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Foreword 

The purpose of this book is to explain how signals are transmitted over significant 
distances using waves. A significant distance in this context is long compared to 
the wavelengths involved. 

The subject is inherently mathematical, but a great deal of qualitative explana- 
tion is included to complement the mathematics. 

The level of knowledge assumed is that acquired in the first year of under- 
graduate study in electrical engineering or applied physics, so the reader is 
expected to be familiar with electric circuit theory and to some extent with electric 
and magnetic field theory, and should be able to follow an argument involving 
differential calculus. Decibels are used throughout, but a discussion of this 
representation is included in the preface. 

Chapters 1 to 6 give a general understanding of the field; chapter 7 gives further 
insights using a powerful graphical technique and finally there are a number of 
appendices included for those who want to go a little deeper into the mathematics. 

Where relevant there are calculations posed at the ends of chapters which, if 
done, will help in understanding the material. Solutions are given at the end of 
the book. 
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P r e f a c e  - D e c i b e l s  

Communications engineers use decibels all the time. They were invented to repre- 
sent power ratios, although they have since been used to express voltage ratios 
and a number of other ratios. They can also be used to represent absolute 
values related to an agreed base value. 

As a power ratio, the decibel is defined by the relationship 

X (dB) = 10 loglo (P1/P2) 

and its inverse 

P1/P2 = 10 x/l~ 

The advantage of a logarithmic scale is twofold: first, the mathematical operation 
of multiplying is transformed into adding, and second, wide variations of value 
are compressed into a relatively small range of numbers. 

Since the log to base 10 of 2 is 0.3010, a power ratio of two is approximately 
3 dB. The logarithms of numbers less than 1 are negative and you will find if 
you try it on your calculator that log�89 is -0.3010, illustrating the fact that a 
minus number of dBs represents the inverse ratio of powers compared to the 
same positive number of dBs. 

People who use decibels a lot tend to become adept at translating in their heads, 
so in power terms three dB is (approximately) twice as a ratio, six dB is four times, 
ten dB is ten times, twenty dB is a hundred times, fifty dB is a hundred thousand 
times, that is, ten to the fifth, and so on. What is fifty thousand times? Since it is 
half of a hundred thousand times, it is three dB less than fifty dB; in other words, 
forty-seven dB. 

Rounding, on a logarithmic scale, has the same effect percentage-wise at all 
levels, thus, if you round from 46.8 to 47 dB you introduce exactly the same 
percentage error as if you round from 2.8 to 3 dB. In general, rounding to the 
nearest decibel gives about ten per cent accuracy, while rounding to the nearest 
tenth of a decibel gives about one per cent accuracy. 

If two different voltages are applied to resistances of the same value, then the 
ratio of the powers delivered is V2/V 2, so 

X (dB) = lOlog(Vl/V2) 2 = 20log V1/V 2 

This relationship tends to be used by electronic engineers even when the 
resistances are not the same, which can lead to errors if one is not very careful; 
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fortunately, however, since most transmission systems are matched to a constant 
impedance level, it generally gives no problems in the telecommunications 
context. 

Absolute power levels can be defined by taking one of the powers in the ratio as 
a standard value. Suppose P1 is the power to be defined and P2 is taken as 1 watt: 
the value of the expression 10 log P1/1 W is given the designation dBW. For 
example: 

7 dBW would be 10 0.7 ~ 5 W 
--7 dBW would be 10 -0.7 ~ 0.2 W, which is 1W. 

By taking the standard value as 1 milliwatt we can have 'dBm': 

5 W in dBm would be 10 log5/0.001 ~ 37 dBm 

You may spot that this is 7 dB plus 30 dB to account for the factor of 10 3. 

-37 dBm would be 10 .3.7 ~ 0.0002mW, 

which is 2 x 10-7W or ~ x 1 0 - 6 W  

In the last chapter, a further strange decibel 'flavour' appears - dBK. It turns out 
that it is necessary to take a gain, which is a ratio of powers, and divide this by a 
temperature in degrees Kelvin. The 'K' is thus simply an attempt to give informa- 
tion about what is represented; it is not to be taken as a unit with dimensional 
implications. If one requires to represent correctly the dimensions of the gain/ 
temperature ratio, it is a power divided by a power and by a temperature, so its 
dimensions are K -1. However, dBK -1 does not convey correctly the dimensions 
of the logarithmic ratio since it is not a decibel value divided by a temperature, so 
here it is always written dBK, although one will see both dBK -1 and dB/K in the 
literature. 

Also in the last chapter you will find dBHz. The ratio so designated is that of a 
signal power to the noise power occuring in unit bandwidth. Again the 'Hz' is 
purely descriptive. 

In the literature you will probably meet other decibel 'flavours'. The meaning is 
usually clear from the context. 



1 Introduction: 
signals and waves 

Before starting to explain the detailed processes by which signals can be trans- 
mitted, we need to be clear about exactly what a signal is. In essence, a signal is 
an encoded body of data that can be interpreted by an intelligent entity (person 
or computer). Let us see what is meant by data and by encoded. 

1.1 DATA 

Data is a collection of values for each of which there are just two alternatives; we 
can call it a set of 'yesses' and 'noes' or pluses and minuses or 'highs' and 'lows', 
but, as you are probably aware, it is usually represented by ls and Os. This repre- 
sentation is described as binary data because ls and Os in a number system where 
no other digits exist are called binary digits or bits for short. 

Analogue data 

The definition of data given above may seem odd, particularly if one is aware that 
much of the data received by the senses, and that captured by many older forms of 
sensing instruments, appears in analogue form, like, for instance, the continu- 
ously varying pressure of a sound on the eardrums. It will be shown in a later 
section that analogue data can be interpreted in terms of binary data. 

Information 

A body of data is transmitted in order to transfer one or more messages containing 
information. According to information theory, the amount of information in a 
message depends on the probability of that message being sent: the less likely 
the message the more information. In information theory the information in a 
message is also measured in bits and an ideal message would have the same 
number of bits of information as it has bits of data; practical messages have 
much less. Using information theory, methods have been developed to compress 
data so that less data has to be transmitted in a signal to transmit a given 
volume of information: further detail is outside the scope of this book. 
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Parallel data 

Data can be transferred all at the same time - for example: 'Is there a voltage 
between earth and the red wire?', 'Yes'; 'Is there a voltage between earth and 
the blue wire?', 'Yes'; 'Is there a voltage between earth and the white wire?', 
'No', and so on: this is described as parallel data. There is, however, a limit to 
how much data can be presented in parallel, so large volumes of data have to 
be presented sequentially; which brings us to the matter of encoding. 

1.2 ENCODING 

The simplest encoding is where binary values are presented in sequence: common 
sense suggests that sequential values should be presented for equal intervals of 
time. If the alternative values are the presence or absence of a voltage, then the 
voltage waveform (graph of voltage against time) of the data is as shown in 
Fig. 1.1. This is so simple that it is often described as raw data. The time duration, 
in this case, of a 1 or a 0 is known as the symbol interval and the number of 
symbol intervals per second is called the signalling rate or baud rate since it is 
measured in units called baud. For raw data, the bit rate, that is the number of 
binary digits presented per second, is the same as the baud rate. 

The raw data presentation as shown in Fig. 1.1 is known as non-return-to-zero 
(NRZ) to distinguish it from an alternative return-to-zero (RZ) mode shown in 
Fig. 1.2 for the same data sequence. Often in an RZ waveform the pulse duration 
of a '1' is half the symbol period. 

Raw data is generally further encoded to make it suitable for transmission. This 
may involve inverting alternate 1 pulses and/or adding extra pulses. More radi- 
cally, it frequently involves taking short sequences of pulses and replacing them 
by other symbols or sets of symbols. If, for example, a transmitted pulse is allowed 
to have four levels, as shown in Fig. 1.3, then each level could represent two 
binary digits as shown in the figure. Each of the three pulses, of different sizes, 
together with the absence of a pulse, is now a symbol and can be transmitted in 
one symbol interval. For a given data rate the signalling rate is halved, which 
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Fig. 1.1 An NRZ data waveform 
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Fig. 1.3 A four symbol (quaternary) code 

halves the bandwidth required (bandwidth will be dealt with later in this chapter), 
but the noise immunity is reduced. Finally, the data, in its raw form or encoded as 
above, may be used to modulate a sinusoid, that is to vary its amplitude, fre- 
quency or phase in step with the appropriate waveform. This modulation is yet 
a further step of encoding and results in symbol intervals containing symbols 
each of which is a section of sinusoidal voltage or electric field of a given ampli- 
tude, frequency or phase (or combination of these). 

1.3 FOURIER'S THEOREM 

Fourier's is a very general theorem which can be applied to any two connected 
physical quantities, but application of it here will be to the variation of an ampli- 
tude, typically a voltage or an electric field strength, with time. What the theorem 
tells us in this context is that the variation of the amplitude with time is equivalent 
to the sum of a number (usually an infinite number) of sinusoidal variations with 
time. This is very often illustrated using a square waveform as shown in Fig. 1.4. 
Figure. 1.4(a) shows a voltage varying sinusoidally with time. Figure. 1.4(b) 
shows another sinusoidal voltage of smaller amplitude and three times the 
frequency. Adding the two graphs gives a total variation of voltage with time 
shown in Fig. 1.4(c). Now add another voltage sinusoid of smaller amplitude 
still and five times the frequency of the first; shown in 1.4(d). The result, in Fig. 
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(e) 

Fig. 1.4 The build-up of a square wave from sine waves 
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1.4(e), is beginning to look like a square waveform, and one will easily be 
persuaded that if this is continued, with components of higher and higher frequen- 
cies, the ultimate result is a square waveform. You may well guess that each 
component must be in the correct position - that is, must have an appropriate 
phase - and must have the correct amplitude. The lowest frequency sine wave- 
form, which has the same frequency as the repetition rate of the square waveform, 
is called the fundamental. The sine waveform of three times this frequency is called 
a third harmonic and that at five times the fundamental frequency afifth harmonic. 

If an appropriate value of d.c. were added to the square waveform, setting the 
bottom of the waveform on the zero line, then this would be the waveform of raw 
data representing 1 0 1 0 1 0 . . .  

With the addition of a d.c. component representing its average value, any 
repetitive waveform can be built up from a fundamental plus harmonics of 
appropriate phases and frequencies. Usually all harmonics are present; the even 
ones just happen to be absent in the case of a square waveform. Even if a varying 
amplitude does not repeat itself it can still be represented in this way: it can be 
thought of as having an infinite period - i.e. a repetition rate of zero - so that 
its fundamental frequency is zero and its harmonics are infinitely close together. 

The set of sinusoids that together make up a signal is called its spectrum: a d.c. 
average value is thought of in this context as a zero-frequency component. 

There are two reasons why this application of Fourier's theorem is important. 
The first is that we have very well-developed mathematical techniques for dealing 
with sinusoids. The second is that in all cases of interest we find that there are fre- 
quencies above which, and often also frequencies below which, we can in practice 
ignore the spectral components: this leads to the idea that any signal is equivalent 
to, or occupies, a (sinusoidal) frequency band. 1 

The sampling theorem 

The concept of analogue data can now be reconciled with the original definition of 
data. The sampling theorem indicates that any signal of continuously varying 
amplitude, of which the spectrum has been restricted below a given highest fre- 
quency, can be represented by, and reconstructed from, a set of instantaneous 
values or samples taken at a rate no lower than twice that highest frequency. 
These samples can then be represented, to any desired degree of accuracy, by 
sets of binary digits (the greater the number of digits per sample the greater the 
accuracy). Hence the analogue signal can, in a sense, be thought of as a form 
of modulated digital data. In fact, nowadays many analogue signals are converted 
into digital form for further encoding and transmission. 2 

IThe term frequency should strictly only be applied to sinusoids; for other repeating waveforms the term 
used should be repetition rate. 

2It is essential that the spectrum of an analogue signal which is to be sampled be cut off at a frequency 
below half the sampling rate, otherwise spurious components appear in the reconstituted analogue signal by 
a process known as aliasing. 
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1.4 PRACTICAL SIGNALS AND THEIR 
SPECTRAL CONTENT 

An analogue signal may have a d.c. content and will have an upper frequency 
limit above which the elimination of higher frequency components in the spec- 
trum is not considered to produce significant degradation. Raw digital data 
also has a d.c. component and is usually considered to require the transmission 
of all frequencies up to a frequency equal to the signalling rate. Similarly, for 
encoded data other than that involving modulation of a sinusoidal carrier, the 
upper frequency transmission requirement is usually taken to be the signalling 
rate. Some signals may have a practical lower frequency limit as well, for example, 
high quality sound does not require the transmission of frequencies below about 
70 Hz, and telephone speech is subjected to filtering which cuts out frequencies 
below 300 Hz. Some digital encoding schemes are designed to limit the low- 
frequency content of the signal spectrum. 

In the case of the modulation of a sinusoidal carrier, any of the basic forms of 
modulation (amplitude, frequency or phase) results in the creation of side bands, 

that is two bands of frequency components, one above and the other below the 
carrier frequency, which are mirror images of each other with respect to the 
carrier. The components of a side band are related to the modulating signal in dif- 
ferent ways, depending on the type of modulation, but in all cases components of 
significant amplitude are contained within a limited frequency range from the 
carrier. The frequency spectrum required to be transmitted may consist of 
either one or both of these side bands and may include the carrier or not. 
Where several sinusoidal carriers of different frequencies are modulated with 
the data of different messages (care being taken that their bands do not overlap) 
the spectrum of the total transmission consists of all these bands. 

1.5 WAVES 

In all practical systems, signals are transmitted by means of waves, so the next task 
is to explain what a wave is. A lot of confusion is caused by the fact that waves are 
often taught in elementary courses alongside simple harmonic motion, with the 
implication that these two topics are directly linked - they are not. 

Time delay with distance 

The essence of wave propagation is the transmission of a process from a point in a 
medium to the point next to it with a lapse of time. Think of a crowd at a football 
match: if a person raises their hands and then lowers them, and the person next to 
them does the same a little later, and the person next to them later again, the 
crowd generates a Mexican wave. There must be some mechanism which causes 
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each point in the medium to follow the previous one - in the case of the Mexican 
wave it is seeing your neighbour carrying out the procedure. 

Waveform 

The propagating processes in the waves which will be of interest here are always 
changes in the amplitude of some property - changes, in fact, which represent the 
signal to be transmitted. In this context, the amplitude variations of the signal 
with time are called the waveform. 

Sinusoidal waves 

Since, as has been seen, a signal can always be represented as a group of sinusoids, 
it is sensible for the purposes of analysis to consider sinusoidal waves, that is, 
waves of which the property variation is a sinusoidal variation of amplitude. In 
this case, each point in the medium carrying the wave executes a sinusoidal cycle 
of amplitude with a phase which is delayed relative to the point before it. Thus, 
the first thing to understand about a sinusoidal wave is that there is a delay of 
phase in the direction of propagation of the wave, proportional to distance. 

The driving point 

A wave is set up in a medium by inserting power to induce and maintain the 
amplitude variation. This power is inserted, by the transmitter, at the driving 
point. Energy constantly moves away from the driving point along the direction 
of propagation of the wave. 

1.6 SUMMARY 

A signal consists of encoded data which, as presented to the input of a trans- 
mission system, can be regarded as the sum of a collection of sinusoids. The 
task of the transmission system is to transport these sinusoids to its output 
maintaining, as far as possible, their relative amplitudes and phases; this it does 
by propagating a wave with the signal as its waveform. Analysis of the wave prop- 
agation is carried out by considering separately the propagation of each of its 
sinusoidal components. 



2 Twin-wire transmission line 

As you read this chapter you may think that the detailed treatment given to this 
topic is more than its importance merits. The reason for the detail is that the 
simple analysis possible in the ease of twin-wire line allows us to develop a 
number of concepts which will also be applicable to the other transmission 
media that are described in later chapters. 

Twin-wire line is the oldest type of electrical signal transmission medium, but it 
is still very much in use in the form of twisted pair. For the moment assume a long 
straight pair of parallel wires - it will be explained later why they may be twisted. 

The signal is applied by the transmitter as a voltage waveform between the 
wires at one end - the driving point. At the other end the receiver is connected; 
see Fig. 2.1. Assume that the receiver correctly terminates the transmission line 
- what this means will be discovered later. 

The line is linear, in the electrical sense, meaning that a sinusoidal input gives rise 
to a sinusoidal output of the same frequency. Its electrical properties can be 
described in terms of series resistance and series inductance per unit length 
together with shunt conductance (sometimes called leakance) and shunt capaci- 
tance per unit length; rather as shown in Fig. 2.2, except that the components 
are not separate, but intermingled. The total resistance per metre of the two 
wires is designated R, the total inductance per metre L, the conductance per 

1 1 
Tx Z z Rx 

,T ! 
Fig. 2.1 Twin-wire line connecting a transmitter and a receiver 

. . . . . . . .  L . . . . . .  ~ ' ~  

c G 

. . . .  l m  , , , " =  

Fig. 2.2 Representation of a 1 metre length of line 
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metre between the wires G and the capacitance per metre C. These are known as the 
primary constants of the line (although R and G, in fact, vary with frequency). 

For reasons explained in Chapter 1, we shall first analyse the electrical 
behaviour of the line with an input from a sinusoidal generator. 

2.1 A TRAVELLING SINUSOIDAL WAVE ON A 
LOSS-FREE LINE 

For the moment assume that the resistance and leakance of the line are both zero. 
Since capacitance and inductance do not absorb energy, a wave on such a line 
must travel without loss. 

The input voltage can be described by the equation 

v = Vsin(wt) 

where w is the angular frequency of the sinusoid (measured in radians per second) 
and V is its amplitude. 

As the input voltage goes through its cycle it drives charge into and out of the 
beginning of the line cyclically, charging and discharging the capacitance between 
the two wires. At the same time the inductance of the line limits the current. The 
direct influence of the input voltage only extends a short way along the line, but 
the changing voltage on the first section in turn drives charge into and out of the 
next section of line and so on. A short time after the input has first been applied 
the line will settle to a steady state in which each point on the line, up to the 
receiver, has a sinusoidally varying voltage of the same amplitude and frequency 
as that of the input. However, the transfer of the signal from each part of the line 
to the next involves a time delay, so that at each point on the line the phase of its 
sinusoidal voltage is delayed relative to the previous point. Delaying a sinusoidal 
variation in time is equivalent to moving it backward in phase, so that the voltage 
can be described, at a distance x along the line from the generator, by the equation 

v = V sin(wt - fix) (2.1) 

fl is called the phase change coefficient (its SI units are radians per metre). 
A similar expression to Equation (2.1) holds for the current as a function of 

time and distance - as indicated in Fig. 2.3. The wave has both current and 
voltage associated with it; however, the two are found to be in phase at all points 
and proportional in amplitude, so the wave can conveniently be described in 
terms of the voltage alone. 

Wave profile 
If a graph is plotted of the voltage at different points over a section of the line at 
one instant of time (a voltage versus distance graph), the result is a sinusoidal 
shape; this graph is called the wave profile. 
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V sin (ot) I sin (~t) V sin ( ~ t - ~ )  /sin ((ot-/~x) 
, . . . . . . .  ~ , , ,  , , . . . .  ~ , 

~ J  . . . . . . . . .  X . . . . . . . . . . . . .  

Fig. 2.3 Variation of sinusoidal current and voltage with distance on an ideal 
twin-wire line 

How does the wave profile change with time? This is illustrated in Fig. 2.4 which 
shows the wave profile on the section of the line next to the generator at two 
instants - 2.4(a) when the generator voltage is going through zero, 2.4(b) about 
one-sixth of a cycle later. 

In Fig. 2.4(a) the point PI on the line has just reached its peak instantaneous 
voltage. In 2.4(b) the voltage at P1 has fallen, while P2 has reached the peak. 
The whole waveform appears to have moved forward (that is, in the direction 
of increasing phase lag) without changing its shape. 

v 

(a) 

V 

(b) 

Fig. 2.4 Wave profile on a line at two times separated by 116 cycle 

Phase velocity and wavelength 
The wave profile, in fact, moves forward with time at a constant rate; this is called 
the phase velocity vp. 

The length of a complete cycle of variation on the wave profile is called a ware- 
length, symbol A. In Fig. 2.4, points PI and P3, for example, are A apart. All points 
on the line separated by a distance A have voltages in the same phase. Looking at 
the formula v = V sin(wt - fix), it follows that A is the value of x which makes the 
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phase delay 27r - so 

271" 
3A = 27r i.e. 3 = -~- 

Consider the time it takes for the voltage at the point P3 on the line, starting at the 
instant shown in Fig. 2.4(a), to go through one complete cycle. This length of time 
is one period, or 1/f  wheref  is the generator frequency. During this time the wave 
profile moves a distance A, so that the next peak comes to P3- Hence 

distance A = 
Vp = time 1/f  

Also, since f = w/27r and A = 27r/3 
w 

Energy stored and transferred 

A charged capacitor and an inductor carrying a current both have stored electrical 
energy. Hence it can be seen that a transmission line carrying a continuous wave 
has energy stored all along its length. 

Energy is also transported by the wave. This can be understood by considering 
an infinite line fed by a sinusoidal generator switched on at some time in the past. 
The front of the wave disturbance proceeds along the line so that the wave extends 
into an extra length of line each second; the energy stored by this extra length of 
line must be provided by the generator. The speed with which energy is carried 
along the line by the wave is called the group velocity, Vg. 

How does the group velocity compare with the phase velocity? It will be shown 
later that the group velocity is given by 

dw 
= 

A line correctly terminated by a receiver is equivalent to a pipe for electrical 
energy: the generator drives energy in at a certain rate (the input power) and 
the receiver accepts energy at the same rate, while the line itself carries the 
energy on its way through. 

2.2 A TRAVELLING SINUSOIDAL WAVE ON A 
PRACTICAL LINE 

Attenuation 

Energy is lost from a wave on a practical transmission line: in consequence the 
wave amplitude is attenuated with distance. The rate of loss of amplitude with 
distance is proportional to the amplitude, which means mathematically that the 
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fall of amplitude is exponential, so instead of taking the amplitude of the voltage 
at any point x as the amplitude of the input voltage, V, it must be taken as V e -~x 
where a is the attenuation coefficient (its SI units are nepers per metre). The 
equation relating voltage to distance and time on the line becomes 

v = V e -~x s in(wt-  fix) (2.2) 

Again, an equation of similar form holds for current (but note, on a practical line 
the current and voltage at the same point are not necessarily in phase). 

Since the attenuation of a line is usually quoted in decibels per unit distance, the 
relationship between the neper and the decibel should be indicated, as follows. 
The ratio of two voltage amplitudes one metre apart on a line, V1 and It"2, can 
be written 

Vl/V2 = e  ~ 

V2 being the voltage further along in the direction of propagation. If a is 1 neper 
per metre this becomes 

VI/V2 = e  

which in decibels is 

20 logl0(V1/1/'2) = 20 logl0 e = 8.686 dB 

One neper is 8.686 dB, so it is a rather large unit. 

Phasor currents and voltages 

Further analysis is facilitated by representing the currents and voltages on the line 
as phasors. 

A phasor can be used to represent the amplitude of a sinusoidal voltage or 
current and its phase difference from a reference sinusoid of the same frequency 
(note that a phasor does not include any representation of the frequency). Thus, a 
voltage V sin(wt + ~) has a phasor Vwhich can be represented in amplitude-angle 
form as V/~; in component form as a + jb where a = V cos ~ and b = V sin ~; or 
in complex-exponential form as V e j~" it is this last form which is particularly 
useful here. (See Appendix I.) 

The phasor of the driving-point voltage is called 110. Referring to Equation (2.2) 
the phasor of voltage at distance x from the driving point can be written 

Vx - V0 e -~xc-j~ 

which is the same as 

V~ = Vo e -(~+J~)x 

The expression c~ + jfl is called the propagation constant and is given the symbol 7: 
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so 

Vx = V0 e-'Yx (2.3) 

Similarly a current phasor at x can be related to the driving-point current: 

I x =  I0 e-Tx (2.4) 

Remember, I0 and V0 are themselves phasors, and their angles are not necessarily 
the same. 

The electrical properties of a short section of line, of length 8x, at point x on the 
line will now be analysed. In Fig. 2.5 the resistance, the inductance, the leakance 
and the capacitance of this small section are lumped together so as to be able to 
draw the diagram, but remember that they are all distributed. The voltage changes 
from one end of the section to the other by ~5 V and the current by 6L 

Ix Ix + 81 

Vx V~ +6V 

t. t. + ~ t  
Total series resistance R~x 
Total series inductance LSx 

Fig. 2.5 Electrical properties of a length of line 8x 

Applying Kirchhoff's voltage law around the loop of the wires, and ignoring the 
small current variation 

5 V = - R S x l x  - jwLSxIx 

Dividing by 5x and allowing ;Sx --~ 0 

dV 
dx = - ( n  + jwL)Ix (2.5) 

Similarly, considering the current between the wires and ignoring the small voltage 
variation 

61= - G r x  Vx - jwCrx  Vx 

giving 

dl  
d-~ = - ( G  + jwC)Vx (2.6) 

Differentiating Equation (2.3) 

dx 
= - 7  Vo e -'y~ = - 7  Vx 
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Combining this with Equation (2.5) 

7Vx = (R + jwL)Ix 

Similarly from Equations (2.4) and (2.6) 

7Ix - (G + jwC) Vx 

(2.7) 

(2.8) 

Characteristic impedance 
Dividing Equation (2.7) by (2.8) gives 

Vx R + jwL Ix 
I~ 6 + jwc v~ 

which yields 

Vx = ~_ + jwL 
Ix +jwC 

This equation shows that the ratio of voltage to current in the wave is the same at 
any point on the line: this ratio is called the characteristic impedance of the line - 
symbol Z0 - so the equation can be rewritten 

/ + j~L 
Zo = + jwC V t ,  

(2.9) 

For the ideal line which was discussed first, R and G are zero, so, from Equation 
(2.9) 

The fact that this term is real - i.e. Z0 is resistive - indicates that, as stated 
earlier, the current and voltage of a travelling wave on an ideal line would be in 
phase. 

More generally, the expression in Equation (2.9) is not real; Z0 is partly reactive 
and the current and voltage are not in phase. 

Theoretically there is a special case in which Z0 is real even though R and G are 
not zero; it is if 

R G 

L C 

so that Equation (2.9) can be written 

/L(R/L + jw) 
z 0  = + 

This is known as the distortionless condition, but practical lines are never any- 
where near it - G/C is much smaller than R/L. In the past some lines carrying 
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long distance signals were lump loaded with inductors at regular intervals to get 
the ratio R/L nearer to G/C, but this practice is now outdated. 

L and C should be virtually frequency independent, but R and G are not simple 
d.c. resistance and conductance; the value of R is influenced by the skin effect, 
while the value of G is accounted for in part by dielectric hysteresis losses. 
These effects vary with frequency in such a way that R and G increase as w 
increases, but less than proportionally. Hence there is a frequency level above 
which we can assume that 

wL >> R and wC >> G 

(The criterion >> (very much greater than) is generally taken, in this context, to 
mean an order of magnitude greater - i.e. at least 10 times.) 

Under these circumstances, in Equation (2.9) take 

R + jwL ~ jwL 

G + jwC ~ jwC 

so Zo ~ v/L/C as for the loss-free ease. 
This is the value of characteristic impedance that cable manufacturers normally 

quote. 

Propagation constant 

Multiplying the sides of Equations (2.7) and (2.8) gives 

7 2 Vx Ix = (R + jwL) (G + jwC) Vx Ix 

so  

7 = V/( R + jwL)(G + jwC) 

Again, for the ideal line, from (2.10) 

Since 7 is purely imaginary 

c ~ = 0  

And the line has no attenuation. 

= w J L C  

so 

w 1 vp 

and 

dw 1 
vg = 5-~ also = 

v'LC 

(2.1o) 
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L and C for a line are not independent- moving the lines apart makes L greater 
and C smaller. Theoretical calculations of L and C for a pair of parallel wires 
show that their product should be constant for a given medium surrounding 
the wires, and that 1 / ~  is equal to the velocity of electromagnetic waves in 
the medium - 3 x 10 8 m/s if the wires are in a vacuum (see Appendix 2). This 
suggests that a more fundamental analysis of waves on a twin-wire line could 
be made by considering the electric and magnetic fields generated by the 
moving charges in the line. 

For the general case where R and G are not zero, to get formulae for a and fl the 
real and imaginary parts of the expression on the right hand side of Equation 
(2.10) must be worked out. 

In the special, but unrealistic, distortionless condition in which R/L  = G/C, 
Equation (2.10) can be rewritten 

? = v/LC(R/L + jw)(G/C + jw) = (R/L + jw)v/LC 

yielding 

fl = w ~  and a = R v / c / L  

which, since R/L = G/C, and for reasons which will become clear can be written 

= [n VC/L + C VL/  C] 

More generally, writing c~ + jfl for 7 in Equation (2.10) and squaring 

(a + j/3) 2 = (R + jwL)(G + jwC) 

Multiplying out brackets 

02 _/~2 + j2cefl = R G -  w2LC + jw(LG + RC) 

Equating real and imaginary parts 

c2 _ flz = RG - w2LC 

2oLfl = w(LG + RC) 

By substituting from one into the other, these two simultaneous equations can be 
manipulated into a quadratic equation in c~ 2 and a quadratic equation in f12, each 
of which can be solved in the normal way to yield the results: 

-- {1 [(R2 + w2L2)l/2(G2 + w2C2) 1/2 -]-- (RG - w2LC)]} 1/2 

= {1 [(R2 + o)2L2)l/2(G 2 + w2C2) 1/2 - (RG - o)2LC)]} 1/2 (2.11) 

Looking at Equation (2.11) it should be clear that in the general case neither w/fl 
nor dw/dfl are independent of frequency, thus both the phase velocity and the 
group velocity vary with frequency and they do not have the same value. How- 
ever, if we multiply-out in Equation (2.10) and get 

7 = V/~RG + jwCR + jwGL w"LC 
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when the frequency is high enough the term RG can be neglected and taking out of 
the bracket a term (-w2LC) gives 

) 

The second term in the second bracket, having w in the denominator, will be 
small, so the binomial approximation can be applied (which is that (1 + x) ~ ~ 
(1 + nx) if Inxl << 1) to give 

( 1 C R + G L )  
"7 ~ jwx/-L-c 1 --~ j wLC 

Cleating the brackets 

1 CR+GL 
+ j w v ~  (2.12) "Y~2 

Equation (2.12) leads to the same results that were found for the distortionless 
condition: fl is the same as for the loss-free line, so the phase and group velocities 
will be constant and equal. 

= �89 [Rv/C/L + a~/L/C] 

which can be written 

a = �89 (R/Zo + GZo) 

Since the characteristic impedance will be effectively resistive when this approxi- 
mation holds, we can usefully write R0 instead of Z0 and Go for 1/Zo, giving a 
particularly neat equation 

a = �89 (R/Ro + G/Go) 

R0 being the characteristic resistance, v/L/C, and Go the characteristic conduc- 
tance, X/~/L. 

2.3 GROUP VELOCITY AND DISPERSION 

The signals that we transmit in practice are never pure sine waves, but collections 
of sine waves which together constitute the spectrum of the signal; it is in this con- 
text that the notion of group velocity is significant. Consider a signal that consists 
of a single spike of voltage; an infinitely narrow pulse. The Fourier spectrum of 
such a pulse consists of an infinite set of sinusoids of all frequencies and equal 
amplitudes. If the propagating sine waves all travel at the same phase velocity 
they should cancel out everywhere except at one point giving a wave profile 
that is a pulse travelling with the same velocity as the phases of the waves. 
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But now, what if the component sine waves travel at different phase velocities? 
The pulse, which of course carries the energy, travels at a group velocity for which 
the value can be determined as follows. 

Figure 2.6 shows the profiles of two adjacent sine waves from the infinite set. 
They differ in frequency and in phase velocity by an infinitesimally small 
amount, and hence they also differ in wavelength and in phase change coefficient 
by similar small amounts. Of necessity, the diagram vastly exaggerates the differ- 
ence in wavelength. 

P2 P1 

, t l  ~ . 

' ,  "V l ' ,  \ , " I  ~,, I i �9 , " ~  " , \ , ' /  \ , ,  / , ,  
�9 ,..oO " , . . w J  ~ < . . , "  

- I + d i  > 

Vp, dVp Vp 

. ' . , . . /  \..." 
# 

# Ip \ / . . . . \  

Wave 1 

"--X r 

Wave 2 

Fig. 2.6 Profiles of two adjacent sine waves in the spectrum of an infinitely 
narrow pulse 

Wave 1 has: 

Wave 2 has: 

angular frequency ~o 
phase velocity vp 
wavelength A 
phase change coefficient /~ 

angular frequency w + dw 
phase velocity Vp + dvp 
wavelength A + dA 
phase change coefficient 13 + dfl 

It may strike you that not all these increments can be positive together, but that 
will be taken care of by the mathematics. 

At the instant shown, the two waves are at a peak together at the point P~, 
which is where the pulse will be (when one takes account of the cancelling 
effect of all the other waves involved). Imagine that you, the observer, are travel- 
ling with wave 1, so that relative to you it is at rest. Wave 2 appears to be moving 
forward with a velocity dvp, and after a time t two peaks coincide at P2, so that the 
pulse position has moved back in wave 1 to position P: (all the other waves are 
altering their relative positions in similar fashion). Now 

relative distance travelled by wave 2 dA 
t =  

relative velocity = ~ 
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and in this time the pulse moves back relative to wave 1 a distance A. Hence the 
relative velocity of the pulse is 

dA -)~ dvp 
-) t  + dv----p = dA 

The actual velocity of the pulse is this plus the velocity of wave 1, so 

dvp (2 .13)  
Vg --" Vp -- )~ d--A 

Now A = 27r/fl and A + dA = 2~r/(fl + d/5') so 

27r 27r 27rdB (2.14) 
dA = fl + d------fl fl = -f l ( f l  + dfl) 

Also Vp = w/fl and Vp + dvp = (w + dw)/(fl + dfl) so 

dvp=W+dw w=fldw-wdfl  (2.15) 

From Equations (2.14) and (2.15), 

dvp wdfl-fldw 1 ( Bdw)  
d--A = 27r d/~ =2-~r w dB 

and substituting appropriately into Equation (2.13) 

_ w  27r 1 ( f ldw)  dw 

dn 

This result will apply equally well to any sort of pulse. If a pulse is to travel along 
without changing its shape, then the group velocity associated with different parts 
of its spectrum must be the same; in other words, dw/dfl must be independent of 
frequency. If it is not, then the pulse will change its shape as it travels, generally 
giving a waveform at the receiver that is spread out in time: this effect is called 
dispersion. The amount of dispersion is usually expressed as the time spread in 
the received pulse, between half-power points, for a transmitted infinitely 
narrow pulse. 

If a graph is drawn of fl against w (fl is the natural dependent variable), then the 
slope of this curve is dfl/dw, the inverse of group velocity. This quantity is known 
as the group delay. If the curve is a straight line through the origin, then the phase 
velocity and group velocity will be the same at all points and equal. 

Figure 2.7 shows the fl/w curve for a practical line. At wl, Vp is the inverse slope 
of OA, vg is the inverse slope of PQ. Similarly at other frequencies. Clearly, signals 
with low frequency components will suffer dispersion. 

In general, if a transmission medium has a phase velocity that changes with 
frequency, the group velocity differs from the phase velocity and also varies 
with frequency so that the medium is dispersive. 
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f l /w curve for a practical line 

2.4 REFLECTIONS 

Unless specific adjustments are made to avoid it, a wave that reaches the end of  a 
transmission line will be reflected back in part,  with undesirable consequences. 

Two-way propagation of pulses 
First we discuss the propagat ion of two pulses going in opposite directions on an 
ideal transmission line (no dispersion) and passing through each other. The volt- 
age profile of the two waves on the line, before they meet, is shown in Fig. 2.8(a). 

Pulse 1 Pulse 2 
(a) 

I I 
_ , , , , ,  . ~ l | l  . , , , , , ,  , i i  ~ ; , 

�9 

: V : :' V �9 

' I I ! : . . 
_ _ u _  i,,i 1111 i , a i | 1  

I ! (b) 

Fig. 2.8 Two pulses of the same polarity and amplitude travelling in opposite 
directions 
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The distribution of voltages and currents in the wires is shown in Fig. 2.8(b). Since 
pulse 1 is moving to the right, with the indicated voltage polarity, the current in 
the wires will be as shown: this is consistent with the power being delivered from 
left to fight. Pulse 2, which is taken to be of the same voltage amplitude, is moving 
to the left, and so the current directions are opposite to those in pulse 1. In each 
pulse, I = V/Ro  where R0 is the characteristic impedance of the line (resistive, 
since the line is ideal). 

It is worth stopping and thinking a little more about what is happening in a 
pulse. The current in the pulse represents the moving of electrons into and out 
of the wires of the next part of the line, thinning out to cause a net positive 
charge and crowding together to form a net negative charge, to set up the voltage 
in the next part of the line. Over the extent of the pulse there is an electric field 
between the charges in the wires accounting for the voltage between them, and 
there is a magnetic field associated with the currents. The wave (that is, the 
propagating pulse) can be described either in terms of currents and voltages, or 
in terms of moving charges, or in terms of electric and magnetic fields: detailed 
study of electromagnetic theory suggests that the energy is actually stored and 
propagated in the changing fields. 

When the two pulses meet they will pass through each other and while they are 
doing so, in the region of overlap the voltage will be double that in either pulse 
and the net current will be zero - see Fig. 2.9. 

Suppose now that pulse 2 were inverted. As they passed through each other the 
net voltage in the overlap would be zero and the net current double - see Fig. 2.10. 

In general, if the two pulses are not the same amplitude, then if they are the 
same way up in terms of voltage, as they pass through each other their voltages 

v & 

Pulse I 
Pulse 2 

, , , ~ ' ~ X  

(a) 

J _..! , ,  ,, , 
i v - -  , - ~ a  . 

v 2v v 
I [i 

i , . . . .  

I ! (b) 

Fig. 2.9 Two pulses of the same polarity and amplitude travelling in opposite 
directions on a line passing through each other 
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Fig. 2.10 Two pulses of the same ampl i tude and opposi te polar i ty  t ravel l ing in 
opposi te d i rect ions on a l ine passing through each other 

will add and their currents subtract in the overlap, whereas if they have opposite 
voltage polarities their voltages will subtract and their currents add. 

Reflection of pulses 

Suppose that at the receiving end of a line the two wires are connected together 
producing a short circuit. A pulse, driven on to the line at the driving point, 
will travel along until it meets the short circuit: what happens then? The energy 
in the pulse has to go somewhere, and the short circuit cannot absorb it because 
it has no resistance. 
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The clue lies in the previous section. When two pulses of equal magnitude, 
opposite voltage and travelling in opposite directions overlap, the resultant volt- 
age is zero, while a current flows which is twice that associated with either pulse. 
At the short circuit, current will flow with zero voltage, so that the subsequent 
propagation must be two equal and opposite pulses, one moving into the short 
circuit and the other moving out of it back along the line. The effect is reflection 
with inversion. 

If the end of the line is simply left disconnected the termination is an open cir- 
cuit and can have a voltage but zero current. A similar argument to the previous 
one should lead to the conclusion that this time the pulse will be reflected without 
inversion. This ease is illustrated in Fig. 2.11. 

Is there any way of dealing with the end of a transmission line so that no reflec- 
tion occurs? If a resistance equal to the characteristic impedance of the line (remem- 
ber, this is a line without dispersion, so its characteristic impedance will be resistive) 
is connected to the end then its ratio of current to voltage is exactly fight to absorb 
the energy from the pulse as it arrives. Looking at it another way, a further infinite 
length of line, connected to the end of the actual line, would have an input impe- 
dance R0; the pulse, when it reaches the termination, could as well be entering a 
further section of line. Of course, one does not simply want to absorb the pulse 
in a resistor - presumably it has been sent for a purpose - but the input impedance 
of any device at the receiving end must be R0 to prevent reflection: under these 
circumstances the line is said to be correctly terminated or matched. 

If the terminating impedance is not R0 there will be partial reflection; some of 
the energy will be absorbed and some will not. When the reflected wave arrives 
back at the driving point it will be reflected again unless the generator has an 
internal impedance R0. Multiple reflections can cause all sorts of problems in 
transmission systems and should be avoided as far as possible. 

The size and polarity of the reflected pulse can be calculated if you know the 
value of the terminating resistance RL. Look at Fig. 2.11. Since the voltage in 
the pulse is not inverted on reflection, the current in the pulse is inverted (if the 
voltage were inverted the current would not be). 

total voltage-- Vi + Vr 

total current = Ii - Ir 

Their ratio must be RL, so 

Vi + Vr 
= RL (2.16) 

It proves useful to take the ratio Vr/Vi: this ratio is called the voltage reflection 
coefficient and given the symbol p. 

Since, taking account of the polarities given to the currents and voltages in 
Fig. 2.11 

v , 1 4  = Vr lZ r  = Ro 
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it follows that p = Irlli as well as Vr/Vi. (Notice that the current ratio is taken as 
positive when the two currents are in opposite senses, whereas the voltage ratio is 
positive when the two voltages are in the same sense.) 

Equation (2.16) can be rewritten 

vi 1 + Vr/Vi 
RL=T  1 - s,/4 

so 

l + p  
RL =R0 1--p 

which by algebraic manipulation gives 

RL - R0 
P=RL + Ro 

Putting numbers in to give two examples: 

Suppose RL = 2R0 p = 1/3 

the reflected pulse magnitude will be 1/3 of the incident pulse magnitude. 

Now let RL = �89 R0 p = - 1/3 

the minus sign tells us that there is voltage inversion, so the reflected voltage 
magnitude of the pulse is 1/3 that of the incident pulse but inverted. 

In general, if the terminating resistance is greater than the characteristic 
impedance, the voltage of a reflected pulse is not inverted; if less, then it is 
inverted. Open and short circuit loads are limiting cases already discussed. 

The ratio of energy in reflected pulses to energy in incident pulses is called the 
return loss and is generally expressed in dB. Energy is proportional to voltage 
squared, so at the load the return loss equals 

101Ogl0(P 2) or 20 logl0 IPl dB 

For both cases considered above the return loss at the load equals -9.5 dB. 

Reflection of sine waves 

A sine wave will be reflected from a resistive load in a similar way to that described 
for pulses: if the load resistance is greater than the characteristic impedance then 
the voltage wave will be reflected so that the phase of the reflected wave is the 
same as that of the incident wave at the load; if the load is less than the character- 
istic impedance then the phase is inverted on reflection. 

If the load is not purely resistive but has a reactive component (inductive or 
capacitive) then reflection involves a phase change other than 180 ~ A repeat of 
the argument used in the previous section, but considering the phasor voltages 
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and currents in the sine wave, leads to 

ZL -- Zo 
P =  ZL + Zo 

where p is now a complex reflection coefficient defined as the phasor ratio Vr/Vj 
and Ir/li. It follows that if a pulse is reflected by a non-resistive termination, even 
if the line is non-dispersive the reflected pulse will be distorted because the sinu- 
soidal components of the pulse will suffer different phase shifts on reflection. 

For a single sine wave transmitted and reflected, the resultant of the two sine 
waves travelling in opposite directions is called a standing wave. If the reflected 
wave is of smaller amplitude than the incident wave we have a partial standing 
wave: the resultant when the waves are of equal amplitude is a total standing wave. 

A total standing wave 

In the analysis which follows we shall assume that attenuation is negligible over 
the lengths of line considered. Look at Fig. 2.12. A sine wave is travelling from 
the left towards a termination which is an open circuit. The distance from a 
chosen point, marked P, to the termination is a. 

If the voltage in the incident wave, at the point P, is represented by the phasor 
V, then, at the termination, the incident-wave phasor will be Ve -Ta, and if the 
attenuation is negligible, 7 = Jfl, so the phasor voltage at the point of reflection 
is Ve -jaa. I shall call this phasor voltage V'. This is also the phasor voltage of 
the reflected wave at the termination, so the phasor voltage of the reflected 
wave at P, taking account of the phase lag back to P in the returning wave, 
must be V' e -jBa. 

Since V' = Ve -j;3a, then V = V' e j#a, so the total voltage at P due to both the 
incident and reflected waves can be written 

Vp = V t e j~a + V t e -jaa = Vt(e J#a + e -ja~) 

It can be shown mathematically that 

(e j~a + e -j~a) = 2 cos(~a) 

Incidefit wave . . . . . . . . . . . . . .  

Reflected wave 

v 

Open 
circuit 

Fig. 2.12 Incident and reflected waves on an open circuit line 
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and it has already been shown that 13 = 27r/A so 

Vp = 2V' cos(27ra/A) 

Since the cosine of 0 is 1, at the termination, where a = 0, VT = 2 V', so finally one 
can write 

Vp = VT cos(27ra/A) (2.17) 

If you consider the term cos(27ra/A) as a increases, it varies from 1 when a = 0 to 0 
when 27ra/A = ~r/2, i.e. when a = A/4. It then increases in magnitude negatively 
up to - 1  when a = A/2. Continuing in this way, it can be seen that lip varies in 
magnitude between 0 and the magnitude of Vx in a cyclic way. At all points 
where 4a/A is an odd integer lip is zero, and at all points where 4a/A is an even 
integer lip has maximum amplitude. Points on the line at which lip has maximum 
amplitude are called antinodes; points at which lip is zero are called nodes. Nodes 
are separated by half a wavelength and antinodes the same: nodes and antinodes 
alternate along the line at quarter-wave intervals as shown in Fig. 2.13. 
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Nodes and antinodes on a total standing wave on an open circuit line 

It can be seen from Equation (2.17) that the total standing wave does not have a 
continuous phase variation with distance: the phase of the voltage is constant over 
the distance between two nodes (it inverts on passing through a node). A physical 
explanation is that as we move nearer to the load the phase of the forward wave 
moves backwards and the phase of the returning wave moves forwards so that 
when we add the two together the phase shifts cancel out. 

An analysis in terms of current indicates a similar standing wave of current, 
with nodes alternating with antinodes at quarter wave intervals, but current anti- 
nodes occur at voltage nodes and vice versa. At each voltage antinode (current 
node) the impedance of the line - the ratio V p / I p  - in the 'steady state' (that 
is, when the incident and reflected voltage are both established on the line) is 
infinite: at voltage nodes the impedance is zero. At other points on the line the 
impedance is a pure reactance (either inductive or capacitive depending on the 
position); this must be so since the average power flow into the line must be zero. 

This discussion started with a line terminated with an open circuit - giving a 

voltage antinode at the termination; if the line were terminated with a short circuit 
the same total standing wave pattern would result, but with a voltage node at the 
termination. Terminating the line with any pure reactance would again result in 
no absorption of energy, and so a total standing wave pattern; the termination 
would not coincide with a node or antinode, but the position of the pattern 
would be such as to result in the correct impedance at the termination. 
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A partial standing wave 

If only part of the wave energy is reflected back, a partial standing wave will 
result. If the incident wave is thought of as the sum of two parts, one of which 
forms with the reflected wave a total standing wave, it will be seen that a partial 
standing wave can be modelled as a total standing wave with a travelling wave 
superimposed. Again there is a pattern of maxima and minima; the voltage 
maxima are the sum of the incident and reflected voltage amplitudes, the 
minima are their difference (no longer zero). Similarly for the current maxima 
and minima. Relative positions are as for the total standing wave. The resultant 
phase now varies with distance, but not linearly; phase changes more rapidly in 
the region of a minimum. 

The ratio of the maximum voltage amplitude to the minimum voltage amplitude 
(a quarter wavelength away) is called the voltage standing wave ratio (VSWR). 1 In 
many practical circumstances this parameter can be readily measured, and it may 
be used as an indicator of the quality of termination of the line. 

The voltage standing wave ratio can be related to the modulus (magnitude) of 
the reflection coefficient. Call the amplitude of the incident wave Vi and that of the 
reflected wave Vr. At a voltage maximum in the standing wave 2 

Vmax - -  gi  -t- Vr 

and at a minimum 

Vmi n = V i - V r 

SO 

E + Vr 
S - . - -  ~ . ~ . .  ~ 

Vmin V i -  V r 

Dividing top and bottom by II, 

1+ Vr/E 
S =  

1- r'r/v, 
Vr/Vi is the modulus of the phasor ratio V~/Vi at the termination (or anywhere 
else), so it is the modulus of the reflection coefficient IPl, hence 

1 +lpl 
S =  

1 -Ipl 

Since usually the standing wave ratio is easier to measure than the reflection 
coefficient, this gives a way of deducing Ipl. The formula can be manipulated to 
give 

S - 1  
I p I - s +  1 

The VSWR is only a meaningful measurement if the attenuation per wavelength is small. 
2 In formulae, the single letter S is used for VSWR 
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A standard sometimes applied to high frequency line terminations is that the 
VSWR should not exceed 1.5' 1. This gives 

0.5 1 
Ipl = 2.5 = 5 = 0.2 

0.22 = 0.04 so 4 per cent of the power is reflected 

return loss = 20 log10 0.2 = - 14 dB 

The following example illustrates the sort of measurement which is often carried 
out on a line and what can be deduced from it. 

E x a m p l e  calculat ion 

A high frequency transmission line, of characteristic impedance 50 f~, is termi- 
nated by a transmitting antenna. With a sine wave signal on the line the voltage 
standing wave ratio is found to be 1.4" 1 and one of the voltage minima is located 
at exactly 21 wavelengths from the antenna terminals. From these data it is 
possible to deduce the nature of the load presented by the antenna to the line 
as follows. 

1 Voltage minima are A/2 apart and interleaved with voltage maxima, so at 2 
wavelengths from a voltage minimum is a voltage maximum. The sine wave is 
thus reflected without change of phase by the antenna; p is real and positive 
and so the load is resistive and greater than R0. 

S - 1  
]Pl = S + 1 

so in this case 

0.4 1 

P = 2 . 4 = ~  

Now 

RL -- Ro 
P--RL +Ro 

so again, in this case 

1 R A - 5 0  

- - R  A + 50 yielding R A -- 70 f~ 

The antenna presents a resistive load of 70 f~ to the line. 
If the termination has a reactive component, the distance from a conveniently 

located voltage minimum will not be an exact number of quarter-wavelengths and 
the calculation will be more complex. A special graphical technique using a Smith 
chart facilitates such calculations, see Chapter 7. 

Resonant line-sections 

If a short piece of transmission line, short circuited at the load-end, is fed with a 
sine wave of a frequency for which it is exactly ~ wavelength long, the input 
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impedance will be infinite (or very large if one allows for finite attenuation). A 
small drop in frequency makes the wavelength longer and so the line-section 
less than A/4 so that the input impedance is inductive; raising the frequency a 
little makes the section capacitive. These are similar to the properties of a parallel 
tuned circuit. It is difficult to make components which behave as reasonably pure 
inductors Or capacitors at higher frequencies - say above 500 MHz - so resonant 
line sections are often used in this way (see Chapter 7). 

Another common example is a quarter-wave section of line, of intermediate 
characteristic impedance, introduced between the main line and a resistive load 
to effect matching (but only at the appropriate frequency). The required charac- 
teristic impedance of the matching section proves to be 

Z m --  4 Z o Z L  

(see Chapter 7). 

Equalization 

The variation of attenuation with frequency and the dispersion of a transmission 
line can be compensated for to some extent by connecting to the end of the line 
before the load an equalizer circuit. This is a type of filter circuit which is tailored 
to have an amplitude/frequency characteristic and a phase-shift/frequency char- 
acteristic which are complementary, as far as possible, to those of the line. 

Effects of reflections 
We have seen that if the load is not matched to the line some of the power is 
reflected back - and hence wasted. This is not the only reason why reflection 
has to be controlled. 

It has already been suggested that multiple reflections from the two ends of the 
line must be avoided; they can cause erroneous signals to be received. 

Reflections can also be caused by discontinuities in the line - particularly at 

joints. These need to be minimized. 
If high powers are in use - as in the case of a feeder from a transmitter to an 

antenna - voltage maxima caused by reflection can lead to electrical breakdown. 
Finally, reflected power arriving back at the input may affect the generator, 

causing both its frequency and power output to vary in an unpredictable manner. 

Fault location using pulses 
Pulses can be used to find the position of a fault on a line, and some clue as to the 
nature of the fault. The following example illustrates this. 

Example calculation 
A correctly terminated transmission line of characteristic impedance 100 fi has 
a measured velocity of propagation of certain pulses of 2.2 x 108 m/s and an 
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attenuation, for those pulses, of 5 dB/km. A fault develops, and pulses sent down 
the line are reflected so that they arrive back at the input inverted, with a magni- 
tude 0.043 of that of the transmitted pulses, and with a time lapse of 21 gs. From 
these data the position and nature of the fault can be estimated as follows. 

The pulses must take 21/2 gs to get to the fault, so its position is 

(2.2 x 108) x (10.5 x 10-6)m = 2.31 km 

from the sending end. Since the pulses are inverted, the impedance at the point of 
reflection must be less than the characteristic impedance, and since the rest of the 
line is matched and so presents an impedance of R0 at the fault, the fault condition 
must be a partial short circuit - see Fig. 2.14(a), which can be redrawn as in 
Fig. 2.14(b). The magnitude of the reflection coefficient at the fault is 

Rsc x Ro 
and RFault = Rsc + R0 

R 0 - RFaul t 

Ro + RFault 

giving 

Rg 
I p l -  + 2R~R0 

10 4 

104 + 200Rse 

The fall in amplitude of the pulse due to the round trip on the line is 

2 x 2.31 x 5dB = 23.1dB 

which is a voltage ratio of 1023"1/2~ -- 14.3. So, 

1 
• Ipl = 0.043 

14.3 

which yields Rse ~ 31 f~ 

R=~ R o ~ RFault ~ R=~ R o 

(a) (b) 

Fig. 2.14 Representation of a short circuit fault 

The above is an example of a general technique for finding line faults, known as 
time domain reflectometry, that is widely used on both line systems and optical fibre 
systems. In some cases a step function is transmitted rather than a pulse. Such a 
step can be thought of as the front of a very long pulse; the effect is similar, in 
that a smaller version of the step arrives back which may or may not be inverted. 

In practice there will always be a number of small reflections on a line: the termi- 
nation will not be perfect, and every joint on the line will cause some reflection. 
When a line is working satisfactorily it is possible to 'map' the reflection pattern; 
significant deviations from this can then be used to diagnose deteriorations in the 
line's performance. 
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Padding and isolation 

The complete avoidance of reflection is not possible: if the attenuation of the line 
is sufficient then this may reduce the reflected signal to an acceptable level before it 
reaches the input; if not then it may be necessary to add some lumped attenuation. 
This is known as padding. 

Padding, of course, reduces the outgoing signal as well as the reflected signal: in 
transmission media which are used at the highest frequencies passive devices are 
available which attenuate the return signal but not the outgoing signal. These 
devices, known as isolators, are not available in twin-wire line, but the same 
effect can be achieved using an (active) amplifier as a 'buffer'. 

2.5 NOISE AND INTERFERENCE 

In any transmission system a parameter of primary importance is the signal to 
noise ratio at the receiver output. Some of the noise is generated in the receiver 
input circuits; that noise which comes from the line is now discussed. 

A detailed analysis involving statistical mechanics and quantum theory (two 
branches of theoretical physics) shows that in any matched transmission 
system, due to the effects of heat in generating random transient electrical distur- 
bances, the medium delivers to the receiver a fundamental noise power given by 
the formula 

[ h f / k T  ] (2.18) 
PN = k TB [exp(h--~T-) - 1 

where k is Boltzmann's constant and h is Planck's constant. T is the absolute 
temperature of the medium, B is the receiver bandwidth and f is the receiver 
mid-band frequency. (The expression hf /kT,  in fact, compares the size of the 
quantum of radiation at frequency f to the average heat energy per constituent 
particle of the medium at temperature T, so the term in square brackets would 
require to be integrated over the frequency range for a very wide percentage band- 
width.) 

At room temperature and all frequencies below about l012 Hz, effectively the 
term in brackets equals l, so 

P N  " -  kTB 

At optical frequencies, however, the formula yields a noise power much lower 
than k TB. This will be discussed further in Chapter 5. 

The transmitter circuits may generate some noise, but in all practical systems 
the signal to noise ratio at the transmitter is high. Both the transmitter signal 
and the transmitter noise are attenuated to the same extent in transmission, so 
that, at the receiver input of a matched transmission line system, the transmitter 
noise is negligible compared to the line noise and the signal to fundamental noise 
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ratio is effectively 

e$ 
k TB 

where P~ is the received signal power. 
This basic signal to noise ratio will be degraded by any extraneous voltages 

coupled onto the line: these can come from two sources, interference and cross- 
talk. Interference comes from voltages induced into the line by such events as 
electrical equipment switching on or off; it can be avoided by carefully screening 
the line with an earthed conducting sheath. Cross-talk occurs because lines often 
have to be run side by side in the same cable. There is coupling - mainly capacitive. 
but it can also have an inductive component - between wires of different lines. To 
minimize this, the wires of a line are twisted round each other so that first one wire 
and then the other is in proximity with a wire of another line and induced voltages 
cancel. Since all the lines in a cable will be twisted, they are twisted at different 
pitches (number of twists per metre) so that the cancelling can occur. 

2.6 SUMMARY OF GENERAL WAVE 
PROPAGATION 

These are the ideas that will be made use of in subsequent chapters. 

For any travelling sinusoidal wave there is a progressive increase in phase delay 
and a progressive reduction in amplitude with distance in the direction of propa- 
gation. These are characterized by a phase change coefficient 3 and an attenuation 
coefficient a respectively. 

The profile of a sinusoidal wave travels at the phase velocity, Vp, which is equal to 
fA or w/ft. 

A pulse of wave energy travels at the group velocity, Vg, which is equal to dw/d3. 

If vg is independent of frequency the medium is non-dispersive; this is, in particu- 
lar, the case when Vg = Vp. 

The reflection of pulses at the termination of a confining medium (not free space) 
can be characterized by a reflection coefficient, p, which is the ratio of the ampli- 
tude of a reflected pulse to that of an incident pulse. The proportion of pulse 
energy reflected back to any point is the return loss; at the termination this is 
given by 20 lOgl0 [p[ dB. 

2.7 SUMMARY OF SPECIFIC PROPERTIES OF 
LINE PROPAGATION 

For a travelling sinusoidal wave on a transmission line: 
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The currents and voltages can be represented by phasors Ve -~x and le -'yx, where 
7, the propagation constant, contains both amplitude and phase information; 

The ratio of phasor voltage to phasor current at a point has, at a given frequency, 
a constant value for all points and is called the characteristic impedance, Z0. 

In terms of the line primary constants: 

7 = v/(R+ jwL)(G + jwC) 

Zo = ~_ +jwL 
+jwC 

At frequencies where wL >> R and wC >> G (including the loss-free line as a 
special case): 

the attenuation per wavelength is small. 

Zo ,.~ ~/L/C and is resistive (purely real). 

fl ~ wv/L--C and so Vp ~ 1 / ~  - which is independent of frequency, so the line is 
non-dispersive. 

�89 (R/R0 + G/a0) 

A complex reflection coefficient can be defined as 

Phasor voltage of reflected wave 
P = Phasor voltage of incident wave 

In terms of impedances 

ZL  - Z 0 1-b p 
P = ZL + Z0 or rearranging ZL = Z0 1 - p 

Reflection of a sine wave produces a standing wave with a VSWR value S; this is 
related to the magnitude of the reflection coefficient by 

S - 1  
Io l=s+ l 

2.8 LINE CALCULATIONS 

The following information refers to a particular grade of data transmission cable, 
and is in a form in which line characteristics are often quoted: 

Characteristic impedance 78 
Capacitance 65 pF/m 
Attenuation (per 100 m) 1 MHz 

2dB 
10 MHz 50 MHz 
6.9dB 16.4dB 
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2.1 What is the inductance per metre of this line? 

2.2 Calculate the value of the attenuation coefficient at 1 MHz. 

2.3 Estimate, at a frequency of 1 MHz, the value of R if G were negligible and the 
value of G if R were negligible and so, by comparing wL with R and wC with 
G, show that the line is non-dispersive at this frequency. 

2.4 Show how the given data indicate that a increases with frequency and hence 
show that the line will be non-dispersive at frequencies above 1 MHz. 

2.5 Calculate the velocity of propagation on the line at the three quoted frequen- 
cies. 

2.6 Calculate the wavelength on the line at 10 MHz. 

2.7 What would be the phase difference in degrees between two points on the line 
10 metres apart at a frequency of 50 MHz? 

A 200 m length of the line is used to connect a transmitter, generating pulses of 
50 mHz radiation, to a receiver with an input impedance consisting of a resistance 
of 100 Ft in parallel with a capacitance of 20 pF. 

2.8 Calculate the magnitude of the reflection coefficient at the receiver. 

2.9 Work out the return loss at the transmitter and hence the ratio of the reflected 
pulse amplitude to the transmitted pulse amplitude at the transmitter. 
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An understanding of propagation in the other media with which this book is con- 
cerned requires an understanding of the nature and properties of electromagnetic 
waves. The discussion will be mainly in terms of classical electromagnetism; how- 
ever, it must be understood that this theory is incomplete, in that it does not account 
for the quantization of the energy in electromagnetic radiation, and some reference 
will have to be made to photons in the context of radiation at optical frequencies. 

In this chapter electromagnetic waves are simply described, without proving 
that they have the properties detailed: some analysis, starting from Maxwell's 
equations, will be found in Appendix 4. 

Classical electromagnetism involves the following relevant parameters: 

Electric field strength, E (SI units volts per metre) 
Magnetic field strength, H (SI units amperes per metre) 
Permeability of free space, #0 (value 4re x 10 -7 henries per metre) 
Permittivity of free space, e0 (value 8.854 x 10 -12 farads per metre) 
Relative permittivity (dielectric constant), er 
Total permittivity (or, simply, 'permittivity'), e (e = ere0) 

The discussion will be concerned with media which are isotropic (that is, have the 
same properties irrespective of direction), non-conducting, non-magnetic and 
loss-free (or almost so). Free space is the obvious example, but air, a number 
of dielectric materials, silica and other forms of glass, can all approximate to 
these conditions over some frequency ranges. 

Electric fields can terminate on charges and are associated with voltages between 
conductors; magnetic fields are associated with currents in conductors. However, 
even when no conductors are present, varying electric and magnetic fields can 
exist together because a varying electric field produces a magnetic field and a vary- 
ing magnetic field produces an electric field. The consequence is that electric and 
magnetic field variations can transport energy as an electromagnetic wave with 
sheets of varying electric field generating sheets of varying magnetic field and the 
sheets of varying magnetic field generating sheets of varying electric field and so on. 

3.1 ELECTROMAGNETIC PLANE WAVES 

All time variations of fields will be taken as sinusoidal, x, y and z will be used as 
three-dimensional coordinates as indicated in Fig. 3.1. 
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Z 

Fig. 3.1 Choice of three-dimensional coordinates 

The linearly polarized plane wave is the simplest form of electromagnetic wave; 
even so it is difficult to draw a diagram that will adequately illustrate it - an 
attempt is shown in Fig. 3.2. All the electric field points in one direction; the x 
direction has been chosen in the diagram. The magnetic field is in phase with 
the electric field at every point (both vary together in exactly the same way) 
and points in a direction at right angles to the electric field - the y direction in 
the diagram. The diagram can only catch the electric and magnetic field 
maxima over a small area at a given instant of time. One has to imagine that 
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Fig. 3.2 Electric and magnetic field maxima at one instant in an electromagnetic 
plane wave 
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the fields extend to infinity in the x and y directions and that between these planes 
of electric and magnetic field maxima there are planes containing electric and 
magnetic fields which, because they happen to be at a different phase of the 
sinusoidal variation, have, at this instant, lower field values. But of course as 
the wave progresses each plane will become, in turn, the plane in which the electric 
and magnetic fields are maxima, and so the whole pattern travels forwards in the 
direction shown as the direction of propagation. 

Mathematical analysis (Appendix 4) indicates that a loss-free wave of electric 
and magnetic field propagates in the z direction with a phase velocity 1/~/#0e. 
For free space this is 1/x/#0e0 which has a value ~-, 3 x 108 m/s and is given the 
symbol c. The ratio E / H  = v/#O/e" this ratio has the dimensions ohms and is 
called the wave impedance; its value for free space is 120n, i.e. 377 fl. 

The product E x H has the dimensions volts/metre times amps/metre, giving 
watts/metre 2 and indicates the rate of energy flux through 1 square metre of 
area perpendicular to the direction of propagation - that is, the power flux 
density. E and H are varying together sinusoidally, so that the instantaneous 
power flux density at a given point is constantly changing; however, the significant 
parameter is the average power flux density, Erms x Hrms, which is often simply 
described as the power density of the wave. 1 

This plane wave is said to have a direction of polarization, which tells us how it 
is oriented in space, and which, by convention, is taken as the direction of the 
electric field - i.e. the x direction in the coordinates used here. 

It is difficult to see how such a wave could be launched: rather than a driving 
point one would need a driving plane over which one would need to impose the 
necessary uniform varying electric and magnetic fields at right angles. In fact 
the plane wave represents a particularly simple form to which other wave distri- 
butions can be converted or considered to approximate. 

3.2 SPHERICAL ELECTROMAGNETIC WAVES 

At the driving point, electromagnetic waves usually start out as spherical waves: a 
simple launching device is now described. Suppose that an open-circuit twin-wire 
transmission line, driven with a sine wave, has the last quarter wavelength (for the 
frequency used) bent out at right angles as shown in Fig. 3.3. Experiment shows 
that the line no longer appears to be open circuit: at the point X the line appears to 
be terminated by a resistance of about 70 f / (a  value largely determined by the 
properties of space and not by the characteristic impedance of the line). The 
energy is not converted into heat, but is radiated away; the termination is 
called a half-wave dipole. 

i The electric and magnetic fields are vectors and, in general, the vector cross product E x H gives the 
power flux density: this is Poynting's theorem. Since E and H are at right angles in this case, the result is 
simply the product of the two magnitudes. 
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A line bent out to form a half-wave dipole 

Along the dipole there are sinusoidally varying currents and voltages which 
create fields around it. Near to the dipole the distribution of fields is complicated, 
but beyond two or three wavelengths away emerge electric and magnetic fields in 
phase and at right angles to each other which propagate as an electromagnetic 
wave. 

Why does not the whole transmission line radiate in this way? The parallel con- 
ductors produce overlapping fields in antiphase which cancel out. (If you try to 
propagate on a line a frequency for which the separation of the conductors is a 
significant fraction of the wavelength the line will radiate!) 

The energy radiates out from the dipole in all directions, though not with equal 
power density (in a direction along the dipole the power density is zero). The sur- 
faces at right angles to the propagation are concentric spheres: these arc equiphase 
surfaces for the electric field and for the magnetic field, and are often described as 
wavefronts. Just as described for the plane wave, the electric and magnetic fields 
are at right angles to each other, in phase and at right angles to the direction of 
propagation; the velocity of propagation (both phase and group velocity) 
equals l/x/#0 e; the ratio E/H at a point equals V/#0/e; the power density at 
a given point equals E • H (rms values). 

Reduction of power density with distance in a spherical wave 

In the absence of attenuation, a plane wave would show no reduction of power 
density with distance; if, however, the wavefronts are spherical, the power density 
falls off as the square of distance. This is because the same total power passes 
through spheres of increasing radius: the surface area of a sphere is proportional 
to its radius squared, so the power per unit area must be inversely proportional to 
the radius squared. 

A spherical wave can be turned into a 'beam', that is an approximately plane 
wave but with a restricted area, by means of a lens or parabolic reflector. 
However, in free space, at a distance that is large compared to the initial beam 
diameter, the wavefront becomes effectively spherical again (an area on the surface 
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of a sphere, not the whole sphere), due to the phenomenon of diffraction. In 
consequence, the power density of free-space radiation always falls off ultimately 
as the square of the distance from the driving point. 

3.3 PLANE WAVE PROPAGATING BETWEEN TWO 
CONDUCTING PLANES 

Figure 3.4 shows a cross-section of the fields associated with a wave on an ideal 
twin-wire transmission line - notice that here also the electric and magnetic 
fields are everywhere at right angles, and they are in phase. Now imagine that 
instead of two wire conductors we had two very wide fiat conducting sheets; 
the equivalent wave to that of Fig. 3.4 would be as shown in Fig. 3.5 (ignoring 
what happens at the edges of the sheet). The wave shown in Fig. 3.5 is a plane 
wave, but the electric field is restricted in length to the distance between the 
sheets and terminates on charges in the sheets. The magnetic field only exists 
between the sheets, and in each sheet there are currents consistent with the 
magnetic field. See Fig. 3.6. 

Fig. 3.5 
page) 

A plane wave propagating between two conducting sheets (into the 
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H = n amperes per metre 

Current value (into page) 
= n amperes over each metre width 

Fig. 3.6 Relat ionship between current in a conducting sheet and magnetic field 
alongside it 

3.4 REFLECTION AND REFRACTION OF PLANE 
WAVES 

When an electromagnetic wave meets the surface of a good conductor it is 
reflected. When it meets the surface of a transparent material with a different 
dielectric constant from that in which it is propagating, generally part of it is 
reflected and part is transmitted. The transmitted part suffers a change of direc- 
tion: this effect is called refraction. These phenomena are often studied in elemen- 
tary physics, in the context of light, using the notion of rays; a ray may be equated 
with a directed line indicating the direction of wave propagation. 

For simplicity in the discussion that follows, only plane surfaces will be con- 
sidered. 

Reflection by a good conductor 

When an electromagnetic wave meets the boundary between two media its subse- 
quent propagation is determined by what are known as the boundary conditions. It 
is known from experiment that a plane metal surface produces regular reflection - 
the angle to the surface of the reflected ray is equal to the angle of the incident ray 
- this can be shown to be consistent with the following boundary conditions. 

At the surface of a conductor (assumed to have negligible resistivity): 

�9 The resultant electric field cannot have a component along the surface - if such 
a field component tries to grow it causes redistribution of charge in the surface 
which cancels it. 

If a resultant electric field exists at the surface it must meet the surface at right 
angles and terminate, at the surface, on the appropriate charge. 

�9 The resultant magnetic field cannot have a component normal (at right angles) 
to the surface - if such a field component tries to grow within the conductor it 
induces currents which generate an equal and opposite field (Lenz's law). 

If a resultant magnetic field exists at the surface it must be along the surface 
and be associated with the appropriate current in the surface. 

When considering a transmission line terminated in a short circuit we used 
what was, in fact, a boundary condition - that the short circuit can have current 
in it but no voltage across it. This determined that the energy must be reflected 
back in a pulse with inverted voltage. The case now being considered is more 
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Fig. 3.7 Reflection by a plane conductor of a plane electromagnetic wave 
polarized parallel to the surface 

complicated, being in three dimensions rather than one, but a similar outcome is 
to be expected; currents flow in the surface to generate a reflected wave the phase 
and direction of which are such as to satisfy the boundary conditions. It turns out 
that the direction of the reflected wave is always that indicated by the law of reg- 
ular reflection - i.e. angle of incidence = angle of reflection. 

Figure 3.7 shows the special case of a plane sinusoidal wave meeting a conduc- 
tor surface having its electric fields along the surface. In the diagram the directions 
of propagation of the wave before and after reflection are indicated by an incident 
ray and a reflected ray. The fields are shown 'frozen' at an instant of time; even 
then it can only show magnetic field maxima, by lines on the page perpendicular 
to the rays, and electric field maxima, by a dot in a circle to indicate fields in the 
E - H  plane which are out of the page and a cross in a circle for fields into the page. 
There are, of course, fields between the field maxima of sinusoidally differing 
amplitude. At the point A and, in fact, all along the surface, the electric field in 
the reflected wave cancels the electric field in the incident wave. As time progresses 
the incident wave moves towards the surface and the reflected wave away. If a 
point like A is considered, where field maxima in the incident and reflected 
waves coincide at the surface, it should be seen that the cross-over pattern of 
the fields moves to the right along the surface. 

Refraction and total internal reflection 

The case which is important for our purposes is that of a wave in a dielectric 
(medium 1) which meets a boundary beyond which is a material with a lower 
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. . . . .  - t e d  

Reflects 
w a v e  

Fig. 3.8 Reflection and refraction of a plane electromagnetic wave at a dielectric 
boundary 

relative permittivity (medium 2). Compared to medium 1, a sinusoidal wave in 
medium 2 has: 

�9 A higher phase velocity ( 1 / ~  and therefore a longer wavelength (because 
its frequency does not change and its phase velocity is fA). 

�9 A greater wave impedance (V/#0/e). 

The boundary conditions at a dielectric boundary are not so straightforward as 
those at a conducting surface, so only their consequences will be described. 

The effect depends upon the angle which the incident wave makes to the bound- 
ary. Figure 3.8 again takes the special case of a sinusoidal wave with electric fields 
parallel to the boundary (the results are broadly applicable to the more general 
case): only the magnetic field maxima are shown. With a small angle of incidence 
(between the ray and a normal to the surface) the refracted wave direction changes 
as shown to accommodate the increase in wavelength without a wavefront discon- 
tinuity at the boundary. The rule which gives the angles is known in optics as 
Snell's law, and is usually stated as 

n l sin a = n 2 sin 

where nl and n 2 are the refractive indices of media 1 and 2 respectively. 2 Snell's law 
could equally well be written 

sin fl 
sin a = ~/~V erE 

The reflected ray obeys the usual law of reflection. The transmission line analogy 
(but one-dimensional) would be a line connected to a second, correctly termi- 
nated, line of higher characteristic impedance. From this one can infer that the 
reflected wave suffers no electric field phase inversion. The ratio of intensities of 

2 The refractive index of  a medium is the ratio of  the velocity of l ight  in free space to the velocity of  light in 
the medium - i.e. n = C / V p  - and so is directly proport ional  to the square root  of  the permittivity. 
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Fig. 3.9 Reflection and refraction at almost the critical angle 

the transmitted and reflected waves depends upon the relative wave impedances of 
the two media and on the angle of incidence. 

If the angle of incidence is increased the situation soon reaches that shown in 
Fig. 3.9 where the refracted ray is almost along the surface. As the angle of inci- 
dence increases further the condition in medium 2 changes: Snell's law cannot 
apply because sin/3 would have to be greater than unity - which is impossible. 
The value of the angle of incidence, c~, for which Snell's law gives a value for 
sin fl of unity is called the critical angle. 

Fields still penetrate medium 2, but now their amplitude falls off exponentially 
with distance from the boundary, as shown in Figs. 3.10(a) and 3.10(b). Under 
these conditions the fields in medium 2 are described as fringing or evanescent 
fields. Since magnetic flux is continuous, the magnetic field in medium 2 has a 
longitudinal component as indicated. It can be seen that the distance between 
field maxima in the fringing fields is no longer the plane-wave wavelength in 
medium 2. The field patterns move to the right (for these diagrams) as time pro- 
gresses. The moving field pattern in medium 2 is sometimes described as a surface 
slow-wave; the important point is that some energy is stored in these fields. 

At the critical angle the reflected wave is still in phase with the incident wave. As 
the angle of incidence is increased there is an increasing phase shift of the electric 
field with reflection which, at grazing incidence, becomes inversion. The power 
density of the reflected wave is equal to that of the incident wave: the analogy 
with a transmission line is that the surface is now acting as a purely reactive load. 

The condition just described is known as total internal reflection - a name which 
may give the false impression that no electromagnetic energy enters medium 2. 

Comparison of conductor reflection and total internal reflection 

When a wave is reflected at a conducting surface the electric field is inverted, 
whereas for total internal reflection at a dielectric boundary the electric field 
suffers a phase shift which depends on the angle of incidence. 



3.4 Reflection and refraction of plane waves 45 

Medium 
2 

, 

Me 
1 Reflected Incident 

(a) wave wave 

Surface slow 
wave 

Medium 
2 

Surface slow 
. . . . . . . . .  wave 

Medium ~/ / / v ~ \  ,,f 

Reflected Incident 
(b) wave wave 

Fig. 3.10 The result of reflection of an electromagnetic plane wave on a dielectric 
boundary where the angle of incidence exceeds the critical angle 

A reflecting conductor surface carries currents, which will cause losses if the 
conductivity is less than infinite. A reflecting dielectric carries fringing fields 
which will introduce losses if that dielectric is lossy. (There may also, of course, 
be losses in the propagating dielectric.) 

For total internal reflection the angle of incidence of the wave must exceed the 
critical angle: the greater the angle of incidence (i.e. the smaller the angle which 
the ray makes to the surface) the less the extent of penetration of the fringing 
fields. 



4 Coaxial line, strip line and 
waveguide 

These three media can all be used at much higher frequencies than twin-wire line 
and their uses to some extent overlap, as we shall see. 

4.1 COAXIAL LINE (COAX) 

Coaxial line is used extensively to transmit signals in the frequency range 1 to 
100 MHz over hundreds of metres. It is also used to transmit much higher 
frequency signals - up to 10 GHz - over short distances. The treatment given 
here is brief only because most coax properties are directly derivable from those 
of twin-wire line. 

Coax consists of a wire conductor held in place along the centre of a con- 
ducting cylinder by a tube of dielectric. The outer conducting cylinder is usually 
made from woven copper wire so as to give the line a degree of flexibility. For 
a given dielectric, the relative radii of the inner and outer conductor determine 
the characteristic impedance (see Appendix 2). For low loss and high power 
rating the overall cross-sectional dimensions need to be as large as possible, 
but larger dimensions lead to less mechanical flexibility and also allow 
higher order modes to propagate at lower frequencies (see later section on 
waveguide). 

The signal is applied between the inner and outer conductors of the line and the 
circuit analysis given for twin-wire line applies, although the inner conductor has 
most of the line resistance. Coax tends to be more dispersive than twin line at low 
frequencies, but its usefulness extends to much higher frequencies than twin line 
because the fields are mainly restricted to the inside of the outer conductor result- 
ing in much less radiation and cross-talk. A great deal of coax is made to one of 
two standard characteristic impedances; either 75 f~ or 50 f~. 

A cross-section of the fields in a coaxial line in the normal mode of propagation 
is shown in Fig. 4.1. The wave is a sort of plane wave wrapped round the centre 
conductor; it does not have a direction of polarization. The velocity of propaga- 
tion of a high-frequency signal in coax is that of an electromagnetic plane wave in 
the dielectric between the conductors; typically 2 x 108 m/s. 



4.2 Strip fine 47 

Fig. 4.1 Electric and magnetic fields associated with the propagation of a wave in 
coax (into the page) 

Coaxial cable 

A coaxial line encased in an insulating protective sleeve is usually referred to as a 
coaxial cable. This is an exception to the normal usage in which a cable consists of 
an assembly of a number of lines carried together in the same protective sheath. 

Balance about earth 

Usually the outer conductor of a coaxial line is connected to earth potential at 
least at one end. This is in contrast to a twin-wire line which in normal use is 
balanced about earth. If a length of coax is used to feed a load, such as an 
antenna, which needs a balanced feed, then a special 'balance to unbalance' trans- 
former has to be included (see Chapter 7). 

4.2 STRIP LINE 

Strip line is usually encountered in the form of microstrip, used to convey signals 
from one part of a high-frequency circuit to another. When a circuit has to handle 
frequencies such that the distance between components is significant in wave- 
lengths the connections must be formed as transmission lines which can be 
matched to the input and output impedances of the components. Often, different 
specified characteristic impedances are required for different parts of a circuit. 
The microstrip is formed on printed circuit board with a ground plane acting 
as one conductor, as shown in Fig. 4.2. 

Fig. 4.2 Microstrip 

t ~  Track 

Dielectric (insulation) 

Ground plane 
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The velocity of signal propagation in microstrip depends solely on the permit- 
tivity of the dielectric. The characteristic impedance depends on the thickness of 
the dielectric, d, the width of the track, w, and to some extent on the thickness 
of the track, t. In general, increasing d increases Z0 while increasing w decreases 
it. Characteristic impedances in the range 50fl to 150~2 are easily achieved. 
Sometimes other conductors close-by will modify Z0. Generally the required 
dimensions of microstrip in a circuit to provide the correct impedances will 
have to be worked out using computer aided design. For further comments see 
Appendix 2. 

4.3 WAVEGUIDE 

Waveguide is used for moving signals of very high frequencies over short dis- 
tances - commonly for connecting a microwave antenna to its transmitter and 
receiver. Propagation in optical fibre is much easier to explain when propagation 
in metal waveguide is understood, so for this reason, if for no other, we need to 
discuss it in some detail. 

Reflection between two parallel conducting planes 

A plane wave can propagate between two parallel conducting planes by multiple 
reflection. Consider the simplest case where the direction of polarization of the 
wave (that is, the electric field direction) is parallel to the planes. 

The reflections from the two planes have to be at such an angle that they rein- 
force rather than destructively interfere. To show what this implies, Fig. 3.7 has 
been redrawn and extended in Fig. 4.3 (leaving out the electric field) and a possible 
position added in which a second conducting plane could be placed so that the 
wave and its reflection in the first plane together satisfy the boundary conditions 

Fig. 4.3 
planes 

Plane 1 

.-,,,\~\\\-,,,.\\\~ ~\ \ \ \ \ \ \ \ \ \ \ \ \ - ,~ 

Plane 2 

Reflection of a plane electromagnetic wave between two conducting 



Plane 1 
N 

4.3 Waveguide 49 

Plane 2 

Fig. 4.4 Reflection of a plane electromagnetic wave between two planes with the 
minimum separation for the wavelength 

at this second plane. If a second plane were in fact placed in this position, then the 
wave would be entirely contained between the two planes and propagate to the 
fight in the diagram by multiple reflection. The magnetic field maxima in the over- 
lapping waves produce a 'diamond pattern': the second reflecting plane could 
have been placed so as to include just one diamond width, as shown in Fig. 4.4, 
or three, or any number. 

Rectangular waveguide 
Two more conducting planes could be added to the two described in the previous 
paragraph, at right angles to the electric field, so as to terminate the electric field 
on charges in the conductors. These conductors would carry currents consistent 
with the magnetic fields tangential to them (as indeed do the reflecting planes). 
The resulting conducting tube, of rectangular cross-section, is a waveguide. For 
the moment, consider the simplest possible propagation down this tube with 
one diamond pattern across between the reflecting walls. Figure 4.5 shows the 
magnetic field maxima of the reflecting wave at a particular instant of time, 
together with its direction of propagation, in a plane perpendicular to the reflect- 
ing walls. The energy is carried by the plane wave, which will be referred to from 
now on as the generating wave, and so it progresses along the waveguide with a 
group velocity 

I I I  I 

where Vp is the phase velocity of the generating wave (c, if the waveguide contains 
air or a vacuum). Suppose that in the same waveguide one tried to propagate a 

Vg(guide ) - -  t)p COS 0 

Fig. 4.5 Direction of propagation of the generating (reflecting) plane wave in a 
rectangular waveguide 
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! 
Fig. 4.6 Direction of propagation of the generating wave in a waveguide for a 
longer wavelength than in Fig. 4.5 

lower frequency. The free-space wavelength, A, is longer. The direction of reflec- 
tion would have to adjust itself as shown in Fig. 4.6. The angle 0 is increased. The 
group velocity is reduced. A group velocity which varies with frequency indicates 
that a waveguide propagating in this way is dispersive and the dispersion that 
results is called waveguide dispersion. 

Suppose one continues to reduce the frequency of the wave one tries to 
propagate. When the half-wavelength becomes equal to the distance between 
the reflecting walls the generating wave will reflect between the walls making no 
progress at all. This frequency is called the cut-offfrequency: below this frequency, 
wave propagation in the guide is impossible. 

Modes 

Look back at Fig. 4.5. A wave of the wavelength shown could also propagate as 
shown in Fig. 4.7: this is known as a different mode of propagation. It will be 
found if an attempt is made to construct the diagram that the wave shown in 
Fig. 4.6 cannot propagate in this mode because its wavelength is too long. Look- 
ing at Figs. 4.5 and 4.7 it should be clear that energy in the two modes propagates 
with very different group velocities. There are several ways in which energy can be 
launched into a waveguide; one is discussed at the end of this chapter. Whatever 
method is used, if both the modes shown in Figs. 4.5 and 4.7 can propagate then 
there will be energy in each mode. Even if the launching section is carefully 
designed to encourage one mode rather than another, small irregularities in the 
guide structure will cause energy to be transferred from one mode to the other 
as the waves progress. The difference in group velocity between the two modes 
results in a form of dispersion known as intermodal dispersion. 

In fact there are many modes that can propagate. The generating wave could 
reflect from the other pair of walls, or indeed from all four walls in the most 

Fig. 4.7 Propagation of a wave of the same wavelength as that in Fig. 4.5 in a 
higher mode 
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general case. Each of the possible modes has its own cut-off frequency; the mode 
described first has the lowest and is called the fundamental mode. Provided the 
cross-section of the guide has a two to one aspect ratio there is a two to one 
ratio of frequency over which only the fundamental mode can propagate. If 
frequencies in this single-mode range are propagated there can be no intermodal 
dispersion. 

Composite field patterns 
As the reflecting generating plane wave crosses and recrosses itself the resulting 
composite field pattern - which is a form of interference pattern - looks nothing 
like a plane wave. In transverse electric modes the magnetic fields add vectorially 
to form loops while the electric fields add in some places and cancel in others. 
The resulting pattern for the fundamental mode is shown in Fig. 4.8. This 
pattern travels down the guide and its speed of travel, the phase velocity in 
the guide, is greater than the plane wave phase velocity. To understand why 
this is so imagine a closing pair of scissors: the point of intersection of the 
blades (equivalent to the field pattern) moves much faster than the speed at 
which the blades (equivalent to the reflecting generating wave) move towards 
each other. Because the field pattern travels faster than the energy, as a pulse 
of electromagnetic energy travels along the guide the field pattern travels 
through the pulse, taking on a finite magnitude at the beginning of the pulse 
and collapsing to zero at the end of it. 

Longitudinal cross-section ...... 
Direction of 

,1~ propagation 

=-H 

Transverse cross-section 
Fig. 4.8 Composite field pattern for the fundamental mode in a rectangular 
waveguide 

Each mode is a solution to Maxwell's equations in its own fight; in fact any dis- 
tribution of fields that satisfies Maxwell's equations and the boundary conditions 
at the waveguide walls will propagate as a mode. Since, however, in every case for 
rectangular guide, a generating plane wave can be postulated, an approach from 
that point of view is found to be the more useful. 
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Analysis of the fundamental mode in rectangular guide 

In practical use, propagation in rectangular guide is always in the fundamental 
mode, so from now on we shall concentrate on that. Look at Fig. 4.9 which 
shows just one magnetic loop of the composite field pattern, together with half 
wavelengths of the generating wave. The mode pattern will have a wavelength, 
designated Ag, which is the distance along the guide at any instant between two 
adjacent points with the same electric and magnetic field phases: by inspecting 
Fig. 4.8 you should see that one magnetic loop is half a guide wavelength long, 
and this is marked on Fig. 4.9.0 is the angle made by the direction of propagation 
of the generating wave with the axis of the guide: simple geometry indicates the 
equality of the two angles marked 0. For the phase velocity of the mode we can 
write 

Vp(gulde ) =fAg 

so, since, assuming that the waveguide contains no dielectric other than air 

cAg (4.1) c = f A  Vp(guide) - -  A 

Looking at Fig. 4.9 it can be seen that as the generating wave moves forward 
through A/2 the field pattern moves forward through Ag/2, and Ag is always 
greater than A. Hence Vp(guide ) i8 always greater than c. 

It has already been seen that 

Vg(gmde) - -  C COS 0 

and from Fig. 4.9 

cos 0 = A/4 A 
Ag/4 Ag 

"0 
! 

2 

Fig. 4.9 One magnetic loop of the fundamental mode 
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SO 

A 
Vg(guide ) - ~gg 

From Equations (4.1) and (4.2) 

~3p(guide ) X tyg(guide ) = C 2 

(4.2) 

Guide wavelength formula 

A relationship between Ag and A for the fundamental mode can be deduced as 
follows. From Fig. 4.9 

sin 0 = A/4 A 
a/2 2a 

Since cos 0 = A/Ag and sin 2 0 + cos 2 0 = 1 

A 2 A 2 
(2a) - - - - I  + A-~g = 1 (4.3) 

At the cut-off frequency the wavelength is twice the waveguide width, i.e. we can 
write 

2a = Ae 

which, in Equation (4.3) gives 

1 1 1 
A--~g = A 2 A~ (4.4) 

Taking certain assumptions from the graphical analysis above, Appendix 4 gives 
an algebraic analysis of the fundamental mode in rectangular guide, which reveals 
a further interesting phenomenon; that of evanescent propagation. 

Guide wave impedance 

At every point in a travelling wave in the fundamental mode in rectangular wave- 
guide, the ratio of the transverse electric and magnetic fields has a fixed ratio: this 
is called the guide wave impedance, Zw. (Notice that the longitudinal component 
of the magnetic field is not involved in the definition.) In Appendix 4 it is shown 
that 

Zw = 120~ Ag 
A 

This wave impedance is analogous to the characteristic impedance of a trans- 
mission line" a resistive film of surface resistivity equal to Zw placed across the 
end of a guide carrying the fundamental mode would absorb all the energy and 
match the guide. 
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Waveguide wall currents and voltages 

As already indicated, the waveguide walls carry currents and voltages consistent 
with the fields inside the guide. In fact, a complete description of the propagation 
could be given in terms of these currents and voltages - this does not, however, 
prove to be a very productive approach. A general illustration of the configura- 
tion of the wall currents in the fundamental mode is shown in Fig. 4.10; voltage 
maxima occur where the current causes charge to accumulate. 

Fig. 4.10 Currents in the walls of a waveguide carrying the fundamental mode 

Attenuation 

Since waveguide runs are normally short, attenuation in practical use is not 
normally a problem, and in the discussion so far it has been ignored. Unless 
the waveguide contains a solid dielectric (which will dissipate energy as the 
wave travels through it) losses in a waveguide are caused by the currents in the 
walls. These currents flow in a very thin section of the inner surface (the skin 
effect), so to minimize attenuation the inside surface of the guide needs to be 
clean - particularly the corners, where dirt tends to accumulate. Very high quality 
waveguide is made from very pure copper, and is even sometimes silver plated 
inside: cheaper waveguide is made of brass. 

In theory, the attenuation due to wall currents is infinite at the cut-off frequency 
and becomes small rapidly as one moves to higher frequencies. The group velocity 
also changes rapidly near the cut-off frequency, giving high dispersion. For both 
these reasons the range of frequencies recommended for a given size of waveguide 
extends from about 25 per cent above the cut-off frequency of the fundamental 
mode to about 90 per cent above. The latter restriction is to avoid the possibility 
of generating a higher mode. 

curves for rectangular waveguide 

Figure 4.11 shows the shape of flg/W curves for the fundamental mode and for two 
nearest competing modes in a rectangular waveguide with a 2" 1 aspect ratio, fig 
being the phase change coefficient for the mode in the guide. (The names of 
modes in rectangular waveguide tell you which field is purely transverse and 
how many half-cycles of field variation there are across each guide dimension.) 
At C10, the cut-off angular frequency of the fundamental mode (TEl0), the 
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Fig. 4.11 
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flo/a~ curves for lower order modes in rectangular waveguide 

slope, dflg/da), is infinite, so ~)g(guide), i.e. dw/dflg, is zero. At this point, w/fig, the 
value of '0p(guide), is infinite. As the frequency increases, the inverse slope, repre- 
senting Vg(gu~de), increases towards a value c, while, since the curve is asymptotic 
to the line of slope 1/c, the value of Vp(guide) decreases towards a value c. The 
frequency range between Cl0 and C20&01 is the single-mode range of operation 
of the guide. The fact that the flg/W lines are curved indicates waveguide disper- 
sion, while it should be possible to see that at the angular frequency marked 
Wl, a frequency where more than one mode can propagate, the group velocity 
in the fundamental and in the higher modes is different, indicating intermodal 
dispersion. 

Circular waveguide 
Waveguide with a circular cross-section (or indeed almost any cross-section) can 
propagate waves. Again, any field pattern that satisfies Maxwell's equations and 
the boundary conditions at the wall will propagate. The relationship between 
phase and group velocities is as described for rectangular guide. 

Circular guide also has a fundamental mode which has a similar longitudinal 
field distribution to the fundamental mode in rectangular guide - see Fig. 4.12 
for the transverse field cross-section. Circular guide has the disadvantage that 
the structure does not constrain the direction of polarization for this fundamental 
mode. 

A coaxial cable can be thought of as a circular waveguide with an extra con- 
ductor down the middle, and hence it is possible for modes other than the 
simple mode described at the beginning of this chapter to propagate. This is 
not usually a problem, since the small diameter of the outer conductor means 
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l ) 
Fig. 4.12 Transverse field cross-section in the fundamental mode in circular 
waveguide 

that generally all alternative modes are cut off, but at high enough frequencies 
they might not be. 

Termination of a waveguide 

A waveguide in use needs to be correctly terminated just as does a line, to avoid 
reflections. A termination with a uniform surface resistivity equal to the wave 
impedance is not generally a practical proposition. Attenuating material placed 
in the guide with an increasing volume over a number of wavelengths can be 
designed to absorb the wave without reflection, but this simply turns the wave 
energy into heat. 

The signal can be coupled into the waveguide from a coaxial line using the inner 
conductor of the line as a sort of antenna protruding into the guide through the 
broad wall as shown in Fig. 4.13. The distance to the short-circuiting end wall at A 
is nominally Ag/4 so that the wave travelling towards the wall, after reflection in 
which it suffers a phase reversal, travels back in phase with the wave travelling 
from the probe directly down the guide. There are a number of variants on this 
theme, and the detail of design is complex, generally requiring CAD (computer 
aided design). It is also possible for the signal to be coupled in from a resonant 
cavity using a quarter-wave transformer (see Chapter 7). The signal can be 
coupled out at the receiving end using the same structures. 

The concepts of reflection coefficient, return loss and standing wave ratio are 
relevant to waveguide. 

_= Prooagat,on 

Fig. 4.13 Wave-launching section in a waveguide 
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4.4 WAVEGUIDE CALCULATIONS 

4.1 Signals from a UHF television transmitter to its antenna are carried by wave- 
guide. Calculate suitable dimensions for rectangular waveguide to carry 
signals in Band V, which covers a frequency range 614 to 854 MHz. 

4.2 Calculate the guide wavelength, phase velocity, group velocity and wave 
impedance of a 6.0 GHz travelling wave in a waveguide of internal dimen- 
sions 4.0 cm by 2.0 cm. 
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Optical fibre is a type of dielectric waveguide used to propagate radiation in the 
infra-red to visible region of the spectrum. 

By convention, optical frequencies are not generally quoted directly. This is 
because it is not easy to measure them directly; instead free-space wavelength is 
measured and quoted, usually, in nanometres. Mention of 'wavelength' in what 
follows should be taken to mean free-space wavelength; when the wavelength 
in the fibre needs to be specified it will be referred to specifically as guide wave- 
length. In place of the term bandwidth representing the range of frequencies to 
be transmitted, reference is made to linewidth representing the spread of (free- 
space) Wavelengths: it is easy to show that the linewidth as a percentage of the 
centre wavelength is the same as the bandwidth as a percentage of the centre 
frequency. 

In all practical systems up to the time of writing the transmission is binary 
digital; electrical pulses representing Is are converted into bursts of light and 
launched Onto the fibre using light-emitting diodes (LEDs) or lasers and received 
and converted back into electrical pulses using photodiodes. An elementary 
explanation of the function of these devices is given in Introduction to Solid 
State Devices, Lem Ibbotson, Arnold, 1997. For the present discussion you 
need to know that none of the transmitting devices, even when operating continu- 
ously, emits a single frequency of radiation: the output of an LED has a linewidth, 
typically, of about 60 nm, a laser has a linewidth of 5 to 10 nm, while a 'single 
mode laser' can have a linewidth of less than 0.01 nm. There is also, of course, 
a spread of frequencies associated with the pulse modulation which would 
occur even if the source were monochromatic (single frequency), however this 
is only significant compared to the narrowest source linewidths at the very highest 
signalling rates. 

High quality fibres are generally made of amorphous silica (silicon dioxide) 
with small quantities of suitable doping material added to alter the refractive 
index as required. There is available some cheap fibre made of plastic, but this 
is only suitable for transmission over very short distances, and we shall not discuss 
it further. 

The fibre consists of a cylindrical core surrounded by a cladding of lower refrac- 
tive index. It may be: 

�9 Single mode (step-index) with a core diameter, for the wavelengths used in 
telecommunications ~9 ~tm, or 
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�9 Multimode step index with a core diameter ~50 lam or 
�9 Multimode graded index with a core diameter ,~50 ~tm and a core refractive 

index that varies across the core diameter, being maximum at the centre. 

The cladding outer diameter is typically ,~125 ~tm. 

5.1 PROPAGATION IN OPTICAL FIBRE 

Propagation can be modelled as a generating wave suffering repeated reflections 
by total internal reflection at the core boundary; however, since no charge can 
accumulate at the boundary, nor current flow in it, the nature of the reflection dif- 
fers fundamentally from that at a metal boundary. The fields penetrate into the 
cladding to an extent that depends on the frequency and on the angle of incidence 
of the generating wave to the boundary, and these evanescent fields travel along in 
the cladding in step with the composite fields in the core and with an intensity that 
falls off exponentially from the boundary. The cladding is designed to be wide 
enough effectively to contain these fields under all circumstances. Because of 
the varying extent of the field penetration into the cladding, the fibre is said to 
have a soft boundary. 

Many modes are possible. The propagation properties of the fibre can be 
illustrated by drawing a flg/W diagram as for rectangular metal waveguide. In 
the case of fibre, however, it proves more useful to plot 'normalized' values, 
fig/ri0 and W/Wo. The normalizing parameter/30 is the 'free-space' propagation 
constant for that frequency, i.e. 2n/A, while w0 is a constant that emerges from 
the detailed theory (see, for example, John Gower, Optical Communication 
Systems, 2nd Edition, Prentice Hall). 

a v / n  - 

so that 

___.w = 2rra ( n  2 -S- 

where a is the core radius and n 1 and n 2 are the refractive indices of core and clad- 
ding respectively. [W/Wo is sometimes given the symbol V in the literature.] 

Figure 5.1 shows theoretical normalized ~g/W curves for some of the lower 
order modes in step index silica fibre, assuming that the refractive indices of 
core and cladding are independent of frequency (the significance of this proviso 
will become clear later). The names given to the modes represent the composite 
field distributions in a scheme which no attempt will be made to explain here. 

Since refractive index is the ratio of phase velocity in free space to that in the 
medium it is also the ratio of phase change coefficient in the medium to that in 
free space (i.e. ~g/~O). It can be seen that on the ~3g/~o axis, the values of n I 
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Fig. 5.1 
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Theoretical normalized fig~a)curves for step-index silica fibre 

and n2 are marked: the average refractive index encountered by the wave moves 
nearer to n2 as the wavelength increases, implying that an increasing proportion 
of the wave is propagating in the cladding. In fibre a mode cuts off when the value 
of fig/rio reaches n2, indicating that the core is no longer guiding the mode. 

It can be seen from Fig. 5.1 that there is a fundamental mode, called HEll, which 
over a range of values ofw/wo is the only mode that can propagate. The normalized 
flg/W curve for HEll goes down to zero frequency, so that this mode has no lower 
cut-off frequency (the reason for this is that the soft boundary keeps expanding as 
the frequency is lowered); however, a minimum operating frequency is imposed by 
the attenuation properties of the fibre as will be discussed in the next section. Since 
the normalized flg/W line for HEll is curved, there will be waveguide dispersion in 
this mode. The composite fields in the HEll mode have some similarity to the fields 
in the fundamental mode in circular waveguide, but the electric field, as well as the 
magnetic field, has longitudinal components in the cladding. 

By considering the slopes of the normalized flg/W curves for the different modes 
shown, at frequencies at which several can propagate, it can be seen that there will 
be significant intermodal dispersion. 

5.2 ATTENUATION IN OPTICAL FIBRE 

Glasses used for normal optical purposes absorb light to an extent which, though 
not noticeable in a lens or prism, would be far too great over a length of many 



5.2 Attenuation in optical fibre 61 

kilometres. Transmission by silica optical fibre became a practical proposition 
when means were found of producing material with sufficient purity and homo- 
geneity to give attenuation less than 20dB/km. This can be achieved for wave- 
lengths in the range 0.5 to 1.8 ~tm; in fact, at the optimum wavelength the 
attenuation can be as low as 0.2 dB/km. 

There are two significant unavoidable loss processes in silica, both of which are 
frequency dependent: 

�9 The silicon and oxygen inter-atomic links have resonances which absorb energy 
in the infra-red. 

�9 The amorphous nature of the material leads to random fluctuations in density 
which cause a type of scattering, known as Rayleigh scattering; this decreases 
with increasing wavelength. The scattered energy leaves the fibre. 

Figure 5.2 shows a graph of attenuation versus wavelength for a silica fibre. The 
dotted lines represent the effects of the two mechanisms described above; the 
solid line shows what is achieved in practice. The bumps in the practical curve 
are due to residual impurities which prove a practical impossibility to eliminate 
- particularly the large effect at 1.4 l~m caused by water. 

It can be seen that there are low-loss 'windows' at 1.55 ~tm and at 1.3 ~tm; long 
distance transmissions generally make use of one or other of these. Wavelengths 
in the small minimum around 0.85 ~tm are also used, mainly because cheap light 
sources and detectors are available for these wavelengths. 

There are other glass-like materials in which the absorption edge is at a 
longer wavelength than that for silica, thus, since the effect of Rayleigh scattering 
reduces with increasing wavelength, use of such a material should result in lower 
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Fig. 5.2 Wavelength dependence of loss in sil ica fibre 
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attenuation still. Up to now these materials have proved too expensive and diffi- 
cult to process to be a practical proposition. 

[An attenuation effect due to the semiconductor energy gap in silica has not 
been mentioned: this would only be significant for radiation at the violet and 
ultraviolet end of the spectrum.] 

5.3 DISPERSION IN OPTICAL FIBRE 

As in metal waveguide, both waveguide dispersion and intermodal dispersion can 
occur in optical fibre, but in addition there is another dispersive mechanism - 
material dispersion. This occurs because the phase velocity of plane waves in 
silica falls with increasing frequency. The effect of this in optical fibre is compli- 
cated because a fall in phase velocity implies a rise in refractive index, so that 
material dispersion indicates not only a change in the speed of the generating 
wave with frequency, but also a change in the effective diameter of the boundary. 

In fibre designed to propagate many modes - multimode fibre - intermodal dis- 
persion is many orders of magnitude larger than dispersion due to the waveguide 
effect and that due to the material, so these last two can be ignored. 

In single mode fibre the two remaining dispersive effects are significant, and 
they are found to interact. Thinking back to the explanation of propagation in 
metal waveguide it will be realized that a fall in the phase velocity of the generat- 
ing wave causes a fall in the mode group velocity, so material dispersion tends to 
reduce the group velocity as frequency increases. However, waveguide dispersion 
itself tends to increase the mode group velocity as frequency increases. (The detail 
is complicated because of the 'soft boundary' effect.) The change of phase velocity 
with frequency caused by the material dispersion is more rapid at shorter wave- 
lengths, giving over this range of wavelengths a net reduction in the group velocity 
with increasing frequency, whereas at longer wavelengths, as the effect of material 
dispersion decreases, the effect of waveguide dispersion increases and the group 
velocity increases with increasing frequency. Between these two regions is a 
wavelength at which the group velocity is not changing with frequency, so that 
monochromatic radiation would suffer no dispersion. The exact value of this 
wavelength can be manipulated to some extent by choice of the core diameter 
and core and cladding refractive indices because the waveguide dispersion will 
be different over different regions of the normalized/~/w curve of the fundamental 
mode (see Fig. 5.1). 

5.4 LONG DISTANCE SINGLE MODE 
PROPAGATION AT 1.3 lam 

To propagate signals successfully over many kilometres it is necessary to keep 
both attenuation and dispersion to a minimum. It has proved easy to design 
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high quality step index silica fibre with a dispersion minimum at around 1.3 gm 
wavelength. 

The fibre 

Referring back to Fig. 5.1, it can be seen that in order that only the H ll mode can 
propagate, w/w0 must be less than 2.405 (this rather odd theoretical value is the 
lowest value of W/Wo for which the zero-order Bessel function is zero and arises 
because the fibre is cylindrical). We can write 

2~:a v /n2_  n22 < 2.405 
A 

so, the core diameter must be 

2.405A 
d < (5.1) 

g(n  2 -- n22)1/2 

For ease of launching the signal into the fibre core and for reasons concerning 
mechanical tolerances in manufacture the core diameter needs to be as large as 
possible and this indicates that the difference between core and cladding refractive 
indices must be as small as practicable. However, it is sometimes necessary to 
bend a fibre to a moderate extent, and if the difference in refractive index is too 
small one finds that when the fibre is bent it leaks radiation. Refractive index 
values typically used are nl = 1.460 and n2 = 1.458. Putting these values and 
A = 1.3 gm into the formula gives the critical core diameter 

d~ = 13gm 

The standard value of core diameter used, 9 gm, is comfortably below this. 

Example calculation 
What is the shortest wavelength that can propagate in fibre with a core diameter 
of 9 gm and refractive indices of core and cladding of 1.460 and 1.458 respectively 
in the fundamental mode only? 

Transposing Equation (5.1) 

'r "-- 

drr,(n 2 - n2)1/2 

2.405 

9 x 10 -6 x 71: x v/1.4602 1.4582 

2.405 

= 0.9gm 

Notice that radiation of wavelength 8.5 gm does not propagate as single mode in 
this fibre. 
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The radiation source 

There is only one wavelength, for a given fibre, at which the dispersion is zero, and 
so, since all sources have some linewidth, there will be some dispersion. It is 
certainly necessary to use a laser rather than the much wider linewidth LED. 
The amount of dispersion (measured as the spread of a very narrow pulse) at 
the receiver depends on the linewidth of the source and on the distance that the 
pulse has travelled and so, for a given fibre, it is quoted as a number of pico- 
seconds per nanometre per kilometre. 

Example calculation 
For a given fibre at a signal wavelength of 1.3 ~tm the dispersion is 2 ps/nm per km 
(a typical value). What is the amount of dispersion at the receiver of a link of 
length 50 km if the linewidth of the source is l0 nm? 

The answer is 2 x 10 x 50 ps - 1 ns 

Inevitably, the intensity profile of a light pulse from the source is not square; the 
oscillations need time to build up at the beginning of the pulse and to fall at the 
end, so that the pulse is shaped somewhat as shown in Fig. 5.3. This is no bad 
thing, since it reduces the effect of dispersion relative to a truly square pulse. It 
is normally assumed that for pulses like those shown in Fig. 5.3 the maximum 
amount of dispersion acceptable is half a symbol interval (the implication is 
that the effect of this dispersion is to make the trailing edge of the pulse reach 
the centre of the following symbol interval). Hence, the dispersion calculated in 
the example indicates a minimum symbol interval of 2 ns, and thus a maximum 
signalling rate of 500 Mbaud. To use higher signalling rates than this a source 
with a narrower linewidth would be required. 

Fig. 5.3 Practical intensity profile of a typical pulse in optical fibre 

Attenuation 

The actual fibre attenuation at this wavelength is typically about 0.5 dB/km so 
that a 50 km span of continuous fibre would have an attenuation of 25 dB. The 
maximum acceptable attenuation depends on the maximum power available at 
the source and the minimum power required to work the receiver. 

The maximum transmitted power depends on available sources and also on 
certain safety considerations. A typical figure for transmitter power is l mW, 
i.e. - 3  dBm. The minimum required receiver power is usually known as the 
receiver sensitivity: a typical value is -40dBm.  The difference between these 
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two figures, 37 dB, suggests that there is plenty of power for a 50 km span, how- 
ever this may not be the case, as will now be shown. 

When fibre is manufactured it has to be coiled onto drums for transport to where 
it is to be installed; the greatest practical length of continuous fibre is limited by this 
to 2 km. Hence a 50 km span, say, has to be assembled by fusing together 25 lengths 
of fibre, requiring 24 fused joints or splices. Clever techniques are used for aligning 
the sections of fibre at the joints, but nevertheless, because of manufacturing and 
alignment tolerances, each joint presents a discontinuity and sets up a reflection. 
The reduction of transmitted power at each splice has to be estimated" it is usually 
taken to be 0.5 dB. 

At each end of the link the fibre is connected to the transmitter and receiver by 
mechanical couplers which can be detached and reconnected. There must be at 
least two of these, one at each end, and they each account for an estimated 
1 dB of power loss. 

Finally, in planning a link, account has to be taken of the probability that 
repairs, entailing extra splices, will be necessary over the life of the link. 

All this is usually presented in the form of a link power budget, as shown in 
Table 5.1. 

Table 5.1 Power budget for an optical fibre link at a wavelength of 1.3 lam 

transmitter power - 3 dBm 
receiver sensitivity -40 dBm 
System margin 37 dB 

fibre loss 25 dB 
splice loss 12 dB 
connector loss 2 dB 
repair margin (10 splices) 5 dB 
Route losses 44 dB 

Excess margin -7 dB 

For a span to be usable the excess margin must be positive; hence a span of 
50 km is not possible. 

Of course, the system might work when first installed, before any repairs, and 
if the splices were made very carefully to keep the total splice losses below 
10 dB, but it would be wrong to design it on that basis. A 40 km span would be 
possible. 

Noise 

The receiver sensitivity is decided by the minimum signal to noise ratio required at 
the output of the receiver where the decision in each symbol interval as to whether 
a pulse is present or absent is made. There is no such thing as an error-free system, 
and the appropriate minimum output signal to noise ratio is determined by calcu- 
lating mathematically the consequent probability of an erroneous decision. For 
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many purposes a maximum error rate of 1 in 10 9 decisions is regarded as 
acceptable. 1 

There is virtually no thermally produced noise in the fibre. This is because the 
quantum of energy, hf (the minimum amount by which the energy in an electro- 
magnetic wave can be changed), is very large compared to the measure of avail- 
able heat energy per molecule, k T, at optical frequencies. The point will be 
reinforced if we put appropriate numbers into the formula given in Equation 
(2.18) in Chapter 2. There is, however, in the received light, a form of noise 
consequent on the quantized nature of light known as quantum noise. 2 

As the light travels along the fibre it is absorbed (or reflected or scattered) by the 
attenuating processes in quantum sized chunks - using the photon model one 
would say that photons are removed from the signal. If the distance is large 
enough there is a finite possibility that a pulse, in which there should be light, 
arrives with no photons left in it, by chance they have all been removed. This out- 
come is equivalent to a pulse of noise just cancelling out the signal. By applying 
statistical techniques it is possible to show that a probability of 1 in 109 of this 
occuring arises when the average number of photons arriving per symbol interval 
in which there should be a pulse is about 20. Let us see what this implies in terms 
of ultimate receiver sensitivity. 

Example calculation 
What is the quantum limit for received power in a system operating at 1.3 I~m 
wavelength and a signalling rate of 680 Mbaud (one of the standard rates)? 

The energy in one photon is 

h f _  ~hc = (6.63 x 10 -34) x (3 x 108) j = 1 53 X 10-19j 
A 1.3 x 10 -6 " 

so the energy in 20 photons ~3 x 10 -18 J. 
There are 680 x 106 symbol intervals per second of which, one can assume, on 

average half will contain pulses (representing Is). So, the received power for an 
average of 20 photons per pulse is 

(340 x 10 6) • (3 • 10 -18) W ~ 1 0 - 9 W  

In dBm this is 

l0 log10 10 -6  - -  - 6 0 d B m  

The usual value of receiver sensitivity is at least 20 dB higher than this which 
indicates that noise generated in the receiver is the dominant effect. Current tech- 
nology gets nowhere near the quantum limit. 

[In the receiver, in the process of converting the light signal into an electrical 
signal, ideally each photon received results in an electron crossing the potential 

l There exist error correcting codes which can be applied to the signal to reduce the error rate further, but 
that is another story. 

2 Do not confuse quantum noise with quantization noise which occurs when analogue signals are digitally 
encoded for transmission. 
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barrier in the photodiode (assuming that there is no avalanche gain). The shot 
noise associated with this is the quantum noise in another guise.] 

Repeaters 
It should be clear from what has gone before that single mode fibre links at 1.3 ~tm 
wavelength have a practical maximum span of 30 to 40 km, and hence for trans- 
mission over distances greater than this it is necessary to receive the optical signal, 
convert it to an electrical signal, clean up the pulses, amplify the signal and then 
retransmit it. This is not unreasonable over land - although it does introduce 
problems as we shall see next - but it is a great nuisance for transmission under 
oceans. 

The problems caused by electrical repeating are two: first, since as we have seen 
noise is introduced by the receiver, each repeat introduces errors; second, when 
the dispersed pulses are sharpened up there is an ambiguity in the exact positions 
of the symbol interval boundaries - over a number of repeats this introduces what 
is known as jitter so that the final receiver is not sure where the centre of a symbol 
interval, the most appropriate place to make a symbol decision, is. 

5.5 LONG DISTANCE SINGLE MODE 
PROPAGATION AT 1.55 

This is the wavelength at which attenuation in single mode silica fibre is least 
and values of 0.2 dB/km are attained. Against that, the dispersion, in standard 
step index fibre, is typically 17 ps/nm per km. It is possible by reducing the core 
diameter and adjusting the doping profile of the fibre to move the wavelength 
of zero dispersion to 1.55~tm, but in doing so one finds the attenuation is 
increased, and the fibre is more expensive. 

If you construct a power budget similar to Table 5.1 for 1.55~tm signals in 
standard single mode silica fibre, assuming similar values for the parameters 
other than the fibre loss, you will see that spans in excess of 60 km are possible 
from an attenuation viewpoint. The dispersion, however, can only be kept 
within limits at high bit rates by using single mode lasers, and these are expensive 
and not very robust. The prospect of halving the number of repeaters compared to 
a 1.3 ~tm system may not be worth the expense, but the use of this wavelength 
comes into its own for trans-oceanic links because of two other phenomena 
which will now be described. 

Soliton propagation 
A soliton is a pulse that does not spread despite the dispersion effects in the fibre: 
this is achieved by using a non-linearity inherent in the fibre continuously to 
counteract the dispersion. 
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The refractive index of silica, besides being frequency dependent, is also slightly 
intensity dependent: this, as we shall see, indicates a non-linearity resulting in 
frequency changes in different parts of a pulse which can affect the group velocity 
of different parts of the pulse. The refractive index at a given frequency can be 
written 

n = n o  +n2I  

where no is the refractive index at near-zero signal intensity, I is the intensity 
(watts per square metre) and n2 is a parameter which must have dimensions 
m2/W. 

The value of n2 for silica at 1.55 Ixm wavelength is about 3 x 10 -2o mE/W. At 
a power level of about 1 mW in a core of diameter 9 ~tm the intensity is of the 
order of 

10 -3 
1.6 x 10 7 W/m 2 

x (4.5 x 10-6) 2 

so the change in refractive index when the power level drops to near zero is 

(3 x 10 -2~ x (1.6 x 10 7) ,~, 5 • 10 -13 

This, as you can see, is a tiny proportion of the nominal refractive index of 1.46, 
but none the less the effect can be used as follows. 

Call the transmitted frequency - the centre frequency of the radiation in the 
transmitted pulses - ft. 

The phase change coefficient in the fibre 

flf = 2 ~ / A f  

where Af is the guide wavelength in the fibre, and 

,xr= vp/f 
where Vp is the phase velocity in the fibre. Also 

Vp ~ r 

SO 

fir = 27rftn/c = 27rft(n0 + n2I)/c 

Two points a distance L apart in the fibre will each have oscillating electric and 
magnetic fields with a phase difference given by 

flfL = 2nft(n0 + n2I)L/c 

Now suppose this phase difference were changing; that would imply that the 
frequencies of the oscillating fields at the two points were not the same. The 
rate of change of the phase difference would indicate the frequency difference 
between the two points. 
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Consider a length of fibre over which the intensity of the radiation is increasing 
with time. It can be seen that ~fL will also be increasing since, differentiating 

d (filL) 2~ftn2L dI 
dt c dt 

Now if the phase lag of the end of this section (in the direction of propagation) 
is increasing with time relative to the beginning, this implies that the frequency 
at the end of the section will be lower than that at the beginning. The change 
of frequency is given by 

8f = _ d(flfL_____~) = 2r~ftn2LdI 
dt c dt 

As a pulse, shaped perhaps like that shown in Fig. 5.3, travels along a fibre, the 
section of fibre which the front end of the pulse is entering experiences an increase 
of intensity with time, while the section which the rear end is leaving experiences a 
reduction of intensity with time, hence effectively the radiation in the front end of 
the pulse has a reduced frequency while that in the rear end has an increased fre- 
quency. Over the wavelength range centred on 1.551am the group velocity 
increases with frequency, so the non-linear effect tends to push the pulse together 
and counteract the effect of (linear) dispersion. By carefully shaping the pulses 
and selecting the appropriate power level, and by manipulating the dispersion 
of different sections of the fibre (by means of its structure) it has proved possible 
to propagate soliton pulses over very large distances. 3 

Signalling rates of 5 Gb/s (5 x 109) are routinely used and before the year 2000 
will almost certainly have been exceeded. The symbol interval corresponding to 
5 Gb/s is 200ps. Because soliton propagation can easily fail if the pulses are 
allowed to overlap, each pulse normally occupies only one-fifth of the symbol 
interval - i.e. 40ps at 5 Gb/s. It is also necessary to prevent reflection from the 
receiver, and for this purpose special isolators are used - these will be dealt 
with briefly later. There remains, however, one outstanding problem; how to 
maintain the power level without needing to insert electronic repeaters (which 
would defeat the purpose): this can be achieved by using erbium-doped fibre 
amplifiers. 

EDFAs 

The erbium-doped fibre amplifier is a close relative of the laser, depending as it 
does on stimulated emission from erbium atoms in the fibre to enhance the 
signal amplitude. 

The electrons in any isolated atom have distinct energy levels: these are 
broadened into energy bands when the material forms a solid. When a small 

3 It should be noted that the spread of frequencies in the pulsed output of a typical laser source varies 
through the pulse being higher at the rising edge than at the falling edge - the opposite of the effect pro- 
duced by the non-linearity. This must also be taken account of in designing the system 
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Fig. 5.4 Part of the energy level diagram for erbium atoms in silica 

proportion of erbium is introduced into a silica fibre the individual erbium atoms 
are not very close to each other so the energy levels of the electrons in the unexcited 
atoms are not significantly broadened. However, orbitals which an outer electron 
of the atom will occupy if the atom is excited are broadened to some extent. Figure 
5.4 illustrates part of an energy level diagram for erbium atoms in this condition; 
the important feature is the narrow band of energy levels marked E. The lowest 
level in this band represents a metastable state, which means that an electron, 
when it finds itself in this state, stays there for about 14 ms (a very long time in 
electron-transition terms) before it falls back to its ground state, and when it 
does so, it emits a photon of radiation of a frequency consistent with the change 
in energy according to the formula h f  = 5E. The wavelength associated with the 
transition from the metastable state to the ground state in erbium is 1.55 ~tm 
which is why the element is so useful in this application. 

The energy difference between the electron's ground state and the top of the 
energy band E is that of photons of a wavelength of 1.48 lxm, so light of this wave- 
length can be used to 'pump' the amplifier. 

Figure 5.5 is a representation of the arrangement. The doped fibre in the loop is 
about 20 m long. The main signal, consisting of pulsed 1.55 ~tm radiation in the 

Amplified 
Signal in signal 

Fuse Erbium- 
~ coupler doped fibre 

~ / "  Pump 
laser 

Fig. 5.5 An erbium-doped fibre amplifier 
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transmission fibre, has added to it continuous-wave radiation of wavelength 
1.48 ~tm from a 'pump laser' by means of a fused-fibre coupler, a device which 
allows a second signal to be introduced into a fibre without the main signal leak- 
ing out. The 1.48 ~tm radiation excites an electron in many of the erbium atoms to 
the top of the excited band whereupon those electrons rapidly lose energy to the 
fibre in the form of heat and 'trickle down' to the metastable level at the bottom of 
the band. When a photon of the signal radiation passes an erbium atom in its 
ground state the photon is absorbed and the erbium atom is put in its excited 
state, but if the erbium atom is in the excited (metastable) state it is induced to 
make its transition to the ground state and emit a photon which is in phase 
with the stimulating photon. So long as there are more atoms in the metastable 
state than in the ground state the signal level will be enhanced. Of course, some 
of the electrons in the metastable state will make random, as opposed to stimu- 
lated, transitions and this gives rise to optical noise, but because of the long 
duration of the metastable state when undisturbed, the level of this is very low. 
The random emission noise, however, is amplified in its subsequent journey 
through the doped fibre, just as the signal is, so the consequent noise is known 
as amplified spontaneous emission (ASE) noise. 

There are, of course, any number of variable design details, some of which are 
as follows. It is possible to use a pump signal at a shorter wavelength - 980 nm - 
because there exists another excitation energy level at the appropriate separation 
from the ground state, which is not metastable and from which an excited electron 
descends rapidly to the metastable level. However, pump energy at this wave- 
length will be attenuated more rapidly by the fibre. The pump signal can be fed 
in from either end of the doped section: pumping in the direction of the signal pro- 
duces less noise, but pumping the other way reduces the likelihood of instability 
due to reflections. It may be found necessary to include an isolator at one or both 
ends to prevent the device from oscillating. 

A gain of 20 dB with a bandwidth of 30 to 35 nm is typically achieved. 
The production of amplifiers of this sort to work at other signal wavelengths 

depends on finding materials with the appropriate metastable energy levels: 
some success is reported at 1.3 lam signal wavelength using praseodymium in 
silicon fluoride fibre. 

Optical isolators 

If a linearly polarized electromagnetic wave is passed through a transparent 
material of high refractive index along the direction of a magnetic field, the direc- 
tion of polarization is rotated. The sense of rotation depends on the direction of 
the magnetic field, not on the direction of propagation of the radiation. This 
effect, known as Faraday rotation, is used in optical isolators in the following 
way. In the HEll mode in single mode propagation the electric field is in one direc- 
tion - similar to a linearly polarized plane wave. At the input end of the isolator 
the direction of polarization is established by passing the signal through a layer of 
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a polaroid type of material. The length of the isolator and the strength of the mag- 
netic field are adjusted to produce 45 ~ of rotation of the polarization. Any 
reflected signal is rotated through a further 45 ~ in the same sense in passing 
back through the isolator and is therefore absorbed by the polaroid. 

5.6 MULTIMODE FIBRE PROPAGATION 

The attenuation in multimode fibre should be much the same as in single mode, 
assuming the same quality of materials and manufacture, so from that point of 
view it would be best to use radiation of wavelength 1.55 ~tm for transmission 
over any significant distance. A number of current multimode systems use 
1.3 ~tm radiation, but that is just because signal sources at that wavelength were 
more readily available when they were designed. 

Intermodal dispersion in step-index fibre 

The effect represented by intermodal dispersion is that copies of a pulse launched 
on the fibre will propagate in the different modes with different group velocities 
and so arrive at the receiver at different times. The dispersion over a distance L 
can be represented simply by the difference in transmission time taken by a 
pulse in the fastest mode and a pulse in the slowest mode. Thinking about the pro- 
gress along the fibre of the generating wave in different modes it should be clear 
that the fastest mode will be the fundamental mode. The slowest mode will be the 
one for which the generating wave strikes the core boundary the most obliquely; 
in fact, at the critical angle, which is the most oblique angle at which the generat- 
ing wave can strike the boundary and be reflected. 

Assuming a typical core diameter of 50 ~tm, the generating wave associated with 
the fundamental mode will propagate almost along the axis of the core (think of 
the propagation of the fundamental mode in metal waveguide far above its cut-off 
frequency). The condition, related to Fig. 5.1, is on the far right of the graph: the 
evanescent fields do not penetrate very far into the cladding and the average 
refractive index encountered by the mode is effectively nl. So, the group velocity 
of this mode is effectively c/nl and the time taken by a pulse in this mode to travel 
a distance L in the fibre is 

T 1 = L n l / c  

Figure 5.6 shows the propagation direction of a generating wave reflecting 
from the core boundary at the critical angle. The group velocity of this mode 
can be taken as the rate of progress of generating wave energy along the fibre 
core, i.e. 

C C 
'Og m - -  - -  C O S  0 --- - -  s i n  q~ 

n l  n l  
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Fig. 5.6 The generating wave reflecting at the critical angle from the core 
boundary 

Since q~ is the critical angle, sin ~b = n 2 / n  1 so 

cn  2 
"~ TM - -  //2 

The time taken by a pulse in this mode to travel a distance L in the fibre is 

T 2 - - ~  
c n  2 

The intermodal dispersion over a distance L is therefore 

7'2 - T1 = Ln21 L n l  = Ln___L (nl  - n2) 
c n  2 c c n  2 

Again it is desirable to make the difference between the core and cladding refrac- 
tive indices as small as other considerations will allow; taking nl = 1.460 and 
n2 = 1.458, the above formula gives the intermodal dispersion over a length of 
1 km as 6.68 ns. 

Graded-index fibre 

Intermodal dispersion can be reduced in multimode propagation by using a fibre 
with a core refractive index that varies from a maximum in the centre to equal that 
of the cladding at the interface - see  Fig. 5.7. 

There is no sudden boundary; the generating wave associated with a given 
mode is contained by bending back rather than sudden reflection. The velocity 
of propagation is higher near the cladding than at the centre, so generating 
waves which suffer many reflections (associated with higher-order modes) 
spend more time in the high-velocity region. S e e  Fig. 5.8, which illustrates the 
'rays' of the generating waves associated with two different modes. This has the 
effect of reducing the difference in group velocity between the different modes, 
and hence reduces the intermodal dispersion relative to a step-index fibre. 
Detailed analysis is complex but the outcome is that the optimum profile for 
the refractive index in the core is a parabola. Intermodal dispersion of around 
one-tenth of the value for the equivalent step-index fibre is achieved. 
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Fig. 5.7 
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Refractive index profile of graded-index optical fibre 
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Fig. 5.8 Propagation of two different modes in graded-index optical fibre, (a) ray 
for lower-order mode, (b) ray for higher-order mode 

5.7 MECHANICAL CONSIDERATIONS 

Bends 

If the fibre has to be bent, this will obviously affect the angle at which the gener- 
ating wave meets the core boundary, and may result in light leaking from the 
fibre. There is also the danger that the material of the fibre will develop cracks 
due to the bending stress. The manufacturer will specify the minimum radius of 
bending that can safely be used, bearing in mind both of these constraints. 
When fibres are assembled in cables, care has to be taken to avoid stressing 
and/or kinking the fibre. Attenuation caused by bending may need to be included 
in the power budget. 

Fibre termination 

The problem of terminating a fibre at each end with the minimum reflection is 
largely a mechanical one. As in the case of waveguide it would in theory be 
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possible to define a characteristic wave impedance for the fibre, and use that to 
design the termination, but this is not a practical approach. In practice the 
design of the fibre termination at the receiving end is incorporated in the design 
of the photodiode, and its quality is judged by the size of its reflection coefficient. 

5.8 LINK CALCULATIONS 

Imagine that you require a step-index single mode fibre for 0.85 gm radiation. 

5.1 Choose a suitable core diameter, assuming the same core and cladding refrac- 
tive indices as described for 1.3 gm fibre. 

5.2 Taking the attenuation at this wavelength as 1.5 dB/km and assuming suit- 
able values for splice losses and connector losses, estimate the maximum 
span possible between a transmitter of power - 3  dBm and a receiver of 
sensitivity -44  dBm, and draw up a link power budget. 

5.3 Assuming that you wish to use a signalling rate of 36 Mbaud and that the 
dispersion of the fibre is 60 ps/nm per km, estimate the maximum source line- 
width to achieve a span as indicated in the previous calculation. 

5.4 Calculate what span would be achievable using the same wavelength and 
signalling rate in multimode fibre and show that a low power LED of, say, 
-13 dBm would be more than adequate as a signal source. 



6 Free space 

The medium that we are concerned with here, although called 'free space', 
includes the atmosphere. The discussion will include the general principles of 
antennas, and two examples of links using microwave radiation (with wavelengths 
in the centimetre range), to illustrate the considerations involved. 

All emissions of electromagnetic radiation are regulated by international agree- 
ment; the adherence to regulations is enforced by law within individual countries. 
Allocations are made according to the purpose of the emission, and include 
maximum power to be emitted as well as frequencies and the accuracy with 
which they are to be maintained. 

In principle, a given purpose will often dictate an appropriate frequency - for 
example at very low frequencies radio waves diffract round the earth and so can 
be used for long-distance telegraphy. In practice this is not by any means the only 
criterion; there is a great deal of 'politics' in the allocation of frequency bands. 

Because of the demands on the spectrum, the same frequencies have to be used 
for different transmissions; there are three different ways in which this can be 
successfully done. In the first, the distance separating service areas using the 
same frequency is chosen to be sufficiently large for signals from one area to 
cause an acceptably low level of cross-talk in the other. The second method of 
frequency reuse is to use highly directional antennas so as to restrict the radiation 
to relatively narrow beams. The third is to use orthogonal polarizations (usually 
horizontal and vertical polarization). 

6.1 ANTENNAS 

A transmitting antenna is a device for launching an electromagnetic wave; a receiv- 

ing antenna extracts an amount of power from an incident electromagnetic wave 
that is proportional to the wave's power density. 

Although transmitting antennas and receiving antennas seem to have qualita- 
tively different functions they have many common properties, and, in fact, the 
same structure can often be used for either purpose. This general principle is 
known as reciprocity. 1 

1 Some modern antennas contain arrays of active devices (amplifiers and phase shifters for instance). 
Such an antenna cannot be changed from receiving to transmitting and vice versa without modification. 
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Generally, an antenna's size is related to the wavelength of the signal that it is 
designed to radiate or receive, so any given antenna can only be used for a 
restricted range of frequencies. Antennas for low frequencies are very large and 
usually need to be mounted near the earth's surface - in wavelength terms. The 
earth (or sea) acts as a reflecting plane and has to be included in the antenna 
design; antennas used for 'long wave' and 'medium wave' broadcasting are a 
case in point. The earth's surface does not affect the performance of antennas 
for higher frequencies than this although it may reflect the waves being transmitted 
or received. The design of antennas derives from electric circuit theory at low 
frequencies and optics at high frequencies with a gradual transition between the 
two approaches as the design frequency increases. 

Directional properties 

A transmitting antenna is designed to have specified directional properties, that is, 
to radiate power in desired directions and not in undesired directions. Thus we may 
have a broadcast antenna, designed to radiate in all directions along the earth's 
surface, but not vertically upwards, or we may have a highly directional antenna 
which concentrates nearly all the radiated power into a narrow cone. If the same 
structure is used as a receiving antenna, it is found that its sensitivity has exactly 
the same distribution, i.e. it absorbs power coming from the desired directions, 
but not from the undesired directions. This is an example of reciprocity. 

The directional properties of an antenna can be conveniently displayed on a 
polar diagram, that is, a polar plot of transmitted field strength (or received ampli- 
tude) against direction at a fixed distance. A true polar diagram for an antenna is 
three-dimensional, but usually appropriate two-dimensional cross-sections are 
plotted. 2 

The directivity, D, of a transmitting antenna is defined as the ratio of the power 
density, at a given distance, in the direction of maximum radiation, to the power 
density that would occur at the same distance if the same total power were trans- 
mitted by an isotropic antenna (one radiating equally in all directions). A closely 
related quantity is the antenna gain, G. This is defined as the ratio of the maximum 
power density from the given antenna compared to that from a loss-free isotropic 
radiator fe d with the same transmitter power. The gain is less than the directivity 
by an efficiency factor determined by ohmic losses in the antenna. The gain is the 
quantity that can be measured and in much of the literature ohmic losses are 
implicitly ignored and 'gain' is referred to when directivity is what is really 
meant. Note that the antenna gain does not increase the total radiated power; 
in that sense it is a misleading term. 

Directivity and gain are also specified for a receiving antenna. In this case they 
are defined in terms of received power from the best direction compared to received 

2 There is a problem of confusing terminology here; the polar diagram has nothing to do with the direc- 
tion of polarization of the wave, which indicates the direction of the electric field m the wave. 
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power at the terminals of an isotropic receiving antenna. However, the gain has 
most probably been measured, or calculated, for the same antenna used as a trans- 
mitter and assumed to be the same in the receiving mode (reciprocity again). 

Radiation resistance 

Any radiating structure that is fed electrically will present to the transmitter an 
impedance, the real part of which accounts for power radiated (assuming that 
ohmic losses are negligible). If the antenna is designed so that this impedance is 
purely real (as is usually the case) it is called the radiation resistance. The same 
antenna, receiving, acts as a signal source with an internal impedance which is 
this same radiation resistance (reciprocity yet again). Knowledge of the radiation 
resistance is important because of the need to match the antenna to its feed and in 
the calculation of noise in a received signal. 

Effective aperture 

The effective aperture of a receiving antenna is the area of the wavefront from 
which the antenna can be deemed to have extracted power. Thus, if an antenna 
delivers to a receiver 2 milliwatts of power and the wave has a power density of 
1 milliwatt per square metre, the antenna effective aperture must be 2 square 
metres (notice that any ohmic losses in the antenna are implicitly included in 
this definition). Aperture also has significance when the antenna is used for trans- 
mission, as we shall see, and can be related to the antenna gain. 

Primary radiators 

A half-wave dipole is probably the simplest efficient radiating structure. (There 
does not exist a simple structure which radiates isotropically, although the con- 
cept is useful for defining things like directivity.) It is a rod, approximately A/2 
long, divided and fed at the centre and radiating a wave polarized in the direction 
of its length. Insight into its function can be gained, as suggested in Chapter 2, by 
thinking of it as a bent-out twin-wire transmission line. 

The detailed theory of half-wave dipoles gives the following results: 

�9 The bandwidth over which the input impedance is effectively resistive depends 
directly on the dipole thickness (that is, the thickness of the rod from which it is 
made). 

�9 The resonant length (for resistive input impedance) is exactly A/2 only if it is 
infinitely thin: the resonant length gets progressively less as the dipole is 
made thicker. 

�9 The directivity of a half-wave dipole is 1.64 (~2 dB). This is a theoretical result 
which allows the gains of other antennas to be measured by comparing their 
directive properties with that of a half-wave dipole. 
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Fig. 6.1 

/ 

Polar diagram of a half-wave dipole in the plane of the dipole 

Fig. 6.2 A rectangular waveguide horn (arrows represent the E field) 

�9 The polar diagram, in a plane containing the antenna, is shown in Fig. 6.1. In a 
plane perpendicular to the antenna it is a circle. (The three-dimensional polar 
diagram is doughnut shaped.) 

Another important primary radiator is the waveguide horn. The open end of a 
waveguide, carrying the fundamental mode, does not act as an electrical open 
circuit; in fact it produces a standing wave ratio of around 3:1, which indicates 
that a large proportion of the power is radiated from the end. The waveguide 
can be 'matched to free space', so that all the power is radiated, by flaring it 
out at the end into a horn as shown in Fig. 6.2. The direction of polarization of 
the radiation is the same as in the waveguide that feeds the horn. The radiation 
from a horn is directional: the general shape of the polar diagram is shown in 
Fig. 6.3. This form of polar diagram results from any radiating aperture, and 
will be considered in a little more detail later. It has a main lobe and side lobes. 
The bulk of the power is in the main lobe. The angle of spread of the main 
lobe decreases as the dimension across the exit of the horn increases. 3 

Antenna arrays 

A row of dipoles, fed in phase, is much more directive than the individual dipoles. 
Their individual radiations interact by the process of interference to give a desired 
composite pattern. An example is shown in Fig. 6.4: six dipoles are shown with 

3 Some of the microwave antennas which can be seen on telecom towers are modified waveguide horns. 
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Form of the polar diagram of a waveguide horn 

Fig. 6.4 

B 
_ L 

,x/2 

I A 

Cross-section of a broadside array of dipoles 

their lengths into the page. If they are fed in phase, their radiation reinforces in the 
direction A, but cancels in direction B; hence this is called a broadside array. The 
array has a polar diagram, in the plane of the page, as shown in Fig. 6.5. In a plane 
along direction A and perpendicular to the paper, the polar diagram is that of an 
individual dipole. 

A metal reflector, placed behind the array at a distance of A/4, turns one lobe 
round, to give a polar diagram as shown in Fig. 6.6. Radiation which travels to 
the reflector perpendicular to the plane of the array and is reflected back has a 
path-length of A/2 plus phase inversion on reflection, and so is in phase with 
the direct forward radiation. In the direction of maximum intensity the field 
strength is doubled, so that the power density is increased four-fold, indicating 
that the gain is increased by 6 dB. 

Linear arrays can be stacked on top of each other, to give more directivity in the 
second plane, as shown in Fig. 6.7. 

The array shown in Fig. 6.8 is known as a Yagi array. Its polar diagram has a 
maximum in one direction along the centre line joining the dipoles: for this reason 

Fig. 6.5 Polar diagram of the array of Fig. 6.4, in the plane of the cross-section 
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Fig. 6.6 Polar diagram of the array of Fig. 6.4, with a metal reflector added 

.J -1  -l'l ,.j 
1-1d "l 

Fig. 6.7 Two-dimensional array of dipoles 

it is called an end-fire array. It is instructive to consider qualitative explanations of 
its behaviour as a transmitter and as a receiver, bearing in mind that it has the 
usual property of reciprocity. 

The directional properties of the Yagi array as a transmitter arise as follows. 
The dipole connected to the transmitter is known as the driven element; the 
other dipoles are parasitic and pick up power from the driven element. The para- 
sitic elements are not cut to the resonant length, and the result of this is that they 
reradiate received energy with a change of phase. The lengths and separations of 
the parasitic elements are chosen so that they reradiate with phases such that their 
radiations reinforce along the line of the array. In all other directions there is a 
varying degree of destructive interference. 

Fig. 6.8 A Yagi array 

I 
w 

I 
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When the Yagi is used as a receiving antenna, radiation arriving along the line 
of the array has different phases at the various dipoles. The changes of phases on 
reradiation from the parasitic elements are such that the reradiated waves all 
arrive in phase at the connected dipole. For radiation arriving from any other 
direction the arrival phases are not the same as above, so the phases of the 
reradiated waves at the connected dipole are not optimal. 

Arrays can be made from any type of primary radiator, in principle, and com- 
bine the direetivity of the individual radiators with that caused by the array. 

A radiating aperture 
It is convenient to consider as an ideal radiating structure one which would pro- 
duce a wave having a uniform phase and power density, but over a limited area, as 
if a plane wave were coming through a hole. Such a wave spreads out, inevitably, 
by the process of diffraction, but the spread is less than it would be with any other 
distribution of phase and power density over the same area. 

The diffraction pattern produced by such an aperture at a distance large com- 
pared to its width results in a polar diagram which is evaluated in Appendix 5. 

The result is by now a familiar shape; it is shown in Fig. 6.9. The angle of the 
main lobe proves to be simply related to the dimensions of this ideal aperture. The 
angle between half-power directions - marked a in Fig. 6.9, and often called the 
b e a m w i d t h  - is approximately equal to the inverse of the diameter, in the same 
plane, of the aperture in wavelengths; i.e. 

A 
t~radian s , ~ , -  a 

The directivity of this radiating aperture is related by the theory to its area by 

4hA 
D =  A2 

That this formula for direetivity is consistent with that for beamwidth can be illu- 
strated as follows. Consider an ideal square-aperture antenna of side z metres. 
Ignore side lobes, and imagine that it radiates solely into a square cone, as 
shown in Fig. 6.10. If the side of the aperture is z, then 

~ r a d i a n s - -  ~/Z--- ~/%/-A 
where A is the aperture area. Also 

X - "  o L R  

Fig. 6.9 Polar diagram of an aperture 
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Fig. 6.10 

ZI 

I 
Idealized radiation distribution from a square aperture 

so the area 

X = x 2 = a2R2 _- A2R 2 
A 

The area of the total sphere at radius R is 4nR 2. The power which, if radiated iso- 
tropically, would pass uniformly through the whole sphere, is concentrated into 
the area X, so the directivity will be the ratio of the two areas, i.e. 

4nR 2 4r~A 
O ~ . .  ~ . _  

A2R2/A A 2 

Practical aperture antennas 

The mouth of a waveguide horn is a radiating aperture; however, it is not ideal 
because neither the phase nor the amplitude of the wave are uniform over the 
aperture. The effect of these imperfections is to make the half-power angle of 
the main lobe greater than it would be for an ideal aperture of the same area. 
We can specify for the horn an effective aperture, less than its physical aperture, 
which could be estimated by measuring the beamwidth, but which is more 
reliably obtained by measuring the gain. 

We can write 

4hA' 
A2 

where the value of A', the effective aperture, includes the efficiency factor of the 
antenna. 

It is not surprising to learn that the effective aperture so defined for any trans- 
mitting antenna is identical to its effective aperture, as previously defined, when it 
is used as a receiver. 

The other important aperture antenna which we shall discuss is the parabolic 
dish (paraboloid), illustrated in Fig. 6.11. 

A paraboloidal reflector has the geometrical property that all rays of radiation 
coming from the focus, F, and striking the paraboloid are reflected parallel to the 
principal axis. Furthermore, all path-lengths, such as FX, are the same. Hence, a 
primary radiator (dipole or waveguide horn) placed at F will 'illuminate' the para- 
boloid and produce an approximation to a plane wave at the plane of its rim. The 
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Fig. 6.11 
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Cross-section of a parabolic dish 

illumination is not generally uniform- there is usually greater power density at the 
centre than at the rim - and there may be phase differences across the aperture. 

A well-designed parabolic dish and feed (primary radiator) usually has an 
effective aperture of about 2/3 its physical aperture. The beamwidth is given 
approximately by 

= .Vao 

where de can be thought of as the diameter of the effective aperture, and is about 
80 per cent of the actual diameter. 

The polarization of radiation from a paraboloidal antenna is determined by the 
primary radiator. 

Significant antenna properties summarized 

Radiation resistance: the input resistance of the antenna in transmission and its 
source resistance in reception. 

Directivity: the same for transmission and reception, with a polar diagram that 
generally has a main lobe and (undesired) side lobes. 

Effective aperture: indicates the area of wavefront intercepted as a receiving 
antenna. 

Gain: determines the degree of concentration of power flux into a beam as a trans- 
mitting antenna. 

Beamwidth (angle between half-power directions in the main lobe in trans- 
mission): can be estimated using the formula c~ ~ A/de. 
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Relationship between gain and effective aperture: 

4hA' a = ~  
A2 

6.2 MICROWAVE LINKS 

Microwave links are allocated frequencies in the GHz range so that the wave- 
length of the radiation is a few centimetres. Two highly directional antennas 
point at each other and are mounted at a sufficient height to avoid obstruction 
by the intervening terrain. This needs a little further explanation. First of all 
the curvature of the earth has to be taken into account. Second, any obstruction 
cannot be allowed to come near enough to the line of sight to reflect any of the 
beam in such a way as to cause interference with the direct beam. To satisfy 
this second criterion it is normally taken that the path-length via any reflection 
must exceed the direct path-length by at least A/2. Figure 6.12 shows the locus 
of all such points, and it can be seen that the required clearance is greatest 
around the midpoint between the antennas. At the midpoint, using Pythagoras' 
theorem, the requirement leads to 

x 2 > (d/2  + A/n) 2 - ( d / 2 )  2 

which, since d >> A, yields 

x > approx 1 v/Ad 

To put this in perspective, if d is 50 km and A is 5 cm, then x must be greater than 
I < 0 . 0 5  X (5 X 104) -- 25 m .  2 

,1, Locus of all points of reflection giving a path length 
greater than the direct line 

x _ _ _ _  

J 

Fig. 6.12 A microwave link 

Received power 

Consider a transmitter and a receiver, with antenna gains G T and G R respectively, 
separated by a distance d, as shown in Fig. 6.12. If the transmitter power is PT 
watts, then, assuming no absorption along the path, the power flux density at 
the receiver antenna is 

PTGT 
4rid 2 
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In transmitter specifications, the product PTGT is often lumped together and 
quoted as the equivalent isotropic radiated power (EIRP). This is represented by 
the symbol Pei. 

Losses can be introduced into the equation as a factor L (less than unity): this 
will account for atmospheric absorption and may also include the effect of point- 
ing errors - a reduction in the received power caused by the two antennas not 
accurately pointing at each other. So now we can write for the power flux density 
at the receiver 

Pel "L 
4nd 2 

The greater the loss the smaller the value of the loss factor L. 
The power into the receiver will be this expression multiplied by the effective 

aperture of the receiver. 
Transforming the formula 

4hA' 
GR = A2 

The effective aperture of the receiving antenna is 

, 4 ' =  GRA2 
4~ .... 

The power of the signal entering the receiver is denoted C. C is used because at 
this stage the signal is a modulated carrier. We can write 

C ~ .  
Pei" L GR/~ 2 
4nd 2 4n 

and then rearrange the terms on the right hand side to give 

C Pei L [4--~] 2 -- �9 �9 �9 GR 

The term [)~/4rl:d] 2 is called the free space path loss. It does not result from absorp- 
tion, but from the dilution of the power flux density with distance: as we can see, it 
is proportional to the inverse square of the transmission distance in wavelengths. 

Writing Lp for the free space path loss 

C --- Pei" L .  Lp. G R (6.1) 

Noise spectral power density 
The noise that corrupts the received signal comes from three sources. Some of it is 
generated in the transmitter and transmitted with the signal. Some of it enters the 
receiver antenna from the surroundings: if the antenna has a high gain, then most 
of this comes from where the antenna is pointing (some comes in via side-lobes) 
and it is often called sky noise. The rest of the noise is generated in the receiver 
itself. 
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Most of the standard theory of noise is based on the assumption that the noise 
is unavoidable and has statistical properties described as additive, white and 
gaussian. Cross-talk and interference may not satisfy these requirements, but, 
nonetheless, they are often lumped in with natural sky noise (which does) in an 
analysis. 

In Chapter 2, a formula, Equation (2.18), was given for thermally generated 
noise delivered by a medium to a receiver. The photon energy at microwave 
frequencies is not significant in this formula at normal ambient temperatures. 
The extra noise that is not thermal is also proportional to bandwidth, so we 
can still use the formula k TB for delivered noise if we use a value for T which 
is not the actual temperature, but a fictional higher temperature. Under these 
circumstances it is convenient to include also noise generated in the receiver to 
get a measure of the output noise. This receiver noise is calculated 'as if' it 
occurred at the receiver input (i.e. discounting the extra gain to the point where 
it actually occurs) known technically as 'referring the noise to the receiver 
input'. The total effective noise power at the input of the receiver is then repre- 
sented as k TeB where T e is an equivalent noise temperature. In order to compare 
behaviour for different bandwidths it is convenient to work in terms of the noise 
power per unit bandwidth or noise spectral power density (often abbreviated to 
simply noise density), 4 No, for which we can write 

No = kTe (6.2) 

It is normal practice to ignore any transmitter noise and assume that the equiva- 
lent noise temperature at the input of the receiver represents only sky noise plus 
noise generated in the receiver, so we can write 

Te= + TR 

For a high gain receiving antenna the equivalent noise temperature of sky noise is 
largely determined by the actual temperature of the region at which the antenna is 
pointing, thus for an antenna directed along the earth's surface Ts will be around 
290 K. 

Carrier to noise density ratio 

From the results of the last two subsections, dividing Equation (6. I) by (6.2), we 
can now write 

C 1 GR 
~00 = Pei" L.  Lp k Te (6.3) 

For a microwave link, the carrier to noise density ratio at the receiver output just 
before the pulses are demodulated is an essential parameter. The probability of 

4 It is unfortunate that the word 'density' appears in two different contexts - in the power (flux) density of 
a wave, which is the average power flux through unit cross-sectional area, and in noise (spectral power) den- 
sity, which is the noise power per unit bandwidth. This ambiguity should not, however, cause confusion so 
long as one is aware of it. 
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error in the demodulated pulses depends on the carrier power to noise power ratio 
at the demodulation point, so C/No indicates how much bandwidth, and so what 
pulse rate, is possible. 

Notice again the way the terms have been arranged. 1/k is a c o n s t a n t .  GR/Te is 
a figure of merit for the receiver and its antenna and is known as the gain~noise- 
temperature ratio. (Sometimes this is abbreviated to gain/temperature ratio.) 

To summarize the terms on the right hand side of Equation (6.3), we have 

�9 Pei,  the equivalent isotropic radiated power (EIRP). This is the product of the 
power into the transmitting antenna and its gain. 

�9 L, the attenuation loss. This represents losses in the atmosphere together with 
any power reduction caused by the antennas not pointing at one another 
accurately. 

�9 Lp, the path loss. This is given by the formula (A/4nd) 2 where d is the path 
length. 

�9 1/k, the inverse of Boltzmann's constant. 
�9 GR/Te, the receiver gain temperature ratio. This is the ratio of the gain of the 

receiving antenna and its equivalent noise temperature. 

Example calculations 
Consider a link of length 50 km between parabolic dishes, each of diameter 1.2 m. 
The transmitter power is 2 W and the carrier wavelength 6 cm. The receiver noise 
temperature is 600 K. 

The effective aperture of each antenna can be estimated as 2/3 its physical 
aperture, i.e. 

2/3 x n x 0.62 = 0.75 m 2 

This indicates a gain, 

4hA' 4rt x 0.75 
= = 2618 

A 2 0.062 

so 

Pei = PTGT = 2 X 2618 = 5.24 X 103 = 37.2 dB 

We have to make an estimate for L. Based on experience of the worst possible signal 
absorption by rain, and an allowance for pointing error we take (worst case) 

L = - 6 d B  

Lp = [0.06/4~ x (50 x 103)] 2 = 9 • 10 -15 = -140.4dB 

k = 1.38 • 10 -23 J / K  

so 1/k in 'dB' [101og(1/1.38 x 10-23)]- 228.6dB 

Te ~ 290K + TR = 890K 

so, GR/Te = 2618/890 = 2.94 = 4.7 dBK. 
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We can now set out a power budget based on Equation (6.3) 5 

EIRP 37.2 dBW 
Atmospheric absorption - 6  dB 
Free-space path loss - 140.4 dB 
1/k 228.6dB 
G/T 4 .7daK 

C/No 124.1 dBHz 

Suppose the minimum acceptable carrier to noise ratio at the demodulator is 
36 dB. This allows a bandwidth equivalent to 

124.1 - 36 dB = 88.1 dB = 6.4  x 108 H z  

indicating that the link could operate at a bit rate up to 640 Mbits/s. 
Free space is not dispersive, although any reflections might cause an effect 

equivalent to intermodal dispersion in fibre. 

6.3 SATELLITE TRANSMISSIONS 

Transmissions to and from satellites have to be at frequencies determined by ease 
of penetration of the ionosphere and of the atmosphere by the radiation, and also 
by the size of antennas that can reasonably be mounted on the satellite. These 
considerations dictate the use of microwaves. 

Circular polarization 
When sending and receiving linearly polarized signals to and from a satellite from 
different points on the earth's surface it is very difficult to ensure that the receiving 
antenna is correctly orientated with respect to the transmitted direction of polar- 
ization. This problem is made worse by the fact that Faraday rotation sometimes 
occurs in the ionosphere. For these reasons it is common practice to transmit 
waves with a form of polarization known as circular polarization, which will 
now be described. 

Suppose that we wish to receive a linearly polarized electromagnetic wave with 
a dipole, but cannot predict the direction of polarization of the wave relative to 
the line of the dipole. If the dipole is in the direction of polarization of the 
wave we shall receive the maximum signal, whereas, if the dipole is at fight 
angles to the wave's polarization we shall receive effectively zero signal. If the 
two are at an angle other than 90 ~ , then the dipole will pick up the component 
of the wave resolved so that its electric field is parallel to the dipole. At first 

5 Notice the different lay-out from that of the power budget for a fibre link. This is partly because the two 
technologies developed separately, but mainly because noise from the fibre is negligible, so the outcome is 
related to a different criterion. 
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Fig. 6.13 Two linearly polarized waves (propagating into the page) combine to 
form another linearly polarized wave 

sight it would seem that the dipole signal could be made the same for all orienta- 
tions by radiating exactly similar waves with two directions of polarization at 
right angles, but this will not work because the fields of the two waves add 
together veetorially to produce another plane polarized wave, as shown in 
Fig. 6.13. 

The problem can be overcome by radiating two waves of equal amplitude (and 
frequency) with directions of polarization at fight angles, but also in phase- 
quadrature. Two such waves do not combine to produce another linearly polar- 
ized wave. A dipole aligned with one or other will pick up energy from the wave 
with which it is aligned; for other orientations it will pick up energy from the 
resolved part of each. 

What is the nature of the composite wave that results? In Fig. 6.14 are drawn 
vectors to represent the electric fields of the two waves, in a single plane, at times 
t], t2, t3, t4, over a quarter cycle. Since the waves are in phase quadrature, we can 
write (taking tl as the zero of time) 

el = E cos wt and e 2 = E sin wt 

el  eR 
eR 

el  = 0  e2 e2 = 0 - > e2 . . . . . . . . . . . .  

tl t2 t4 eR 

(91 eR 

t3 

Fig. 6.14 Combination of two linearly polarized electromagnetic waves to form a 
circularly polarized wave. Electric fields only are shown: magnetic fields combine 
similarly at right angles to the electric fields 
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The fields are also spatially at right angles, so the magnitude of their resultant is 
given, by Pythagoras' theorem, as 

[eR[ = v/e~ + e 2 = E v/cos 2 wt + sin 2 wt = E 

The angle 0 in Fig. 6.14 is given by 

tan-~ e2 tan-~ sin a;t 
~ - ' -  - - -  r o t  
e 1 c o s w t  

The electric field stays the same magnitude, but rotates; one revolution every cycle. 
The magnetic field does the same - always at right angles to the electric field. 
Moving in the direction of propagation, in each successive plane the fields stay a 
constant magnitude and rotate: the rotating fields, at a given instant of time, are 
progressively delayed in angle along the direction of propagation. If one of the 
two waves were reversed in phase, the direction of rotation would be reversed. 

This composite wave is called a circularly polarized wave: if, looking in the 
direction of propagation, the fields rotate clockwise, we call it right hand circular 
polarization; if anticlockwise, left hand circular polarization. 

It is possible to design an antenna (or primary feed) which generates directly a 
circularly polarized wave: this antenna will also receive circularly polarized radia- 
tion more efficiently than a dipole. A popular design is in the form of a helical rod 
in front of a ground plane (see Fig. 6.15). 

Ground plane 
L'-I 0"25;~ Helix - ' 1 1 - /  

(a) 

(b) 

Fig. 6.15 (a) a helical antenna, (b) its polar diagram 

An antenna for circular polarization must be designed for either left hand or 
right hand polarization - the two are orthogonal and thus can, in principle, be 
involved in frequency reuse. 

An example of a satellite link 

One application of satellite transmission that will almost certainly continue to be 
important is communication with mobile receivers. We shall take as an example 
communication to and from ships at sea, using a satellite in a geostationary orbit. 
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Fig. 6.16 
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A satellite link to ships at sea 

Figure 6.16 shows the situation (not to scale), and frequencies typically used. 
The satellite stays in the same place in the sky, so transmissions to and from 
the fixed land station are in one direction, whereas the ships can be anywhere 
in the area of the satellite's coverage. 

The fixed land station will have an antenna with a large aperture while those on 
the satellite will be much smaller, particularly that transmitting to the ships, since 
it has to have a wide beam. Assume that the ship's receiver has a dish antenna that 
can be steered to point at the satellite so that its beam need not be too wide and 
thus its gain too small. 

Some typical data are shown in Table 6.1. Notice that the sign of the G~ T ratio 
in decibels is positive for the land station receiver and negative for the ship station 
and satellite receivers. This is simply because in the first case the gain ratio is 
numerically greater than the equivalent noise temperature, whereas in the other 
cases it is less. The sign of the decibel value is significant and must be used 
correctly. 

In the case of path loss and absorption the decibel values are often quoted (as 
here) with positive values, although, since a multiplier less than unity is repre- 
sented, this value must be subtracted in a link budget calculation. The ambiguity 
arises because conventionally the loss of any network, in decibels, is always 
quoted as minus its gain in decibels, so that the inclusion of the word loss implies 
a reversal of sign. 

The gain of the land station antenna at its receiving frequency works out 
to approximately 2.2 x 105. 32dBK for G/T is equivalent to a ratio of 1585, 
yielding a value for Te of about 140 K. Such a low value can be achieved for 
two reasons. First the antenna is looking out into space, so it sees a T~ of only a 
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Table 6.1 

Fixed land station: parabolic dish antenna of diameter 13 m, used for both transmitting and 
receiving 

Transmitter (6.42 GHz) EIRP 60.0 dBW 
Receiver (4.20 GHz) G/T 32.0 dBK 

Ship station: steerable parabolic antenna of diameter 1.2 m, used for both transmitting and 
receiving 

Transmitter (1.64 GHz) EIRP 36.0 dBW 
Receiver (1.54 GHz) G/T -3.5 dBK 

Satellite 
Transmitter (4.20 GHz) EIRP -2.5 dBW 
Transmitter (1.54 GHz) EIRP 18.0 dBW 
Receiver (6.42 GHz) G/T -17.0dBK 
Receiver (1.64 GHz) G/T -13.2dBK 

Free-space loss between land station and satellite 
at 6.42 GHz 200.9 dB 
at 4.20 GHz 197.2 dB 

Free-space loss between ship and satellite 
at 1.64 GHz 188.9 dB 
at 1.54 GHz 188.4 dB 

Atmospheric absorption 
6.42 and 4.2 GHz 0.4 dB 
1.64 and 1.54 GHz 0.2 dB 

few degrees Kelvin, second the receiver mus t  use a special low noise first-stage 

amplifier - probably a type known as a parametric amplifier. If the amplifier 
were cooled with liquid helium it would be possible to get T~ down as low as 
20 or 30 K. 

Because the land station receiver has such a high G~ T value, the transmitter on 
the satellite transmitting to the land station can have low power, thus conserving 
satellite power: this accounts for its low EIRP value. 

Satellite link budgets 

Table 6.2 lists link budgets for the land station to satellite and satellite to ship 

station links. Each decibel value is given to one decimal place, and is given the 

correct sign so that the process is formally one of addition. 
The definition of G/T does not include any noise originating from the trans- 

mitter, so we now consider noise, at the receiver terminals, which comes from 
the transmitter. Denote the spectral power density of this noise at the receiver 
terminals as NT. Remembering that the carrier power at the receiver terminals 

is C, since AfT and C must both have been reduced by the same factor in the 
journey from the transmitter, the carrier to noise density ratio at the transmitter 
must have been C/Nx. 
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Table 6.2 

Land station to satellite 
EIRP 60.0 dBW 
Atmospheric absorption -0 .4  dB 
Free-space path loss -200.9 dB 
1/k 228.6dB 
G/T - 1 7 . 0 d B K  

(C/No)u 70.3 dBHz 

Satellite to ship 
EIRP 18.0dBW 
Atmospheric absorption -0 .2  dB 
Free-space path loss - 188.4 dB 
1/k 228.6dB 
G/T -3.5dBK 

(C/No) d 54.5 dBHz 

Taking account of this transmitter noise, the carder to noise density ratio at the 
receiver becomes 6 

C 

Nx+N0 

If we turn these ratios over and deal with noise density to carrier ratios it will be 
seen that 

total noise density N-r + No 
carrier power = --C --C 

This argument applied more generally leads to the conclusion that the overall 
noise to carrier ratio (inverse of carrier to noise ratio) for a system can be obtained 
by adding together the noise to carrier ratios for the different sources of noise, 
calculating each separate ratio at whatever point in the system is convenient. 

In the case of a satellite we have an uplink and a downlink. If we assume that the 
transmitter noise in the land station transmitter is negligible compared to the 
transmitted carrier power, then the carrier to noise density ratio at the input 
terminals of the satellite transponder is (C/No)u as shown in the link budget 
(Table 6.2). Since noise generated in the satellite receiver has been referred to its 
input (in establishing the receiver gain/noise temperature ratio), (C/No)u is also 
the carrier to noise density ratio at the transmitter, for the downlink (assuming 
that the transmitter itself produces very little noise compared to its signal 
power). The carrier to noise density ratio produced purely by the downlink is 
that shown in the link budget as (C/No)d. The carder to noise density ratio for 
both links combined is obtained by inverting both, adding and reinverting the sum. 

The overall carrier to noise density ratio for both up- and downlink is as 
follows: 

6 The total noise power is taken to be the sum of the contributing noise powers because the noise sources 
are assumed to be uncorrelated. 
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since 

(C/No)u = 70.3 dBHz 

(No/C)u = -70.3 dBHz = 9.3 x 10 -8 

similarly 

(No/C)d = - 5 4 . 5 d B H z  = 3.55 x 10 -6 

so, overall 

No/C = (No/C)u + (No/C)d 

= 3.643 x l0 -6 = -54.4 dBHz 

C/No = 54.4dBHz 

In this case, noise in the uplink has very little effect; the channel is said to be down- 
link limited. 

If there is interference then this can be dealt with in a similar way: the ratio of the 
power of the interference divided by the bandwidth to the carrier power at the point 
at which the interference is deemed to enter the system can be added in to produce 
an overall noise-plus-interference density to carrier ratio which is then inverted. 

The satellite transmitter power for transmission to the ships will probably be 
around 200 W, but the distance is large and the beam is wide. Also note, the 
values given for atmospheric absorption do not include any margin for heavy 
rain. Comparing the resulting carrier to noise ratio with that for the terrestrial 
microwave link one will see that signalling rates must be much smaller even allow- 
ing for the fact that the data is coded in such a way that lower signal to noise ratios 
at the demodulator are acceptable. 

6.4 CALCULATIONS 

Using the data from Table 6.1" 

6.1 Set out the link budgets for the ship to land station direction and hence 
calculate the overall carder to noise density ratio for the channel in that 
direction. 

6.2 Calculate the angular beamwidths for the land station antenna at both its 
transmitting and receiving frequencies and thus determine how accurately 
it must point at the satellite. 

6.3 Deduce the level of transmitter power used by the land station. 

6.4 Calculate the ship transmitter power and receiving system noise temperature. 
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Smith chart 

using the 

Although the Smith chart was invented as an aid to calculations relating to line 
transmission, it has been found that using it gives very powerful insights into 
the behaviour of all types of wave-guiding systems involving reflections. 

7.1 THE SMITH CHART 

A Smith chart is a type of graph, in polar form, from which it is possible to deduce 
the input impedance of a length of terminated line, assuming that the line has 
negligible attenuation over the length concerned. One needs to know the charac- 
teristic impedance of the line (assumed to be resistive), the wavelength on the line 
and either the standing wave ratio or the return loss. One also needs to know the 
position of a voltage maximum or minimum. A Smith chart graticule is shown in 
Fig. 7.1. 

Pads of Smith chart forms are available from technical stationers. These, being 
about twice the diameter of the charts printed in this book, can be read with rather 
more accuracy than is possible here. 

Theory of the Smith chart 

At any point on a transmission line, not terminated by its characteristic imped- 
ance, which is carrying a sinusoidal wave, there will be a voltage due to the 
wave travelling towards the load, that can be represented by the phasor V,, and 
a voltage due to the reflected wave returning from the load, Vr. Calling the 
distance to the load L, we can define a reflection coefficient at this point 

v, pL=  

As the ratio of two phasors, PL will be a complex quantity with both magnitude 
and angle. Because we have assumed negligible attenuation, the magnitude of PL 
will not change - we shall call it p - but the angle will depend on L and on the 
nature of the terminating impedance ZT. 
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O~ 0 
0 

v a  0 
0 v.- 

Fig. 7.1 

Look at Fig. 7.2 which shows the incident and reflected voltages and currents 
on the line at distance L from the load - the relative directions of voltages and 
currents in the two waves are determined by the directions of energy flow. 

v~+ v, v~ 1+ v,/ v~ 
Zin-- li-~-~-r ='~i 1-1r/l~ 

and since v~/6 and Vr/Ir both equal Z0, 

v, I, 
E /i 

Vr V~--~ 
r 

/r /i 

Zo 

-- L �9 

(] ZT 

Fig. 7.2 Incident and reflected voltages and currents on a transmission line 
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- j l  

Fig. 7.3 The unit circle on an Argand diagram 

so li/Ir also equals PL and 

l + p l ~  
Z i n  - -  Z o  1 _ p L  

Z0 is resistive at the frequencies for which the Smith chart can be used, and so it 
is possible to work in terms of a normalized input impedance zin, which is defined as 
Zin/Zo and which has the same angle (same ratio of real to imaginary parts) as 
Zin. This allows one to use the same theory for a transmission line of any charac- 
teristic impedance, and in these terms 

I + P L  (7.1) 
Zin - -  1 - PL 

PL can have any magnitude between 0 and 1 and any angle, so that on an Argand 
diagram it must lie within the unit circle, that is, a circle centred on the origin and 
passing through the points 1, j 1, - 1  and - j  1 (see Fig. 7.3). 

Now write PL = u + jv and Zin = r + jx thus 

1 + u + j v  
r + j x  = 1 - u - j r  

Rationalizing the denominator  

r + j x =  
(1 + u + jr)(1 - u + jr) 

(1 - u) 2 + v 2 

1 - / 1 2  _ V2 + j2v 

(1 - u )  2 + v  2 

Equating real and imaginary parts 

1 - u 2 - v 2 
r - -  

(1  - u )  2 + v 2 
(7.2) 

and 

X "-- 
2v 

(1 - / 1 ) 2  + v  2 
(7.3) 
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Fig. 7.4 

r = 0 (unit circle) 

Circles of constant normalized resistance 

Equation (7.2) can, with some difficulty, be manipulated into the form 

r )2+ v 2 _ 1 (7.4) 
u 1 + r  - (1 + r )  2 

This can be checked by expanding out Equations (7.2) and (7.4) and showing that 
they give the same terms. 

Equation (7.4) is the equation of a circle on the Argand diagram centred at the 
point u = r/(1 + r), v = 0 and of radius 1/(1 + r). If the centre of the circle is at 
r/(1 + r) and the radius is 1/(1 + r), the circle must cut the real axis at the point 
r/(1 + r)+ 1/(1 + r ) =  1. 

If r = 0, the centre is at zero and the radius is 1. Figure 7.4 shows circles on the 
Argand diagram for r = 0, r = l, r = 1 and r = 2. 

Equation (7.3) can be manipulated into 

1)2= 1 (7.5) 
( u -  1)2 + v -  x x-- 5 

Equation (7.5), for different values of x, represents a set of circles centred on 
points distant 1/x from the point 1 = j0 on the line AB, and of radius 1/x, 
in Fig. 7.5. Bearing in mind that values of v and u are only valid within the 
unit circle, Fig. 7.5 shows curves of constant x (arcs of circles) on the Argand 
diagram. 

By superimposing Figs. 7.4 and 7.5 one should see that the Smith chart is in fact 
the unit circle of an Argand diagram with circles of constant normalized resist- 
ance and arcs of constant normalized reactance drawn upon it. 

A circle representing all possible complex values of the reflection coefficient can 
be drawn on the Smith chart. Figure 7.6 shows the reflection coefficient circle for 
p = 0.5 (one quarter of the energy reflected back). The radius of the circle is half 
the radius of the edge of the Smith chart, i.e. half the distance from the origin to 
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x=0 

Fig. 7.5 Arcs of constant normalized reactance 

the unit circle. The voltage standing wave ratio corresponding to this reflection 
coefficient magnitude is given by the formula 

s = l + p  1.5 3 ~ - - - -  . . . .  - - -  

1 - p  0.5 

Since Equation (7.1) gives 

1 +PL 
gm "-" 1 - - P L  

it follows that the value of S is the same as the value of gin when PL is real and 
positive, so the reflection coefficient circle goes through the point r = 3 (marked 
S) on the real axis. If the information available is the value of the VSWR, this 
allows one to draw the reflection coefficient circle without calculating the value 
of p; in fact, the reflection coefficient circle is often referred to as a standing 
wave circle. 

As one moves from one point on a line to another the angle of the reflection 
coefficient changes. Remembering that there is an increasing phase lag with dis- 
tance in the direction of propagation, as one moves towards the load the phase 
of the incident wave voltage decreases while that of the reflected wave voltage 
increases. Suppose a small change in position towards the load causes the incident 
wave voltage phase to decrease by 0 and that of the reflected wave to increase by 0. 
The change in angle of V~/Vi is 0 -  ( - 0 ) =  20, so, the angle of the reflection 
coefficient increases as you move towards the load at twice the rate at which 
the phase of the travelling wave changes. A complete 360 ~ cycle of reflection 
coefficient angle occurs in half a wavelength on the line. 

If a line is drawn through the centre of the Smith chart, the complex value of the 
reflection coefficient at the point at which it crosses the reflection coefficient circle 



7.1 The Smith chart 101 

at one side is minus its value where it crosses the circle at the other side (remember 
that this is an Argand diagram upon which complex numbers are plotted). Start- 
ing from Zin, where the complex reflection coefficient is PL, crossing the diagram in 
the way indicated gives a reading on the graticule which is 

1 --t- (--PL) 1 - P L  

1 - ( - - P L )  1 + f ~  

Comparing this with Equation 7.1 shows that the reading gives the inverse of Zin , 
i.e. the normalized input admittance. For example, one point on the p -- 0.5 circle 
on Fig. 7.6 is the point P where from the graph we read that 

Z i n  --" 0.78 + jl  

The normalized input admittance is 

1 
Ym - 0.78 + j 1 

O) 0 

Fig. 7.6 
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Rationalizing the denominator 

0.78 - j l  
Yin = 0 . 7 8 2  d- 1 

which works out to 

Yin "-  0.48 - j0.62 

Crossing the Smith chart from P to the point Q, we find this value at Q. 
If a line is matched, then the normalized input impedance (and admittance) is 

1 + j0, i.e. the centre of the chart which for this reason is sometimes known as the 
matching point. 

Because the Smith chart is used at frequencies for which the losses per wave- 
length are negligible, the locus of reflection coefficient is taken to be a circle, 
however, plotting the reflection coefficient on the chart over many wavelengths 
would produce a gradual spiral in toward the centre. 

Although the theory of the Smith chart has been developed by reference to 
transmission line, it is also applicable to waveguide. The impedances involved 
will then be normalized wave impedances. 

7.2 RESONANT LINE SECTIONS 

It is easy to see from the Smith chart how a resonant section of line, either open- 
circuited or short-circuited, works. Most often a short-circuited line section will 
be used because it is easier to ensure that a line is truly short-circuited than 
open-circuited, and in the case of twin-wire line the short-circuited section is 
likely to be more mechanically rigid. A short-circuited section of line is often 
referred to as a stub. 

The next argument will be much easier to follow if we use some numbers, so 
assume that the design wavelength on the line is 10m - this corresponds to a 
signal frequency of 30 MHz if the line wires are in air so that the phase velocity 
is c - and that the line is one-quarter wavelength, i.e. 2.5 m long, short-circuited 
at the end. Look at Fig. 7.7. The short circuit corresponds to the point A on the 
Smith chart. Moving away from the load (the short circuit) means moving clock- 
wise around the chart (this direction is marked 'backward' on the edge of the 
chart) through one-quarter of a wavelength, which means half-way round the 
chart, to B, where the (normalized) input impedance is infinite. 

In practice there will always be some losses (conductor resistance and radia- 
tion): suppose these losses were equivalent to a standing wave ratio of 10 on 
the stub. The input would now have a normalized impedance of 10 - i.e. the 
input impedance would be 10R0 - shown at point C on the chart, and the load 
would appear to be R0/10, at D, rather than a short circuit (although in practice 
the losses would be distributed). 

How does the stub respond to a lower frequency? A lower frequency means a 
longer wavelength, so the stub is now less than a quarter wavelength long. We are 
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" ~  0 

Fig. 7.7 

interested in the wavelength that brings the input impedance to the point marked 
E on the chart: this is significant because at this point the input impedance has an 
inductive reactance equal in magnitude to its resistance, its normalized input 
impedance being 5 + j5. Similarly, by raising the frequency and thus making 
the wavelength shorter the stub will be longer than one-quarter wavelength, 
and, at a particular frequency its normalized input impedance will be 5 -  j5, at 
the point F. Over the frequency range considered, then, the stub acts like a parallel 
tuned circuit with 3 dB frequencies that can be determined from the positions of E 
and F on the Smith chart. 

Take point E. From the calibrations on the edge of the chart we read that the 
distance from the short-circuit is 0.234A. Hence A is 2.5/0.234 m - 10.68 m. 

Assuming a phase velocity of 3 x 108 m/s, the frequency is 28.08 MHz. 
By similar reasoning, the frequency associated with the point F is 31.92 MHz. 
The bandwidth is 3.84 MHz. 
And so the Q, given by resonant frequency/bandwidth, is 30/3.84 = 7.8. 
It is seen that when a resonant line section is used as a tuned circuit its Q 

depends on the losses. 
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The balance to unbalance transformer (Balun) 

When a coaxial cable is used to feed an antenna, an output balanced about earth 
is usually required. The outer of the coax is generally at earth potential, at least at 
the transmitter, but a balanced output can be obtained by attaching an extra con- 
ducting sleeve, one-quarter wavelength long, as shown in cross-section in Fig. 7.8. 
The extra outer forms with the original outer a coaxial line which, being short- 
circuited at A, presents an open circuit at B. The sleeve takes on earth potential, 
but the potential of the original outer is not tied to earth at B and so the alternat- 
ing voltage between the inner and the original outer at B balances itself about 
earth potential. The space between the sleeve and the coax outer will be resonant 
and carry a standing wave. 

Fig. 7.8 A Balun 

A 
_.. , i  

4 . . . . . .  

A 
v 

,, , , �9 

A B 

Contacts 

7.3 A QUARTER-WAVE TRANSFORMER 

Figure 7.9 shows a transmission line of characteristic impedance Z0 feeding a load 
ZL via a quarter-wave section of line of characteristic impedance Zm. The load 
impedance normalized to the quarter-wave section is ZL/Zm. One-quarter wave- 
length away (half-way round a Smith chart) the normalized impedance seen by 
the main line is Zm/ZL, SO the actual impedance is (Zm/ZL) X Zm. 

Hence the matching condition is 

Z 0 "- Z2m/ZL i.e. Z m - -  v / Z o Z L  

Since Z0 and Zm will both be resistive (at the frequencies at which Smith charts 
can be used, characteristic impedances are resistive) it follows that ZL must be 
resistive for a quarter-wave match to be possible. 

Now suppose we want to know how far off frequency we can go and still have a 
reasonable match. 

Zo 

. . . . . . . . .  

v 

Zm , -,~ ZL 
. . . . .  

Fig. 7.9 A quarter-wave impedance transformer 
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Again, it will be easiest to take some values. Suppose the load is 112.5 s and the 
characteristic impedance of the line is 50 f~. The design frequency is 300 MHz. We 
want to find the extent of the mismatch if the frequency can vary by 4-10 per cent. 

The quarter-wave section will have a length of 

c 3 x 108 
4-f = 4  x (3 x 108) m = 25cm 

The required matching section impedance is 

Zm = V'50 x i 1 2 . 5  = 

Let us see first what is the mismatch without the matching section. 
The normalized load impedance, and also the VSWR is 

1 1 2 . 5 / 5 0  = 2 .25  

The standing wave circle is plotted on Fig. 7.10. 
The reflection coefficient is 1.25/3.25 = 0.385 which indicates a fraction of 

energy reflected 0.3852 = 0.148, i.e. nearly 15 per cent. 

Unmatched VSWR circle 

0')  0 
0 " "  

" "  0 

Fig. 7.10 
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At the design frequency, the quarter-wave section matches the load: what is the 
mismatch at 330 MHz? 

At this frequency the wavelength is (3 x 108)/(3.3 x 108) =90.9era ,  so 
25 cm = 0.275A. 

The load impedance normalized to the matching section is 112.5/75 - 1.5. The 
standing wave circle is shown on Fig. 7.10. 

Starting at the point marked A, we move round the chart, in a clockwise direc- 
tion (away from the load) until we reach the point B. Now, however, we are in 
some trouble because the graticule is difficult to read accurately with such a 
small standing wave circle, so we move on to Fig. 7.11. This is an expanded 
version of the centre of the Smith chart, out to a VSWR of 2, and the grids for 
this are again available from technical stationers. The normalized impedance at 
B can now be read as 

0.67 + jO.09 

So, the load presented to the main line is 

75(0.67 + j0.09) --- 50 + j6.8 

RESISTANCE 

Fig. 7.11 
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If we now renormalize this to the main line impedance we can plot a standing 
wave circle representing the mismatch on the main line. 

(50 + j6.8)/50 -- 1 + j0.135 

This is plotted on Fig. 7.11 and marked C. A standing wave circle drawn through 
C allows one to read off the VSWR on the main line, at D, giving 1.14: 1, a value 
that would normally be regarded as quite acceptable. 

If we carry out the same procedure for a frequency of 270 MHz we shall get the 
same result. 

Broad-banding 
It is possible to make the match broader band by using more than one quarter- 
wave step. Let us continue with the same example and now suppose that we 
want to use the line over a frequency range from 200 to 400 MHz. We still need 
to design for 300 MHz since this is the mid-band frequency. Using the same 
method as previously, for a single quarter-wave section of characteristic 
impedance 75 fl, the VSWR at 200 and at 400 MHz is just over 1.5" 1. 

Now suppose we insert two quarter-wave sections between the main line and 
the load. What must their characteristic impedances be? Look at Fig. 7.12. The 
load at A, normalized to Z2 gives ZL/Z2. At B, this transforms to Zz/ZL and 
denormalizes to zZ/ZL . Normalizing this to Z1 gives zZ/ZLZI which, at C, trans- 
forms to ZLZ~/Z 2 and denormalizes to ZLZZ/z 2, which must equal Z0. 

ZL Z2 Z 2 
= Zo z - ;  = 

This does not indicate unique values for Z 1 and Z2. However, another way of 
looking at a quarter-wave transformer is to think of the mismatches at 
each end as generating two reflected waves which return towards the load in anti- 
phase and thus cancel each other out. Thinking in this way it seems sensible, in 
order to achieve a broad-band result, that the values of Z1 and Z2 should be 
chosen so as to equalize the reflection at each junction. Looking again at Fig. 
7.12, the reflection coefficient at C if the first transformer section were matched 
would be 

ZI -Zo 
z~ +Zo 

. . . .  A _ 
v 

Zo 
, ,  A , 

c 
z, . . . . . . . . . .  z2 I ZL 

B A 

Fig. 7.12 A double quarter-wave impedance transformer 
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Taking the same consideration at B and at A leads to the requirement 

Z 1 - Z 0 22  - Z 1 ZL -- Z 2 

Z 1 -~- Z 0 22  -+- Z 1 ZL  -~- Z 2 

From the first and last terms 

1 -- Z o / Z  1 1 - Z 2 / Z  L 

1 + Zo/Zl 1 + Z 2 / Z  c 

A little algebra shows that this means 

z0 z2 
Z1 ZL 

So, we require 

- r  and ZEZ1 = ZLZo 
z: 
Z1 

For the values in our example 

v/zL/zo = 1.5 and ZLZo = 5625 

This yields ZI = 61.24 f~ and Z2 = 91.86 f~, which we shall round to 

Z1 = 60 f~ and Z2 = 90 f~ 

Now consider how the match behaves at 200 MHz. The wavelength at this fre- 
quency is 1.5 m, so 25 cm is 0.167A. 

Looking again at Fig. 7.12, ZL normalized to Z2 is 

112.5/90 - 1.25 

A 1.25 VSWR circle has been drawn on Fig. 7.13. Starting at point A on the circle 
and moving away from the load 0.167A brings us to point B. (The calibrations on 
the diagram are not very helpful here because they start from a zero on the left, so 
one has to count round.) We read the value at B to be 

0.88 - j0.17 

Notice that normalized reactance values in the bottom half of the diagram are 
negative. Denormalizing this from the 90 f~ section and renormalizing to 60 f~ 

gives 

1.32 - j0.255 

which is plotted at B'. Moving away from the load 0.167A from B' brings us to 
point C which is 

0.72 - j0.12 

Denormalizing from 60 f~ and renormalizing to 50 f~ gives 

0.86 - j0.14 
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Fig. 7.13 

which is plotted at C', and which, one will see, indicates a standing wave ratio of 
about 1.24: 1. 

You might like to check the match at a couple of frequencies nearer to 300 MHz 
to see that it is progressively better. 

Three quarter-wave steps would give a better broad-band match still. Pursuing 
the idea that the match occurs due to out-of-phase reflections that cancel gives 
credibility to a method that is often used to achieve a broad-band match at 
high frequencies where the wavelength is short; that is, to effect a gradual 
change of the physical dimensions which control characteristic impedance over 
several wavelengths. 

The quarter-wave transformer would seem to have the disadvantage that the 
load has to be resistive. This is not, however, a problem: at high frequencies the 
line usually terminates in some sort of structure of which the input terminals 
can be defined as a matter of convenience, so one can look at the standing 
wave ratio near to the load and define the load terminals as being the point on 
the line nearest to the load at which the input impedance is resistive. The line 
can then be cut at this point and the quarter-wave transformer inserted. 
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7.4 STUB MATCHING 

In practice an impedance transformer has to be designed into the system when it is 
constructed. If one terminates a transmission line and then finds the mismatch 
unacceptable, a means must be found to improve the match without breaking 
the line: this can be done with a stub. 

In this case one needs to work with admittances rather than impedances: for 
every point on the Smith chart representing a line's impedance its admittance is 
represented by the point diagonally opposite on the chart. 

Whatever the VSWR, the standing wave circle will cross the unity normalized 
conductance circle at some point. To achieve a match, one must simply connect an 
admittance across the line which has a normalized value equal and opposite to 
that of the line at the point concerned. 

In principle the match can be made knowing the admittance of the load and the 
phase velocity on the line, but in practice this is not the sort of information that is 
immediately available. Instead, measurements are made with a standing wave 
indicator. A standing wave indicator is a section (of rigid twin-wire line or coaxial 
cable or waveguide) in which a small probe is inserted into the electric field to 
sample its value. The probe can be moved along the direction of propagation 
over a sufficient length that several electric field maxima and minima can be 
observed. These devices are very carefully designed so that they interfere with 
the signal being measured as little as possible. 

By moving the probe and measuring the voltage picked up from the electric 
field one can deduce the ratio of the electric field maximum to its minimum 
values - this will be the same as the VSWR. The position of the standing wave 
pattern is best located through voltage (electric field) minima rather than 
maxima because the positions of the minima in the pattern are more sharply 
defined. The wavelength on the line can be deduced from the separation of the 
voltage minima, and it is also necessary to measure the distance from a minimum 

to the load. 
The following is an example of a match on a twin-wire feeder taking a signal 

from a 30 MHz transmitter to an antenna. The VSWR is measured to be 3.2"1. 
Two adjacent voltage minima are 5 metres apart. The nearest minimum to the 

antenna is 2 metres from the antenna terminals. 
Look at the Smith chart in Fig. 7.14: the measured value of VSWR allows us to 

draw a standing wave circle through the point A. At a voltage minimum the 
admittance is maximum and resistive, so the point A also represents the admit- 
tance of the voltage minimum nearest to the source. There are two choices for 
making the match: move towards the load to point B or move away from the 
load to point C. In either case the distance moved is approximately 0.082A. A is 
twice the distance between two minima, i.e. 10 m, so the distance to move is 82 
cm. A match nearer the load is neater, so we will go for point B. Here, the normal- 
ized input admittance is j 1.25, so we need to connect in parallel with the line at this 
point an admittance - j  1.25. One might think at this point that we need to know 
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Fig. 7.14 

the characteristic impedance of the line so as to calculate the actual admittance 
required, but we do not, because the admittance required is formed by using a 
short-circuited length of the same line. 

At the short circuit the normalized admittance is infinite: this corresponds to 
the point D on Fig. 7.14. The standing wave circle (assuming no losses on the 
stub) is the circumference of the Smith chart, so, moving away from the short 
circuit to E gives a stub with an input admittance of - j l .25.  D to E is 0.107A, 
so the required stub length is 107 cm. If we had chosen to match at C, not only 
would the stub have been further from the load, but it would have had to be 
longer. 

The matched line is shown in Fig. 7.15. There are large standing waves on the 
stub and between the stub and the load, but (if the match is perfect) no energy 
is returned to the transmitter. The energy is not dissipated (ideally), but as 
energy is fed in from the line the standing waves ensure that the total ratio of 
voltage to current at the load is such as to cause the load to accept energy at 
the same rate. 
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Fig. 7.15 A single stub match 
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How good is the match off frequency? Let us check it for a wavelength 10 per 
cent longer, i.e. 11 m. The load admittance has not changed; it is 0.2A forward 
from the nearest minimum at the original wavelength - at point F on Fig. 7.14. 
The unmatched standing wave circle is not affected by the change of wavelength, 
but the matching point is now 

1.18/11 = 0.107A 

backward from the load. This takes us to point G where we read the normalized 

admittance as 

0.85 + j l . 14  

The length of the stub in wavelengths is now 

1.07/11 = 0.097A 

This corresponds to point H on the Smith chart, which reads - j  1.42 as the input 
admittance to the stub. 

The load presented to the main line at the point of connection of the stub is 

0.85 + j l. 14 - jl .42 = 0.85 - j0.28 

Putting this on the larger scale centre grid in Fig. 7.16 indicates a VSWR of about 
1.4" 1 which is still very good compared to the unmatched VSWR of 3.2"1. 

Multiple stub matching 
The method of matching just discussed is fine for an open wire feeder, but with a 
coaxial cable or a waveguide, fixing on a stub means major surgery. There is an 
alternative which is to use several stubs (at least two and frequently three), perma- 
nently installed, adjustable in length and separated by 3/8 of a wavelength. The 
lengths of the stubs are adjusted - usually by trial and error - until a match is 
obtained. To understand how this works look at Fig. 7.17 which is a Smith 
chart on which is drawn a circle equivalent to the circle of unit conductance 
but transposed 3A/8 towards the load. Figure 7.18 shows just two stubs. If the 
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Fig. 7.16 

real part of the normalized admittance at A looking towards the load has any 
value less than 2, then by using the stub at A to change the imaginary part, the 
normalized admittance can be made to lie on the displaced unit circle. Moving 
3A/8 away from the load means that at B the normalized admittance lies on 
the true unit circle so that adjusting the length of the stub at B allows the line 
from there to the transmitter to be matched. For the small area of the chart, 
within the circle of normalized resistance 2, which cannot be matched, the 
second stub together with a third can give a match since we are 3A/8 further 
from the load and therefore out of the non-matching region. 

Although, in principle, a match can be achieved with two stubs, frequently 
all three are adjusted: again an alternative view is that we are setting up 
cancelling reflections, and a useful principle, to give good performance away 
from the design frequency, is to try to spread the reflections equally between 
the stubs. 

Lengths of waveguide with movable short circuits can be attached as stubs - 
to act as a shunt, the stub must be connected at the side wall - but most often 
this type of matching in a waveguide is achieved by inserting adjustable probes 
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O 

Fig. 7.17 

in the top wall. In this case, clearly, the idea of cancelling reflections is the more 
useful. 

7.5 GENERAL APPLICABILITY OF THE THEORY 
TO WAVEGUIDE 

Design procedures at microwave frequencies tend more toward optics than circuit 
theory; nevertheless, many of the ideas of this chapter are germane. The wave- 
lengths to be used are of course guide wavelengths. 

Resonant cavities, which serve as tuned circuits for microwaves, can usefully be 
thought of as resonant lengths of waveguide of different cross-sections. 

Quarter-wave transformers also find considerable use - a good example being 
to match the output of a microwave generator to a waveguide. 

A waveguide horn is, in effect, a tapered match between the wave impedance in 
a waveguide and the wave impedance of free space. 
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Fig. 7.18 A double stub matching system 
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Finally, as already indicated, triple-stub matching is routinely used in waveguide 
systems. 

Direct applicability to optical fibre is less obvious - a resonant cavity in a laser 
can, perhaps, be thought of as a resonant section of optical waveguide, but these 
are generally many wavelengths long. There is no reason in principle why the 
ideas discussed should not be applied at optical frequencies in the future. 

7.6 CALCULATIONS 

Figure 7.19 is a Smith chart, with a standing wave circle drawn on it, relating to a 
mismatched transmission line of characteristic impedance 100 ft. The wavelength 
on the line is 15 m. The point marked A represents the normalized impedance of 
the load. 

Carry out the required procedures on the Smith chart. Do not try to be more 
accurate than two significant figures. 

7.1 What is the impedance of the load? 

7.2 What is the normalized admittance of the load? 

7.3 What is the voltage standing wave ratio on the line? 

7.4 What is the distance from the load to the nearest voltage minimum in the 
standing wave pattern? 

7.5 Deduce the position and length of a short-circuited stub of the same line 
required to match the line as near to the load as possible. 
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Appendix 1 
Complex exponential 
representations 

A1.1 PHASOR REPRESENTATIONS 

On an Argand diagram representing the complex plane (a plane on which can be 
plotted all the complex numbers) a line of length M joins the point a + jb to the 
zero p o i n t -  see Fig. AI.1. 

The length M = v/a 2 ~-/5 2 and the angle on the diagram 0 = arctan(b/a).  This 
is the normal basis for the representation of phasors such as V and / ,  and phasor 
operators such as Z and Y, each of which is an entity with a magnitude and an 
angle, by complex numbers. However, it can be seen from the diagram that 

a = M cos 0 and b = M sin 0 so a + jb = M(cos 0 + j sin 0) 

and it can be shown mathematically, from the theory of infinite series, that 

cos 0 + j sin 0 = e J0 

so the complex number a + jb can also be written M e J~ Hence a phasor or phasor 
operator, with a magnitude M and an angle 0, can be represented and mani- 
pulated mathematically either as a + jb, where a = M cos 0 and b = M sin 0, or 
as M e j~ 

Imaginary axis 

~ a + j b  

a Real axis 

Fig. A1.1 The point a -t- jb on an Argand diagram 



1 1 8  Complex exponential representations 

A1.2 SINUSOID REPRESENTATIONS 

In Fig. A1.2 a line is represented from the zero point on an Argand diagram, but 
this time the line is rotating anticloekwise with a constant angular frequency w. 
The line is shown as having length A. Assuming that at time zero the line made 
an angle ~ with the real axis, the angle made by the line with the real axis at 
time t is (wt + @). The point at the end of the line can be represented as 
A e j(~'+~). A perpendicular dropped from the end of the rotating line to the 
imaginary axis meets it at the point P, and since the rotating line is centred on 
the zero point, the value of P is given by 

P = A sin(wt + 4)) 

Now at all times there is a direct relationship between the value, A e j@t+~), of the 
point at the end of the rotating line and that of the point P, A sin(wt + @), and this 
relationship is maintained under all normal mathematical operations, so that the 
expression A e j(~t+~), which is easier to manipulate mathematically, can be sub- 
stituted for A sin(wt + ~), with the knowledge that the sinusoidal form can be 
recovered at the end of any calculation. In fact, so secure are we in the one-to- 
one correspondence between the two expressions that often the sinusoidal form 
is not recovered. It is, however, salutary to remember that an equation such as 

v = V e j(~162 

cannot be plotted on a graph of v against t. 

Imaginary axis 

. . . . . .  ; , -  Ael(~ + #) : :"~ 

A . ,  

Real axis 

Fig. A1.2 Representation on an Argand diagram of the rotating line joining the origin to 
A e j(Wt+~) 



Appendix 2 
Inductance and capacitance 
transmission line 

of 

A2.1 TWIN LINE 

Consider the line consisting of the pair of wires shown in Fig. A2.1; each wire 
has radius a, and the separation between the centre of one wire and the surface 
of the other is b. The current in the wires is I, into the page for the wire 
marked A and out of the page for the one marked B. The voltage between 
the wires is V. 

Inductance 

The magnetic field due to the current in A encircles A and has a strength at radius 
r given by 

I 
H, = ~ A/m 

Hence the magnetic flux density at radius r 

B~ = #oI Wb/m 2 
2~r 

A B 

E C> 
�9 H H 

i .=,=.....'...,.. b i " a 

Fig. A2.1 Cross-section of a twin-wire line with fields. Current into A and out of B 
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The total flux linking the space between the wires, per metre length of line, due to 
the current in A is 

I i  ~ ~g= ~drWb/m 

which yields 

#0I b 
~a = ~ ln -  Wb/m a 

(We have ignored any flux within wire A, which is reasonable, since a.c. current 
will flow near the surface due to the skin effect.) 

The flux due to B will have the same value and will add to that of A between the 
wires, since the currents are in opposite directions, so the total flux linkage per 
metre 

= #0I In b Wb/m (A2.1) 
71; a 

The inductance is the flux linkage per unit current, so 

L - #~ln b- H/m (A2.2) 
a 

Capacitance 
Let the two lines carry opposite charges, +Q coulombs on A and - Q  coulombs on 
B, per metre length. 

The electric flux density at radius r outward from line A is 

Q C/m 2 DA - - ~ r  

so the electric field strength, which is D/e, is 

Q V/m EA = 2~re 

The voltage between the wires due to the charge on A is then 

VA ~ I iEAdr  = Q b ~-e~e ln-a V 

The voltage due to the charge on B has the same value, and, since the electric field 
direction is inwards towards B, acts in the same sense as VA, so the total voltage 
between the lines is 

v = Q l n  b- V 
ue a 

The capacitance is Q/V,  and since Q is charge per unit length, 
gE 

C = ln(b/a'------) F/m 

(A2.3) 

(A2.4) 
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Phase velocity 

In Chapter 2 the phase velocity on an ideal line (or a line at high frequency) is 
shown to be 1/x/-L--c, which, from Equations (A2.2) and (A2.4) can be seen to 
have the value 

vp = 1/x/'#o~ 

Characteristic impedance 

Again from Chapter 2, the characteristic impedance is v / L / C ,  which, from 
Equations (A2.2) and (A2.4) gives for the characteristic impedance in terms of 
the line dimensions 

Zo = ~l n ( b / a ) - -  

A2.2 COAXIAL LINE 

Figure A2.2 shows a cross-section of a coaxial line with an inner conductor of 
radius a and an outer conductor with an inside radius b. The currents in the 
conductors have value I, in opposite directions, and the voltage between the con- 
ductors is V. 

Inductance 

All the magnetic field between the conductors is due to the current in the inner 
conductor. Outside the outer conductor the net field is zero because the field 
due to the current in the outer conductor is equal and opposite to that due to 
the current in the inner conductor. 

t ~  

\ / 

Fig. A2.2 Cross-section of a coaxial line. Current into the inner conductor and out of the 
outer conductor 
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The field strength at radius r between the conductors is 

I 
Hr - -  2nr A/m 

Hence the magnetic flux density at radius r 

#0I Wb/m 2 Br = 

The total magnetic flux between the conductors is 

I i  ~ 
= ~ dr Wb/m 

which yields 

#0I b 
= -2n-n ln-a Wb/m 

The inductance is the flux linkage per unit current, so 

#0 b H/m L=Nln a (A2.5) 

Capacitance 

Let the two lines carry opposite charges, +Q coulombs and - Q  coulombs per 
metre length. Again, all the electric field will be in the space between inner and 
outer conductors. 

The electric flux density at radius r is 

Q C/m 2 
D = ~--/r 

so the electric field strength, which is D/e, is 

E =  Q V/m 
2~re 

The voltage between the conductors is then 

V,~ E d r = ~ l n - a V  

The capacitance is Q~ V, and since Q is charge per unit length, 

296 
C = ln(b/a'-----~ F/m (A2.6) 

Phase velocity 

Again using 1/x/L~, from Equations (A2.5) and (A2.6) 

U p - -  1/x/~e 



Characteristic impedance 
From Equations (A2.5) and (A2.6) v/L/C yields 

ln(b/a) ~~o e 
Z 0 =  2n - -  
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A2.3 MICROSTRIP 

Figure A2.3 shows a cross-section of a microstrip (a repeat of Fig. 4.2). Mathe- 
matical analysis of the fields produced by this configuration is much more difficult 
than for twin-wire line or coax; numerical techniques exist which are best applied 
by a computer. From the previous two analyses it is reasonable to deduce that the 
phase velocity in microstrip will be 1/v/#0 e. 

Fig. A2.3 Microstrip 

A clue to the nature of Z0 for microstrip can be found by considering a 
cylindrical wire above a ground plane as shown in Fig. A2.4. Using the method 
of electrical images, the wire will have an image in the ground plane so that the 
same method of analysis can be used as in Section A2.1, but the magnetic flux 
linking the circuit only exists between the wire and the ground plane and so is 
only half the value given in Equation (A2.1). Also, d ,~ b/2 and w = 2a, so we 
can write 

#o 4d 
L ,.~ ~-~ln--w H/m (A2.7) 

Fig. A2.4 Cylindrical conductor above a ground plane 
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The voltage between the wire and the ground plane will be half the value given in 
Equation (A2.3) giving 

2he 
C ~ F/m (A2.8) ln(4d/w) 

Again it will be seen that ~)p  - "  1/~x/-~ and here 

ln(4d/w) ~ 
Zo ,.~ 2~ 



Appendix 3 
The wave-propagating properties 
of media 

The aim here is to establish properties that a medium must possess in order to 
propagate waves of the sort described in the main text. Invoking Fourier's 
theorem, we take the waveform to consist of an arbitrary set of sine waves. 

Consider some property of a medium of which the instantaneous value can be 
represented by a. If a loss-free wave of the variation of this property will propa- 
gate in one dimension in the medium, then its value at distance x in the direction 
of propagation from some reference point and at time t after some reference time 
can be represented as 

a = A1 sin(colt - fll x) + A2 sin(wEt -- fl2 x) -+- A 3 sin(coat - f13 x )  + . . .  

We now differentiate this expression twice with respect to x and twice with respect 
to t. 

With respect to x 

oqa 

Ox 
= - f l l A 1  c o s ( c o l t - / 3 1 x  ) - / 3 2 A  2 COS(W2t- f12 x) 

- flaA 3 cos(w3t-  flaX) . . . .  

OEa 
Ox 2 =-/3~A1 sin(w1 t -  fll x )  -- flEA 2 sin(wEt- 32x) 

- 32A3 s i n ( w i t -  33x)  . . . .  

With respect to t 

Oa 
Ot = 031Al COS(Wl t --/~1 X) + od2A 2 CO$(w2t --/32X ) 

q- to3A 3 co8(w3t - f13 x) -+- �9 �9 �9 

02a 
Ot 2 = - w E A l  sin(wl t - 31x)  - wEA2 s in(w2t-  flEX) 

-- wZAs sin(w1 t - flaX) . . . .  

(A3.1) 

(A3.2) 
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Equation (A3.1) can be rewritten 

0 2 a 

OX  2 
f12 [w2A1 s in(wi t -  fl, x)] f12 [w2A2 sin(w2t- flEX)] 

sin( o3t  3x)l a/2  3 . . . . .  (A3.3) 

Now, provided fl is proportional to w, we can write 

/3 2 /3 2 /3 2 1 

where vp is the phase velocity for any sinusoid, and rewrite Equation (A3.3) 

02a l [-w2A sin(wit ~lx) w22A2sin(w2 t /32x) 
OX 2 - -  V-~p 1 - -  - -  - -  

- w2A3 sin(wit - fl3x) . . . .  ] (A3.4) 

From Equations (A3.2) and (A3.4) 

02a 1 oma 
= ( A 3 . 5 )  

OX 2 ~p Ot  2 

What has been shown (in a back-to-front way) is that the sum of a series of 
sine-waves of the form A, sin(w~t- fl~x) is a solution of the differential Equa- 
tion (A3.5) provided the ratio B,,/Wn is constant, and so if a property of a 
medium can be shown to obey an equation of the form of (A3.5) then it will 
propagate a one-dimensional wave of any waveform without loss and without 
dispersion. 

Provided a medium is isotropic - that is, has the same properties in every direc- 
tion - analysis of its wave-propagating properties in one dimension is sufficient to 
find the phase velocity in terms of the properties of the medium. 

For a wave spreading out in three dimensions in a medium, it can be shown that 
the appropriate differential equation is 

02a OZa 02a 1 02a 
Ox---- ~ -1- ~ + ~z 2 = ~ Ot 2 

A3.1 ANALYSIS OF A TRANSMISSION LINE 

Look at Fig. A3.1. This is similar to Fig. 2.5, but now v and i are instantaneous 
current and voltage. We shall undertake an analysis from first principles rather 
than using phasors as in Chapter 2. 
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Fig. A3.1 

i i + ~ i  

v O 8x .,--l'-....i 

i 

i i + 6 i  
Total series resistance R 8x 
Total series inductance L 8x 

Electrical properties of a length of line 8x 

Applying Kirchhoff's voltage law around the loop of the wires, and ignoring 
the small current variation 

5v = - R  ~xi - L 5x Oi 
Ot 

Dividing by 8x and allowing 5x ~ 0 

Ov Oi (A3.6) 
O---x = - R i -  L Ot 

Similarly, considering the current between the wires and ignoring the small 
voltage variation 

5i = - G  5xv - C 5x Ov 
Ot 

giving 

Oi Ov (A3.7) 
Ox = - G v -  C O---t 

Differentiating Equation (A3.6) with respect to x 

02v Oi 02i (A3.8) 
O x---- ~ = - g Ox - LOt  O------x 

and Equation (A3.7) with respect to t 

02i Ov 02V (A3.9) 
Ox Ot = - G - - ~  - C Ot--g 

Combining Equations (A3.7), (A3.8) and (A3.9) 

02v Ov Ov 02v 
Ox 2 = RGv + RC--~  + LG--~ + L C  Ot---- ~ 

and rearranging 

02 v Lc  O2v Ov 
Ox 2 = - ~  + (RC + LG) + RGv (A3 10) gi 
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An exactly similar equation can be derived for the current in the line, i.e. 

02i = L C  02i Oi 
OX 2 -~--~- (RC + LG)-~t+ gGi (A3.11) 

If R and G are both zero, then we have a loss-free, dispersion free, transmission 
line, characterized by the differential equations 

02V 02i 02i 02V-- L C ~  and ~ -  LC 
OX 2 -- Ot 2 ON 2 -- Ot 2 

indicating that a wave with no attenuation, that can be described in terms of either 
the voltage between the conductors of the line or the current in the conductors of 
the line, will propagate with a phase velocity 1/x/LC. 

Where equations with extra terms similar to those in Equations (A3.10) and 
(A3.11) occur, the indication is that an attenuated wave will propagate, and, 
except under special circumstances, it will be dispersive. 

A3.2 ANALYSIS OF A LOSS-FREE DIELECTRIC 
MEDIUM 

The electric and magnetic properties of a loss-free dielectric medium are charac- 
terized by Maxwell's equations, which, assuming there is no stored charge in the 
medium and no conduction current, can be written 

div O = 0 (A3.12) 

div B = 0 (A3.13) 

OB 
curl E = 

Ot 

01) 
curl H = or 

Also, assume that for the medium 

(A3.14) 

(A3.15) 

B = #0H (A3.17) 

For details of Maxwell's equations, see Electromagnetism, 2nd Edition by I.S. 
Grant and W.R. Phillips published by John Wiley and Sons. 

In rectangular cartesian coordinates as shown in Fig. A3.2 (a repeat of Fig. 3.1) 
Equation (A3.12) becomes 

ODx ODy ODe 
Ox F--b-~-y +--ff]-z = 0 (A3.18) 

and 

D = eE where e - -  erE" 0 (A3.16) 
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z 

Fig. A3.2 Three-dimensional coordinates 

while Equation (A3.13) becomes 

Ox +-YZ-z = o (A3.19) 

Equation (A3.14) becomes three equations 

Oy Oz Ot 

OEx OEz OBy 
Oz Ox Ot 

OEy OEx OBz 
Ox Oy Ot 

and Equation (A3.15) also becomes three equations 

oi-i~ Oily ODx 
Oy Oz Ot 

OH~ OH~ 

(A3.20) 

ODy 
= (A3.21) Oz Ox Ot 

Oily oI-Ix ODz 
Ox Oy Ot 

Assuming that any electric field in the medium is in one direction only, which we 
take as the x direction, then Equation (A3.18) reduces to 

ODx = 0 
Ox 

so that, using Equation (A3.16) 

OEx = o 
Ox 

indicating that such an electric field must have a constant value at all points in the 
x direction (consistent with the idea that electric flux can only terminate on 
charge). Assuming also that the electric field strength is uniform over the x/y 
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plane, so that ODx/Oy is also zero, in which case Equation (A3.20) reduces to 

oBx = o oBy Oex = 0 and - ~  = ~ (A3.22) 
Ot Ot Ot Oz 

so the only time-varying magnetic field is By, and using Equation (A3.17) we can 
write 

OEx OHy (A3.23) 
Oz = - # o  Ot 

One of the components of Equation (A3.21) is 

OHz OHy ODx 
--fly-y-Oz = 0--7- (A3.24) 

We have seen in (A3.22) that there is no time-varying component of B~ - and 
hence of Hz - so, ignoring static fields, Equations (A3.24) and (A3.16) together 
yield 

ony OEx 
= - e  (A3.25) Oz Ot 

Differentiating Equation (A3.23) with respect to z gives 

~ 02Hy (A3.26) 
Oz 2 =-#o Ot Oz 

and differentiating Equation (A3.25) with respect to t 

02Hy 02Ex 
= - e  (A3.27) 

Oz Ot Ot 2 

and thus, from Equations (A3.26) and (A3.27) 

02Ex 02Ex 
OZ 2 --  ~0 E Ot 2 (A3.28) 

and in an exactly similar manner 

OZHy 02Hy 
OZ 2 = VO-C Ot 2 (A3.29) 

Equations (A3.28) and (A3.29) indicate that a plane wave, of the sort described in 
Chapter 3, will propagate in a loss-free dielectric medium with a phase velocity 

Vp-- 1 /x /~e  (A3.30) 

Let us now consider a sinusoidal electric field which we shall designate 

Ex = Em sin(wt - ~z) (A3.31) 

Differentiating Equation (A3.31) with respect to z gives 

OEx 
= -flEm cos(wt-  ~z) (A3.32) 
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Thus, from Equations (A3.23) and (A3.32) 

~ -- ~ E m cos(w/- fig) 
Ot #o 

and integrating this with respect to t gives 

# 
Hy - ~ E m  sin(wt - flz) 

w#0 

From Equations (A3.31) and (A3.33) 

E~ w#0 

Equation (A3.30) indicates that w/fl - 1 / ~ ,  so (A3.34) becomes 

/-/, 

This ratio is known as the wave impedance. 

(A3.33) 

(A3.34) 



Appendix 4 
Algebraic analysis of the 
fundamental mode in rectangular 
waveguide 

Figure A4.1 shows a rectangular waveguide and its orientation with respect to x, 
y, z axes. In order to develop equations relating to the fundamental mode, we shall 
have to make certain assumptions regarding the distribution of electric field 
obtained from the graphical analysis given in Chapter 4, thus we shall assume 
that Ey = 0, that Ez = 0 and that the value of Ex does not vary in the x direction, 
so that 02Ex/0x 2 "-- O .  

Hence, for the medium contained in the guide (which we shall assume to be air, 
with a relative permittivity negligibly different from unity), we can write 

c~Ex c~Ex 102Ex (A4.1) 
Oy2 ~ oZ2 =-y ot 2 

(see Appendix 3). 

�9 J~. z 

Fig. A4.1 
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A wavegu ide  with coord inate a x e s  



Algebraic analysis of fundamental mode in rectangular waveguide 133 

Since propagation is in the z direction, we can assume that Ex shows no phase 
variation in the y direction. Also, the boundary conditions indicate that E~ = 0 
when y = 0 and when y = a. 

Again, the geometrical analysis suggests that the distribution of Ex amplitude 
between y = 0 and y = a might be a half-cycle of a sinusoid, so we shall try for 
a solution of Equation (A4.1) of the form 

Ex=A sin ( ~ )  e (j~/-'rgz) (A4.2) 

where 7g is the propagation constant in the guide. (See Appendix 1 for the 
exponential representation.) 

Differentiating Equation (A4.2) yields: 

02Ex _ )2 
Oy2----(~ Ex (A4.3) 

2 
0z 2 = 7gEx (A4.4) 

o2E  
Ot 2 --(jw)2Ex = -w2Ex (A4.5) 

Substituting (A4.3), (A4.4) and (A4.5) in (A4.1) and cancelling Ex gives 

which, taking 2a as Ac, can be written 

(; ') ,yg2 = 4n2 )~c A2 (A4.6) 

From Equation (A4.6) it can be seen that 7g is purely real or purely imaginary 
according as 1/A 2 is less than or greater than 1/A 2, i.e. whether f is less than or 
greater than fc. 

Taking first the case where f > fc. 

7g = 2 n  -- ~2 /~2 

"Yg = j2~ ~~.2 1 

Now we can write 

"yg "-" O~g -~-jflg 

So in this case ag = O. 
(But note: this does not take account of resistive losses in the waveguide walls, 

because we have not included these in the boundary conditions when setting up 
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the equations.) 

, , 

but 

2~ 
g =  Ag 

so, when f > f~ 

1 1 1 

which is Equation (4.4) from Chapter 4. 
W h e n f  < fc 

3g=O 

ag = 2rt~/~Ee2 
1 

,,~2 

1 f2 and 1 f2 
/~2 C 2 ,~2 C 2 

SO 

2re V/f2 _ f 2  ~g  - - ~  
C 

There is no phase change with distance along the guide, but the fields decay expo- 
nentially with distance along the guide. This is known as evanescent propagation. 

The attenuation in a cut-off waveguide is not attenuation in the sense of wave 
energy turned into heat, it simply represents an exponential fall off of field ampli- 
tudes: such field energy as is not able to penetrate to some energy absorbing 
termination is reflected back to the source. A short section of cut-off waveguide 
between two propagating guides will pass through a proportion of the incident 
energy depending on the length of the cut-off section; such an arrangement is 
sometimes used as an attenuator. 

Evanescent propagation into the cladding of an optical fibre in the direction at 
right angles to the fibre axis is a similar phenomenon. 

Wave impedance 
A relevant component of Maxwell's equations, (A3.20) in Appendix 3, is 

= (A4.7) 
Oz Ox Ot 
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Differentiating Equation (A4.2) and using By = pOlly, Equation (A4.7) becomes 

0H~ 
# 0 0 t  '=  "ygAsin(~-~Ya)e(Jwt-'rsz' 

Integrating this with respect to time 

H y = .  7g Asin(~_y_Y~e(JO~t_.rsz) (A4.8) 
JW#o \ a /  

Dividing (A4.2) by (A4.8) yields 

E~ Ju,0 = (A4.9) 

In the frequency range of wave propagation 

") 'g  _ _  j~g j2n 
-- ,kg 

and, using also w = 2nc/)~, Equation (A4.9) becomes 

Ex As 
Hy = #oC--f (An.10) 

#o = /zV~~~ ~oC = J#oeo 

which is the wave impedance of free space (value 120n) and which we shall call Zf. 
Equation (A4.10) shows that the ratio of the transverse components of electric 

and magnetic fields in the fundamental mode in a waveguide is everywhere the 
same: it is known as the guide wave impedance Zw. 

Zw = Zf Ag )t 



Appendix 5 
The polar diagram 
aperture 

of a radiating 

Consider first a line of n radiating point sources, separated by a distance d, all of 
equal power and in phase - see Fig. A5.1. At a distant point, in a direction making 
an angle 0 to the normal to the line, each can be considered to produce the same 
amplitude of electric field, but there is a small path-length difference between the 
radiation from adjacent sources, marked x in Fig. A5.1. (The distance to the 
receiving point is large enough compared to the length of the array of sources 
that the lines joining each source to it are effectively parallel as shown.) 

x = d sin 0 

The phase difference associated with this path-length difference we shall call ~b, 
where 

2nx 2~d sin 0 
~b= A = A (A5.1) 

The electric field at the distant point due to the rth source from the right in the 
figure can be written 

E r  " -  E1 e -jrr 

�9 ~========m ~ "8  

0 

4 3 2 d 1 

Fig. A5.1 A row of point sources radiating in phase 
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(See Appendix 1 for an explanation of this exponential representation of phase 
delay.) 

So, the total electric field due to all the sources in the direction 0 is 

Eo = El + E1 e -j$ + E1 e -j2r + ' "  + E1 e -j(n- 1)$ 

This is a geometric progression with a common ratio e -j* which can be summed to 
give 

(1 - e -jnr e -Jn$/2 e Jn$/2 --  e -jnr 

Eo = E1 1 - e - J $  - -  E1 e_J,/2 e j $ / 2  _ e_J,/2 (A5.2) 

e j n * / 2  - -  e -J"*/2 = 2 sin n--~ (A5.3) 
2 

and 

e J~/2 - e -j$/2 ---- 2 sin -~ 
2 

Also 

e-Jnr 
__ e - J ( n -  1)4,/2 

e-jr 

(A5.4) 

which is the average phase of the total field. 
So, from (A5.1), (A5.2), (A5.3) and (A.5.4) we can write for the magnitude of 

the total electric field at the distant point at angle 0 

sin (nrtd~ in0 ) 

IEol = lEvi (A5.5)  
s in(  nd sin 0 ) ) ,  

Equation (A5.5) is the equation for the polar diagram of a broadside array of 
dipoles, for example. 

Going on now to consider an aperture, imagine that the aperture is filled with a 
matrix of point sources, all separated by a distance d, as shown in Fig. A5.2. If we 
consider the polar diagram in a plane perpendicular to the aperture and parallel to 

i i : i i i i~ : ; : i - : i : : i i~ i i i i ' ! i i i ; i i i i ' : i ; i i : i~ i i !~  

a 

Fig. A5.2 An array of point sources 
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the side a, then Equation (A5.5) will still hold because the radiation from a 
column of sources parallel to side b are all in phase (IEI[ will now represent the 
field magnitude due to all the sources in a column rather than one source). 

But now we can write 

nd=a 

so Equation (A5.5) can be rewritten 

s in(  ~asin 0 ) 

IEol = levi (A5.6) (ha sin 0 
s in \  n-~ ) 

If we let d tend to zero and n tend to infinity, giving an aperture radiating from all 
points in phase, then, since the sine of a small angle tends to the value of the angle 
(in radians) as the angle tends to zero, Equation (A5.6) becomes 

s in(  r~a sin 0 ) 

)~ (A5.7) IEol - nlE,  I rca sin 0 

A 

nlE~l is the electric field magnitude due to the whole aperture, which will of course 
be finite, and which we shall now write IEml. a/m is the aperture in wavelengths, 
so it is convenient to link these two symbols together. Finally then, for the polar 
diagram of the aperture in the plane of a, 

sin{r~(a/A) sin 0} (A5.8) 
IE01 = IEml rr,(a/A) sin 0 

The polar diagram in the plane of b will be exactly the same, with b substituted 
fora. 

The expression 

sin{~(a/A) sin 0} 
n(a/A) sinO 

is unity when 0 = 0 and is less than unity for all other values of O, so ]Eml is the 
maximum amplitude. With increasing 0, the value of the expression falls until it 
becomes zero when the numerator becomes zero for 

rr,(a/A) sin 0 = n 

giving 

sin 0 = A/a (A5.9) 

The magnitude of the expression then rises and falls again to the next zero when 

~(a/A) sin 0 = 2n 
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giving 

sin 0 = 2A/a 

and so on as long as nA/a is less than unity. This gives a pattern of a main lobe 
with side lobes of rapidly decreasing peak value, as shown in Fig. 6.9. 

If A/a is small (the aperture is many wavelengths across) then, from Equation 
(A5.9), approximately the first zero on either side of the main lobe comes at an 
angle A/a radians, so the angle between zeros is 2A/a: the beamwidth is defined 
as the angle between half-power directions, and this is approximately A/a radians 
as indicated in Fig. 6.9. 

For a circular aperture the analysis is not so straightforward. The result is a 
polar diagram of exactly the same form as for a square aperture, but the first 
zeros occur at an angle that is about 25 per cent greater. When dealing with a 
paraboloidal antenna one has to make an approximation for the effective aperture 
anyway, so the rule 'beamwidth is the reciprocal of effective diameter in wave- 
lengths' is still applied. 



Solutions to calculations 

2.1 Z0 as quoted by the manufacturer is equal to v / L / C  so 

L = CZ 2 = 65 x 10 -12 x 782 = 395 nH/m 

2.2 At 1 MHz the change in amplitude over a distance of 100 m, corresponding to 
- 2  dB (minus because it is attenuation) equals 

10 -2/20 = 0.794 

From the definition of attenuation coefficient this amplitude ratio equals 
--OtX e , so 

e -1~176 = 0.794 

Taking logs to base e 

- 100a = In 0.794 = -0.231 

SO~ 

= 2.31 x 10 -3  N / m  

2.3 a = �89 (R/Ro + G/Go). If G is negligible 

R = 2 a R o = 2 X 2 . 3 1 x l 0  - 3 x 7 8 = 0 . 3 6 f ~ / m  

This is the highest possible value of R. 

~ L = 2 ~ x  1 0 6 x 3 9 5 x  10 - 9 = 2 . 4 8  

which is about 7 times Rma x. If R is negligible 

G = 2czG0 = 2 • 2.31 x 10 -3 x 1/78 = 5.9 x 10-5 S/m 

wC = 2~t x 106 x 65 x 10 -12 - -  4 x 10 -4 which again is about 7 times Gmax. 

Since the attenuation will be shared between series resistance and shunt 
conductance we are justified in assuming that taL and wC are an order of 
magnitude greater than R and G respectively so the line can be considered 
non-dispersive at 1 MHz. 

2.4 The data show that the line is becoming more lossy as frequency increases, 
but the loss per 100m only increases from 2 to 16.4, that is 8.2 times, in 
decibels when the frequency increases 50 times. Since nepers are proportional 
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to decibels, c~ also increases 8.2 times (notice that this is not  much more than 

the square root  of the frequency increase). As R and G depend on c~, this 

indicates that  the line will not  be dispersive above 1 MHz.  (Since the attenua- 
tion can be expected to be less at lower frequencies, the line is not  necessarily 

dispersive at frequencies somewhat  below 1 MH z  either.) 

2.5 The phase velocity on the line at all three frequencies quoted will be 

I~/LC = 1 V/(395 x 10 .9 x (65 x 10 -12) = 1.97 x 10Sm/s 

(The velocity is less than 3 x 108 m/s because the wires are insulated with 

polythene.) 

2.6 The wavelength on the line at 10 MH z  is 

V p / f -  1.97 • 108/107-- 19.7m 

2.7 fl = W/Vp = 2n x 50 x 106/1.97 x 108 = 1.5947 rad /m.  The phase delay over 

10 m is therefore 

15.947rad = 15.947 x 180/n = 913.7 ~ 

Two full cycles is 2 x 360 ~ = 720 ~ so the lag of the sinusoidal variation at the 

end of 10m compared to the beginning is 913.7 ~ - 720 ~ = 193.7 ~ 

The phase difference, which is usually expressed as the smaller angle 

between the phases is 

360 ~ - 193 .7~  166.3 ~ 

2.8 The impedance of R in parallel with 1/jwC is 

R • 1/jwC R R(1 - jwCR) 
g + 1/jwC 1 + jwCR 1 --b (wCR) 2 

100[1- j2 r r  x (50 x l0 6) x (20 • 10 -12) x 100] 

1 + [271; • (50 • 106 ) X (20 • 10 -12 ) • 100] 2 

100(1 - j0.628) 

1.395 
= 71.7 - j45 f~ 

ZL -- Z0 71.7 - j45 - 78 - 6 . 3  - j45 

P = ZL + Z0 = 71.7 - j 4 5  + 78 = 149.7 - j 4 5  

= 0 . 2 9  ~6.3 2 + 452 

Ipl = 149.72 +452  

2.9 The return loss at the receiver is 

201og0.29 = - 1 0 . 8 d B  

The pulses of radiat ion lose 2 • 16.4 = 32.8 dB in either direction to and from 

the transmitter,  so the return loss at the transmitter  is 

- 10.8 dB - 32.8 dB - 32.8 dB = -76 .4  dB 
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The amplitude of the reflected pulses at the transmitter relative to the trans- 
mitted pulses is 

10 -76.4/20 -" 1 .5  x 10  -4  

4.1 Assuming 854 M H z  to be 90 per cent above fe, 

fc = 854/1.9 ~ 450 M H z  

For  this value offc,  614/450 = 1.36, so the lowest frequency is 36 per cent 
above fc; well out of  the high at tenuation zone. 

For  fe = 450 MHz,  Ac = (3 x 108)/(450 x 106) rn = 66.7 cm. Ae = 2a (a 
being the wide guide dimension) so this indicates a = 33.3cm. The value 
is not critical, so if we say a = 3 2 c m ,  this gives Ae = 6 4 c m ,  fc = 
(3 x 1 0 8 ) / 0 . 6 4 = 4 6 8 . 7 5 M H z ,  the lowest frequency in the band is 
614/468.75 = 1.31 = 31 per cent above cut-off and the highest frequency 
854/468.75 = 1.82 = 82 per cent above cut-off which is satisfactory. So an 
appropriate  solution for the guide dimensions is 

32 cm by 16 cm 

4.2 Ar = 2a = 8cm 

A = c / f  = (3 x 108)/(6 x 109)m = 5cm 

1 1 1 
(4.4) 

SO 

1 1 1 
A--~g = 2--5 - 6--4 = 0.024 375 

giving ,~g = 6.405 em 

Vp(gu,de ) "-  ( A g / A )  x c 

= (6.405/5) • (3 x 10 a) m / s  

= 3.843 x l0 s m / s  

Vg(guide ) "- ( ) k / A g )  x c 

= (5 /6 .405) •  (3 • 108)m/s 

= 2.342 • l 0  s m / s  

Zw = 120rt(Ag/A) 

= 12Oft x 6.405/5 

(4.1) 

(4.2) 

= 483f l  
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5.1 Using Equation (5.1) 

2.405A 
d <  

~(n~ - n22) 1/2 

2.405 x 0.85 
d <  

n( 1.4602 - 1.4582) 1/2 

giving d < 8.5 ~tm. The choice is not critical, since we are nowhere near the 
dispersion minimum, so, for the sake of mechanical tolerances, choose say, 
d =  7.5 ~tm. 

5.2 X 2 km lengths would require X -  1 splices. Assume again 0.5 dB loss per 
splice (although the smaller core diameter makes the splices a bit harder to 
make accurately), 2dB for terminal connectors and 5 dB repair margin. 
The system margin is 41 dB. 

At the limit, 

3X dB + 0.5(X - 1) dB + 2 dB + 5 dB = 41 dB 

gives 

X = 9.86 lengths. 

The choice would be 9 lengths (or 10 if you want to shade the repair margin a 
bit), so the maximum span is 

18 km 

Power budget: 

transmitter power - 3  dBm 
receiver sensitivity -44  dBm 

System margin 41 dB 

fibre loss 27 dB 
splice loss 4 dB 
connector loss 2 dB 
repair margin (10 splices) 5 dB 

Route losses 38 dB 

Excess margin 3 dB 

5.3 For a signalling rate of 36 Mbaud, the symbol period is 

I 
= 27.8 ns 

36 x 10 6 

so the dispersion must be kept below 13.9 ns. 
For a span of 18 km, the dispersion is 

6 0 •  
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where lw is the linewidth of the source in nm 

1080 lw < 13.9 • 103 

lw < 12.8 nm 

indicating that a laser should be used. 

5.4 Using the formula for intermodal dispersion 

Lnl (nl -n2) < 13.9 x 10 -9 
cn2 

(13.9 • 10 -9) • (3 X 108) X 1.458 
L < < 2082 m 

1.460(1.460- 1.458) 

The maximum span is 2 kin. 
No splices would be needed initially, so allowing 2 dB for couplings (prob- 

ably less, since coupling is easier with a wide core) and say 3 dB for repairs, 
plus the attenuation of 2 • 1.5dB, the total route losses would only be 
8dB. With a receiver sensitivity of the order o f - 4 0 d B m  or better, a 
source power o f -  13 dBm would be more than adequate. 

6.1 Link budget ship to land station: 

Ship to satellite 
EIRP 
At. abs. 
Free-space p.1. 
1/k 
G/T 

(C/No)u 

Satellite to land station 
EIRP 
At. abs. 
Free-space p.1. 
1/k 
G/T 
(C/No)d 

36dBW 
- 0 . 2 d B  

-188.9dB 
228.6dB 

- 1 3 . 2 d B K  

62.3 dBHz 

- 2 . 5 d B W  
- 0 . 4 d B  

-197.2dB 
228.6dB 

32.0dBK 

60.5 dBHz 

Channel No/C = (No/C)u + (No/C)d 

-62.3 dB = 5.89 x 10 -7 

-60.5 dB = 8.91 x 10 - 7  

sum = 1.48 x 10 - 6  " -  - - 5 8 . 3  dB 

Channel C/No = 58.3 dBHz 
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The satellite EIRP is kept as small as possible to minimize satellite power 
consumption: even with this value of EIRP the ship to shore link C/No ratio 

is better than the shore to ship by about 4 dB. 

6.2 The main beamwidth, between half-power points, in radians, is approxi- 
mately equal to the inverse of the diameter of the effective aperture in 

wavelengths. 
At 6.42 GHz, A = (3 • 108)/(6.42 x 109) = 0.047m. 

The effective aperture diameter may be taken to be 80 per cent of the 
physical diameter of the paraboloid, i.e. 0.8 • 13 = 10.4 rn so 

beamwidth ~ 0.047/10.4 rad = 4.5 x 10 -3 rad 

= (4.5 • 10 -3) • 180/~ ~  0.26 ~ 

At 4.2 GHz, (3 x 108)/(4.2 • 10 9) = 0.071 m wavelength, 

0.071 / 10.4 = 6.87 x 10 -3 rad = 0.39 ~ 

The beamwidth limits represent 3 dB reduction on either side of the centre of 
the beam. Thus the smaller of the two beamwidth values, 0.26 ~ suggests a 

need for an antenna pointing accuracy of the order of +0.1 ~ 

6.3 At the land station, EIRP/gain  = transmitter power. 

G = (4nA')/A 2 

Taking A' as 2/3 the physical aperture of the antenna 

G = 4n • (2/3)n(6.5) 2 = 5.5 x 105= 57 dB 
[(3 x 108)/(6.42 x 109)] 2 

so transmitter power = 60 dBW - 57 dB = 3 dBW = 2 W. 
There is no point in transmitting more power since the uplink carrier to 

noise-density ratio is already about 15 dB better than that of the downlink. 

6.4 G = (ariA')//~2. 

Taking A' as 2/3 the physical aperture of the antenna, at 1.64 GHz 

G = 4r~ x (2/3)~(0.6) 2 = 283 = 24.5 dB 
[(3 x 108)/(1.64 x 109)] 2 

Ship transmitter power = EIRP/gain = 36 dBW - 24.5 dB 

= l l . 5 d B W  = 14W 

At 1.54 GHz, ship's antenna gain is 

4n • (2/3)n(0.6) 2 

[(3 x 108)/(1.54 x 109)] 2 
= 250 = 24 dB 

Since G / T  - -3 .5  dB, T/G = 3.5 dB so 

(T/G) • G = 3.5 dB + 24 dB = 27.5 dBK = 562 K 
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The equivalent noise temperature is 562 K. 
Since the antenna is looking up at the sky, most of this noise is produced in 

the receiver. 

For solutions 7.1 to 7.5 see Fig. S1. 

7.1 The normalized impedance represented by point A is 

0.3 + j0.7 

so the impedance of the load is this multiplied by Z0, i.e. 

30 + j70 fl 

7.2 The normalized admittance of the load is represented by the point B, and so is 
approximately 

0.5 - j l . 2  

O~ r 
0 , r "  

0 v-" 

Fig. $1 
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7.3 The VSWR can be read off at point C as 

5 " 1  

7.4 Moving backwards from the load admittance at B, the first minimum is at C. 
Measuring round the circumference of the chart gives 

0.398A 

so the distance from the load to the first minimum is 

0.398 x 15 ~ 6 rn 

7.5 The nearest point to the load for a stub is represented by D. The distance 
round the chart from B to D is 

0.332A = 0.332 x 15 ~ 5 m 

The normalized susceptance at D is jl.8. 

The required stub length to give a normalized susceptance o f - j l . 8  is 
represented by the arc E-F, which represents 

0.08A - 0.08 • 15 ,,~ 1.2 m 

A shorted stub 1.2 in long must be placed 5 m from the load. 
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sinusoids 118 

complex reflection coefficient 26 
at a point on a line 96 

composite field patterns (waveguide) 51 
conductance (shunt) per unit length of line 8 
correctly terminated line 8, 23 
critical angle 44 
critical core diameter (fibre) 63 
cross talk 33 
cut off frequency 

fibre 60 
waveguide 50 

data 1 
analog 1 
binary 1 
parallel 2 
raw 2 

data compression 1 
dielectric hysteresis loss 15 
diffraction 40 
directivity (antenna) 77 

radiating aperture 82 
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dispersion 17, 19, 62 
in fibre 64, 67 
intermodal 50 
material 62 
waveguide 50 

distortionless condition (line) 14, 16 
downlink (satellite) 94 
downlink limited (satellite) 95 
driven element (yagi array) 81 
driving point 7, 8, 12 

effective aperture 78, 83 
efficiency factor (antenna) 77 
electrical linearity (line) 8 
electromagnetic parameters 36 
electromagnetic wave 36 

plane 37, 130 
polarization of 38, 89 
power density 38 
reflection of 41 
refraction of 41 
spherical 38 

encoding 2 
end-fire array (antenna) 81 
energy levels in erbium 70 
energy pumping (EDFA) 70 
energy stored in a wave 11 
energy transferred by a wave 11 
equalization 30 
equivalent isotropic radiated power 

(EIRP) 86 
equivalent noise temperature 87 
erbium-doped fibre amplifier (EDFA) 69 
evanescent fields 44, 59 
evanescent propagation (waveguide) 134 

Faraday rotation 71, 89 
fibre cladding 58, 59 
fibre core 58, 59 
Fourier components of square waveform 5 
Fourier spectrum 17 
Fourier's Theorem 3, 125 
free space path loss 86 
frequency band 5 
fringing fields 44 
fundamental mode 

fibre 60 
waveguide 51, 132 

fundamental noise power 32 
fundamental (waveform component) 5 
fused fibre coupler (EDFA) 71 
fused joint (fibre) 65 

gain (antenna) 77 
gain/noise temperature ratio 88 
generating wave 49, 59 
geostationary orbit 91 
graded index fibre 59, 73 
group delay 19 

group velocity 11, 17 
fibre 62, 72 
line 11 
waveguide 49, 52 

guide phase change coefficient (waveguide) 54 
guide phase velocity (waveguide) 51, 52 
guide wavelength 

fibre 58 
waveguide 52 

guide wavelength formula (waveguide) 53 
guide wave impedance (waveguide) 53, 135 

half-wave dipole 38, 78 
bandwidth 78 
directivity 78 
resonant length 78 

harmonics 5 

inductance (series) per unit length of line 8 
information 1 
information theory 1 
interference 32, 79 
intermodal dispersion 50 

in fibre 60, 62, 72 
isolation 32 
isolator 32 

optical 71 
isotropic antenna 77 

jitter 67 

laser 58 
leakance 8 
left-hand circular polarisation 91 
linearly polarized plane EM wave 37 
line primary constants 9 
linewidth 58 
light emitting diode (LED) 58 
light pulse intensity profile (fibre) 64 
link power budget 

fibre 65 
microwave 89 

loss factor 86 
low-loss window (fibre) 61 
lump-loaded transmission line 15 

main lobe (polar diagram) 79 
matched line 23 
matching point (Smith chart) 102 
material dispersion (fibre) 62 
Maxwell's equations (loss-free dielectric 

medium) 128 
metastable state (erbium) 70 
mexican wave 6 
microstrip 47, 123 
microwave link 85 
modes 

fibre 59 
waveguide 50 



modulation 3 
multimode fibre 59, 62, 72 
multimode propagation (fibre) 72 
multiple stub match 112 

node in standing wave 27 
noise 

from transmission line 32 
referred to receiver input 87 
sky 86 
transmitter 32 

noise density 87 
noise immunity 3 
noise spectral power density 87 
non-return-to-zero (NRZ) 2 
normalized beta/omega curves (fibre) 60 
normalized input admittance (line) 101 
normalized input impedance (line) 98 
normalized parameters (fibre) 59 

optical fibre 58 
attenuation in 60, 64 
beta/omega curves (normalized) 60 
critical core diameter 63 
dispersion in 64, 67 
fundamental mode in 60 
graded index 59, 73 
group velocity in 62, 72 
guide wavelength in 58 
modes in 59 
multimode 59, 62, 72 
single mode 58, 62, 67 
soft boundary 59, 60 
step index 58, 59 

optical isolator 71 
orthogonal polarisation 76 

padding 32 
parabolic dish 84 
parallel data 2 
parametric amplifier 93 
parasitic element (yagi array) 81 
partial standing wave 26, 28 
path loss 88 
phase change coefficient 9 
phase velocity 10 

line 10, 128 
EM plane wave 130 

phasor 12, 117 
amplitude-angle form 12 
analysis(line) 13 
complex-exponential form 12 
component form 12 
current 12 
operator 117 
voltage 12 

photons 36, 66 
photon energy 66 
pointing error (antenna) 86 

Index 151 

polar diagram 
antenna 77 
aperture 136 

polarization of an EM wave 38 
power budget 

fibre 65 
microwave link 89 

power density of an EM wave 38 
primary constants (line) 9 
primary radiator 78, 84 
propagation constant 12, 15 
pump laser (EDFA) 71 

Q (resonant line section) 103 
quantization of wave energy 36 
quantum noise 66 
quarter-wave section (line) 30 
quarter-wave transformer 30, 104 

waveguide 114 

radiating aperture 82 
radiation resistance 78 
raw data 2 
ray 41 
Rayleigh scattering 61 
receiver noise (optical receiver) 66 
receiver sensitivity (optical receiver) 64, 65 
receiving antenna 76 
reciprocity (antenna) 76 
reflection coefficient 23 
reflection coefficient circle (Smith chart) 99 
reflection 

of plane EM wave 41 
of pulses on transmission line 20 
of sine waves on transmission line 25 

refraction of plane EM wave 41 
refractive index 43, 59 
regular reflection 41 
repeater (optical) 67 
repetition rate 5 
resistance (series) per unit length of line 8 
resonant cavity (laser) 115 
resonant cavity (microwave) 114 
resonant line section 29, 102 
return loss 25 
return-to-zero (RZ) 2 
right-hand circular polarisation 91 

sampling theorem 5 
satellite link 91 
satellite link budget 94 
shot noise (optical receiver) 67 
side band 6 
side lobes (polar diagram) 79 
signalling rate 2 
signal to noise ratio 32 
single mode fibre 58, 62, 67 
single mode laser 58 
single stub match 110, 112 
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sinusoidal wave 7 
skin effect 15, 54 
sky noise 86 
Smith chart 29, 96 
Snell's law 43 
soft boundary (fibre) 59, 60 
soliton propagation 67 
soliton pulse 67, 69 
spectrum 5 
spherical EM wave 38 
splice (fibre) 65 
square waveform (Fourier components of) 5 
standing wave 26 
standing wave circle 100 
standing wave indicator 110 
standing wave ratio 28, 100 
steady state (line) 9 
step index fibre 58, 59 
strip line 47 
stub 102 
surface slow wave 44 
symbol 2 
symbol interval 2 

termination (waveguide) 56 
time domain reflectometry 31 
total internal reflection 42, 44, 59 
total standing wave 26 
transformer - quarter wave 30, 104 
transmitter noise 32 
transmitting antenna 76 
transverse electric mode (waveguide) 51 
twin-wire line 8 

attenuation 11 
beta/omega curve 20 
characteristic impedance 14, 121 
group velocity 11 
matching of 23 
phase velocity 10, 121 
series inductance per unit length 8, 120 
series resistance per unit length 8 
shunt capacitance per unit length 8, 120 
shunt conductance per unit length 8 

twisted pair (line) 8, 33 

unit circle (Argand diagram) 98 
uplink (satellite) 94 

voltage standing wave ratio (VSWR) 28, 
100 

voltage waveform 2 
non-return-to-zero (NRZ) 2 
return-to-zero (RZ) 2 

wall currents (waveguide) 54 
wall voltages (waveguide) 54 
wave 6 
waveform 7 
waveguide 48 

attenuation in 54 
beta/omega curves 55 
circular 55 
cut-off frequency 50 
dispersion in 50 
evanescent propagation 134 
field patterns in 51 
fundamental mode 51,132 
group velocity in 49, 52 
guide wavelength 52, 53 
modes in 50 
phase velocity in 51, 52 
wall currents and voltages 54 
wave impedance in 53, 135 

waveguide dispersion 50 
in fibre 62 

waveguide horn 79 
wave impedance 38 

plane wave 131 
wavelength 10 
wavelength of zero dispersion (fibre) 62 
wave profile 9 

Yagi array 80 

zero-frequency component 5 
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