), which takes only one argument

(a pointer to the string). PVM also provides the function pvm_packf() that uses a

printf like format expression to specify what to pack in the buffer before sending.

Packing functions can be called multiple times to pack data into a single message.

Other packing functions for the different data types include: pvm_pkbyte(),
pvm_pkcplx(), pvm_pkdcplx(), pvm_pkdouble(), pvm_pkfloat(),
pvm_pkint(), pvm_pklong(), pvm_pkshort(), pvm_pkuint(),
pvm_pkushort(), pvm_pkulong().

TABLE 8.2 Encoding Options for Buffer Creation

encoding_option Meaning

0 XDR

1 No encoding

2 Leave data in place
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Example 3 The following function calls pack a string followed by an array, called

my_array, of n items into the message buffer:

info ¼ pvm_pkstr(“This is my data”);
info ¼ pvm_pkint(my_array, n, 1)

First, the string is packed and then n integers from the array list are packed into the

send buffer. Note that there is no limit to the complexity of the packed message, but

it should be unpacked exactly the same way at the receiving end.

8.4.3 Sending a Message

Sending messages in PVM is done in an asynchronous fashion. The sending task will

resume its execution once the message is sent (points 3 and 4 in Fig. 8.4). It will not

wait for the receiving task to execute the matching receive operation as in synchro-

nous communication. Note that synchronous communication constructs for PVM

were suggested in Lundell et al. (1996).

After the buffer is initialized and the packing process is completed, the message is

now ready to be sent. A message can be sent to one or multiple receivers. All we

need to specify at this point are an identifier for each task that should receive the

message and a label (tag) for the message.

Sending to One Receiver The function pvm_send() performs a point-to-

point send operation. It takes two arguments: the TID of the destination task and

an integer message identifier (tag). For example, the function call

info ¼ pvm_send(tid, tag)

will label the message packed in the send buffer with the label tag that is supplied

by the programmer and send it to the task whose TID is tid. The call returns integer
status code info. A negative value of info indicates an error.

Sending to Multiple Receivers To send the message to multiple destinations,

the function pvm_mcast() should be used. The TIDs of the tasks that will receive

the message should be saved in an array. A pointer to the TIDs array, the number of

recipient tasks, and the message label are the arguments to pvm_mcast(). For
example, the function call

info ¼ pvm_mcast(tids, n, tag)

will label the message with the integer tag and send it to the n tasks whose TIDs are

specified in the array tids. Again the status code info indicates whether the call

was successful. Note that the message will never be sent to the caller task even if its

TID was included in the array tids.
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Sending to a Group A message can be broadcast to all members of a group

using the function pvm_bcast(). Any task can call this function without

having to be a member of the group. The arguments of this function are the group

name and the message tag. It first determines the TIDs of the group members and

then uses pvm_mcast() to broadcast the message. For example, the function call

info ¼ pvm_bcast(group_name, tag)

will label the message with the integer tag and send it to all members of the group

group_name. Note that if the group changes during the broadcast, the change will

not be reflected. Since group changes are not collective operations over the group,

the result of collective operations cannot be predicted unless synchronization is done

by hand.

Packing and Sending in One Step PVM also provides another function to

send messages without the need to prepare and pack the buffer manually. The

operation pvm_psend() does the packing automatically for the programmer.

In addition to the destination TID and the message label, pvm_psend() takes a

pointer to a buffer, its length, its data type as arguments. For example, the call

info ¼ pvm_psend(tid, tag, my_array, n, int)

packs an array of n integers called my_array into a message labeled tag, and
sends it to the task whose TID is tid.

8.4.4 Receiving a Message

PVM supports three types of message receiving functions: blocking, nonblocking,

and timeout. When calling a blocking receive function, the receiving task must

wait until the expected message arrives in the receive buffer. A nonblocking receive

immediately returns with either the expected data or a flag that the data have not

arrived. Timeout receive allows the programmer to specify a period of time for

which the receive function should wait before it returns. If the timeout period is

very large, this function will act like the blocking receive. On the other hand, if

the timeout period is set to zero, it acts exactly like the nonblocking case.

Figure 8.5 illustrates the three types of receive operations.

Blocking Receive

bufid ¼ pvm_recv(tid, tag)

This function will wait until a message with label tag is received from a task with

TID ¼ tid. A value of 21 can be used as a wild card to match anything in either

one of the arguments: tid or tag. A successful receive will create a receive buffer

and return the buffer identifier to be used in unpacking the message.

194 PARALLEL PROGRAMMING IN THE PARALLEL VIRTUAL MACHINE



Nonblocking Receive

bufid ¼ pvm_nrecv(tid, tag)

If the message has arrived successfully when this function is called, it will return a

buffer identifier similar to the case of blocking receive. However, if the expected

message has not arrived, the function will return immediately with bufid ¼ 0.

Timeout Receive

bufid ¼ pvm_trecv(tid, tag, timeout)

This function blocks the execution of its caller task until a message with a label tag
has arrived from tid within a specified waiting period of time. If there is no match-

ing message arriving within the specified waiting time, this function will return with

bufid ¼ 0, which indicates that no message was received. The waiting time argu-

ment (timeout) is a structure with two integer fields tv_sec and tv_usec.
With both fields set to zero, this function will act as a nonblocking receive. Passing

a null pointer as timeout makes the function act like a blocking receive. If

pvm_trecv() is successful, bufid will have the value of the new active receive

buffer identifier.

Receive and Unpack in One Step Similar to the pvm_psend() function,

PVM provides the function pvm_precv(), which combines the functions of

Pvm_recv()

wait

Time

Function

is called

Time is

expired

Message

arrival

Blocking

Pvm_nrecv () Pvm_trecv ()

wait

Resume
execution

Resume
execution

Resume
execution

Non-blocking Timeout

Figure 8.5 The three types of receive operations.
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blocking receive and unpacking in one routine. It does not return a buffer identifier;

instead it returns the actual values. For example, the following call

info ¼ pvm_precv(tid, tag, my_array, len, datatype, &src,
&atag, &alen)

will block until a matching message is received. The contents of the message will be

saved in my_array up to length len. In addition to the status code info, the
actual TID of the sender, actual message tag, and the actual message length are

returned in src, atag, and alen, respectively. Again the value 21 can be used

as a wild card for the arguments: tag or tid.

8.4.5 Data Unpacking

When messages are received, they need to be unpacked in the same way they were

packed in the sending task. Unpacking functions must match their corresponding

packing functions in type, number of items, and stride.

PVM provides many unpacking functions pvm_upk�(), each of which corre-

sponds to a particular packing function. Similar to packing functions, each of the

unpacking functions takes three arguments as input. These arguments are address

of the first item, number of items, and stride. PVM also provides the two functions

pvm_upkstr() and pvm_unpackf() to unpack the messages packed by

pvm_pkstr() and pvm_packf(), respectively.
Other unpacking functions for the different data types include: pvm_

upkbyte(), pvm_upkcplx(), pvm_upkdcplx(), pvm_upkdouble(),
pvm_upkfloat(), pvm_upkint(), pvm_upklong(), pvm_upkshort(),
pvm_upkuint(), pvm_upkushort(), pvm_upkulong().

Example 4 The following function calls unpack a string followed by an array of n

items from the receive buffer:

info ¼ pvm_upkstr(string)
info ¼ pvm_upkint(my_array, n, 1)

Note that the string and the array must have been packed using the corresponding

packing functions.

8.5 TASK SYNCHRONIZATION

Synchronization constructs can be used to force a certain order of execution among

the activities in a parallel program. For example, a task that uses certain variables in

its computation must wait until these variables are computed (possibly by other

tasks) before it resumes its execution. Even without data dependence involvement,

parallel tasks may need to synchronize with each other at a given point in the
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execution. For example, members of a group that finish their work early may need to

wait at a synchronization point until those tasks that take a longer time reach the

same point. Synchronization in PVM can be achieved using several constructs,

most notably blocking receive and barrier operations.

8.5.1 Precedence Synchronization

Message passing can be used effectively to force precedence constraints among

tasks. Using the blocking receive operation (pvm_recv()) forces the receiving

task to wait until a matching message is received. The sender of this matching mess-

age may hold its message as long as it wants the receiver to wait. For example, con-

sider the two tasks; T0 and T1 in Figure 8.6. Suppose that we want to make sure that

the function g() in T1 is not executed until T0 has completed the execution of the

function f(). This particular order of execution can be guaranteed using a send

operation after calling f() in T0, and a matching blocking receive operation

before calling g() in T1.

8.5.2 Barriers

Parallel tasks can be synchronized through the use of synchronization points called

barriers. No task may proceed beyond a barrier until all participating tasks have

reached that barrier. Members of a group can choose to wait at a barrier until a speci-

fied number of group members check in at that barrier. PVM provides barrier

synchronization through the use of the function pvm_barrier(). This function
takes two inputs: the group name, and the number of group members that should

call this function before any of them can proceed beyond the barrier as follows.

info ¼ pvm_barrier(group_name, ntasks)

Again the status code info will return a negative integer value in case of an error.

The number of members specified could be set to any number less than or equal to

Figure 8.6 Precedence synchronization using message passing. The function f() in T0 is

guaranteed to be executed before the function g() in T1.
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the total number of members. However, it is typically the total number of members in

the group. In any case, the value of this argument should match across a given barrier

call. If this argument is set to21, PVM will use the value of pvm_gsize(), which
returns the total number of members. Since it is possible for tasks to join the group

after other tasks have already called pvm_barrier(), it is necessary to specify

the number of tasks that should check in at the barrier. It is not allowed for a task

to call pvm_barrier() with a group to which it does not belong.

Example 5 Figure 8.7 shows three members of the group slave (T0, T1, T2)

using a barrier to synchronize at a certain point in their execution. Each of the

three tasks should call the following function:

info ¼ pvm_barrier(“slave”, 3)

The execution will block until three members of the group slave have issued the

call to function pvm_barrier() as shown in the figure. Task T1 calls the func-

tion first, followed by T0, and then finally T2. Tasks T0 and T1 wait at the barrier

until T2 reaches the barrier before they can all proceed.

8.6 REDUCTION OPERATIONS

Reduction is an operation by which multiple values are reduced into a single value.

This single value could be the maximum (minimum) value, the summation (product)

of all elements, or the result of applying an associative binary operator that yields a

single result. PVM supports reduction through the use of the function pvm_
reduce(). The format of this function is given as follows:

info ¼ pvm_reduce(func, data, n, datatype, tag, group_name,
root)

PVM_barrier(“slave”, 3)

PVM_ barrier(“slave”, 3)

PVM_barrier(“slave”, 3)

Proceed Proceed Proceed

Wait

Wait

Group: slave

T0 T1 T2

Figure 8.7 Three tasks in the group slave are waiting on a barrier.
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The function returns an integer status code (info). The different parameters and

their meanings are summarized in Table 8.3.

The reduction operation is performed on the corresponding elements in the data

array across the group. The reduced value for each element in the array across the

group will be returned to the root specified in the parameters. In fact, the data

array on the root will be overwritten with the result of the reduction operation

over the group. Users can define their own functions or can use several PVM prede-

fined functions such as PvmMin, PvmMax, PvmSum, and PvmProduct for the

minimum, maximum, summation, and product, respectively.

Example 6 Figure 8.8 shows an example of a reduction summation of the entries

of data_array over the group “slave”, which has three members: T0, T1, and

T2. The reduced values are returned to the root, which is assumed to be task T1 in

this example. The following function must be called by the three tasks.

info ¼ pvm_reduce(PvmSum, data_array, 5,PVM_INT, tag,
“slave”, root)

TABLE 8.3 Parameters for Reduction Operations

Parameter Meaning

func The function that defines the operation to be performed.

data An array of data elements.

n The number of elements in the data array.

datatype The type of entries in the data array.

tag Message tag.

group_name The name of an existing group.

root Instance number of a group member who gets the result.

T0

T1 (root)

T2

10 205 308

2 415 612

625 14108

10 205 308

20 3045 5030

625 14108

Before reduction After reduction
group: slave

data_array data_array

info = pvm_reduce(PvmSum, data_array, 5, PVM_INT, tag, “slave”,

Figure 8.8 Reduction operation on the members of the group slave.
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8.7 WORK ASSIGNMENT

Assigning work to workers can be done either by writing a separate program for each

worker or writing a single program for all workers. If the workers perform the same

computation on different sets of data concurrently, it is appropriate to use a single

program for all workers. On the other hand, if the workers perform different func-

tions, it is possible to do it either way. In this section, we show how to assign

work to the parallel tasks.

8.7.1 Using Different Programs

If the workers forming the parallel application perform completely different oper-

ations, they can be written as different programs. These different workers can be

activated by the initiating task (supervisor) using pvm_spawn(). The supervisor

can communicate with the workers since it knows their TIDs, which are returned

when pvm_spawn() is called. To communicate with the supervisor, the workers

need to know the supervisor’s TID. The function pvm_parent() returns the

supervisor’s TID when called by the workers.

Example 7 Suppose that we want to activate four different tasks: “worker1”,

“worker2”, “worker3”, and “worker4” on the hosts cselab01, cselab02, cselab03,

and cselab04, respectively. Assume that the executable files reside in the directory

“/user/rewini” in all machines. The following statements in the initiating task will

create the required tasks.

info1 ¼ pvm_spawn(“/user/rewini/worker1”, 0, 1,“cselab01”,
1, &tid1)

info2 ¼ pvm_spawn(“/user/rewini/worker2”, 0, 1,“cselab02”,
1, &tid2)

info3 ¼ pvm_spawn(“/user/rewini/worker3”, 0, 1,“cselab03”,
1, &tid3)

info4 ¼ pvm_spawn(“/user/rewini/worker4”, 0, 1,“cselab04”,
1, &tid4)

8.7.2 Using the Same Program

Assigning work to parallel tasks running the same program can be done easily if we

know in advance the identification numbers assigned by the system. For example, if

we know that the identification numbers of n2 1 workers running the same program

are 1, 2, . . . , n2 1, we can assign work to these tasks as follows:

switch (my_id) f
case 1:

/� Work assigned to the worker whose id number is 1 �/
break;
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case 2:
/� Work assigned to the worker whose id number is 2 �/
break;

. . . . . .
case n2 1:

/� Work assigned to the worker whose id number is n2 1 �/
break;

default:;g/� end switch �/

Unfortunately, a task in PVM is assigned any integer as its identification

number. Tasks are not necessarily identified by the integers 1, 2, 3, and so on, as

shown in the above example. In what follows, we show how to overcome this

problem.

Using Task Groups In this method, all the tasks join one group and the instance

numbers are used as the new task identifiers. The supervisor is the first one to join the

group and gets 0 as its instance number. The workers will get instance numbers in

the range from 1 to n2 1.

Using Task ID Array In this method, the supervisor sends an array containing

the TIDs of all the tasks to all the workers. The supervisor TID is saved in the

zeroth element of the array, and the workers’ TIDs are saved in elements 1 to

n2 1. Each worker searches for its own TID in the array received from the super-

visor and the index can be used to identify the corresponding worker as shown in

Figure 8.9.

8.8 CHAPTER SUMMARY

Message passing libraries have been effective in parallel programming environ-

ments for clusters and other distributed memory systems. The parallel virtual

machine is one of the most popular high-level message passing systems for scientific

and engineering applications. PVM started as a research project in 1989 to provide

a framework for exploring ideas in heterogeneous distributed computing. It has

achieved enormous popularity and has evolved over the years to satisfy the need

0 1 2                                                                        n -1

supervisor ’s TID workers’ TIDs

index

(The index can be used to assign different work to workers within the same program)

Figure 8.9 The task ID array sent to all workers by the supervisor.
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for additional features. The PVM libraries are defined for C, Cþþ, Fortran, and

Java. Also, many tools such as debugger and performance visualization tools are

available. In this chapter, we studied a variety of PVM constructs in C and

showed how to use them in writing parallel programs.

PROBLEMS

1. What are the differences between the functions pvm_initsend() and

pvm_mkbuf()?

2. Discuss some situations in which nonblocking receive is preferred over

blocking receive?

3. Consider the precedence constraints in Figure 8.10 among the tasks T0,

T1, T2, T3, T4. Note that an arc from Ti to Tj implies that Ti must be

completed before Tj can start. Show how to enforce these precedence

in PVM.

4. Consider the four tasks in Figure 8.11, which are synchronized using barriers

corresponding to the synchronization points shown. Show how to implement

the given barrier structure in PVM.

Barrier-1

Barrier-2

Barrier-3

T0 T1 T2 T3

Figure 8.11 Tasks and barriers for Problem 4.

T0 T1

T2 T3

T4

Figure 8.10 Precedence constraints for Problem 3.
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5. Suppose that we want to extend PVM to support fully synchronized

communication among processes. What parts of PVM should be altered to

provide a fully synchronous send operation? Discuss all possible methods

to achieve this goal.

6. Suppose that you were hired to develop techniques for assigning tasks to

machines in a PVM environment. What performance measures should you

optimize? What parameters should be considered? Should the assignment

be done statically or dynamically? Why?

7. Devise a static algorithm for task allocation that can be used to schedule a

PVM application on a given virtual machine. Devise another dynamic

method to balance the load among the PVM hosts.

8. A task can be partitioned at different levels of granularity: fine-grain,

medium-grain, and large-grain. Which level of granularity fits the PVM

programming approach the most? Justify your answer.

9. Develop a matrix multiplication program in PVM. This program multiplies

two n � nmatrices in parallel (C ¼ A � B). The program consists of a super-

visor and n2 1 workers. The supervisor sends each worker one row of the

first matrix and the entire second matrix. Each worker calculates one row

in the resulting matrix and sends it to the supervisor.

10. Rewrite the program of Problem 9 such that each task calculates (a) exactly

one cell in the matrix C, (b) part of a row in C, (c) more than one row

in C. Contrast all the methods. Discuss the advantages and disadvantages

of each method.
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&CHAPTER 9

Message Passing Interface (MPI)

The goal of the Message Passing Interface (MPI) is to provide a standard library of

routines for writing portable and efficient message passing programs. Message pas-

sing interface is not a language; it is a specification of a library of routines that can be

called from programs. It provides a rich collection of point-to-point communication

routines and collective operations for data movement, global computation, and syn-

chronization. The MPI standard has evolved with the work around MPI-2, which

extended MPI to add more features, including: dynamic processes, client–server

support, one-sided communication, parallel I/O, and nonblocking collective com-

munication functions. In this chapter, we discuss a number of the important func-

tions and programming techniques. An MPI application can be visualized as a

collection of concurrent communicating tasks. A program includes code written

by the application programmer that is linked with a function library provided by

the MPI software implementation. Each task is assigned a unique rank within a cer-

tain context: an integer number between 0 and n21 for an MPI application consist-

ing of n tasks. These ranks are used by MPI tasks to identify each other in sending

and receiving messages, to execute collective operations, and to cooperate in gen-

eral. The MPI tasks can run on the same processor or on different processors

concurrently.

9.1 COMMUNICATORS

An important requirement in all message passing systems is to guarantee a safe

communication space in which unrelated messages are separated from one another.

For example, library messages can be sent and received without interference from

other messages generated in the system. In PVM, as explained in Chapter 8,

daemon processes on all hosts in the virtual machine maintain a system-wide

unique context for safe communication.

In MPI, where there is no virtual machine, using just a message tag is not enough

to safely distinguish library messages from user messages. The concept of commu-

nicator is introduced in MPI to achieve this safe communication requirement. A
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communicator can be thought of as a binding of a communication context to a group

of tasks. A communicator is an object that can be accessed via a handle of type

MPI_COMM.
Communicators can be classified into intracommunicators for operations within a

single group of tasks, and intercommunicators for operations between different

groups of tasks. When an MPI application starts, all tasks are associated to a

“world” communicator. When a new context is needed, the program makes a syn-

chronizing call to derive the new context from an existing one.

9.1.1 Task Groups

Tasks in MPI are allowed to belong to named groups. A group in MPI is an object that

can be accessed via a handle of the predefined type MPI_Group. Task groups provide
contexts through whichMPI operations can be restricted to only the members of a par-

ticular group. The members of a group are assigned unique identifiers within the group

called ranks. A group is an ordered set of ranks that are contiguous and start from zero.

MPI provides a number of functions to create new groups from existing ones. It

does not provide functions to create groups from scratch. At the beginning, all tasks

belong to one base group from which other groups can be formed. The members of a

new group can be solicited from one or more groups. Given an existing group, a new

group can be formed by either excluding a set of tasks or by only including a set of

tasks from the existing group. A new group can also be formed using two existing

groups using set operations: union, intersection, and difference.

9.1.2 Default Communicator

MPI provides the predefined communicator MPI_COMM_WORLD as the default

communicator. Once MPI_Init() is called, this default communicator defines

a single context including the set of all MPI tasks available for the computation.

The communicator MPI_COMM_WORLD has the same value in all processes and

cannot be changed during the lifetime of a task. MPI also provides the predefined

communicator MPI_COMM_SELF, which includes only the calling process itself.

9.1.3 Task Rank

The tasks involved in a communicator are assigned consecutive integer identifiers

between zero and the size of the communicator’s group minus one. These identifiers,

which are called ranks, are used to distinguish the different tasks within the same

group. For example, tasks with different ranks can be assigned different types of

work to perform. A task can find out its rank within a communicator by calling

the function MPI_Comm_rank() as follows:

MPI_Comm communicator;/* communicator handle */
int my_rank;/* the rank of the calling task */
MPI_Comm_rank(communicator, &my_rank);
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This function takes an existing communicator communicator and returns the

rank of the calling task (my_rank) in this communicator’s group.

9.1.4 Communicator’s Group

The group associated with a communicator can be retrieved using the function

MPI_Comm_group(). This function takes an existing communicator and returns

its corresponding group of tasks. Since MPI does not provide functions to create

groups from scratch, MPI_Comm_group() is important to create a base group

from which other groups can be formed. The format of this function is given as

follows:

MPI_Comm communicator;/*communicator handle */
MPI_Group corresponding_group;/*group handle */
MPI_Comm_group(communicator, &corresponding_group)

The size of the group associated with a communicator can be determined by calling

the function MPI_Comm_size(). This function takes an existing communicator

and returns the size of its corresponding group as follows:

MPI_Comm communicator;/*communicator handle */
int number_of_tasks;
MPI_Comm_size(communicator, &number_of_tasks)

Example 1 Suppose that an MPI application has started with five tasks: T0, T1,

T2, T3, T4 having ranks 0, 1, 2, 3, 4, respectively. At the beginning, all five tasks

are referenced by the communicator MPI_COMM_WORLD.
Suppose that task T3 calls the following function

MPI_Comm_rank(MPI_COMM_WORLD, &me);

The variable me will be assigned the value 3, which is the rank of the T3 within the

group that corresponds to MPI_COMM_WORLD.
To create a group of all tasks in the application, the following function should

be called:

MPI_Comm_group(MPI_COMM_WORLD, &world_group)

It uses the default communicator MPI_COMM_WORLD to form the matching group

world_group that will include the tasks T0, T1, T2, T3, T4.

If the following function is called

MPI_Comm_size(MPI_COMM_WORLD, &n)
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the variable n will be assigned 5, which is the size of the group that corresponds

to the communicator MPI_COMM_WORLD.

9.1.5 Creating New Communicators

In MPI, an existing communicator is needed to create a new one. The base commu-

nicator for all MPI communicators is the default communicator MPI_COMM_
WORLD. We present three collective functions that can be used to create new

communicators. It is required that these functions be called by all tasks that belong

to the existing communicator even if some tasks will not belong to the new one.

1. MPI_Comm_dup(oldcomm, &newcomm) This function duplicates the

existing communicator oldcomm. It returns in newcomm a new communica-

tor with the same group of tasks but in a new context.

2. MPI_Comm_create(oldcomm, group, &newcomm) This function

creates a new communicator newcomm with a corresponding group of tasks

group. Note that group must be a subset of the set of tasks associated

with oldcomm.

3. MPI_Comm_split(oldcomm, split_key, rank_key, &newcomm)
This function partitions the group associated with oldcomm into disjoint

subgroups, one for each value in the argument split_key. Each subgroup

contains all tasks of the same split_key. Within each subgroup, the tasks

are ranked in the order defined by the value of the argument rank_key, with
ties broken according to their rank in the group associated with the old com-

municator. A new communicator is created for each subgroup and returned in

newcomm. This is a collective function and must be called by all tasks in

oldcomm even if the user does not wish to assign every task to a new com-

municator. If a task provides MPI_UNDEFINED as the argument split_
key, it will get the predefined value MPI_COMM_NULL as newcomm.

Example 2 Suppose that an MPI application has started with five tasks: T0, T1,

T2, T3, T4 having ranks 0, 1, 2, 3, 4, respectively. Suppose that we were able to

form a group named small_group, which has only two members: tasks T0 and

T1. A communicator corresponding to this new group can be created when the

following function is called by all tasks:

MPI_Comm_create(MPI_COMM_WORLD, small_group, &small_comm)

Now, suppose that tasks T0, T1, T2, T3, T4 call the function MPI_Comm_
split() as follows.

. T0 calls the following function with x ¼ 8 and me ¼ 0:

MPI_Comm_split(MPI_COMM_WORLD, x, me, &newcomm)
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. T1 calls the following function with y ¼ 5 and me ¼ 1

MPI_Comm_split(MPI_COMM_WORLD, y, me, &newcomm)

. T2 calls the following function with x ¼ 8 and me ¼ 2

MPI_Comm_split(MPI_COMM_WORLD, x, me, &newcomm)

. T3 calls the following function with y ¼ 5 and me ¼ 3

MPI_Comm_split(MPI_COMM_WORLD, y, me, &newcomm)

. T4 calls the following function with MPI_UNDEFINED and me ¼ 4

MPI_Comm_split(MPI_COMM_WORLD,MPI_UNDEFINED,4,&newcomm)

The group associated with newcomm will consist of the tasks fT0,T2g in the

tasks T0 and T2. In the tasks T1 and T3, the group associated with newcomm
will consist of fT1,T3g. The predefined value MPI_COMM_NULL will return in

the task T4. The new rank of the tasks in each subgroup will follow their rank in

MPI_COMM_WORLD.

9.1.6 Intercommunicator

The MPI provides a more general type of communicator, specifically targeted

towards group-to-group communication, called intercommunicators. Each inter-

communicator contains a local group and a remote group. The local group, for

which the owner of the intercommunicator is always a member, is accessible

using functions such as MPI_Comm_group() and MPI_Comm_size() to

retrieve, the local group associated with the intercommunicator and its size, as dis-

cussed above. Information about the remote group can also be accessed using

MPI_Comm_remote_group() and MPI_Comm_remote_size(). Intercom-

municator can be used in creating tasks dynamically as will be discussed in Section

9.6. New tasks in MPI can be started using spawn functions to start new tasks and

establish communication with them.

9.2 VIRTUAL TOPOLOGIES

The logical communication patterns among tasks may not be adequately reflected

using the linear ranking of tasks in a group that we have seen so far. The logical

arrangement of tasks in the group associated with a communicator may need to

take different shapes such as two-dimension or three-dimension grids, for example.

In this section, we show how to add a topology attribute to a communicator.

In addition to binding a context to a group of tasks, a communicator may be

associated with a topology. The topology can be used to associate some addressing

scheme to the tasks within a group. Information about the topology is said to be

cashed with the communicator. There are two different types of virtual topologies

in MPI: Cartesian topology and graph topology.
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9.2.1 Cartesian Topology

The collective function MPI_Cart_create() shown below can be used to create

Cartesian structures of arbitrary dimension. It takes as input the following specifica-

tions and returns a handle to a communicator with the new Cartesian structure:

. An existing communicator, which defines the set of tasks on which the topology

is to be mapped.

. The number of dimensions in the Cartesian structure.

. The size of each dimension.

. Whether or not the structure is periodic at each dimension.

. Whether or not the system is allowed to optimize the mapping of the virtual top-

ology on the underlying physical processors. This may result in a change in the

original task ranking in the group associated with the existing communicator:

MPI_Cart_create(oldcomm, ndims, sizeofdims, periods,
mapping, newcomm)

The parameters of this function and their meanings are summarized in Table 9.1.

The tasks in a Cartesian structure are ranked in a row-major order and task coordi-

nates begin their numbering at zero.

Example 3 Suppose that an MPI application has started with six tasks: T0, T1, T2,

T3, T4, T5 having ranks 0, 1, 2, 3, 4, 5, respectively. At the beginning, all six tasks

are referenced by the communicator MPI_COMM_WORLD. Now, suppose that we

want to associate a 2 � 3 grid structure with the tasks in MPI_COMM_WORLD. We

can do that by creating a new communicator gridcomm as shown below. Note

that we set mapping to false so that the system will not change the task ranking.

MPI_Comm gridcomm;/*new communicator */
int sizeofdims[2];
int periods[2];

TABLE 9.1 Parameters of Function MPI_Cart_create()

Parameter Meaning

oldcomm Input communicator (handle).

ndims Number of dimensions of Cartesian structure (integer).

sizeofdims Integer array of size ndims specifying the number of tasks in each

dimension.

periods Boolean array of size ndims specifying whether the structure is

periodic (true) or not (false) in each dimension.

mapping Boolean specifying whether the system is allowed to reorder the ranks

(true) or not (false).

newcomm New communicator with Cartesian structure (handle).
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int mapping = 0;

sizeofdims[0] = 2;
sizeofdims[1] = 3;
periods[0] = periods[1] = 0;
MPI_Cart_create(MPI_WORLD_COMM, 2, sizeofdims, periods,

mapping, gridcomm);

The relation between the original task ranks and the task coordinates in the 2�3 grid

structure is illustrated in Table 9.2.

9.2.2 Retrieval of Task Coordinates and Ranks

MPI provides functions that allow a task to inquire about its rank and its coordinates

in a Cartesian structure. Inquiring about the task’s rank is particularly important if

the system was permitted to change the task ranking during the creation of the Car-

tesian structure (mapping was set to true). This can be done using the following

function:

MPI_Cart_rank(communicator, coords, &rank)

This function returns the rank rank in the Cartesian structure communicator of

the task with Cartesian coordinates coords. Note that coords is an array with

order equal to the number of dimensions in the Cartesian topology associated

with communicator.
Similarly, the function MPI_Cart_coords() can be used to retrieve the

coordinates of a task as follows:

MPI_Cart_coords(communicator, rank, ndims, &coords)

This function returns the coordinates coords of the task with rank rank in the

Cartesian structure communicator in which the number of dimensions is ndims.

TABLE 9.2 Relation Between Task Ranks and Task

Coordinates

Task Ranks

in the Group

Task Coordinates

in gridcomm

0 (0,0)

1 (0,1)

2 (0,2)

3 (1,0)

4 (1,1)

5 (1,2)
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9.2.3 Graph Topology

The function MPI_Graph_create() shown below can be used to create a new

communicator to which a graph topology information is attached. It takes as input

the following specifications and returns a handle to a communicator with the new

graph topology:

. An existing communicator, which defines the set of tasks on which the topology

is to be mapped.

. The number of nodes in the graph.

. Information about the degree (number of neighbors) of each node.

. The edges in the graph.

. Whether or not the system is allowed to optimize the mapping of the virtual

topology on the underlying physical processors. This may result in a change

in the original task ranking in the group associated with the existing

communicator.

MPI_Graph_create(oldcomm, nnodes, index, edges,
mapping, newcomm)

The parameters of this function and their meanings are summarized in Table 9.3.

Example 4 Suppose that an MPI application has started with six tasks: T0, T1, T2,

T3, T4, T5 having ranks 0, 1, 2, 3, 4, 5, respectively. Suppose that we want to

associate the graph shown in Figure 9.1 to the communicator covering all the

tasks (MPI_WORLD_COMM). The following segment of code shows how to associate

the above graph to the new communicator graphcomm using the function

MPI_Graph_create():

MPI_Comm graphcomm;/* new communicator */
int nnodes = 6;

TABLE 9.3 Parameters of Function MPI_Graph_create()

Parameter Meaning

Oldcomm Input communicator (handle).

nnodes Number of nodes in the graph (integer). Nodes are numbered 0, 1, . . . ,

nnodes 21.

index Array of integers describing node degrees. The ith entry is the total number of

neighbors of the first i graph nodes.

edges Array of integers describing graph edges. The list of neighbors of nodes 0,

1, . . . , nnodes 21 are stored in consecutive locations in this array.

mapping Boolean specifying whether the system is allowed to reorder the ranks (true)

or not (false).

newcomm New communicator with graph topology (handle).
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int index[6] = {2,5,8,12,14,16};
int edges[16] = {1,2,0,3,4,0,3,5,1,2,4,5,1,3,2,3};
int mapping = 0;
MPI_Graph_create(MPI_WORLD_COMM, nnodes, index, edges,

mapping, graphcomm)

9.3 TASK COMMUNICATION

Communication among MPI tasks is based on the message passing paradigm. MPI

utilizes a rich set of functions for sending and receiving messages. Communication

between two tasks involves the following components:

1. Sender, which is usually identified by its rank.

2. Receiver, which is usually identified by its rank.

3. Message data.

4. Message tag, which helps multiple messages between two tasks be handled

in order.

5. Communicator, which provides a context for communication.

In this section, we study how to use the above components in several functions to

perform different types of communication between tasks.

9.3.1 Communication Modes

The basic functions to send and receive messages in MPI are the blocking send and

blocking receive. There are several variations of functions that facilitate different

kinds of communication modes. MPI supports the following modes.

Standard Send In this mode, the sender will block until its message has been

safely copied into either a matching receive buffer or a temporary system buffer.

It is up to the MPI implementation to decide whether or not a message should be

buffered. Once the send call returns, the send buffer can be overwritten and

0

1 2

3

4 5

Figure 9.1 Graph for Example 4.
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reused for other purposes by the sender. The following function is the standard

send in MPI:

MPI_Send(buf, count, data_type, to_whom, tag, communicator)

This function will send the message stored starting at address buf to the task whose

rank is given as to_whom. The message is consisting of count elements, each of

which is of type data_type. The message tag is given as tag. Both the sender

and the receiver must be parts of the same communicator communicator. If
the buffer is used to store the outgoing message, the sender will continue without

having to wait for a matching receive to be posted.

Blocking Receive The standard receive function in MPI is the blocking receive.

A call to this function will not return until it receives the message it is expecting in

its buffer. The following function is the blocking receive in MPI:

MPI_Recv(buf, count, data_type, from_whom, tag, communicator,
&status)

This receive will select a message with a matching sender (from_whom) and a

matching message tag (tag) for receipt into the buffer (buf). Additional status
information will be returned in (status).The status field is useful, particularly

when the source and/or the tag of the received message is not known to the receiver

as a result of using wild cards. The status is normally a structure consisting of two

fields MPI_SOURCE and MPI_TAG for the rank of the sender and the tag of the

received message, respectively. Again, the sender and the receiver should be partici-

pants in communicator.

Buffered Send (B) In the standard send described above, an outgoing message

may or may not be buffered based on the MPI system decision. Using buffered

mode, message buffering is guaranteed. That is, a buffered send may return whether

or not a matching receive call has been posted. Once the message information is buf-

fered, the send call will return and the send buffer becomes reusable. The format of

the buffered send is the same as in the standard send. The only difference is the

addition of the letter B to the name of the send function as MPI_Bsend().

Synchronous Send (S) Synchronous communication can be accomplished if

both the sender and the receiver block until the send and receive calls are posted

and the communication is complete. Since the standard receive is already blocking,

we just need a blocking send to be able to accomplish synchronous communication.

MPI provides the function MPI_Ssend() for this purpose. It has the same format

as the standard send and it can start without having to wait for a matching receive

call to be posted. However, it will not complete until a matching receive has been

posted and the receiver has started to receive the message.
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Ready Send (R) A send in the ready mode can be started only after a matching

receive has been posted. The function MPI_Rsend() is provided for this purpose.

The completion of the ready send however does not depend on the status at the

receiving end.

9.3.2 Nonblocking Communication

Message passing interface supports nonblocking communication in which a task can

begin a send or receive operation, move on to perform other work, and then return to

check the completion status of the messaging operation. These nonblocking send/
receive capabilities can be used interchangeably with the normal send/receive capa-
bilities and need not be paired. The use of nonblocking send (receive) can be accom-

plished in three steps:

1. Initiate a send (receive) using MPI_Isend() (MPI_Irecv()).

2. Do some computation during the communication time.

3. Complete the communication using MPI_Wait() and MPI_Test().

Initiating Nonblocking Communication Initiating a send operation in the

standard mode described above can be performed using the following function:

MPI_Isend(buf, count, data_type, to_whom, tag, communicator,
&request)

A call to MPI_Isend() will return before the message is copied out of the send

buffer. All the arguments of this function except one carry the same meaning of

the arguments of other send functions. The last argument, request, is a system

object that is returned when the function is called and can be accessed via a

handle. It is used to identify communication operations and match the operations

that initiate and complete a nonblocking communication. Similarly, initiating a non-

blocking receive operation can be performed using the following function:

MPI_Irecv(buf, count, data_type, from_whom, tag, communi-
cator, &request)

Calling MPI_Irecv() will initiate the receive operation. It will return immedi-

ately without having to wait for a message to be stored in the receive buffer. As

in the send case, the returned argument request can be used later to query the

status of the communication or wait for its completion. Note that MPI_Irecv()
does not return status information as it was shown in the blocking receive. The

status can be obtained when a call to complete the receive operation is made.

Initiating a send operation can also be done in the other send modes. In addition

to the letter I, a prefix of b, s, or r can be used for buffered, synchronous, or ready

mode, respectively (Table 9.4).
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Completing Nonblocking Communication MPI provides functions for test-

ing for the completion of nonblocking communication operations that have already

been initiated. One can either check the status of a send (receive) operation or just

wait until the operation is completed. The completion of a nonblocking send oper-

ation implies that the data has been copied out of the send buffer and the sender can

reuse the buffer for other purposes. The completion of a nonblocking receive oper-

ation indicates that the data has already been placed in the receive buffer and it is

ready for access by the receiver.

The following function is used to check the completion of a communication

operation:

MPI_Test(request, &flag, &status)

Calling this function returns the current standing of the communication operation

identified by request. The argument flag will be set to true if the communication

operation is complete and false otherwise. The status field will return additional

status information.

The following function will wait for a communication operation to complete:

MPI_Wait(request, &status)

A call to MPI_Wait() will return after the completion of the communication

operation identified by request.
In some cases, one may wish to test or wait for multiple nonblocking operations.

MPI provides functions to test or wait for all or any of a collection of nonblocking

operations using the following functions:

MPI_Testall(count, array_of_requests, &flag, &array_of_
statuses)

MPI_Testany(count, array_of_requests, &flag, &status)

MPI_Waitall(count, array_of_requests, &array_of_statuses)

MPI_Waitany(count, array_of_requests, &status)

TABLE 9.4

Initiate Send Mode

MPI_Isend() Standard

MPI_Ibsend() Buffered

MPI_Issend() Synchronous

MPI_Irsend() Ready
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9.3.3 Persistence Communication

MPI provides persistent communication requests constructs to help reduce the

communication overhead between a task and the communication controller. For

example, suppose that communication with the same argument list is repeatedly

executed in a program. It is possible to bind the list of communication arguments

to a persistent communication request once, and then repeatedly use that request

to initiate and complete messages. A persistent communication request is created

in MPI using one of the following functions: MPI_Send_init(), MPI_
Bsend_init(), MPI_Ssend_init(), MPI_Rsend_init(), and MPI_
Recv_init(). A persistent communication request is inactive after it is created.

This means that no active communication is associated with the request yet. A com-

munication that uses a persistent request is initiated by one of the following two

functions:

MPI_Start(request)

which starts the communication associated with request; and

MPI_startall(count, array_of_requests)

which starts all communication associated with requests in the array array_of_
requests.

Once communication is started, it is treated like other nonblocking communi-

cation operations. Recall that all nonblocking functions that we have seen so far

have a request argument, which is used to identify the nonblocking operations.

This argument is a system object that is returned when the function is called and

can be accessed via a handle.

9.4 SYNCHRONIZATION

As we discussed in the chapter on PVM, synchronization constructs are used to force

a certain order of execution among the activities of parallel tasks. In some cases par-

allel tasks are required to synchronize with each other at a given point during the

execution. Members of a group may need to wait at a synchronization point until

all tasks reach the same point. Synchronization in MPI can be achieved using mess-

age passing and barrier operations.

Precedence Synchronization Using the blocking receive operation (MPI_
Recv()) forces the receiving task to wait until a matching message is received.

The sender of this matching message may hold its message as long as it wants the

receiver to wait.
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Communication Rendezvous Using the synchronous mode of communi-

cation, two tasks can rendezvous at a synchronization point. If both send and receive

operation are blocking, the communication will not complete at either end until both

sender and receiver meet as shown in Figure 9.2.

Barriers Tasks in a group can synchronize at a synchronization point using a bar-

rier. No task can proceed beyond the barrier until all tasks have checked in at that

barrier. The group may include all tasks or only a subset of the tasks depending

on the communicator. The construct MPI_Barrier() takes a communicator as

input as follows:

MPI_Barrier(communicator)

Barrier synchronization is achieved by having all tasks in the communicator’s group

call the function MPI_Barrier(). A task waits at the barrier until all tasks

referenced by the communicator reach the barrier before continuing. A call to

MPI_Barrier() returns after all the communicator’s group members have

executed their calls to this function.

Example 5 Suppose that an MPI application has started with five tasks (T0, T1,

T2, T3, T4) having ranks 0, 1, 2, 3, 4. At the beginning, all five tasks are referenced

by the communicator MPI_COMM_WORLD. Thus, using the construct

MPI_Barrier(MPI_COMM_WORLD)

will force each task to wait at the barrier until the rest of the tasks reach their barriers

as shown in Figure 9.3.

Example 6 Consider the five tasks in the previous example. Suppose that we want

to use a barrier only for the tasks T2 and T3 as shown in Figure 9.4. To form a group

from a subset of tasks to check in at a barrier, one can exclude certain process ranks

MPI_Ssend()

MPI_Recv()

Sender Receiver

wait

MPI_Recv()

Receiver

wait

MPI_Ssend()

Sender

Sender waits for receiver Receiver waits for Sender

Figure 9.2 Communication rendezvous.
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from an existing group. In this case, we need to exclude the tasks whose ranks are 0,

1, 4 from the current group and then create a new communicator for the new group.

The following four steps show how this can be done:

1. We use the following function to form a group of all tasks (world_group)
from the default communicator:

MPI_Comm_group(MPI_COMM_WORLD,&world_group)

2. We save the ranks 0, 1, 4 in the array exclude_ranks of size 3. We then

call the following function, which will create the new group

(small_group):

MPI_Group_excl(world_group,3,exclude_ranks,&small_
group)

3. We use the existing communicator MPI_COMM_WORLD and the newly

formed group small_group to form a new communicator new_comm
that matches the new group as follows:

MPI_Comm_create(MPI_COMM_WORLD,small_group,&new_comm)

T0 T1 T2 T3 T4

MPI_Barrier(MPI_COMM_WORLD)

Figure 9.3 Barrier synchronization for all tasks in MPI_COMM_WORLD.

T0 T1 T2 T3 T4

MPI_Barrier(new_comm)

Figure 9.4 Barrier synchronization for a subset of the tasks.
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4. Finally, we use the following construct to force only T2 and T3 to wait at the

barrier:

MPI_Barrier(new_comm)

9.5 COLLECTIVE OPERATIONS

Collective operations in MPI are those operations that are applied to all members of

a communicator’s group. A collective operation is usually defined in terms of a

group of tasks. The operation is executed when all tasks in the group call the collec-

tive routine with matching parameters. There are three types of collective oper-

ations: task control, global computation, and data movement. The barrier function

MPI_Barrier() that was discussed in the previous section can be classified as

a task control collective operation. In the remainder of this section, we will cover

global computation and data movement operations.

9.5.1 Global Computation

We discuss a number of global reduction and scan operations. In reduction, an

associative, commutative operation is applied across data items provided by mem-

bers of a group of tasks. A reduction operation could be user-defined function or MPI

predefined operation such as sum, minimum, maximum, and so on. The result of

applying a reduction operation may be sent to every task in the group, or it may

be returned to only a single task, called the root. There are two types of scan oper-

ations: prefix and postfix scan. The result of a scan operation is different at each task

based on the rank of the task. Given members of a group T0, T1, T2, . . . , Tn2 1

holding data items d0, d1, d2, . . . , dn2 1 and an operator /. In a prefix scan,

the result at task Ti is T0 / T1/ � � �/ Ti. In a postfix scan, the result at task Ti

is Ti / Tiþ 1 T/ � � �/ Tn2 1.

Global Combine MPI provides the following reduction function in which the

result returns only to the root:

MPI_Reduce(sbuf, rbuf, n, data_type, op, rt, communicator)

The parameters of this function and their meanings are summarized in Table 9.5.

The reduction operator is applied to the data given in the send buffer of each task

in the communicator’s group. The result will be returned only to the receive buffer of

the root. Note that the receive buffer is only meaningful to the root (see Fig. 9.5).

MPI provides a number of predefined reduction operations as in Table 9.6.

Many-to-Many Reduction A variant of the global combine operation is the

many-to-many reduction operation in which the result is returned to all members
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of the group as shown in Figure 9.6. MPI provides the following function for this

operation:

MPI_Allreduce(sbuf, rbuf, n, data_type, op, communicator)

As in MPI_Reduce(), the arguments are the address of the send buffer, address of

the receive buffer, number of data elements in the send buffer, type of each element,

reduction operator, and a communicator. The result of the reduction appears in the

receive buffers of all members of the communicator’s group.

Scan MPI provides the following function to perform a prefix reduction on data

associated with group members:

MPI_Scan(sbuf, rbuf, n, data_type, op, communicator)

TABLE 9.5

Parameter Meaning

sbuf Address of the send buffer.

rbuf Address of the receive buffer.

n Number of data elements in the send buffer.

data_type Type of each element in the send buffer.

op Reduction operator.

rt Rank of the root task.

communicator Communicator.

operator

root root

reduction

result

T0

Tn-1

T0

Tn-1

Before After

Figure 9.5 Reduce operation.
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This function has the same six arguments of MPI_Allreduce(). The argu-

ments are the address of the send buffer, address of the receive buffer, number of

data elements in the send buffer, type of each element, reduction operator, and a

communicator. After the execution of this function, the receive buffer of the task

of rank i will have the reduction of the values in the send buffer of the tasks of

ranks 0, 1, . . . , i, as shown in Figure 9.7.

9.5.2 Data Movement Operation

MPI supports a broad variety of data movement collective functions. The basic oper-

ations supported are broadcast, scatter, and gather. In a broadcast, one process sends

the same message to every member in the group. A scatter operation allows one pro-

cess to send a different message to each member. In gather, which is the dual oper-

ation of scatter, one process will receive a message from each member in the group.

These basic operations can be combined to form more complex operations.

TABLE 9.6 Predefined Reduction Operations

MPI Name Operation MPI Name Operation

MPI_SUM Sum MPI_LOR Logical or

MPI_PROD Product MPI_LXOR Logical exclusive or

MPI_MIN Minimum MPI_BAND Bitwise and

MPI_MAX Maximum MPI_BOR Bitwise or

MPI_LAND Logical and MPI_BXOR Bitwise exclusive or

operator

T0

Tn-1

T0

Tn-1

Before After

T1 T1

Figure 9.6 All reduce operation.
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Broadcasting MPI provides the following function to broadcast a message from

the root task to all tasks of the communicator’s group:

MPI_Bcast(buffer, n, data_type, root, communicator)

The parameters and their meanings are summarized in Table 9.7.

This function must be called by all members of the communicator’s group using

the same arguments for the root and communicator. The contents of the root’s buffer

will be copied to the buffers of all tasks (see Fig. 9.8).

Scatter and Gather Scatter and gather operations are dual to each other. While

the scatter function allows one task to distribute its buffer to each member in a

group, the gather function allows a task to build its buffer from pieces of data col-

lected from other members in a group. The MPI provides the following two func-

tions for scatter and gather:

MPI_Scatter(sbuf, n, stype, rbuf, m, rtype, rt, communicator)
MPI_Gather(sbuf, n, stype, rbuf, m, rtype, rt, communicator)

operator

T0

Tn-1

T0

Tn-1

Before After

T1 T1

operator

Figure 9.7 Prefix scan operation.

TABLE 9.7 Parameters for Broadcasting

Parameter Meaning

buffer Starting address of the buffer.

n Number of data elements in the buffer.

data_type Type of each element in the buffer.

root Rank of the root task.

communicator Communicator.
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In scatter, the send buffer at the root is divided into a number of segments, each of

size n. The first n elements in the root’s send buffer are copied into the receive buffer

of the first member in the group, the second n elements in the root’s send buffer are

copied into the receive buffer of the second member, and so on (see Fig. 9.9a).

In gather, each task (including the root) sends the contents of its send buffer to the

root task. The root receives the messages and stores them in rank order. The send

buffer of the first member in the group is copied into the first m locations in the

receive buffer of the root. The send buffer of the second member in the group is

copied into the second m locations in the receive buffer of the root, and so on (see

Fig. 9.9b). The parameters and their meanings are summarized in Table 9.8.

T0

Tn-1

T0

Tn-1
Before After

T1 T1

Figure 9.8 A broadcast from task T0 (root).

T0

Tn-1

T0

Tn-1

Before After

T1 T1

T0

Tn-1

T0

Tn-1

Before After

T1 T1

(a) (b)

Figure 9.9 (a) Scatter from the root task T0; (b) Gather at the root task T0.
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These functions must be called by all members of the communicator’s group

using the same arguments for the root and communicator. The send buffer par-

ameters are ignored at all tasks except the root in the case of a scatter operation,

whereas in gather the receive buffer parameters are ignored at nonroot tasks. In scat-

ter, n and stype at the root must be equal to m and rtype at all other receiving

tasks. Similarly, m and rtype at the root must be equal to n and stype at all

other receiving tasks in gather.

9.6 TASK CREATION

In this section we show how an MPI application could spawn new tasks and establish

communication among them in MPI-2. We will refer to the spawning tasks as parents

and the spawned as children. In what follows, we present two functions MPI_Comm_
spawn() and MPI_Comm_spawn_multiple(). Each of these two functions

is a collective operation that must be called by the parent tasks. The outcome of a

successful execution of these functions is another group of child tasks. Both the

parents and children share a new intercommunicator as shown in Figure 9.10.

9.6.1 Bridging Between Spawned and Spawning Tasks

Allowing dynamic tasks in MPI-2 does not only imply the creation of new tasks. It

may also require the establishment of communication between the new and the pre-

viously existing tasks. We need a way to provide a bridging communicator between

the old and the new tasks. This is achieved in MPI-2 using intercommunicators.

Figure 9.11 illustrates the use of intercommunicators to establish communication

between parent and child tasks. On the spawning side, the local group of the intercom-

municator is the group that did the spawning; and the remote group is the group that

was spawned. On the spawned side, the local group is set to the MPI_COMM_WORLD
of the new tasks and the remote group is set to the group that did the spawning.

TABLE 9.8 Parameters for Scatter and Gather

Parameter Meaning

sbuf Starting address of the send buffer.

n Number of elements sent to each task by the root (scatter case) or

number of elements in the send buffer (gather case).

stype Type of each element in the send buffer.

rbuf Starting address of the receive buffer.

m Number of data elements in the receive buffer (scatter case) or number

of elements received by the root from each task (gather case).

rtype Type of each element in the receive buffer.

rt Rank of the sending task (scatter case) or receiving task (gather case).

communicator Communicator.
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9.6.2 Starting Identical Tasks

The MPI_Comm_spawn() function is used to create a number of identical copies

of a given program and establish communication with them. The format of this func-

tion is given as:

MPI_Comm_spawn(command, argv, maxprocs, info, root, comm,
&inter_comm, &array_error_codes)

This function has six input parameters and returns an intercommunicator inter_
comm and an array of error codes array_error_codes. The first parameter

Before Spawning

After Spawning

Children Parents

Parents

intercommunicator

Figure 9.10 Creating children and establishing communication with them via

intercommunicator.

Spawning Ta sks (Parents)

Spawned Tasks (Children)

MPI_COMM_WORLD

MPI_COMM_WORLD

Intercommunicator

local group

Parent Side

remote group

local group

Children Side

remote group

Figure 9.11 Establishing communication using intercommunicators.
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command is a string containing the name of the program to be spawned. The par-

ameter argv is an array of strings specifying the arguments that are passed to the

spawned program. MPI tries to create maxprocs copies of the program specified

in the first parameter. The parameter root specifies the rank of the root task in the

group corresponding to the communicator comm. This function must be called by all

the tasks in the group corresponding to comm. However, the first four parameters are

meaningful only at the root.

Unlike PVM, MPI-2 does not specify how to find the executable code. It is left to

the implementation to decide how this is done. The parameter info is a set of key–

value pairs of type MPI_Info that tells the runtime system where and how to start

the tasks. MPI reserves several keys and requires that if an implementation uses a

reserved key, it must provide the specified functionality. Table 9.9 summarizes

the reserved keys related to spawn functions. Note that the format of the different

values is determined by the implementation. Note also that the info parameter

could be set to an empty string to get the implementation defaults.

This function returns an intercommunicator inter_comm in the parent. This

intercommunicator contains the parent tasks in the local group and the newly

spawned child tasks in the remote group. The intercommunicator can be obtained

in the children through the function MPI_Comm_get_parent(), which has

only one argument of type MPI_Comm that returns the parent intercommunicator.

The parameter array_error_codes is an array of size maxprocs in which

MPI reports the status of each task that MPI requested to start. If the spawning was

successful and all tasks were launched, the array array_error_codes will be

filled with the value MPI_SUCCESS. Otherwise, only the number of elements

equal to the number of successful tasks will contain MPI_SUCCESS, while the

rest will have error codes indicating why these tasks did not start.

9.6.3 Starting Multiple Executables

In this section, we show how to spawn different executable codes in MPI using

MPI_Comm_spawn_multiple. This function makes it possible to start multiple

TABLE 9.9 Keys Related to Spawn Functions

Key Value

host Host name.

arch Architecture name.

dir Name of a directory on the remote machine in which the spawned tasks execute.

path Set of directories on remote machine where the implementation should look for

the executable.

file Name of a file in which additional information is specified.

soft A set of numbers which are allowed values for the number of tasks that the

different versions of spawn functions may create.
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programs or the same program with multiple sets of arguments. The format of this

function is given as:

MPI_Comm_spawn_multiple(count, command_array, argv_array,
maxprocs_array, info_array, root, comm, &inter_comm,
&array_error_codes)

The parameters of MPI_Comm_spawn_multiple are similar to those of MPI_
Comm_spawn. The first parameter gives the number of commands. Each of the next

four parameters is simply an array of the corresponding argument in MPI_Comm_
spawn. All the spawned tasks will have the same MPI_COMM_WORLD. The ranks
of the spawned tasks will correspond directly to the order in which the commands

are specified in the second parameter.

For example, suppose that the function MPI_Comm_spawn_multiple is

invoked with count ¼ 5; and the five commands would generate 4, 3, 7, 5, and

2 tasks, respectively. A successful execution of this function will spawn 21 tasks,

the tasks corresponding to the five command lines have the ranks 0–3, 4–6,

7–13, 14–18, and 19–20, respectively. Note that the array array_error_
codes will have 21 elements filled with MPI_SUCCESS.

Note that using MPI_Comm_spawn_multiple is not equivalent to calling

MPI_Comm_spawn multiple times. In addition to the difference in performance,

all the tasks generated by MPI_Comm_spawn_multiple belong to the same

MPI_COMM_WORLD, where as in MPI_Comm_spawn would create multiple sets

of children with different MPI_COMM_WORLDs.

9.7 ONE-SIDED COMMUNICATION

MPI provides constructs for Remote Memory Access (RMA), in which a task is

allowed to access the remote memory of another task. These constructs are useful

in applications with dynamically changing data access patterns but where the data

distribution is fixed or slowly changing. The traditional send/receive communi-

cation constructs covered earlier require the explicit involvement of two or more

tasks in the data transfer. Both sender and receiver should issue matching operations

in order for the data transfer to take place. In the RMA model, only one task is sup-

posed to issue the data transfer operation; either the source or the destination. We

will use origin and target to denote the task that issues the RMA operation and

the other involved task, respectively. Remote memory access is supported via two

main operations, put and get. The execution of a put operation is equivalent to the

execution of a send by the origin task and a matching receive by the target task.

Clearly, all the parameters are issued in only one call in the put case. Similarly,

the get operation is equivalent to a receive by the origin task and a matching send

by the target task (see Fig. 9.12).
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9.7.1 Specifying Target Windows

Before RMA operations are issued, each task must specify a memory window that is

made available for access by remote tasks. This can be achieved using a collective

operation that returns a window object, which will be used by tasks in their RMA

operations. The window object represents the group of tasks that own and access

a set of windows, and the attributes of each window as specified by each task.

The function MPI_Win_init() is provided by MPI for this purpose as follows:

MPI_Win_init(base, size, disp_unit, info, comm, &win)

This function must be executed by all tasks sharing the communicator comm.
Each task specifies a window of existing memory for remote access by other

tasks. This window consists of size bytes, starting at address base. The parameter

disp_unit facilitates the computation of displacements in a heterogeneous

environment. Since the size of a certain data type may be different in different archi-

tectures, each task should provide the proper disp_unit for its particular

machine. This way, array entries of a given type, for example, can be specified by

their indices, with the scaling done automatically by MPI. Again, the parameter

info provides optimization information to the run time system.

The different tasks can specify completely different target windows with different

starting locations, sizes, and displacement units. Additionally, if a task chooses not

to make any memory available for remote access, it should specify size ¼ 0.

The returned window object win will carry information about the group associ-

ated with the already existing communicator comm and the set of target windows

specified by the MPI_Win_init() operation.

Remote

memory

MPI_Put

Remote

memory

MPI_Get

TargetOrigin

Figure 9.12 Put and get RMA operations.
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9.7.2 Put and Get Operations

The MPI-Put() function transfers a number of successive elements from a buffer

at the origin task to a remote buffer in the target task. Both the origin and target tasks

must share a communicator whose group and other window attributes are carried in

a window object created using the collective operation MPI_Win_init(). The
function takes eight input arguments as follows.

MPI_Put(origin_addr, origin_count, origin_datatype, target_
rank, target_disp, target_count, target_datatype, win)

The first three arguments: origin_addr, origin_count, and origin_
datatype provide information about the data elements to be transferred. They

specify the address of the input buffer, how many elements to be transferred, and

data type of these elements at the origin task.

Calling this function transfers the data from the origin task with rank target_
rank in the group associated with the window object win. Note that the target task
may be indentical to the origin task. In this case the function is used to move data

within the origin task’s memory.

The data is written in the target buffer at the following address: (window_base
+ Target_disp * disp_unit), where window_base and disp_unit are

the base address and window displacement unit specified by the target task using

MPI_Win_init(). The target buffer is specified by the arguments target_
count and target_datatype.

Similarly, the MPI_Get() function transfers a number of successive elements

from a buffer at the target task to a buffer in the origin task. The data transfer

in this case is done in the opposite direction compared to the data transfer in the

put case.

MPI_Get(origin_addr, origin_count, origin_datatype, target_
rank, target_disp, target_count, target_datatype, win)

The arguments of this function are similar to those in MPI_Put(). A summary of

the parameters and their meanings is given in the following table:

Parameter Meaning

origin_addr Address of buffer at the origin task.

origin_count Number of elements to be received.

origin_datatype Data type of elements to be received.

target_rank Rank of the target task.

target_disp Displacement from start of window to the receive buffer at the

target task.

target_count Number of elements to be sent.

target_datatype Data types of elements to be sent.

win Window object created by MPI_Win_init().
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It is also possible in a put operation to combine the data transferred to the target

task with the data that is already there. Instead of replacing the contents of the target

buffer, an accumulate operation can use a reduction operation to combine its

contents with the data transferred. MPI provides the following function:

MPI_Accumulate(origin_addr, origin_count, origin_datatype,
target_rank, target_disp, target_count, target_datatype,
op, win)

This function accumulates the contents of the origin buffer to the contents of the

target buffer using the operation op, which is a reduce operation.

9.8 CHAPTER SUMMARY

The Message Passing Interface (MPI) is a standard for writing message passing pro-

grams. It was developed during 1993 and 1994 by an international group of appli-

cation scientists, computer vendors, and software writers called the MPI Forum.

The experience gained from the wide use of the original MPI standard has helped

the MPI forum expand the standard in MPI-2. Starting in 1995, the MPI forum ident-

ified areas of great interest for MPI extension. The forum expanded the scope of MPI

to encompass a wider set of distributed and parallel programming constructs. MPI-2

was necessitated by a number of new trends in distributed and parallel computing.

The advances in network technology and the revolution in the way distributed sys-

tems have been used have created a need for dynamic task management in MPI. The

new wave of shared-memory and NUMA architectures led to the introduction of

one-sided communication operations. Currently, MPI is widely used in clusters

and other message passing system due to its rich functionality. In this chapter, we

only tried to touch on some of the important functions in MPI and their relation

to one another.

PROBLEMS

1. Explain the following terms:

(a) Synchronous versus asynchronous message passing;

(b) Blocking versus nonblocking communication;

(c) Message buffers;

(d) Deadlock;

(e) Collective operations;

(f) Barriers and precedence relations;

(g) Communication contexts;

(h) Virtual topologies;

(i) Derived datatypes.
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2. Explain howMPI send operation is different from the send operation in other

message passing systems (PVM, for example);

3. Explain how nonblocking communication can be used to improve

performance.

4. Simulate the following functions using other MPI functions:

MPI_Allreduce(), MPI_Bcast(), MPI_Scatter(), MPI_
Gather().

5. Given a number of MPI tasks, write MPI code to perform the following:

(a) Broadcast 100 integers from the task with rank 10 to all tasks;

(b) Gather 10 integers from tasks with ranks 0–3, 5–10, 17, 20 to the task

with rank 4;

(c) Scatter five integers from task with rank 4 to tasks with ranks 0–9;

(d) Have each task send 100 integers to task 0 but place each set of 10

integers apart at the receiving end;

(e) Compute the dot product of two arrays that are distributed to all tasks

and return the answer to task 0.

6. Consider the precedence graph of Figure 9.13 for three MPI tasks T0, T1, and

T2, where T0 ¼ ff1, f2, f3g, T1 ¼ fg1, g2, g3, g4g, and T2 ¼ fh1, h2, h3g.
Write the necessary MPI synchronization code to enforce the given pre-

cedence relations among the functions forming the three tasks.

7. Simulate the PVM task creation model using MPI constructs. Provide a tem-

plate that can be used to convert PVM programs to MPI.

8. Contrast the send/receive operations versus the one-sided communication

operations in MPI.

f1

g1

h1

f2

f3

g2

g3

g4

h2

h3

T0 T1 T2

Figure 9.13 Precedence graph for Problem 6.
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9. Simulate the following functions using other MPI communication functions:

MPI_Get(), MPI_Put().

10. The traveling salesman problem is to find the shortest route connecting

a set of cities, visiting each city only once. This problem is known to be

NP-complete and the simulating annealing method has been used to solve

it heuristically. Write an MPI parallel program to solve the problem for a

fixed number of cities.
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&CHAPTER 10

Scheduling and Task Allocation

After a computational job is designed and realized as a set of tasks, an optimal

assignment of these tasks to the processing elements in a given architecture needs

to be determined. This problem is called the scheduling problem and is known to

be one of the most challenging problems in parallel and distributed computing.

The goal of scheduling is to determine an assignment of tasks to processing elements

in order to optimize certain performance indexes. Performance and efficiency are

two characteristics used to evaluate a scheduling system. We should evaluate a sche-

duling system based on the quality of the produced task assignment (schedule) and

the efficiency of the scheduling algorithm (scheduler). The produced schedule is

judged based on the performance criterion to be optimized, while the scheduling

algorithm is evaluated based on its time complexity. For example, if we try to opti-

mize the completion time of a program, the less the completion time, the better the

schedule will be. Also, if two scheduling algorithms produce task assignments that

have the same quality, the less complex algorithm is clearly the better.

The scheduling problem is known to be computationally intractable in many

cases. Fast optimal algorithms can only be obtained when some restrictions are

imposed on the models representing the program and the distributed system. Solving

the general problem in a reasonable amount of time requires the use of heuristic

algorithms. These heuristics do not guarantee optimal solutions to the problem,

but they attempt to find near-optimal solutions.

This chapter addresses the scheduling problem in many of its variations. We

survey a number of solutions to this important problem. We cover program and

system models, optimal algorithms, heuristic algorithms, scheduling versus allo-

cation techniques, and homogeneous versus heterogeneous environments.

10.1 THE SCHEDULING PROBLEM

10.1.1 A Classical Problem

The general scheduling problem has been described in a number of different ways in

different fields. The classical problem of job sequencing in production management
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has influenced most of the solutions to this problem, which generally assumes a set

of resources that could provide service to a set of consumers. The main objective is

to find an efficient policy for managing the access to the resources by the consumers

to optimize some desired performance measures. A task in a program, a job in a

factory, or a customer in a bank are examples of consumers that need service

from resources such as a processor in a computer system, a machine in a factory,

or a teller in a bank, respectively.

In distributed systems, the scheduling problem arises because the concurrent

parts of a program or set of programs must be arranged in time and space so that

the overall performance of the system is optimized. A program can be viewed as

a collection of tasks, which may run serially or in parallel. Normally, there are

some precedence constraints among the tasks that must be enforced. The goal of

scheduling is to determine an assignment of tasks to processing elements and an

order in which tasks are executed. If there are no precedence relations among the

tasks forming a program, this problem is known as the task allocation problem.

Task allocation has been studied extensively for the past two decades and is not

quite the same as scheduling. The task allocation problem will be studied in

detail in Section 10.7. The problem of scheduling program tasks on multiprocessor

systems is known to be NP-complete in general as well as in several special cases.

There are only a few known polynomial–time scheduling algorithms. The intract-

ability of the cheduling problem has led to a large number of heuristics, each of

which may work under different circumstances.

Scheduling techniques can be classified based on the availability of program task

information as deterministic and nondeterministic. In deterministic scheduling, all

the information about tasks to be scheduled and their relations to one another is

entirely known prior to execution time. In nondeterministic scheduling, some infor-

mation may not be known before the program executes. Conditional branches and

loops are two program constructs that may cause nondeterminism. Scheduling non

deterministic programs can be achieved using static or dynamic methods. The dis-

tinction indicates the time at which the scheduling decisions are made. With static

scheduling, information regarding the task graph representing the program must

be estimated prior to execution, while in dynamic scheduling, the parallel processor

system schedules tasks on the fly. Dynamic scheduling is usually implemented as

some kind of load-balancing heuristic. The disadvantage of dynamic scheduling is

the overhead incurred to determine the schedule while the program is running. In

deterministic (static) scheduling, each task in the program has a static assignment

to a particular processor, and each time that task is submitted for execution, it is

assigned to that processor. A combination of static and dynamic methods is referred

to as hybrid method. All the techniques presented in this chapter can be classified as

static scheduling techniques.

10.1.2 Scheduling Model

A scheduling system consists of: program tasks, target machine, and a schedule in

which a specific performance criterion is optimized.
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Program Tasks The characteristics of a parallel program can be defined as the

system (T, ,, D, A) as follows:

. T ¼ ft1, . . . , tng is a set of tasks to be executed.

. , is a partial order defined on T which specifies operational precedence con-

straints. That is ti , tj means that ti must be completed before tj can start

execution.

. D is an n � n matrix of communication data, where Dij � 0 is the amount of

data required to be transmitted from task ti to task tj, 1 � i, j � n.

. A is an n vector of the amount of computations; that is, Ai . 0 is a measure of

the amount of computation at task ti, 1 � i � n.

The relationship among tasks in distributed systems may or may not include pre-

cedence constraints. When some precedence constraints need to be enforced, the

partial order , is conveniently represented as a directed acyclic graph (DAG)

called a task graph. In this case, scheduling these tasks is usually referred to as Pre-

cedence Constrained Scheduling. A task graph G ¼ (T, E) has a set of nodes T and a

set of directed edges E. A directed edge (i, j) between two tasks ti and tj specifies that

ti must be completed before tj can begin. Associated with each node ti is its compu-

tational needs Ai (how many instructions or operations, for example). Associated

with each edge (i, j) connecting tasks ti and tj is the data size Dij , that is, the size

of a message from ti to tj .

Note that when there is no precedence constraints among the tasks, the relation-

ships are only communication among tasks, which can be represented in a undir-

ected graph called a Task Interaction Graph, as will be shown in Section 10.7.

Target Machine The target machine consists of a set of m heterogeneous proces-

sing elements connected using an arbitrary interconnection network. Associated

with each processing element Pi is its speed Si . The connectivity of the processing

elements can be represented using an undirected graph called the network graph.

Associated with each edge (i, j) connecting two processing elements Pi and Pj in

the network graph is the transfer rate Rij , that is, how many units of data can be trans-

mitted per unit of time over the link.

The Schedule A schedule of the task graph G ¼ (T, E) on a system of m proces-

sing elements is a function f that maps each task to a processing element and a start-

ing time. Formally, f : T! f1, 2, . . . , mg� [0,1). If f (v) ¼ (i, t) for some v [ T

we say that task v is scheduled to be processed by processor i starting at time t.

The function f can be illustrated as a Gantt chart where the start and finish times

for all tasks can be easily shown. A Gantt chart consists of a list of all processing

elements in a distributed system, and for each processing element, a list of all

tasks allocated to that processing element ordered by their execution time, including

task start and finish times.
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Our scheduling goal is to minimize the total completion time of a parallel pro-

gram. This performance measure is known as the schedule length or the maximum

finishing time of any task.

Execution and Communication Time Once the parameters of the task graph

and the target machine are known, the execution and communication times can

always be obtained as follows. The execution time of task ti when executed on

processor Pj is

Ai

Sj
units of time

The communication delay (over a free link) between tasks ti and tj when they are

executed on adjacent processing elements Pk and Pl is

Dij

Rkl

units of time

10.2 SCHEDULING DAGs WITHOUT CONSIDERING
COMMUNICATION

In this section, we present polynomial time-optimal algorithms for some restricted

versions of the scheduling problem. We present optimal algorithms in the following

three cases: (1) when the task graph is an in-forest or out-forest; (2) when the task

graph is an interval order; and (3) when there are only two processors available. In

the three cases, we assume the following:

. A task graph consists of n tasks;

. A target machine is made of m processors;

. The execution time of each task is one unit of time;

. Communication between any pair of tasks is zero;

. The goal is to find an optimal schedule that minimizes the total execution time.

The three algorithms belong to a class of scheduling algorithms called list schedul-

ing, under which many other schedulers are classified. In list scheduling, each task is

assigned a priority, and a list of tasks is constructed in a decreasing priority order. A

task becomes ready for execution when its immediate predecessors in the task graph

have already been executed or if it does not have any predecessors. When a pro-

cessor has no work to do, it starts the execution of the first ready task in the list

(the task with the highest priority). If more than one processor attempt to execute

the same task, the processor with the lowest index executes the task and the other

processors look for the next ready task. The schedulers in this class differ in the

way they assign priorities to tasks.
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10.2.1 Scheduling In-Forests/Out-Forests Task Graphs

We present one of the first polynomial–time algorithms to solve the scheduling

problem when the task graph is either an in-forest, that is, each node has at most

one immediate successor, or an out-forest, that is, each node has at most one immedi-

ate predecessor. Algorithm 1, which was introduced by Hu, finds an optimal schedule

in timeO(n) (Hu, 1961). The general strategy used in the algorithm is the highest level

first, where the level of a node x in a task graph is the maximum number of nodes

(including x) on any path from x to a terminal node. This should work fine for the

in-forest case, but it needs simple modification to be used in the out-forest case.

Algorithm 1
1. The level of each node in the task graph is calculated as given above, and used

as each node’s priority.

2. Whenever a processor becomes available, assign it the unexecuted ready task

with the highest priority.

This algorithm will not produce an optimal solution in the case of an opposing forest.

An opposing forest is the disjoint union of an in-forest and an out-forest. Scheduling

an opposing forest is proven to be NP-complete.

Example 1 Consider the in-forest task graph shown in Figure 10.1. The level of a

given node in the task graph can be computed as the number of nodes on the path from

this node to the only terminal node m. For example, the level of node d is the number

of nodes on the path d, i, k,m, which is 4. The level of each node is calculated and used

as its priority as shown in Figure 10.1. When more than one task have the same

priority, ties are broken alphabetically. For example, tasks a, b, and c have the

same priority 5, but task a is selected for scheduling first, followed by b, and finally c.

a b c
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Figure 10.1 In-forest task graph and its schedule on four processors.
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The Gantt chart in the figure shows the scheduling of the task graph on four pro-

cessors. The schedule length is five units of time, which is the optimal schedule.

Note that the length of the longest path from a source node to a terminal node (critical

path) is also 5, which means that regardless of the number of processors that we may

use, we will not be able to achieve schedule length shorter than five units of time.

10.2.2 Scheduling Interval Ordered Tasks

In this section, we deal with a special class of system tasks called interval ordered

tasks. The term interval ordered tasks is used to indicate that the task graph that

describes the precedence relations among the system tasks is an interval order. A

task graph is an interval order when its elements can be mapped into intervals on

the real line and two elements are related if and only if the corresponding intervals

do not overlap. The interval order has a special structure that is established by the

following property. For any interval ordered pair of tasks u and v, either the succes-

sors of u are also successors of v, or the successors of v are also successors of u.

The following algorithm was introduced by Papadimitriou and Yannakakis

(1979) to solve the problem in O(nþ e) time complexity, where n is the number

of tasks and e is the number of arcs in the interval order.

Algorithm 2
1. The number of all successors of each node is used as each node’s priority.

2. Whenever a processor becomes available, assign it the unexecuted ready task

with the highest priority.

Example 2 Consider the interval order task graph shown in Figure 10.2. Using

Algorithm 2, the number of successors of a node will be used as its priority. For

example, the priority of task a is 8 while the priority of task b is 6, which implies

that task a will be considered for scheduling first. The Gantt chart in Figure 10.2
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shows the scheduling of the task graph on three processors. The schedule length is

four units of time, which is the optimal schedule. Note that the length of the longest

path from a source node to a terminal node (critical path) is also 4, which means

regardless of the number of processors that we may use, we will not be able to

achieve schedule length shorter than four units of time.

10.2.3 Two-Processor Scheduling

In this case the number of processors is limited to only two (m ¼ 2). The precedence

relations in the task graph could have an arbitrary structure. The first polynomial

time algorithm for this problem, based on matching techniques, was introduced

by Fujii et al. (1969). The time complexity of Fujii’s algorithm is O(n2.5). Improved

algorithms have been obtained by Coffman (1976), Fujii et al. (1969), Sethi (1976)

and Gabow (1982). The time complexities of these three algorithms are O(n2),

O(min(en, n2.61)), and O(eþ na(n)), respectively, where n is the number of nodes

and e is the number of arcs in the task graph. In this section, the algorithm introduced

by Coffman and Graham is presented.

Algorithm 3
1. Assign 1 to one of the terminal tasks.

2. Let labels 1, 2, . . . , j2 1 have been assigned. Let S be the set of unassigned

tasks with no unlabeled successors. We next select an element of S to be

assigned label j. For each node x in S define l(x) as follows: Let L(y1),

L(y2), . . . , L(yk) be the labels already assigned to the immediate successors

of x. Then l(x) is the decreasing sequence of integers formed by ordering

the set fL(y1), L(y2), . . . , L(yk)g. Let x be an element of S such that for all

x0 in S, l(x) � l(x0) (lexicographically). Assign j to x (L(x) ¼ j).

3. Use L(v) as the priority of task v and ties are broken arbitrarily.

4. Whenever a processor becomes available, assign it the unexecuted ready task

with the highest priority. Ties are broken arbitrarily.

Since each task executes for one unit of time, processors 1 and 2 both become avail-

able at the same time. We assume that processor 1 is scheduled before processor 2.

Example 3 Figure 10.3 shows a task graph and its schedule without communi-

cation on two processors using Algorithm 3. The two terminal nodes j and k are

assigned the labels 1 and 2, respectively. At this point the set S of unassigned

tasks with no unlabeled successors becomes fh, ig. It can be noticed that

l(h) ¼ f2, 1g and l(i) ¼ f2g. Since f2g � f2, 1g (lexicographically), we assign

labels 3 and 4 to tasks i and h, respectively. The algorithm continues until all

tasks are labeled. The reader is encouraged to try to label the rest of the nodes in

the task graph. The labels of all the nodes in the task graph are given in the table

of Figure 10.3. Task a with the highest label gets scheduled first on P1, then task

b on P2, and so on until all tasks are scheduled.
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10.3 COMMUNICATION MODELS

There are two main components that contribute to the program completion time:

computing time and communication delay. In this section, we present two methods

that can be used to compute the program completion time. In these two methods,

communication delay is computed differently according to three models. In this sec-

tion, we illustrate the different communication models and their role in computing

the program completion time.

10.3.1 Completion Time as Two Components

Given a task graphG ¼ (T, E) and the allocation of its tasks onm processors. We use

proc(v) to refer to the processor on which task v is allocated. This allocation can be

easily represented using a Gantt chart in which communication is not considered.

The Gantt chart does not reflect the communication delay, but it shows that the

precedence relations between tasks are preserved.

The execution time component of the program completion time can be deter-

mined from the Gantt chart as the maximum finishing time of any task, which is

also called the schedule length. Now, if we can also determine the total communi-

cation delay, we should be able to compute the program completion time as follows:

Program Completion Time ¼ Execution Timeþ Total Communication Delay

The total communication delay can be computed as follows:

Total Communication Delay ¼ Total Number of Messages

* Communication Delay per Message:

The total number of messages can be obtained according to two models as follows.
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Model A The total number of messages is defined as the number of node pairs

(u, v) such that (u, v) [ E and proc(u) = proc(v).

Model B The total number of messages is defined as the number of processor–

task pairs (P, v) such that processor P does not compute task v but computes at

least one immediate successor of v.

10.3.2 Completion Time from the Gantt Chart

The existence of an I/O processor implies that a processing element can execute a

task and communicate with another processing element at the same time. Conse-

quently, tasks can be scheduled for execution in the communication holes in a

Gantt chart. The communication delay is reflected in the Gantt chart representing

the schedule. Therefore, the program completion time can be determined directly

from the Gantt chart as follows:

Program Completion Time ¼ Schedule Length

The communication delay should be considered in the Gantt chart according to the

following communication model.

Model C This model assumes the existence of an I/O processor that is associated

with every processor in the system. A task can be assigned to a processor for

execution while this processor is performing communication.

Communication delay between two tasks allocated to the same processor is

negligible. Communication delay between two communicating tasks allocated to

two different processors is a function of the size of the message, the route, and

the communication speed.

Example 4 Consider the task graph shown on Figure 10.4a. Suppose that each of

the five tasks takes one unit of execution time on either P1 or P2, and task a sends

messages to tasks b, c, d, and e. In this example we try to illustrate the differences

between the three communication models.

In Models A and B, let us assume that tasks a, b, and d are allocated to processors

P1 while tasks c and e are assigned to P2 as shown in Figure 10.4b. Using Model A,

the total number of messages ¼ j(a, c), (a, e)j ¼ 2. On the other hand if we follow

Model B, the total number of messages ¼ j(a, P2)j ¼ 1. If we assume that each mess-

age takes one unit of time, the program completion time can be obtained as follows:

. Using Model A, Program Completion Time ¼ 3þ 2 ¼ 5 units of time.

. Using Model B, Program Completion Time ¼ 3þ 1 ¼ 4 units of time.

In Model C, we assume that the communication delay between two communica-

ting tasks allocated to two different processors is one unit of time. Figure 10.4c
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shows that task b is assigned to the same processors as a, which implies no delay.

Task d cannot start on P2 before the arrival of its message from a after one unit

of time. Therefore, the program completion time is:

. Program Completion Time ¼ schedule length ¼ 4 units of time.

10.4 SCHEDULING DAGs WITH COMMUNICATION

When communication cost is considered, we present two algorithms to schedule in-

forests/out-forests, and interval orders. In these two cases, we assume the following:

. A task graph consisting of n tasks;

. A target machine made of m processors;

. The execution time of each task is one unit of time;

. Communication according to Model C;

. The communication delay between two communicating tasks scheduled on two

different processors is one unit of time;

. The communication delay between two communicating tasks scheduled on the

same processor equals zero;

. The goal is to find an optimal schedule that minimizes the total execution time.

10.4.1 Scheduling In-Forests/Out-Forests on Two Processors

The algorithm presented here was introduced by El-Rewini and Ali (1994). The

algorithm is based on the idea of adding new precedence relations to the task

graph in order to compensate for communication. The task graph after adding the

new precedence relations is called the augmented task graph. Scheduling the
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augmented task graph without considering communication is equivalent to schedul-

ing the original task graph with communication. Algorithm 4 produces an optimal

schedule when the task graph is an in-forest. It can be used in the out-forest case

with simple modification. We provide the following definitions:

1. Node Depth The depth of a node is defined as the length of the longest path

from any node with depth zero to that node. A node with no predecessors

has a depth of zero. In other words, depth(u) ¼ 1þmaxfdepth(v)g, 8 v [
predecessors(u); and depth(u) ¼ 0 8 u, predecessors(u) ¼ f.

2. Operation Swapall Given a schedule f, we define the operation Swa-

pall( f, x, y), where x and y are two tasks in f scheduled to start at time t on

processors i and j, respectively. The effect of this operation is to swap all the

task pairs scheduled on processors i and j in the schedule f at time t1, 8 t1, t1 � t.

Algorithm 4
1. Given an in-forest G ¼ (V, A), identify the sets of siblings: S1, S2, . . . , Sk,

where Si is the set of all nodes in V with a common child child(Si).

2. A1 A.

3. For every set Si

(a) Pick node u [ Si with the maximum depth

(b) A1 A12 (v, child(Si)) 8 v [ Si and v = u

(c) A1 A1 U (v, u) 8 v [ Si and v = u.

4. Obtain the schedule f by applying Algorithm 1 on the augmented in-forest

F ¼ (V, A1).

5. For every set Si in the original in-forest G

if node u (with the maximum depth) is scheduled in f in the time slot

immediately before child(Si) but on a different processor, then apply the

operation swapall( f, child(Si), x), where x is the task scheduled in the

time slot immediately after u on the same processor.

Algorithm 4 selects the node u that has the maximum depth from every set of siblings Si
and places it after the other members of Si , but before the common child of Si , child(Si).

In other words, Algorithm 4 adds an arc from every node v, v [ Si and v = u to the

node u. Note that the augmented task graph constructed is also an in-forest. These

added arcs compensate for communication delay. Thus, Algorithm 1 is applied to

this augmented in-forest to obtain a schedule where communication delays are not con-

sidered. The operation swapall is applied when communication restrictions are violated

in the output schedule. The time complexity of the algorithm is O(n2þ nm).

Example 5 This example illustrates how to schedule the in-forest task graph

shown in Figure 10.5a on two processors using Algorithm 4. Assume that each of

the tasks in the task graph takes one unit of time on either one of the two processors,

and Model C of communication is followed. The communication delay between two
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communicating tasks is one unit of time if allocated to two different processors,

otherwise the delay is ignored.

. We identify the sets of siblings with a common child. Figure 10.5b shows four

sets as follows: S1 ¼ fa, bg, S2 ¼ {c, d}, S3 ¼ {e, f}, S4 ¼ {g, h}.

. We pick the node that has the maximum depth from each set. Since a and b in S1
and e and f in S3 have the same depth, we select b from S1 and f from S2 at

random. Nodes c and g are the ones that have the maximum depth in S2 and

S4 , respectively. These selected nodes are shaded in Figure 10.5b.

Figure 10.5 Scheduling in-forests with communication (a) original task graph (G);

(b) node u in each set Si in G; (c) augmental task graph (F); (d) task priority in F; (e)

optimal schedule of F (without communication); and ( f ) optimal schedule of G (with

Model C communication).
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. The augmented task graph (F) is constructed as shown in Figure 10.5c.

. Algorithm 1 for scheduling in-forests without considering communication can

be applied to the augmented task graph (F). Figures 10.5d and e show the task

priorities and the optimal schedule when communication is ignored.

. The schedule shown in Figure 10.5e is not correct when communication is

considered because the communicating tasks b and c are allocated to different

processors but there is no delay left for communication according to Model C.

The operation swapall is applied to fix this problem.

. Figure 10.5f shows the final optimal schedule on two processors when com-

munication is considered.

10.4.2 Scheduling Interval Orders with Communication

We introduce an optimal algorithm to schedule interval orders on an arbitrary

number of processors when communication delay is considered. This algorithm

was introduced by Ali and El-Rewini (1995) to solve the problem when execution

time is the same for all tasks and is identical to communication delay. We first

provide the following definitions:

. start-time(v,i,f) The earliest time at which task v can start execution

on processor Pi in schedule f.

. task(i,t,f) The task scheduled on processor Pi at time t in schedule f.

If there is no task scheduled on processor Pi at time t in schedule f, then

task(i,t,f) returns the empty task f. Note that the priority of the empty

task is less than the priority of any other task.

Algorithm 5
1. The number of all successors of each node is used as each node’s priority.

2. Nodes with the highest priority are scheduled first.

3. Each task v is assigned to processor Pi with the earliest start time.

4. If start-time(v,i,f) ¼ start-time(v,j,f), 1 � i, j � m, task v

is assigned to processor Pi if task(i, start-time(v,i,f)-1, f) has

the smaller priority (smaller number of successors).

The time complexity of the algorithm is O(eþ nm) where n is the number of tasks,

e is the number of arcs in the interval order, and m is the number of processors.

Example 6 In this example, we use Algorithm 5 to schedule an interval order with

communication according to Model C on three processors. Figure 10.6 shows an

interval order consisting of 12 nodes. The steps of the algorithm can be summarized

as follows:

. The number of successors for each node is obtained and used as each task’s

priority as shown in the table of Figure 10.6. For example, the priority of

task d is 8.
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. Tasks d, c, and b are considered for scheduling in that order and are scheduled

to start at time 0 on processors P1 , P2 , and P3 , respectively.

. Task a can start execution at time 1 on any of the three processors. But accord-

ing to the algorithm it is allocated to processor P3 after task b with the smallest

priority.

. Task e is considered next and it is scheduled to start at time 2 on processor P3 .

Note that there is one unit of communication delay between e and its predeces-

sors d and c that are scheduled on different processors (P1 and P2).

. This process continues until all tasks are assigned processors.

10.5 THE NP-COMPLETENESS OF THE SCHEDULING PROBLEM

NP-complete problems are the problems that are strongly suspected to be computa-

tionally intractable. An intuitive definition of NP-complete problems is introduced

here, for a formal definition and comprehensive presentation, refer to Ullman

(1975). There is a host of important problems that are roughly equivalent in complex-

ity and form the class of NP-complete problems. This class includes many classical

problems in combinatorics, graph theory, and computer science, such as the traveling

salesman problem, the Hamilton circuit problem, and integer programming. The best-

known algorithms for these problems could take exponential time on some inputs. The

exact complexity of these NP-complete problems has yet to be determined and it

remains the foremost open problem in theoretical computer science. Either all these

problems have polynomial–time solutions, or none of them does.

In this section we list some of the NP-complete results in the scheduling problem.

It has been proven that the problem of finding an optimal schedule for a set of tasks is

NP-complete in the general case, and in several restricted cases.
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10.5.1 NP-Completeness Results when Communication
is not Considered

In what follows, we give the formal definition of some versions of the scheduling

problem that were proven to be NP-complete when communication among tasks

is not considered.

1. General Scheduling Problem Given a set T of n tasks, a partial order, on T,

weight Wi , 1 � i � n, and m processors, and a time limit k, does there exist a

total function h from T to {0, 1, . . . , k2 1} such that:

. if i , j, then h(i)þWi � h( j)

. for each i in T h(i)þWi � k

. for each t, 0 � t , k, there are at most m values of i for which h(i) � t ,
h(i)þWi.

The following problems are special cases of the General Scheduling Problem.

2. Single Execution Time Scheduling The General Scheduling Problem is

restricted by requiring Wi ¼ 1, 1 � i � n. (All tasks require one time unit.)

3. Two Processor, One or Two Time Units Scheduling The General Scheduling

Problem is restricted by requiring m ¼ 2, and Wi in {1, 2}, 1 � i � n. (All

tasks require one or two time units, and there are only two processors.)

4. Two Processor, Interval Order Scheduling The General Scheduling Problem

is restricted by requiring the partial order , to be an interval order and m ¼ 2.

5. Single Execution Time, Opposing Forests The General Scheduling Problem

is restricted by requiring Wi ¼ 1, 1 � i � n, and the partial order , to be an

opposing forest.

The General Scheduling Problem was proven to be NP-complete by Karp in 1972.

Problems 2 and 3 were proven to be NP-complete by Ullman in 1975. Problem 4 was

proven to be NP-complete by Papadimitriou and Yannakakis in 1979. Garey,

Johnson, Tarjan and Yannakakis proved that problem 5 is also NP-complete in

1983. References to the proofs are listed in El-Rewini et al. (1994).

10.5.2 NP-Completeness Results when Communication
is Considered

The complexity of the scheduling problem changes based on which cost model is

used to compute communication. The following is a summary of the NP-complete

results using the different communication models. Using Model A, Afrati et al.

showed that scheduling a tree with communication on an arbitrary number of pro-

cessors is an NP-complete problem. Using Model B, Prastein proved that by

taking communication into consideration, even when the execution time for all

tasks is identical and equal to the communication cost between any pair of

10.5 THE NP-COMPLETENESS OF THE SCHEDULING PROBLEM 249



processors, the problem of scheduling an arbitrary precedence program graph on two

processors is NP-complete and scheduling a tree-structured program on arbitrarily

many processors is also NP-complete. Prastein also indicated that the problem of

scheduling a tree-structured task graph on two processors, using model B, is an

open problem in general. Using Model C, Papadimitriou and Yannakakis proved

that the problem of optimally scheduling unit-time task graphs with communication

on an unlimited number of processors is NP-complete when the communication

between any pair of processors is the same and greater than or equal to one. Refer-

ences to the above NP-complete results are listed in El-Rewini et al. (1994).

10.6 HEURISTIC ALGORITHMS

In order to provide solutions to real-world scheduling problems, restrictions on the

parallel program and the target machine representations must be relaxed. However,

because of the computational complexity of optimal solution strategies, a need has

arisen for a simplified suboptimal approach to this scheduling problem. Recent

research in this area has emphasized heuristic approaches. A heuristic produces

an answer in less than exponential time, but does not guarantee an optimal solution.

Intuition is usually used to come up with heuristics that make use of special par-

ameters that affect the system in an indirect way. A heuristic is said to be better

than another heuristic if solutions fall closer to optimality more often, or if the

time taken to obtain a near-optimal solution is less. The effectiveness of these sche-

duling heuristics is dependent upon several parameters of the program and the dis-

tributed system. A heuristic that can optimally schedule a particular task graph on a

certain target system may not produce optimal schedules for other task graphs on

other systems. As a result, a number of heuristics have been proposed, each of

which may work under different circumstances.

In what follows, we present some of the principle issues encountered when

designing schedulers of the General Scheduling Problem. We also study a number

of the ideas used in developing scheduling heuristics.

10.6.1 Parallelism Versus Communication Delay

In the cases when the communication delay among tasks is negligible, all ready tasks

can be allocated to all available processors simultaneously so that the overall execution

time is reduced. This situationmay occur in a shared memory environment where com-

munication is performed at memory cycle speeds. In fact, this is the basis of a number

of heuristic algorithms that do not consider communication delays in making schedul-

ing decisions. On the other hand, when communication delay cannot be overlooked,

scheduling heuristics must consider the communication delay before allocating tasks

to processors. It is possible for ready tasks with long communication delays to end

up assigned to the same processor as their immediate predecessors.

For example, let us consider the task graph shown in Figure 10.7. Since the com-

munication delay between tasks a and b is greater than that between a and c (y . x),
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task b is assigned to the same processor as task a (P1). Now, if the communication

delay between tasks a and c (x) is less than the execution time of task b, it is logical

to assign task c to P2 since it will produce a shorter schedule. Otherwise, task cmust

be scheduled on P1. When x equals five units of time, c must be allocated to P2 as

shown in Gantt Chart-1, which will produce a schedule length equal to 30 units of

time. (Note that if c was allocated to P1, the schedule length would have been 40.)

On the other hand if x was 25 units of time, c must be allocated to P1 as shown in

Gantt Chart-2, which will produce a schedule length of 40 units of time. (Note that if

c was allocated to P2, the schedule length would have been 50.) Hence, considering

communication delay constraint increases the difficulty of arriving at an optimal

schedule because a scheduler must examine the start time of each node on each

available processor in order to select the one with the earliest start time.

As shown above, it would be a mistake to always increase the amount of paral-

lelism available by simply starting each task as soon as possible. Distributing paral-

lel tasks to as many processors as possible tends to increase the communication

delay, which contributes to the overall execution time. In short, there is a trade-

off between taking advantage of maximal parallelism and minimizing communi-

cation delay.

10.6.2 Grain Size and Data Locality

Another issue closely related to the trade-off between parallelism and communi-

cation delay is the grain size problem. This issue must be dealt with during the par-

titioning of the program into grains. The challenge is to determine the best grain size

for each node in a task graph representing the program. A grain is defined as one or

more sequential instructions, packed together to make a module that is sequentially
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executed on a single processor. The size of a grain is altered by adding or removing

instructions. A grain can be as small as a single operation or as large as a whole pro-

gram. If a grain is too large, parallelism is reduced because potentially concurrent

tasks are grouped together and executed sequentially by one processor. On the

other hand, when the grain size is too fine, more overhead in the form of context

switching, scheduling time, and communication delay is added to the overall

execution time.

With the increasing success and utilization of developing programming models

on top of physically distributed computers, it has become very important to partition

programs so that the data used by a grain is kept local to the greatest degree possible.

The idea is to reduce data movement between the grains running on different pro-

cessors. Even at high data transfer rates, there is still latency that is many times

longer than the local memory latency. Again, there is a trade-off between maximiz-

ing locality and maximizing parallelism. At one extreme, considering the whole pro-

gram as a single grain running sequentially on one processor maximizes locality but

does not exploit the parallelism in the program. The parallel execution time of a pro-

gram can be minimized at an optimal intermediate grain size in which locality is

maximized and potential parallelism is also exploited.

10.6.3 Nondeterminism

In deterministic scheduling, all the information about program tasks and their

relations to one another is entirely known prior to execution time. When some infor-

mation may not be known before the program starts its execution, we have to deal

with nondeterminism. The problem of scheduling nondeterministic task graphs

arises in several situations in programming, particularly in the cases of loops and

conditional branching. Nondeterminism arises in loops because the number of

loop iterations may not be known before the execution of the program. Since

loops form a restricted class of conditional branching, there is a higher degree of

nondeterminism associated with scheduling conditional branching. In this case,

the direction of every branch remains unknown before run time. Consequently,

entire subprograms may or may not be executed, which in turn increases the

amount of nondeterminism and complicates the scheduling process. Also, having

conditional branching within a node in the task graph may cause variable task

execution time and communication delay.

Scheduling nondeterministic programs can be achieved dynamically on the fly.

However, dynamic scheduling consumes time and resources, which leads to over-

head during program execution. The overhead of extra communication delays,

additional memory, and time for the scheduler itself to work, detract from dynamic

scheduling. In addition, dynamic scheduling can lead to task thrashing where a task

is moved back and forth between processors, consuming yet more time. Therefore,

we must be careful when applying dynamic scheduling techniques. In order to elim-

inate (or reduce) the overhead involved with dynamic scheduling, static methods can

be applied. In this case, we must try to predict the behavior of the nondeterministic

program during run time prior to execution. This approximation may affect the
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quality of the produced schedule. A hybrid approach that combines both static and

dynamic methods can also be applied.

10.6.4 Priority-Based Scheduling

The list scheduling algorithm discussed in Section 10.2 can be generalized to handle

the general scheduling problem. In list scheduling, tasks are considered for schedul-

ing according to their priorities. The task with the highest priority is scheduled first.

Once a task is selected for scheduling, a processor selection criterion must be fol-

lowed to find a processor to run the task. There are a number of heuristics that

follow this method and they differ in how they assign priorities to tasks and/or in
the processor selection criterion. For example, one heuristic may assign priorities

based on the length of the longest path to a terminal node in a task graph. The

number of successors could be used as the task priority by another heuristic. Simi-

larly, the earliest start time and the earliest finish time are examples of processor

selection criteria. A number of list scheduling heuristics can be found in

El-Rewini and Ali (1995), El-Rewini et al. (1994), El-Rewini and Lewis (1990)

and Lewis and El-Rewini (1993). Algorithm 6 summarizes the general list schedul-

ing algorithm.

Algorithm 6
1. Each node in the task graph is assigned a priority. A priority queue is initia-

lized for ready tasks by inserting every task that has no immediate predeces-

sors. Tasks are sorted in decreasing order of task priorities.

2. As long as the priority queue is not empty do the following:

(a) A task is obtained from the front of the queue.

(b) An idle processor is selected to run the task using the processor-selection

criterion.

(c) When all the immediate predecessors of a particular task are executed,

that successor is now ready and can be inserted into the priority queue.

10.6.5 Clustering

The idea behind this type of scheduling heuristic is to partition the scheduling pro-

cess into two phases: processor assignment, which is the process of allocating tasks

to the system processors; and task ordering, which is the process of scheduling the

tasks allocated on each processor. Clustering of task graphs can be used as an inter-

mediate phase to solve the allocation problem of the scheduling process. Clustering

can be defined as the process of mapping the nodes of a task graph onto labeled clus-

ters. All the tasks that belong to the same cluster must execute on the same pro-

cessor. If two independent tasks are mapped to the same cluster, then the

resulting clustering is called a nonlinear clustering; otherwise, it is called a linear

clustering.
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Clustering algorithms start with an initial clustering and then perform a sequence

of clustering refinements in order to achieve some specific objective. Clusters are not

tasks, since tasks that belong to a cluster are permitted to communicate with the

tasks of other clusters immediately after the completion of their execution. Cluster-

ing heuristics are nonbacktracking heuristics in order to avoid high complexity; that

is, once the clusters are merged in a refinement step, they cannot be unmerged after-

wards. At the initial step, each task is assumed to be in a separate cluster. A typical

refinement step is to merge two clusters and zero the edge that connects them. Zero-

ing the communication cost on the edge between the two merged clusters is carried

out due to the fact that the start and end nodes of this edge will be scheduled on the

same processor, and hence, the communication cost between the two nodes becomes

negligible. A typical criterion to select an edge for zeroing is to reduce the parallel

time of the schedule. The parallel time of a given schedule is equal to its completion

time, if we assume that the number of clusters never exceeds the number of pro-

cessors. There are two other important parameters in performing the refinement

steps; the critical path of a clustered task graph and the dominant sequence of a

scheduled task graph. The critical path is the longest path in the task graph, while

the dominant sequence is the longest path of the scheduled task graph or the path

whose length equals the actual parallel time of the schedule. In other words, the criti-

cal path is a parameter of the task graph only, while the dominant sequence, as well

as the parallel time, are parameters of the schedule of the task graph. A comparison

of clustering heuristics and other related results can be found in Gerasoulis and Yang

(1992) and Sarkar (1991). Task clustering has been used in a two-phase method for

scheduling tasks on distributed systems as shown in Algorithm 7.

Algorithm 7
1. Cluster the tasks assuming an unlimited number of fully connected processors.

Two tasks in the same cluster are scheduled in the same processor.

2. Map the clusters and their tasks onto the given number of processors (m). In

this step, the following optimizations are performed:

(a) Cluster merging. If the number of clusters is greater than the number of

available processors, the clusters are merged into m clusters.

(b) Physical mapping. The actual architecture is not fully connected. A map-

ping must be determined such that overall communication between clus-

ters is minimized.

(c) Task execution ordering. After the processor assignment of tasks is fixed,

the execution ordering is determined to assure the correct dependence

order between tasks.

Example 7 Consider the task graph shown in Figure 10.8. Suppose that tasks a, b,

c, d, e, f, and g can run on any processor in a distributed system in 1, 5, 1, 2, 2, 1, and

1 units of time, respectively. The communication delays between tasks if assigned to

different processors are shown in Table 10.1. The figure also shows four different

clusterings of the task graph. Scheduling the two clusters of Figure 10.8a on two
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processors will produce a completion time of 9 units of time. In the clustering of

Figure 10.8b, the completion time on two processors is 10 units of time. The cluster-

ing of Figure 10.8c will produce a schedule of 9 and 10 units of time on two and

three processors, respectively. Finally, the completion time is 10.5 units of time if

we schedule the clustering of Figure 10.8d on three processors.

10.6.6 Task Duplication

Task duplication can be used in scheduling heuristics to reduce the effect of com-

munication delay. Since the cost of message passing between different processors

is significantly higher than that within the same processor, the goal is to reduce

the exchange of messages between tasks assigned to different processors. The

idea is to execute multiple copies of the sender task on the processors running the
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Figure 10.8 Example of different ways to cluster a task graph.
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receiving tasks whenever possible. This task duplication will help change interpro-

cessor communication into communication within the same processor. For example,

consider the task graph shown in Figure 10.9. It can be seen that the duplication of

task a on both P1 and P2 decreases the starting time of task c on P2. Thus, the par-

allelism of tasks b and c is fully exploited with zero communication delay.

It is important to make sure that the cost of initiating multiple copies of a task on a

number of processors is not going to dominate the communication cost we are trying

to offset. Note that the communication cost is usually greater than task duplication

cost for small-grain task graphs, which makes the duplication idea very suitable in

such cases.

10.7 TASK ALLOCATION

The problem of task allocation arises when specifying the order of executing the

system tasks is not required. In other words, system tasks might interact or commu-

nicate without imposed precedence relations. In a distributed computing system

TABLE 10.1 Communication Delay Times for

Example 7

Graph

Arc

Communication Delay

(Units of Time)

(a, b) 5

(a, c) 1

(b, g) 2

(c, d) 4

(c, e) 3

(d, f) 1.5

(e, f) 1.5

(f, g) 1

a

b c

a

b c

a

b

c

P1 P2 P1 P2

xxx

a

Task

Figure 10.9 Task duplication reduces the effect of communication delay.
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made up of several processors, the interacting tasks comprising a distributed pro-

gram must be assigned to the processors so as to make use of the system resources

efficiently.

In the assignment of tasks to processors there are two types of cost: the cost of

execution of a task on a processor and the cost of interprocessor communication.

In order to improve the performance of a distributed system, two goals need to be

met: interprocessor communication has to be minimized and the execution cost

needs to be balanced among different processors. These two goals seem to conflict

with one another. On one hand, having all tasks on one processor will remove inter-

processor communication cost but results in poor balance of the execution load. On

the other hand, an even distribution of tasks among processors will maximize the

processor utilization but might also increase interprocessor communication. Thus,

the purpose of a task allocation technique is to find some task assignment in

which the total cost due to interprocessor communication and task execution is

minimized.

10.7.1 Task Allocation Model

The model we describe here assumes a set on n tasks forming a program which is

supposed to run on a distributed system consisting of m heterogeneous processors.

The goal is to minimize the total cost (execution and communication).

The interaction among tasks in the distributed program can be represented by a

task interaction graph. Each task in the program is represented by a node in

the task interaction graph. An edge between two nodes indicates that the correspond-

ing tasks may interact with each other. Associated with each edge is the communi-

cation cost between the corresponding tasks if they are assigned to different

processors. It is assumed that the communication cost of two tasks assigned to the

same processor is negligible.

Associated with each task ti is a vector of m values which provides the execution

time of this task on each of the m processors [xi1, xi2, . . . , xim]. Note that when the

execution cost of a task on a particular processor is set to 1, it implies that this pro-

cessor cannot execute the task. Figure 10.10 shows the task interaction graph and the

execution time of six tasks on two processors.

10.7.2 Optimal Task Allocation on Two Processors

This optimal algorithm introduced by Harold Stone (1977) is based on the well-

known network flow algorithms in the related two-terminal network graphs.

Before introducing the optimal algorithm, we briefly introduce the basic definition

of minimum cuts in two-terminal networks.

Background In a two-terminal network graph G ¼ (V, E), it is assumed that

there are two specific nodes, a source node S and a sink node T, and a weight func-

tionW(e) for each edge e [ E. A cutset of the two-terminal network graph G is a set

of edges C, which, when removed, disconnects the set of nodes V into two sets:
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a source set VS that contains the node S, and a sink set VT that contains the node T,

such that VS > VT ¼ f and VS < VT ¼ V. The weight of each cutsetW(C) is equal

to the sum of the weight of all edges in C. A cutset C0 is called an optimal cutset or a

minimum cutset if W(C0) � W(C), for any cutset C of the two-terminal network.

This problem has been proven to have polynomial–time solutions. The complexity

of the most efficient algorithm to solve this problem isO(ne log n), where n and e are

equal to the number of nodes and edges in the network, respectively.

The Optimal Algorithm This algorithm assumes a restricted case of a distri-

buted system made of only two processors, which may not need to be identical.

The solution of the allocation problem is obtained as follows. A related two-terminal

network graph is constructed from the relationships of the tasks in the task inter-

action graph. The network is constructed in a way such that each cutset in the

two-terminal network graph corresponds in a one-to-one fashion to a task assign-

ment, and that the weight of each cutset carries the total cost for the corresponding

assignment. The network flow algorithm can then be applied on the two-terminal

network. The minimum weight cutset obtained from the solution determines the

task assignment that is optimal in terms of the total cost.

Algorithm 8
1. Construct a two-terminal network as follows:

(a) Add a source node labeled S1 and a sink node labeled S2 to represent

processors p1 and p2, respectively.

(b) For every node t in the original task interaction graph, add an edge from t to

each of S1 and S2. The weight on the edge (t, S1) is the cost of executing t

on p2, while the weight on the edge (t, S2) is the cost of executing t on p1.

2. A max-flow min-cut algorithm is applied to the obtained network and a mini-

mum cut C is determined.

•

•

Figure 10.10 Task allocation model.
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3. An optimal solution of the task assignment problem is obtained from the cut

such that a task t is assigned to processor Pi if and only if the corresponding

nodes t and Si belong to the same partition in C.

Example 8 Consider the system illustrated in Figure 10.10. To construct the two-

terminal network, we add the nodes S1 and S2 and add an edge from each of the six

nodes in the task interaction graph to S1 and S2. The weights on the added edges are

shown in the Figure 10.11.

Each cutset of the new graph partitions the nodes into two disjoint subsets, with

S1 and S2 in distinct subsets. Clearly, a task assignment can be associated with each

cutset. All the tasks in the same partition with S1 will be allocated to P1, and the rest

of the tasks, which exist in the same partition with S2, are allocated to P2. The opti-

mal cut shown in the figure corresponds to the allocation of tasks t1, t2, t3, t4, and t5 to

P1 and task t6 to processor P2.

In this case, the execution cost is equal to 2þ 5þ 4þ 5þ 6þ 4 ¼ 26, and the

communication cost is equal to 12, which is the communication cost between

tasks t2 and t6.

10.7.3 Optimal Task Allocation on Array of Processors

The optimal algorithm presented in this section was introduced to solve the problem

in the case when the distributed system is composed of a linear array of processors

(Lee et al., 1992). Similar to the two-processor case, the task interaction graph will

be used as a representation of the program tasks. However, the distributed system

is different in this case. It is assumed that the distributed system is made of m

processors connected using m2 1 links such that Pi is connected to Piþ 1,

1 � i , m. The idea used in this section is a generalization of the idea introduced
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Figure 10.11 Two-terminal network constructed from the task interaction graph of

Figure 10.10.
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by Stone in Algorithm 8. The solution to the problem is obtained using the max-flow

min-cut algorithm. We first construct a related two-terminal network graph from the

task interaction graph so that each cutset in the two-terminal network graph

corresponds to a task allocation and the weight of the cutset carries the total cost

for that allocation. Again the minimum cutset of the network will correspond to

an optimal assignment of the tasks.

Algorithm 9
1. Construct a two-terminal network as follows:

(a) For each node ti in the original task interaction graph, create (m2 1)

nodes labeled vi1, vi2, . . . , vi(m2 1), respectively, and add a source

node S and a terminal node T.

(b) Add an execution edge from S to vi1 with the weight (xi1þ some large

quantity).

(c) Add an execution edge between any two nodes vik and vi(kþ 1) with the

weight (xi(kþ 1)þ some large quantity), 1 � k , m.

(d) Add an execution edge from vi(m2 1) to T with the weight (ximþ some

large quantity).

(e) Add a communication edge between any two nodes vik and vjk with the

weight equals the communication cost between the tasks ti and tj.

2. A max-flow min-cut algorithm is applied to the obtained network and a mini-

mum cut C is determined.

3. An optimal solution of the task assignment problem is obtained from the cut

such that a task ti is assigned to processor Pkþ1 in the assignment if and only

if the cutset C contains the edge (vik, vi(kþ 1)). To make sure that each task is

assigned to exactly one processor, the cutset must contain exactly one

execution edge for each task.

Example 9 In this example, we show how to construct the two-terminal network for

the task interaction graph given in Figure 10.12a on a linear array of three processors

shown in Figure 10.12b. The vector shown next to each task provides the task execution

time on the three processors. For example, task t2 takes 5, 10, and 30 units of time on

processors P1, P2, and P3, respectively. Also remember that the value next to an edge is

the communication cost between the two corresponding tasks if executed on two differ-

ent processors. Let us assume that the large quantity used in the weights on the

execution edges equals 100. The two terminal network is constructed as follows:

. Since we have three processors (m ¼ 3), we will create two nodes vi1 and vi2 for

each node ti in the original task interaction graph. We will also add the source

and terminal nodes S and T.

. We add the execution edges (S, v11), (S, v21), (S, v31), (S, v41) having the

weights: 102, 105, 115, and 1, respectively.

. We add the execution edges (v11, v12), (v21, v22), (v31, v32), (v41, v42) having the

weights: 1, 110, 125, and 107, respectively.
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. We add the execution edges (v12 , T), (v22 , T), (v32 , T), (v42, T) having the

weights: 110, 130, 150, and 120, respectively.

. The communication edges from the original task interaction graph are added to

the network such that the weights of the edges (v1j , v2j), (v1j , v3j), (v1j , v4j),

(v2j , v3j), and (v3j , v4j) are 6, 8, 3, 4, and 11, respectively.

The constructed two-terminal network is shown in Figure 10.12c. It is left as an

exercise for the reader to determine an optimal and feasible task allocation by

finding the minimum cut in the obtained network (see Problem 12).

10.7.4 Task Allocation Heuristics

The task allocation problem is known to be NP-complete. A formal proof that the

problem is NP-hard even in the restricted case when there are only two values of

communication cost between tasks allocated on different processing elements,
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Figure 10.12 Constructing the two-terminal network of a task interaction graph on a linear

array of three processors (a) task interaction graph; (b) linear array of three processors; and (c)

two-terminal network.
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zero and one, can be found in Ali and El-Rewini (1994). Again, the intractability of

the problem has led to the introduction of many heuristics. A number of heuristics

are based on Stone’s algorithm for solving the problem in two-processor systems.

These heuristics utilize the max-flow min-cut algorithm in solving the more general

allocation problem. Other heuristics use graph theoretic approaches. Several related

results and heuristic algorithms can be found in Ali and El-Rewini (1993), Bokhari

(1981) and Lo (1988).

10.8 SCHEDULING IN HETEROGENEOUS ENVIRONMENTS

Numerous applications have more than one type of embedded parallelism, such as

single instruction multiple data (SIMD) and multiple instructions multiple data

(MIMD). Homogeneous systems use one mode of parallelism in a given machine

and thus cannot adequately meet the requirements of applications that require

more than one type of parallelism. As a result, a machine may spend its time execut-

ing code for which it is poorly suited. Heterogeneous computing offers a cost-

effective approach to this problem by using existing systems in an integrated

environment. Heterogeneous computing systems provide a variety of architectural

capabilities, coordinated to execute an application whose subtasks have diverse

execution requirements. One type of heterogeneous computing system is a mixed-

mode machine, where a single machine can operate in different modes of paralle-

lism. Another is a mixed-machine system, where a suite of different kinds of

high-performance machines are interconnected by high-speed links. To exploit

such systems, a task must be decomposed into subtasks, where each subtask is com-

putationally homogeneous. The subtasks are then allocated to the machines (or

modes) that will result in a minimal overall execution time for the task. Typically,

users must specify this decomposition and assignment.

The problem of partitioning and scheduling in homogeneous environments can be

considered a special case of the problem when the target computer is a suite of hetero-

geneous machines. For example, code classification is another objective of program

partitioning in a heterogeneous environment. The code needs to be classified based

on the type of the embedded parallelism such as SIMD and MIMD. Matching the

code type to the machine type will also add more constraints to the scheduling pro-

blem. Scheduling in heterogeneous environments can be done at two levels. At the

system level, each task is assigned to one or more machines in the system so that

the parallelism embedded in the task matches the machine type. At the machine

level, portions of the task are assigned to individual processors in the machine.

A parallel program can be modeled for heterogeneous environments as follows.

The parallel program T can be divided into subtasks ti, 1 � i � N. Each subtask ti is

further divided into code segments tij, 1 � j � S, which can be executed concur-

rently. Each code segment within a subtask can belong to a different type of paral-

lelism (that is, SIMD, MIMD, vector, and so on), and should be mapped onto a

machine with a matching type of parallelism. Each code segment may further be

decomposed into several concurrent code blocks with the same type of parallelism.
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These code blocks tijk, 1 � k � B, are suited for parallel execution on machines

having the same type of parallelism. This decomposition of the task into subtasks,

code segments, and code blocks is shown in Figure 10.13. Approaches to solve

the scheduling problem in heterogeneous environments can be found in Chen et al.

(1993) and Freund and Siegel (1993).

10.9 CHAPTER SUMMARY

In the era of network computing and grid computing, the problem of resource sche-

duling and allocation is gaining more attention. A computational job can be viewed

as a collection of tasks which may run serially or in parallel. The goal of scheduling

is to determine an assignment of tasks to computing resources, and an order in which

tasks are executed to optimize some objective function. In this chapter, we provided

a survey of the important aspects in this problem including modeling, optimal algor-

ithms, and heuristic techniques.

PROBLEMS

1. Devise Gantt charts showing schedules for the task graph of Figure 10.1 on

three and five identical processors, when communication is not considered.

What is the minimum number of processors required to execute all tasks

in five units of time?

2. Modify Algorithm 1 to handle the out-forest case. Apply the modified algor-

ithm to schedule the task graph of Figure 10.1, after reversing all the arrows

on the graph arcs, on four processors.

T
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ti1 ti2 tij tiS

tij1 tij2 tijk tijB- - - - - -

- - - -- - - 
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Figure 10.13 Heterogeneous application.
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3. Show that a task graph is an interval order if its complement does not have

any cycles of size four or more.

4. Write an algorithm to check whether a partial order is an interval order.

5. Provide an argument to prove, or a counter example to disprove the follow-

ing: “Given a task graph with task execution time in {1, 2} and two identical

processors, Coffman and Graham’s algorithm will result in a schedule whose

time is not more than twice that required by the optimal schedule. (Note that

communication is not considered.)

6. Write an algorithm to construct the augmented graph for an out-forest.

7. Assuming that communication is considered using Model C, do the following:

(a) Construct the augmented task graph of the tree given in Figure 10.1.

(b) Show the optimal schedule of the augmented graph on two processors

without communication.

(c) Construct a feasible optimal schedule with communication.

8. Given a task graph and a large number of processors, what is a lower bound

on the length of an optimal schedule?

9. The problem of scheduling task graphs where communication is not con-

sidered and all tasks take the same amount of time on fixed m � 3 processors

is still an open problem. Can you come up with an optimal algorithm? Can

you prove its NP-completeness.

10. Devise a Gantt chart for each of the four clusterings shown in Figure 10.8 on

two and three processors.

11. Given a two-terminal network, devise an algorithm for finding a minimum

cutset of the network.

12. Determine an optimal and feasible task allocation for the two-terminal net-

work of Figure 10.12c. (Find the minimum cut.)
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