o







eNd

Sponsoring Editor; Peter Renz

Project Editor: Nancy Flight

Manuseript Editor: Rueh Veres

Designers: Gary A. Head and Sharen H. Smith
Production Coordinator- Frank Mitchett
HMustration Coordingior- Batyah Jancwski
Artist: Felix Cooper

Compasitor: Syntax International

A g
XS9
ADE D

c O"\'ﬁ ‘-a R,,\

Library of Congress Cataloging in Publication Data

Kittel, Charles. v

Thernmad physics.

Bibliography: p.

Includes indox.

1. Statistica] thermodynamics, I
Herbert, 1928— Joint author, L Titie,
QC311.5.K52 1940 53677 79-16677
15BN 0-7167-1088-9

Copyright © 1080 by W. H, Freeman and Company
No part of this bosk may be reproduced by any
mechanical, phatographic, or electronic process, or in
the form of a phonographic recording, nor may it be
stared in 3 retrieval systerm, transmiited, or otherwise
copicd for public or private use, withoul written
permission from the pubfisher,

Printed in the United Stare of America

Twenty-first printing, 2000 .

Krocmer,

About the Authors

Charles Kitte! has tanght solid state physics at the University of California
at Berkeley since 1951, having previously been at the Belf Lahoratorics. 1is
undergraduate work in physics was done at M.LT. and at the Cavendish
Laboratory of Cambridge University, His Ph.D. research was in theoreticul
nuclear physics with Professor Gregory Breit at the University of Wisconsin,
He has been awarded three Guggenheim fellowships, the Otiver Buckley Prize
for Solid State Physics, and, for contributions to teaching, the Oersted Medal
of the American Association of Physics Teachers. He is a member of *he
National Academy of Science and of the American Academy of Arts a.id
Sciences. His rescarch has been in magnelism, magnetic resonance, semic: n-

ductors, and the statistical mechanics of solids,

Herbert Kroemer is Professor of Electrical Engincering at the University of
Culifornin ar Santa Barbara, His buckground and training are in solid stage
physics, He received & Ph.D. in physivsin 1952 from the University of(iii:ti'ngcn
in Germany with a thesis on hot eleciron cffects in the then new transisror,
From 1952 through 1968 tie worked in several semiconductor research libora-
tories in Germany and the United States. In 1968 he became Professor of
Electrical Engincering at the University of Colorudas he cume 1o UCSR in
1976, His research hus been in the physics and technology of semiconductors
and semiconductor devices, including high-frequency transistors, negative-
mass ¢flects in semiconduetors, injection lasers, the Gunn effect, electron-hale
drops, and semiconductor hieterojunctions,

e






Preface

This book gives an elementary account of thermal physics. The subject is
simple, the methods are powerful, and the results have broad applica-
tions. Probably no other physical theory is used more widely throughous
science and engineering.

We have written for undergraduate students of physics and astronemy,
and for electrical engineering students generully, These ficlds for our
purposes have strong common bonds, mast rotably a concemn with Fermi
gases, whether in semiconductors, metals, stars, of nuclei, We develop
methods (not original, but not easily accessible elsewhere) that are well
suited to these fields. We wrote the book in the first place because we
were delighted by the clarity of the “new” methods as compared to those
we were taught when we were students ourselves, -

We have not emphasized several traditional topics, some because they
are no longer useful and some because their reliance on classicat stalisti-
cal mechanics would make the course more difficult than we believe a
first course should be. Also, we have avoided the use of combinatoriat
methods where they are unnecessary,

Notation and units: We generally use the SI and CGS systcms in
parallel. We do not use the calode. The kelvin temperature T is related to
the fundamental temperature 7 by 1 = kg?, and the conventional entropy
S is related to the fundamental entropy o by § = k,o. The symbol log
will denote natural logarithm throughout, simply because fn is fess ex-
pressive when set in type. The notation (18) refers to Equation (i8) of
the current chapeer, but (3.18) refers 1o Equatjon (18) of Chapter 3,

The book is the successor 1o course notes developed with the assist-
ance of grants hy the University of California, Fdward M. Purcell con-
tributed many ideas to the first edition. We benefited from review of the
second cdition by Seymour Geller, Panl L. Richards, and Nicholas
Wheeler. Help was given by Ibruhim Adawi, Bernud Black, G. Domo-
kos, Margaret Geller, Cameron Hayne, K. A, Jacksonm, S. lusti, Peter
Kiuel, Richard Kinler, Martin . Klein, Ellen Leverenz, Bruce H. J.
McKellar, F. E. O'Meara, Norman . Phillips, B. Roswell Russell, T. M.
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Preface

Sanders, B. Stoeckly, John Vethoogen, John Wheattey, and Eyvind
Wichmann., We thank Carol Tusg for the typed manuscript and  Sari
Wilde for her help with the index.

An elementary treatment of the greenhouse effect in the Earth’s atmo-
sphere was added in 1994 op page 115, following an argument suggested
by Professor Richard Muller. A Page on atomic gas experiments on the
Bose-Einstein condensation was added 1o page 223 in 2000,

For instructors who have adopted the course for classroom use, a

sclutions manual is available via the freeman web site (hup/whfreeman.
com/thermalphysics),

Berkeley and Santa Barbara Charles Kittel

Herbert Kroemer

Note to the Student

For minimum coverage of the concepts presented in each chapter, the authors
recommend the following exercises. Chapter 2: 1,2, 3; Chapter 3: 1,2, 3, 4, 8,
HE; Chapter 4: 1, 2, 4, 5, 6, 8; Chapter 5: 1,3, 4, 5, 8: Chapter 6: 1,2, 3,6, 12,
14, 15; Chapter 7: 2, 3, 8, 6, 7, 11; Chapter 8: 1,2, 3,5, 6, 7; Chapter 9: 1,2, 3;
Chapter 10: 1, 2, 3; Chapter 11; 1, 2, 3; Chapter 12: 3,4, 5; Chapter 13: 1, 2,
3,7,8,10; Chapter 14: 1, 3,4, 5; Chapter 15: 2,3, 4, 6.
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Infroduction

Ourapproach to thermal physics differs from the tradition followed in beginning
physics courses. Therefore we provide this introduction 10 set out what we are
going to do in the chapters that follow. We show the main lines of the logical
structure: in this subject all the physics comes from the Jogic. In order of their
appearance, the teading characters in our story are the entropy, the temperature,
the Bolizmann factor, the chemical potential, the Gibbs factor, and the distribu-
tion functions.

The entropy measures the number af quantum states accessible ta a system,
A clased system might be in any of these quantum states and {we assume} with
equal probability. The fundamental statistical element, the lundamental legical
assumption, is that quantum states are either accessible or innccessible to the
syster, and the system is equally likely to be in any one accessible state as in
any other accessible state. Given g accessible stales, the entropy is defined as
¢ = logg. The ertropy thus deflined will be a function of the energy U, the
number of particles N, and the volume ¥ of the system, because these param-
clers enter the defermination of g other parameters muy cnter as well, The
use of the logarithis is a mathematical convenience: it is easier to write 10°°
than exp({10?°), and it is mere natura! for two systems to speak of o, + o, than
of g,45.

When two systems, cach of specified energy, are brought into thermal contac
they may transfer energy; their 1otal energy remains constant, but the constraints
on their individual energics are lified. A transler of energy in onc direction, or
perhaps in the other, may increase the product g, 4 that measures the nwmber of
accessible states of the combined systems. The fundamental assumption biases
the outcome in [avor of that allocation of the total energy that maximizes the
number of accessible states: more is better, and more likely. This statement is
the kerne! of the law of increase of entropy, which is the general expression of
the second faw of thermodynamics,

We have brought two systems into thermat contact so that they may transfer
energy. What is the most probable outcome of the encounter? One system will
gain energy at the expense of the other, and meanwhile the total entropy of the
two systems will increase. Eventually the entropy will reach a maximum for
the given total energy. 1t is not difficull to show {Cha pler 2} that the maximum

!
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is attained when the value of (fofcU)
the same quantity for 1he.second syst
in thermal contacy isjust the pro

x. for one system is equal to the value of

em. This equality property for two systems
perty weexpect ofthe temperature, Accordingly,
we define the fundamental iemperature 7 by the relation

1 Ja
i (—o) v ()

The use of 7 yssurcs that energy will flow from high 1 10 low €} ho more coni-
plicated relation is needed. 1y wil] follow! th

dircctly propoertions! o Lwith T = kT, whe
The conventional entropy Sis given by § = &

Now consider o very sinple ey
Chapter 3 1t i smail sysloi y Had one ot
energy ¢, be placed in thermal contact with 4 farge system thut we call the
resarvoir. The rotal energy of the combined systems is Eg; when the small
systems is in the state of cnergy O, the reservoir has cnergy Uy and wilt have
(U ) states accessible 1o it. When the smali system is in the state of energy &, the
reservolr wilh have energy Uy — eand will have gl ~ &) states accessible 10
it. By the fendamental assumption, the ratip of the probability of finding the
small system with caergy £ to the probability of finding 1 with energy 0 is

at the Kelvin lemperature T s

re kg is the Bolizmann constani.
n.

ample of the Boltzmim factor treated in
with only twa Stes, wie sl enerp,

) _ gty - o) o SPletls — 1)) @
P(0) glug) explafUg}] ~
The rescrvoir Enropy o may be expanded in 2 Taylor serics:

el —e) = g(U) — elo/clo) = 6(Ug) - gt | (3

by the definition (1) of the temperature. Higher order
may be dropped. Cancellation of the term explo({U,)
numerator snd denominator of {2) after ¢

lerms in the expansion
], which oceurs in 1he
i¢ substitution of {3), leaves ug with

Pl P(O) = expl—-¢g/1). (4)

This is Boltzmann’s residy, To show jis use, wi
energy (e} of the lwo state sy
perature 1:

¢ calculate the thermat average
stem in thermal contact with a eservolr at tem-

€)= YalPle) = 0-P(O) + cP(r) = TEPCE\%JE% ' v

“*I

Introduction

where we have imposed the normalization condition on the sum of thé prob-
abilities:

PO) + Pley = 1. (6)

The argument can be generalized intmediatety to find the average energy of a
harmonic oscillator at temperature 1, and we do this in Chapter 4 as the first
slep in the derivation of the Planck radiation law,

The most important extension of the theory is to systems that can transfer
particles as well as energy with the rescrvoir. For two systems in diffusive and
thermal cantact, the entropy will be o maximum with respect to the transfer
of particles as well as to the transfer of cuergy. Not only must ($a/éU),, be
cqual for the two systems, bt {CoidN)y, must also be equal, where N rcfv‘:rs Lo
the munsber of particles of 5 piven species. The new eeprtdity comdition is the

veension T the introduection of 3 new deantity, the chemical potentiad i

_H (.‘.!E) . o
T N i s
For two systems in thermal and diffusive contact, ) = 1, and iy = u,. The
sign in (7) is chosen to ensure that 1he direction of particle flow as cqui'iibrium
is approached is from high chemical potential to low chemical potentisl,
The Gibbs factor of Chapler 5 is an extension of the Boltzmann factor Lf.nd
allows us 1o treat systems that can transfer particles. The simplest example is a
systermn with two states, one with 0 particles and 0 crergy, and one with 1 particle
and cnergy £ The system is in contact with a reserveir at temperature ¢ and
chemical potential g We extend (3) for the reservoir entrepy:

i

Uo = &iNo = 1} = oUgiNg) ~ eléafoly) — 1+ (EafaN,)

a{UqiNg) ~ & + /. (%)

it

By analogy with (4), we have

PUEPOS) = exp[(e - e)ie] | ©)

for the rutio of the probability the system is occupied by 1 particle at eneray €
to the probability the system is unoceupied, with energy 0. The result () afier
normatization is readily expressed as

!
T

Ple) (10)
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This particular result is known as the Fermi-Dirac distribution function and
is used particularly in the theory of metals (o describe the electron gas at low
temperature and high concentration {Chapter 7).

The classical distribution function used in the derivation of the ideal gas law
i5 just the limit of (10} when the occupancy P(l.e} is much less than 1:

P(le) = exp{{n ~ £)x]. {t)

The properiies of the ideal gas are developed fram this result in Chapter 6.

The Helmholtz free energy F = U ~ 1o appears as an imporlant computa-
tional function, because the relation (6F/d1)x» = —o offers the easiest method
for finding the entropy, once we have found out how to calcutate F from the
energy cigenvalues (Chapter 3% Other powerlut 1oals for the caleulation of
thermodynamic functions are developed ia the text. Most of the remainder of
the text concerns applications that are uselul in their own right and that illumi-
nate the meaning and wtility of the principal thermodynamiec functions.

Thermal physics connects the world of everyday objects, of astronomical
objects, and of chemical and biological processes with (he world of molecutur,
atomic, and eleetronic systems. |t unites the two parts of our world, the micro-
scopic and the macroscopic.

Chapter 1

States of a Model System

T R IR T I R

BINARY MODEL SYSTEMS

Enumeration of States and the Multiplicity Function
Binary Alloy System
Sharpness of the Multiplicity Function

AVERAGYE VALUES

Energy of the Binury Magnetic Systen o -
Example: Multiplicity Function for Harmonic Oscd!ators

SUMMARY

RATEREACAS A S

22
23
%4
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Chapter 1 States of & Madel System

But although, as a marter of history, statistical mechanics owes |

IS origin to
investigations in thermodynamics, i seems eminently worthy of an r'ndgpendem
development, both on account of the elegance and simplicity of irs principles,
and because it yields new results and places old truths in a new light in
depariments guite outside of thermodynanics.

I W Gibbs

A theory is the more impressive the greater the simplicity of its premises, the
more different kinds of things it relates, and the more extended its areq of
applicability. Therefore the deep impression thar chassical thennodynamics made
upon me. It is the only physical theary of universal conens which I am concineed

will never by averthrown, within the Jramework of applicability of its basic
concepis.

A Einstein

Chapter I: States of a Mode! System

Thermal physics is the fruit of the union of statistical and mechanical principles.
Mecchanics tetls us the meaning of work; thermal physics tells us the meaning of
heat. There are three new quantities in thermal physics that do not appear in
ordinary mechanics: entropy, temperature, and free energy. We shall motivate
their definitions in the first three chapiers and deduce their consequences
thereafter.

Our point of departure for the development of thermat physics i the concept
of the stationary quantum states of a sysiem of particles. When we can count
the quanium states accessible t0 a system, we know the entropy of the systermn,
for the entropy is defined as 1he logarithm of the number of states (Chapter 23,
The dependence of the entrapy on the energy of the system defines Lhe tempera-
ture. From the entrapy, the lemperature, and the free encrgy we find the pressure,
the chemical potential, and ajl other thermedynamic properties of the system,

Forasystemina stationary quantum state, ali observable physical properties
such as the energy and the number of particles are independent of the time. Far
brevity we usually omit the word stationary; the quantum states that we treag
are stationary except when we discuss transport processes in Chapters 14-15.
The systems we discuss may be composed of a single particle or, mare often,
of many particles. The theory is develaped to handle general systems of inter-
acting particles, but powerful stmplificalions can be made in special problems
for which the interactions may be neglected.

Each quantum state has a definite energy. States with identical erergies are
said to belong to the same energy level, The multiplicity or degeneracy of an
energy level is the number of quantum stutes with very nearly the same enerpy,
It is the number of quantum states that is important in thermal physics, not
the number ofenergy levels. We shall frequently deal with sums overall quantum
states. Two states at the same encrgy must abways bz counted as two states,
nol as one fevel,

Letus look at the quaentum stages atnd coergy fovels ol sevesad atoniie RIS
The simplest i hydrogen, with one dectron aud vee proton. The fow-lying
energy levels of hydrogen are shawn in Figure 1.1, The zero of encrgy in the
figure is taken at the staze of lowest enerey. The number of quantun states
belonging to the same energy Jevel is in parentheses. In the figure we overlook
that the proton has 2 spin of 14 and has two independent orientations, parallel



Chapter I: States of a Aodel Syirem
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Figure 1.1 Low-lying energy levels of atomic hydrogen, fithium, and boron. The
encrgies are given in electron volts, with 1 eV = 1607 x 10~ 2 erg. The numbers in
parentheses give the number of quantum states having the same energy, with no account

taken of the spin of the nudeus. The zera of energy in the figure is taken for canvenicncs
at the Jowest energy state of each atom.

or antiparatiel to the direction of an arbitrary external axis, such as the direction
of 2 magnetic field. To take account of the two oricatations we should double
the values of the multiplicitics shown for atomic hydrogen.

An atom of lithium has three eleétrons which move about the nucleus. Each
electron interacts with the nucleus, and each electron also interacts with all the

Chapter £ & States of a Model Sypstem
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Figure 1.2 Energy levels, multiplicities, and quantum numbers
n,, 1, #, of a particle confined to a cube,

other electrons. The energies of the levels of lithinm shown in the figure are the
collective energics of the entire system. The energy fevels shown for boron, which
has five electrons, are aliso the energies of the entire system.

Theenergy ofa system is the total energy ofall particles, kinetic plus potential,
with account taken of interactions between particles. A quantum state of the
system is a state of all particles. Quantum states of a one-parlicle system are
called orbitals. The low-lying energy levels of a single particle of mass M con-

fined to a cube of side [ are shown in Figure 1.2. We shall find in Chapter 3
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Chapter 1: States of a Model Systen;

that an orbital of a free particle can be characterized by three positive integral

Qudntum numbers i, Ay 1. The energy is

L 2 ) .
d Gj') 0t + 0 402 )

The maltipticities of the levels are indicated in the figure. The threc orbitals
with (im0, ) equal to (L1, (4.0}, and (1,1,4) al haven? +n? 4 2 o 18;
the corresponding energy level has the multiplicity 3,
o describe the statistjcq} properties of a system of A
to know the set of values ofihe energy g (N
statesofthe N particle system, Indic

Particles, it is essential
). wheregis the energy of the quantum
essuch as s may be assigned lo the quantum
states in any convenient arbitrary way, but two different states should not be
assigned the same index.

It is 2 good idea to Start our program by studying the properties of simple
model systems for which the energies £.LY) cun be caleutated exactly, We choose

general statistical properties
ieved to apply equally well to any realjstic
eads 10 predictions that always agree with
properties are of concern will become clear

physical system. This assumption }
experiment, What general stalistical
as we go along,

BINARY MODEL SYSTEMS

The binary mode! system is itlustrated ip Figure 1.3, We assume there are N
separate and distinet sites fixed in Space, shown for convenience on @

court the states. This requires no knowledge of magnetism: an element of 1he
system can be any site capabie of two States, labeled as yes or 1o, red or blue,
oceupied or unoccupied, zoro Or one, plus one or minus one. The sites are
numbered, and sites with different numbers aze supposed not to overlap in
physical space. You might even think of the sites as numbered parking spaces in
acar parking lot, as in Figure 1.4, Cach parking space has two stites, vacunt oy
cccupied by one cur.

Whatever 1he pature of our objects, we muy designate the 1wo stes by
arrows that can only point straight up or straight down, If the miignet points

Up, we say that (he magnetic moment is 4, If the magne! points down, the
magnetic mamen, s —um, -

Binury Model Systems

1234'5673910
Number of the sjte

Figure L3 Model system composed of 10 elementary
magnets al fixed sites on a line, cach having magnctic
moment +m. The numbers shown are atlached to the sites;
etach site has its own magret, We assume there are no
interactions among the magnets and thers is no exiemal
magnetic field. Each magnetic moment may be oriented in
Iwo ways, up or down, so that there are 2'° distinct
arrangements of the 10 magnetic moments shown in the
figure. M the drrangements are selected in a random process,

the probability of finding the particular arrangement shown
is 17210

Figure 1.4 State ofa parking [ot with 10 numbered parking
spaces. The @'s denote spaces accupied by 1 ear; the O's

denote vacant spaces, This particular state is equivalent to that
shows in Figure 1.3,

Now consider M different sites, cacly of which bears a moment that may
assume the values £ m. Fach moment may be oriented in 1wo ways with a
probability independent of (he orientation of ail other moments. The 1o1al
fwmber of arrangements of the N moments is 2 % 2 x R I AT\
state of the systeny iy specified by giving the orientation of the moment an cach
site; there are 2% states, We May use the folfowing simple notation for a single
state of the system of N sites:

ML e

i
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Chapter 1: States of a Model System

Figure 1.3 The four differcnt states of a

system of two elements numbered | and 2,

wheee each element can have two conditions.

The element is a magnet which car be in

condition 1 or condition }. io2 H

o) e bm—

[N
5

The sites themselves are assumed 1o be arranged in a definite order. We may
numberdhiem in sequence from lelt to right, as we did in Figure 1.3, According
to this convention the state {2) also can be written as

ilabalidsTelaTstoTao - ®

Both sets of symbols {2) and (3) denote the same state of the system, the state
in which the magnetic moment on site § is -+ m; on site 2, the moment is +m;
on site 3, the moment is —m; and so forth,

It is not hard to convince yoursell that every distinct state of the system is

“contained in a symbolic product of N factors:

(Fo+ LT+ 1) + L) Ty + L) )

The muitiptication rule is defined by

o+ 8t + 1 =1t + Tla + bt + bla (5}

The function (4) on multiplication generates a sum of 2¥ terms, one for each of
the 2 possible states. Fach term isa product of N individual magnetic moment
symbols, with one symboi for each elementary magnet on the line. Each term
denotes an independent state of the system and is a simple product of the form
Tilals oo Ty, for example.

For a system of two elementary magnets, we multiply (T, + ])by (12 + |J)
to obtain the four possible states of Figure 1.5:

T+ 80+ 1) = Tla + Tida + bls + Ly (6)

The sum is not a state but is a way of listing the four possible states of the systen.
The product on the left-hand side of the equation is called 2 gencrating function:

© W generates the states of the system,” - . - :

Binary Model Systems
The gencrating function for the states of a system of three magnets is

Ty + LT+ La)is o+ L)

This expression on multiplication generates 2 = 8 different states:

Thres magnets up: T:TaTs

Two magnets up; Tit:ds Tilals L1215

One magnet up: Telals $i12ds Llats
None up: ulals

The total magnetic moment of our :i_md::l systern of N magnets each of
magnetic morment m witl be denoted by' A, which we will relate 1o the energy
in a magnetic field. The value of M varies from Nu: to — Nm. The set of possible
values is given by

M= Nm (N—2m, (N -—8m, (N —-06m ---, —Nnm {Nn
The set of possible values of M is obtained if we start with the state for which all
magnetsareup (M = Nm}and reverse one ata time, We may reverse N magnets
to obtain the ultimate state for which all magnets are down (A = - Nm).
There are N + } possible values of the total moment, whereas there are 2%
states. When N » 1, we have 2¥ » N + L. There are many more states than
values of the total moment. If N = 10, thers are 2% = 1024 states distributed
among 11 different values of the total magnetic moment. For large N many
different states of the system may have the same value of the total moment M.
We will caleulate in the next section how many states have a given value of M,
Only one state of a system has the moment A = Num; that state is

T 1 (8)

There are N witys to form a state with onc magnet down:

ettt ®

is one such state; another is

tEt - 111 ) (10}

13
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‘and the other states with one ma

Chapter I: States of a Modet System

gnet dowa are formed from (8) by reversing

any single magnet. The states (9) and (10 have total moment M — Noj — 2,

Enumeration of States and the Multiplicity Function

We use the word $pin as a shorthand for ele
assume that N is an even number. We peed a mathematical expression for the
namber of states with N, = IN + 5 magnets up and N, = N — 5 magnets
down, where s is an integer. When we turn one magnet from the up to the down
oricntation, ¥ + 5 goes to IV -+ 5 -1 and IN — 5 goes to N — 5 4 1.

The difference (number up — number down) changes from 2510 25 — 2. The
difference

mentary magnet. It is convenient to

Ny = N, =25 (1)

is calted the spinexcess. The spin excess ol the 4 states in Figure 1.5152,0,0, -2,

from left to right. The factor of 2 jn (1 1) appears 1o be a nuisance at this stage,
but it will prove to be convenient, ' '

The product in (4) may be wrilten symbolically as

AT
We may drop the site labels (the suBScripis) {rom (4) when we are interested

only in how many of the magnels in a state are up or down, and not in which

particular sites have magneis up or down. ft we drop the labels and neglect

the arder in which the arrows appear in a given product, then (5) becomes

T+ =11+ 210 + |5
further,
(T D =111 4 3110 + 3140 + i
Wefind (T + |)" for arbitrary ¥ by the binomia| expansion

(.\.‘ + v"}\' m xh‘ 1+ .\’.\"V“[y + '%N(N . I).\.'H_z}"l o g y.\.

— : N

Enumeration of States and the Multiplicity Function

“We may write the exponents of x and y in a slightly different, but equivalent,

" form by replacing r with 4N — 5:

w N

f
D e X T ey

iN s

) (13}

With this result the symbolic expression (T + !}¥ becomes

N o N1 IN+S 14X ~3
i+ i) M};W? e {14}

The eoefficient of the term in TH22 18 i the number of states having

Ny =N + 5 magnets up and N| = IN — 5 magnets down. This class of
states has spin excess ¥, — Ny = 25 and net magnetic moment 2o, Let us
denote the number of states in this class by g{NV,s), for a system of N magnets:

O
A
WYy N N1 - N 15
2 O = e SN — 51 = NI (13)
Ay .
Thus ([4) is written as
ix
{.{ + “N = )_‘ Q(N,S} Ti.\r-u i“‘_l- (16)
5= -4 N

We shall call g(N,s) the multiplicity function; it is the number of states having
the same value of 5. The reason for our definition emerges when a magnetic
field is applied to the spin system: in a magnetic field, states of different values of
s have different values of the energy, so that our g is equal to the multiplicity
of an energy lfevel in a magnetic field. Until we introduce a magnetic feld, all
states of the model system have the same energy, which may be taken as zero.
Nole from (16 that the total number of states is given by

1= Y

2 gINs) = (1 + ¥ =Y, 1

1= -4y

Examples related to g(N.5) for N = 10 are given in Figures 1.6 and 1.7. For a

coin, “heads” could stand for “magnet up” and “tails™ could stand for “magnet
down.™

)
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e
252
2_!2 210
Figure 1.6 MNumber of distinet arraagements
of S 4 sspinsupand 5 — spins down,
Values of y(N,s) are for N = 18, wheee 25 45
the spin exeess N T— N The total nuber of
sttes s 120 120
. o kg
2= F oglog
s=~%
The values of the g's are taken from a table of
the binomial coefficients,
45 45
10 10
1 1

|-s1—4{02456 810
-0 ~& -2
Spin excess 25

Binary AHoy System

To iltustrate that the exact nature ol the two states on each site is irrefevant to
the result, we consider an alternate system—an alloy crystal with & distinct
sites, numbered from 1 through 12 in Figure 1.8. Each site is occupied by either
an atorn of chemical species A of 2n atom of chemical species B, with no provi-

sion for vacant sites, In brass, A could be copper and B zine. In analogy to (3),
a single state of the alloy system can be written as :

AIBIB_§A{BSAGBTBSBQAl{)AIlAIz * {18)

Binary Allay System 17
30
=2 o=t
" D
z o
5 4
= O —
.l %]
- 3
832w
—-oa
R R
- b
5o
E E
55 10 ™ N
5 B
B g
I
o LZ
'/1 &6
) LU

0123456780910
Number of heads

Figure 1.7 An experiment was done in which 10 penaies
were thrown 500 times. The number of heads in each
throw was recorded.

1 2 3 4
: Figure 1.8 A binary alioy system of two
@ @ o chemical companents A and B, whose atoms
3 ) 7 8
9 10 il 12

occupy distinct numbered sites.
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Every distinet state of & binary allo

y system on N sites is contained in the
symbolic product of N factors: '

(A + By)(A, + Ba)As + By ---({Ay +By) {19
in analogy to (4} The average composition of a binary alloy is specified con-
ventionally by the chemical formula Ay, B, which means that out of 4 totat
of N atems, the number of A atoms is N, = (1 —x)N and the number of B
atoms is N = x V. Here x lies between 0 and 1,

The symbolic expression .

(A + B).\' = }E ﬁ_Nmef\NAi Bt [')ﬁ)
_ SHIN - -

15 analogous 1o the result {12}. The cocficient of the term in AY ' B
number g(N,1) of possible arrangements or states of N
atoms B on N sites:

gives the
— f atoms A and ¥

N N _
gD = o ol T N TN en

which is identical to the result {1 5)for the spin model system, except for notation,

Sharpaess of the Multipiicity Function

We know from common experience that systems held al constant lemperaiure
usually have well-defined propecties; this stability of physical properties is a
major prediction of thermal physics. The stability follows as a consequence of
the exceedingly sharp peak in the multiplicity function and of the steep variation
of that function away from the peak. We can show explicitly that for a very
large system, the funciion g(:N.s) defined by (15) is penked very sharply about
the value s = 0. We lock [or an approximation that allows us 1o examine the
form of g(N,s) versus s when N » 1 and s| « N. We cannot look up these
values in tables: common tables of factorials do not go above N = 100, and we
may be interested in N = 10°°, of the order of the number of atoms in a sotd
specimen big enough to be seen and fll. An approximation is clearly nceded,
and a good one is available,

[t is conveniemt to work with logy. Except where otherwise specified, all
logarithins are understood 1o he log base e, written Bere as log, The international
standard usage is In for log base ¢, but it is clearer 1o write log when there is no
ambiguity whatever, When you confront a very, very large sumber such as

Stharpress of ehe Multiplicity Funcition

2 where ¥ = 1020, 4kis g simplification to look a1 the logarithm of the number.

-We take the logarithm of both sides of (15) 10 obtain

logg(N.s) = log Nt — logtdv + spt — logliN ~ 5)1 , (22
by viriue of the characteristic property ol the logarithm of a product:
logxy = logx + log ¥ tog{x/1} = logx ~ logy. (23)
With the notation
Ni=iN+s; N =IN35 (24)
for the number of magnets up and down, {22) appears as
logg(N,s) = log Nt — log Nt — log N, L (25)

We evaluate the logarithm of N1in (25) by use of the Stirling approximation,
according to which

Nz (aNYENYexp[ N + 1/02N) + -], (26)
for N > 1. This result is derived in Appendix A. For sufficiently farge N, the

terms LE2N) + -+ - in the argument may be neglected in comparison with N.
We take the logarithm of bath sides of (26) to obtain

tog N!= §log2a + (N + {)logN — N, 02n

Similarly
log N\t = flog2n + (N, + Dlog N, — Ny; (2%;
log Nt = Hog2n 4 (N, + Ylog v, — N, (29)

After rearrangement of (27),

log N = Hog2meN) 41y, + PN+ DlogN — (N + M), (G

wherewehwveused ¥ = N, 10 N, We subiraa 28 and 29 Hrom () to oblais

for (23}

logg = Hog(1/2xN) ~ (Ny + DIog(N/N) ~ (¥, + Dlog(N/NVL (31}

vZphhGo N\Qi)
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This may be simplified because

og(Ny/N) = logd(l + 2¢N) = ~10g2 + tog(l + 35/N)}
= —log2 + (25/N) — (25%/NY) (32)
by virtue of the expansion log(f + x} = x — 4x? ¢ <+, valid for x <« I.
Similarly,
log(N,/N} = log 3] - 25/M) ~ ~log2 — 25/NYy — (259N {33)
On substitution in (31) we obtain
logg = 1log(2/aN} + Nlog2 — 2s%/N. (34
We write this result as
g{N.5) = g{N,O)exp(-25Y/N) , ' (35)
where
g(N,0) = {2/a )2V, £36)

Such a distribution of values of s is called 2 Gaussian distribution, The integral*
ol {35} over the range — o to + oo for s gives the correct value 2¥for the total
number of states. Several useful integrals are treated in Appendix A,

The exact value of g(N,0) is given by {15) with 5 = 0:
NI

g(NO} = TRy AT an

* The replacement of 4 sum by an intepzal, such as TG hy [ s, usually does not introduce
significant errors, For cxample, the ralio of '

id ¥
s=4N*+N) 1o sds = IN? )
=0 ¢

iseqgualio | + (1/N), which approaches 1 as ¥ approaches c. -

Shurpness of the Multiplicity Function 2!

Figure 1.9 The Gaussian approximation to
the binomial coefficients g(100,5) ploticd on a
tinear scale. On this scale it is not possible to
distinguish on the drawing the approximition
from the exact values over the range of s
plotted. The entire range of s is from - 5010
4 . - . + 50, The dashed lines are drawn from the
JRRRPS P points at ke of the maximum value of g,

(100, 5) X 107
[=3

[

\

For N = 50, the value of g(50,0) is 1.264 x 103, from (37). The approximate
value from (36} is 1.270 x 10**. Thedistribution plotted in Figure 1.9 is centered

ina maximum at s = 0. When s* = {N, the value of g is reduced to ¢™ ! of the
maximum value. That is, when

siN = (12N)12 {38}

the value of g is e ™% of g{NV,0). The quantity (1/2N)"2 is thus a reasonable mea-
sure of the fractional widih of the distribution, For N = 10?2, the fractional
width is of the order of 10717, When N is very large, the distribution is exceed-
ingly sharply defined, in a relative sense, It is this sharp peak and the continued
sharp variation of the multiplicity function far from the peak that will lead to a
prediction that the physical properties of systems in thermal equilibrium are
well defined. We now consider one such property, the mean value of 52,
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AVERAGE VALUES

The average value, or mean value, of a Junction St

e aver 5) taken aver a probability
distribution function P{s}is defined as

= g{(ﬂ Ps}, {39)
provided that the distribution function is normalized to unity:
gP(s) = 1, {40)
The binomial distribution (£3) has the property {17} that
};y{N,s} =27, (41)

and is not normalized 1o unity. If all states are equally probable, then Pls) =

glN sy/2¥ and we have Y P(s) = 1. The average of f(s) over this distribution
will be : :

Yy = Y 9 PN.s). (42)

Consider the function S5} = 5. In the approximation that led to {35} and
{36), we replace in (42) the sum Y over s by an integral -

- ds belween — oo
and + o, Then

. ANy f ds 5 exp{— 25%/N)
=
= (/aN}1 (N2 ff’ dx x2em st
= 2NV (NP2 (a2
whenee

57y = iy 25 = N, (43}

The quantity ((25)*) is the mean square spin excess, The root mean square
Spin excess is

82172 = /N | : {44)

Energy of the Binary Aagnetic System

and the fractiénal fluctuation in 25 is defined as

’ A28 12X
Fe W0 1 (45}

N JN
The larger N is, the smaller is the fractioral fluctuation. This means that the
central peak of the distributing function becomes relatively more sharply

defined as the size of the system increases, the size being measured by the
number of sites N. For 143 particles, # = 10719 which is very small.

Energy of the Binary Magnetic System

The thermal properties of the model system become physically relevant when
the elementary magnets are placed i 2 magnetic ficld, for then the cnergics of
the different states are no longer sl equal. If the energy of the system is specified,
then only the states Baving his energy may oecur. The cnergy of imtersction
of a single magnetic moment m with 4 fixed external magnetic field B is

U= -m-B (16}

This is the potential energy of the magnet ni in the fisld B,
For the model systom of & clementary magnets, each with two atlowed
orientations in a uniform magnetic ficld B, the 1osad potential energy U is

X N .
- S ol 2o AL
U= YU = ~B- ny = —2smB A AR, 4
QU= LU= =5 Lo {2

using the expression A for the to1at magnetic moment Zsm. In this example the
spectrum of values of the encrey €7 s discrete. We shail sec fater that a con-
tinnous or quasi-continuous Spectrum will create no dificulty. Furthermore,
the spacing between adjacent energy levels of this model is constant, as in
Figure 1.10. Constant spacing is a speciul feature of the particutar model, but
this feature will not restrict the gencrality of the argument that is developed in
the following sections.

The value of the enerey for moments that interact only with the external
magnetic ficld & comrlacly determined by the vatue of 5. This functional
dependence s aticalea by wriing Ulsh Reversing a stngle moment lowers
25 by -2, lowers the total magnetic moment by —2m, and ruises the cuergy
by 2mB. The energy dilference between adfacent levels is denoted by Ae, where

Ag = Uls) ~ Uls 2 1) = 2nB. {48}

21
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s UisimB  g(s) log g(s}
- ——— B
w4 e g 10 2.30
-3 —— 4 45 381
= ——— 4y 120 4.79
-t 4 210 5.3%
0 —e— 0 252 3.53
Fh ome——— 26 535
+2 4y 479
+3 —— g 45 k]|
t4 ———— 3 . g 2.30
+5 m——— 1 1 0

Figure 1,10 Energy levels of the model system of 10
MALREHC Moments 1 in 2 magnetic field B, The levels
are labeled by their s values, where 5 is the spin excess
and iN + 5 =5 + 55 the number of up spins. The
cacrgies i) und multiplicitics g{s) are shown, For this

problem the energy fevels are spaced cquistly, with
separation Ac = 2m# between adjucent fevels,

s by |
Example: Multiplicity function Jor harmonic osciflatars,

system s the simplest problem for which an exact solution for the multiplicity function is

known. Another exactly solvable problem is the harmenic oscillator, for which the solution
wus originally given by Max Planck. The eriginal derivation is ofien [elt to be not entirely
simple. The beginning student need nol worry about this derivation. The modern way 1o
do the problem is given in Chapter 4 and is simple.

The quantum states of 4 haanonig oscillator have the energy eigenvalues

The problem of the binary modcl

& = shw , 49)

where the quantum number s is 4 positive integer or zero, and « is the angular frequency of
the osciliator. The number of states is infinite, and the multiplicity of cach is one, Now

consider a system of N such oscillators, all of the same frequency. We want 10 find the
number of ways in which a Biven tolal excitation cnergy

N
&= ) s5hw = nhw £50)

b=

Energy of the fiinary Magnetic Systemn

. I . ,
can be distributed among the oscillators, That is, we want the multiplicity funci)gn g(s‘\.{,;?]
for the ¥ oscillators. The oscillator multiplicity function is not the same as the spin muili-
plicity function found earlier. o ) . o

We begin the analysis by going back to the multiplicity funcl%on fo'r asingle oscali.ztcl‘-r.
for which g(1,n) = | for all vajues of the quantum number s, here identical 1-? n. Tosolve the
problem ol (33) below, we need a (unction to represent or generate the series

2 fe ¥ (s1)
ng‘u g(1nit .}:‘g t

Al Z run from 0 10 oo, Here 1 s just 2 temporary toal _1hut will help us find the result
{53}, but 1 does not appear in the final result. The answer is

-5, (52)

provided we assume irl < L. For the problem of N oscillators, the generating lunction is

$=0

i el is precisely the
beoanse the aumber of ways a derm 1" can appear in the NJold pmdm; : puu: .ymvc
munber of ordered wilys in which the inteper 1 caa be formed as the sum of N sion-ne
fntepers,

W abserve Lhal

- }iﬁ;%(%)n(i - N
=-}~‘N(N+1)(N+2}---{N+nﬂi). (54)
l
Thus for the system of oscillators,
(N = {%H (55)

This result will be needed in solving a problem in the next chapter.

A M AU RIS S ol PSR . AICER S i
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SUMMARY

L. The multip

licity function for 3 system of N magnets with Spin excess 2s =
Ny — N,is . .

NI 1
a(N.5) N!

TN AN T T NN

In the Hmit 5/N « 1, with N s I, we have the Gaussian approximalion

. g{N,s) ~ (Ef’nN)”l?_“'exp(w232/1‘.’}.

2. Hall states of the mode! spin s

fa ystent age equally likely, the average value of
5t is

G5 = J._nn(fsszg(.’\’,s)/f_xﬁds g{Ns) = IN |

in the Gaussian approximation.

3. The fractional fluctuation of s? is defined as (s2HUYN and is equal 1o
1/2NV2, '

- The energy of the madel spin system in a state of spin excess 25 is
Uls) =7 ~2smB |

where m is the magnetic moment of one spin and B is the magnetic field.

Chapter 2 7
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Note an probiems: The method of this chapier can be used 1o solve some probleass, as illustrated
by Problems 1, 2, and 3 Because much simpler methods are developed in Chapter 5 ad Later,
we do met emphasize problem sohving ut this stage.
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Chapter 2: Entropy and Temperature

One should not imagine that 1wo gases ina 0.1 lirer container, nitiaily rwmived,

witl mix, then again after a few days separate, then mix again, and so forth, On
the contrary, one finds . . . that not until g tirne enormously long compared ta

100 . - P
10" years will there by any noriceable unmixing of the gases. One may
recognize thar this is practically equivalent to never. . . :

L. Bolizmann

If we wish 1o find in rational mechanics an a
of thermodynamics, we nust seek mechanic
entropy.

priori foundation for the principles
al definitions of temperature and

SV, Gibbs

The general conection benween energy and temperature may only be established
by probability considerations. {Two spstems] are in statistical equilibriun when
a transfer of energy does not increase the probability.

Al Planck

Fundamental Assumplion

We start shis chapter with a definition of probability that cnables us to
define the average value of a physical property of a systen. We then consider
systems in thermad cquilibriuca, the definition of entropy, and the definition of
temperature. The second faw of thermodynamics will appear as the jaw of
increase of entropy. This chapter is perhaps the most abstract in the book. The
chapters thut follow will apply the concepts 1o physical problems.

s

FUNDAMENTAL ASSUMPTION =~ ™

The fundamental assumption of shermal physics is that a closed system is equatly
likely to be inany of the gquantum states accessible to it, All accessible quantum
states arc assumed 1o be equally probable—there is no reason to prefer some
accessible slates over other acucssible states.

A closed system will have constant encrgy, a constant number of particles,
constant volume, and constant values of all external parameters that may
influence the system, including gravitationad, clectric, and magnetic fields.

A quantum state is accessible if its propertics are compatible with the physicat
specification of the system; the energy of the state must be in the range within
which the energy of the system is specified, and the number of particles must be
in the range within which the number of particles is specified. With large systems
we can never know ejther of these exactly, but it will suffice to have SU/U « 1
and SN/N « 1

Ususual properties of a system may sometimes make it impossible for
certain states to be accessible during the time the system is under observation.
For example, the states of the crystaliine form of Si0, are inaccessible at low
lemperalures in any observation that starts with the glassy or amorphous
form; fused silica wilt not convert to quartz in our lifetime in a low-temperatuse
experiment. You will recognize many exclusions of this type by common sense.
We treat all quantum states as accessible unless they are excluded by the
specification of the system (Figure 2.1) and the time scale of the measurement
process. States that are not accessible are said to have zero probability.

Of course, it is possible to specify the configuration of a closed system to a

point that its statistical properties as such are ol no interest. Ifwe specily that the

29



Chapter 2; Entropy and Temperature

Figure 2,1
represents an accessible
fundamental assumptio
system is equally likely

A purcly symbolic dingram: ench sotid st

qudntum state of a closed system. The
n of statistical physies is that a closed
1o be in any of 1he quantum states
accessible 10 it. The emply circles represent some of the stales
that are not accessible becayse their properties do not satisfy
the specification of the SYSLCON JLouG puis o1 oy

system is exactly in 4 stationa

Ty quantum state 5, no statistical aspect is feff in
the problem,

v

PROBABILITY

Suppose we have a closed system 1}
ofthe g accessible quantum stafes,
the spin excess). The probability

hat we know is equally likely to be in any
Letsbea general state Iabel (2nd not one-half
£(s) of finding the system in this stae is

Pis) = 1yg (1

if the state s is accessible and f(s) = 0 otherwise, consistent with the fun-

damental assumption, We shall be concerned later with systems that 'are not
closed, for which the energy U and particle number N may vary. For these

systems P(s) will not be a constant as in {1}, but will have 2 functional dependence
on U and on N

Probability

The sum 3 P(s) of the probability over all states is always cqual to unity,
because the total probubility that the system is in some state is unity:

)

The probabilities defined by (1) lead to the definition of the average value of
any physical property. Suppose that the physical property X ha§ the value
X(s) when the system is in the state 5. Here X might denote magnetic moment,
enefgy, square of the energy, charge density near a paint r, or any property that
can be observed when the system is in a quantum state. Then the average of the

observations of the quantity X taken over a system described by the proba-
hilitics P(s) is

(X = T X(sPLs). 3

3
i

This equation defines the average value of X. Here P(s33s the probability that

the system is in the state 5. The angufar brackets {-- - are used to denote
average value.

For a ciosed system, the average value of X is Ty a7 R SO

(X5 = 2 X(s)(1/g) (4}

3

because now all g accessible states are equally hkely, with P(s} = 1/g. The
average in {4) is an elementary example of what may be .cz\lied an ensemble
average: we imagine g similar systems, one in each accessible quantum stite.
Such a group of systems constructed alike is calied an ensembie of systems. The
average of any properiy over the group is called the ensemble average of that
TOperly. I st Gy e
" :'!il e:semble of systems s composed of many systems, all ccm%tmcted alike,
Each system in the ensemble is a replica of the actual syslen} in one of the
quantum states accessible to the system. If there are g accessible states, l%zen
there will be g systems in the ensemble, one system for each state Each sysiem
in the easemble is equivalent for all praclical purposes to the 3;1}!11 system,
Each system satisfics alt external requirements placed onilhe origioal system
and in this sense is “just as good” as the aclual systemt, Every quantum state
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Figure 2.2 This ensemble o througli j represents sy steny
ol 10 spins with energy — S and spin excess 2y = §
The multiphicity g(&.) is gi10,4) = 10, so that the
fepresentative casemsble must contain 10 systeins, The
order in which the various systems in the ensemble are
listed has no significance.

accessible to the actual system is represented in the engemble by one system ina
stationary quantum stale, as in Figure 22, We assume that 1the ensembic
represents the real system—ithis is implied in the fundamental assumption.

Example: Construction of ay eusemble. W
represent 4 closed sysiem of five spins, cach
cach in a magnetic field is —mg, tDo not
frequent use of s as a state index or lubet) E

¢ construct in Figure 23 2n ensemble to
system with spin excess 25 = 1. The caergy of
canfuse the use of s in spin excess with our
ach system represents one of the muitiples of

N

Mest Probuble Configuration

1

SLICE NLNES LRI LA 0

Figure 2.3  The ensemble fepreseats a system with N = § spins and spin excess 2y = 1

oy

Figure 2.4 Wih N = 5 and 25 = S.asingle
’} System may represeat the ensemnble. This is not
a typical situation,

quantum states ai this energy, The number of such states is given by the multiplicity function
{L.15): '

4 5

U(S._‘} = '."l".”' = 10,
The 10 systems shown in Figars 2.3 make ugp e ensemble,

1f the encrgy in 1he magnetic field were such That 2 = 5, then a single system comprises
e enseable, as in Figure 2.4, 1 vera nnygnetic Gedd, wlleneegios ofall 2% 52 2% = 32 gates
are equal, and the sew ensemble must represent 32 systems, of which | systom has 25 = §;
5 systems have 25 = 3; 19 systems have 25 = 1. 10 systems have 25 = —~1; 5 systems
have Is = —3; and ! system hus 25 = —3.

[

Most Probable Configuration

Let two systems £, and S, be brought into contact so that eneray can be
trunsferred freely from one to the other, This is cailed thermal contact tFigure
2.5). The two systems in contact form a larger closed system § = 3 + 3,
with constant energy U = Us + U3 What determines whether there will be a
net flow of energy from one syslem to another? The answer leads to the coneept
of temperature. The direction of encrgy flow is not simply a matter of whether
the energy of one system is greater than the energy of the other, because the
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Twa ¢losed
systems aot

in contact

Insulation

The systems are in
thermal contaet

U;+‘U§:Ul+U2

~
Insulation | hermal conductor allows
exchange of eneray

Figure 25 Fstablishment of thermal contact between two systems 35 and 8,

systems can be different in size and conslitution.
shared in many ways belween two systems,

The most probable divisicn of the total energy is that for which the combined
system has the maximum number of accessible states, We shall enumerale the
accessible states of two model systems and then study v

what characterizes the
systems when in thermal contact. We frst solve in detzil the probicin of thermal
contact belween two spin systems, |

and 2, ina magnetic field which is Introduced
inorder to define the energy. The numbers ol spins N, N, may be different, and
the values of the spin excess 25y, 25, may be diflerent for the two systems, All
spins have magnetic moment i, The actual exchange of energy might take place
via some weak {residual) coupling between the spins near the interface belween
the two systems. We assume that the guantum states of 1}
be represented accuratel
3. We keep &V, N

A conslant total energy can be

1e total system 8 cun
y by a combination of any state of &, with any stale of
2 tonstant, but the values of the spin excess are allowed 1o
change, The spin excess of 4 state of the combined system will be denoted by 2s,
where s = 5, + 5,. The energy of the combined system is directly proportional
to the total spin excess:

Uls) = Ui(5)) + Uyls)) = ~2mB(s; + 5,) = —~2mBs. (5}

The total number of particles is N = N+ N,

Most Probuable Configuration

We assume that the energy splittings between adjacent encrgy levels are egual
1a 2t in both systenss, so that the magnetic energy given up by system 1 when
one spin is reversed can be taken up by the reversal of one spin of system 2 in
the opposite sense. Any large physical systent will have enough diverse modes of
enerpy storage so that encrgy exchange with another system is afways possible,
The valug of 5 = 5, + 3, is constant because 1he total encrgy is constant, but
when the two systems are brought into thermal contact a redistribution is
permitied in the separate vatues of s,, 53 and thus in the energies U, U..

The multiplicity function g{N,s) of the combined system & is refated e the

product of the multiplicity functions of the jndividual systems 8, and &, by
the relation;

g(Ns) = ZQL{N:J:)Q:(N%S -5, (6)

where the multiplicity functions g,, g, are given by expressions of the form of
{1.15). The range of s, in the summation is from —INJ W NN, < N,
To sce how (6} comes about, consider first that configuration of the combined
system for which the first system has spin excess 25y and the second system has
spin excess 2s,. A configuration is defined as the set of all states with specified
values of 5, and 5;. The first system has g,{N,,s,) accessible states, each of which
may occur together with any of the ¢,(N,,s;) accessible states of the second
systerm. The total number of states in one configuration of the combined system
s given by the product g,(N),5,)g,(N,,5,) of the multiplicity functions of £
and 3,. Because s, = § ~ s, the product of the ¢'s may be written as

GiIN3)g,0N 8 = 5,). (7

This product forms one term of the sum (6}

Different configurations of the combined system are characterized by different
values of s;. We sum over all possible values of 5, to obtain the totat number of
states of all the configurations with fixed s or fixed energy. We thus obtain (8),
where g{N.s) is the number of accessible states of the combined system. In the
sum we hold 5, Ny, and N, constant, as part of the specification of thermal
contact.

Fhe result (6] is a sum of products of the form (7). Such a product will be a
muximem for some value of s, say 3, to be read as s, hat” or “s, caret”.
The configuration for which ¢,g, is 2 maximum is called the most probable
ennfigurafion; the number of states in it is

91(N1:§1)§_1(N2-5 - 5} - &)
A ':Jf"-—‘ A

K= haine

33



i6

Chapter 2 : Entropy and Tewmperature

gl(N!.' Ul)
* gz(i\lz- [ Ul}

o
0 ! u
Thermat equilibrium

Fipure 2.6 Schematic tepresentalion of the dependence of the
configuration muttiplicity an the divisicn of the total energy
between two systems, 8, and 5.

If the systems are large, the maximum with res
extremely sharp, as in Figure 2.6. A refatively
will dominate the statistical properties of t
probable configuration alone will describe many of these properties,

Such a sharp maximum is a praperty of every realistic 1ype of large system
for which exact solutions are available; we postulate that it isa general propenty
of all large systems, From the sharpness property it follows that fluctuations
about the most probable configuration are small, in z sense that we will define.

The important result follows that the values of the average physical properties
of a large system in thermal contact with another large system are accurately
described by the properties of the most probable configuration, the coenfigura-
tion for which the number of accessible states is a maximum, Such average
values {used in either of these two senses) are called thermal equilibrium valoes.

Because of the sharp maximum, we may replace the average of a hysical
quantity over all accessible configurations (6) by an average over only the most

probable configuration {8). In the example below we estimate the error involved
in such a replacement and find the error to be negligible. '

pect 1o changes in s, will be
small number of configurations
he combined system. The most

JR——

Most Probuble Configurarion

Example: Two spin systems in thermal contact, We investipate for the mode! spin system
the sharpress of the product {7} near the maximum {8) as follows. We form the product of
the mualtiplicity (unctions for BudN.5. ) and g,(¥;.5,), both of the form of11.35):

15,0 251
B (N5 )gaNy 5,) = 9’|(O)Qz(0]€xf’(*”ﬂ;:— - 7\4") . (9}

where ¢,(0} denotes #,{N,.0) and g,(0) denotes ¢,(N,.0). We replace s, by s — 5,:

I 2s - g5yt
DN L3NS — 5)) = g,(mg:(mcxp(—ﬁm - in’—). {10}
ca 3 -

This preduct* gives the number of states accessible o the combined system when the spin

excess of the combined system is 2s, and the spin excess of the first system is 2s,.
We find the maximum value af{10) as a function of s, when the totad spin excess 25 is held
consiant; that is, whey the energy of the combined systems is constant. It is convenient
to use the property that the maximum of log ¥{x) occurs at the same value of x as i

w0
maximum of ¥{x). The calculation can be done either way. From {10),

250 25 - 5P
log g, {N1.5)g, (N5 ~ 5)) = log g, {y,(0) ~ ET - v (i

This quaatily is an extremum when the first derivative with respect to s, is zere. An ex-
leemum may be 2 maximum, a minimum, or a point of inflection. The extrenvurs is a

maximum il the second derivative of the function js negative, so that the curve bends
dowaward.

Al the extremum the first derivative is

is_l+4(5"3‘!

é
e ] 7 - P
EM {logg,(N 1308AN s = 5,)] N, N,

=0, (13

; : vative FEiae 2
where Ny, N, and s are held constant as 5; s varied. The second derivative #%70s, 2 of

Equation {11} is
1 1 )
”‘(’A"f? R

* The product function of tws Gaussian functions is always a Gaussian.
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and is negative, so that the extremum is a maximum. Thus the most

v ' probable configuration
of the combined system is that for which {12) s satisfied:

S Ses s '
Ny N, Ny {3

The twosystems are in equilibrium with Tes
spin exeess of system § is equal ta the frac

We prove that nearly afl the accessible
nearly satisfy (13). If 5, and 3,
I writien as

pectto interchange ofenergy when the fractioral
lienzt spin excess of sysiem 2.

states of the combined sysiems satisfy or very
denote the values of 5y and 5, at the maximum, then (13}

- &% ? 3 5 5
S 3 NN TR ()
L2 -
N%E\a f;;, ﬁ;:d the number of states in the most probuble configuration, we insert ({D) in{9) 10
H
LEA
a = e o (z -
(9:920nss = G1(5))gs(s ~ §,) = 9,{0)g2(0) exp(— 257/N). (15)
~
:'-3’ UT?Z)lil:n‘:sligalc tlee sharpness of the maximum of g,g, at a given value of s, introduce §
= such tha
[
% S

Sy = 3§ + 4, §p =8, — 4, (16)
+.

Here & measures the deviation of 5¢, 5, from their values i, & at the maximum of g,g;.
Square sy, 5, 1o form

5t =80 4288 + 82, 50 = 5,0 = 25,5 4 oF,

which we substitute in (9 and {15} 10 obtain the number of states

45,6 28 45,5 252
. 7 _ . i 2 hd
N 500N, 55} = (9.0 e"P(""S?]‘" - N, + J\’.;' - ‘T\}:)
We know from (14} that §,/N, = §,;

Fnow Ny, 5o that the number of slates in a canfigusation of
deviation § from equilibrium is \

. ) 252 §2
NG+ B@afNLE, ~ 8) = (919 2)man XD vl :22*) (17)
N, N,

As 4 numerical example in which the fractional deviat

] X ion from equilibriun is very small,
N, = N, = 16" and § o 10 that s, 87N,

= 107'% Then 20%/N, = 200, and the

Thermal Equilibrium

product g,g; is reduced 1o ¢7*%% = 10717 of its maximum value, This is an exlremely
large reduction, so that g,g, is truly a very sharply peaked function of s,. The probabdily
that the fractional deviation will be 107'% or furyer is found by integrating (i7) from
§ = 10" oultoa value of the ardes of s ar of N, thereby including the area under the wings
of the probability distribution. This is the subject of Problem 6. An upper limit to the
integrated probability is given by N x 10717 = 107152 g very small. When twa
syslems are in thermal contacy, the values of 5,, 5, that occur most often will be very close to
the values of §;, §, for which the product @9y Is & maximum. It is extremely rare to Gnd
systems with values of 5;, 5, perceptibly different from §,, §,.

What does it mean 1o say that the probability of finding the system with a fractionat
deviation fargershand Ny = 107 *%is only 10 %% of the probability of finding the system
in equilibrium? We mean that the system will never be found with 1 deviation as much as
T pactin 10*°, small as this deviation scems. We would have (o sample [08** similar systems
to have a reasonabic chance of success in such an experiment. Ifwe sample one system every
H s whichh is pregy fast work, we would Bave Lo sample for 109 5, The age of the
universe is only 10'% s, Therefore we say with geeat surety that the deviation deseribed will
never be observed. The estimats is rough, but the message is correct. The quotation {rom
Boltzmann given at the begianing of this chapter is relevant here.

We may expeet to obserse substantial fructonal deviations ouly in the propertics of a
small system in thermal contact with a farge system or rescrvoir. The energy of a small
system, say a system of 10 spins, in thermat contact with a large reservair miy undergo
fluctuations that are large in a {ractional sense, as have been observed in experiments on the
Brownian motion of small particles in suspension in Fquids. The average encrgy of a small
system in comtact with a large sysicm can atways be determined aceuraiely by observations
at one lime on a lacge number of identical smull systems or by ebscevations on one smalf
system over a fong period of time,

N — L T I U

THERMAL EQUILIBRIUM

The result for the number of accessible states of 1wo mode! spin systems in
thermal contact may be generalized to any two systems in thermal contact, with
constant 101 energy U = U, 4 U,. By direct extension of the carbier argu-
ment, the muliiplicity giN, U} of the combined system is:

ANU) =T gy (N U NgNLU = UY) (18)
Ly

summed over all values of Uy < U, Here g,(N,U,) fs the number of accessible
states of systens [ at energy (. A configuration of the combined system is
specificd by the value of {7, together with the constants U, N, N,. The number
ol accessible siates in a configuration is the product g,{N . U39V, U ~ UL
The sum over ad configuritions gives gV, U).

39
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The largest teem in the sum in (18} governs the properties of the total systens

in thermat equilibrium. For an extremum it is necessary that the differential® of
g(N,U) be zero foran infinitesimal exchange of energy:

EQI) (591)
dg = (=} g,dU, + e i)
g ((;Ul lez 1 Iy au, o 2

We divide by 4,9, and use the result dU, = —dU, 10 obtais the thermal
equilibrium condition:

It

0;  dUy + dU, = 0. (19)

! E!.‘:h) 1 (‘\'92)
— 2 = E . {20a)
91<5U: N 82\&U, N
which we may write as
2logy, _ dlogg, (20b)
v, Jy, Uy i

We define the quantity o, called the entropy, by

s(NU) = logg(N,U) , 2n

where o is the Greek letier sigma. We now write {20) in the final form

(ﬂ) = (_E,Ez) 22
au, N, ey, N

* The notation

99,
), \

means that N, is held constant in the differentiation of g {N..U,) with respect 1o U,. That is, the
partial derivative with respect to U is defined as

fgl = lim GN Uy + AU — g (N, L)
E’U: Ny Al e AU!

- For example, if g{x,)} = 3x*y, then {2g/2x), = E2x’;-_and (Fg/dy), = Is*

Tempeeuture

This is the condition for thermal equilibrium for two systems in thermal

contact. Here ¥ and Ny may symbolize nat only the numbers of particies, but
all constraints on the systems.

TEMPERATURE,

The last equality {22} leads us immediately to the concept ol temperature. We

know the everyday rule: in thermal cquilibrium the temperatuses of the two
systems are equal;

T, =T, (23)

This rule must be equivalent to (22, so that T raust be a fanction of (Ca/cU)..
10 T denotes the absofute temperatuce ‘in kelvin, this

function is simply the
inverse relationship

i ‘g 5
ey I uiuil Y 24
T - 'A"(EU)‘Y o : 4)

The proportionatity constant &, is 2 universal constant cafled the Bolanann
constant. As determined experimentally,

1

Fy = 1381 % 1072 joulesskelvin

il

L3¥1 > 107 ' crpsskelvin (25

We defer the discussion to Appendix B because we prefer 10 use a more natusal
temperature seale: we define the fundamental temperature t by

(26)

(27)

Because o is a pure numyber, the fundamental temperature t has the dimensions
of cnergy. We can use as a temperature scale the energy scale, in whatever unis

1
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may be employed [or the latter—jout
than the introduction of the Kelvia
arbitrarily selected so th
point of w
coexist.

¢ or erg. This procedure is much simpler
scale in which the unit of temperature is
atthe triple point of water is exactly 27316 K, The triple
ater 15 the unique temperature at which walter, iee, and water vapor
Historically, the conventional scale d

ates from an age in which it was possible
to build accurate thermometers ev

en though the relation of temperature 1o
quantum states was as yet not understood, Even at present, it is still possible 1o
measure lemperatures with thermometers calibrated in kelvin 1o a higher
precision than the accuracy with which the conversion factorky itsellis known—

about 32 parts per mitlion, Questiens of practical thermometry are discussed in
Appendix B,

T T LTI T e e e ey

Conunent.  In 136} we defined the reciprocal of 1 as the parti

ai derivative (Fa, ). Ttis
permissible to take the reciprocal of both sides 1o write

1 = (fU/Rg),. (28)

The two expressions (26} and (23] have a slightly different meaning. In (26), the entropy o
was given as a funciion of the independent variables U/ and N as ¢ = o[ U, N}, Hence £
determined from (26} has the same indcpcncfcm variables, T = t{U,N}. In (25}, however,
differentiation of I with fespect o o with N constant implies U = Ulg, N} so that t =
(e, N). The definition of temperature is the same in both cases, but it is expressed as a
function of different independent variables. The question “What are the independent
variables?” arises frequently in thesmal physics because in some experiments we controt
sowe varizbles, and in other experiments we control other variables.

F e e e i e e T A e ey e [,

R e L Lo

ENTROPY

The quantity 5 = log g was introduced in {21) as the entropy of the system: the
entropy is defined as the logarithm of the aumber of states accessible to the
system. As defined. the entropy js a pure number. In classical thermodynamics

the entropy 5'is delined by
! c5
=t 25
T (cu)_\. C 9

Entropy 1
Uy
T, cold
o.(initial) Figure 2.7 I the temperature 1) is higher
) than 7, the transfer of a positive amount of
encrgy $U from system 1 to sysiem 2 will
increase the total entropy o, + @, of the
combincd systems over the initial value
o (initial) + o {initiat). In other words, the
final system wilt be in 3 more probable
- condition if encrgy fows from the warmer body
o ‘ to the cooler body when thermal contact is
f’UI S U, + 80 established. This is an cxample of the law of
\‘ oiffinal) - ay(finaly increasing entropy.
N

N

Energy transfer
o tinal) + a,{final) > o initiad) + a(initiad)
As a conscquence of (24), we see that § and o are connected by a scale factor:
-
S = kyo. (30

We will call § ke conventional entropy.

The more states that are accessible, the greater the entropy. In the definition
of of{M,U} we have ndicated a functional dependence of the entropy on the
number of particles in the system and on the energy of the system. The entropy
may depend on additional independent variables: the entropy of a gas {Chapter
3} depends on the volume,

In the carly history of thermal physics the physical significance of the entropy
was not known. Thus the author of the article on thermodynamics in the
Encyclopaedia Britannica, 1th ed. (1905}, wrate: “The utility of the coneeplion
of catropy ... is limited by the fact that it does not correspond dircetly to any
directly measurable physical property, but is merely n mathematical lunction
of the definition of absolute temperature.” We now know what absolute phy sical
property the entropy measures. An example of the comparison of the t‘,\per.i-
mental deteemination and theoretical walculation of the entropy is discussed in
Chapter 6.

Consider the total entropy change Ae when we remove a posilive amount of
cncrgy AU from 1 and add the same amount of energy to 2, #s in Figure 2.7,
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The total entropy change is

&g {a, 1 l)
PR — - AUY = | ~— + —ALL (31}
Aa (c"Ul)M( AU) + (5U2>x,{ ) _. ( atn

When 7, > 7, the quantity in parentheses on the right-hand side is positive,
50 that the total change ol entropy is positive when the direction of energy flow

1s from the system with the higher temperature to the system with the lower
temperature,

o e ey e g

Example: Entropy inereuse on heat flow, This example urkes use of the reader's previous
famitiarity with heat and specific heat. )

{a} Leta 10-g specimen of copper at a temperature of 350K be placed in iheymnl contact
with an identical specimen at a teompertue of 290 K. Let us find the quantity ol crergy
transfessed when the two specimens are placed in contact and come 1o equilibrivm at lcht:
final temperature T, The specific heat of metaliic coppes over the temperature range 15°C
to 100°C is approximately 0.389) g™ ' K, according to a standard handbook.

The energy increase of the second specimen is egual to the energy Yoss of the fiest; thus
the energy increase of the second specimen is, in joules,

Al = (3891 K"‘}(TI — 200K) = 389K " H3I0K — Th,
where the temperatures are in kebvin, The final temperature afier contact is

T, = 1350 + 290)K = 320K.
Thus
AU, = 389IK " Y—-30K) = -1L.7},
and

AU, = —AU, = 1171,

(b) What is the change of entropy of the two specimen's when a ‘lransfer pl'. 047 ha]sj
taken place, almost immediately after initial egntact? Notice that this transfer is a sma
fraction of the final energy transfer as cateuluted above. Br‘:musc the en?rgy'l_ransfcr con-
sidered is small, we may suppose the specimens are approximately at their initial tempera-
tures of 350 and 290 K. The entropy of the first body is decreased by

-0.1]

ASi=55k

= —286 % 1674IK"!,

Law of Increase of Entropy

The entropy of the secend body is increased by

AS; = E’})EE = 345 x I0"YIK Y,

‘The total entropy increases by
A, + AS; = (~286 -+ 3.45) x 10 FJK ! w 0.59 x 19743K "1,
In fundamental units the incresse of entropy is

0.59 x 107% 059 x 1074J K~
Ay = 250 Y B e e 19
! k, 138 x e myRr = 0k 10 3y

where k; s the Boltzmann constant, This res

ult meaas that the number of accessible stutes
of the two systems increases by the factor ex

plAg) = expl{0.43 x 10'%).

e ey

Law of Increase of Entropy

We can show that the total entrapy always incre

brought into thermal contact. We have just demonstrated this in a special case.

If the total energy U = U, + U, is constant, the tota} multiplicity afier the
systems are in thermal contact is

ases when two systems ace

glU) = nglfua}gz(u - Uy), (33
i .

by {18). This expression contains the term g (U, g}g (U —
mehiplicity before contact and many other terms beside
initial energy of systern 1 and U — U
all terms in {33)

Uy,) for the initial
s. Here U,y is the
1q 18 the initial energy of system 2. Because
are pasitive numbers, the multiplicity is always increased by
establishment of thermal contact between two systems. This is a prool of the
law of increase of entropy for a well-defined operation.

The significant effect of contacy, the effect that stands out even afier taking the
logarithm of the multiplicity, is not just that the number of terms in the sumrma-
tion is large, but that the largest single term in the summation may be v

ery, very
much larger than the initial multiplicity. That is,

0.9 = 0,(0)g,(U — 0,) . 6y
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17
__________ E‘{U)
Y,
N
& g
2 =
el UZ = U - Ul [£H]
=R
Time Timie

Figure 2.8 A system with two purts, 1 and 2, is prepared b zero time
with U, = Qand U; = U, Exchange of enerpy tikes place between two
parts and pressatly the system will be found in or cluse 1o the most
probable configuration, The catropy increases s the system attains
configurations of increasing multiplicity or probability. The eatropy
cventually reaches the entropy o{U) of the most probable configuration.

may be very, very much larger than the injtial term
il odg: (U - Uyl {35)

Here [, denotes the value of U, for which the product g,g, is 2 maximum.
The essential effecr is that the systems after contact evolve from their initial
configurations lo their final configurations. The [undamental assumption
implics that evolution in this operation will always take place, with all accessible
- final states equally probable.
The statement

Crinat = 108(01 92 max 2 Fiaiia = 1028(0181)0 (36)

1s & statement of the law of increase of entropy : the entropy of a closed system
tends Lo remain constant or Lo increase when a coustraint internal Lo the system
is removed. The oparation of establishing thermal contact is cquivafent to the
removal of the constraint that Uy, U, each be constant; afier contact only
U, + U, need be constant.

The evolwtion of the combined system towards the Fial thermal equilibrium
configuration takes a cerfain tine. 16 we separate the two systems before they

Law of Increase of Entropy

Ways to increase the entropy

» . & L] . . L3
. S e ::_ ".':- i Add partictes
e RPN
o >
— e / Add enerpy
e 7 ‘\

(Yehwdy vectars)

e "0
.ot — fneeease the vojome
.
e
o
b o' .
a — - a Decompose malecules
Q e, 0
Th —— e Let a linear polymer cuel up

Figure 2.9 Operations that tend (o increase the eniropy of a system,

reach this configuration, we will obtain an intermediate configuration with
intermediate energies and an intermediate entropy. Itis therefore meaningful to
view the entropy as a function of the time that has elapsed since removal of the
constraint, called the time of evolution in Figure 2.8,

Processes that tend to increase the entrapy of a system are shown in Figure

29; the arguments in support of exch process will be developed in the chaplers
that follow,

17
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For a large systern™® (in thermal contact with another large systern) there will
never occur spontancously significant differences betwezn the actual value of the
entropy and the value of the entropy of the most probable configuration of the
system. We showed this for the model spin system inthe argument fﬂlid\ving(i b
we used “never” in the sense of not once in the entire age of the universe, 107 %5,
e can only find a significant difference between the actual cniropy and the
entropy of the most probable configuration of the MACrOSCOpic system very
shottly after we have changed the nature of the contact between 1wo systems,
which tmplies that we had prepared the sysiem initially in some special way.
Special preparation could consist of lining up all the spins in one system paraliel
lo ene another or collecting all the molecules in the air of the room into the
system formed by a small valume in one corner of the room. Such extreme
situations never arise naterally in systems left undisturbed, but arise from
artificial eperations performed en the system.

Consider the gas in n room: the gas in one hatf of the room might be prepared
initially with a low value of the average energy per molecude, while the gas in ithe
other hall of the room might be prepared initiatly with a higher value of the
average encrgy per molecule. If the gas in the two halves is now allowed 1o
interact by removal of a partition, the gas molecules will come very quickly?
o 3 most probable confizuration in which the molecuies in both halves of the
room have the same average energy. Nothing else will cver be observed 1o
happen. We will never observe the system 1o lcave the most probable configura-
tion and reappeat later in the initial specially prepared configuration, Thisis true

even though the equations of motion of physics are reversible in time and do not
distinguish past and future.

LAWS OF THERMODYNAMICS

When thermodynamics is studied as a nonstatistical subject, four postulates
are introduced. These postulates are called the laws of thermodynamics. In
essence, these laws are contained within eur statistical formulation of thermal
physics, but it is useful to exhibit them as separate statements.

Zeroth faw.  If two systems are in thermal equilibrium with a third system,
they must be in thermal equitibrium with each other. This law is 2 consequence

* A large ot macroscopic system may be taken 1o be one with morc than 14'0 or 10'? atoms.
! The caleulation of the time required far the process is bargely a problem in hydrodynamics.

Laws of Thevmodynamics

of the conditien (20b] for equilibrivm in thermal contact:

(ilogg,) B ({"‘ngg, ) étogy, cloggs
Uy Ju. O\ U, )\ ( e, )\ B ( v, )\
In other words, 1, = 1, and 1 = Tyimply 1, = 1,

Firstfaw.  Heatis a form of encrgy. This faw is no mare than a stalement of
the principle of conservation of energy. Chapter 8 discusses what form of energy
heat is.

Second law,  There are many equivalent statements of the second faw, We
shall use the statistical statement, which we have ealled the law of tncreuse of
eatropy, applicable when a constraint internal 1o a elosed system is removed. The
commonly vsed statement of the law of increase of catropy is: " a closed systenms
is in a configuration that is not the equilibrium cosfiguration, the mast probubic
consequence will be that the cutropy of the systely wil! increase monolonically
in successive instants of time.” This is o looser statement thin (e one we prve
with Eq. (36) above.

The traditional thermodynamic statement is the Kelvin-Planck formulation
of second law of thermodynamies: it is impossible for #ny cyclic process o
occur whose sole effect is the extraction of beat from a reservoir and the per-
formance of an equivalent amount of work,” An esngine that violates the second
law by extracting the energy of ane heat reservoir is said 1o be performing
perpetual motion of the second kind. We will see in Chapter 8 that the Kelvin.
Planck fermulation is a consequence of the statistical statement,

Third faw. The entropy of a system approaches a constant value as the
temiperature approaches zero. The earliest statement of this Taw, due to Nernst, is
that at the absolute zero the entropy difference disappears between all those

configurations of a system which are in internal thermal equilibrium, The third

law follows from the statistical definition of the entropy, provided that the
ground stale of the system has a well-defined multiplicity. If the ground stase
multiplicity is g(0), the corresponding entropy is off) = logg(0) as 1 — 0.
From a quantum point of view, the faw does not appear {0 say miuch that is
not implicit in the definition of entropy, provided, however, that the system is
in its lowest set of quantum states at absofute zero, Except for glasses, there
would not be any objection to afficming that g(0) is 2 small number and a{0)
is essentially zero. Glasses have a frozen-in disarder, and for them a{l) can be
substantizl, of the order of the number of atoms N. What the thied law tells us
in real life is that curves of many reasonable physical quantities plotted against 1
must come in flat as r approaches 0.

9
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Entropy as a Logarithm

Several useful properties follow from the definition of the entropy as the loga-~
rithm of the number of ageessible stales, instead of as the number of pecessibie
stages dtself. First, the cntropy of two independent systems is the sum of 1he
separate entropies,

Sceond, the entropy is entirely insensitive—for all practical pusposes—1o
the precision U with which the encrgy of a closed system is defined. We have
never meant to imply that the system energy is known exactly, a circumstance
thut for a discrete spectrum of energy eigenvalues would make the number of
accessible states depend erratically on the energy. We have simply not paid
siuch attention ta the precision, whether it be determined by the uncertainty
principle 3U S(time} ~ b, or determined otherwise. Define D(U) as the number
of accessible states per unit energy range; © (/) can be a suitabic smaothed

average centered at U, Then (I} = B SU s the number of accessible
stales inthe range 3U at U, The criropy is

a(U) = log BIL)GU = log D(U) + log SU. (37)

Typically, as for the system of N spins, the tolal ﬁumber of states will bie of the
order of 2% 11 the total enerey is of the order of N times some average one-
particic energy A, then D) ~ 25/NA. Thus

- o{l) = Nlog2 ~-'log NA + logsU. (38)
Let N = 10%% A = 107" erg; and U = 107! erg.
a(l/) = 0,69 x 102® — 1382 ~ 23, {39

We see from this example that the value of the entropy is dominated overwhelm-
ingly by the value of N; the precision §UJ is without perceptible elfect on the
result. fnthe problem of ¥ free pasticles in a box, the number of states is propor-
tional to something like U¥3U, whence o ~ Nlog U + logdU. Again the

term in N is dominant, a conclusion independent of even the system of units
used for the energy.

B

ey

el R

Example: Perpeinal motion of the sccond kind, Early in our study of physics we came to
uaderstand the mapassibility of perpetead miotion maching, a machine that will give forth
more enetgy than it absorhs, :

Summary

perpetual motion maching of the second kind, as it is called, in
tivered to another part of the
d being used 10 power a heat
ailable for any purpose at no cost to us. In brief, we
tounding ocean to extract the CHOLLRY AECUssary o
fer of encrgy from the low temperature ocean to a
would decrease the toad cnteepy of the combinced
ation of the law of increase of entropy.

environment, the differeace in ‘emperature thus estabiishe
engine that detivers mechanical work av

higher temperature boiler on the ship
systems and would thus be in vig)

SUMMARY

1. T[zc fundamental assumption fs that a closed system is equally Fkely 1o be
w any of the guantum siates accessivle to i,

2 H P(s)is the probabhility 1§
quantity X is

1t a system is in the state s, the average value of a

(Xy = ¥ X(5)Ps).

3. An ensemble of systems is compaosed of very many systems, all constructed

alike.
4. The number of accessible states of the combined systems | and 2 is \0\\ .
2
56} = Y g1(51)9:65 — 5) S
H > WY
R
where sy + 5, = g <

5. The entropy o(N.U) = logg(N,U)). The relation § =

‘ kpa connects the
cenventional entropy S with the fund

amental entropy a.
6. The fundamental temperature ¢ is defined by

liv= (60, CUY b

The relation v = &,7 connects the fund

amental temperature and the con-
veational temperature,

7. The taw of increase of eniro
tends to remain constant or
system is removed,

Py states that the entropy of a closed sysiem
1o increase when 2 consiraint internal to the

it
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8. The thermal equilibrivm values of the pliysical propestics of a systemy are
defined as averages over alf stites accessible when the System 13 in contact
with a large systens or reservoir, i the first system #lso is large, the thermal
cquilibrium propectics are given accurately by consideration of the states in
the most probable configuration alone. :

PROBLEMS

1. Entropy and temperature, Suppose gtl) = CU2 where € is & constant
and N is the number of particles. {a) Show that U = $Nv. (b} Show that
(etafpll)y is wegative. This form of gty nctually applics W an weal pus,

2. Paramuagnctism.

Find the equilibrium vidue i1 temperature 1 of the e
tional magnetizution

M N o= 2{53/N
ol the system of N spi'ns each of magnetic moment i ina magnetic field B. The

spin excess is 25. Take the entropy as the logarthithm of the muliipkicity g(N,s)
as given in (1.35):

Gls} = logg(NO) — 253N (403

for [s| « N. Hint: Show that in this approximation
(U} = 65 — U207 BN, 41

with g = log g(N.0). Further, show that 1 = - U/m BN, where U denotes
(U3, the thermal average energy.

3. Quantum harmonic escillator. (3} Find the entropy of a set of N oscillators
of frequency e as a function of the total guantum number n. Use the multiplicity
function {1.55) and make the Stirling approximation log N} = NlogN — N,
Replace N - 1 by N, (b) Let U deaote the total energy nhiw of the oscillators.
Express the entropy as ¢{U,N). Show that the total energy at temperature v is

L (42)
explhoft) ~ 1

This is the Planck result; it is derived again in Chaner 4 by a powerful method

that does not require us 1o find the multiplicity function.

Problems

4. The meaning of “never”” [t has been said* that “six monkeys, set 10 strum
univtelligently on typewriters for millions of years, would be bound in tirne
to write all the books in the British Museurn.™ This statement is nonsense, for
it gives a misleading conciusion about very, very large numbers. Could all the
monkeys in the werld have typed out a single specified book in the age of the
universe??

Suppose that 10'® monkeys have been seated at typewriters throughout the
age of the universe, 10'% 5. This number of monkeys is about three times greater
than the present human population’ of the earth. We suppose that a menkey
can hit 10 typewriter keys per second. A typewriter may have 44 keys; we
accept lowercase letlers in phace of capilal letters, Assuming that Shakespeare's
Humler has 16° charscters, witl the monkeys kit upon Hamlet?

(a) Show that the probability that any given scquence of 10° characters
byped at random will come ol in the correet sequence {the sequence of Heonder)
s ol the order of v
(1109 000 (- ies 345

where we have used log,, 44 = 1.64345.

{b} Show that the probability that a monkey-Hamlet will be typed in the age
of the universe is approximately 10~ %5315 The probability of Hamler is
therefore zero in any operational sense of an event, so that the original statement
at the beginning of this problem is nonsense: one book. much less a fibrary,
will never occur in the total literary production of the monkeys.

5. Additivity of entropy for two spin spstems.  Given two systems of Ny =~
Ny = 10** spins with multiplicity functions g,(N,5,) and g5(Ns,s ~ 53), the
product g,g, as a funclion of s, is relutively sharply peaked at s, = §,. For §; =
§, + 10, the product g,g, is reduced by 10717 from its peak value. Use the
Gaussian approximation 1o the multiplicity function; the form {17} may be
uselul,

{8) Compute §,0,/(9,9))max for 5, = §; + 10" and 5 = 0.

{b} For s = 10%°, by what factor must you muitiply (g,g;)e.. t0 make it

equal 1o 3, ¢.(N,,5)9:(N s — 5,); give the factor to the nearest order of
magaitude.

* I Jeans, Mysterious universe, Cambridge University Press, 1930, p. 4 The statement is attributed
to Huxiey.

* Fora related mathematico-literary study, see “The Library of Babel,™ by the fascinating Argentine
writer Jorge Luis Borges, in Ficciones, Grave Press, Evergreen paperback, 1963, pp. 7988,

¥ For every person now aiive, some thirly persans have once lived. This figuee is quoted by A. C.
Clarke in 2001, We are gratefu! jo the Population Reference Burean and to Dr. Roger Revelie for
explanations of the evidence. The cumulative number of man-seconds is 2 x 10%°, if we take the
average lifetime a5 2 x 10° 5 and the number of lives a5 1 x 10'', The cumolative number of
man-seeonds is much less than the' number of monkey-seconds (107%) taken in the problem.

33
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{c) How large is the fractio

nal error in the entropy when you ignore this
factor? .

6. Integrated deviation, For the example that gave the result {17), calculate
approximately the probability that the [ractional deviation from equilibrium
d/N, s 1071 or larger. Take Ny = Ny = 10°% You will find it convenient 1o

use an asymplotic expansion for the complementary error function. When
x> |, '

2x exp(x?) Lmexp{HzZJ dt = 1 4 small terms.
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9. Partition Function far Two Systams
(0. Elasticity of Polymers
11. One-Dimensional Gas

Units: Thermodynamic results can eas#
units, The only quantity shat will cause dilliculty i
Clfuad) = t{carcr)in fundamental units and as Clo
W0 quanlities are not equal, for Cleonv.} = kyCifund.).

N\

85
85
84

y be transiated from fundamental tails 10 ¢conventinnal
5 the heat capacity, defized below in {17a) as
onv). = T(£S ¢ TYin conentional units. These

Chapter 3: Boltunana Distribution and {lelmholtz Free Energy

The faws of thennodynamics may eastly be obiained from the principles of
Stavistical mechanics, of which they are the incomplete expression.

Gihbs

We are able to distinguish in mechanical terms the thermal action of one system
ot another from that which we eall mechanical in the narrower sense .
te specify cases of thermal action and cases of mechanical action.

Gibbs

S0 as
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In this chapter we develop the principles that permit us to calculate the values
of the physical properties of a system as a function of the temperature. We
assume that the system 8 of interest {0 us is in thermal equilibrium with a very
large system ®, called the reserveir, The system and {he reservolr will have a
common temperature t because they are in thermal contact.

The totat system 0t + 8 is a clased systeas, insulated from all external
influences, as in Figure 3.1, The total enerpy U,

particular, if the system is in a state of energy ¢,
the reservoir,

= Ug + Uy is constant. In
o othen Uy — £ s the energy of

Total system Reservoir
{R.
. Constant energy 1, ’ Uy —e
‘ System
3
£

Figure 31 Representation of 2 closed total system decomposed into a
reserveir Sin thermal contact with a sysiein 8,

BOLTZMANN FACTOR

A central problem of thermal physics is to find the probability that the system

3 will bein a specific quabtum state s of encrgy ¢,. This prob
tional to the Boltzmann factor,

When we specify that 8 should be i the state
states of the 1o0tal system is rec

ability is propor-

5, the number of secessible
fuced to the number of geeessible states of the
reservoir &1, al the appropriate encrgy. That is, the number 9as 3 of states

53

Boltzmann Factor 59

ofUy)

Figure 3.2 The change of entropy when the
o{ly — )

reservoir transfers energy £ o the system, The
fractional effect of the 1ransfer on the feservoir
is senall when the reservoir is large, breause a

large reservoir will have a high entropy.

Emtropy of the reservoir

1
1
i
i
i
i
1
}
H
i
1

U,

it

U, M(-j

Energy of the reservoir ——=

accessibleto® + & is

5 ".1“"19-’-:; 1

because for our present purposes we have specified the state of §

If the system energy is &,, the reservoir epergy 15 Uy — £, The number of
states accessibe to the reservoir in this condition isga (U, — g),asin Figure 3.2.
The ratio of the probability that the system is in quantum stale { at eflergy
£ to the probability that the system is in quantum state 2 at energy &, is the
ratio of the two multiplicitics:

Ple;)  Multipliciy of @ at energy Uy — & galUy — sl_). 2)
Pley) Multiplicity of 6t at energy Ug ~ &3 galUy - 25)

This result Is a direct consequence of what we have called the ]'undamc.mal
assumption. The (wo situations are showa in Figure 3.3. Althoush questions
about the systern depend on the constitution of the reservolr, we shall see that
the dependence is only on the temperature of the reservoir.

If tiee reservoirs are very large, the multiplicities are very, very large numbers,
We write (2) in terms of the entropy of the reservoir:

Ple,) = C‘P[“ﬂ:(Uo “‘W_EMLJ]

P(s;}  exploglUy — &)

= explaails — &) = 6a(Ug — 8] (3)
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R &

Energy Uy - g, Energy Uy ey

gally ~ ) states 2allly — &) states

3 3
Staze | State 2
Energy ¢, Energy ¢,
(2) (b)

Figuﬂ: 1.3 The system in {a), (b) is in quantum state {, 2. The reservoir

has gsd Uy — £), _}ikﬂ,’u — £y} aceessible quantum states, in {a) and (B}
respectively,

With
Aog = 04Uy — £y) — aglliy — £3), 4
the probability ratio for the two states 1, 2 of the sysiem is simply

Ple,)
Ples)

= exp(Aog). (5)

Let us expand the entropics in (4) in a Taylor series expansion about o {U/).
The Taylor series expansion of f(x) about f(xp) is

df 1 Ef_f_)
fxo +a) = flx) + a(dx) + 5 ( s + o (&)

Thus

o (Us ~ &) = 0allo) — e(dos /B0y + -

oglUs) — g/t +---, 0]

where 1/t = (304/2U ). 5 gives the temperature. The partial derivative is taken

Partition Function

at energy Uy, The higher order terms in the expansion vanish in the Yimit of
an infinitely large reservoir.*

Therefore Av g defined by {4) becomes

Aog = —(5 — £)/T. (8}
The final result of (5} and {8) is

Ples)  exp(-ay/a}
Ple,) _c:\p(—e»/r) )

A term of the form expt{—e/t) is known as a Beltzmana factor. This result is
of vast utility. H gives the ratio of the probdl)silly of finding the system in a

sigle quastuny state ! to the probability of finding the system in a sinple
quantum state 2,

Partition Function

1t is helpful 10 consider the function
Z(t) = ¥ exp(~e/1) , (10

calicd the partition function. The summation' is over the Boltzmann facior
exp{—e,/t) for all states s of the system. The partition function is the pro-

porticnality factor betweer: the probability P(c,) and the Bollzmann factlor
exp{—e /1)

Ple) = 955(—;«_5'—”1’. an

We see that y Ple,) == Z/# = I: the sum of all probabilities is unity.
The result (11} is one of the most useful results of statistical physics, The
average energy of the system is U = (&) = ¥ £,P(z,}, ot
U= Zi&%&f_@ = {elog Z/ax). (12)

* Weexpand o{Ug — gandnot g({/, ~ ¢} because the expansion ol the latter quantity immediately
gives convergence difficullies.
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0.5
0.4 N o
W/’Md
. . 0.3 v
Figure 3.4 Energy and heat capacity ofa
two state system as functions of the temperature 02
. The energy is plotted in units of &, ’ c,
0.1 "
pat
]
0 | 2
7/8 =

‘ Example: Energy and heat cupacity of ¢ two stare system.

The average encrpy refers to those states of a system that can exchange energy
with a reservoir. The notation ¢ > denotes such an average value and is
called the thermai average or ensemble average. In (
for &) in conformity with commen practice; Uf w
and not, as earlier, to the system + reservoir.

12) the symboi  is used
ill now refer to the system

T e
T T

We treat a system of one partis
e opartivie is in thermad contagt
nd the energy and the heat cupacity of the
w partition {unction for the two states of

el with two stutes, one of cnergy 9 and one of cnerpy ¢, Tl
with a reservoir at femperature . We want to §
sysiem as a function of the temperature 1. T)
the particle is

Z = exp(=0/1) + exp{—efz) = 1 4 exp{— /7). {13}

The average energy is

cexpl{—g7) exp{— /1)
Ue gy =t 20 o 708 — 14
12 Z 1 + exp{—g/1) i4)

This unction is plotted in Figure 3.4.
Ilwe shilt the zer0 of energy and take the energics of 1h

e two states as —de and + g,
mstead of as 0 and g, the results appear diffzzently, We have

L= exple/2t} + exp{~—e/21) = 2eoshie/2q) | (15)

FPartition Function

and
. - (_%a) cxptE/zT) + (_55) exp{ —£/27} - _EM
(e 5 : T 7 2coshiei)
= —dstanh(g/21). h

The heat eapacity Cy of a system at constant volume is defined as
Cy = 1(dofin), , {17a}

which by the thermodynamic identity {34a) derived below is equivalent to the alternate
definition

Cy = (8U/dt),. (176}

Wehold ¥ constant because the values of the eaergy are caiculated for a systemata specified
volame, From (14) and (175},

]
- N (. okl (1)
érexpleft} + 1 t) {exple/n) + 1]
The same result follows from (16).
in vonventional unils C. is defined as T{ESI2TYy o7 {2U18T),, whenee
. £ ex P(Q”kBT}'W (15b)
(convensional) Cp = A”(Eﬁ) TopiT) T i

In fundamental units the heat capacity is dimensionless; in conventional uni\? it has lh-c
dimensions ol encrgy per kelvin, The specific heat s defined s the heat capacity per unit
SIS, _ .

Thehumpin the plotof heat capacity versus temperature in Figure 34 is called a Schouthy
anomaly. For r » g the heat capacity {18a} becomes

Cy = (g/20)% (19}

wNotice that Cp o 177 in this high temperature fimit. In the low femperature Emit the
temperature is small in comparison with the enesgy level spacing 6 For 1 « & we have

Cy = {gft)exp(—ef1). (20

The exponential factor exp{— £t} reduces Cy rapidly as ¢ decreases, because exp(— 12} — 0
asx — 0.
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[ T g

L L T DR

Definition: Reversible process,
way that the system is always in

EIETIETIINTITI TR

A process is reversible il carried ot in such a
finitesiralty close to the equilibrivm candition,
For example, if the entropy is a function of the voluase, any change of volume
must be carried out so slowly that the entropy at any volume ¥ is closely equal
io the equilibrium entropy a(V¥) Thus, the entropy is well defined at every
stage of a reversible process, and by reversing the direction of the change the
system will be relurned to its initial condition. In revessible processes, the
condition of the system is well defined at all times, in contrast to irreversiblc
processes, where usually we will not know what is going on during the process.
We cannot apply the mathematical methods of thermal physics to systemss
whose condition is undefined.

A valume change that leaves the system in the same quantum siate is an
example of an isentropic reversible process. I the system a}
same state the entropy change will be zero between any
cess, because the number of states in an ensemble {p. 1)
not change. Any process in which the entropy change v

reversible process. But reversibie processes are not li
cesses, and we sh

ways remains in the
two stages of the pro-
of similar systems does
anishes is an isentropic

mited to isentropic pro-
allhaveaspecial interest also in isothermal reversible processes.

BT

PRESSURE . ﬂ(

————ne

Consider a system in the quantur state s of ener

£y £. We assume g, 10 be g
funiction of the v

olume of the system. The volume is decreased slowly from ¥
te ¥ — AV by application of an external force. Let the volume change take
place sufficiently slowly that the System remains in the same quantum state s
throughout the compression. The “same” state may be characterized by its
quantum numbers (Figure 3.5) or by the number of zeros in the wi
The energy of the state 5 after the reversible volume change is

avefunction.
gV — AVY = g(V) — (de,JdVIAY 4 - -+ 21

Consider a pressure p, applicd normal to zll faces of a cube. The mechanical
work done on the syster by the pressurce in a contraction (Figure 3.6) of the
cube volume from Vo ¥ — AV appears as the change of encrgy of the system:

UV ~ AV) - UV} = AU = ~(deJdV)AY. S 3

Pressure 65
13
\ \ S \ TR
_ \ 316
i 9 3
\ \ 2
2 \ ™. 1 3
= 10
E \\ 12 :
| Lt 3
@ \ \ 9 3
203 =
\-—-_________u ; 1
GO 0.5 1.0 1.5 2.0

Vobheme, refalive scale

Figure 3.5 Dependence of encrpy on volume, for the encrpy tovels of a free
paiticle confined 10 a cube. The curves are labeled by n? = a2 + % + 02,
as in Figure £.2. The multiplicisies g are also given. The volume change here
is isotropic: a cube remains a cube. The enerpy range dc of the stales
represented in an ensemble of systems will increass in a reversible _
compression, but we know from the discussion in Chapter 2 that the width

of the energy range ftself is of no practical importance. 1t is the change in

the average encrgy tiat is impostant.

Figure 3.6 Volume change — AV in uniform
compression of a cube.
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Hare U denotes the energy of the system. Let A be the area of sne face of the
cube; then

AlAN + Ay + Az = AV ] (23}

ifall increments AV and Ax = Ay = Az are take

1 as positive in the compres-
sion. The work done in the compression is

AU = pA(Ax + Ay + Az) = LAY, 24
50 that, on comparison with {22), .
Py = —deJdV (25}
Is the pressure on a system iﬁ the state 5.

We average {25) over all states of the ensembie to oblain the average pressure
gy, usually written as p:

' U
=l 26
p (C.;,)ﬂ. l {26)

(I

where U = (&>, The entropy o is held constant in the derivative beeause the
number of states in the ensemble is unchanged in the reversible compression
we have described. \We have g cotlection of systems, cach in some state, and
cuch remains in this state in the compression,

The result (26) corresponds o our meclunical picture of the pressure on a
systens that is maintained in some specific state. Appendix D discusses the
result more deeply, For applications we shall need also the later result {30) for
the pressure on a system maintained a1 constant lemperature,

We look for other expressions for the pressure. The number of states and thus
the entropy depend only on [ and on ¥, for a fxed number of particles, so

that only the two variables U and V describe the system. The differential of
the entropy is

fa ‘o
la(UVy = { .\ U e | VL kY
da(U, V) (EU)V‘ + (”,)Uf (27)
This gives the differential change of the entropy for arbitrary independent
differential chun - JU and JV. Assume now that we sclect dU and d¥ inter-

dependently, 1 such a way that tle two terms on the right-hand side of (27}

!
I
{
i

Thermodynamic Identity

cancel. The overall entropy change do will be zero. If we denote these inter-
dependent values of U and ¥ by (3U), and {5 V., the entropy change will

be zero: :
0= (%0 (5, + il sV {18
T \au v ‘ v u( Je ' )
After division by {§V),,
éo\ (8U)), o
O =[] 2 =7
(GU)V @, (EV)J )

But the ratio (5U),48V), is the partial derivative of U with respect to ¥ at
constant g

(SUN N8V, = (sUav),. (30

With this and the definition 1/1 = (fo/éUY., Eq. (29) becomes

au fo
()6

Ry (26) b kefi-hand side of (31)is cquat te - p, whence

Thermadynamic [dentity
Consider again the dillerential 27} of the enlropy; substitute the new result for
the pressure and the definition of ¢ to abiain

do = au + Pav (33)
T 1

or

fi4a)
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This useful relation will be catled the thermodynamic identity, The form with N

variable will appear in {5.38). A simple transposition gives

dU = wdo — pd¥, ot dU = TdS — pav. (34b)

If the actual process of change of state of the system is reversible, we can
identify tdo as the heat added 1o the system and —~pd¥ as the work dore on
the system. The increase of energy is caused in part by mechanical work and
in part by the transfer of heat. Heat is defined as the transfer of energy between
two systems brought into thermal contact {Chapler 8)

HELMHOLTZ FREE ENERGY

The function

{33)

is called the Helmholtz frce cnergy. This function plays the puart in thermal
physics at constant temperature that the energy U plays in ordinary mechanical
processes, whick are always understood to be ot constant entropy, because no
inlernal changes of state are alfowed, The frec energy telts us how to bulunce
the coaflicting demands of a system for minimum cnergy and maximum en-
tropy. The Helinholsz free energy will be a minimum for a system & in thermal
contact wilh a reservoir @, if the volumc of the system is constant,

We first show that F is an extremum in cquilibrivm at constant t and V.
By definition, for infinitesimal reversible transfer from 6t to 3,

dF = dU, — s, (36)

at constant temperature. But 1/r = (8a4/2l)y, so that dU; = ods at con-
stant volume. Therefore {36} becomes

dFy =10, 37

which is the condition for F to be an extremum with respect to all variations
atconstant volume and temperature, We like F because we can calculate it from
the energy eigenvalues g, of the system {see p. 72).

Melmboliz Free Energy

Cotment, We can show that the extremum is 2 minimum, The total energy is ¢ =
Uy + Uy . Then the total entropy is

0= 0y + oy = ag(l — Uy 4 ay(Uy)

= 5,(U) — Uslfou/dUsdy x + ag{ls). {38)
We koow that
(ConfcUslyx = 1f1 , (39
so that (38) becornes
a = o, {l'} ~ Ffe, {40)

where Fy = Uy — 1ay is the free cnergy of the sysiem.. Now o, (U} is constant; and we
recallthat 0 = o5 + 65 in equilibrium Is 2 masimum with respect 1o Uy . L follows from
{10 that Fy must be a minimem with respect 10 U, when the system is in 1he most probable

cenfiguration. The free energy of the system at constant t, ¥ will increase for any departure
from the equilibrium configuration.

Example: Minimum property of the free eneryy of a paramagnctic spstemt, Consider the
model system of Chapter |, with Ny spins up and N spins down, Lel N = Ny + Ny
the spin excess is 25 = Ny — N, The entropy in the Sticling approxinution is found
with the help of an approximate form of (1.31):

£ 1 ]
als) = ~GN + s)log(lz + ;\) - (EN -~ 5)10g<~j = J%) 40

Fhe encegy in a magnetic Geld Bis — 2sa8, where i is the magnetic moment of an clemen-
tary maguet. The feee energy function (1o be called the Landau function in Chapler 10) is
Folrs,BY = Uis,B) ~ 1a(s), or

1 I s i I s
FirsB) = —2smB + 5N + s rlog 5t N + EN — s jlog 57wt

(42)
Atthe minimum of F (1,5, B) with respect {o s, this [unction becomes equal to the equitibrivm

free energy F(r,B). That is, Fy{r,{s),B) = F{z.B), because {s) is a function of r and B, The
minimum of F; with respect to the spin excess occurs when

N+ 2s

(E‘Flfé'S}‘_B = 0= —-2mB —i— rlog m. {43} .
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Thus in the magnetic field B the thermal equilibrium value of the spin excess 2s is given by

N + (25 _ . o fexp{2mBj1) — 1
N <2$; = exp{2mB/t): {28) = N(aﬁu{mbnﬂh) T i) . (44)

o1, on dividing numerator and denominator by exp(mB/r),

25y = Ntanh(mB/1). {43)

The magnetization M s the magnetic moment per unit volume. If n is the number of spins

per unit volume, the magnetization in thermal equilibrium in the mapnetic field is

M = QmV = s tanh(mB/e). {46}

The free encrgy of the s

ystem in cquilibrium can be obtained by substituling (45) in (42},
It is easier, however,

to-obtain F directly from the partition function for pne magnet:
Z = exp{mB/1) + exp{—~mBfzj = 2cosh{mhf). 4N

Now use the refation F = 1 log Z as derived below, Multiply by N to obtain the result
for N mapnets. (The magnetization is derived more simply by the method of Problem 2)

LY i N9 W o5 M I Lo T WS T YV et e A

Differential Relations

The differential of F is
df‘:thwrda—-adr,
or, with use of the thermedynamic identity (34a),

dF = —gdv ~ pdV , {48}

for which

: —

These relations are widely used.
The free energy F in the result p = —(EF/EV), acts as the effective energy
for an isuthermal change of volume; contrast this result with (26). The resull

Culeulation of F from 2

may be wrillen as

¢l ca
L R - 56
P (5 V): + T(c’ V), , (50}

by useof F = U — 4. The two terms on the right-hand side of {50} represent
what we may call the encrgy pressure and the entrapy pressure, The cnergy
pressuie —(GU/8V), is dominant in most solids and the entropy pressure
t{da/2V), is dominant in gases and in elastic palymers such as rubber {Problem
10). The entropy contribution is testimony of the importance of the entrony
the naive feeling from simple mecharics that —dUMY must tel} everything
about the pressure is seriously incomplete for a process at constant temperature,
because the citropy can change in response to the volume change even if the
enecrgy is independent of volume, as for an ideul £as at constant temperature,

Tt o M A o T e o F R A I T O Ty —~

Fir i |

Muaswell relution.  We can now derive one of a group of useful thermodynamic refations
called Maxwet! relations. Form the eross-derivatives ¢UFiCV 0t and 325/ 7 ¥, which must
be equal 1o each other. I follows from (49) that

(eafeV), = (ép/en), (34

a relation that is rot at all obvious. Other Maxwell selations will be derived later at
appropriate points, by similar arguments. The methodology of cbtaining thermody-
namic refations is discussed by R. Gilmore, 1. Chem. Phys. 75, 5964 {1981}

B T R T e T e ety tmererr e T

P TR N Ty gy

Calculation of F from Z

Becawse Fs U~ wand g = —{cF/ét)y, we have the differential equation

Fo= U 4+ «&F/ét)y, or ~T2AFfE = U, {(52)
We show that this cquation is satisfied by
Flt = —logZ | (53]

where Z is the partition function. On substitution,

CERYOT s = og 2 0r = — U (34

7!
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by (12). This proves thal

|

F=—zlogZ (53

satisfies the required differential equation (52).

It would appear possible for F/1 to contzin an additive constant « such that
F= ~tlogZ + xr. However, the entropy must reduce (o log gy whea the
temperature is so low that only the g, colncident states at the lowest energy £
are occupied. In that limit Iof- Z —logg, — g5fr, 50 thal g = — cFfer —
#rlog Z)/ét = log g, only if % =

We may write the resolt as

Z = exp{— Fft); {56}

and the Boltzmann factor {11) for the occupancy probability of a quantum
state s becomes

Ple) = ‘:ﬁ%‘f’-’l’ = exp[(F ~ £)7]. (57

1IDEAL GAS: A FIRST LOOK
One atom ina box, We calculate the partition function Z, of one atom of

mass M [ree to move in a cubical box of volume V = L2, The orbitals of the
free pasticle wave equation —(h/2M )V = g are

Wix,p.2) = Asin(ngex Lsin{n,ny/LYsin(n.mz/L) | {58)

where n,, n,, u, ate any positive integers, as in Chapter 1. Negative tntegers do

not give independent orbitals, and 2 zero does not sive a solution. The energy
values are

2
E, = 21‘;4 (L) n? + n,2 o+ a . (59

We neglect the spin and all other structure of the atom, so that a state of the
system is entirely specified by the valuas of n,, Hy N

Tdeal Gus: A First Look
The partition function is the sum over the states {39);
= ZZ D expl ~hix?n? + n? + o 2MLY. {60)

[

Provided the spacing of adiacent energy values is small in comparison with 1,
we may replace the summations by i tntegrations:

Zy = f: dn, f: dn, j: dngexpl-a’ln? + 02 + 0% (61}

The notation o = h*2*f2M L% is introduced for convenience, The exponential
may be wrilten as the product of three factors

exp{—a’n ) expl— 1’11,2.]‘::xp( — 1)

1

so that

© ) 3 o 3
Z, = (J; dnmxp(—»a”n,’)) = (I/at}’(fo d,\'exp(—le) = ¥yt

whence

v
Zy e (Zﬁ;;mu‘;)uﬁi = ngV = ngfn | (62}

in terms of the concentration n = 1/V.
Here

H
mg = (Mr/2mh?)H? % _ 63)
I

is called the quantum concentration. It is the concentration associated with ane
atom in a cube of side equal to the thermal average de Broghe wavelength,
which is z length roughly equal to h/M (> ~ BAMDYE. Here () is a thermal
average velocity. This concentration will keep turning up in the thermal physies
of gases, in semiconductor theory, and ia the theory of chemical reactions.

For heliom at atmospheric pressure at room lemperature, o = 25 x
10'%em™* and ny = 0.8 x 10*3cm ™3, Thus, rr/;zQ 3 x 1075, which is very
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small compared to unity, so that helium is very dilute under normal conditions,
Whenever i/ng <« 1 we say shat the £a5 is in the classical regime. Ay ideal fas
is defined s a gas of noninteracting atoms in the classical regime.

The thermal average energy of the atom in the hox is,asin(12),

3. £,exp(-~£,/7)
U= j‘“““‘é‘“‘"""“ = }dlog Z, /1) , {64)

1
because Z, "' exp(— £ /1)is the probability the system is in the state 5, From {62),
fog Zy = —3}lop(l/1) + terms independent of 7 ,

so thal for an ideal gas of one atom

1 U = 47, (65)

If v = &, T, where kp is the Boltzmann constant, then U = 3k, T, the well-
known result for the energy per atom of an ideal gas.

The thermal average oceuaney of ‘% free particle orbital satisics the in-
cqualily '

i erpl—e iy < 2,71 = ning ,

which sels an upper limit of 4 x 107 for the occupaney of an orbital by a
helium atom at standard concentration and temperature. For the classical
tegime to apply, this beeupancy must be « 1. We note that £, as defined by (59)
Is always posilive for a free atom,

e - e e e
. . o e — I AR A 3
T T T Tt g v e T 1

Fxample: N atoems ina box. There follows now a tricky argument that we will use
temporarily until we develop in Chapter 6 a powerful method 1o deal with the problem of
many noniateracting identical 2ioms in a box, We first Licat an ideal pus of N atoms in a
box, all atorus of dilferent species of dJiffercot isotopes. This is a simple extension of the
one atom result. We then discuss the major correction lactor that arises when all atoms are
identical, ol the sume isotope of the sume species.

e

Ideal Gas: 4 Firse Look

OOEOOOE

Figure3.7 An v

particle system of free particles with one particle in each
of N boxes. The e

neegy is N times that for one particie in one box,

*  a . .
450 Figure 38 Atoms of different species in g
v : single box,

If we have dnz atom in cach of N distinet boxes (Figure 3.7),

the partitien function is the
product of the separate one atom partition functions:

Livmer= Z () Z,(2) - Z(N) | (66)

because the product on the fight-hand side

includes every independent state of the N
boxes, such as the state of ¢nergy

SO} b rg2) 4 (N (67)

where x, 8,.. -5 denote the arbital indices ol atoms in the successive boxes. The result (66)

also pives the partition function of ¥ nenintericting atoms all of diffeseny species in
single box (Figure 3.8

Z18) ZAENZ(+)--- 2 4A)

this being the same problem because the energy cigenvalues are the same 15 for {67). 10 the
masses of alf these different atoms happened to be the same, the totaf partition functian
would be Z,%, where 7, is given by (62).

Whea we consider the more common probiem of N ideptic
have 1 correat Z," because it overconnis the distinct stares
systen. Particlas of 1 single species are aot distinguishuble: electrons do not CUrry registra-
tion numbers. For two tabeled particles & and » n a single box, the s1ate ELD) + fde)
saud the state e« ) + CA@ ) are distinet states, and both combinations must be counted in
Uie partitien {enction. But far bwo identical particies the state of ENeipy £, + & n inic

identical state as fe T £, and only one entry is 1o be made i the state sum in the pastition
function,

al particies in one box, we
of the ¥ identical particle
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Il the orbital indices are all different, cach entry wit
entry should occur only once if the particles are identic
a [aclor of

Loceur N!times i Z,%, whereas the
al. Thus, Z,™ overcounts the states by
N1and the correct partition function for N densical particles is

11 E
AL U oo
by ZN e N g ¥) : {68)
in the clossical regime. Here ng = {8M1/224%2 2 from {63).
There is a step in the argument where we assume that all N occupicd orbitals ar always

different orbitals. B i no simple matter to evaluate dircal

y the error introduced by this
approximation, but later we will confirm b

Y another method the validity of (68) in the
clussical regime 1 <« ng. The N! (actor changes the result for the entropy of the ideal gas,
The entropy s an experimentally measurable quantity, and it has been confirmed that the
NEfactor is correet in this low concentration timit,

e in Gl D T SO

T e T B T N R A S

sl |

Encrgy. The energy of the ideal gas foliows from the N particle partition
function by use of (12): -

U = X2log Z,j51) = INT | {69)
consistent with {65) for one particle. The free encrgy is
F= —tlogZy = —tlogZ,* + tlog N, (70}

With the catlier result Z, = ngV = (M1/22h%*V and the Stirling approxima-
tionlogN! = NlogN — N, we have
F= —tNlog[(M1/2nh%3 2] + «NlogN — N, )

From the freg energy we can caleulate the entropy and the pressure of the ideal
gas of N atoms. The pressure follows from (493

p = ~{3F/aV}, = No/V , (712)

or

pV = Nt , ' (13)

{deal Gas: A First Look

which is called the ideal gas law, In conventional Linits,

Vo= Nk,T, (7
The entzopy foflows from (49):

¢ = —(Fen), = Niog[{M/2ah?)P V] + 3N - NlogN + N

or

& = Nflog{ng/m) + 1], (76)

with the concentration n = N/V. This result is known as the Sackur-Tetrode
equation for the entropy of a monatomic ideat gas. It agrees with experiment.
The result involves # through the lerm Ny, so even for the classical ideal gas
the entropy involves a quantum concept. We shail derive these results again in
Chapter 6 by a direct method that does not explicitly involve the N1 or identical

particle argument. The energy (69) also fallows from U= F 4 1o; with use of
(7) and (78) we have U = 3Ny,

e e - - , e e
bt ettt e e e T
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Example: Equipartition of energy. The energy U = INT from (69} is ascribed to a contri-
bution 4« from each “degree of freedom™ of each particle, where the aumber of degrees of
freedom is the number of dimensions of the space in which the atoms move: 3 in this
example. In the classical form of statistical mechanics, the partition function contains the
kinetic energy of the particles in an inte

gral over 1he momentum components p,, p,, p;-
For one free particle

z, < [[fexpl~ (o + p,? + p.5/2Mx1dp,dp, dp, | )

a result simitar to (61). The limits of integration are + o for each eompaonent. The thermal
average energy may be calculated by use of (12) and is equal to $r.

Thie result is generatized in the classical theory. Whenever the hamiltonian of the system
is homogeneous of degree 2 in a canonical momentum component, the classical limit of the
thermal average kinetic energy associated with that momentam will be dr. Further, if the
hamiltonian is homogeneous of degree 2 in a position coordinate component, the thermal

-average potential energy associated with that coordinate will also be br. The result thus
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3
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[—
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2 i
/ Rotation
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Translation
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10 25 30 15100 256 500 1000 2500 5000

Temperature, K

Figure 3.9 Heal capacity at constant volume of one molecule of H, in

the gas phase. The vertical scale is in fundamental units; to obtain a value
in conventional units, multiply by ky. The contribution from the three
transtationat degrees of reedom is +: the contribution at high femperatures
from the two rolalicaal degrees of reedom is 1; and the contribution

from the polential and kinclic energy of the vibrational motion in the

high tempeeature limit is 1. The dassical limits are attained when

T3 relevant energy level separations’,

applies to the harmonic oscillator in the classical limit. The quantum results for the har-
maenic oscillator and for the diatomic rotator are derived in Problems 3 and 6, respectively,
At high temperatures the dassical limits ace altained, as in Figure 35,

[ st et

e L T S T U A E AL T DTN RO |

Example: Entropy of mixing, In Chapter I we calculated the number of possible arrange-
ments of A and B in a sobid made up of ¥ ~ ¢ atoms A and [ atoms B, We found in (1.20)
for the number of arranpements:

ud {7%)
N =
oG = T
The ertropy associated with these ArFRNgEMEntS is
6{N1) = logg{¥,i) = log Nt — log{N — 1)t — logt! R (79}

and is plotted in Figare 3.00 for N = 20, This contribution {o the totad entropy of an alloy

fdeal Gas: A First Look

oL N

Mixing entropy
o

0 Q.2 04 0.6 98 LG

X
Alloy composition A;_, B,
Figure 310 AMixing eniropy of a random binary afloy as a function of
he proportions of the constitent atoms A and B. The curve plotted
was caleulaled for a total of 20 atoms. We see that this entropy is a
maximom when A and B are present in equal proportions {x = .5),
ard Lhe entropy is zero for pure A or pure B,

system is cailed the entropy of mixing. The result (79) may be put in a more convenient form
by use of the Stirling approximalion:

alNg) = NlogN — N — (N — t}log(N — 0+ N —1t-r1logt +1

NlogN — (N ~ log{N — ) — tlogt
= —(N — njlogil — yN) — tleg(t/N} ,

it

or, with x = /N,

glx) = = N[(1 ~ x}log(l — x) + xlogxl 150}

This result gives the entropy of mixing of an atloy A, . B, teated as a random (he
tengous) solid solution The problet is Joy cloped in detait in Chapier 11

We ask: Is the homogeneous selid solution the equilibrium condition of & mixture of A
and B atoms, or is the equitibrium 3 two-phase system, suvh as a misture of ervaallies of
pure A and crystalites of pure B? The complete answer is the basis of much of the sciz
of metallurgy: the answer will depend on the temperature and on the interatomic or-
action energies Uy ., Uy, and U as n the special case that the interaction energies betw oen
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AA, BB, and AB neighbor pairs are ali equal, the homogeacous solid solution will have a
lower free energy than the corresponding minture of coystallites of the pure elements, The
free eneray of the solid solution A, __8, is

Foe Fg—wlx)= Fy + NT[{t — Nlog(i — &) + xlogx}, (81}

which we must compare with
F=(l = x)Fg + xF, = F, . {82)

fer the mixture of A and B crystals in the proportion{l ~ x}1o0 x, The entropy
is always positive—alt entropies are positive—so that the sol
{ree energy in this special case.

- There is a tendency for at least a very small proportion of any element B 1o dissalve in
any other element A, even if a strong repulsive energy exists belween 2 B alom and the
surrounding A atoms. Let this reputsive energy be denoted by U, a positive quantity. il a
very small proportion ¥ « | of B aloms is preseal, e totad repulsive energy is xN I, where
a2 is the number of B atoms, The mixing entropy (80) is approximately

of mixing
id solution has the Jower

o= —~xNlogx (83)

_in this limit, so that the free cnergy is

Fix) = N(xU + txlogy) , {34}
which has 8 minimum when
CFjox = N(U + tlogx 4+ 1) = 0, (85)
or
x = exp{—exp(— Ut {86}

This shows there is a natural impurity content in all crystals.

e U A I S o T P RIS

SUMMARY
1. The factor
Ple) = exp(—g,/t)2

is the probabitity of finding a system in z state s of energy ¢, when the system

e

Problens

is in thermal contact with a large reservoirat te
parlicles in the system is assumed constant,

2. The partition function is

mperature 1. The number of

Z = ) exp{—gf1).
3. The pressure is given by

p = —(EUJEV), = 1(dc)eV),.

4. The Helmholtz free energy is defined as F = ¢/
equilibrium for a system held at constant T, V.

S.0= —(0F/&),;  p= —(2FRV),.

- F o= —tlog Z. This result is very uscful in eateiltions of F and of gquantities
such as p and ¢ derived from F,

~ Ter. 1t is a minimum in

]

7. For as ideal monatomic gas of N atoms of spin zerq,
Zy = VYNNI,
i = NV « ny. The quantum concentration Ny = {Mt/2uh®y? Further,

PV = Ni;, o= Nlloglng/m) + §1; €y =

il

N.

. A process is reversible if the system remains infinitesimally close to the
equilibrivm state at a!l times during the process.

PROBLEMS

1. Free energy of a two state system.  {a} Find an expression for the free
energy as a function of 1 of a system with two states, one at encrgy 0 and one
atenerpy (b} From the frec cuergy, find cxpressious for the energy wnd cntropy
of the system. The entropy is plotted in Figure 3.11.

2. Magnetic susceptibility, (1) Use the partition function to find an exact
expression for the magnetization A end the susceptibility y = JATAIB as a
function of temperature and magnetic ficld for the model system of magnetic
moments in a magnetic field, The result for the magnetization is Af =
nortanh(mB/fz), as derived in {46) by another method. Here n is the particle
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Figure 3.11 Entropy of a two-state system as a functicn
of tjc. Notice thay i)~ logdas s .
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Figure 312 Plot of the 1o1al magaclic moment as a function

of mf1. Notice that a1 Jow B/t the moment is a Heear function
of mB/t, but at high mB.1 the moment tends 1o saturate.

concentration. The result s plotted in Figure 312 (b} Find the free cnergy and
express the result as a function only of rand the parameter v = M {c) Show
that the susceptibility is % = umtin the Hmit mB <« 1.

od 3. Free eacrgy of a harmonic oscilloror. A one-dimensional harmonic oscil-
lator has an bifinjte series of equally spaced energy slates, with £, = shus, where

Problems

2 /
5 /
eéa
E
i3]
% 1 2 3

e A p—

Figure 3.13  Entropy versus temperature for harmonic
oscillitor of frequency w,

§ is a positive integer or zero, and o is the classical frequency of the oscittator,
We huve chosen the zero of cnergy at the stute s = 0 {4} Show that for a
harmonic oscillator the free energy is

Fe=rlog[l ~ expl~ haft]. {87

Naote that at high temperatures such 1hat 1 » i we may expand the argumant
of the logarithm to obtain F ~ ¢ logihw/t). {b) From (87} show that the entropy
is

hmfz
Ry ARSS P o S — hew/t). (S8)
a xplhore) n {)5{ expf lw,ut}}

The entropy is shown in Figure 3.13 and the heat capacity in Frgure 3.1,

4. Energy fluctuations., Considera system of fixed volume in thermal contact
with 4 reservolr. Show that the mean squace fluctuation in the encray of the
system is

e = &)y = (U )y (59)
Here U is the conveational symbel for <ed. Hine: Use the partition function Z

lo relate ¢U/Er 1o 1he mean square fluctuation, Also, multiply out the erm
{ )% Note: The temperature 7 of a system is a quantily that by definition docs
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)

/

Finure 3.14  Heal capacity versus temperature
fur huzinanic oscitlator of frequercy w. The
liuricomtal seale s in enits of , he, which is
identical with T 8¢, where 8, is calted the
Einstein temperature. In the high lemperature
limit Gy — kg, or !in fundsmental units. This
valuz is known as the classical valua, At fow
temperatures Gy de:reuscs'cxponer.:ially.
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&
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ot fluctuale in valug when the system is in thermal contact with a reservoir.
Any otber atiude would be inconsisient with our definition of the lemperature
ol a system. The energy of such a system miy fuctuate, but the temperature
doss nol. Some workers do not adbicre to a rigorous definition of temperature.
Thus Landau and Lifshitz give the result

LAy = 140, : (90

but this should be viewed as just another form of (89) with At set equal to
AU;C,. We know that AU = Cy Ar, whence (90) becames QALY = 1°Cy,
which is our result (89).

5. Overhauser effect. Suppose that by a suitable external mechanical or
elecirical arrangement one can add 2 o the cnergy of the heat reservoir
whenever the reservoir passes 1o the system the quantum of energy & The net
increase of energy of the reservoir is {z — 1)e. Here a is some numerical factor,

positive or negative. Show that the effective Boltzmann factor for this abnormal
sysiem is given by

Pls) e exp[—(1 - a)e/r). 1)

This reasoning gives the statistical basis of the Overhauser effect whereby the
nuclear polarization in 2 magnetic field can be enhanced above the thermal
equilibrium polarization. Such a condition requires the.active supply of energy
1o the system [rom an external source. The system is not in equilibrivm, but is
safd 10 be in a steady state. CL A. W, Overhauser, Phys. Rev. 92, 411 {1953).

6. Roration of diatomic molecufes. In our first look at the ideal gas we con-
sidered only the translational energy of the particles. But molecules can rotate,

Froblenss

with kinetic energy. The rotaticnal motion 5 quantized; and the energy levels
of a distomic molecule are of the form

ef) = jlj + llgg (52)

where f is any positive integes including Zero; j =
of cach rotational fevel is g fy =
for the rotational states of one m

0,k 2. .. The multiplicity
2j + L {a) Find the partition function it}
olecule, Remember that Z is a sum over alt
stutes, not over all levels—this makes a difference. (b} Fvaluate Z
mately for = » g, by comveting the sum to an integral (¢) Do the same for
T < £5, by truncating the sum afier the second term. (dj Give expressions for
the energy U and the heat capacily C, us lunctions of ¢, in both limits. Observe
that the rotaticnal contribution to the heat capacity of a diatemic moleculs
approuches 1 {or, i conventionul units, Eybwhen v o g fe) Sketch the behavior
of U{r) and Cix), showing the limiting behavioss for 1 — w0 and ¢ — 0.

7. Zipper prablem, A zipper has N links: cach ek has o stale in which it is
closed with encrgy 0 and w state i which it is open with cacrgy £ We require,
however, that the zipper can only unzip from the keft end, and that the link
wuwmber 5 can only apen if all links to the Jefi (L2, — Dyare alecady open,
(a} Show that the partition function can be summimied in the form

T} approxi-

— expl =N g

z = Lz espl=V + D] ©3)
P — expl—g/1)

(b) In the limit & » 1, find the average number of open links. The model is a

very simplified model of the unwinding of two-stranded DNA moalecules—see

C. Kittel, Amer. J. Physics 37, 917 (1969,

& Quantunt concentration, Consider one particle confined to & cubs of side
L;the concentration in eflfect js n = I/L2 Find the kinetic energy of the particte
when in the ground orbital. There will be a vilue of the concentration for which
this zero-point quantum kinetic energy is equal to the temperature z. (At this
concentration the occupancy of the lowest orbital is of the order of unity; the
lowest orbital always has a higher occupancy than any other arbital.} Show that
the concentration n, thus defined is equal to the quantum concentration ng
defined by (63), within a factor of the order of unity.

3. Partition function for two spstems. - Show thal the partition function
Z{1 + 2 of two independent systems I and 2 in thermal contact at a common

temperatuee 7 is equal to the product of the partition {unctions of the separate
systems: :

20 +2) = Zize). . (54
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10. Elusticity of polymers. The thermodynamicidensity for a one-dimensional
system is .

Ctde = dU ~ full (9%)

when [ is the external force exerted on the line and Jf is the extension of the
lire. By analogy with (32) we form the derivative to find

L. (‘i) . (96)
T éljy

The direction of the force is oppoesite to the conventional direction of the
pressure.

We consider 2 polymeric chain of N links each of length g, with each link
equally likely to be dirccted to the right and 1o the laft. {2) Show that the number
of arrangements that give s head-ig-tail length of | = Zistp 15

, . INI o7
g =s) 4 g(Nos) = o 1)

{b) For |s] « N show that

a{l) = log[2g(N,0)} — P*/2Np2 (98)
(c) Show that the force at extension Jis  ~

J = ItNp*. 99

The force is proportional to the temperstuse. The force arises because the
polymer wants 1o curl up: the entropy is higher in a randon coil than in an
uncoiled configuration. Warming a rubber band makes it contract: Warming a
steel wire makes it expand. The theory of rubber clasticily is discussed by
H. M. James and E. Guth, Journal of Chemical Physics 11, 455 (1943); Journal
‘of Polymer Science 4, 153 (1949); see aiso L. R. G. Treloar, Pliysics of rubber
elasticity, Oxlord, 1958.

Il One-dimiensienal gas.  Consider an ideal gas of N particles, each of mass
M, confined to a one-dimensional Hne of length L. Find the entropy at wmpera-
ture 7. The particles have spin zero,
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Chapter 4: Thermal Radiation and Planck Distribution

[ We consider] the disiribution of the energy U among N escillators of frequency
v, If U is viewed as divisible without limit, then an infinite monber of
distributions are possible. We consider however—and this is the essential point
of the whele calewlation—U as made up of an entirely determined number of
finite equal paris, and we make use of the natural constant h = 6.55 » 1077

erg-sec. This constant when nmudtiplied by the common frequency v of the
oscillutors gives the element of energy e inergs . . ..

Al. Planck

Planck Distribution Function

PLANCK DISTRIBUTION FUNCTION

The Planck distribution describes}};&: spectrum of the electromagaetic radiation
in thermal equilibrium within a cavily. Approximately, it describes the emission
spectrum of the Sun or of metal heated by a welding torch. The Planck distribu-
tion was the first application of quantum thermal physics. Thermal electro-
magnetic radistion is often calied black body radiation. The Planck distribution
also deseribes the thermal energy specirum of lattice vibrations in an elastic
solid, .

The word “mode” characterizes a particular oscillation amplitude pattern in
the cavity or in the solid. We shall always refer 10 w = 2z as the [requency of
the radiation. The characteristic feature of the radiation problem is that a mode
of oscillation of frequency w may be excited only in units of the guantum of
eneegy hew. The eneegy £, of the state with s quanta in the mode is

g, = shw , (1

where 5 is zero or any positive integer (Figure 4.1). We omit the zcro point
energy 1ho.

These energics are the same as the energies of a quantum harmonic oscillator
of frequency o, but there is a difference between the concepis. A harmonic

59

‘ s =4
de
s =3
' Figure 4.1 States of 2n oscillator that
3 represents a mode of frequency w of an
5s=2 electromagnetic beld, When the oscillator is in
t the orbital of energy shew, the state is equivalent
Ze to s photons in the mode.
s=1
£
s5=0
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a Ly

£ :ﬁub

/’\

a iy
u € = iy,

Figure 4.2 Mepresentation in one dimension of two clectromagnetic
modes a ung b, of frequenay w, and w,. The smplitude of the electra-

magnetic fiekd is suppested in the figutes for one photon and Lwo photon
occupancy of each mode,

oscillator 15 a localized oscillator, whereas the electric and magnetic énergy of
an efeciromagnetic cavity mode is dislﬁibulcd throughout the interior of the
cavily {Figure 4.2). For both problems the energy cigenvalues are integrat
multiples of hey, and this is the reason for the similarity in the thermal physics of
the two problems. The fanguage used to deseribe an excitation i different: s for
the osaillator is called the quantum number, and s for the quantized electro-
maguetic mode is called the number of photons in the mode.

We first caleuiate the thermal average of the numbsr of photons in a modz,
when these photons are in thermal equilibrium with a reservoir at a tem perature
t. The partition function {3.10} is the sum over the states {1):

Z =Y exp(—shoft). (2)

This sum is of the form E,\", with x = expl - hex/r). Because x is smaller than 1,
the infinite serics may be summed and has the value 1/(1 — x), whence

1
T ~ exp(— hwjty _ (3)

Planck Law and Stefun-Bolizmann Law

The probability that the system is in the state s

of energy shaw is given by the
Boltzmann factor‘:

P(s). -= expl ——Z.sﬁw['&]..

4
The thermal average value of 5 is
{s) = ¥ sP(s) = Z7 1% sexpi — sheifz), (5)
s=0
With y = hes'r, the summation on the right-hand side has the form:
o ...__ “'Y" .
Ysenpl—sp) = r Fexpl—sy)
_ e 1 ~ expy _;'f') -
T\ T T expl(— 1§
From {3} and (5) we find
expl—~y)
= e
or
=
ST (6)
explheo’) — E
1

This is the Planck distribution function for the thermal average number of
photons {Figure 4.3) in a single mode of frequency w. Equally, it is the average

number of phonons in the mode. The resull applies 10 any kind of wave ficld
with cnergy in the form of (1),

PLANCK LAW AND STEFAN-BOLTZAANN LAV
The thermal average energy in the mode is

fen

& = (Hhw = exp{haft) — 1 @

9!



Figure 4.3 Planck distribution as a function

of the reduced temperature 1 e, Here {sfw))

is the thermal average of the number of

photons in the mode of freguency o, A plot of 05
{sten)y + 4 is also given, where 4 is the effective :
zero point occupancy of the mode; the dashed

line 1s the classical asymplole. Note that we

write

Chapter 4: Thermal Radiation and Planck Distribution

1.0

s{w)

(sy + = 1 coth{hen/2z)

7 My —mme

The high temperature limit t » ho s often called the classical limit. Here

expiha/t) may be approximated as 1 + hes/t + --+, whence the classical
average energy is

ey = 1. (8)

There is an infinite number of efectromagnetic modes within any cavity. Fach
mode n has its own frequency w,. For radiation confined within a perfectly
conducting cavity in the form of a cube of edge I, there is a set of modes of the

form
E; = E,psinctcos(nmx/LYsin{nmny/L) sinfnnzfL} , (9a)
E, = Eyasin wtsin{nax/Lycos{n,my/Lysin{nnzfL) , {9b)
E, = E.gsinwtsinfnnx/L)sin{nxy/L)cos(nnzfL). {9¢c)

Here E,, E, and E, are the three electric field components, and E,q, Eyp and

E.q are the corresponding amplitudes. The three components are not indepen-
dent, because the field must be divergence-free:

. 8E, OE, @E,
e s Sy o o

Planck Law and Stefan-Bolizmann Law

When we insert (9)into (10} and drop all commen factars, we find the condition
Eione + Eyony + Ecgn, = Eg-n = 0. (1)

This states that the field vecfors must be perpendicular to the vector n with
the components n,, m, and #,, so that the clectromagnetic field in the cavity is a
transversely polarized ficld. The polarization direction is defined as the direction
of Eg.

For a given triplet n,, 0, n, we can choose two mutually perpendicular
polarization directions, so that there are two distinct modes lor cach iriphet
Hyyfy, .

! Ou substitution of 9 in the wave cquation

-2 a3 3 nl s
1 1 ia * & I‘.:

et Pl o T fl; = Ve {12)
[N (5 L T ey S &

with ¢ the velocity of light, we find

it + a2 + ) = Wl (13

: This determines the frequency w of the mode in terms of the triplet of integers
t, 1, 1, Hwe define

0= (”xz + nyz + nzz}m . ([4}
then the frequencies are of the form
w, = nac/L. {15)

The total energy of the photeons in the cavity is, from {7),

he,
U 2 = L o — 4o

The sum is over the triplet of integers u,, n,, n,. Positive integers zlone will
describe all independent modes of the form (9). We replace the sum over n,,
ny, 1, by an integral over the volume clement dn, dn, dn, in the space of the mode
indices. That is, we set

Z(‘... )= %f:tlm:z drl(f L I an
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where the factor | w (5)? arises beca
involved. We now multiply
two independent polarizat
se1s of cavity modes), Thus

use only the positive octant of the space is
the sum or integral by a factor of 2 because there are
ions of the eleciromagnetic field (two independent

z hw
U o= 2 —
nfﬂ din explho ) — 1
az !
= (zlhe/l. S S
(e )ﬁs dnn explhenn/lz) -~ 1 * (18)

with {15} for @, Standard practice is 1o iransform the definite integral to one
over a dimensionless variable, Wesety = mhenjlr, and (18) becomes

3
NPT et (7 e X
U s {ndhe/LY(tLinhe) fn dx x T (1w
The definite integral has the value a*1s;

it is found in good standard tables
such as Dwight (cited in the general refere

nces). The encrgy per unit volume is

;'W_—‘_'—*'—"_"—%']

] a?

B ETe e L 20)
: ‘

..... —_— DAY
with the volume V = 3, The result tHat the radian{ energy densily is propor-

tional to the fourth power of the temperature is known as the Stefan-Boltzmann
law of radiation,

For many applications of this theory we decompase {20} into the spectral
density of the radiation, The spectrat densily is defined as the energy per unit

volume per unit [requency range, and is denoted as w,. We can find u,, from
(18) rewritten in terms of oy:

h e w?
UV = tdou, = < (do — n
/ fuc)uw HZ(}ancxp(hw,r) i {2y

50 that the specteal density is

I o 22)

} _

Planck Law and Stefan-Boltzmans Law

N

SN

4} 1 2 3 4 b 6 7 8

fi 1

Figure 4.4 Plot of Fffe* ~ withx = hwft. This
function is involved in the Planck radistion law for the
spectrad density uy, The temperature of a black body may
be found from the frequency erg,, at which the radiant
erergy densily is a maximum, per unit frequency range,
This frequency is directly proportionat Lo the iemperalure,

This result is the Planck radiation law; it gives the frequency distribution of
thermal radiation {(Figure 4.4} Quantum theory began here. .
The entropy of the thermal photons can be found from the relation (3.34a)

at constant volume: do = dU/fr, whence from 209,

dpty
2
T3y ¢ e

Thus the entrapy is
o7} = (4nV/45) kel (25

The constant of integration is zero, from (3.55) and the relation between Fand g,
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A process carried out al constant photon entropy will have V1° = constant.

The measurement of high temperatures depends on the flux of radiant energy
from a small hole in the wall of a cavity maintained at the temperature of
interest. Such a holz is said to radiate as a black body—which means that the
radiation emission is characteristic of a thermal equilibrium distribution. The
energy flux density Jy is defined as the rate of energy emission per unit area,
The flux density is of the order of the esergy contained in a colums of unit
arca and length equal to the velocity of light times the unit of time. Thus,

Jy = [cUx)V] x (geometrical factor). (24}

‘The gromelrical factor is equal to §; the derivation is the subject of Problem 5.
The final result for the radiant energy flux is

_dy_ e
YTV T onet (23)

by use of (20) for the eneray density U/V. The result is often written as

Jy = ggTH, (26)

the Stefan-Boltzmann constant
ap = wtkyt f60h c* {26a)

has the value 5.670 x 1072 Wm 2 K™% or 5.670 % 10" *ergem™* s7! K%,
{Here 0,4 is not the entropy.) A body that radiates at this rate is said to radiate
as a biack body. A smail hole in a cavity whose walls are in thermal eguilibrium
at temperature T will radiate as a black body at the rate given in (26). The rate

Is independent of the physical constitution of the walls of the cavily and de-
peads only on the temperature,

Emission and Absorption: Kirchhoff Law

The ability of a surface to emit radiation is propastional to the ability of the
surface to absorb radiation, We demonstrate this retation, first for a black body
or black surface and, second, for a surface with arbitrary properties. An shject
is defined to be black in 2 given frequency range if all electromagnetic radiation
incident upon it in that range is absorbed. By this definition a hole in a cavity is

black if the hole is small cr_wug_h that radiation incident throngh the hole will

i
i

Estimation of Surfece Temperasure

reflect encugh fimes (rom the cavity walls to be absorbed in the cavity with
neghgible loss back through the hole,

The radiant energy flux density J; from a black surface at temperature 1 is
equal to the radiant energy flux density J,; emitied from a smali hole Ia a cavity
al the same temperature. To prove this, let us close the hole with the black
surface, hereafier called the object. In thermal equilibrium the thermal average
energy flux from the black object to the interior of the cavity must be equai,
bul opposile, 1o the thermal average energy flux from the cavity to the black
object.

We prove the following: If a non-black object at temperature 1 absorbs a
fraction a of the radiation incident upon #, the radiation flux emitted by the
object will be a times the radiation fiux emitted by a black body at the same
tcmperature. Let a denote the absorptivity and e the emissivity, where the
emissivity is defined so that the radiation flux cmitted by the object is e times
the flux emitied by a black body at the same temperature, The object must emit
at the same rate as it absorbs if cquilibritim is to be maintained. it follows that
a = ¢, This is the Kirchhe!l Inw. For the special case of a perfect reflector, a is
zero, whence ¢ s zero. A perfect reflector doces not radiate.

The arguiments can be generalized 1o apply to the radiation at any frequency,
as between w and w + deo, We insert a filter between the object and the hole in
the black body. Let the filter reflect perfectly outside this frequency range, and
let it trapsmit perfectly within this range. The fux equalily arguments now

apply to the iransmitted spectral band, so that a{w) = e{w) for any surface
in thermal equilibrivm.

Estimation of Surface Temperature

One way to estimate the surface temperature of a hot body such as a star is
from the frequency at which the maximum emission of radiant energy takes
place (see Figure 4.4} What this frequency is depends on whether we look at the
energy flux per unit frequency range or per unit wavelength range. For u,,, the
energy density per unit frequency range, the maximum is given from the Planck

law, Egq. (22), a5
d '.3
4 (Ww) -0,
dx\expx — 1

3 — Jexp{—x) = x.

413
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This equation may be solved numerically. The root is

hmmazi;ks'r = m“ = 282

, 2n
as in Figure 4.4,

T i am e,

-
Tl el L. &

Example: Cosmic black body backgrouns! radation,
universe accessible (o us i filled w
al 29 K. The existence of this radi
cosmolagical models which assume

A major recent discovery is that the
ith radiation approximately like that of a black body
ation (Figure 4.5) is important evidence for big bang
it the universe is expanding und cooling with time,
This radiation is fck aver Frons s caely cpoch when me URIVESSE Was Commposed prinuisily
of clecteons and protoas af o lemperature of shout 400K, The phasai of electians sl
protons imericted strongly wilh vlectromagnetic radintion a1 all mportant frequencics,
so that the matter and the bhck body radiation were in thermal cguidibivm, By the time
the universe had cooled 1o 3000 K, the matter wag primardly in the form of stomic hydrogen.
This interacts with bluck body radiation only at the fequencies of the hydrogen spectraf
lines. Most of ihe black bady radintion energy thus wis effectively decoupled from the
matter. Thereafter the radiation evolved with time in 4 very simple way: the photon gas

3t constaat entropy 19 a lemperature of 2.9 K The photon gas will
ropy if the frequency of each mode is lowered during the expansion
e number of photons jn each mode kept constant. We show in £58;
below bat 1he eatropy is constant i the nymber of photons i each mode is constant—1ihe
occupancies determine the entropy. o

Aftes the decoupling the evolulion of matter into heavier atoms {which are organized

into gulaxics, stars, and dust clouds) was more complicated than belore decoupting.
Electromagnetic radiation, such as starfighs, radiated by the matter since the decoupling
i$ superimposed on the cosmic black body radiation.

ELECTRICAL NOISE

As an Important example of the Planck |
sponianeous thermal fluctuations in yvol
which are called neise, were discover
H. Nyquist* The characteristic prope
square noise valtage is proportion
by Figure 4.6, We s

aw in one dimension, we consider the
tage across a resisior. These fluctuations,
ed by J. B. Ishnson and explained by
ny ol Johnson neisz is that the e
af to the value of the resistance R, as shown
wll sec that <F?) is also dircetly proportional (o the tem-

* H. Nyquist, Plys. Rev. 32, LIO(1928); a deep:

1 distussion is given by € Kittel, Eleawntury stanis-
rical physics, Wiley, 1938, Sections 27-30.

Electrical Noise

10~ T I i
I AMicrowave
z Intersieliar CN
[ 11R measurements

16718 - B
T
g
g
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&
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g
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J0-14 2.9 K Black body/ ]
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Yy 0.t ] 10 100

Frequency (em™%)

Figore 4.5  Experimental measurements of the gpecmljm ol’_;hc cosmic b!u«:k.
body radiation. Observations of the flux were made with microwave heterodyne
receivers at frequencies below the peak, were deduced from optical measuremenlts
of the spectrum of intersteliar €N molecules near the peak, und were meusured
with a bulloon-barne infrared spectrometer at frequencics above the peak,
Courlesy of Po L, Richards.

periture r and the bandwidth Af of the circuit. (This section presumes a knowl-
edge of electromagnetic wave propagation at the infermediate level ) .
%hc Nyquist thcorem gives a quantitative expression for the llrc.rmal noise
voltage generated by a resistor in thermal equilibrium. The theorem is ii*icruforc
needed in any estimate of the limiting signal-to-noise ratic of an experinental
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5o 10712
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;’:\ 3 @ Carbon filament |
E N + Advance wire
v / < CuS0, in H,0
55 vNaCl in H,Q
§ o K, Cr{), in 1,07
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Figure 4.6 Voitage squared versus resistance for various
kinds of conductors, including electrotytes. After
. B. Johnson.

apparatus. In the original form the Nyquist theorem states that the mean

square vollage acrass a resistor of resistanee R in thermal equilibrium at
lemperature 1 is given by

(VD = ARTAS (28)

where Af is the requency* bandwidih within which the voltage fluctuations
are measured; all frequenicy components outside the given range are ignored.
We show below that the thermal noise power per unit frequency range delivered
by a resistor Lo & matched load is 13 the factor 4 enters where it does because in
the cireuit of Figure 4.7, the power delivered to an arbitrary resistive load R’ is

_ VDR
TR+ RPC )

{IHR

which at match (R’ = R} is (V)R

* In this section the word frequency refers to cycles per unit time, and not to radians per unit time.

Electrical Noise

MNoise generator

R{termination
resistance}

Figure 4.7 Equivalent cireuit for 2 resistance R with
a generator of thermal noise that delivers powerto a
toad R". The current
4
| = i
R+ K
so that the mean power dissipated in the foud is
VIR

S =R = e

which is 2 maximum with respeet to R when R = R.
Lo this condition the Toud is said to be matched Lo the
power supply. At matels, 2 = (V*3/4R, The filter
enables us to limit the frequency bandwidth under
consideration; that is, the bandwidth to which the mean
square voltage luctuation applics,

Consider as in Figure 4.8 a lossless transmisston line of length L and charac-
teristic impedance Z, = R terminated al each end by a 1esistance R. Thus the
line is matched at each end, in the sense that all energy traveling down the line
will be absorbed without refiection in the appropriate resistance. The entire
circuit is maintained at temperature 1.

A transmission line is essentially an electromagnetic system in one dimension,
We follow the argument given above for the distribution of photons in thermal
equitibrium, but now in a space of one dimension instead of three dimensions.
The transmission line has two photon modes (one propagating in each direction}

of ftequency 2xf, = 2na/L. from {15}, so that there are two modes in the fre-
quency range

§ = ¢/, (30)
where ¢’ is the propagation velocity on the line. Each mode has cnergy

hey

explhw/t) — | S _ _Bi)
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Figure 48 Transmission line of length L with Z =R
matched terminations, as conceived for the

derivation of the Nyguist theorem, The

characteristic impedance Z, of the transmission R
line has the value R. According 1o she

fundamental theoren of transmission lnes, the
terminal resistoss are matched to the line when

their resistance has the same value R, : i_

in equilibrium, according to the Planck distribution. We are usually concerned
with circuits in the classical limit hw « 1 50 that the thermal energy per mode
“is v. Tt follows that the energy on the line in the frequency range Af is

e Af)Sf = 2tLAflc (32)

The rate at which energy comes off the line in one dircction is

T Af. ‘ (33

The power coming off the line at one end is all absorbed in the terminal
impedance R at that end; there are no reBections when the terminal impedance
is matched 10 the line. In thermal equilibrium the load must emit energy to the

line at the same rate, or clse its temperature would rise. Thus the power input
to the load is

P = (UDR = 1A, (34)

© but ¥ = 2RI, so that {28) is obtained. The result has been used in low tempera-
ture thermometry, in temperature regions (Figure 4.5) where it 13 more con-
venient 10 measure {¥*) than 1. Johnson noise is the noise across & resistor

when no dc current is flowing. Additionzl noise (not discussed here) appears
when a de current flows.

PHONONS IN SOLIDS: DEBYE THEORY

So I decided 1o calculate the spectral distribution of the possible free vibrations
jor a continuous soltid and to consider this distribution as a good encugh
approximation to the actual distribution. The sonic spectrum of a lottice must,

Phonons in Solids: Debye Theory

0.3
S oo Figure 49 Muean sguare noise + shage
w : fluctuations abserved experimentally from a
Sy 3 62 resistor in the mixing chamber of a
. ditution refrigerator as a {unction of magnetic
o 6.1 temperature indicated by a CMN powder
thermonweter. Alter R.R. Giffard, R, A. Webb,
and J. €. Wheatley, 1, Low Temp Physics 6,
533 (19712)
0
Q 106 260 300

Tragr in mK

of course, deviate from this as soon as the wavelength becomes comparable 1o
the distances of the atoms. .. The only thing which had to be done wus 1o
adjust to the fuct that every solid of finite diwensions contuins a finite manber
of atoms and therefore has a finite number of free vibrations. ... At low enough
temperatures, and in perfect analogy to the radiation law of Stefan-

Boltcmann . . ., the vibrational energy content of a solid will be proportional
to T

P. Dcbye

The energy of an elastic wave in a solid is quantized just as the energy of an
clectromagnelic wave in a cavity is quantized, The quantum of energy of an
clastic wave is called a phonon. The thermal average number of phonons in an

clastic wave of frequency w js given by the Planck distribution function, just
as Tor photons:

Cs{e)d = - (33}

exptho/ty — |

We assumie that the freguency of an elastic wave is independent of the amplitude
of the elastic strain. We want to find the cnergy and heat capacity of the clastic
waves in solids. Several of the results obiained for photons may be cirried
over to phonons. The results are simple if we assume that the velocities of all
clustic waves are equal-—independent of frequency, direction of propagation,
and direction of polarization. This assumption is not very accurate, bul it helps
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account for the general trend of the ohserved resuits in many solids, with a
minimum of compulation.

There are two important features of the ex

perimental resubis: the hieat capacity
of a nonmetall

ic soid varics as t* at low temperatures, and at high temperatures
the heat capacity is independent of the temperature, In metals there is an extra
contribution from the conduction eiectrons, treated in Chapter 7.

Number of Phonon Modes

There is no timit to the number of possibi
but the number of elastic modes in a finite
of & atoms, each with three degrees of freedom, the 1otal number of modes is
3. An elastic wave has three possible polarizations, two transverse and one
longitudinal, in contrast to the twa possible polarizations of an electromagnetic
wave. Ina transverse elastic wave the displacement of the atoms is perpendicular
to the propagation direction of the wave: in a longitudinal wave the displace-

ment is paraliel to the propagation direction. The sum of a quantity over all
modes may be wristen as, including the factor 3,

solid is boundad. If the solid consists

Z(...)= %fﬁlm:z ani- 1y, (36)

by extension ol (17). Here 1 is defined in terms of the triplet of inlegers n,, n,n,,

exactly as for photons. We want 1o find Rmax SUCh that the total number of
clastic modes is equal 1o 3N

3 L’“ dmn? dn = 3N, (37

In the photon problem there was no corresponding limitation on the total

number of mades. It is customary ta write i, afier Debye, for .. Then (37)
becomes

dmng? = 3N, np = (6N/m)3. {38)

The thermal energy of the phonons is, frem {16},

. T ’
U= Yoy = s, = T oot (39)

¢ electromagnetic modes in a cavity,

Number of Phonon Modys
or, by (36) and (38),

3n peo ey
U= n? et
2 -[0 i explliow, 't} —~ 1 0}

By analogy with the evaluation of {18), with the velocity of sound ¢ written in
place of the velocity of light ¢,

.3
. 2 Ak § SR g X
U = Guhuf2L)(eLjahe) j‘ﬁ dx T “n

where x = rhenf/Lr. For L? we write the volume V. Here, with (38), the upper
limit of integration is

Xp = nhenpfls = }zr{(mzN, e, {42y
usually written ag
Xp = QfT = kit ., {43)
where { is called the Debye temperature:
0 = (hufkg{6n N/ )2, {44}

The result (41) for the encray is of specizl interest at law temperatures such
that T <« 0. Here the limit x, on the integral is much larger than unity, and x,
may be replaced by infinity. We note from Figure 4.4 that there is little contri-
bution 1o the integrand out beyond x = 10. For the definite integral we have

-3 4
Jody e T (45)
° expx ~ 1 I3
as carlier. Thus the energy in the low temperature limit is

3ITPNTY 3N T (46)
Sty s

UTY ~

proportional to T*. The heat capacity is, for v « k40 or T « 4,

el 1N o\
S = A R I 473
CV (af )y -5 (Asg) { 1}
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This result is known as the Debye T law.* Experimental results for argon are 2 AL :
plotied in Figure 4.10. Representative experimental values of the Debye tem- 4 I . . ~.__:_N“ :m &
perature are given in Table 4.1. The calculated variation of Cy versus T75 is 2 R i Do ¥
platted in Figore 441, The high temperature limit T 0 is the subject of 3 2T . - C: — 2
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1/,_,__,’-»3
/
- 20
L /
i
. ] /
Ficure £.11  Heat capacity €, of a solid, 3 15
aceording 10 the Debye approximation. The -
vertical scale is in T mol ™! K™% The =
horizonial scale is the temperature .2‘
normalized to the Debye temperature 0. The 210
region of the T2 law is below €14, The g
asymplotic value at high values of 7,0 is 3
24943 ) mol 7 K74 ] s
0
0 0.2 0.4 0.6 0.8 X0 1.2
L
[
Table 4.2 Values of Gy, §, U, and F on the Debye theory, in units I mol ™! K74
oT <y 5 = kyo 0 Fi0
M 24043 3] L
0.1 2493 90.70 2462 ~ 666.8
0.2 24.85 1343 1156 - 251
[t} 2483 63.34 4.2 -1
Q.4 2475 56.21 53.5 - 87
8.5 2463 50.79 41.16 ~60.3
0.6 24.50 46.22 129 —44.1
0.7 2434 ) 4248 214 ~3315
08 24.16 39.22 228 ~26.2
09 1356 3638 19.5 -209
1.0 2314 138 16.82 - 1705
1.5 2235 2449 91 123
2 20.59 18.30 5.5 —~ 364
3 1653 ' 10.71 238 - 121
4 1255 6.51 1.13 —~(45
5 9.20 4.08 0.58 —0.23
& 6.23 : 2564 0323 ~{.118
7 4.6 ‘ i1 0.187 —0.066
8 3.45 1,22 0.114 - 0.039
g 253 0.874 0073 —0.025
10 1891 0.643 0.048 -0.0i6
15

0.576 : 0.192 C.009%6 -0.0032
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sold, according to the Debye theory. The Debye temperature
of the solid is 0.

SUMMARY

1. The Planck distribution function is

t
- explhow/t) — 1"

(82

for the thermal average number of photons in 2 cavity mode of frequency cw.
2. The Stefan-Boltzmann faw is

2.

I Y
AT

<ia

for the radiant encrgy density in a cavity at temperature 1.
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3. The Planck radiation law is

h w3

B, = e
? n'c* explhofn) — 1
for the radiation energy per unit volume per unit range of frequency.

4. The ftux density of radiant energy is Jy = 0,T%, where o, is the Stefan-
Boltzmana constant n?kg*/60k3 2, '

5. The Debye jow temperature limit of the heat capacity of a dielectric solid
is, in conventional units,

127Nk (T
G - (1

where the Debye temperature

§ = (hejk 62 NIV YR,

PROBLEMS

1. Number of thermal photons. Show that the number of photons 3¢5, in
cquilibeium at temperature 7 in a cavity of volume ¥ is

N = 24047~V (z/he). (48)

From (23) the entropy is @ = (4a®V/43)(r/h}?, whence o/N = 3.602. It is
believed that the total number of photons in the universe is 108 larger than the
total number of nucleons (protons, seutrons). Because both entropics arc of
the order of the respective number of particles (see Eq. 3.76), the photons
provide the dominant contribution to the entropy of the universe, although
the particles dominaie i total energy. We believe that {hf: entropy of th_c
pliotons is essentially constant, so that the entropy of the universe is approxi-
malely constant with time,

2. Surface temperature of the S, The value of the total radiant cnergy flux
density at the Earth from the Sun normal fo the incident rays is caile# the solar
constant of the Earth. The observed value integrated over all emission wave-
kengths and referred 1o the mean Earth-Sun dislance is:

solar constant = 0.136Js tem™2, (49}

Problems

(a) Show that the total rate of encrgy generation of the Sunis4 x 10% Jst,
{b} From this result and the . Siefan-Boltzmann constant Tg =2 5,67
10712 75~ em™2 K™% show that the effective temperature of the surface of the
Sun treated as a black body is T x 6000 K. Take the distance of the Earth from
the Sunas 1.5 x 10" em and the radius of the Sun as 7 x 10*° ¢cm,

3. Average temperature of the interior of the Sun, {a}
sional argument or otherwise the order of magnity
energy of the Sun, with Mg = 2 x 1922
tational constant G is 6.6 x 10~® dynecm® g2 The self-energy will be negative
referred to atoms at rest at infinite separation. (b} Assume that the totat thermai
kiretic energy of the atoms in the Sun is equal to ~1 times the gravilational
energy. Thisis the resubt of the virial theorem of mechanics. Estimate the average
temperature of the Sun, Take the number of purticles s 1 » 10", This estimute
gives somewhat too low a temperature, because the density of the Sun is far
from uniform. “The range in central lemperature for diffesent stars, excluding
orly those composed of degenerate matter for which the law of perfect gases
does not hold {white dwarfs) and thess which have excessively small average
densities (giants and supergiants), is between 1.5 and 3.0 x 107 degrees.”
(Q. Struve, B. Lynds, and H. Pillans, Elemenrary astrononty, Oxford, 1959}

Estimate by a dimen-
de of the gravitational seif-
gand Ry = 7 x 10'% cmy. The gravi-

4. Ageof the Sun. Suppose 4 x 10785 s the total rate at which the Sun
radiates energy at the present time. {a) Find the 1otal energy of the Sun available
for radiation, on the rough assumptions that the energy source is the conversion
of hydrogen {atomic weight 100783 1o helium {atomic weight 4.0026) and that
the reaction stops when 10 percent ol the original hydrogen has been converted
to helium. Use the Einstein relation £ = (AANCE (b) Use (a) 1o estimate the

life expectancy of the Sun. 1t is believed that the age of the universe is about

10 x 10° years. (A good discussion is given in the books by Pechles and by
Weinberg, cited in the general references )

3. Sutface temperature of the Eaveh.  Calculate the temperature of the surface
of the Earth on the assumption that as a black body in thermal cquilibrium it
recadiates as much thermal radiation as & receives from the Sun. Assume also
that the surface of the Farth is at a constant temperature over the day-night
eycle. Use Ty = S800K; Ra = T »x 10%%:m; and the Carnt

h-Sun distance of
L5 = 10" en.

6. Pressure of thermal vadiation. Show for a photon gas that:

(a) p = —@URV), = =5 shtdwdV) (50}
i
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where 5, Is the number of photons in the mode j;

{0 denfdV = —a f3V; (51)

I

{9 7= UV {53)
Thus the radiation pressure is equal 1o 4 x (energy density).

(d) Compare the pressure of thermal radiation with the kinelic pressure of a
gas of H atoms at a concentration of t moleem ™2 characteristic of the Sun.
AL what temperature (roughly) are the two pressures equal? The average
winperature of the Sun is believed 1o be pear 2 x 107 K. The concentration is
highly nonuniform and rises to near 100molecm ™ at the center, where the
Kinctic pressure is considerably higher than the radiation pressure.

7. Free encrgy of a photon gas.  (a) Show that the partition [unction of a
photon gas is given by

Z =TI ~ expl-ho, 0], (53)

where the product is over the modes n. (b) The Helmholtz free enargy is found
directly [rom {33) as :

F =13 logfl ~ exp{—he, /0L (54)
Transform the sum to an integral; ntegrate by parts to find
F s —n?Vetjdshie, (55)

8. Heat shields. A black (nonreflective} plane at temperature 7, is paraliel
to a black planc at temperature T;. The net energy flux density in vacuum be-
tween the two planes is Jy = 64(T,* — T)*), where 6, Is the Stefan-Boltzmann
constant used in {26). A third black plane is inserted between the other two and
is allowed to come {0 a steédy state temperature T, Find T, in terms of 7,
and T}, and show that the net energy flux density is cut in half because of the
presence of this plane. This s the principle of the heat shield and is widely
used to reduce radiant heat transfer, Comment; The result for N independent
heat shields floating in temperature between the planes T, and 7 is that the
net energy ftux density is J;, = a5(T,* — TN + 1)

9. Photon gas in one dimension. Consider a transmission line of length L_on
which electromagnetic waves satisly the one-dimensional wave equation
w3 Efax? = G*E/éc?, where E is an electric field component. Find the heat

- - capacity of the photons on the line, when in thermal equilibrium at temperature

Problems

. The enumeration of modes proceeds in the usual wiy for one ditneusion:

take the solutions us stunding waves with zero amplitude at cach end of the
tine,

0. Heut capacity of intergalactic space. Intergalactic space {5 believed to be
occupicd by hydrogen atoms in a concentration = 1ztomm-™ >, The spiace 18
also occupied by thermat radiation at 2.9 K, from the Primitive Firebail, Show
that the ratio of the heat capacity of matter to that of radiation is ~ 10-%,

11, Heat capacity of solids in high tempevature limit.  Show that in the limit
T > 0 the heat capacity of a solid goes towards the fimit Cp. — 3Nk, in
conventional units. To obtain higher accuracy when T is only moderately

targer than 0, the heat capacity can be expanded as a power series in YT, of
the form

Cyp = 3NEp x [1"— za“;T"]. (56)

Determine the first nonvanishing term in the sum. Check your result by inserting
T = ¢ and comparing with Table 4.2. :

12. Heat capacity of photons and phonons. Consider a diclectric solid with a
Debye temperature equal to 100K and with 102 atomsem ™2, Estimate the

temperature at which the photen contribution to the heat capacity would be
equal to the phonon contribution evaluated at 1 K,

13. Energy fluctuations in a solid at low temperatures.  Consider a solid of N
atoras in the temperature region in whick the Debye T2 faw is valid. The solid
is in thermal contact with a heat reservoir, Use the results on energy fluctuations

from Chapter 3 to show that the root mean square {ractional energy fluctuation
F is piven by

0.07/70%3
@2 - 2 FPO i 57
P = (e - (DD = — (T) (57)
Suppose that T = 1072K; 0 = 200K; and N = 10'% for a particle 0.01 cm on
aside; then & = 002, At 107* K the fractional fluctuation in energy is of the
order of unity for a dielectric particle of volume 1 e,

. Heat capacity of fignid *He at low temperatares.  The velocity of longitu-
dinad sound waves in liguid *He at temperutures below 0.6 K i 2.383 x 10°cm
s7!. There are no transverse sound waves in the liquid. The density is
Gt45gem™ (2) Caleulute the Debye temperature. {b) Caleulate the heat
capacity per gram on the Debye theory and compare with the experimental
value Cy = 0.0204 x T2, inJg™! K=\ The T dependence of the experimental

1i3
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value sugpests that phonens are the maost iruportant excitations in liquid *He
below 0.6 K. Note that the experimental value has been expressed per gram of

liquid. The experiments are due 10 1. Wiebes, C. G. Niels-Hakkenberg, and
H. C. Kramers, Physica 32, 625 {1957,

I3, Angular distribution of radiant energy flux, (3) Show that the spectral
density of the radiant energy flux that arrives in the solid angle d0 s
e, cos B - dQjdz, where 0 i the angle the normat to the unit area makes with

the incident ray, and t,, is the energy density per unit frequency range. (b Show
that the sum of this quantity over ail incident rays is Yeu,.

16. Image of a radiant object. Lot a lens image the hole in a cavity of area
Ay on a black object of area Aa. Use an equilibrium argument to refate the

product 4,02, to Aofly where 0, and Qy are the solid angles subtended by the _

leas as viewed from the hole ang from the object. This general property of
focusing systems is casily derived from geometrical optics, It is also true when

difitaction is important. Make the approximation that al] fays are nearly
parallel (all axial angles small).

17. Entropy and dccupancy.  We argued in this chapter that the entropy of the
cosmic black body radiation has nol changed with time because the number
of photons in each mode has not changed with time, although the frequency of
each mode has decreased as the wavelengih has increased with the expansion
of the universe, Establish the implied connection between entropy and oc.
cupancy of the modes, by showing that for ene mode of [requency wthe entropy
is a function of the photon occupancy-{s) only:

=5+ 1logds + 1) — (5) log{s>. (38)
It is convenient to start from the partition function.

18. Isentrapic expansion ef photon gas, Consider the gas of photons of the
thermal equilibrinm radialion in a cube of volume ¥ at temperature v, Lot the
cavily volume increase; the radiation pressure performs work during the expan-
sion, and the temperature of the radiation will drop. From the result for the
entropy we know that 1! i constant in such an expansion. {a) Assume that
the lemperature of the cosmic black-body radiation was decoupled from the
temperature of the matter when bath were at 3600 K. What was the radius of
the universe at that time, compared ta now? If the radius has increased linearly
with time, at what fraction of the present age of the universe did the decoupling

take place? (b) Show that the wark done by the photons during the expansion
is

W= (=2 35003 — o),

The subscripts i and f refer 10 the initial and final states,

Problems

1D, Reflective heat shicld and Kirehhoff’s law.  Consider 2 plane sheet of mate.
rizl ol absarptivity g, cmissivity e, and reflectivity r == 1 — . Fel the sheet be
suspended between and parallel with two black sheets maintained at tempera-
tures 1, and 7. Show that the net flux density of thermal radiation between the

black sheets is (I ~ r) times the flux density when the imtermediate sheet jg

also biack as in Problem 8, which means with ¢ = e = 1;r = 0. Liquid helium

dewars are often insulated by many, perhaps 100, layers of an aluminized
Mylar film called Superinsulation,

SUPPLEMENT: GREENHOUSE EFFECT

The Greenhouse Effect describes the warming of the surface of the Earth
caused by the interposition of an infrared absorbent layer of water, as vapor
and in clouds, and of carbon dioxide in the atmosphere between the Sun and
the Earth. The water may contribute as much 90 percent of the warming
effect.

Absent such a tayer, the temperature of the surface of the Earth is
determined primarily by the requiremen of energy balance between the flux
of solar radiation incident on the Earth and the flux of reradiation from the
Eanh; the reradiation flux is proportional o the fourth power of the tempera-
ture of the Earth, as in (4.26). This energy balance is the subject of Problem
4.5 and leads to the result Ty = (Ro/2Dg) P T, where T is the femperature
of the Earth and 7 is that of the Sua; here Ry is the radius of the Sun and D,
is the Sun-Earth distance,

The sesult of that problem is Tg = 280 K, assuming Ty = 5800 K. The
Sun is much hotter than the Earth, but the geomelry {the small solid angle
subtended by the Sun) reduces the solfar flux density incident at the Earthbya
factor of roughly {1/20)%

We assume as an example that the atmosphere is a perfect greenhouse,
defined as an abserbent layer that transmits all of the visible radiation that
falls 0n it from the Sun, but absorbs and re-emits all the radiation (which lies
in the infrared), from the surface of the Earth. We may idealize the problem
by neglecling the absorption by the layer of the infrared portion of 1he
incident solar radiation, because the solar spectrum lies almost entirely at
higher frequencies, as evident from Figure 4.4, The tayer will cmit enercy flux
I, up and I, down; the ugward flux wifl balance the soiar Lux Iy, su ihat
= Is The net downward flux will be the sum of the solar flux Ig and the
flux /; down from the layer. The Iatter increases the net thermal flux incident
at the surface of the Earth. Thus

IL-:=!3+1L=2IS, (59)

where /g, is the thermal flux from the Earth in the preseoce of the perfect

115



16

i
. .—-—nlu;{
f
P

Chapter 4: Thermal Radiation and Planck Distribution

greenhouse efect. Because the thermal flux varies as 7%, the new temperature
of the surface of the Earth i

Tge=2"Tg = (1.19) 280 K = 3133 K, (60)

50 that the greenhouse warming of the Earth is 333K~ 280K = 53 K for
this extreme example.*

* For detaited discussions see Climate change and C!tma.'e clmnge 1 992 Cambndge U.P, 19%
and 1992 3. T Houghton et al, editors.
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Chapter 5: Chemical Potential and Gibbs Distribution

We considered in Chapter 2 the propertics of two systems in thermal contact,
and we were led naturally to the definition of the temperature. Hihe two systems
have the same temperature, there is no net energy flow between them. If the
temperatures of two systems are different, energy will flow from the system
with the higher temperature to the system with the lower temperature.

Now consider systems that can exchange particles as well ag energy. Such
systems are said 1o be in diffusive (and thermal} contact: molecules can move
from one system to the other by diffusion through a permeable interface. Two

Systems are in equilibrivm with fespect 1o particle exchange when the net
particle flow is zera. :

The chemical potential governs the Row of particles between the systems, just
as the temperature governs the flow of cnergy. M two systems with a single
chemical species are at the same femperature and have the same value of the
chemical potential, there will be na net particle flow and 1o net energy flow
between them, If the chemical potentials of the two systems are different,
particles will flow from the system at the higher chemical potential ta the
system at the lower chemical potential As an example, the chemical potential
of electrons at one terminal of a storage battery is higher than at the other
terminal. When the terminals are connected by a wire, electrons will low in the
wire from high (o low chemica potential.

Consider the establishment of diffusive equilibrium between 1wo systems
4, and &, 1hat are in thermal and diffusive contact. We maintain ¢ constant
by placing both systems in thermal contact (Figure 5.1y with a large reservoir
. We found earlicr that for a single system $ in thermal equilibrium with a
reservoir @, the Helmholtz free encrgy of & will assume the minimuem value
compatible with the commoen temperaiure ¢ and with other restrainis on the
system, such as the volume and 1he mumber of particles. This result applies
equatly (o the combined &, + $yin equilibrium with ®. In diffusive equilib-
rium between 8, und 35, the paiticie distribution Ny, Ny between the sysiems
rmiakes the tota! Helmbollz free energy

F=Fid Frm U4 Uy = 2oy + 0y (1)

a mirimurm, subject to N = Ny + N = constant. Because N s constant, the
Helmholtz free encrgy of the combined system is a minimum with respect to

Definition of Chenical Porential

g
le' Valve :f.’_\%
negative positive
i —

System &, System 8,

T .
Reservoir gt - " Energy cxchange”;

110 thermal contaa with each other
clased total system. By opening the valve,
antact while remaining at the common

hive been drawn for & net particle transfer

Figure 5.1 Example of two systems, S, and &
and wilh a farge reservair a1, forming a
S, and &, can be brought in diffusive o
lemperature 7, The arrows st the valve
from &, to 8,.

variations N, = ~6N,. At the minimum,
dF = (&F\J6N ) AN, + (CF2 /BN, N, = 0, {2)
with ¥, ¥, also held constant, With JN, = —dN,, we have
dF = [(¢F N}y, — {EF/EN)IN, = 0 | 3)
30 that at equilibrium
({“FI,’ENI), = (CF,/eN,). Y
DEFINITION OF CHEMICAL POTENTIAL
We define the chemical potential as Jk [’:0
e — | Wy
ofF
,V,N =T Rt . 5
H(r,VN) ((‘N),‘y ! {3)

——
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Chapter 5: Cheniival Poteativl and Gibbs Distribution

where jis the Greek letter mu. Then

= My

expresses the condition for diffusive equilibrivm. 1f y1y > p13, we see from (3}
that dF will be negative when 4N, is negative: When particies are transferred
from 8, 10 3, the value of dN, is negative, and dN, is positive, Thus the
Iree energry decreases as pacticles Now (rom B 1o &y that s, particles flow
fzom the system of high chemical polential to the system of Tow chemical

potentizl. The strict definition of p is in terms of a differcnce and not & deriva-
tive, because particles are not divisible:

#r,VN) = F(r,V,N} - Flr, VN ~ 1). (6)‘

The chemical potential regutates the particle transfer between systems in
contact, and it is fully as imporiant as the temperature, which regulates the
energy transfer. Two systems that can exchange both energy and particles are
in combined thermal and diffusive equilibrium when their temperatures and
chemical potentials are equal: 1, = T35 ) = Ha-

A difference in chemical polential acts as a driving force for the transfer of
particles just as a difference in temperatuse acts asa driving force for the transfer
of energy.

If several chemical species are present, each has its own chemical potential.
For species j,

;= (@FEN v wim, .o M

where in the differentiation the Bumbers of all particles are held constant except
for the species J.

Example: Chemical potential of the ideal gas. In (3.70) we showed that the free energy
of the monatomic ideal gasis

F= —tNlogZ, —logNT}, (8)

P
Mw-}
i

Definition of Chemical Potential

where

Zy =V = (Ao 2k Y 9}

is the partilion function for a single particle. From {8},

s

po= (CFIENY - = ut[logzl - !\TlogNE]. (e
A

1l we use the Sticling appronimaiion for N and assume that we can ditferentiate the
factorial, we find

o , of [ ,
:j—":i i(‘g ANl= :“\" [lo;_'\ﬂn "i‘. E.o\t + 3][0_‘.; N — 1\]
m;og\'+0v+%-)-‘——l:logNa»i (11
’ N AN

which approaches log N for farge values of N Henge the chemical potential of the ideal
pasis

o= —tllogZ, — log N} = tlog(N/Z,) .,

ot, by {9),

=1 Eog(.n/nQ) . {12a)

1

where u = N/V is the concentration of partictes and ng = (Me/2nh*P7 is the quantum
concentration delined by (3.63%

Uweusep = FIN} ~ F{N = 1}from{6)as the definition of y, we do not nced to use the
Stirling approximation. From {§) we obtain p = —z[log Z, — log N}, which agrees with
{12). The result depends on the concentration of particles, not en their total number or oo
the system volume separately. By use of the ideal pas law p = nt we can write (12) as

= tloglp/ing). (120

The chemical potential increases as the concentration of particles increases, This is what
we expect intuitively: particles flow fram higher to lower chemical potential, from higher to
lower concentration, Figure 5.2 shows the dependence on concentration of an ideal gas
composed of electrons of of helium atoms, for two temperatures, the boiling temperature
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Figure 5.3 A potentiaf step between twa
systems of charged particles can be established
by applying a veltage between the systems. For
the voltage polarily shown, the potential
energy of positive particles with charge g>»0

i
’
2 \-b:_‘w " ffHe at 4 classical
7 4_/ / boiling :
-4 >y oint=1 i 7
\'56/ . p He at B in system 3 would be raised by gAY with
¥ / 10 GO9 aim respect to 8. The potentiai energy of negative

/ / particles would be lowered in 8, with respect
: to 3,.
N i
-

*‘7 // i

R Gas
I'd }nol

problem has wide application and includes the semiconductor p—n junction

i discussed in Chapler 13, We again consider two systems, 3, und 3., at the
same temperature and capable of exchanging particles, but not yet in diffusive
Y equilibrium. We assume that initially g1, > iy, and we denote the initial non-
equilibrium chemical potentia! difference by Au(initial} = j; — p,. Nowlet a
165 diflerence in potential energy be established between the two systems, such
that the potential energy of cach particle in system 8, is raised by exactly
—18 Aptinitial) above its initial value, If the patticles carry a charge 4, one simple
i I way to establish this potential step is to apply between the two systems a voltage

%2?013 o o - o o AV such that

-1
n{em™) C

e GAV = gV, - V) = Aplitial) | (£3)
Figure 5.2 The concentration dependence of n units of 7, of an ideal pas
composed of electrons v helium atoms, 11 4.2 K and 300 K. To be in the classical
regime with 1 « ny, a gas must have a value of - p ulieast 1, For electrons this is
satisfied only for concentrations appreciably less than those in metals, as in the

range of typical semicanductors. For gases it is always satisfied under normal
condiitons.

with the polarity shown in Figure 5.3, A difference in gravitational potential
also can serve as a potential difference : when we raise a system of particles each
of mass Af by the height 51, we establish a potential difference Mgh, where g is
the gravitational aceeleration.

Once a patential step is present, the potential encrgy of the pasticles produced
by this step is included in the energy U and in the ree energy F of the system,
Wia Figure 5.3 we keep the free energy of system 3, fixed, the step raises the
free encrgy of 3, by Ny Aptiniial) = N g AV relative to its initial value. In
the fanguage of energy stales, 10 the cnergy of each state of 8 thie potential
energy Ny Apfinitial) has been added, The 0884 of the potential bsﬁﬁ’g‘r'
ey spacitied Dy (33} caises the chemicad potential of 8§, by Apdinitialy

o fisael chemical potential of 3, equal o that of RYY

of fiquid helfum at atmespheric pressure, 12K, and room iomperature, 300 K. Atomic
and moteculur gases always have negalive chemical potentials under phy sicatly realizable
conditions: ar classical concentrations such that ning < b, we see from 12) that g is
negative,

toominke the
Internal and Total Chemical Potential

The best way to understand the chemical potential is to discuss diffusive

anffinal) = g, (initial) + Cpalinitial) — slinitiat)]
equilibrium in the presence of a potential step that acts on the particles. This

= ry(initial) == ge,{final). {14)
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Chapter 5: Chemical Potential and Gibbs Distribution

When the barrier was inseried, p, was held fixed. Thus the barrier gAYV =
#{initial) ~ g, (initial) brings the two sysiems into diffusive equilibrium.

The chemical potential is equivalent to & true potential energy: the
difference in chemical potential between two systems is equal to the
potential barrier that will bring the two systems into diffusive equilibrium.

This statement gives us a fecling for the physical effect of the chemical poten-
tial, and st forms the basis for the measurement of chemical potential differences
between two systems. To measure p; — g, we establish a potential step
between two systems that can transfer particles, and we determine the step
height at which the net particle transfer vanishes.

Only differences of chemical potential have a physical meaning. The absolute
value of the chemical potential depends on the zero of the potential energy
scale. The ideal gas result {12) depends on the choice of the zero of energy of a
[ree particle as equal to the zero of the kinetic cnergy.

When external potential steps are present, we can express the total chemical
potential of a system as the sum of two parts;

[l I Y (15)

Here pi,,, is the poiential energy per particle in the external potential, and py,,
is the internal chemical potentinl* defined as the chemical potential that woukd
be present il the external potential were zero. The term ,,, may be mechanical,
clectrical, magnetic, gravitational, ete, in origin. The equitibrium condition
= py can be expressed as

Apul = A“inl‘ (16}

Unfortunately, the distinction between external and internat chemical potential
sometimes is not made in the literature. Some writers, particularly those working
with charged particles in the ficlds of electrochemistry and of semiconductors,
often mean the internal chemical potential when they use the words chemical
potential without & furiher qualifier.

The total chemical potential may be catled the ¢lectrochemical potential if
the potential barriers of interest are electrostatic. Although the term clectro-

* Gibbs called p 1he potential and yi;,, the intrinsic poteniial. He recognized that a volimeter mea-

Internal and Total Chemica! Potential 123

System (2)

Figure 5.4 A model of the variation of
atmospheric pressuce with altitude: two
volumes of gas at different heights in a uniform

gravitational ficld, in thermat and diffusive
conlact.

System (i}
chemical potential is ciear and unambiguous, we shall use “total chemical
potential” The use of “chemical potential” without an adjective should be
avoided in situations in which any confusion about its meaning could occur,

Example: Variation of baromctric pressure with eltide.  The simplest example of the
dilfusive equitibrium between systems in differeat exsernal potentials is the cyuilibrium
belween fuyers at diffesent heights of the Carth’s atmosphere, assumed 10 be isoshermal.
The real atmosphere is in nperfect equilibrium: it i constamily upset by meteoraiogical
provesses, both in the form of macroscopit air movements and of strong iemperature
gradicnts fom cloud formation, and because of heat input from 1he ground. We may
make an approsimate model of the wmosphere by treating the different air kiyers as
systems of ideat gases in thermut and diffusive equilibrium with cach othier, in dilferent
external potentials (Figure 5.4). H we place the zero of the polential energy at ground level,
the potential energy per molecule at height & is Mgh, where M is the pasticle mass and g the

ravilational acceteration. The inlernal chemical potential of the particles is given by ([3).
The total chemical potential is

= tlog{n/ny) + Mgh. (7
i equilibrivm, this must be independent of the height. Thus
tlog[n(ing] + Myl = tlog[n{0)/ng] .

and the concentration #(h) at height h satisfies

n(h) = n(0)exp{ — Mgh/r). (18)
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The pressure of an ideal Eas {5 proportional to the concentration; therefore the pressure
atahiwde his

p{h) = p(0)exp(— Mgh/c) = p(0) exp(—h/h). (19

This is the busontetric pressure equation. Tt gives the dependeance of the pressure on altitude
i an isothermal atmosphere of a single chemical species. At the characteristic height I, =
/Mg the atmospheric pressure decreases by the fraction ™' = 0.37. To estimate the
characteristic height, consider an isothermal atmosphere composed of nilrogen moleciies
with w molecular weight of 28, The mass ofun ¥, nclecwle is 48 x 19729 g At tempera-
ture of 290K the value of t = £,T is 4.0 % 10 Merg With g = 980cms ™2, the dharac-
teristic hewght fip is 8.5km, approximately $ mules. Lighter molecales, H, and He, will
extend farther up, Dot these have largely cscapes fram the atmosphere: see Problem 2.

Hevawse the Eanh's stinosphere by ol accurately isothermal, wih) has o miaic complivated
behuvior, Figure 5.5 15 o togarithunic plot of pressute data between 10 and 46 }.iiomcl-a:rs.
taken on rocket flights. The data points falf near a straight line, suggesting roughly iso-

Internal and Fotal Chemical Potential

thermal behavior, The straight ling connecting the data points of Figure 5.5 spans a pressure

range plhyhpth,) = 1006:1, over an altitude range from i, = I%m 10 hy = 42km. Now,
from {19},

pihy Mg
log i1 o Y — Rii]
og PR {hy = by}, !’

sothat the slope of the line is Mgfr, which leadsto T
of the observed curve with the point i = 0, p(h)/p(0)
ture at fower ahitudes,

The atmesphere consists of more than ope

= 1'kg = 227K, The nog-intersection
= 1, is caused by the higher lempera-

species of gas. In atomie pereent, the com-
positian of dry air at sea leve] s iS5 pet Ny, 2 pot 0,.and 09 pet Ar; other constisuents
account for less than Q.1 Pt cachi. The water vapor content of the atmosphere may be
appreciable: at T = 300K {27°Cy, a relative numidity of 100 PCt corresponds o 1.5 pot
H,0. The carbon dioxide concentration vagics about & nominal value of 0.03 pet In an
ideal slatic isethermal atmosphere each gas would ba jn equilibrium with itseif The con-
centration of each would fall offwitha separate Boltzmann factor of the form expl— Mgh/ty,
with M the appropriate molecular mass, Because of the Jifferences in mass, the different
constituents Gl off 4t different rates,

Example: Chemical potential of mobile magne
4 system of N identical particles each with & magnetic moment m. For simplicity suppase
each moment is directed either parallel 1 or antiparallel | 10 an applied magnetic ficld B.
Then the potential energy of a | particle is = mB, snd the potential energy ofa § parsticle is
+mB. Wemay treat the particles as belonging 1o the 1wo distingt chemical specics labelled 1
and |, one with external chemical potential g, {1} = — B and the other with i, {1} = mf,
The particles { and | are ps distinguishable as twa different isotopes of an element ar as twa
diffierent elements; we speak of 1 and | as distines species in equilibrium with each other,

The internul chemsical polentials of he particles viewed as idual gases with concentrations
my and n, are

tic particles in a magnetie field. Cansider

ol T) = tlog(n,/nQ}; Hinll} = tloglnyfng) | (21

where ng = (M1 220% s (he same for boih species.
The total chemica! potentials are

Hod1) = wlog(n:ig) ~ mB: (22}
() m_t?u)g(az;'uQ) +omb. [

i the mugnctiv old Buries in magninde over the vofume of the system, the ooscentrtion

tiotal chemat e EEINTANES)
ol a species is coustant wdepen-
dent of position, il there is free diffusian of particles within the velume) Because the 1wo

L vy over the voluwe in ofder 1 BRUHER O copalan
over the volune (Figuie 5.6}, (The total chemical potential

-
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Figurc 8.6  Dependence of the chemical potentiat of a gas of magnetic
particies on the concentealion, at severat values of the magnetic field
intensity. 1fn = 2 % 107 em ™ for B = 0, then at a point where B = 20
kitopauss {2 1esla) the concentration wiit be 7 x 10% cm™ .

species in equiitbrium have equal chemical petentials,
" U1} = constant = p_[}). (23)
The desired selutions of (22} and {23) are easily seen by substitution 10 be:
1 B) = dn(Gexp(mBl); n{B) = in{}esip(—mB/f1y , (24}

where {0} is the tolal concentration iy + n, at a point where the field B = 0. The total
concentralion at a point at magnetic field B s

n{B) = nf{Bj + i (B) = n{0)[exp(mBft) + expl—mbB;}];

n(B} = n(0)cosh{mB/t) ~ n(O)(l + nggj + - ) £25)

The result shows the tendency of magnetic particles 10 concentrale in regions of high
magnetic ficld intensity. The functional form of the result is not limited to atoms with twe
magnetic arieatations, but is applicable 1o fine ferromagnetic particles in suspension in a
colloidal solution. Such suspensions are used in the laboratory in the study of the magaetic
flux structure of superconductors and the domain structure of ferromagnetic materials, In
engineering, the suspensions are used to test for fine structural cracks in high strength steel,

such asturbine blades and aircraft Tanding gear. When these are coated with a ferromagnetic

Inernal and Total Chemical Potenticl

suspension and placed in a magnetic field, the particle concentration becemes enhanced at
the intense fields at the edges of the crack.

In the preceding discussion we added to p,,, the internal chemical potential of ihe
pasticles. If the particles were ideal gas atoms, g, would be given by (12}, The logarithmic
form for i, s not restricted to ideal gascs, but is a conscquence of the conditions that the
pasticles do not interact and that their concentration is suliciently low. Hence, (£2) applies
to macroscopie particles as well as to atoms thut satisfy these assumptions. The only
difference is the value of the quantum concenteation ny. We can therefore write

Hi = tlogu + constant , (26}

where the constamt (=~ tlogny) does not depend on the concentration of the pacticles.

Example: Barteries,  Onc of the most vivid examiples of chenical poleatiais and potential
steps is the clectrochemical batiery, in the Enniliar lead-acid bastery the negative electrode
consists of metudlic tead, Ph, and the positive clectrode is a kayer of reddish-brown lead
axide. P8O, on a Pb subsirwie. The electrodes are immersed o diluted sulfuric acid,
H,50;, which is purtially jonized into H* ions (protons) and SO, ™~ ions {Figure 5.7},
i is the tons that matter,

In the discharge process both the metallic Pb of the negative clectrode and the 'O,
of the positive elecirode are converted 10 lead sulfsie, PbS0,, via the two seactions:®

Negative clectrode:
Pb 4 80,77 — PbSO, + 2e7; {27a}

Positive electrode:
PbO, + 2H" + H,50, + 2¢7 - PbSO, + 2H,0. {27b)

Because af (27a) the negative electrode acts as a sink for SO, ™~ ions, keeping the internal
chemical potential p{SO,” 7} of the sulfate fons a1 the sueface of the negative electrode
fower than inside the electrolyte (see Figure 5.7h). Simitarly, because of (27h] the positive
electrode acts as a sink for H* jons, keeping the internal chemical potential p(H *) of the
hydrogen ions lower at the surface of the positive electrode than inside the elecirolyte. The
chemical potential gradients drive the ions towards the electrodes, and they drive the
electrical eurrents during the discharge process.

If the battery terminals are not connected, electrons are depleted from the positive
electrode and accumulate in the negative electrode, thereby charging both. As a result,
eiectrochemical potential steps develop at the ¢lectrode-elecirolyte interfaces, steps of
exacily the correct magnitude 10 equalize the chemical potential steps and to stop the
dilfusion of ions, which stops the chemical reactions from proceeding further. If an external
cuseent is permitted to flow, the reactions resume. Electron fow directly through the
electrolyte is negligible, because of 1 negligible electron concentration in the electsolyte.

* The reactions given are net seactions. The actual reaction steps are more complicated.
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Figure 5.7 (a) The lead-acid bisttery consists of 4 Pband a PBO; clectrode immersed in
partially lonizcd H,50,. One SO{ 7 ion converts oae Pb atom into PSSO, + 2e7;
1wo H™ ions plus one un-ionized H,50, molecule convert one PBO, molecule into
PBS0, + 2H,0, sausuming two electrons, {b) The elecrrochemicul polentials for SO; -
and H* before the development of interinal potential barriers thas stop the ditfusion

and the chemical reaction. (¢} The electrostztic potentisl ofx) after the formation of the
barrier.

Chemical Potential and Entropy

During the charging process the reactions opposite ta{37a.b} take place, beeause now an
external voltage is applied that kenerates electrostatic poleatiol steps 01 e surfuce of the
clectrode ol suchy mapnitude as to reverse the sigan of e (tetad} chemicad potenting gradients,
and henwe the direction of jon flow,

Wedenote by AV, snd A V. the differences in clectrostatic patentind of the negative and

positive clecirodes refative to the conimon clectrolyte, Because the sulfate fons carry two
negateve charges, diffusion will stop when

=29 AV, = Ap(SO," "), (28a)

Difiusion of the H* ions will stop when

+q AV, = Au(i"), (28b)

The two potentials AV_ and AV, are called halfocell patentials or hallcell EMFs
{electromotive Torces): their magnitudes are known:

AV. = —04vol; AV, = +16volt

The total electrostatic potential difference developed across one

full celi of the battery,
as required to step the diffusion teaction, is

AV = AV, — AV, - 20valt, (29}

This is the open-circuit velta

ge or EMF of the battery. [t drives the electrons from the nega-
live terminal to the positiv

¢ terminal, when the two are connecied,

We have ignored fice electrons in the electrolyte. The potential steps tend 10 drive
elecirons from the negative electrodes into the electeolyte, and from the electrolyte into the
positive electrode, Such an electeon current is present, but the magnitude is so small as 1o be
practically negligible, because the concentration of elecirons in the electrolyte is many
orders of magnitude less than that of the jons, The enly effective eleciron flow path is
through the external coanection between 1he slectrodes.

Chemical Potential and Entropy

In (5} we defined the chemical potential as a derivative of the Helmholtz free
energy, Here we derive an alternste relation, needed later:

N 2
HUFN) LA {30}
T &N oy

This expresses the ratio #/t as a derivative of the entropy, similar to the way
1/t was defined in Chapter 2.
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To derive {30), consider the entropy as 2 function of the independent variables
U/, ¥, and N. The dilterential :

i) fils ca
dg = §- dU ) v — dN 31
’ (5 U) v.N N (‘3 V)u..vt i (5 N)L'.V Y

gives the differential change of the entropy for arbitrary, independent differential
changes dU, 4V, and dN. Let dV = 0 for the processes under consideration.
Further, sclect the ratios of do, dU, and dN in such a way that the overall
temperature change dr will be zero, 1f we denote these interdependent values
of do, dU, and dN by (8u),, (84N, and (N}, then dv = 0 when

8u éo
(o), = (aU)N(éUL + (ﬁl}(ﬁf\(}(.

Afrer division by (5N},

(50’): = (_‘?9_) @y_)_:‘ + (f‘:ci) L (32)
(BN, 3U ) (6N, EN ),

The ratio {80),/(6N), 1s (Ecr}&f\'),, and (8L (5N, is (8U/AN},, all at constant
volume., With the original definition of 1/z, we have

ca au do
| s A 33
t(cw) (BN),.V * T(aN)u.s’ 03

This expresses a derivative at constant IJ In terms of derivatives at constant ©.
By the original definition of the chemical potential,

oF 2U &
m oo = | -= — | — 34
P R O

and on comparison with (33) we obtain

# = —~t(@a{ON}y v (35

The two cxpressions (5} and (35) represent two different ways to express the
. same quantity g The difference between them is the following. In (5} Fisa

Chemical Potentiaf and Entropy

Table 5.1 Summary of relations cxpressing the temperature
7, the pressure p, and the chemical potentiaf yin terms of
partial derivatives of the entropy a, the encruy U, and the free
energy F,with e, U, and F given as functions of their natural
independent variables

s{UV.N) Ve, V.N) Fz, V.

. 1 _féo ‘= &y t is independent
1: i) éa fon variable

. P (c‘a) B (E‘U) _f¢F

i B SV v b= L VY = v N
I (66) (E,"U (EF)

F 22— = | e =i —

¢ P VY B=\an)l, O PTGEN)

function of its natural independent variabies ¢, ¥, and N, so that p appears as
a function of the same variables. In {31) we assumed ¢ = o(U,V,N), so that
{35) yields p as a function of U, ¥, N. The quantity y is the same in both (5)
and (38), but expressed in terms of different variables. The obiect of Problem 11
is to find a third relation for u:

#lo,V,N} = (¢U/oN),v {36)

and in Chapter 10 we derive a relation for p asa function of 7, p,and N. Table 5.1

compiles expressions for 7, p, and u as derivatives of o, U, and F. All forms
have their uses,

Thermodynamic identity.  We can peneralize the statement of the thermo-

dynamic identity given in {3.34a) to include systems in which the number of
particles is alfowed to change. As in (31),

o I ca
- = N.
de (DU),'N{IU + (N/)u.ﬂdif + ((}N)u"'ch (37)

By use of the definition (2.26) of 1/1, the relation {3.32} for p/r, and the relation
{30) for — p/f7, we write do as |

. do = dUft + pdVjx — pdN/ft. {38)
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This may be rearranged 1o give

dU = 2dg ~ pdV + N, (39)
e

which is a broader statement of the thermodynamic identity than we were abie
to develop in Chapter 3.

GIBBS FACTOR AND GIBBS SUM

The Boltzmann factof, derived in Chapter 3, allows us 10 give the ratio of the
probability that a system will be in a state of energy £, to the probability the

system will be in a state of energy £y, for a system in thermal contaet with a
TeSCIVOIr at temperature ¢+

f’_(fl_j‘ - C.‘{]J{-— El;'t) (40)
P}~ expl—ey1)
This is perhafgs the best known result of statistical mechanics. The Gibbs factar
isthe generalization of the Boltzmann fuetor to a system in thermal 2nd diffusive
contact with a reservoir at temperature 1 and chemical potential u. The argu-
ment retraces much of that presented in,Chapler kX

We consider a very large body with constant energy U, and constant particle
number Ny. The body is composed of twe parts, the very large reservoir ® and
the system &, in thermal and diffusive contact (Figure 5.8} They may exchange
particles and encrgy. The contact assures that the temperature and the chemical
potential of the system are cqual to those of the reservoir. When the system has

- N particles, the reservoir has Ny = ¥ particles; when the system has energy &,

the reservoir has energy Uy — & To obtain the statistical properties of tha
system, we make observations as before on identical copies of the system +
reservoir, one copy far each accessible quantum state of the combination. What
is the prebability in a given sbservation that the system will be found to con-
tain N particles and to be in a stule s of energy g,? :

The state 5 is a state of a System having some specified number of particics.
The energy £y, is the cnergy of the state 5 ol the N-particle system; semetimes
we write only e,, if the meuning is clear. When can we write the energy of a
system having N particles in an orbital as ¥ times the energy of one particle
in the orhital? Ouly when interactions between the particles arc neglected, so
that the particles may be treated as independent of each other,

Gibbs Factor and Gibbs Sum

—
Reservoir System
@ 3
[nsulation

Figure 5.8 A system ins thermal and dilfusive contact with
a farge reservoir of energy and of particles, The total system
A + Sis insulated from the external world, so that the
total energy and the tota} aumber of particies are constant.
The temperature of the sysiem is equal o the lemperatire
of the reservoir, and the chemical potential of the system is
equal 1o the chemical potential of the rescrvoir. The system
may be as smalf as one atom or it may be macrascopic, bug

the reservoir is always ta be thought of as much larger than
the system.

Let P{N,s) denote the probability that the system has N particles and is in
a particular state s. This prabability is propartional to the number of accessible
states of the reservoir when the state of the system is exactly specified. That

i, if we specify the state of &, the number of accessible states of ® + 3 s just
the number of accessible states of B -

g(Ct + &} = g@1) x 1. <0

The factor 1 reminds us that we are looking at the system 8 ina sinele specificd
state. The g{0t) staies of the reservoir have Ny = N particles and hase energy
Ugy - &, Becsuse the sysiem probability P(N,¢,) is proportionad 1o the number
of accessible states of the reservoir,

P(Ni) o g(Ng — NUy — 1), +2)
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@ @
Paricies ¥, — N, Particles N, — N,
3 3
Encrey Uy — 6, { giqie 1 Energy Uy — ey f5iape 3

gy~ N Uy ~ £y} R Ny — N Uy~ 6
Particles N,

Particles A,
Encrgy ¢,

Energy «,

M

(1} (b}

Figure 5.8 The reservoir is in thermal and diffusive contact with she sy
system s in quantum state 1, and the reservoir has g(Ng — N, Uy = ¢, states accessible
o it In (b} the system is in quanium state 2, and the reservoir has g{N, — Nao Uy~ ¢3)
states accessible (0 it. Because we have specified the exact state of the system, the total
number of stales accessible o M + £ is ust the number of states accessible 1o a.

stemn. In (a) the

Here g refers to the reservoir alone and depends on the number of particles
in the reservoir and on the encrgy of the reservoir. :

We can express {42) as a ratio of twe probabilities, one that the system is in
state 1 and the other that the system is in state 2

P(N,.g)) - giNy — N, Uy ~ Et)_ (@3
PN, .e3) g(Ng ~ N3, Ug - g5)

where g refers to the state of the reservoir. The situation is shown in Figure 5.9

- By definition of the entropy

g{No, Uy} = exp[o(No, Uol] . {44)
so that the probability ratio in {43) may be written as

P(N],EQ - CXP{G(NO — NI:UD — 81)} . (45)
PN expla(Ng — N UG — &)

or

PIN ., £
%Ni;‘:; = exp[oiNo ~ NyyUo — £} = a(Ny — N3, Up — &,))

mcxp{Aa)_ o _ o (46)

Gibbs Factor and Gibbs Sum

Here, Aq is the entropy difference:
86 = olNg ~ N Ug — &) — alNg — N3, Up ~— £,). 47
The reservoir is very large in comparison with the systern, and Ag may be

approximated quite accurately by the first order terms in & scries expansion in

the two guantities N and ¢ that refate to the system, The entropy of the reservoir
becomes

. , ‘o Ja
olNg = NUg = &) = afigUg) - N(ET\’I)% B C(FUT))NU b )

For Ag defined by {47) we have, to the first grderin Ny — N, and in ¢,

- &,
A v, - Nf-Le ( \:-ur)—‘:i (49)
L VY M L VT

We know that

1 &g
L A {50a)
T cly No

by our eriginal definition of the temperature, This is written lor the reservoir,
bui the system will have the same temperature. Also,

B[N {50b}
T (:lNg g

by (30).
The entropy difference (49) is

Ao

- (Ny = Ny - {g; ~ 52)'

(31)
1 T

Here Ag refers ta the reservoir, but N, N3 &4, 85 refer to the system. The central
result of statistical smechanics is found on combining {46) and (51):

P(N 8} _ expl(N ot ~ 5,)/:]_
PiNy &) CKP[(Nz.“ - 51}/{1

(52}
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The probability is 1he ratio of two exponential fuctors, cach of the form
expl(¥u — e)ft]. A term of this form is calied a Gibbs factar. The Gibbs fuctor
is proportional to the probability that the system is in a state s of energy &,
and number of particles' N. The result was first given by J. W. Gibbs, who
referred to it as the grand canonical distribution,

The sum of Gibbs factors, taken over al states of the sy
of particles, is the normalizing factor that conv
absolute probabilities: -

stemn for alf numibers
cris relative probabilities to

i[ o ’
E it} = 2 Z expf(Ny — Eqmy)/t] = Z expl{Ny — Eqxy) T} (53)
|

N=0 5N} ASN

-

This is called the Gibbs sum, or the grand sum, or the grand partition function,
‘The sum is to be carried out over alt states of the system for all numbers of
particles: this defines the abbreviation ASN, We have written £, 38 Egyy 1O
emphasize the dependence of the state on the number of particles N. That is,
£y 18 the enerpy of the State s{N} of the exact N-particle hamiltonian. The
term N = 0 must be included; if we assign ils energy as zero, then the first
term in 3 will be 1,

The absolute probability that the system will be found in a state Nig is
given by the Gibbs factor divided by the Gibbs sum:

PN ey = XLV — 2]

&

This applies 0 a system that is at temperature 7 and chemical potential p. The
ratio of any two P's is consistent with our cenatral result (53) for the Gibbs
factors. Thus (52) gives the correct relative probabilities for the states N, ¢,

and Ny, £5. The sum of the probabilities of all states for all numbers of particles
of the system is unity:

{34)

Z c.\:p[(,\’ﬂ - By T} 3_
LYPWNE) = T P(Ng) = A ¢ A
VZ (M) ,?;q( &) 3 ¢

by the definition of o Thus (54} gives the correet absolute probubbhiny *

* Readers interegted iy protability theory will find Appendix C on the Poisson distribution 1o be

pj‘.ﬂ.icul.nrly Belpfal, The method used there 19 derive the Poisson distribution deperads on the
Gisbbs sum. Seq afeg Problum (6,13,

Gibbs Factor and Gibbs Sum

Average values over the systems in diffusive and thermal contact with g
reservoir are easily found. If X{N,5) s the value of X when the system has N

partictes and is in the quantum staie 5, then the thermal average of X over all
Nandallsis

2 X{NSYexp[(Ny — e, /1]
(XD = 3 X(NS)P(N,g) = 2N . (56)
ASN F

We shall use this result to calculate thermal averages,

: )U)\.’}
Number of particles. “The number of particles in the system ¢an vary because

the system s in diffusive contact with a reservoir. The thermal averape of the
number of particles in the system is

¥ Nexp[{Ny ~ /1]
Ny = 2N 3 , {57

secording to (56). To obtain the numerator, each term in the Gibbs sum has

been multiplied by the appropsiate value of N. More convenient forms of (N}
can be obtaited from the definition of F:

iz 1

tg 1 - 58
o =7 BN eplWe = e (58)
whence
(Ny = L6F_ dlogg (59)
Cp cu

The thermal average number of particles is casily found from the Gibbs sum

& by direct use of (59}, When no conflusion ariszs, we shall write N for the

thermal average (N). When we speak later of the occupancy of an orbital,
S or {fy wilt be written interchangeably for N or NS
We ofien employ the handy notation

A = exp(pft), I {60)
1

where 1is called the absolste mctivity. Here J is the Greek Ietter lambda, We
see from (12) that for an ideal gas 4 is directly properiional to the concentration.

19
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Gidhs Factor and Gibbs Snm 141
The Gibbs sum is writien ag

B . . ! Figure 5,10 Adsorption ofan O by a hame
- X _ AN L . 2 1 +
&= .Y\_g" exp(—egf1) = ,\Zs:\z)v expl—e /i), (61} where ¢ is the energy of an adsorbed O refative
’ to an O, at infiaite separation from the site,
. . ‘ If energy must be supplied to detach the 0,
and the ensemble average number of particles {57} is. i ! 0 from the heme, then £ will be negative.
Mb
. é
(NY = A-L;j]ogg}. (62}

This relation is usefu!
finding the va
particles.

. because in many actual problems we determine 7 by
ue that will make (N> come out equal to the given number of

Energy. The thermal average energy of the system is

Ze,exp[ﬁ(Nu - £,)]
Vel = o (63)

where we have temporarily introduced the notation f = l/r. We shait usuaily
write U for {&). Observe that

123 @&

(N = 3 = {ND = U = o O log 3, (64}

& if g

50 that {59) and {63) may be combined 1o give

fre @ N d
””(ﬁa"é‘ﬁ)“’gg“(‘“é‘;‘m)“’” @

A simpler expression that is more widely used in calculations was obtained in
Chapter 3 in terms of the partition function Z.

L T T T T I T T T LT

Tt e el e T L e T T s e s et

Lxample: Occupancy zevo orone. A red-blooded example of a system that may be
occupied by zeco molecules or by one molecule is the heme group, which may be vacant or
may be occupicd by one O, molecute—and never by more than one O, molecule {Figure
3.10). A single henie group occurs in the protein myogtobin, which is responsible for the
red color of meat, Il € is the cnergy of an adsorbed molecule of O, relative to O at rest at

infinite distance, then the Gibbs sum is

& =1 + rexpl—gf1). (66)

- Wenergy must be added (o remove the atom from the heme, & will be negative. The term 1

in the sum urises from occupancy zero; the term £exp(—g.1) arises from single occupancy.

. These are the only possibilitics. We have Mb + O, or MbO, present, where Mb denotes

myoglobin, a protein of molecular weight 17000,
' Experimental results for the ractional occupancy versus the concentration of oxygen
are shown in Figure $.11. We compare the observed oxygen sataration curves of myoglobin
and hemoglobin in Figure 5.12. Hemoglobin is the oxypen-catrying component of blood.
ftis made up of four molecular strands, cach strand nearly identical with the single strand of
myoglobin, and cach capable of binding a single oxygen molecule. Historically, the classic
wark on the adsarption of oxygen by hemoglobin was done by Christian Bohr, the fasher of
Nicts Bohe. The oxygen suturation curve for hemoglobin (Hb) has a slower rise at low
pressures, because the binding energy of a single 0, to a maolecule of Hb is fower than for
Mb. Al higher pressures of oxygen the Hb curve has a region that is concave upwards,
because the binding encrgy per O, increases afier the fest O, is adsorbed.

The O, molecules on hemes are in equilibrium with the O, in the surrounding liquid, so
that the chemical polentials of O, are equal on the mycglobin and in sclution:

AMbO,) = p(Oy);  H{MbO;) = HO3) (67)

whese 4 = explp/z). From Chapter 3 we find the value of X in terms of the gas pressure
by the relation

£ = nfng = pfting. {68)

We assume the ideal pas result applies 1o O, in solution. Al constant temperature 2(0y) is
directly proportiond to the pressure p.
The fraction f of Mb occupied by O, is found from (66) to be

[= le}fpt—-alr) - — ! ‘ 69)
P+ Jexp{—cft) A7 rexp(clt) + 1 :




Figure 341 The reaction of a myoglobin
(Mb) molecude with axygen may be viewed as
the adsorption of 2 molecule of O, atasite
on e large myoglobin molecule, The

results follow a Langmuir sotherm quite
accurately. Each myogiobin molecule can
adsorb one O, molecule. These curves show
the fraction of myoglobin with adsorbed Q,
as 4 function of the partial pressure of 0,.
The curves are for human myoglebin in
selution. Myoglobin is found in muscles: it is
respansible for the color of steak. Afier A,
Ressi-Fanelli and E. Antoning, Archives of
Biochenustry and Biophysics 77, 474 {1954),

Figure 542 Suturation curves of 0O, bound

to myoglobin (Mb) aad hemoglobin (Kb}
motecules in solution in water. The partial
pressure of O, is plotted as the harizontal

axis. The vertical asis pives the fraction of

the melccules of Mb which has one bound

0, molecule, or the fraction of the strands of
Hb which have one bouad Gy molecule.
Hemeglobin has & much fasper change in
OAYgen content in the prossure tange belween
the arteries and (he veins. This circumsiance
facilitales the action of the beart, viewed as 2
pump. The curve for myoglobin hus the
predicted Fosm for the reaction Mb + Oj w
MBO . The curve for hemoglobin s o
different form beeause of interactions between
G, molecules bound 1o the four strandds of the
b molecule, The druw ing is after 5. S, Fruton
and 5. Simmonds, Generad bivchemistry, Wiley,
1961,
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Gibhs Factor and Gibbs Sum

which is the same as (he Fermi-D

irac distribution function derived in Chapter 7. We
substitute (68) in (69} to obtain

! 14
= e B S
mpt/plexple/r) + 1 ngrexpleft)y + p ° (76)
or, with p, = ngtexple/t),
I
= {71)
Pe tp

where py is constant with respect (o pressure, but depends on the temperaiure. The rosulg

(713is known as the Langmuic adserption isotherm when used Lo describe the adsorption of
gases on ithe surfaces of solids.

Exantple: huparity atom ionization in @ semiconductor. Atoms of numerous chemical
clements when present as impurities in a semicanductor may lose an electron by ionization
to the conduction band of the semicanductor crystal. In the conduction band the eleciron
moves about much as if it were a free pasticle, and the electron gas in the conduction band
may often be treated as an ideat gas. The impurity atams are small systems & in thermal
and diffusive equilibrium with the large reservoir formed by the rest of the semiconductor:
the atoms exchange elections and energy with the semiconducior.,

Let { be the ionization energy of the impurity atom, We suppose that ane, but only one,
electzon can be bound to an impurity atom; either orientation t or § of the cleciron spin
is accessible. Therefore the system § has three allowed states—one without an ¢lectron,
one with an electron atiached with spin 1, and one with an electran attached with spin |.
When & haszero elecirons, the impurily atom is ionized. Wechoose the zero ofenergyof 8
as this stale; the other two states therefore have the common ehesgy & = —f, The accessible
states of 8 are summarized below,

Stute nuinker Description N £
1 Electron detached 0 0
2 Electron attached, spin 1 i -1
3 Efectren attiched, spin | 1 —-1I

The Gibbs sum is given by

g =1+ 2expl(u + Dy,

143
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The probability that 8 is lonized (N = Djis

1 1
ionized) = P00 = — = . 73
Plionized) (0 & 1+ Zexplip + D 73
The probability thin 8 is newtral (un-jonized) is
Pinewtral) = P(11,— 1 + P11~ 11, {14)

which s just 1 — P(D,0).

SUMMARY

1. The chemical potential is defined as p(r,V,N) = {cF/EN), » nnd may also be

found from g = (CUJEN),, = ~d(f6/0N)y . Two systems are in diffusive
cquiltbrium if p = p,.

2. The chemical potential is made wp of two parts, esternal and internal. The
external part is the potential encrgy of a particle in an eaternal field of force.
The internal part is of thermal origin; for an idea) monatomic gas plinl) =
log{/ng), where 1 is the concentration and ry = (Mv/2rh?)*? is the quan-
tum concentration.

3. The Gibbs factor

PN = expl(Ne — )1} 3

gives the probability that 2 system at chemical potential g and temperature t
will have N particles and be in a quantum state s of energy &,.

4, The Gibbs sum _
3= 3 expl{u ~ £,4,)/7}
ASN

is taken over all states for al! numbers of particles.
5. The absolute activity 2 is defined by 1 = exp(w/t).

6. The thermal average number of particles is

-

P
- <,N> = )-2;;1033'- .

Prublems

PROBLEMS

1. Centrifuge. A circular eylinder of radius R rotates about the long axis with
angular velocity w. The cylinder contains an ideal gas ol atoms of mass M at
temperature 1. Find an expression for the dependence of the concentration

n{r) on the radial distance r from the axis, in lerms of 7(0) on the axis. Tuke
i as for an ideal gas.

2. Molecules in the Earel's atmosphere.  1Tn is the concentration of molecules
at the surface of the Earth, M the mass of a molecule, and g the gravitational

acceleration at the surface, show that at constant temperature the towd number
of molecules in the atmosphere is

N = dun{Ryexpl— MgR/e} fR drr? exp{AlgR2jrr) (75)

with » measured from the conter of the Earth; here R s the radios of she Each,
The integrat diverges at the upper limit, so that N cansot be bounded and the
atmospliere cannot be in cquilibrivm. Molecules, particularly Bight malecules,
ure always escaping from the atmosphere.

3 Porential cnivgy of pay in gravitational Siehd, Consider 4 column of atoms
cach of mass M at temperature 7 in a uniform gravitational field y. Find the
thermul average potential energy perstom. The thermad average kinetic energy
density is indepeadent of beight. Find the totsl heat capuciy per aiom. The
total heal capacity is the sum of contributions from the kinetic energy and rom
the potential energy. Take the zero of the gravitational energy at the botiom
h = 0 of the columa. Integrate rom i = Oto fr = oo,

4. Active transpost. The concentration of potassivm K ¥ jons in the internal
sup of a plant cell (for example, a fresh water alga) may exceed by » factorof 10*
the concentration of K* ions in the pond water in which the cell is growing.
The chemical potential of the K* ions is higher in the sap because their con-
centration n is higher there. Estimate the difference in chemical potential at
300K and show that it is equivalent to a voltage of 0.24 V across the cell wall.
Take u as for an ideal gas. Because the values of the chemical potentials are
different, the ions in the celi and in the pond are not in diffusive equilibrium. The
plant cell membrane is highly impermeable to the passive leakage of ions
through it. Iimportant questions in cell physics inctude these: How is the high

cancentration of fons built up within the cell? How is metabolic encrgy applied
te energize the active ion transport?

5. Magnetic concentration.  Deternsine the ratio mft for which Figure 56 is
drawn. If T = 300K, how many Bohr magnetons py = ely/2me would the

particles contain to pive a magnetic concentration effect of the magnitude
shown? SR . : ' '
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6. Gibbs sum for a two level system.  (a) Consider a system that may be un-

- occupied with energty zero or eccupicd by one particle in either of two stafes,

oncofencrgy zero and one ofenergy e Show that the Gibbssum for this syslem is

& =1+ 1+ fexp(—gfr). . {76)

Our assumption excludes the possibility of one particle in each state at the same
time. Natice thut we include in the smmatermfor N == Oasa particular state ofa
system of a variable number of partictes.

{b} Show that the thermal average occupancy of the system is

(N = i+ l.exp(-*ﬁ,f‘[). an
&
{c) Show that the thermal average cccupancy of the state at energy ¢ is
(Ne)y = Zexp(—g/)/3. {18}

{d) Find an expression for the thermal average energy of the system,

{e} Allow the possibility that the orbitai at G and at e may be occupied each by
one particle at the same time; show that .

G =1+ i+ lexp{—g/t)+ Pexpl=giy=(1 + Al + 2exp{—¢/1] (19

Because 3 can be [actored s shown, we have in effect two independent systems.

7. States of positive und negative ionization. Consider a latiice of fixed hy-
drogen atoms; suppose that each atom can exist in four states:

Srare Number of electrons Euergy
Ground 1 -34
Positive ion 0 -1
Negative ion 2 i
Excited 1 1

Find the condition that the average number of clectrons per atom be uwity.
The condivon will mvolve §, 2, and 1.

8. Carhon monoxide pofomng.  In carbos menoxide poisoning the CO
replaces the O adsorbed on hemoglobin (LB} moleeules i the Blood. o show
ihe effect, consider a model for which cach adsorption site on a heme may be
vacunt or may be occupiced either with energy £, by one molecute O, or with
energy gy by one moleccule CO. Let ¥ fixed heme sites be in equilibrium with

Problems

G aad CO in the gas phases at concentrations such that the activities are
A0, = 1 % 1073 and HCO) = 1 x 1077, all at body temperature 37°C.
Meglect any spin multiplicity factors. (a) First consider the system in the absence
of CO. Evaluate £, such that 90 percent of the Hb sites are occupied by Q,.
Express the answer in eV per O,. {b) Mow admit the CO under the specified
conditions. Find ez such that only 10 percent of the Hb sites are occupied by O,.

9. Adsorption of O, in a magnetic field, Suppose that a1 most one O, can be
baund to a heme group (see Problem 8), and that when i(0,) = 107% we'have
90 pescent of the hemes occupied by O,. Consider (0, as having a spin of 1
and a magretic moment of 1 gz, How strong a magnetic field is needed to change
the adsorption by 1 percent at T = 100 K7 {The Gibbs sum in the limit of zero

magnetic field will differ from that of Problem 8 because there the spin multi-
plicity of the bound state was neglected.)

10, Concentration fluctuations. The number of particies is not constant in a
system in diffusive contact with a reservoir. We have scen that

<N>=§(@J_.- | (50}

from (59}, (a) Show that

2 a2
Nty = LE3 (81
G

The mean-square deviation {(ANY) of N from ¢N) is defined by

AN = (N = (NDFY = (NT) = UNDANY + (NDP = (N — (N

SR I R S S L AT .
AN = z?[g G TR ((’;1) ] 82)

{b) Show that this may be written as

JANYS = 13N>/ {83}

i Chapler 6 we opply this result to thie ideal gas to lind that

Ny b (84
(NY N

is the mean square fractional fuctuation in the population of an ideal gas in
diffusive contact with a reservoir. If (NS is of the order of 102% atons, then the
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[ractional fluctuation is exceedingly smal

- In such a system the number of
particles is w

<li defined even though it cannot be rigorously constant because
diffusive cantact is allowed with the reservoir, When (N is low, this elation
can be used in the experimental determination of the melecular weight of large
maolecules such as DNA of MW 10Y — 10'%; see M. Weissman, H. Schindler,
and G. Feher, Proc. Nat. Acad. Sci. 73,2776 (1974).

11. Equivalent definition of chemical potential,

The chemical potential was
defined by (5) as (8F/éN)

ov- An equivalent expression listed in Table 5.1 is
o= A{eUJEN), ». (85

Prove that this relation, which was used by Gibbs 1o define 4, is equivalent to
the definition (5) that we have adopted. It will be convenient 1o make vse of the
results (31) and (35). Our reasons for treating {5) as the definition ol g, and {85) as
a mathematical consequence, are two-feld. In practice, we need the chemical
potential more olten as a function of the lemperature ¥ than as a function of the
entropy 0. Operationally, a process in which a particle is added 1o a system
while the temperature of the system is kept constant is a more natural process
than one in which the entropy is kept constant: Adding a particle o a system at
a finite temperature tends to increase its entropy unless we can keep each system
of the ensemble in a definite, aithough new, quantum state. There is no natural
fuboratory process by which this can be done. Henee the definition (5) or {6},
in which the chemical patential is expressed as the change in free enerey per
added particle under conditions of constant temperiture, 15 operatienally the
simpler. We point out that (85} will not give U = N on integeintion, because
#(N.,¥} is a function of N, compare with (9.13).

12, Ascent of sap in trees. - Find the maximum height 1o whicly water may rise
ina trec under the assumption that the roots stand in a pool of water and the
uppermost leaves are in air containing waier vapor at & relutive humidity » =
09. The temperature is 25°C. If the relative humidity is r, the actual concentra-
tion of water vapor in the air at the uppermost leaves is riry, where ny is the

concentration in the saturated air that stands immediately above the pool of
walter. :

13. Isentropic expansion. (1) Show that the entrepy of an ideal gas can be
expressed as a function only of the orbital occupancies. (b) From this result

show that 1V is constant in an isentropic expansion of an ideal monatosmic
gas. '

I4. Multiple binding of 0. A hemoglobin molecule can bind four 0,
motecules. Assume that ¢ is the energy of each bound O,, refative to O, at rest at
infinite distance. Let 7 denote the absolute activity exp(p/7) of the free 0, (in
sotution). {a} What is the probability that one and only one O, is adsoshed on a

Problems

hemoglobin molecule? Sketch the result qualitatively as a function of i, {b} What

is the probability that four and only four O, are adsorbed? Sketch this result
also. :

15, External chemical potential, Consider a system at temperature 1, with
N atoms of mass A in volume V. Let ;@) denote the value of the chemical
potential at the surface of the earth. {a) Prove carefully and honestly that the

value of the total chemical potential for the identical system when transtated
to altitude h is

pthy = p{0) + Mgh ,

where g is the acceleration of gravity. {b) Why is this result different from that
applicable to the barometric equation of an isothermat aimosphere?
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Ideal Gas

FERMI-DIRAC DISTRIBUTION FUNCTION

BOSE-EINSTEIN DISTRIBUTION FUNCTION

CLASSICAL LIMIT

Chemical Potential

Free Energy

Pressure

Encrgy

Entrepy

Heat Capacity

Example: Experimental Tests of the Sackur-Tetrode Equation

Chemical Potential of 1deal Gas with Internal Degrees of Freedom

Example: Spin Entropy in Zero Magnetic Field
Reversible Isothermal Expansion

Reversible Expansion at Constant Entropy
Sudden Expansion into 2 Vacuum

SUMMARY

PROBLEMS

- Derivative of Fermi-Dirac Function

- Symmetey of Filled and Vacant Orbitals

- Distribution Function for Double Oceupancy Statistics
- Energy of Gas of Extreme Relativistic Particles

- Entropy of Mixing

- Relation of Pressure and Energy Density

- Time for a Large Fluctuatjon

- Gas of Atoms with Internal Degree of Freedom

- Isentropic Relations of Ideal Gas

- Convective Isentropic Equilibrium of the Atwosphere
- bdeal Gas in Fao Dimensjons

- Gibbs Sum for Ideal Gas

- Ideal Gas Calculations

- Diesel Engine Compression
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. Integration of the Thermodynamic Identity for an Ideal Gas
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Chapter 6: Nlegl Gas

The ideal gas is & gas of soninteracting atoms in the limit of low concentration,
The limit is defined below in terms of the thermal average value of the number
of particles that occupy an orbital. The thermal average occupancy is calied the
distribution function, usually designated as f(e7.) where ¢ is the encrgy of
the orbial.

An orbital is a state of the Scheddinger equation for only one particle. This
term is widely used particularly by chemists, 11he interactions between particles
arc weak, the orbital model aliows us 1o approximate an exact quuntum stale
of the Schrédinger equation of a system of & particles in terms of an approxi-
matle quanium stute thut we construct by sssipaing the N particles to orbitals,
with each orbital o solution of a one-particle Schrédinger equation. There are

usually an infinite number of orbitals availsble for occupancy. The term |

“orbital” Is used even when there is no analogy 1o a classical orbit or to a
Bohr orbit. The orbital model gives an exact solution of the N-particle problem
only if there are no interactions between the particles.

tis 2 fundamental result of quantum nsechanics {ihe derivation of which
would lead us astray here} that all species of particles fall into two distinet
classes, fermions and bosons. Any particle with hall-integral spin is a fermion,
and any particle with zero or integral spin is a bosen. There are no internie-
diate classes. Composite particles follow the same rute: an atom of *He is
composed of an odd number of particles—2 electrons, 2 protons, 1 neutron—
each of spin §, so that *He must have half-irtegrat spin and must be a feomion.
An atom of *He has one more neutron, so there are an even sumber of patticles
of spin %, and *He must be a boson.

The fermion or boson nature of the particle species that make up a many-
body system has a profound and important eflfect on the states of the system.
The results of quantum theory as applied to the orbital model of noninferacting
particles appear as occupancy rules:

1. An orbital can be accupied by any integral number of bosens of the samie
species, including zero, :

2. An orbital can be occupied by O'or | fermion of the same species.

The second rule is a statement of the Pauli exclusion principle. Thermal averages
of occupancies need not be integral or haif-integral, but the orbital occupancies

of any individual system must conform 1o one or the other rule,

Fevail-Dirac Distribution Function

The two different occupancy rules give rise to two different Gibbs sums for
cach orbital; there is a boson sum over al} integral values of the orbital occu-
pancy N, and there is a fermion sum in which N = 0 or N = | only, Different
Gibbs sums lead to different quantum distribution functions Sle,rqi) for the
thermal average occupancy. If conditions are such that f « 1, it will not matter
whether the occupancies N = 2, 3,. .. are excluded or are aliowed. Thus when
[« [ the fermion and boson distribution functions must be similar. This limit
in which the orbital occupancy is small in comparison with unity is called the
classical repime.

We now treat the Fermi-Dirac distribution function for the thernal avérage
occupungy of an orbital by fermions and the Bose-Finstzin distribution function
for the thermal average accupancy of an orbital by bosons. We show the
cquivalence of the two functions in the lisit of low occupaney, and we go on
Lo treat the properlics of 4 gas in this fimit-In Chapter 7 we treat the propertics
of fermion and boson gases in the opposite limit, where the nature of the
pasticles is absolutely cruciat for the properties of the fas.

FERMI-DIRAC BISTRIBUTION FUNCTION

We coasider a system composed of a single orbital that may be occupied by a
{ermion. The system is placed in thermal and diffusive contact with a reservolr,
a5 in Figures 6.1 and 6.2. A real sysiem may consist of a large number N of
fermions, but it is very helpful o focus on one orbital and calt it the system,
Allother orbituls of the real sysiem arce thought of as the reservoir. Our problem
is to find the thermal average occupancy of the orbital thus singled out. An
orbital can be occupicd by zero or by one fermion. No other occupancy is
aliowed by the Pauli exclusion principle. The energy of the system: will be taken
to be zero if the orbital is unoccupicd. The energy is ¢ il the orbital is occupied
by one fermion.

The Gibbs sum now is simple: from the definition in Chapter 5 we have

g =1+ lexp(~egft). (1}

The term | comes from the configuration with occupancy N = ( and energy
g = 0. The term dexp(- &/1) comes when the orbital is accupied by one fermion,
so that N = 1 and the energy is & The thermal average value of the occupancy

of the orbital is the ratio of the term in the Gibbs sum with N = 1 10 the entire
Gibbs sum:

_ Jexpl—gfr) _ 1 5
(WD = 1+ Jexpl—g/t) - A Texpleft) + 1 . _( )
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Reservoir

Reservoir

Vican! Occupied

0 fermions
0 encrgy

b fermion

£ gnargy

Ny fermions
Uy energy
K(N(]- U{,}

a(Ng, Uy} = fog g(N,, U}

My — 1 fermions
Uy ¢ energy
BNy 1, Uy — &)

, () d
ANy —~ 1, Uy — 1) = o( Xy, Uy m(jf’-,)v_e(.—")v

= o( Ny U+

Figure 6.1 We consider as the system a single orbital that may be oceupied at most by one
fermion. The system is in thermul and dilfusive contuct with the reservoir at temperature 1. The
energy e of the occupied orbital might be the kinetic encrgy of a free electron of a definite

spin orientation and confined 1o 2 fixed volume. Other allowed quantum states may be
considered as forming the reservoir. The reservoir will contain Ny fermions if the system is
unoceupied and N — | lermions if the system is occupicd by one fermion.

e .

We introduce for the average occupancy the conventional symbol f{e) that

denotes the thermal average number of particles in an orbital of energy e:

Sley = (N(en-

(3

Recalt from Chapter 5 that 4 = exply/r), where p is the chemical potential.

We may write (2} in the standard form

C
Jtey = exp((s — p)/r} 1
L

4

This result is known as the Fermi-Dirac distribution function.* Equation (4)
gives the average number of fermions in 4 single orbital of energy & The valug

* This distribution function was discovered independently by E. Fermg, Zeitschrift fiir Physik 36
902 {1928, and P. A. A, Dirac, Praceedings of the Royat Society of London At12, 156! (19261
Both workers drew on Pauli's paper of the preceding year in which the exclusion principle was
discovered. The paper by Dirac is conceracd with the new quaniwm mechanics and contaias a
peneral statement of the form assumed by the Pacli principle on this theary.

Fermi-Dirae Distribution Function

1ot

Reservoir

System

Reservoir

() (b}

Figure 6.2 {a) The obvious mcthod of viewing a sy
shown here, The energy fevels each refer Lo an orbit
particle Schebdinger cquation. The tolal cnergy of 1

stem of noninteracting particles is
al that is & solution of a single-
he system is

B = ZNnﬂ. s

where N is the number of particles in the orbitaf n of cner
or L (b) It is much simpler thun (a},
systere. The systens in this scheme

£Y #5- For fermions N, = 0
and eguaily valid, to treat 3 singie orbital as the
may be the orbital n of energy £,. Atl other orbitals
ure viewed as the reservoir. The totaf energy of this ene-orbirad system is Mo, where
Ny is the number of particles in the orbital, This device of using one orbital as the
system works because the pusticles are supposed to interact only weakly with each
other. If we think of the fermion System associated with the orbital n, these are two
possibilitics: either the system bas O particles and encipy O, or the system has | pariidie
and energy £, Thus, the Gibbs sum consists of only two terms:

F=1+ diexp(—e o).
The first term arises from the orbit

al occupuncy N, = 0, and the second term arises
from N, = 1.

of f always lies between zero and one. The Fermi-Dirne distribution function
is plotted in Figure 6.3,
In the field of solid state physics the chemical potential u s often called the

Fermi fevel. The chemical potential usually depends on the temperature. The
vihee of 1 at zero femperature is often written as £p; that is,

T = 0) = p(0) = gp (5}

We call gy the Ferni energy, not 1o be conlused” with the Fermi level which

" ia the semiconductor literature

the symbol ¢, is ofien used for Jeat any temperalure, and 4 is
then called the Fermi jevel,
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Figure 6.3 Plot of the Fermi-Dirae distsibution function f{e) versus € ~ p in units of
the temperatuce 1, The valuc of f{c) gives the fraction of orbitals at a given energy

" which are occupicd when the system is in thermal equilibrium, When the system is
heated from absolute zero, fermions ase transferred from the shaded region at g/p < 1

to the shaded region at ¢/p > 1. For conduction electrons in a metal, y might
carrespond 1o 30 000 K.

is the temperature dependent p{r). Consider a system of many independent
orbitals, a5 in Figure 6.4, At the temperature 7 = 0, all orbitals of energy below
the Fermi energy are occupied by exacily one fermion each, and all orbitals
of higher energy are unoccupied. At nonzero temperatures the value of the
chemical potential p departs from the Fermi energy, us we will see in Chapter 7.

if there is an orbital of energy equal to the chemical potential (g = ), the
orbital is exactly half-filied, in the sense of a thermal average:

fle=p)=+—. @)

Orbitals of iower energy are more than half-filled, and orbitals of higher energy

are less than half-filled. . )
We shall discuss the physical consequences of the Fermi-Dirac distribution

in Chapter 7. Right now we go on to discuss the distribution function of non-

Bose-Einstein Distribution Funcilon

£

Reservoir

0000

SCOON

interacting bosons, and then we establish the ideal gas law for both fermions
and bosons in the appropriute Himit.

BOSE-EINSTEIN DISTRIBUTION FUNCTION

A boson is a particle with an integral value of the spin. The occupancy rule
for bosons is that an orbital can be occupied by any number of basens, so that
bosons have an essentially different quadity than fermions. Systems of bosons
can have rather different physical properties than systems of fermions. Atoms
of *He are bosons; atoms of *He are fermions. The remarkable superfluid
properties of 1he low temperature {T < 217K} phase of liquid helium can be
attributed to the properties of a boson gas. There is a sudden increase in the
fluidity and in the heat conductivity of liquid *He below this temperature. In
experiments by Kapitza the flow viscosity of *He below 2.17K was found 1o
be less than 1077 of the viscosily of the liquid abave 2.17K.

Photons (the quanta of the electromagnetic field) and phonons (the quanta
of elastic waves in solids) can be considered to be bosons whose number is
nat conserved, but it is simpler to think of photons and phonons as excitations

- of an oscillator, as we did in Chapter 4.

We consider the distribution function for a system of noninteracting bosons
in thermal and diffusive contact with a reservoir. We assume the bosons are
all of the same species. Let £ denote the energy of a single orbital when occupied

by one particle; when there are N particles in the orbital, the enerpy is Ne,
as in Figure 6.5. We treat one orbital as the system and view all other orbitals

i57

Figure 6.4 A convenient pictorial way o
think of a system composed of independent
orbitals that do not interaet with each other,
but futeract with a common reservoir,
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Figure 6.5 Energy-Tevel scheme for non- ) N=4
Interacting bosons. Here ¢ fs the energy of

an orbital when oceupied by one particle; N3

Nels the energy of the same orbita! when —

occupied by N particles, Any number of bosons
©an occupy the same orbital, The fowest level N =2
of this orbital contribues g term 1 1o the —
grand susy; the neat highest fevel contributes

£ exp(—e/t); and the subsequent contributions
= 2ef1); 22 expl—- 3gfry; 2t ex pl—4g/r);
and so on. The Gibbs sum is F=1+
~€5Pl~¢/T) + j%gyp{— 7 N

are 2t exp(

£
N=90 _J____

T

a5 part of the reservair., Any arbitrary sumber of partict

es may be in the arbjil,
The Gibbs sum taken for the orbital is

&= i Aexp(~ Nejr) = i [Lexp{~e/3]". (7
- N=g N=0

- v on 1 _ v _
T TR T ®

provided that Aexp{— /1) < 1. inall applications, Jexp( -t} will sulisfy this

mequality; otherwise the number of bosons in the system would not be bounded,

The thermal average of the number of particles in the orbital is found from
the Gibbs sum by use of {5.62):

. a8 d N 1
Se) = Aaloga’- = x :{;log(l - N} = }—*-NT = /;_I'L_"\[:)_(E,-'ﬁ )
or

e

! |
= 10
Jig} exp[(s _ }‘)I’I] = E {10)

i

Bose-Einstein Distribution Function

4
[ S |
Bose-Einstein
Jie)
2 \
I R
NM&T"D”“C \ Classical #imit
\\
‘\d
i

EZ o | [ 1 2

£« p in units of 7

Figure 6.6 Comparison of Bose-Eifstein and Fermi-Dirac
distribution functions. The classical regime is attained for

(e — p) » 1, where the two distributions become nearly identical.
We shall see in Chapter 7 that in the degenerate regime at low
temperature the chemical potential 2 for 2 FD distribution is
positive, and changes to negative at high temperature.

This defines the Bose-Einstein distribution function, It differs mathematically
from the Fermi-Dirac distribution function only by having —1 instead of + 1
in the denominator, The change canhave very significant physical consequences,
as we shall sec in Chapter 7. The two distribution functions are compared in
Figure 6.5. The ideal gas represents the timit & — % 1in which the two distsi-
bution funclions are approximately equal, as discussed below. The choice of the
zero of the energy & is always arbitrary. The particular choice made in any
problem will affect the value of the chemical potential 7, but the value of l.hc
difference € —  has to be independent of the choice of the zero of &. This point
&5 discussed further in (20) below, i

A gas is in the classical regime when the average number of atoms in cach
orbital is much less than one, The average orbital eccupancy for a gas at room
lemperature and atmospheric pressure is of the order ofonly 1075, safely in the
classical regime. Differences between fermions {haif-integral spin) and bosens
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Table 6.1 Compaiison of the orbitat occupancics in the classical
2nd the quantum regimes

Class of

. Thermal averige occupaney
Regime particle of any orbital
Classicul Fermion Always much [ess than one,
Boson Always much less than one.
Quantum Fertmion Close 1o but less than one.
Boson

Orbital of lowess energy has
an occupsney much grealer than one.

arise only for occupancies of the order of one or more, $o that in the classical
regize their equilibrium properties are identical. The guantum regime is the

opposite of the classical regime. These characteristic features are summarized
in Fable 6.1,

CLASSICAL LIMIT

An idenl pas is defined as a system of free noninlémcting particles in the classical
regime. “Free” means confined in a box with no resirictions or external forces
acting within the box. We develop the propertics of an ideal gas with the use
of the powerful method of the Gibbs sum. In Chapter 3 we treated the ideal gas
by use of the partition function, but the identical particle problem encountered
there was resolved by a method whose validity was not perfecily clear.

The Fermi-Dirac and Bose-Eisstein distribution functions in the classical
limit lead to the identical resuit for the average number of atoms in an orbital.
Write f{e) {or the average occupancy of an orbital at energy e Here g is the
energy of an orbital occupied by one particle: it is not the energy of a system of

N particles. The Fermi-Dirac {FD} and Bosc-Einstein {BE) distribution func-
tions are

' 1
O e TR ET a
where the plus sign is for the FD distribution and the minus sign for the BE

distribution. In order that f{z) be much smaller than unity for a1l orbitals, we
must have in this classical regime

cexple-wid», g

Chemical Potential

for ail &, When this inequality is satisfied we may neglect the termn 1 in the

denominator of {11} Then for either fermions or bosons, the average sccupaney
ol an orbital of energy £ is

|~ 3
JleY = expl{n — 0)/1] = Zexpl{—¢&fr), I (y

with 2 = exp(y/r). The limiting result (13} is called the classieat distribution
function. It is the limit of the Fermi-Dirac and Bose-Einstein distribution
functions when the average occupancy f(g) is very small in comparison with
unity. Equation (13), although called classical, is still a result for particies
described by quantum mechanics: we shall find that the expression for 2 or g
slways involves the quantum constant h."Any theary which contains ! cannot
be a classical theory. o

We use the classical distribution function f{e} = Zexp{—#/z} 1o study the
thermal properties of the ideat gas, There ure many topics of importance: the
entropy, chemical potential, heat capacity, the pressure-volume-temperature
refution, and the distribution of atomic veloeitics. To oblain results from the
classical distribution function, we need first to find the chemical potential in
terms of the concentration of atoms.

Chemical Potential

The chemical potential is found from the condition that the thermal average
of the total number of atoms equals the number of atoms krown to be present.
This number must be the sum over alt orbitals of the distribution funciion f(e,):

N=(Ny =Y fle), (14)

wihere § is the index of 2n orbital of encrgy £, We start with 2 monutomic gas
of N identical aloms of zcro spin, and later we include spin and molecular
modus of motion. The total number of atoms is the sum of the average number
of atoms in each orbital. We use (13} in (14} to obtain

N = iY exp(-g/t). (£5)

To evaluate this sum, observe that the summation over free particle orbitals

is just the partition funciion Z, for a single free atom in volume ¥, whence
N = iZ,. :

1a1
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In Chapter 3 it was shown that Z; = n,¥, where Ny = {M¢/272h*)*? i3 the
quantum concealration, Thus

N =i = Vi = NingV = afn, | (16}

in terms of the number density n = N/V, Finally,

N |
L/‘. = exp{p/7) = nfng ,J? (17

which is equal to the number of ato
classical regime #tng is «l. The ch
gas is

ms in the quantum volume L. In the
emical potential of the ideal nionatoiic

I
o= Eog(n/ngr} (18)

in agreement with {5122} obtained in another way. The result may be written
out to give

#o=tlogN — logV ~ 3logr + Ftog(2ah?an). (19)
We see that the chemical

potential increases as the concentration incroases and
decreases as the temperature increases.

pee -

Comment:  The simple expression (18) for the chemical potential can be subject to several
modifications. We mention four examples.

{a) 1f the zcro of 1he energy scale is shified by an energy A so that the zero of the kinetic
energy of an orbual falls at 2y, = A instend ofat gy = 0, then

#= A+ tloglning. (20

(b) i the atomshave spin S, the number of arbitals ia the sum in €15) is multiplicd by the
span cwltiplicity 28 + 1, For spin ditis doubled; the value of the pasiition function Z,
is doubled; ng will be repliced everywhere by 2n,, and the right-hund side of {18}
will have an added term - tlog 2. The effect of the spin on the cntropy s lrcated
below.

{e} I the gas is not monatentic, the internal cuergy states associated with rotational and
vibrational motion will entes the partition function, ard the chemical potential will

free Energy

have an added term —1¢ fog Z;., per (48) betow, where Z;, 15 the partition function of
the internal degrees of freedom of one molecule.

{d} If the gas is nonideat, the result for # may be considerably more complicated; see

Chapter 10 for thic ielatively simple van der Waals approximalion to a gas of inter-
acting atoms.

R AR AT VL W NS mreeetlovent S Ly

Free Energy
The chemical patential is refated to the free energy by
(EF/ON}yy = p | 21
according to Chapter 5, From this,
N2V = f: AN g N2, V) = rf:cuv flogN + -], (22)

where the integrand is found in brackets in {19). Now fdxlogx = x logx ~ x,
so that :

Foe= NeflogN — 1~ log V¥ — llogr + Hog(2rh?A0)] (23}

or

F = Nt[log(n/ng) — 1]. {24

The free cnergy increases with concentration and decreases with temperature,

Comment:  The integral in (22) should stricily be a sum, because M is a discrete variable.
Thus, from (5.6),

N
N = 3 N, 25)

N=3

which differs from the integral only in the term in log N im {19, for

N
Y log N = logi! ¥ 2x3xx N)=logh! {26}
A1 ]
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where the integral pave NMlog N — ¥ in {23). But for large N the Stirling approximation

log Nl = NlogN — N |, (27)
may be used, and now {25} is the same as 23).

O T st ey

Pressure

The pressure is related to the free energy hy (3.49);

p= —{{FEVY) y. {28)
With (23) for F we have

p= NefV, pVoss Nr, (29}

which is the ideal gas law, as derived in Chapter 3.
Encrpy

The thermal energy U is found from F = U — TG, or

. & F
UsFt+1o=F- HEF;étly g = —t’(:u _) {30}
9Tt v N
With {23) for F we have -
¢ F
(;i “) LA 31y
€T T jpx 27
so that for an ideal gas
R
{
] U= N (3)

The factor 3 arises from the exponent of 7 in fig hecause the gas is in theee
dimensions; if ny were in one or two dimensions, the factor would be forl,
respectively. The average kinetic energy of translational motion in the classical
limit is equal to 4t or 34, T per translational degree of freedom of an atom,
The principle of equipartition of energy among degrees of freedom was discussed

fteat Capacity

A polyatomic molecule has rotational degrees of freedom, and the average
energy of cach rotational degree of freedom is ¥t when the temperature is high
in comparison with the energy differences between the rotational energy levels
of the molecule. The rotational energy is kinetic. A linear molecule has two
degrees of rotational freedom which can be excited: a nonlinear molecule has
three degrees of rotational freedom.

Entropy
The entropy is refated to the free energy by
¢ = ﬁ(aFfar)v,,v- (33)

From (23} for F we have the entropy of an ideal 2as:

o = N{log{n,/n} + 3]. (34)

This is identical with our carlier result (3.76). In the classical regime n'ng is
<1, s0 that loglng/n) is positive. The result (34) is known s the Sackur-Tetrode
cyuation for the absolute entropy of a monatomic ideal gas. 1 is important
historically and is cssential in the thermodynamics of chenicul reactions, Even
though the cquation contains b, the resull was inferred from CXperimenis on
vapor pressure and on cquilibrium in chemical reuctions long before the
quantum-mechanical basis was fully understood. It was a great chailenge to
theoretical physicists to explain the Sackur-Tetrode equation, and many un-
successful attempts to do so were made in the early years of this century, We
shall encounter applications of the result in later chapiers.

The entropy of the ideat gas s directly proportional 1o the number of particles
N if their concentration n is constant, as we see from {34). When two identical
gases at identical conditions are placed side by side, each system havingentropy
¢y, the total entropy is 2o, because N is doubled. If a valve that conneets the
systems is opened, the entropy is unchanged. We sce that the entropy scales as
the size of the system: the entrepy is linear in the number of particles, at constant
concentration. If the gases are not identical, the entropy increases when the
valve is opened (Problem 6).

Heat Capacity

The heat capacity at constant volume is defined in Chapter 3 as

Gy = 1(00/d1)y. (35)
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We can caleulate the derivative directly from the entro

py (34) of an ideal gas in fundamental units, or
-when the expression for g 1S Written out: '

Cp = §Nky (38d)
dg L 2/3 Nlogt 4 ---) = N : in conventional units. The ratjo C,/Cy is written as y, the Greek letter gamma,
Stjpn T \2 2t
From this, for an ideal gas e T ' T
Example: Experimental tests of the Sackur-Tetrode equation. Experimental values of the
entropy are ofien found from experimentat values of C, by numerical integration of (37
1o give at constant pressure
{36)
6t} — o{0) = fo (C /o, (39
or Gy = INL, in conveational units. Here o(0) denotes the entropy at the lowest temperature attained in the measurements
The heat capacily at constant pressure is larger than €, because additional ohr C,.The %h]l[‘(ill_:!}\"oflhc’.rmudyna;mlcs;u%gcsls that a(0) may be set r.;vi}ual to zot0 unless
heat must be added to perform the work needed 1o expand the volume of the there are multip 1eHis not removed at the owest lemperature aliained.

- . . il in Chapter 8. We use We. can caleutate the entropy of 2 monatonic ideal gas by use of the Sackur Tetrode
£45 against the constant pressure p, as discussed in dﬂ?” n pter o . cquation (34). The value thus calculated ar a seloeted temperature and pressure may be
the :h::rmodynaml_c identity tdo = dU 4+ pdV to obtain E ‘ compased with the experimentat vatue of (he ealropy of the gas. The experimental value

’ is found by summing the following contributions:
Cp = (Ef{) - (iﬁ{{) + p (éﬂ) . ' (37 "~ 1. Enlropy increase on heating solid from absolute zero (o the melting point.
érfy - Aét » dt /, 2. Entropy increase in the salid-to-liquid transformation (discussed in Chapter 10).
. . X Entropy fncrease on heating Liguid from tielting puing to the boiling poing.
The eaergy of an ideal 8us depends only on (he temperature, so that {eufon), . . . . .
. i T 4. Entropy increase in the tiguid-to-pas transformation,
will have the same value ag {dU/ér),, which is just ¢, by the argument of{3.17h). ) . .
. 5. FEntropy change on heating gas from the boiling point to 1he selected temperature and
By the ideal gas law V = Nt/p, so that the term POV/dT), = N. Thus (37 pressure
becomes )
There may further be 2 stight correction to (34) for the nonideatity of the gas. Comparisons
of experimental and theorctical values have now been carried out for Wany gascs, and very
C_ o= Cy + N {383) I L
4 satislactory agreement is found between the two seis of values.*
R . We give details of the comparison for neon, afier the mcasurements of Clusius. The
in fundamental units, or ' entropy is given in terms of the conventional entropy § = kyo.
Cp = Cy + Nky (38b) 1. The heat capacity of the sofid was measured from ].2‘3 K tothe n?t.'lling paint M33K
under one atmosphere of pressuce. The heat capacity of the solid below F2.3K was
] ] estimiated by a Debye law Clapier 4) extrapalation ta sbsolute 2¢ro of the measure-
in conventional units. We notice again the different dimensions that heat

ments above 1 L3 K. The enltopy ol thes

olid al the melting point is fownd by numesical
integration of [dT(C,/ T o be

capacities have in the two systems of units. For one mole, Nk, is usually written
as R, called the gas constant.

- . . . . JRE I ~“ty -t

The results (38a,b) are written for an ideal gas without spin or other internal Sietis = 1429 Jmol"TK 1.
degrees of freedom of a molecule. For an ilom Cy = 2N 5o that : _ ) o _ _
N . * A dlassic study s “The heat capacily of oxygen from 12K 1o its boifiag point and its heat of

. . Viporization. The entropy [rom spectioscopic data,” W. F. Ghauque and H. [, Johuston, Jouraal of
CF == %N 3 N = %N ) (38¢c) iR the Amwesican Chemical Society $1_ 3300 {19293
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Table 6.2 Comparison of experimental and
cateutined values of the entropy at the bailing
pomt under one atmoesphere

Ewmtropy in Jmol "' K1

Gas Topr i K Experimental

Caleulated
Ne 2 96.40 96.43
Ar 87.29 12975 129.24
Kr 11993 144.56 [45.06

SOURCE: From Landoft Bérnstein tables, 6th ¢d., V

ol 2,
Past 4, pp. 393-369,

2. Theheat input required to melt the solid a{ 2455 K i observed to be 335 mol ™!, The
assaciated enlropy of pichting is

3353 mol™t

AS e = o O
melting 2455K

= 1364 mol " K1,

3. The heat capacity of the Hiquid was measured from the melling point to the beiling
pointof 212K under one atmosphere of pressure. The entropy increase was found 10 be
ASqus = 385Fmol T K1
4.

The heat input requised to vaporize the liquid a1 27.2K was observed to be 176 J
moi ™!, The associated catropy of vaporization is

1761 Fmol~?

AS, = o f4, D SR
TIK 64,62 Imol" 'K

vaporization

The experimentat value of the entropy of neon gas at 27.7K ata pressure of one atmo-
sphere adds up to

Sg:u = Ssulid + Asmeﬂing + ASliquid + Asvapu:izﬂion == 96'40}‘“{}1%& K—l-
The calcutated value of the eitrepy of necon under the same conditions is

Seas = 9645 Tmol LK1
from the Sackur-Tetrode equation. The excellent agreement with the experimental value
Bives us confidence in the basis of the entire theoretical apparatus that led to the Sackur-
Tetrade eyuation. The resull (34} could hardly bave been guessed; 10 find 3t verified by
observation is a real expetience, Results for argon and krypton are given in Table 6.2,

T et g s e o
l..:;'_:u.:u::;:-;,.'_ ST

h TERO L s e e g

Chemical Potentiul of Ieal Gus with Internal Degrees of Freedomn

Chemical Potential of Feal Gas with
Internal Degrees of Freedom

We consider now an ideal gas of identical poiyaiomic molecules. Euch moleculs
has rotational and vibratienal degrees of freedom in addition to the transla-

tional degrees of freedom. The total encrgy ¢ of the molecule is the sum of two
independent parts,

£ =B, o+ gy, (40)

where g, refers to the rotations! and vibrational degrees of freedom and ¢,
ta the translational motion of the center of mass of the molecule. The vibrationa!
encrgy problem is the harmonice oscillator problem treated earlier. The rota-
tional energy was the subject of Prablemi’d.6.

L the clussical regime the Gibbs sum ot ke orbital n is

g = 1+ dexp(—¢,/1} , (a1}

where terms in higher powers of 1 are omitted because the average occupancy
of the orbital n is assumed to be <« 1. That is, we neglect the terms in 3 which
correspond to occupancies greater than unity. In the presence of internal energy
states the Gibbs sum associated with the orbital n becomes

F=1+ Y exp[—(e, + &) » (42)
inl
or
3 =1+ Lexp(=e Y. exp(—sin/) (43)
The summation is just the partition function of the interna! states:
Zine = ) exp{=5if1) (44

int

which is related to the internal free energy of the one molecule by F =
~tlogZ;,,. From (43) the Gibbs sum is

F = 1+ A cxp(~e.f1). (45)
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The probability that the translational orbital n is occupied, irrespective of

- the state of internal motion of the molecule, is given by the ratio of the term

in 110 the G_ibbs sum g:

‘;'Zin! cxp{“ﬁnfff)
— b AN L S Y —£ /1), 46
e = T s ™ metn(=r/) (46)
The classical regime was defined carlier as f(z.) « 1. The result (46} is entirety
analogous to (13) for the monalomic case, but 4Z;, now plays the role of A

i

Several of the results derived for the monatomic ideal gas are different for
the polyatomic ideal gas;

{a} Equation (17) for 1is replaced by

R

e afngLiL) 1 {47)

with my defined exactly as before, (We shall always use g as defined for the
monatomic ideal gas of atoms with zero spin} Because 4 = exp{p/t) we
have :

1
H= T{IOE(’!T”Q) -legZ,} {48}

{B) The free encray is increased by, for N molecules,

'H! .
Fra = =Nzlog Z,,. | (49)
|

{cj The entropy is increased by

! Ting = m(fF.m.ff‘r}r-_JI {30

The former result U = N7 applies to the translational energy alone.

i

o Ty ey T : B
e i O R

TR

Example : Spin entropy in 2era magactic field.  Consider an atom of spin I, where [ may
represent both electronic and nudlear spins. The internal partition _l'unciion associated

Reversible Isothernaf Expansipn

with the spin alone is

L=l + 1y, _ (51)
this being the number olindependent spin staies. The spin contribution to the free energy is

Fo,= ~tlog(2f + 1) s {52

and the spin entropy is

i = l0E(21 + 1), {53)
by (50%. Theeffect of the spin entropy on the chemical potential is found with the help of (48}:

# o= xlog(n/ng) — log(zt + 13). {54

= O LIS

L

A T T o et Shabion: |

Reversible Isothermal Expansion

Consider as a model example 1 % {02 atoms of *He at an initial volume of
10° em® at 300 K. Let the £as expand slowly at constant temperature until the
volume is 2 x 10°cm?. The temperature is maintained constant by thermal
contact with a large reservoir. In a reversible expansion the system at any
instant is in its most probable configuration,

What is the pressure after expansion?

The final volume is twice the initial volume: the final temperature is equal
to the initial temperature, From P¥Y = N7 we see that the final pressure is
one-half the initial pressure.

What is the increase of entropy on expansion?
The entropy of an ideal 828 at constant temperature depends on volume as

a{V} = Nlog V + constant . (53)
whence
T2~ oy = Nlog(Vf¥)) = Nlog2 = (F x 10*°)0.693) = 0.069 x 1073, (56)
Notice that the eitropy is larger at the larger volume, because the system has

More accessible states in the larger votume than in the smaller volume at the
same {CIHPC[E{{U{C. :
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Direction of mation of
‘piswn i cxpansion

Weights

Piston

Heaz flow

Gas ’ ~ i Heat flow

[se—

 T—

Figure 6.7 Work is done by the gas in an isothermal
cxpansion. Here the pas does work by raising the weights,
Under isothermal conditions pl” is constant for an jdeat gas,
s that the pressure must be reduced to allow the velume to
expand. The pressuce s reduced by removing ihe load of
weighis 2 litile al a time,

How much work is done by the gas it the exparsion?
When the gas expands isothermally, it does work against a piston, as in
Figure 6.7. The work done on the piston when the volume is doubled is
¥

[ pav = [ eegviay = Nelog(vyv) = Nelog2, (57
1

We evaluate Nt direetly as4.14 x 10%erg = 41.4J. Thus the work done on the
piston is, from {57),

Nilog2 = (41.41}{0.693) = 2871, (58)

The assuinplion that the process is reversible enters in (57) when we assume
thata knowledge of Vat every stage delermines p at every stage of the expansion.

We define W as the work done on the gas by external agencies. This is the
negative of the work done by the gas on the piston. From (58),

W= = [pv= —2g1, Cn 59

Reversible Expansion ar Ceasiart Entropy

Whar is the change of energy in the expansion?
The erergy of an ideal monatomic gas js U e 3Nt and does not change in
an expansion at consiant temperature. However, the Helmholtz free encrgy

decreases by Nzlog2, which is the work done. The connection is discussed in
Chapter 8.

Hew much heat flowed inte the gas frem the reservoir ?

We have scen that the encray of the ideal gus remained constant when the
gas did work on the piston. By conservation of energy it is necessary that a
flow of energy in the form of heat into the gas oceur from the reservoir through
the walls of the container. The quantity Q of heat addcd to the gas must be
equal, but be oppesite in sign, to the work done by the pisten, because

0+ W =0 Thus
Q=287)], (60)

from the result (59).

Reversible Expansion at Constant Entropy

We considered above an expansion at constant temperature, Suppose instead
that the gas expands reversibly from 1 x 10%cm® to 2 x 10%cm? it an in-
sulated container, No heat flow 1o or {rom the gas is permitied, so that g =0
The entropy is constant in & system isolated from the reservoir if the expansion
process is carried out reversibly {slowly). A process without a change of cotropy
is called an isentropic process or an adiabatic process. The term “adiabatic™
has the specific meaning that there is no heat transfer in the process. For
simplicity, we shall stick with “isentropic.” .

What is the temperature of the gas after expansion?

The entropy of an ideal monatomic gas depends on the volume and the
temperature as

o(z,V) = N{iogt¥? + log ¥ + constany) , {61)
50 that the entropy remains constant if

log vV = constant; ¥V = constant. (62}

In an expansion at constant entropy from ¥ to V, we have

:13,'11/1 - r23}2 Vz (63)

for an ideal monatomic gas.
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We use the ideat gas Jaw pY = Nt to obtain two alternate forms, We insert
V = Nt/pinto (63) and cancel N on bath sides to obtain

572 52
LN (64)
Py P2

Similarly, we insert ¢ = pV/N in (63} to obtain

A X L 1N S AL (65}

Both (64) and (65) hold only for a monatomic gas.

It is the subject of Problem 10 1o generalize these results for an jdeal gas f)f
malecules with inteenal degrees of motion {rotations, vibrutions). We abiain
for an isentropic process

LV = gyt (66}
Py = tz"’“"”pi : en -

PV = paWy, ' " (68)

Here y = C,/C, is the ratio of the heat capacitics at constant pressure and
constant volume,
With T, = 300K and WilVy =} we find from (63):

Ty = P300K) = 189 K, (69)

This is the final temperature after the expansion at constant entropy. The gas
is cooled in the £Xpansion process by

Ty — T, = 300K ~ 189K = ({1 K. 70

Expansion at constant eatropy is an importunt method of refrigeration.

What is the chunge in energy in the expansion ? .
The energy change is calculated from the lemperature change (70). For a
ideal monatomic gas

U - U, = C;'(Tz - f;} = %N{Tz =~ 1), (7”.

Sudden Expansion into a Yacuym
or, I conventional units,
UI - Ul %Nky(Tz - T,)
% 10%%)(1.38 x 10"’5crgK“'}{-~lHK)

it

i

# =23 x 10%rg = 23] (72}

Sudden Expansion intg a Yacuum

Let the gas expand suddenly intg a vacuwm from an initjal volume
a finad votume of 2 liters, This is un cxeellent example of g irreversible process,
When 4 hole is apened in the partition to permi the expansion, the first atoms
rush through the hote and strike the opposite wall, ino heat fow through the
walls is permitied, there is no way for the atoms to lose their kinetic encrgy.
The sebsequent flow may be furbulent (irreversible), with different parts of g
£as at different vatues of the tnergy density. Irreversible energy flow between
regions witl eventually equaljze conditions throughout the gas. We assume the
whele process ogcurs rapidly enough so (hat no heat flows in thro ugh the walls,

of 1 liter 1o

How much work is done in the expansion ?

No meaas of doing external work is provided, so that the work done is zero.
Zero work is npy hecessarily a characteristic of all irreversible processes, hut
the work is zero for exXpansion into a vacuum,

What is the temperature after expansion ?
No work is done and no heat is added in the EXpansion: ¥ = 0, 0 = 0, and
Uy ~ Uy = 0. Because the energy is unchanged, the temperature of the idea

845 is unchanged. The energy of a real gas may change in the procesg because
the atoms are maved farther apare, which affects their interuction energy.

Whar is the change of entropy in the expaision ?

The increase ofentropy when (he volume is doubled at constant temperature
is given by (56):

Ag =0, ~ g, = Nlog? = 0069 x Jp23. (73)

For the expansion into 4 vacuum Q = 0,
Expansion into a vacuum i5 not a reversible process: the system is not in the
Bost probuble (equilibriim) configuration at cvery stage of the expansion, Only
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v

Table 6.3 Summary of idcal monatomic gas expansion experiments

u,-u, 0y = 0 14 0
Reversib ¥, ¥,
isothermal ¢ Nlog 7 —Ntlog —”— Nilog -~
expansion ¥ % .
Reversible AT ALY
isentrapic —“f‘[i\,‘:‘[i - (Fl) } 0 “%1\’1’1[1 - (;7) J 0
expansion z t
Irreversible v,
expansion inta 0 Niog v 0 ¢
vacuum t

the initial configuration before removal of the partition and the final con-
figuration afler equilibration are most probable configurations. Atintermediate
stages the distribution in concentration and kinetic energy of atoms between
the two regions into which the system is divided does not correspond to an

equilibrium distribution. The central resuits of these calculations are sum-
marized in Table 6,3,

SUMMARY: STEPS LEADING TO THE IDEAL
GAS LAW FOR SPINLESS MONATOMIC GAS
{a) fle) = dexp(~¢f7) Occupancy of an orbital in the
classical Hmit of f{g) « L

A= N Qe

Given N, this equation determines

T exp(= 5,79 A
Energy of a free particle orbital of
quantum number n in a cube of

A in the classical limit.
B/ wn \?
{c} g, = LYY (V”’)
volume V.

{d) Y exp(—g, /1) = %7: J-dn ntexp(—gft)  Transformation of the sum 1o an
" intcgral.

(&) A= NfngV Result of the integration (d) after

subsitution in (b},

Definition of the quantum
. conceniration.

Problems
{8} = tloghyng)

th) F = J.d‘.\ri’{'\',f.V) = Nt[iog(ﬂjnﬁ) — ]]
) p= —(@FEVLy = NyV

PROBLEMS

1. Derivative of Fermi-Dirac function.  Show that —&f/ée evaluated at the

Fermi level ¢ = p has the value (41) "', Thus the lower the temperature, the
stecper the slope of the Fermi-Dirac function.

2. Symumetry of filled and vacant orbitals. let € = p + 8, so that fig
pears as f{x + 38). Show that

f 48y = 1 =" fla - 8) (14)

Thus the probability that an orbital § above the Formi level is occupied is equal

to the probability an orbital 6 below the chn level is vacant. A vacant orbital is
sometimes known as a hole.

) ap-

3. Distribution function for double occupancy statistics.  Let usimagine a new
mechanics in which the allowed occupancies of an orbital aze 0, 1, and 2. The
values of the energy associated with these occupancies are assumed to be 0, ¢
and 2¢, respectively.

(a) Derive an expression for the ensemble average occupancy (N, when the

_system composed of this orbital is in thermal and diffusive contact with a

reservolr at termperature v and chemical potential u.

{b} Return now to the usual quantum mechanics, and decive an expression
for the ensemble average occupancy of an energy level which is doubly de-

generate; that is, two orbitals have the identical enerpy & If both orbitals are
occupied the total energy is 2e.

4. Energy of gas of extreme relativistic particles.  Extreme relativistic parti-
cles have momenta p such that pe » Mc?, where M is the rest mass of the
particle. The de Broglie refation 2 = A/p for the quantum wavelength continues
to apply. Show that the mean encrgy per particle of ap extreme relativistic ideal
gasis 3rife = pe,incontrast to 37 for the nonrclutivistic problens. (An interesting
varicty of retutivistic problems are discussed by E. Ferni in Notes on Thermo-
dynanics and Sratistics, University of Chicago Press, 1966, paperback.)

3. Integration of the thermodynamic identity for an ideal gas.  From the ther-
modynamic identity at constant number of particies we have

du vl U dv
da =m_+‘ld_=m(ig) dr + (é )dV +p N )
T T T\ éz v Vv
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Show by integration that for an idea] gas the entropy is
amcyiogr+NlogV+éFl , {76)

where o, is a constant, Endépendent of tand V.,

6. Entropy of mixing. Suppose that a system of ¥ atoms of type A is placed
in diffusive contact with system of N atoms of type B at the same temperature
and volume. Show that after diffusive equilibrium is reached the total entropy
is increased by 2N fog 2. The entropy increase 2N tog 2 is known as the entropy
of mixing, If the atoms are identical (A = B), shaw that there is 1o increase in

entropy when diffusive contact is established. The difference in the results has
been called the Gibbs paradox,

7. Relation of pressure and energy demity, (3} Show that the AVLIAES pros-
SUIC in a system in therma] contact with a heat reservoir is given by

z (SO by expl - n f2)

P= e

, 77

where the sum is over all stat s of the system. {b) Show for a gas of free particles

that ) :
CE, -2 £
(a—v),, Loy (78}

&5 & resuit of the boundary conditions of the problem. The result holds equalily
whether g, reflers o a state of N noninteracting particles or to an orbital, (c) Show
that for a gas of [ree nonrelativistic particles

p=2URy, {19

where U is the thermal average energy of the system. This result is not limited

to the classical regime; it holds equally for fermion and boson particles, as
long as they are nonrelativistic,

8. Time for a large fuctuation, We quoted Boltzmann 1o the efficet that two
gusss ina 0.1 Lter container will unmix onty in a time enormously long compared
10 107" vears. We shail investigate a related problem: we let 3 gas of atoms of
*He occupy a container of volure of 0.1 Hter at 300 K and a pressure of 1 atm,
and we ask how long it will be before the atoms assume a configuration in
which all are in one-half of the container,

- {a} Estimate the number of states accessible 10 the system in this initial
condition, '

Problems

{b) The gas is compressed isothermally to a volume of 0.05 liter. How many
states are accessible now?

{c} For the system in the 0.1 liter container, estimate the value of the ratio

number of states for which all atoms are in onc-half of the volume
number of states for which the atoms are anywhere in the volume '

(@) I the collision rate of an atom is & 10'°s™* what is the total number of
collisions of all atoms in the system in a year? We use this as g crude estimate
of the frequency with which the state of the system changes.

{e)} Estimate the number of years you would expect {0 wait before all atoms
are in one-half of the volume, starting from (he ciuilibrivm configuration,

9. Gus of atons with internal degree of fiecdom,  Consider an ideal mon-
atomic gas, bul one for which the atom has twe internal energy states, one an
tnergy A above the other. There are N atows in volume ¥ at temperature 1,
Find the (a) chemical poteitialy (b} free energy: (o) citlropy: () pressine:
(e} hewt eupacity at constant pressure.

18, Isentropic relations of ideal gas. (1) Show that the differentiut changes for
an ideal gas inan isentropic process satisfy

dp dv dt dv dp y dr
Iy =0 e ntao Py ¥ Mo e
p Ty =l by By=0 P w (80)

where y = C,/C,; these relations apply even if the molecules have internal
degrees of freedom. (b) The isentropic and isothermal bulk moduli are defined as

Be= = Viep/iV); B, = —viapev), @1

Show that for an ideal g4s B, = yp; B, = p. The velocity of sound in a gas is
given by ¢ = (B, /p}"?; there i very little heat transfer in a sound wave. For an
ideal gas of mofecules of mass M we have P = prfM, so that £ = {yr/A1)2,
Here pis the mass density,

11, Convoetive isentropic equilibrium af the atmosphere.  The lower 10-15km
of the atmosphere—ihe troposphere-—is often in a convective steady state
al constant entropy, not constant temperature. In such cquilibrium piv js
independent of alttude, where 3 = Co/Ci-. Use the condition of mechanizal
equilibrivm in a uniform gravhational field to: (a) Show that d TYdz = constant,
where 2 is the altitude. This quantity, imperlant in meteorology, is called the
dry adiabatic lapse rate. {Do not use the barometric pressure relation that was
derived in Chapter 5 for an tsothermal atmosphere.) (b} Estimate 4T/, in
“C per k., Take y = 7/5. (¢} Show that p « g7, where p is the mass density,

173



150

Chapter 6: Lival Gas

if the actual temperature gradient is greater than the isentropic gradient, the
atmosphere may be unstable with respect to contvection,

12. Ideal gasin two dimensions. (a) Find the chemical potential of an ideal
monatomic gas in two dimensions, with N atoms confined 1o a square of area
4 = L% The spin is zero. {b) Find an expression for the energy U of the gas.

{c) Find an expression for the eatropy o. The temperaturc is ¢

13. Gibbs sum for ideal gas. (a) With the help of Z, = V¥ INY from
Chapter 3, show that the Gibbs sum for an ideal gas of identical atoms
is & = explingV). (b) Show that the probability there are N atoms in the gas
In volume ¥ in diffusive contact with a reservoir is

PN = (N exp(~ (ND)YNT 8%
which is just the Poisson distribution function (Appendix C). Here (N is the
thermal average number of atoms in the volume, which we have evaluated
previously as (NY = AVng. (2) Confirm that P(N) above satisfies

LPN)=1 and T NP(N) = (N

] o _ [

4, deal pas calculations.  Consider one mole of an ideal monatomic gas at
JOOK and 1atm. Firsy, let the gas expand isothermaily and reversibly (o twice
the initial volume; second, let this be followed by an isentropic expansion from
twice 10 four times the initial volume. (a) How much heat {in joules) is added ta
the gas in each of these two processes? () What is the lemperature at the end of
the second process? Suppose the first process is replaced by an irreversible
expansion into a vacuum, to 2 total volume twice the initial volume, {c) What
Is the increase of entropy in the irreversible expansien, in joules per kelvin?

I5. Diesel engine compression, A diesel engine is an internal combustion
engine in which fuel is sprayed into the cylinders after the air charge has been
so highly compressed that it has attained a temperature sufficient {o ignite the
fuel. Assume that the air in the cylinders is compressed isentropically from an
initial temperature of 27°C (300 K). 1 the compression ratio is 15, what is the

maximum temperature in °C to which the air is heated by the compression?
Takey = {.4. :

—
N
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Itis a fundamental result of quantum theory
and molecules, are either fermions or bosons.
regime in which the
concentration,

that alf particles, including atoms
They behave alike in the classical
concentration is small in comparison with the quantum

H <« g = (M 2nh?y2, {i)
Whenever # > g the gas is said (o be in the quantum regime and is called a
quantum gas, The difference in physical propesties between a quantum gas of
fermions and one of bosons is dramatic, and both are unlike @ gas in the classical
egime, A Fermi gas or tiquid has s high kinctic cnergy, low heat eapacity, low
magaoetic susceptibility, tow interparticle collision rate, and exerts a high
pressure on the container, even ul absolute zero, A Dose g
high concentrution of particles in the ground orbit
called the Bose condensaie -
viscosity.

as or liquid has a
al, and 1hese particles —
may act as & superfluid, with practically zero

For many systems the concentratjon i is fixed, and the lemperature is the

important variable. The quantum regime obtains when

the temperature is
below

To = 22k /AN, 73

defined by the condition 5 « ng. A gas in the quanium regime with v <« 7,
is often said 1o he 4 degenerate pas®.

it was realized by Nernst that the entropy of a classical gas diverges as logt
a5 T -+ 0. Quantum theory removes the difficulty: both fermion and boson
gases dpproach a unique Bround stute #s 1 — 0, so that the entropy goes to

zero. We say that (he enlropy is squeezed out on caeling a quantum gas (see
Problems 3 and §),

In the classical regime {Chapter 6)

the thermal average number of particles
i an orbital of energy z is given by

fle) = exp{(p — gy}, {3)
* Here we have the second distinet usa
USAge was introduced in Chapter 1, wl
state has the same (R

ge of the word “degenerate™ in slatistical physics. The first
wre we called an encryy level degenerate if morg than one
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Fernii Gus

With the result for p appropriate ta this regime,
Sty = (png)expl—sfr) | )

with the usual choice of the origin of £ at zero for the energy of the lowest arbital.
The form (4) assuses us that the averzge occupancy of any orbital is always
<nfmg, which is « 1, consistent with our ariginal picture of the classical regime.

A fermion is any particle—clementary or composite—with a half-integral
spin. A fermion Is limited by the Pauli exclusion principle to an orbital occu-
pancy of 0 or 1, with an average occupancy anywhere between these limits, At
low temperatures it is clear that many low-lying erbitals will have one fermion
in cach orbital. At absolute zero all orbitals with 0 < & < gp wiil be occupied
with f = 1. Here ¢ is the cnergy below which there are just enough orbitals
1o hold the rumber of particles assigned to the system. This energy is cailed the
Ferail encrgy. Above ¢ ald orbituls will have S = 0att = 0, As 7 increases the
distribution funciion will develop a high energy twil, us in Figure 7.3,

Bosons have integral or zero spia. They may be clementary or composite;
il composite, 1lic)’ must be made up of an even number of clemuentary particles
if these have spin b, for there is no Wity 1o arrive wi an integer from an odd
number of half-integers. The Pauli principle does not apply 1o bosons, so there
Is no limit on the occupancy of any orbital, At absolute zero the ground
orbital—the orbital of lowest energy—is occupied by all the particles in the
system. As Lhe temperature is increased the lowest single orbital loses its popula-
tion cnly slowly. and cach excited orbitul—any orbital of higher cncrj_:yw\-._'ill
contain a relatively small number of particles. We shall discuss this point
carefully. Above t = ¢, the ground arbital loses its specia] featare, and its
occupaney becomes much like that of any low-lying excited orbital,

FERMI GAS

A Fermi gas is called degenerate when the temperature is low in comparison
with 1he Fermi energy, When the inequality t « g is satisfied the orbitals of
energy lower than the Fermi energy g, will be alimost entirely occupied, and l‘hc
orbitals of higher energy will be almost entirely vacant. An orbital is occupied
fully when it contains one fermion. A Fermi gas 15 said to be no:\dcgenerme
when the temperature is high compared with the Fermi energy, as in the classical
regime treated in Chapter 6.

The imzportant apphications of the theory of degencrate Fermi gases include
conduction electrons in metals: the white dwarf stars; liquid *He: and nuclear
matter. The most striking property of a fermion gas is the high kinelic energy
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Figure 7.1 (a) The energies of the orbitalsn = 1,2, ..
confined (o a line of length [, Each Jeve! corresponds 1
spin up and one for spiny down, ¢
Orbitals above the shaded regio

.. 10 for an electron

0 two orbitals, one for
b) The ground state of a system of 16 electrons.
n are vacant in the ground state.

of the graund state of the system at absolute zero. Suppose that i is necessary
to accommodate N noninteracting electrons in a tength L in one dimension.
What orbi-tals will be occupied in the ground state of the N electron sysiem?
In a one-dimensional crystal the quantum number of & free electron orbital of
form sin{unx/L) is a positive inleger n, supplemented by the spin quantum
number m, = + 4 for spin up or spin down,
If the system has 8 clectrons, then i the

ground state the orbitals with
n= 1,2, 3,4 and with Hl, ==

&3 are filled, and the orbitals of higher n arc
empty. Any other arrangement gives a higher energy. To construct the ground
state we 6l the orbitals starting from n = 1 at the boltom, and we continue
filling higher orbitals with electrons until all N
The orbitals that are filled in the
shown in Figure 7.1,

electrons are accommodated.
ground state of a system of 16 electrons are

T

Ground State of Fermi Gas in Three Dimensions

Ground State of Fermi Gas in Three Dimensions

Let the system be 2 cube of side L and volume ¥ = L3, The orbitals have the
form of (3.58) and their energy is given by (3.59). The Fermi energy ey is the
energy of the highest filled orbital at absolule zero; it is delermined by the
requiremeal that the system in the ground state hold N elcetrons, with each
orbital filled with one electron up to the energy

LA LN (5)
Tam\ L}

Here ng is the radius of a sphere {in the space of the integers u,, n,, 1.} that
separates filled and empty orbitals. For the system to hold N electrons the
orbitals must be fitled up to i, determined by

4x m
N=2x}x —i-nr’ = in;’;

i e = (IN/mH, (&)
The factor 2 arises because an electron has two possible spin orientations. The
factor § arises because only triplets n,, n,, n, in the positive octant of the sphere
in n space are 1o be counted. The volume of the sphere is 4nn /3. We may
then write (5) as

hZ 37I2N 2j3 hz
Ep = - ("""Tfmm) = 2m (Be*m*? = 1. {7}

This relates the Fermi energy to the electron concentration N/V = n, The
so-called “Fermi temperature” 7, is defined as 15 = &.
The total energy of the system in the ground state is

o 36\
Ug=2% g =2x}x 4::‘[‘“?:1111125, u §~(E)

e 1H

fﬂr dnn® . (8)

9

with &, = (h*/2in)(rn/L)%. In (8) and {9), n is an integer and is not N/V. Consistent
with (6}, we have let

25 () = 2(3)(4n) _f din®(-) ©)

in the converston of the sum into an integral. Integration of (8) gives the fotal
ground state kinetic encrpy:

= (R\E o 3R R
S £ N .7 RN VY 10
Yo = fom (L) " g\ L) N T e o
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Figure 1.2 Tota ground state energy U, of one mole of
electrons, versys volume,

using () and {6). The average kinetjc COCIZY per particle is Us/N and is 3of
the Fermii CNCrEY £r. AL COnstant N the energy increzses as the voleme decreases
Figure 7.2), 50 that e Fermi encrpy ‘gives a repulsive contribution (o the
binding of any material; in most metals and in white dwarf and fleuiron stars
it Is the most important repulsive interaction, That is, the Fermi enecrgy tends
o increase the votume. It s batanced in metals by the Coulomb altraction
between electrons ang {ons and in the stars by pravitationat attraction,

Density of States

Thermal averages for independent particle probleims have the form
Xy = PISICRIT {1

where n denotes the quantuin orbisal: X,

; is the value of the quantity X in
the orbitad n; and Jeastpt) is the thermal average occupancy, called the dis.
tribution function, of the orbital n, We ofien express (X3 as an integral over the

orbital energy £, Then (It} becomes

(XY = f de D)l X(e) , {12)

Density of States

where the sum over orbitals has been transformed 10 2n integral by the sub-
stitution

Sy fde o, (13

Here Die)de is the number of orbitals of encrgy belween z and £+ de. The
quantity ©(e) is nearly always called the density of states, although it is more
accurate 10 call it the density of orbitals because it refers to (he solutions of a
one particle problem and not to the states of the N particle system.

Consider an example of the calculation of D). We sce from (7) that the
number N of free electron orbitals of energy less than or equal to some ¢ is

Nig} = (V3ay2m/m2pi2gan . (14)
for volume ¥, Take the logarithm of both sides:
log N = }logs + constant, (15}
and take differentials of log N and log s:.

dnN - éd&:

e 22 16
N 2 ¢ (16)

The quantity dN = (3N{26)de is the number of orbitals of energy between &
and & + de, s0 that

D) = dNJde = 3N(E)/2e {17
is the density of orbitals, The two spin orientations of an electron have been
counted throughout this derivation because they were counted in (6). We can
write D) as 2 function of ¢ alone becanse

Nlele = (V/3a3)(2m/h2)¥ 2102 s (18}

from {14). Then (17) becomes
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Figure 7.3 Density of orbitals as 5 function
for a Tree electron 2as in three
dimensions, The dashed curva represents the
density /(5)D(e) of occupied orbitals gt a finite
temperature, but such that 7 is small in .
Omparison with &r- The shaded arca rcpresenis
the occupicd orhityls at absolule zern,

of energy,

Chapter 7: Fermi ang Bose Gases

T Bie)

Density of orbitals

/) Dy
\

Encrgy, £ e

When muttiplied by the distribution function {Figure 6.3, the density of
orbitals D{e) becomes Dieif(e), the density of occupied orbitals {Figure 7.3). The
total number of electrons in System may now be writien as

N = [T D e (20}
where f{¢) is the Fermi-Diac distribution function described in Chapter 6, In
problems where wa know the toral rumber of particles, we determine it by

fequiring that the ratal mumber of particles caleulated from {20} be equal to 1he
Correct value, The 1otal kinetic energy of the electrons js

U= [ﬂ"’ de £De) fle e, 1) (21)

If the system is in the ground state, 5ll orbitals are flled up to the energy o,
abave which they are vacant. The number of electrons is equal (o

N = L‘ﬁfa Dis) | Q)

and the cnergy is

Uy = ﬁ] e eD(e). (23)

Heat Capacity of Electron Gas

Heat Capacity of Electren Gas

AU = ﬁ:" deeD(e)f () — fo"aufi)(s). {24)

Here fie) is the Fermi-Dirac function, and D (e} is the number of orbitals per
unit energy range. We multiply the identity

N = fﬂ * de f(£)D(e) = J‘B" d5D(e) 25)

by £r Lo obtain

( for s I j) deerf(ED) = 17 doe,0pe) (26)
We use (26) to rewrite {24) as

AU = [ dee — e /a1y + Jdetes — a1 — 9]0, (27)
The first integral on the tight-hand side ol (27} gives the energy needed to take
electrons from £r Lo the orbitals ofenergy ¢ > ¢, and the second integrai gives
the energy needed to bring the efecirons 1o &r from orbitals below £r. Both
contributions to the &nergy are positive. The product f(e}D(e)de in the first
integral is the aumber of electrons elevated to orbitals in the energy range
de at an energy & The facior [1- Sf1e)] in the secongd integral is the prabability
that an electron has been removed [rom an orbitat . The function AU is plotied
in Figure 7.4.1n Figure 7.5 we plot the Fermi-Dirac distribution function versus
& for six values of the temperature. The electron concentration of the Fermi
83s was taken such that &by = 56000 K, characteristic of {he conduction
electrons in a metal.

The heat capacity of the electron gas is found on differentiating AU with
Tespect to 1. The only temperature-dependent termy in {27} is f{e), whenee we
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190 Chapter 7: Fermi and Bose Gases

Figure 7.4 Temperature dependence of the energy of

4 nosinteracting fermion gas in three dimensions. The 3.. 0.5 /]
enceny is plotied in normalized form as AU/Neg, i

where N is the number of electrons. The temperature
15 plotled as e,
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Figure 7.5 Fermi-Dirac distribution fuaction at various femperaturas, for
Tr = £fky = 50000 X. The results apply to a gas in three dimensions. The total

number of particles is constant, indepeadent of temperature. The chemical potential at

cach temperature was calcutated with the help of Eq. (20} and may be read off the

- graph as the energy at which f = }. Courtesy of B.. Fcldman. .
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Figure 7.6 Plot of the chemical patential 1 versus temperature t fora
gas of neninteracting fermions in three dimensions, For convenience in
plotting, the units of ;r and 1 are 0.763¢5.

can group terms (o obtain

Cyy = ﬂ—l«:- = fﬂ” dele ~ &5) 3{ Dig). (28)

At the temperatures of interest in metals t/ep < 0.0}, and we see from Figure 7.5
that the derivative df/dt is large only at energies near g, It is a good approxi-
malion to evaluate the density of orbitals Die) at £, and take it outside of the
integral:

- ]
Cu = Diey) fo defe — £p) % (29)

Examination of the graphs in Figures 7.6 and 7.7 of the variation of g with t
suggeststhal whent « g we ignore the temperature dependence of the chemical

potential u in the Fermi-Dirac distribution function and replace p by the
constant £p. We have then:

df & _ ey explls — &)
de o exp[{e — gl + 12

(30}

et
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Figure 7.7 Variation with temperature of the

chemical poteatial y, for free cleciron Fermi

gases in one and three dimensions. In common - 1.00
metals ¢/2; 2 0,01 at room temperature, so
that uis closely equal to £5. These curves vere
caleulated from series expansions of the integral
for the number of particles in the system,

Chapter 7: Ferai and Bose Gases

1.05

One dimcns%on\

Three dimensions -~

! I
0.95[

We set
~ = {6- EF)/'E y

and it follows from {29) and (30) that -

. 0 e
Cd = I@(Er) f“trlt dx .\‘2 W

31

(32

We may safely replace the lower limit by -0 bevause the factor e* in the
integrand is already negligible at x = —&r/7 if we are concerned with low

temperatures such that e;/r ~ 100 or more. The integral* becomes

I ———1

P ot
f J‘Hx{h"\ ?e—;-"ji:wi-)—zw?’

* The integral is not clementary, but may be evaluated from the more familiar cesult
E X ﬂz

f (f.\.' ae— T T5F

2 e+ 1 124

on differentintion of both sides with respect to the parameter g,

(33)

Heat Capacity of Electron Gas

whance we have for the heat capacity of an electron gas, when 1 « 1,

59
In conventional units,
Co = i De )k, * T {35)
We found that the density of orbitals at the Fermienergy is
Der) = 3IN/2er = 3721, 136)

for a free electron gas, with tr = £.. Do not be deceived by the notation Tl
it is wot the temperature of the Fermi gas, but only a convenient reference point.
For v « 1y the gas is degenerate; for ¢ e the gas is in the classical regime.
Thus {34} becomes

Ca = Nz, (37
In conventional units there is an extra factor kg, so that
Co = N T/ Ty, (38)

where kp Ty = o, Again, Tr is not an actual temperature, but only a reference
point,

We can give a physical explanation of the form of the result {37). When the
specimen is heated from absolute zero, chiefly those clectrons in states within
an energy range 1 of the Fermi level are excited thermally, because the FD
distribution function is affected over a region of the order of ¢ in width, illus-
trated by Figures 7.3and 7.5. Thus the aumber of excited electrons is of the order
of Ntfe, and each of these has its energy increased approximately by 1. The
total electronic thermal energy is therefore of the order of U,, = Nt¥/g,. Thus
the electronic contribution o the heat capacity is given by

Co = dU tdr = Ntley = Nijfre | {39}

which is directly proportionat to T, in agreement with the exact result (34} and
with the experimental results,
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Table 7.1 Culeuluted Fermi energy purameters for free electrons

Conduction Fermi

clectron : Fermi temperature
concentration Velocity CRefgy Te =ty kn,
NiV, incm™? o, inems™? ExineV inK
Li 46 x 1022 i3 x 10% 4.7 35 » 10°
Na 2.5 1.1 13 37
K 1.34 0.85 21 24
Rb 1.08 0.79 18 2.1
Cs 0.56 0.713 1.5 18
Cu 850 - 1.56 70 8.2
Ag 5.76 ) 1.38 55 64
Au 550 1.3 55 &4

Fermi Gas in Metals

The alkali metals and copper, silver, and gold have one valence electron per
atom, and the valence ¢lectron becomes the conduction electron in the metal.
Thus the concentration of conduction electrons is equal to the concentration
of atoms, which may be evaluated either from the densily and the atomic
weight or from the crystal lattice dimensions.

If the conduction clectrons act as a free fermiion gas, the value of the Fermi
energy & may be calculated from {7):

gp = (hH2m)(3z2in*3. 40

Values of n and of g are given in Table 7.1 and in Figure 7.8. The electron
velocity vp at the Fermi surface is also given in the table; it is defined so that
the kinetic energy is equal to ;1

eyt = oy, : (41)

where m is the mass of the electron. The values of the Fermi temperature T =
£g/ky for ordinary metals are of the order of 5 % 10% K, so that the assumption
T « T used in the derivation of (35} is an excellent approximation at room
temperature and below.

The heat capacity of many metals at constant volume may be written as
the sum of an electronic contribution and a lattice vibration contribution, At
low temperatures the sum has the form

Cy =yt + AT, L 4y

Fermi Gas in Merals 195
-1
Al
Ac
L 0®
. %n /Na Figure 7.8 F_crmi energy £y of a free eleciron
s ! gas as & fuaction of the conceatration.
_5‘ T Calewlated values are shown for several
= sz monovalent metals. The straight line is drawn
foree = 5.835 x 10737 2% ergs, with n in
em”?Y,
10‘}2
5 1022 2 5 103

Electron concentration, in em~3

. 30
v ob |
T C/T =208 + 2.57T2\>/_/‘/f
< y
] - Potassium
- 25 il i
f=4 £
E - -‘f("_/' N
e / ' i
o i

2.0

0 0.1 6.2 0.3
T2 in K?

'Fizgure 19 Expcx:imcntai heat capacity values for potassium, plotted as C/Tversus
T2 Afier W. H. Lien and N. E, Phillips, Phys. Rev. 133, A1370 (1964).

where y and A are constants characteristic of the material. Here y = N,
from {37), and the lallice vibration term A7? was discussed in Chapter 4, The
electronic term is linear in 1 and is dominant at sufficiently low temperatures,

ltis h_eipfui to display the experimental values of the heat capacity for a given
material as a plot of C,/t versus %+ '

Cyft =y + A%, (43)

for then the points should lie on a straight line. The intereept at ¢ == 0 gives
the value of y. Such a plot is shown for potassium in Figure 7.9. Observed values

of 7 are given in Tables 7.2 and 7.3.
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Table 7.2 Experimentat and free electron electronic
hieat capacities of monovalent metals

‘ piexp), -y, (free electron},

Metal.  mimof fK-2 mlmol K32 o
Li. 163 _ 0.75 217
Na 1.38 1.14 121
K 208 1.69 123
Rb 241 197 1.22
Cs 320 236 1.35
Cu 0.685 .30 139
Ag 0.646 0,65 1.00
Au 0729 0.63 LE3

BOTED The vibues of v and v arc in ind mol = ' K- i,
sounee; Courtesy of N, [ Phittips.

Table 7.3 Experimental values of electronic heat capacity constant 3 of metals

Li Be- - B C N
163 | 017

Na | Mg At |siodp
138 | 13 _— R EEE ]
K Ca | 8¢ Ti A Cr i Mny| Fe Co | Nt |Cu |Zn |Ga Ge | As
2081 29 | 107 ] 3351 926 140 1920 | 498 | 473 | 702 06951 0.64 {0.596 0.19
Ro | St Y 7w I Me e The T Pd [Ag {Cd |In | Sn | Sb
241 36 11021280 | 779 0 |- 33 4.9 942 106461 0633 | 1.69 178|011
Cs Ba {la Hl | Ta | W Re Cs | Ir Pt 1Au {Hg |TI Pb | Bi
3200 27 i1 216159 1.3 {23 24 031 68 107291119 |1.47 | 2038 O'OGS.

ROTE: The value of yis in mImol ™' K -2, )
SOURCE: From compilations futnished by N. E. Philtips and N. Pearlman.

White Dwarf Stars

White dwarf stars have masses comparable to that of the Sun. The mass and
tudius of the Sun are

Mg =20 x 1078 Ry =740 % 10 cm. {44)
The rudit of white dwarfs are very small, perhaps 001 that of the Sun. The
density of the Sun, which is a normal star, is of the order of 1 gem ~2, like that
ofwater on the Earth. The densities of while dwarls are exceedingly high, of the

White Dwarf Stars

order of 10* to 10" gem ™, Atoms under the densities prevalent in white dwarfs
are entirely jfonized into nuclei and free electrons, and the clectron gas is a
degenerate gas, as will be shown below,

The companion of Sirjus was the

estimated as 2 x 10%cm b
radiant energy flux, using
in Chapter 4,

The mass and radius of Sirjus B ¢

Y @ comparison of the surface lemperature and the
the properties af thermat radiant energy developed

ad (o the meun density

M 2 x 10M s 3
et X0 sem -3, 15
i Ty 0.7 % 10 gem {45)

p=

This extraordinarily high density was appraised by Eddington in 1926 in the
following words: “Apart from the incredibility of the result, there was no
particular reason to view the caleulation with suspicion.” Other white dwarfs
have higher densities: (hat named Van Maanen No. 2 has g mean density
100 times higher.

Hydrogen atoms at a density of 10 g em ™ have o volume per atom equal to
v, ~ L +— 7= 2 x 1077 em? peratom
T 00 molen ™6 X 16  atoms ol b
0r 2 % 107° U peratom. The average nearest-neighbor separation is then of
the order of 0.01 4, as compared with the internuclear separation of 0.74 Aina
molecule of hydrogen. Under conditions of such high density the atomic
electrons are no longer attached 1o individual nuclei. The electrons are ienized
and form an eleciron gas. The matter in the white dwarls is held together by
Eravittional astraction, which is the binding foree in aif stars.

In the interior of white dwarf stars* the electron gas is degenerate; the
temperature is mach less than the Fermi energy g The Fermi cuergy of an
clectron gas at a concentration of | x 10 electrons em ™ ? s given by

o = (/20030 ) 4 05 107%erg = 3 x 10%eV (48}

—

T A pood discussion of while dwar

! [stars is given by W, K. Rose, Astrophysics, Holt, Rinehart, xnd
Wlﬂsmn‘ 1973, .
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Table 7.4 Fermi energy of dezencrate farmion gases
(characteristic values)

Phase of matter . Particles Tein K
Liguid *He atoms 0.3
Melal clectrons 5 % {0t
White dwarf stars cleetrons 3 x 10°
Nuclear matler nucleons 3 x 0¥
Neutron stars neulrons 3 x 1%

about 10°* higher than in a typical metal, The Fermi temperature £g/ky of the
electrons is = 3 x 0% K, as in Table 7.4. The actuat temperaiure in the interior
of a white dwarf is believed 1o be of the order of 10" K. The electron gas in the
interior of a white dwarf'is highly degenerate because the therma! energy is much
lower than the Fermi energy.

Are the electron energies in the relativisiic regime? This question arises
Because our theory of the Fermi gas has used the nonrelativistic expression

p*/2m for the kinetic energy of an electron of momenturn p. The energy equi-

valence of the rest mass of an electron is
ga=mc® (1 x 107%7g)(3 x 10%cms™ Y2 = 1 x 107%erg. (47

This energy is of the same order as the Fermi energy (46). Thus relativistic

efiects will be significant, but not dominant. At higher densities the Fermi gas
is relativistic,

MNuclear Matter

We consider the state of matter within nuclel. The nevtrons and protons of
which nuclear matter is composed form a degenerate fermios gas, at least
qualitatively. We estimate here the Fermi energy of the nucleon gas: The radius
of a nucleus that contains A nucleons is given by the empirical relation

R (3 x 107 Bem) x AV3, {48)

Ac'cording to this relation the average volume per particie is constant, for the

volume goes as R3, which is proportional to A. The concentration of nucieons
in nuclear matter is

A
x =~ 011 x 10% em™? 49)
M AN T T eanyA $A0Tem ™,

Chentical Poteniial Near Absolute Zero

about 10% times higher than the concentration of nucleons in o white dwarl
star. Neulrops and protons are not identical particles. The Fermi energy of
the neutrons need not cqual the Fermi energy of the protons. The concentra-
tion of one or the other, but not both, enters the familiar relation
B = e (3n20)2. (303
AL

For simplicity let us suppose that the number of protons 1s equal to the
number of newtrons. Then

nprolens : ”neu:mns = O‘GS X Eolg Cm—J L (5l}
as obtained from (49) en dividing by 2. The Fermi energy is
£p = (317 % 1072 = 043 x 10 *erg = 27 Mev. (52)

The average kinctic caergy of a particle in a degenerate Fermi gas is 3 of the
Fermi energy, 5o that in nuclear matter the average kinetic energy is 16 Mev
per nucleon.

BOSON GAS AND EINSTEIN CONDENSATION

A very remarkable effect occurs in a gas of acninteracting bosons at a certain
transition temperature, below which a substantial fraction of the total number
of particles in the system wil} occupy the single orbital of lowest cnergy, cailed
the ground orbital. Any other orbital, including the orbital of second lowest
energy, at the same temperature will be cccupied by a relatively negligible
number of particles. The total occupancy of all orbitals will always be equal to
the specificd number of particies in the system. The ground-orbital effect is
called the Finstein condensation.

There would be nothing surprising 1o us in this result for the ground slate
occupancy if it were valid only below 107" K. This temperatuse is comparable
with the energy spacing betwean the lowest and next lowest orbitals ina system
of volume I em?, as we show belaw. But the Einstein condensation temperature
for a gas of fictitious noninteracting helium atoms at the abserved density of
liquid helium is very much higher, about 3K, Helium is the most familiar
example of Einstein condensation in action.

Chemical Potential Near Absolute Zero

The key to the Einstein condensation is the behavior of the chemical potential

of a boson system at low temperatures. The chemical potential is responsible
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for the apparent stabilization of a large population of particles in the ground
orbital. We consider a system composed of a f

Arge number N of noninteracting
bosons. When the syste

m is at absolute zero aff particles occupy the fowest-
cnergy ocbital and the Syster is in the state of minimum energy. It is certainly
not surprising that at 1 = § gl particies should be in the orbital af lowest
erergy. We can show that a substantjsl lraction remains in the ground orbital
at low, ajthough experimentally obtainable, temperatures,

If we put the cnergy of the ground orbital at zero on our energy scale, then
from the Bose-Einstein distribution function

S m— L (53)

we obtain the occupancy of the ground orbital at ¢ = 0 as

: 1
T 34
) expf—p/t} — |
When v+ 0 the occupancy of the ground orbital becomes equal to the total
aumber of particles in the system, so that

. 1o 1 T
Im f(0z) = N = e O S -,
:ﬁgf ) Cv=o eXp(~pfy - 1 1~ (pfe) — 1 "
Here we have made use of the series expunsion exp{—x) =1 - x + -+ We

know that x, which iy w/t, must be small in comparison with unity, for otherwise
the total number of particles N could not be large. From this result we find

N = w—/y; o= N (55)

ST—= 0 ForN = 1028t T = 1K, we have = - 1.4 x 10728 erg We note
from (33) that

1
L=eplfy =1 — e

{36
87 -+ 0. The chemical potential in a boson System must always be lower in

energy thas the ground state orbital, in order that the occupancy of every arbitul
be non-negative.

Chemical Potential Near Absolute Zero

7Tty NI A M SETAR e aa T T T T e
E:__.‘_...-,u-m;ww'__m—._u:_-_,».&..u.-‘..u..;.._mhhkuu

e
SLTIT I

Lvwmple Spacing of fowest and second lowest orbituly of free atoms,

The cnergy of an
orbitat of un 2tom free to move in acube of volume I = L3 g

hi z
£ = ijﬁ(?) 4 m? +n?y, 57

where n,, Ay 1, Ore positive integers. The cuergy (L) of the fowest orbital is

n

1
5(111)=§;-(z)(1+1+ ny, (38)

and the enerpy £(211) of one of the set of next lowesy orbilals is

2 2
£211) = 3{‘\_{(%) @+ 141 (59)

The lowest excitation cnergy of the atom 5

Ar = g(211) - 111y = 3 x (7Y} {60)
B ¢ - IVAVE R
IEM(*He) = 66 x 107" gand 1. = 1cm,
A = ()84 x 10732)(9.86) = 248 x 10" erg, (61)

In temperature units, Aefky = 1.80 x 10-1% %

This splitting is extremely smail, and it is difficultto conceive that it can play animportane
part in a physical problem even at the lawest reasonably accessible lemiperatures such as
I mK, which is 107? k. However, at the 1 mK temperature (35) gives pp> — 1.4 x
107 erg for N = 190 aloms, relerred to the orbital {58} as the zero of energy. Thus p is
nuch closer to the ground orbital than is the next lowest arbital (59), and exp{[ef111) —
&)/} is much closer to | than is exp{[el211) — w2}, 50 thut o{111) dominates the dis.
tribution function,

The Boltzmann factor exp(— Ag/t)at 1mK s

ap{-18x 107y x|~ 18 % 101t (62)

which fs essentially unity. By (4) we would expect that even ifn = n, the oceupancy of the
first excited orbitul would oaly be of the ocder of 1, However, the Bose-Einstein distribution
gives an enlitely different vilue far the cecupancy of the first excited orhitai:

fae NN : (63

" el - ] =1 T e =T
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because Ar % p Thus the occupation of the first excited orbital at 1 mi is

f= ‘IT; 10T = 5 % 10'° B 54

so that the lraction of the N particles that are in this arbita) 5 N =38 x 10Y9102F o
5 % 1071 which is very small. We see that the occupancy of the first excited orbital at low
temperatures is relatively very much lower than would be expecied at firsy sight from the
simple Belizmann factor {62), The Rose-Einstein distribution is quite strange; it favers a
situation in which the greatest part of the population 1s left in the ground orbitat at suffi-
ciently low temperatures. The particles in the ground orbital, as long as their numberis » 1,
are called the Bose-Einstein condensate. The atoms in the condensate act guite differently
{rom the atoms in excited states.

How do we understand the existence of the condensate? Suppose the atomns were
governed by the Plunck distribution ¢Chapter 4), which makes no provision for holding
constant the total number of particies; instead, the thermal averags number of photons
increases with temperature a1 73, as found in Problem 4.1, 3 the laws of naiure restricted the
total number of pliotons 10 u value N, we would sy that the ground orbitul of the photon
gas contained the difficreace Ny = N — N{r) between the number allotted and the nusnber
thermally excited. The Ny nonexcited photans would be described as condensed dnto the
ground orbital, but N becomes cssentially zero ot a temperatare 1, such that alt N photons
are excited. There is 0o actuaf constraint on the 1otal sumber of photons; however, there
is a constraint on the total number N of material bosons, sucly as *He atoms, in 3 sysiem.
This consteuint is the origin of the condensation iute e ground orhitl, The JitTerence
between the Planck distribution and the Bose-Einsicin distribution is that 1he ltter will
conserve the total number of particles, independent of temperatuee, so that nonexcited
atoms are really in the ground state condensate.

| T R iy s

Orbitat Occupancy Versus Temperature

We saw in {19} that the number of [ree particle orbitals per unil energy range is

vV {2M\M?
De) = W(?) gt (65}

for a particle of spin zero. The total number of atoms of helium-4 in the ground
and excited orbitals is given by the sum of the occupancies of all orbitals:

No=F fo= Nl + N = Nofe) + [ deDialfien). (69
We have separated the sum 6ver n into two parts. Here N{r) has been written

for f(0,1), the number of atoms in the ground orbital at temperature t. The
integr:_ai in (66} gives the number of atems Nf1) in all excited orbitals, with

Grbital Occupancy Versus Temperature

fle, 7}

\

RN
\

G 0.2 0.4 0.6

£ s

Figure 7.10 Piot of she boson distribution function for two tempesatures, with suflicient
particles present to ensure A = . The integral of the distribution times the density of
states gives the number N, of particles in excited orbitals; the rest of the particles present

are condensed into the ground state orbital. The value ol Ny is too large to be shown on
the plot.

flex) as the Bose-Einstein distribution function. The integral gives only the
number of atoms in excited orbitals and excludes the atoms in the ground
orbital, because the function De) is zero at £ = 0. To count the atoms correctly
we must count separately the occupancy Ny of the orbital with & = 0. Although
only a single orbital is involved, the value of Ny may be very large in a gas of
bosons. We shall calt N, the number of atoms in the condensed phase and N,
the number of atoms in the normal phase, The whole secret of the result which
follows is that at low temperatures the chemical potential pis very much closer
in energy to the ground state orbital than the first excited orbital is to the
ground state orbital. This tloseness of g to the ground orbital loads most of
the population of the system into the ground orbital {Figure 7.10),

£
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The Bose-Einstein distribution [unction when written for the orbital at
= (g
%l 6
‘vu(t):l—j_li . {67)

as in {54), where 1 will'dcpcnd on the temperature =, The number of particles
in all excited orbitals increases as 132,

M g 12
NAr):L(EJn) [u ¢

g%\ B! o Sj.:lexp(e/z}wl'

or, with x = g1,

VAN e n '
N = &;i("h‘z) 7 fo dx m (68)

Notice the factor 1¥% which gives the temperature dependence of N,

At sufliciently low temperatures the number of particles in the ground stase
will be a very large number, Equation (67} tells us that 7 must be very close to
unity whenever Nois > L Then ; js very accurately constant, because g mag-
roscopic value of Ny forees ; ta be close to unity. The condition for the vakdity
of the calculation is that Ng» 1, and it is not required that N, <« N. When
&~ 7 in the inlegrand, the value of theiiﬁlcgrand is insensitive 1o small devia.
tions of A from 1,50 that we can set £ = in (68), although not in {67).

The value of the integral* in (68) is, when 2 = 1,

. Y
dY ——— = 1306212, (69)
G e~ 1

———

* To evaluaie the integral we wrile

2172 i —~x )
- X « Xre L3 -
f A% e mf c].\’_-——“; = z J; dx xlp-s=
9 | o I —e s

— S— 2 S N VP S
m(ﬁl_\, )J:) dy plede-y

The infinite sum is casily evaluzied aumericaily to be

2612, The inte srad may be fransformaed with
i} y
F=ul tophe

2 J‘n‘ dur? expl— 42 = 1/

—

Einstein Condensation Temperature

Thus the number of atoms in excited states is

N m L30sy (2Mr)3~’2

= =Tr) =261, (70}

where ng = (My/2ah?)2 g again the quantum concentration, We divide N, by
N 1o obtain the fraction of atoms in excited orbitals:

NN ~ 2612n,V/N = 2.612np/n, 70

Thevalue A~ or | - /N which led 1o {71) is valid as Tong as a barge
number of atoms are in {he ground state. All particles have to be in some
orbital, either in an excited orbital or in the ground orbital. The number in
excited orbitals is relatively insensitive to small changes in 2, but the rest of
the particles have to be in the ground orbital, To assure this we must take ;
very close 1o { ag longas Njis g large number, Even 107 is a large number for
the occupancy of an orbital, Yet within Atjte = 1075 of the trunsition, where
ve is defined by (72) below, (he Occupancy of the ground orbital is = 1015
em ™ at the concentration of liquid

Al Atfry = 1078,

atoms
“He. Thus cur argument is highly accurage

Einstein Condensation Temperature

We define the Einstein condensation temperature® ¢,
whick the number of atoms in exeited states i equal
aloms. That is, N (r,} = N, Above 1, the occupancy of the ground orbital s

ot 2 macroscopic number: below Ty the occupancy is macroscopic. From (70}
with N for N, we find for the condensation temperature

as the temperature for
to the total number of

e

2ah? N
E 0 72
M (2.512?/ 72

Now (71) may be written as

3
NN = (tfrg? ? o

where N s the total number of atoms. The number of atoms in excited orbityis
Varics as o temperatures below =4, s shown in Figure .11 The caleulated
value of Ty for atoms of $He i =3IK,

———

* A, Einstein, Akadamic der \Visscnsch:xﬁcn, Betlin, Sitzungsberichre 1924, 261, 1935, 3.

205



206

Chapter 7: Fermi amd Base Gases

16

&N e

N N /
Superfluid e

4 N
component
0.6

N
04 /

Normal fluid \
component
0.2 = // \

0 02 64 06 08 10
: : /1y

0.8

"0

Figure 211 Condensed boson gas: temperatuce dependence
of the propartion Ng/N of atoms in the ground orbital and
of the proportion N /N of atoms in all excited orbitals. We
have labeled the two components as normal and superfiuid

Lo agree with the customary description of Hguid helium.

The stopes of all three curves are intended 1o he zeso at 1 =0,

The number of particles in the ground orbital is found from {73):
Ny =N~ N,= N[l - (z/1s"*] (74)
We note that N may be of the order of 1022, For 1 even stightly less than 1z a
large number of particles will be in the ground orbital, as we see in Figure 7.11.

We have said that the particles in the ground orbital below 1 form the condensed
phase or the superfluid phase.

The condensation temperature in Kelvin is given by the numerical relation

Telin K = (115/V,°M) (75)

where ¥}, is the molar volume in em® mol™! and M is the molecular weight.

»  For liquid heliumm ¥, = 27.6cm*mol ™! and M = 4, thus Ty = 31K,

Liguid *He
Liquid *He

The calculated temperature of 3 K is suggestively close ta the actusl temperature
of .17 K at which a transition to a ncw state of matter is observed 10 take place
in lguid helium (Figure 7.12). We betieve that in tiquid *He below 2.17 K there
is a condensation of a substantial fraction of the atoms of *He into the ground
orbital of the system. This is differens from the condensation in coordinate
spuce that occurs in the condensation of a gas o a Hquid. Evidensly the lnter-
atomic forces that lead to the Hquelaction of *He at 42K under a pressure of
one atmosphere are too weak to destray the major effects of the boson con-
densation at 217 K. In this respect the liquid behaves as a gas, The cendensa-
tion into the ground orbital is certainly connected with the properties of bosons,

30

5
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Figure 712 Heat capacity of liquid *He. The sharp
peak near 217 K is evidence of an important transition
in the nature of the liquid. The viscosity of the liquid
above the transition temperature Is typicai of normal
liquids, whereas the viscosity below the transition as
detcrmined by rate of low through narrow slits is
vanishingly small, at Jeast 10 times smatfer than the
viscosily above the transition. The transition is oflen
called a lambda transition merely because of the shape
of the graph. Afler Keesom et at.
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spin 4 and are fermions, but paj

We can give several arguments in support of our view of fiquid helium as g
gasg ofnoninteracti:zg particles. At first sight this is a drastic oversimplification
of the problem, byt there are some important features of liquid helium for
which the view ig correct,

{a) The molar volume of liquid *He at abselute zero is 3.1 times the volume
that we caleulate from the known interactions of helium atoms, The interaction
forces between pairs of helium atoms are weit known experimentaily and
theoretically, and from these forces by standard elementary methods of solid
State physics we can caleufute the equilibriem volume of a static fattice of
helium atoms. [n a typical ealeutation we find the molar volume to be Yem?
mol ™ *, ag compared with the observed 216em mol~
of the hetium atomis has a farge effect on the liquid siate and leads to an ex-
panded structure iy which the atoms ta g certain extent can move frecly over
appreciable distances, Wa tan say that the guantum ero-point motion s
responsible for the expansion of the molar volume. '

{b} The transport properties of liquid hetium in the normal stage are not very
different from those of 4 normal classical gas. In particular, the ratio of the

thermat conductivity K to the product ofthe viscosity i times the heat capacity
per unit mass has the valyes

. Thus the kinetic motion

K (36 at 23x
Wy {3.2, at 40K
These vaives are quile close 1o thage observed for normal gases at room
lemperature—see Table 14.3. The values of the transport cocfiicients them-
selves in the liguid are within an order of magnitude of those caleulated for the
gas at the same density. Normal liquids act quite differently.

{c) The forces in the figuid are relatively weak, and the liquid does not exjst
above the crilica temperature of 5,2 K, which is 1he maximuny boiling point
observed. The binding energy would be perha :

Ps ten limes stronger in (he
cquilibrium confipuration of i suie

attice, but the expansion of the mobar
volume by the quantum Zero-point motion of the atews s responsible for the
reduction in the binding encrey to the observed value, The value of the critical
iemperature is dircetly proportienal 1o the binding energy,

(d} The liquid is siabic at absolute zero at pressures under 25atm: nbove
25 atm the solid fs more stabie.

Liquid *He

T
|
1
|
|

T
|

T
|
|

T
|

Rate of mass flow,
in units of 1078y =3
L¥.)

|

A

i 2 3 4
T in K——w

Figure 7.13 Comparison of rates of flow of liquid *He and
tiquid *He under gravily through a fine hole, Notice the sudden
onset of high fuidity or superfluidity in *He. After D. W,

Osborne, B, Weinstock, and B. M. Abraham, Phys. Rev. 75,
988 {1949}, ' :

The new state of matter into which liquid *He enters when cooled below
217K has quite astonishing properties. The viscosity as measured in a flow
experiment* is essentially zero {Figure 7.13}, and the thermal conductivity is
very high. We say that liquid 4He below the transition temperature is a super-
flvid. More precisely, we denote liquid *He below the transition temperature
as liquid He 1I, and we say that fiauid He 1T js a mixture of normal Buid and
superfluid components. The normal fluid component consists of the hetivm
atoms in thermally excited orbitals, and the superfluid component consisis of
the helivm atoms condensed into the ground orbital. It is known that the
radicactive boson ®He in solution in liquid *He does not take part in the
superflow of the fatter; neither, of course, does the fermion *He in solution in
*He ke part in the superfiow,

We speak of liquid *He above (he transition temperature as liquid He 1.
Theee is no superfluid component in Hquid He 1, for here the ground orhitt
vestipaey s aepligible, being of the sae arder of magnitude as the veenpancy

* fnother atrangements there may be an cffective viscosity: this is true of 1 disk oscifl.ﬂi:llg in liquid
‘He at any finite fempesiture below the condensalion temperuture. For & combinativa of two
Auidy of dillerew viSCositics, some CAPELHICNS mcanie fie o Leape Ciseosity, disd wiher S peHiments
eisure the average of Ly, or the ay erage Busdiny,
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150
_ 1235
Figure .14 The melting curve of Hiquid and Melting curve
solid helium (*He), and the transition cugve 90
between the twe forms of liquid helium, He | E
and He H, The liquid He H form exhibits w
superfiow propertics as a consequence of the = 75
condensation of atoms inta the pround orbital bhd
of the system. Note that helium is 2 liguid at Z Salid helium
absolute z¢ro at pressures below 25 amm, The E
lquid-vapor boiling curve is not included in 30
this gragh as it would merge with the zero Liguid He 1
pressure dine. Afler C. A, Swenson, Phys. ey, ) _/( 4 |
79, 626 (1950}, 25 e
P ransit:on
Liguid He 1 i ~— curve
0 I |
0 I 2 3 4

. ol temperature and pressure.

Temperature, in K

of any other low-lying orbital, as we have seen. The regions of pressure and
temperature in which liquid He 1 and U exist are shown in Figure 7,14

The development of superfiuid properties is not an automatic consequence
of the Einstein condensation of atoms into the ground orbital. Advanced cal-
culations show that it is the existence of some form (almost any form) of inter-

action among atoms that leads to the development of superfuid properties in
the atoms condensed in the ground orbital,

Phase Relations of Helium

The phase diagram of *He was shown in Figure 7.14. The liquid-vapor curve
can be followed from the eritical point of 5.2 K down to absolute zero without
any appearance of the solid. At the transition temperature the normal liquid,
called He 1, makes a transition to the form with superfluid properties, called
He I A temperature called the 4 point is the triple point at which liquid He |,
liquid He 11, and vapor coexist, Keesom, who first solidified helium, found that
the solid* did not exist below a pressure of 25 atm, Anaother triple point exists

* Anintercsting discussion of solid heliu

m is given by B. Bertram and R A, Guyer, Scientific Amesi-
can, August 1967, pp. 85..95

. Solid *He exists in three crystal structures according to the corditions

Phase Relations of Helium

160
He /
E 120 4
= Solid /
5 80
g Liquid
5 40
o
Gas
00 1 2 3 4
{a) Temperatare, in K
40 % 107 - T T
Solid e
z o He A i
£ 2k - Hesn -
oot Normal liquid |
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GO | 2 3

Temperature, in mK
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Figure 7.15  Phase diagrams for liquid *He, (a) in
kelvin and (b} in millikefvin. In the region of negative
stope shown in (a) on the phase boundary the solid has
a higher entropy than the liquid, and we have to add
ficat to the liquid to solidify it. Supesfluid propertics
appear in {b) in the A and B phases of liquid *He. The
A phase is double—in a magnetic fisld the phase divides

into two components with opposite nuclear magnetic
moments.

at 1.743K: here the solid is in equilibrium with the two lquid modifications,
He Iand He 1. The two triple points are connected by a line that separates the
regions of existence of He H and He 1.

The phase diagram of *He differs in a remarkable way from the phase diagram
of *He. Figure 7.15 exhibits the importance of the fermion nature of *He. Note
the negative slope of the coexistence curve at low temperatures. As explained

2
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in Chapter 10, the negative slope means that the entropy of the liquid phase
is fower than the entropy of the solid phase. ‘

Quasiparticles and Supcrﬂdidity, “He

For many purposes the superfluid component of fiquid helium H behaves ag
ifit were a vacuum, as if it were not there at all, The Ny atoms of the superftajd
are condensed into the ground orbital and have no excitation energy, for the
ground orbitat by definition has no excitation erergy. The superfiuid has energy
only when the center of mass of the superfiuid is given a velocity relative ta the
laboratory reference frame—as when the superfluid is set into flow relative to
the laboratary,

The condensed component of Ny atoms will flow with zero viscosity so long
as the flow does not create excitations in the superfluid—that s, 50 long as no
atoms make transitions between (he ground orbital and the excited orbitals,
Such transitions might be causeq by collisions of helium atoms with irregu.
larities in the wall of the tube through which the heliem atoms are flowing,
The transitions, if they occur, are a cause of encrgy loss and of momentum
loss from the moving fluid, and the flow is not resistanceless if such collisions
can occur, -

The criterion for superfluidity tnvolves the energy and mamentum relation-
ship of the excitations in liquid He 11, If the excited orbitals were really like the
orbitals of free aloms, with a free particlé relation

]
¢ = tMr? = 7 Ok {70)

LS

between the encrgy & and the momentum Ay or §ik of an atom, then we ean
show that superftuidity would not be expected. Here k = Iz/wavelength, But
because of the exisience of interactions between the atoms the low energy
excitations do not resemble free particle excitations, but are tongitudinal sound
waves, longitudinal phonons (Chapter 4). After all, it is not unceasonable that a
longitudinal sound wave should propagate in any liquid, even though we have
no previous experience of superliquids. :

A tanguage has grown up 1o describe the tow-lying excited stutes of a system
of many atoms. These states are called clomentary excitations and in their
particle aspect the states qre called guasiparticles, Longitudinal phonons are
the elementary excitations of liquid He 1. We shall give the clear-cut experi-
menial evidence for this, but first we derive a Becessary condition for super-
fluidity. This condition will show us why (he phonon-like nature of the
elementary excitatjons leads 10 the supcrlluid behavier of iquid He 1,

Quasiparticles and Superfluidity, 4 He 213

E Figure 7.16  Body of mass M, moving with
M, \‘) velocity V down & cylinder that contains hquid
He H at absotute zero.

We consider in Figure 7.16 3 body, perhaps a stee] bali or a neutron, of
mass Afy falling with velocity Vo down & columin of liquid helium ag rest ar
absolute zero, so that initially no elemcatary excitations are excited. If the
mation of the body generates elementary excitatians, there will be a damping
force on the body, In order 1o generale an elementary excitation of energy £
and momentum hik, we must satisly the law of conscrvation of criergy:

WMoV = WM 4y, 7

where V' is the vetocity of the body ufter creation of the clementary excitation,
Furthermore, we must satisly the faw of conservation of momentum

MV = MV 4 kL, {18)

The two conservation laws cannot atways be satisfied at the same time oven
if the direction of the excitation ereated in the process is unrestricted. To show
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this we rewrite (78) as
MgV — bk = MgV’
.and take .lhc square of both sides:
M3PV? — 2MBY -k + 332 = Mgzi;"’.

On multiplication by 1/2M, we have

IMGVE — BV -k 4+ 1h%1ny%v{ (79}
2M,
We subtract (79) from (77) to obtain
WV k- e 1R = g, (50)

M,

There is a lowest value of the magnitude of the velocity V for which this
equation can be satisfied. The lowest value will occur when the direction of k
is parallel to that of V. This critical velocity is given by

g + hEk?

M,

V. = minimum of Iy

(81)

The condition is a little simpler to express if we let the mass M, of the body
become very large, for then

KmMMmmM%. ' ' (82)

A bedy moving with a lower velocity than ¥, will not be able to ereate excitations
in the liquid, so that the motion will be resistanceless, The viscosity wiil appear
to be zero, A body mioving with higher velocity will encounter resistance
because of the generation of excitations. .

There is a simple geometrical construction for {82). We make a plot of the
energy &, of an elementary excitation as a function of the momentum hk of the
excitation. We construct the straight line from the origin which just touches

Quasiparticles and Supecfiuidity, * He

the curve from below. The slope of this linc is cqual to the critical velocity, If

&, = kY251, as for the excilation of a free atom, the straight line has zefo
stope and the eritical velocity is zero:

Free atoms: ¥, = minimum of hkj2Af = 0. {83)

The energy of a low energy phonon in liquid He It is g, = hes, = Ak in the
frequency repion of sound waves where the product of wavelength and frequency
is eqaul 1o the velocity of sound ¢, or where the circular frequency w, is cqual
to the product of v, times the wavevector k. Now the critical velocity is
Phonons: Ve = minimum of fr k/hk = o, (84
The eritical velocity ¥, is cqual to the velocity of sound if (84) is valid for all
waveveclors, which it is not in liquid helium 1E, The obsceved eritical flow
velocities are indeed nonzero, but considerdbly Idwer than the velocity of sound
and wsually lower than the solid straight Hne in Figure 7.17, presemably because
the plot of g, versus ik may turn downward at very high hk

The actual spectrum of elementary excitations in liquid helivm H has been
determined by the observations on the inefastic scattering of slow neutrons.
The experimental results are shown in Figure 7.17. The solid straight fine is the
Lundau critical velocity for the range of wavevectors covered by the neutron
experiments, and {or this line the critical velocity is

Vo= A/hky = 5 % 10t ems™! {85}
where A and k, are identified on the figure.

Charged icns of helium in solution in liquid helium 1T under certain experi-
mental conditions of pressure and temperasure have been observed* to move
almostlike free particles and to have a limiting drift velocity near 5 x 10%ems™!
closcly equal to the calculated value of (85). Under other experimental condi-
tions the motion of the ions Is limited at a lower velocity by the creation of
vortex rings. Such vortex rings are transverse modes of motioa and do not
appear in the longitudinal modes covered by Figure 7.17.

Our result {(84) for a necessary condition for the critical velacity is more
general than the caiculation we have given. Qur calculation demonstrates that
a body will move without resistance through liquid He II at absolute zero if
the velocity ¥ of the body is less than the critical velocity V.. However, at

* L. Meyer and F, Reif, Phys, Rev, 123, TIT(1961), G. W. Rayficld, Phys. Rev, Lettess 16, 934 (i966).
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30"‘“"-‘—«%_

Free particle.

|

S

Encrgy, in units of 1.38 X 10 app

[ X1 2.0 T30
Wavevector, in units of 0% ¢m~1

rising linearly from the erigin is the theoreticat phopon branch
with a velocity of sound of 7 m 5™, The solid straight line gives
the critieal velocity, in APPIopriate units: The line gives the minj-
murn of £, /k over the region of k covered in these experiments. A fier
D.G. Henshaw and A, 0. B, Woods, Phys, Rev 121, 1266 {1961).

lemperatures above absolute zero, but below the Einstein temperature, there
will be a normai fluid component of elementary excitations that are thermally
excited, The normat fluid companent is the soures of resistance g the motion
of the body. The superfiow aspect appears first in experiments in which the
liguid flows out through a fine 1ube in the side of a container. The normal
fluid component may remain behind in (he container while the superfluid
tomponent feaks owt without resistance. The derivation we have given of the

et e e

Summary

critical velocity alsa holds for this situation, with vV as the velacity of the super-
fluid relative to the walls of the tube; Af, is the mass of the fluid. Excilations
would be created above V. by the interaction belween the flow of the liquid
and any mechanica] irrcgu!arity in the walls,

Superfluid Phases of "He

Three superfluid phases of liquid *He are known* (Figure 7.15b), but—in
contrast 10 liquid *He—with traasition temperatures of only a few millikelvin,
The superfluid phases are believed 1o be qualitatively similar to the super.
conducting state of electrons in metals, where pairs of particles in orbitals near
the Fermi surface form a type of bound state known as a Cooper pair. Such a
pair is qualitatively like a diztomic molecule, but the radius of the molecule
Is much larger than the average interelectron spacing in a meta or the average
interparticle spacing in liquid *He, ' '

In metallic superconductivity the two electrons that form a Cooper pair are
in a nonmagnetic {singlet) spin state. In the superfluid states of liquid *He the
twe atoms that form a pair are in the triplet spin states of the two *He nuclei,
so that three magnetic seperfluids are possible, corresponding to spin orienta-
tions Afy = 1, 0, and —~1, or mixtures of these three slates. The magneiic
superfluids have been explored experimentally, and both the magnetic and
superfluid properties have been confirmed, :

SUMMARY

1. Compared to a efassical gas, a Fermigas at low temperature has high kinetie
energy, high pressure, and low heat capacity, The entropy of the Fermt gas
is zero in the ground state, The energy of the highest filled arbital in the
ground slate of a free patticle gas of fermions of spin 4 is

‘ h? f3gNN e
FESIY ) -

2, The total kinetic energy in the ground state is

Uy = $Ne,.

—

* For clementary revisws, sce 5. C Wheatley, Physics Today, February (976, P R0ALT Legpent,
Physics Bulletin 25, 311 4975): and IR, Hook, Physics Bullesin 29, 5$13(1978} For deeper ey iews,
see ) O Wheatley, Rev, Mod, Phys. 47,415 11973 and A 1. Leggent, Rev. AMod. Phys. 47,331 (1975},
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-3. The density of orbitals at g7 is

Deg) = IN/2cp.
4. The heat capacity of an electron gas at 1 << 1¢ is
Ca = 3™Diepe = Nifryr
in fundamental units.
5. For a Bose gas at v < 1, the fraction of atoms in cxcited orbitals is
_N,/N = 2612np/n = (r/re? L

6. The Einstein condensation temperature of a gas of nonintericting bosons is
Wi N O\
P I
A OA3612V

PROBLEMS

1. Deusity of orbitals in one and two dinensions. {2} Show that the density
of orbitals of a free electron in one dimension is

Dle) = (Limi2mihPe)t 2 | (86)

where L is the length of the line. (b) Shaw that in two dimensions, for a square
of area A,

Dyle) = Amini? (87)

independent of &,

2. Energy of relarivistic Fermi pas. For electrons with an energy e » me?,
wl_n:rc m is the rest mass of the electron, the energy is given by £ = pe, where
P 1s the momentum. For electrons in a cube of volume ¥ = L? the momentum
5 of the form (xh/L), multiplied by (s,% + a2 + 2 exacily as for the
ronrelativistic limit. {a) Show that in this extreme relativistic limit the Fermi
energy of a gas of N electrons is given by

g = Ime{3n/)"? |

(88)

Pioblems

where n = N/V. {b) Show that the total enesgy of the ground state of the gas s
Ug = 3Ng;. (59]
The general problem is treated by F. Hittner, Zeitschrilt fils Physik 47,542 (1928).

3. Pressure and entropy of degenerate Fermi gas. (3} Show that a Fermi
efectron gas in the ground state exests a pressure

(353 W NS
p o= il {90

In a uniform decrease of the volume of a cube every orbital has its enerpy
raised; The energy of an orbital is praportional to YL or to 127, (b} Find
an expression for the entropy of a Fenmi electron gas in the region 1 « ey,
Notice that o — Oast — 0. o -

4. Chensical potential versus temperature.  Explain graphically why the initial
curvature of u versus 1 is upward for a fermion gas in one dimension and
downward in three dimensions {Figure 7.7). Hint: The D,(e) and Dye} curves
are different, where D, is given in Problem L. It will be found useful to set up
the integral for N, the number of particles, and to consider from the graphs
the behavior of the integrand between zero temperature and a finite temperature.

5. Liguid *He as a Fermi gas. The atom *He has spin [ = { and is a fermion,
{3} Calculate as in Table 7.1 the Feemi sphere parameters vy, £, and T, for
*He at absolute zero, vicwed as a gas of noninteracting fermions. The density
of the liquid is 0.081 g em ™2, (b) Calculate the heat capacity at low temperatures
T « T and compare with the experimental value Cp = 2.89NkpT as observed
for T < 0.1K by A. C. Anderson, W, Reese, and 1L C. Wheatley, Phys. Rev.
130, 495 (1963); see also Figure 7.18. Excellent surveys of the properties of
liquid *He are given by J. Wilks, Properties of Hguid and selid helium, Oxford,
1967, and by J. C. Wheatley, “Dilute solutions of *He in *He at low tem-
peratures,” American Journal of Physics 36, 181 -210 {1968). The principles
of refrigerators based on *He—*He mixtures are reviewed in Chapier 12 on

cryogenics; such refrigerators produce steady temperatures down to 001K
in continuously acting operation.

6. Mass-radius relationship for white dwarfs. Consider 2 white dwarf of mass
M and radius R. Let the electrons be degenerate but nonrelativistic; the protons
are nondegenerate, {z) Show that the order of magnitude of the gravitational
sclf-energy is —GMYR, where G is the gravilational constant. {If the mass
density is constant within'the sphere of radius R, the exact potential energy is

[ S——
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3.0

ZPLIR: He

C/7T, relative seale

O&Q&Q(,R?_W.O%MJ
5% 3He in 1He
0.3

5 HY 20 50 100 200
Temperalure, in K

Figure .18 Heal capacity of liquid *Heaand ofa 5 peseent solution of
*Hein liquid *He. The quantity plotted on the vertical axis is C/T, and
the horizontal axis is 7. Thus for a Ferm; gas in the degenerate temperature
region the thearetical cugves of (/T at constant volume are horizontal,
The curve for pure *He is taken at constant pressure, which accounts for
the light slope. The curve for the solution of *He in Yiguid *He indicates
that the *He in solution acts as a Fermi gas; the depenerate region at low
temperatuse goes over to the nondegenerate region at higher temperature,
The solid line through the experimental points for the solution is drawn
for Ty = 0.331 K, which agrees with the caleulation for free atoms if the
effective mass is taken as 2,38 times the mass of an atom of *He. Curves
after L. C. Wheatley, Amer. J. Physics 36 {1968).

—~3GAPi5R). (b} Show that the order of magnitude of the kinctic energy of the
electrons in the ground state is

‘JIZNSIJ k.‘!;ui[]

T T i
mR? AL RE

where m is the mass of an electron and My is the mass of a proton. (¢} Show
that if the gravitational and kinctic energies are of the same arder of magnitude
(us required by the virial theorem of mechanics), MR = 1020g' o, {d)Ifthe

Problems
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2
] \
e
=
b}
‘g
=
B
-1 . .
= Figure 719 Heat capacity of an ideal Dose.
é' Einstein gus ut constant volume.
a
i
=
0
0 1 2
A
Ty

mass is equal to that of the Sun (2 x 107 g), what is the density of the white
dwarf? (e} 1t is believed that pulsars are stars composed ol a cold depenerate
gas of neutrons. Show that for a neutron star M'R = 10'7 g em. What is
the value of the radius for a neutron star with a mass equal to that of the Sun?
Express the resuit in km.

7. Photon comdfensation, Consider a science fiction universe in which the
number of photans & is vonstant, ata concentration of 1022 em ™ 2. The dumber
of thermally excited photons we assume js given by the result of Problem 4.1,
which is N, = 2404 ¥¢%/n* k¢, Find the critical temperature in K below which
N, < N.The excess N — N, will be in the photon mode of lowest freguency;
the excess might be deseribed as a photan condensate in which there is a large
concentration of photons ia the lowest mode, in reality there is no such principle

that the total number of photons be constant, hence there s no photon
condensute,

8. Energy, heat eapacity, and cutrapy of degencrate boson gas. Find expres.
stoms as a fuction of temperature in the region v < 1p for the cnetpy. heat
capacity, and entrepy of o pas of N nonistesaciing bosons of spin zero conlined
ta i veleme ¥, Put the delinige integral in dimensiontess form; it need not be
evaluated. The calculated heat capacity above and below 1z is shown in
Figure 7.19. The experimental curve was shown in Figure 7.12. The ditference
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between the two curves is marked: It

is ascribed to the effect of interactiong
between the atoms,

8. Boson gas in one dimension. Caleulute the integral for Nt} for a one-

dimensional gas of noninteracting bosons, and show that the integral does
not converge. This result sugpests that a boson ground state condensate does

0t form in one dimension. Take £ = 1 far the caleulation. (The problem should
realiy be treated by means of a sum over orbitals on a finite line.)

10, Relativistic white dwarf stars. Consider a Fermi gas of N

electrons each
of rest mass m

ina sphere of radius R, Conditions in certain while dwarfs are
such that the great majorily of electrans have exireme relativistic

Kinetic
energies & = pe, where p is the momentum. The d

¢ Broglie relation remains
es the ground state kinetic enesgy of the N electrons
on the assumption that ¢ = pc for ail electrons. Treat the sphere a
of equal volume. {a) Use the standard virial theo
vatue of N. Assume that the whele star is jonized hydrogen, but neglect the
kinetic energy of the protons compared to that of the electrons. {b) Estimate
the value of N. A carelul treatment by Chandrasekhar leads not 1o a single
value of N, but to a limit above which a stable white dwarl cannot exist: see
D. D. Clayton, Principles of stellur evolution and nucleosynthesis, McGraw-Hiil
1968, p. 161; M. Harwit, Astropliysical concepts, Wiley, 1973,

s a cube
el argument to predict the

1

1. Fluctwations in a

Ferai gas.  Show lor a single orbital of a fermion system
that :

GONPY = (N1~ (V) o1

if {N) is the average number of fermions in that orbital. Notice that the
Huctuation vanishes for orbitals with energies deep enough below the Fermi
energy so thut (N> = L. By definition, AN = N — {N>.

12. Fluctugtions in a Bose gus. If (N} as in (11) is the average occupancy
of a single orbital of a boson system, then from (5.83) show that

AN = (NMT + (M), 92)

Thus i the occupancy is large, with (N » 1, the fractional fluctuztions are
of the order of unity: ((AN})/(N)? = I, so that the actual fluctustions can
be enormous. 1t has been said that “bosons travel in flocks.” The fisst edition
of this text has an elementary discussion of the fluctuations of photons.

13. Chemical potential versus concentration. {a} Sketch carefully the chemical
potential versus the number of particles for a boson gas in volume V at

Problems

temperature 7. Include both elassical and quantum regimes. (b) Do the sume

for a system of fermions.

I4.-Two orbital boson system. Consider a system of N bosons of spin zero,
with orbitais at the single particle energies 0 and £, The chemical potential is
f, and the temperatore i3 7. Find 7 such that the thermal average population
of the lowest orbital is twice the population of the orbital at e. Assume
N = | and make whal approximations are reasonable.

If the atoms in a gas have integrat spin (counting the sum of clectronic
and nuclear sping), they can form a boson condensale when the gas is cooled
below the Einstein condensation temperature 1z given by (72):

Ty = (2whAMINI2612V)2, _

For atoms in the vapor phase the Einstein’ condensation lemperalure s very
low because the number densities are very low: In (19935) early successful
experiments were carried out at Boulder, MIT, and elsewhere. Such experi-
mesies, which are extraordinarily complex, mark the exciting forefront of the
quantumy gas field. A large literature on BEC experiments and theory is on
the Web. .

One set of experiments (MIT) started. with a beam of sodivm atoms
exiting an oven at 600K at a concentration MV of 10% cm~?. What happens
next is the result of a number of clever tricks with laser beams direcied on
one put or another of the beam of atoms. First the aloms are slowed by one
faser beam from an exit velocity of 800 m s~ o about 30 m 5% This is
slow enough for 109 woms w be trapped wilthin 2 magneto-optical trag.
Further tricks, including evaporation, reduced the temperature of the gas to
2 uK, the viralow temperature Tg al which the condensate was formed. The
conceniration at vz was agaia 10 atomsfem®.

The atows in the condensed phase are in the ground orbital und expand
anly slowly once released from the trap. The atoms in excited staes move
relatively rapidly out of their steady-state positions. The positions of the
dloms can be recorded as 2 fanction of time after release, using a laser beam.
The number of atoms in excited orbitals is in good agreement with the 3
law, (73). With this techaique the signature of Bose-Einstein condensation is
the sudden appearance of a sharp peak of atoms as the temperature is
decreased through T The peak comes from light scattered by atoms in the

condensate; the wings of the line from light scaitercd by atems in exciled
orbitals.
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Heat and Work
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ENERGY AND ENTROPY TRANSFER:
DEFINITION OF HEAT AND WORK

HEAT ENGINES: CONVERSION
OF HEAT INTO WORK

Carnot Inequality

Seurces of Irreversibility

Refrigerators

Air Conditioners apd Heat Pumps

Carnat Cycle

Example: Carnot Cyele for an ldea] Gas

Encrgy Conversion and the Second Law of Thermodynamies
Path Dependence of Heat and Work - :
Trreversible Work -

Example: Sudden Expansion of an Ideal Gas

HEAT AND WORK AT CONSTANT
TEMPERATURE OR CONSTANT PRESSURE

Isothermal Work

Isobaric Heat and Work

Example: Electrolysis and Fuel Cells
Chemical Work

Example: Chemical Work for an Ideal Gas
Maugnetic Work and Superconductors

SUMMARY

PROBLEMS

1. Heat Pump

2 Absorption Refrigerator

1 Photon Caruut Engine

4. Heat Engine—Refrigerator Cascade
5. Thermal Pollution

6. Room Air Conditioner
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7. Light Bulb in & Refrigerator 2_’:9
§. Geothermal Encrpy 1?9
9, Cooting of Wonmetailic Solidto T= 0 259
10, Irreversible Expansion of 2 Fermi Gas 259

Note: In (and enly in) the discussion of energy conversion divices thal operate in eycles, we shail
defing all encrgy, enliopy, and heat transfers as positive, whether the flow is imo or ou&_ef l!xc_: ey e,
This conveniion avoids peediess difficultics with algebraic signs. The term “reversible” includes
procesics for which the combined entropy of the inteiacling systems remains copstant.

Energy and Entropy Transfer: Definition of Heat and YWork

ENERGY AND ENTROPY TRANSFER:
DEFINITION OF HEAT AND WORK

Heat and work are two different forms of encrgy transfer. Heat is the transfer
of energy to a system by thermal contact with a reservoir. Waork is the transfer
of energy to a system by a change in the external parameters that describe the
system. The parameters may include volume, magnetic field, clectric field, or
gravilationa! potential. The reason we distinguish heat from work will be clear
when we discuss energy conversion processes.

The most important physical process in 2 modern energy-iniensive civiliza-
tion is the conversion of heat into work. The Industrial Revelution was made
possible by the steam engine, which converts heat to work. The internal com-
bustion engine, which seems to dominate man as much as it serves him, is a
device to convert heat to work. The problem of understanding the limitations

- of the sleam engine gave rise lo much of the development of thermodynamics.

Enctgy conversion remains one of the central applications of thermal physics
because moest electrical energy is generated from heat.

The fundamental difference between heat and work is the difference in the
entropy transfer. Consider the energy transfer dU/ from a reservoir to a system
with which the reservqéryi;_@n thermal contact at lemperature ¢; an entropy
transfer do = dU/r accompasies the energy transfer, according to the argument
of Chapter 2. This energy transfer i1s what we defined above as heat, and we see
itis accompanied by entropy transfer. Work, being energy transler by a change
in external parameters——such as the position of a piston-—does not transfer any
entropy to the system. There is no place for entropy to come from when only
work is peeformed or transferred.

However, we must be carcful: the total energy of two systems brought into
contact is conserved, but their total entropy is not necessarily conserved and
may increase. The entropy transfer between tweo systems in thermal contact is
welldefined only if the entropy of one system increases by as much as the entropy
of the other decreases. Let us restrict oursclves for the present to reversible
processes such that the combined entropy of the interacting systems remains
constant. Later we will generalize the discussion to irreversible processes which
are processes in which the total entropy of the two systems increases, as in the
heat flow example in Chapter 2.
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We can give a quantitatjve expression to the distinction between heat and
work. Let dU be the energy change of a system during a reversible process; dg
is the entropy change, and ¢ is the lemperature, We define

4Q = o 1y

as theheat received by thes

ystem in the process. By the principle of conservation
of energy,

dau =4 + 40, _ (2)

which says that (he energy change is caused partly by work done on the system
and partly by heat added ta the system from the reservoir. Then

AW = dU - 00 = dU — 1y 0]

i5 the work performed on the system in: the reversible process, Qur reasons for
designating heat and work by 0 and 4W rather than d@ and d1¥’ are explained
below. For do = 0, we have pure work; for JU = wda, pure heat,

HEAT ENGINES: CONVERSION
OF HEAT INTO WORK

e . .
Carnot inequulity. Heat and work Have differcnt roles in eRErgy conversion
processes because of the difference in entropy transfer. Consider two conse-
quences of the difference:

{a) All types of work are [reely convertible inta mechanical work and inte
each other, because the entropy transler is zero. An ideal clectrical motor,
without mechanical friction or electrical resistance, is a device 1o convert
efectrical work into mechanical work. An ideal electrical senerator converts
mechanical work info electrical work. Because al) forms of work are freely
convertible, they are thermedynanically equivalent 1o each other and, in

particufar, equivalent 10 mechanical work. The term work denotes alt types of
work,

(b} Work can be completely converted into heat, but the inverse is not true;
heat cannot be completely converted into work. Entropy enters the system with
the heat, but does not leave the system with the work. A device that generates
work from heat must necessarily strip the entropy from the heat that has been
converied to work. The entropy remaved from the converted input heat cannot
be permitted to pile up inside the device indefinitely: this enlrepy must ulti-
mately be removed from the device, The enly way to do this is 1o provide more

Hear Engines; Conversion of Hear inta Work

lnpul

Ouotput
work:
b

a = Ql it {4
Entropy Heat

Quiput

Figure 8.1 Entropy and energy flow in any continuously operating
reversible device gonerating work from heat, The catropy outtlow
mast equat the entropy inflow,

input heat than the anouni converted to work, and 1o gject the excess input
heat as waste heat ata temperature lower than that ofthe input heat (Figure 8.1).
Because dQ/ds = 1, the reversible heat transfer accompanying one unit of
eropy is given by the lemperature at which the heat is transferred. It follows
that aely past of the input heut need be ciected at the lower temperature to
carsy away all the entropy of the input hear, Ouly the difference beta oo input
and output heat can be coaveried to work, To
“iliopy there must be spme outpiy heat;
ll the input heat 1o wark!

A prohibition against unlimited eatropy accumulation in a device does not
mean entropy cannot accumulate temporarily, provided that it is uftimately

femoved, Many practical encrgy-conversion devices operate in cycles, and the

prevent the accumulation of
thercfore 3t is impossible 10 convert

29
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entropy contained in the device varies periodically with time. Such a eyelic

device is called a heat engire. The internal cohidHon engine is an example:

The entropy contained in each cylinder is at a minimum near the beginning of
the intake stroke and a mavimum near the beginning of the exhaust stroke.
There is a valfue of the entropy content to which the device returns eyclicaily;
the entropy does not pile up indefinitely.

What [raction ol the input heat 0, taken in during one cycle at the fixed higher
lemperature T, €an be coaveried into work? The input entropy associated with
the input heat is 6, = Qy/1,. To avoid confusing signs, we define in this discus-
sion ail energy, heat, and entropy flows as positive whether the flow is into or
out of the system, rather than following the usual convenlion according to
which a flow is positive into the system and negative out of the system. If @, is
the waste heat Ieaving the system per cycle at the fixed lower temperature 1,
the output ¢ntropy per cycie is @, = Q,ft,. In a reversible process this output
entropy is equal 1o the input entropy:

g = & or Qfr = Qulta s ) {#

so that

0y = (11,30 {5

The work generated during one ¢ycle of a reversible process is the difference
between the heat added and the waste heat extracted:

W=0,—0=[1~@/m)0=22"19, 5

Tu

The ratio of the work generated to the heat added in the reversible process is
calied the Carmnot efficiency:

i n-1u T.—T
P e T, L T 7
’Fc (Qh)rev tﬁ . Th {

This quantity is named in honor of Sadi Carnot, who derived it in 1824, It was
a remarkable feat: the concept of entropy had not yet been invented, and

Carnot's derivation preceded by some 135 years the recognition that heat is a
form of cnergy.

~ The Camot efficiency is the highest possible value of the energy q:onv_er_s{on- _
- efficiency 5 = W/@,, the output work per unit of input heat, in any cyclic heat

have lower efficiencies because the processes takin
not perfectly reversible, Entro

ihle processes, The energy
We now hav

Hear Engines: Conversion of Heat into Work

fnput
p .

Entropy

—
Heat
8y = /7, &,

T,

Cuiput
work:
e

T:Tl

o= QI/TI ) Qr
Entropy Heat
p.

Ouiput

Flgure 82 ) Fintropy and encrgy flow in a real heat engine containing
trreversibiities that generate new entropy inside the device, The

eatropy outfiow at the lower temperalure is larger than the eatrapy
inflow at the higher temperature.

engine that operates between the temperatures 1, and 1, Actual heat engines

. g place within the device are
py will be gencrated inside the device by irrevers-

; -entropy flow diagram is modified as in Figure 8.2,
e three inequalities

o = 0, {8
0 = Glnfn): 9}
W=0i-0 <220, < g, (10) .
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The actuat encrgy conversion efficiency i obeys the Carnot inequality

n= W0, £ 1~ (n/4) = e {11

We can have n =y only in the limit of reversible operation of a dexf:ce that
takes in heat at 1, and ejects heat at 1.

The Carnot inequality is the basic Jimitation on any heat engine that operates

in a cyclic process. The result tells us that it is.Emposs;bIc-to. c;}raverl all 12)‘;:
heat into work. For a Biven temperature rulfo W/t lhf: l}lg Cslﬂf:{).nver :
efliciency is obtained under reversible operation. The %uml:_ng € ICI;“C\{.}::;;
creases with increasing 14/t but we attain 100 percent efficiency oniy
e ¢ i Iltimately be

‘- ature wasie heat of uny heat engine must u : ¥ :
cjezlhcii §i(1}1\l\ou:lf::p:;vimnmcnt. so that 1, .c;llnnol be t{ciot'-' t-he c?;:;?n::{::gli
temperature, usually abaut 300 K. High clliviency mqmr‘cs an m;-’t; oo infmm_
T, high compared te 300 K. The usuble lemperaduares in praciic

ints : ines,.
nately limited by various materials constraints. In power plant steam turbine

which are expected Lo operate coﬁmimmusly for years, the upg;:’:f tzn:énf:(;i:::
is currently limited to about 600 K by pivblems wil hthe sl]r‘c!:lgE an oren
of steel With T, = 300K and T, = 6% I\ the (f‘rf]?f cf xc&cn-:‘yullsiggntl;ii;my
50 percent. Losses eaused by Ul’%?.l‘f‘()l-d'.li‘llt)'lrfCVCI'S‘ltJ.llilif? re -um, e ey
typically to about 40 percent. To obtain higher efficiencies is a pr

temperature metallurgy,

Sources of irreversibiliy.
irreversibility:

i i ules sever sources of
Figure 8.3 illustrates several commen source

- . V b .
() Part of the input heat Q, may flow dircelly to 1%}5 lg{)w[ Lea;?ﬁeorst;;::(; ﬂ—‘:’;
passing the actual encrgy conversion process, as in t}c h Jlow ko the
cylinder walls during the combustion cycle of the internal ¢
engine, . -
: : ¢ as tem
f ifferewce 7, — 1, ity not be availa
b) Part of the temperature difference 1, [y 1 ble as tlem.
® pf;nlurc difference in the actuad covrgy LG[!\L%'S!'OH procltslb, blf.tl,]‘:c e o
the temperature drop across theymul resistances in the puth o
fow.

ac anical
(e)  Part of the work generated may be converled back to heat by mechanic
{riction. _ ‘ N
M 1 U oo H i vy c
{d} Gas may expand irreversibly without doing work, as in the irreversi
expansion of an ideal gas into a vacuum,

P

Refiiperators

Thermad resislapce
Irreversible expansion
I without wark of heat
/ Net work
Heat
bypass )
Friction loss
Thermal resistance
T
Figure 83 Four sourecs of irreversibility in heat enpines: heat flow
3]

ypassing the energy conversio
of the heat flow, frictional losse
irreversibie expansions.

ft process, thermal resistance in the path
5, and entropy generation during

Refrigerators

Refrigeratars are heat engines in reverse, Refriger,
emperature 7, to a higher temper:
Ctropy flow diagram of a reversibl
“htropy s generated inside the devj
EXact reversal of the ene
main v

ators consume work (o move
ature 7,. Consider the energy-
¢ heat engine in Figure 8.1. Because no
e, its operation can be reversed, with an

18y and entropy Mo, Equations (4) through (6)
alid for the reversed Rows.

beat from a fow ¢
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:Tl'u: energy fitio of interest in a refriperutor is not the CnCrgy conversion
efficiency (7), but the ratio ¥ = G/W of the heat extracted at the tow tem-
perature 1o the work consumed. This ratio is called the coefficient of refrigerator
porformance; its limiting value in reversihle operation is called the Carnot
coefficient of refrigerator performance, denoted by ;. Do not confuse o G
with iy = W0, for the energy conversion ¢fficiency of a heat engine; although

7 = 1always, y can be >1 or <1. From £q.(5) and ¥ = Q, — 0, the work
consumed is

W=0,-0 =2 ; o, {12)

The Carnot coelliicient of refrigerator performance is

N 0, _ T _ T .
}C. (”/ rev - Ty — T] h Ti: '—-Tl‘ {§3)

This ratio can be larger or smaller than unity.

Actual reflrigerators, like actual heat eagines, always contain irreversibilities
that generate entropy inside the device, In a relrigerater this excess entropy is
cjected at the higher temperature, as in the energy-entropy fiow diagram of

Figure 8.4, With the convention that all energy and entropy flows are positive,
we now have '

& = oy, {14)
in place of (8). Fnr!h_er,
0, 2 (n/1)g {15}
and
W=0-0z [/ -0 =" 0 on . o
so that

7 =0/ <y ] (1n

Alr Conditioners and Heat Pumps

Quiput

.

Entropy

G, = Q,lf'r,‘

4 entropy

=T

."-': = 0,/7,
Entrapy
.

Input

Figure 8.4 Entropy and energy Aow in a relrigerator.

The Carnot coefficient y; is an upper limit 1o the actual coefficient of refrigerator
performance 7, just as the Carnot efficiency . is an upper limit to the zctual
energy conversion efficiency n of a heat engine.

Both keat engines and refrigerators are subject to restrictions imposed by the
law of increase of entropy, but the device design problems are totally different.
In particular, the design of refrigerators 1o operate at the temperature of liquid
helium or below is a challenging problem in thermal physics (Chapter 12).

Ailr Conditioners and Heat Pumps

Air conditioners arc refrigerators that cool the inside of a building or an auto-
mobile; the heat is ejected to the outside environment. If we interchange the
inside and outside connections, an air conditioner can be used to heat a building

during the winter. Such a device is called a heat pump. If 7, 1, « 7, a heat
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pump can Lieat the building with a jower consumption of enesgy than by direcy
heating (Problem 1.

The limilasions on the use of heat pumps are largely economical. They are
much more costly to instali and to maintain than are simple heaters or furnaces,
Heat pumps make economic sense primarily in climatic conditions in which
air conditioning is required anyway.

Carnot Cycle

The derivation of the Carnot energy conversion efficiency and of the Carnot
coelicient of refrigerator performance made no statement about how to
realize a process by which work is generated from heat, or abowt how refrigera-
tion is achieved. The simplest and best known such process is the Caraot cycle.
In the Carnot cycle a gas-—or another working substance—is expanded and
compressed in four stages, two isothermal and two isentropic, as in Figure 8.5.
At point 1 the gas has the tem perature, and the entropy ¢, The gas is expanded
at constant t untl the entropy has increased o the value oy, 3t point 2. In the
second stage the gas is further expanded, now at constant a,until the temperature
has dropped to the value Ty at point 3. The gas is compressed tsothermally to
point 4 and then compressed isentropically to the original state 1. We write gy
and gy, for the low and high values of the entropy contained in the working
substanee, to distinguish these values [rom a; and a,, which are the entropy
Jlows per cycle u! the low and figh mmf:émaurcs roand 1, For the Carnot eycle,
9 = 0y = gy — 0y,

The work done by the system in one cycle is the area of the reclangle in
Figure 8.35:

W= {74 — oy — a1}, (18)

which follows from

#idU = ) =g;rda —SBPJV R

where {pd¥ is the work doge by the system in ene cycle. The heat tken up at
= 7, during the first phase is

Oy = oy ~ o). (1%

We combine (18) and (19) to obtain the Carnat efficiency 3o Any process
described by Figure 8.5 is called a Carnot cycle, regardiess of the working
substance. ) :

Carnat Cycle
2

¥ 2
LT S e e
i |
F |
: ;
! ]
| |
| v 4
II |
E |
] :
i} T
A i
(278 R e J
4 I

TI '.’.E ¥

(t — 2and 2 - 3and 1wy compression phases (3 — 4 and 4 - 13,
Oue of the expansion and one of the compression phases ure
isothermal ¢l — 2 and 3 4), and one phase of each kind is
isentropic (2 — 3apd 4 - 1). The not work dong is the area of the

loop, The heat consumicd al 7, 15 the arca surrounded by the
broken line.

The Camnot cycle is a polnt of reference to indicate w

hat could in principle
be done, rather than what in fa

<t is done. All energy conversion cycles need a
high temperature input and a low temperature output of heat, but often (he
heatinputs and outputsare not well-defined resery
Even where such reservoirs exist, as in steam turbines, there is tnvariably a
temperature difference present between the working substance and the reser-
voirs. The heating and cooling processes are never truly reversible,

Oirs Al constant temperatures.

Lt

e e e

Example: Carnot eycle for an ideal gas, We carry an ideal menatomic gas through a
Carnoy eycle. Initizlly the gas occupies 4 volume ¥

vand is in thermat equilibriom with 1
feservoir B, ut the high temperature 7. The gag is expanded isotheemally 10 the volume

237
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Yy, as in Figure 8.6a. In the process the gas ahsorbs the heat @, rom @R, and delivers it as

work 3 ; 10 an external mechanical system connected w the piston. For an ideal gas the
heat absorbed [rom the reservoir is

O = W = | pdV = N1, | dV/V = Ne,log(V /1) (20}
12 P s ! n 0B

This work is indicated by the area fubefed 127 Next, the gas is disconnected from @, and

further expanded, now isentropically, until the temperature has dmppui 1o the fow tem-
perature 1, In the process the addiional work

Wy = Uly) — Uln} = Nz, — 1) 1)
is delivered by the gas. The volume ¥, at the end of the isentropic expansion is related to
Y by

LV = o W, or ValVy = (o), {22)

from (6.63). Aftcr point 3 the gas is brought into contact with & temperature reservoir 6

at the wemperatsee 1, and then compressed isothermally {Figure 8.6b) 1o the volume V,
chosen 10 satisly

ViV, = (nfe)t = VoV, ‘ (23)

so that VyfV, = 3%7V,. To accomplish this compression, the work

Wy, = Nt dog(¥s/¥) = Nt log{V,/vi) 24

must be done on ihe gas, This work is ejected 1o §; as heat:

Q= Wi, (25}

Finally, the gas is disconnected from &, and recompressed isentropically untit its tempera-
tore has risen to the initial tlemperature 1,. Because of the choiee (23) of ¥, the gas volume

at this point has returned to its initial value ¥}, and the cycle is completed. In this last stage
the work '

Wi = 3N, — 1) (26}

is performed on the gas; this cancels the work W, done by the gas during the isentropic
expansian 2 — 3, by (21).

The net work delivered by the gas during the cycle is given by the difference in shaded
areas in Figures 8.6a and 8.6b, which is the enclosed area in Figure 8.6c. The isentropic
curves in the p~¥ diagram are steeper than the isothermal curves, so that the area of the

Carnot Cycle
Qh Ql
] . i
@, @,
e ey
POy pl¥y
i
|
[}
g
{
|
i
i
|
i .
| ;
. i
; !l - !
H P4t boaa e
i i 1 !
1 1 t %
V, v, v, ¥ ¥, vV, i, v
(u) (b)

pvY

Net work done by the
gas during one cycle

T e o e e e on e it e e 2 o — ) N

0
| ‘17 o3
o
H
H t 1
i i I
i 1 i
s v, ¥, v, ¥
(<)

Figure 8.6 The Carnot cycle for an ideal gas, as a p-V plot. An ideat gas is expanded
and recompressed in four stages. Two of them are isothermal, at the temperature v, and
nft, > 7, Two of them arc isentropic, from 1, 10 1,, and back, The shaded areas show
{a} the work done during the two cxpansion stages, (b) the work done during the two
compression stages, and {c) the net work done during the cycle.
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loap is finite and is equal 10 the area of the rectangle in Figure 8.5, We have

14

i

Wy + Woy =~ Wy = Woy = Wi, - 10,
N(r,, — 1)logVy/¥,). ‘ (2N

B

The heat absorbed from R, was given in {20y,
the Camnot refation (7).

so that W/Q, = {1, — /1., which is just

T et Yt ey

Energy Conversion and the Second Law of Thermodynamics

The Carnot limits on the conversion of heat into work and on the performance
of refrigerators are direct tonsequences of the law of increase of entropy. The
second law of thermodynamics usually is formulated without mention of
entropy, We stated the classical Kelvin-Planck {ormulation in Chapter -
“It is impossible for any cyclic process to oceur whose sofe effect is the extraction
of heat from a reservoir and the performance of an equivalent amount of work,”

All reversible energy conversion devices that operate between the same tem-
peratures have the same energy conversion efficiency 1 = W/Q,. Were this not
$0, we could combine two reversible devices with different efficiencies, 1, < 15,
in such a way (Figure 8.7) that device | with the lower eficiency is operated in
reverse as a refrigerator that movaes not only the entire waste heat ;2 from the
more efficient device 2 back to the higher temperature 1,, but an additional
amount (Xin} of heat as well. The overall result would be the conversion of
the heat Ofin) 1o work W(out), without any net waste heat. This would require
the annihilation of entropy and would vislate the law of increase of entropy.

MNow that we have established that afl reversible devices that operale between
the same temperatures have the same energy conversion ¢fficiency, it is sufficient
1o caleulate this efliciency for any particutur device to find the common value.
The Carnot cycle deviee feads o He = {1, — 1,)/1, for the common value.

Path Dependence of Heat and Work

We have carclully used the words heat and work te characterize energy transler
processes, and not to characterize propertics of the system itself, ¥ is not
meaninglul 1o speak of the heat content or of the work content of a system,
We look at the Carnot cycle once more: Around a closed loop in the p-¥
plane, a net amount of work is generated by the system, and a net amount of
heat is consumed. But the system-—on being taken once around the loop—is
relurned to precisely the initial condition; no property of the system has
changed. This nieans that there cannat exist two functions Oz, V) and Wia,V}

Path Dependence of Heat and 1¥ork

Q=W + ¢, + Qliny
=0, ¢ I¥{out)

0 = Q(in) — Houy)

Device 2
(7? = TE-_J

Q(Zi’l} = (]?2 - rh}Qp,

Figure 8.7 Iftwa differem reversible energy conversion dev
same fem pcralur_cs 7 and 1) couid have differen; EnCrgy conversion efficiencies 2 > )
itw ould be possible 10 comibineg them ingo a single device with 100 pet elficieniy b
using the less efficient device as a refrigerator that IMOVES 1oL OnlY the enlire wiys

ices operating between the

(R
mperature, but an additiong]

en be completely converte
1o work, P e

such that the heat Qo and the work W, required to carry the syszczﬁ from y
state {o,, 1) to a state {op, V) are given by the diffecences in O and iv:

Qu £ Qoy.15) — Qo) w, 2 Wy, 1) ~ ¥, 10).

fsuch funciions existed, the net transfers of heat and of work around a closed
toop necessarily would be 210, and we have shown that the trunsfors are not
Cro,

The transfers of heat and work between
path taken butween the two states. This p
Wesay that heat and work are not stale func
and free energy, heat and work
increments ag and d33 14

ate ) and state (b) depend on the
dth-dependence is expressed wlien
:z'pns. Unlike temperature, CRITODY,
are not mtrinsic attributes of the system. The
at we introduced in {1) and {2) cannot be diffcrentials
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L.
.

Figore 8.8 Two irreversible processes in which mechanical or glectrical potential
encrgy 1s used Lo heat a sysiem.

of mathematical functions 8(a,V) and W(s,V). For this reason we designated
the increments by 0 and d1, rather than by dQ and 4W., Without the path
dependence of heat and work there would not exist cyciical processes that
permit the generation of work from heat.

Irreversible Work

We consider the energy transfer processes of Figure 8.8, In each process 8
is a purely mechanical or electrical system that delivers pure work with zera
entropy change. The energy transferzed to &, is converted 1o heat, either by
mechanical friction or by electrical resistance. The final state of 8, is the
same as if the energy had been added as heat in the first place. The entropy
ol &, is increased by do, = dU,/z. This entropy is newly created entropy.
Processes in which new entropy is created are irreversible because there is
no way to reverse the process in order to destroy the newly created entropy.
If newly created entropy arises by the conversion of work to heat, we say that
irreversible work has been performed.

1 we ook only at the net change in a system, there is no way to tell whether
the process that led to this change was reversible or irreversible, For a change
dU in energy and do in entropy, we can define a reversible heat 40, and a
reversible work #W,, as the amount of heat and work that would accomplish
this change in a reversible process. If part of the work done on the systemt is
irreversible, the actual work required to accomplish a given change is larger

Irreversible Work
than the reversible work,

A3V e = T, (28)

By conservation of energy

liU = ‘T[[,ifltv + {TQ1TS|." = [{'V + ‘TQI\:\ 1

ey

50 that

“[Qirm\' = ‘1(.):;-\‘- [29)

The actual heat transferred i the irreversible process must be less than the
reversible heat.

Example; Sudden expansion of an ideal gas.  As an example of an irreversible process we
consider once more the sudden expaasion of an idesl gas into 2 vacuum, Neither heat nor
work is transferred, so that dU = 0 and ft = 0. The final state is identical with the stale
thut results rom & revessible isothermal expansion with the gus in thermal equitibrium

wilh a reservoic. The work W, done on the gas in the revessible expansion from volume
¥ to V, is, from (6.37). ’

¥, = — Ntlog(Vy/%) (30)

The work done on the gas is negative; the gas does positive work on the piston in an amount
equal to the heat transfer into the system:

O = =Wy > 0; W <0. 31

The entropy change is equal to Q,,.,/1, or
o) = 01 = =W/t = Niog(Vy/V)) (32)

In the irreversible process of expansion iato the vacuum this eatrepy is newly created
entropy because neither heat nor work fows into the system from the outside: 1, =
Gireee = 0. From (31) we obtain

PVi;—uvl > H/lcw Qitrcv < an’ ’ (33)

in agreement with {28} and (29,

PIpe e e e oy
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arca 4,

ATeA Ayt
 ——

Py = pod,

Figure 89 Systems between which only work hut no
heat is transferred need not be at the same femperature
for the process 1o be reversible,

In our discussion of irreversible work we assumed that the new entropy
is created inside the system during the delivery of work to the system by other
systems. This is not the only source of irreversibility in energy transfer. Pure
heat transfer, not invelving any work, is Irreversible if it takes place between
IWo systems having different temperatures. We worked out an example in
Chapter 2. 1n this process heat is transferred fromasystem at 7, to a system
at the lower temperalure ¢,. We have,.

dU| = dQ, = 1, dg,; dU; = dQ, = t1,do,; dQ, + 0, =0, (39)

The newly created entropy is

dag, = (do, + day} = ddyfey + 8@,/

Ty — T
= {lfr, — HedQ, = =2 .

dQ,. (35)
1,7

The heat flow is from high to low temperature: 40, is negative: Ty -1, 0s
ncgative, so that dg,,, > 0, ‘ .

The energy transfer between 1wo systems with different tereperatures need
not be irreversible if onty work but no heat 18 transferred {Figure 8.9,

Al actual energy transfer processes are invariably somewhat irreversible
but reversible processes remain the backbone of the theory of thermal physics,
They constitute a natural limit, which is the equitibrium limit of vanishing
entropy generation. We shali assume hereafter that he words heat and work,
withoul a further qualifier, refer 1o reversible processes,

3

Heat and Work o Constant Temperature or Constant Pressure

HEAT AND WORK AT CONSTANT TEMPERATURE
OR CONSTANT PRESSURE

energy F = U — 1¢ of the system. For a reversible process dQ = tdy = di1q),
because dt = 0, so that

dW = dU — 40 = 4u .. d{re) = dF. (38)
Thus in such processes the Helmholtz free energy is the natural enerpctiz
function, more appropriate than the energy U. When we treat an iso
process in terms of the Helmholiz free energy, we automatically inciude 1he
additional work that is required to make up for the heat transfer from the
system to the reservoir. Often the heat transfer is the major part of the work:

for the ideal gas the encrgy U does not change in an isothermal progess, and
the work done is equal to the heat transfer,

therm, i

, particularly those processes that take plage
in systems open to the atmosphere. A process at constant pressure is said to bhe

an isoharic process. A simple example is the boiling of a liquid as in Figure 8.10,

F = Patmed

B S

s =

Figurc 8.10 When liquid boils under atmospheric pressuze, the vapor
di

isplacing the stmosphere does wark against the atmospheric pressure,
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where the pressure on the piston is the external atmospheric pressure. 1M the
system changes ils volume by JV, the work —pd¥ = —d(pV) is part of the
total work done on the system. If positive, this work is provided by the environ-
ment and is in this sease “lree” If negative, the work is delivered to the
environment and is nat extractable froni the system for other purposes. For
this reason it is ofien appropriate to subtract —d{pV) [rom the total work. We
thus obiain the effective work performed on the system, defined as

dW' = dW + d(pV) = dU + d(pV) —~ 30 = dH — 40, 3N

where we have defined 2 new function
H=Ux+pv, (38)

called the enthalpy which plays the role in processes at constant pressure that
the energy U plays in processes at constant volume, The term p¥in (38} is the
work required to displace the surrounding atmosphere in order to vacute
the space 1o be occupied by the system. Implicit in these definitions is the idea
thal there are other kinds of work besides thut due to volume changes.

Two classes of the constant pressure processes are particuburly important:

{a) Processes inwhich no effective work is done. The heat transfer is 70 = dH,
from {37). The evaporation of a liquid {Chapter 10) from an open vessel is
such a process, because no effective work is done, The heat of vaporization
is the enthalpy difference between the vapor phase and the liquid phase.

{b) Processes al constant temperature and constant pressure, Then 40 =

1ds = d{ra), and the eflective work performed on the system is, from (36) and
(37,

dW' = dF + d(pV) = dG , (39)
where we have defined another new function

Ge=F 4 pV=U+4pV — 10, {40)

the Gibbs frec energy. The effective work performed in a reversible process

al constant temperatuce and pressure is equal to the change in the Gibbs

free energy of the system. This is particularly useful in chemical reactions

where the volume changes 25 the reaction proceeds at a constant pressure.
The Gibbs free energy is used extensively in Chapter 9, and the enthalpy is

used in Chapter 10.

Heat and Work at Constant Temperature or Constant Pressure

F—""’"l‘_’ff: Electrolysis and fucl cells.  Electrolysis is a process that is botl isothermal and
isobaric. Consider an clectrolyte of ditute sulfuric acid in which are imimersed platinum

elecirodes that do not reagt with the acid {Figure B.11}. The sulfuric acid dissaciates into
H* and SO, " ions:

H80, @ 2H* + 50,7 . (41)

When  current is passed through the cell the hydrogen jons move 1o the nepative clecirade
where they tuke up clectrons and form molecular hydrogen gas:

M7+ 2% - H,. {42)

The sulfate jons move to the positive elecirodes where they decompose water with the
release of molecutar oxyper pas and clectrons: .

SO + H,0 -+ H,S0; #7450, + 2. (43
The sum of the above three steps is the net reaction eiaution in the cclk:
H;O - H, + 10,. (44)

When carricd out slowly’in a vessel open to the atmasphere, the provess is at constant
pressure and constind lwmperature, A negligible pant of the etectrical input power goes into

{f
&

{ !
s UW:J/O'J
E ‘:ors:/

qu 0.; :::
- c.3°

3 QHD
B 6“2\]
. o

Figure 8.11  An electrolysis cell. An electrical current passes through an electrolyte, such
as dilute sulfuric acid. The overail result is the decomposition of waler into gascous
hydrogen and oxygen. The process is an cxampls of wark being done at constant
lemperature and constant pressure.

M7
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sesistance feating of the clectralyte. The effective work re

quired to decompose 1 mole of
water is related to the molur Gil

bbs free energies of the reactants:

W' = AG = G(#H,0) ~ G, — 1G(0,), )

Chemical tabies list the Gibhs
tenperature,

In electrolysis this work is perforined by a carrent [ that flows uader a
Vo 11 ¢ i3 the time required to decompose one mote of water, =
(not the heat?) flowing through the cell, and we have

free energy difference AG as —237k] permole at rocm

1 external veltage
I % ris the totat charge

W = gy, (46)

According to (43), there are twa electens involved in decomposing one water molecule,
hence

0= 2N =~193 x 103 coulomb, (47)

We equale (46} 10 {45) 10 oblain the condition for electrolysis to tuke place. This requires o
minimum vollage

Vo= ~AGN,c, : (48)

or £229 volts. A voltage lasper than Yo must be applied 1o obtain a finite currem fow,
beeause ¥, alone merely reduces 10 2ez0 he potential barricr between the systems on the
twa sides of the reaction equation {44}, Whea ¥ » Vo, the excess power (K — Vo) x I will
be dissipated as heat in the eleclrolyte. "~

IfV < I, the reaction {44} will proceed from right to left provided gascous hydropen is
available at the positive electrode and Baseous oxygen al the negative electrode. In the
simple sctup of Figure 8.11 the gases are permilted to escape, and for V < Vo nothing will
happen at all, It is possible, however, to construct the elecirodes as porous sponges, with
hydrogen and oxygen forced through ynder pressure {Figure 8.12). Such a device producesa
voltage ¥, between the electrodes and, if the electrodes are connected, external current will
flow. This arrangement is called a hydropen-oxygen fucl cell. Fuei cells were used as power
sources an board the Gemini angd Apolio* spaceeraft and incidentally produced drinking
water for the astronauts.

The principal technological limitation of fuel cells is their low cucrent per unit electrode
area. In the Apollo cell the cursent deasity was only a few hundred mAfem?; hence farge
electrode arcus are requited Lo produce reasonable cusrents, The current-veltage charac-
tegistic of ap electrochemical cell in ils two operating ranges as fuel cell and as clectrolytic
ol are showa in Figure 813,

——— i

L_.—"L-Ir.-h—--ﬁ‘.-i—q"l—h‘&"]-‘n‘«b.‘.-‘—-:‘ b L

" The Apoila fuet cells used Njand NiO rather than Pt as electrodes, and KOH raher than H,50,
as clecirolyte. For a detuiled description, and more infarmation on fucl celis, the reader is referred

10 £ 0. M. Bocktis and §. Srinivasan, Fuef colis: Their eh’clmdw:iais!ry, McGraw-Hill, New York,
1959,

H, —w

2H*

M H,0

A |

Porous ¢lecirodes

Figure 812 A fuel celf is an clectrolysis cell operated in
reverse, with hydregen and axygen supplied us fuels. The
luels are forced under pressure through poraus clectrodes
separated by an electrolyte. The hydrogen and exypen ceact
to form watgr; the excess Gibbs free enerpy is delivered
autside as clectricy! energy. Water forms at the positive
electrode and is removed there,

Current

———Fue} cell —me]

Electrolysis

e
f Voltage V

—

Figure 8.13 The current-vellage characteristic of an clectrolytic

celf or fuel cell, indicating the (wo uperating ranges,
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Chemical Work

Work performed by the transfer of particles to & system is called chemical
work, because it is associated with the chemical polential.

When particles are transferred, the number of particles in the system is one

of the independent vatiables on which the energy U depends. If I/ = Ulg,V.N),
then for a reversible process

dU = zdo — pdV + pdN | {49)

by the thermodynanic identity of Chapter 5. Here we have replaced the partial
derivatives by their familiar equivalents (Table 5.1). By our definition of heat,
the 1ds term represents the transfer of heat and the —pdV and pdN terms
represent the performance of work, all understood to be reversible:

AW = —pdV + pdN. {50)
The —pd¥ term is mechanical work; the pdN term is the chemical work:
W, = pdN. ’ . : 5nh

tf there is no volume change, dV = 0. All the work is chemical,

In particle transfer there are usually two systems involved, both in contact
with 2 heat reservoir, and the total chemical work is the sum of the contributions
from both systems, In the arrangement of Figure 8.14 a pump transfers particles
from system §, to system $,. The chemical potentials are gy and py. 11

dN = dN, = —dN| is the number of particies transferred, the total ehemical
work performed is

AW, = dW,, + dW,, = p dN; + ANy = (1 — pddN- (52)

The work that must be supplied to the pump is 1, if there is no volume work
{dV, = d¥, = 0}, and if al} processes arc reversible.

The result {52) gives an additional meaping of the chemical potentisl. We
summarize the properties of the chemical potential:

(2} The chemical potential of a system is the work required to 1ra1}sfar one
particle into the system, from a reservoir at zero chemical potential.

(b) The difference in chemical potentizl between two systems is equal 1o the
net work required to move a particle from one system to the other.

Chemical ¥ork

A

Pump

/

U, 2. VU N,

Uy, wge ¥ Ny 13

£y

N
(=~ “"\'1)

dN
(= +dN,)

Figure .14 Chemical wock is the work performed when particles are moved
reversibly from one system to another, with the two systems having dilferemt
chemical potentials. 10 the two velsmes do not change, the wark is puse
chemical work; the amount per particle is the dference in chemical potentials,

{c} 1fthe two systems are in diffusive equilibrium they have the same chemical

potential; no work is required to move a particle from one system to
the other. : ‘

-{d)} The difference in internal chemical potential (Chapter 5) between two

systemas 1s equal but opposite to the potential barrier that maintains the
systems in diffusive equilibrium.

Example: Chemical work for an ideal gas.  We cansider the work per particle required to
mave reversibly the atoms of 2 monatomic ideal gas from 8, with concentration .o 8,
with concentration i, > ay, both systems being a1 the same temperature (Figose 8135 H
dV = 0, the work contains only a chemical work termm, which can be caleufated from the
dificrence In chemical potential, no matter how the process is actuaily peelformed. The
chemical potential difference between two ideal gas sysiems with different concentrations is

pz — piy = t{loglny/ng} — loglmying)] = tloglngfn) (33)

This result is equil to the mechanical work per particle requited 10 compress the gas
isothernally from the concentration n, 1o the concentration ny. The work reguised to
compress N particles ol in ideal gas from ag initial volune ¥ to a finad volume Ty is

W o= —-J.pdV = MNrJ.dV/Vﬂ Nzlog(Vy/V3) = Nrloglny/m)  {34)

Hence the mechanical work per particle is tlog{n,/n,), identical to the resuit (53). The
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d

 Reservoir-

Energy exchanges
Figure 8.15  Isothermal chemical work. The amount of chemical wark per particle

does not change if the process is performed isothérmally with both systems in
thermal equilibrium with g cemmen large reservoir,

identity of the chemical work with the isothermal compression work illustrates the equi-
lence or convenibifity of different kinds of work.

e ————— L
L

Magnetic Work and Superconductors

An important form of work js magnetic work. The most important application
of magnetic work is 1o superconductors, and this application is treated here.

Helow some critical lemperature T, that is usually less than 20 K, many
clectrical conductors undergo a transition from their normal state with a finite
eleetrical conductivity to a superconducting stale with an apparently infinite
conductivity,

Superconductors expel magnetic fields from their interior, Il the super-
conductor is first conled below the critical temperature and then faserted into a
magnetic field, we might expect that the infinite conductivity would shield the
interior from the penetration by a magnetic field. However, the expulsion occurs
even if the superconductor is cooled befow T, while in a magneltic field (Figure
806} This active expulsion, called tie Meissner effect, shows that supercon-
ductivity is more thun an infinite conductivity, The Meissner cffect is caused by
shiclding currents that are spontancously generated near the surface, in a layer
about 107 cm thick. The magnetic ficld expulsion js not always complets,
Superconductors are said to be of type Hif the expulsion is incomplete, but stil}
nonzero, in a range of fields above some low fietd. We shall restrict ourselves

Magnetic Work and Supcrconductors

Figure 8,16 Meisener effect in a superconduciing sphere cooled
in 3 copstant applied magnetic field; on passing below the
transition temperature te lines of induection B are cjected from

the sphere.,
900
~
Ph
% 600 T ]
B Figure 8.17  Threshold curves of the criticat
= Hg field versus temperatore for several supes-
o ~ conductors. A specimen 5 superconducting
;;‘* 300 ——5Sn \\ N below the curve aad noty .l above the curve,
In™
T
0 \\ A,
G 2 4 6 8

Temperature, in &

here to the discussion of type [ superconductors, for which the field expulsion
is complete up ta a definite field ang zero thereafler,

A sufliciently strong magnetic field will destroy supercenductivity. The
critical field required to do this depends on the lemperature and on the super-
conductor, For type I superconductars the ficlds are usuaily 2 few hundred
Lauss {Figure 8.17). In some niobium and vanadium compounds of type 11,
ceitical fields of several hundred kilogauss have been observed,

The Meissner magnetic effect shows thut the normal and the su perconducting
States are ditferent thermodynamic phases of the same melal, just as ice and
Hauid water arc different phases of H,0, except that in the supereonducting
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82
b :
c g : £
3 s i
5 ILZ .
“ 8 2% ]
g : o ~r PR L. A fi A f J
2 | L] ' [l Figure .19 A supercenducter of length L and
= pos - TR ] : e
5 e BT OB E 1 =2 arca A4 ina superconducting solenoid that
:’; ten g ‘:i 2 WAWAVAWVAWAWLWAANY : produces a magnetic ficld B,
S w8 4
~ E =z
i 5 oo B
S -
i A 23k
5 F22
g 2= f e .
Lo TN ity (,J - = ;l_, transition it is the electronic system rather than the crystal structure of the metal
) e =y = fn 2z that undergoes a phase transition.
- 5 =] 2 . - - ;
i = % al The superconducting state is a distinct thermodynamic phase, as confirmed
UL 5 E = by differences in the heat capacity of the normal and the superconducting stales,
: Lo N. . - LT . . -
85 iy The heat capacity (Figure 8.18) exhibits a pronounced disconlinuity at the onset
b 2 . .o .
“ 28~ of superconductivity at ¢ = r,; when superconductivity is destroyed by a
: 2L a - . . - -
SN S S A A I A “ 23 magnetic field, the discontinuity disappears. The stable phase will be the phase
[] W oE s pp
LI 7 g e with the lower free énergy. Below t = 1, in zero magnetic field the free energy
- 2o . .
\ 7] =g of the superconducting phase is lower than that of the normal phase. The [ree
. " - E = 3 energy of the superconducting phase increases in the magnetic field, as we show
LRI 2B i below. The free energy of the normal phase is approximately independent of
| & f“;" g the field, Fventually, as the field is increased, the free energy of the super-
EZZ conducting phase will exceed that of the normai phase. The normal phase is
o =58 then the stable phase, and superconductivity is destroyed.
B4 525 P P
- . . - . .
£2%%3 The increase of the free encrgy of a superconductor in a magnetic field 1s
'[f_: 2 S calculuted as the work required to reduce the magnetic feld 1o zero in the interior
h . . .
2 o Ef-} of the superconductor; the zero value is required to account for the Meissner
— §E g effect. Consider a superconductor in the form of a tong rod of uniform cross-
- ! tniio
& E =g section inside a long solenoid that produces a uniform field B, as in Figure 8.19.
= 235 The work required to reduce the field to zero inside the superconductor is
- o = . L. R
& 2 R equal to the work required to create within the superconductor a counteracting
— . -
= field — B that exactly cancels the solenoid field. We know from electromagnetic
L=l . . . .
E 22 theory that ihe work per unit volume required to create a ficld B is given by
‘ L .
" 8 -3 .
= 3% (s1) eV = B /251 (s50)
z-Mg-low fwu /5
) or
{CGS) WV = 081, (550}
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Figure 8.20  The frec enerpy dc.nsh)..' Fyofa

Problems

SUMMARY

257 .

nonmagnetic normal metal is approsimately
independent of the intensity of the applied
magnetic ficld B,. Ata temperature © < r, the
metal is a superconductor in zerg magnetic
field, so it Fo(r ) is lower thug Fr,3. An
applied misgnetic field increases Fy by B .
in 51 units (and by B,%/8x in CGS units), so
that Fyir,B) = Fo(v.0) + B,/2u,. IrB,is.
larger than the critical field B, Lhe free cnergy
density is lower in the normal state thun in

the superconducting state, snd now Lhe normal
stule is the stable state, The arigin of the
vertical scale in the drawing is a1 Fy(x0). The
figuse cqually applics 1o Ugand Uy at 1 = 0,

1. Heat is the transfer of energ

y by thermal cantact with a reservoir. In a
reversible process d@ = tde.

Normal state . .
2. Work is the transfer of energy by a change in the external parameters that

describe the system. The entropy transfer in a reversible process is zero when
only work is performed and no heat is transferred.

Free encrpy density

3. The Carnot energy conversion efficiency, 1 = (z, ~ 1)/7,. is the uppir
limit to the ratio W/Q, of the work gencrated to the heat added.

4. The Carnot coeflicient of refrigerator performasice, e = 1/r, — 1), is the
upper fimit to the ratio Q1 of the heat extructed 1o the work consumed

) ) ur 5. Thetoetal work performed on o sysicm atconstant temperature in u reversible
Applied magnetic field B, process is equal to the change in the Helmhohz free eacrgy F = U — 14
of the system.

6. The effective work performed on a system at constant temperature and

pressuse in a revessible process is equil to the change in the Gibbs free
cnergy G = U - 15 + pl.

This is the amount by which the {ree caecgy density in the bulk superconducior
is raised by application of an external magnetic ficld, in an experiment at con-
stanti temperature.

7. The chemical work performed on'a system in the reversible transler of d

There is no comparable free energy increase for the normal conductor, pacticles to the system is pdN.

because there is no screening of the applicd field. Thus

8. The change in the free chergy density of a superconductor {ol type I} caused

(s1) [Faln) - Fs(!}j';l"V = B1)2; (563) by an external magnetic field 8 is B2y in Sl and B%8x in CGS.
or

_ PROBLEMS
(€CGS) [Fule) = Fo{u]/V = B(x)8n. (56b)

1. Heat pump.  (a) Show that for a reversible heat pump the energy required

In a plot of the fiee energy density of both phases versus the magnetic ficld per unit of heat delivered inside the building is given by the Carnot efliciency (6):

(Figure 8.20}, the free energy of Lhe superconducting phase will ultimately rise v )
above that of the normat phase, so that in high fields the specimen will be in the T T

T e = ——

normal phase, and the superconducting phase is no longer the stable phase. On 2
This s the explanation of the destruction of superconductivity by a criticud
magnetic field B, ‘

With increasing temperature the free encrgy difference between normal and
supcrconducting phase decreases as ¢ — 1, and the critical magnetic ficld
decreases. Everything else being equal, a high stabilization energy in a type |
superconductor will lead to both a high critical temperature and a high critical
ficld. The highest critical fields are found amengst the supercondictors with the
highest esitical lemperatures, and vice versa,

What happens if the heat nurp is not reversible? () Assuime that the clectrioity
consumed by a reversihie heat puinp must itselt be gentraics by o Carsot enp'h,
operating between the temperatures T and 7, What is the ratio Q,,/0,. of the
heat consumed at 1,,, to the heat delivered ar 1,7 Give numerical values for
Toy = 600K; T, = 300K; Ty = 210K, (o) Draw an encrgy-entropy flow
dizgram for the combination heat engine-heat pump, similar 1o Figures 8.1,
8.2and 8.4, but involving no external work at all. only energy and entropy flows
at three temperatures,
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2. Absarption refrigerator. In absorption refrigerators the energy driving the
process is supplied not as work, but as hewt from a gas flume at a emperatuge
Tu, > 1,. Mobile home and cabin refrigerators may be of this type, with propane
fucl (a) Give an energy-entropy flow dingram similar to Figures 8.2 and 8.4 for
such a refrigerator, involving no work at ali, but with energy and entropy fows
at the three temperatures 1, > 7, > 7. {b] Calculate the ratio Q,/Q,,, for the

heatextraciedat v = ¢, where Oumistheheatinputat ¢ = 1,,. Assume reversible
operation. )

3. Photon Carnot engine. Consider a Carnot engine that uses as the working
substance a photon gas, (a) Given 1, and r; as well as ¥, and V,, determine
yand V. {b) What is the heat 0, taken up and the work done by the gas during
the first isothermal expansion? Are they equal to each other, as for the ideal gas?
{e) Do the two isentropic stages cancel each other, as lor the ideal gas? (d) Caley-
late the tatal work done by the gas during one cycle. Campare it with the heut
luken up at 7, and show that the energy conversion efficiency is the Carnot
efficiency.
4. Heat engine-—rvefrigerator cascade.
improved by lowering the temperature
" valuer,, below the environmental temper,
refrigerator consumes part of the work produced by the heat engine. Assume
that both the heat engine and the reflrigerator operate reversibly. Caleulate the
ratio of the net (available) work to the heat O, supplied to the heat engine at
lemperatare 1,. 15 it possible to obtain a higher net energy conversian efficiency

The efficiency of a heat engine is 1o be
ol its low-temperature reservoir to a
ature 7;, by means of a refrigerator. The

in this way?

3. Thermal pollution. A river with a water temperature T; == 20°C is to be
used as the low temperature reservoir of a large power plant, with a steam
temperature of T, = 500°C. if scological considerations Limit the amount of
heat that can b; dumped into the river to 1500 MW, what is the largest clectrical
output that the plant can deliver? If improvements in hot-steam technology

would permit raising T, by 100°C, what eficet would this have on the plant
capacity ? '

8. Room air conditioner. A room air conditioner operates as a Carnot cycle
refrigerator between an outside temperature T, and a room at a lower tempera-
ture T, The room gains keat from the outdoors at a rate A(T, - Ty}; this heat
is removed by the air conditioner. The power supplicd to the cooling unit is P.
(a) Show that the steady stale temperalure of the room is

Ty= (T, + PRA) = (T, + PRA? — T2,

{b} If the outdoors is at 37°C and the reom is maintained at 17°C by a cooling
power.of 2kW, find the heat loss coefficient A of the room in WK ™. A good

Problans

discussion of roam air conditioners is given by H. 8. Lell and W. D. Teeters,

Amer. J. Physics 46, 19 (1978). In a realistic unit the cooling coils may be at
252K and the cutdoor heat exchanger at 378 K.

7. Light bulb :'nareﬁ'igéraror. A T00WY light bulb is lelt burning inside a
Carnot refrigerator that draws 100 W. Can the refrigerator cool below room
temperature?

8. Grothermal energy. A very large mass M of porous hot rock is to be
utilized to gencrate electricity by injecting water and utilizing the resulting hot
steam 10 drive a turbine. As a result of heal extraction, the temperature of the
rock drops, according to 40, = —MCdT,, where € is the specific heat of the
rock, assumed to be lemperatuere independent. If the plant operates at the Carnot
limt, calculate the total amount W of electrical energy extractable from the
rock, if the temperature of the rock was initialty Ty = T, and if the plant is to
be shut down when the temperature has dropped to T, = T . Assume that the
lower reservoir lemperature T, stays coristant.

Atthecnd of the calculation, give a numericat value, in KWh, for A = 10 ke
fabout km?), C=1Jg ' K™, T;=60C, T,= 110 C, T, =20C
Watch the units and explain all steps! For comparison: The total electricity
produced in the world in 1976 was between 1 and 2 times 10 kWh.

9. Cooling of nonmetallic solid to T =0, We saw in Chaplerft that lhe:_heal
capacity of nonmetallic solids at sufficiently low temperatures is proportional

‘to T3, as € = aT>. Assume it were possible to cool a piece of such a solid to

T = 0 by means of a reversible refrigerator that uses the solid specimen as its
{varying!y low-temperature reservoir, and for which the high-temperature
reservoir has a fixed temperature T, equal o the initial temperature T; of the
solid. Find an expression for the electrical energy required.

10. hveversible expansion of a Fermi gas.  Consider 2 gas of M noninteracting,
spic 4 fermions of mass AZ, initially in a volume ¥ at temperature t; = 0. Letthe
gas eapand irreversibly into & vacuum, without doing work, to a ﬁa:lal volume
¥, What is the temperature of the gas after expansion if V; is sufficiently large
for the classical limit to apply? Fstimate the factor by which the gas shoulri_ be
expanded for its temperatuce to settle to a constant final value. Give numerical
vilues for the final temperature in kelvin for two cases: (a) a particie mass equal
to the clectron mass, and N/¥V = 10%2em ™3, as in metals; (b} a particle mass
cqual to a nucleon, and N/V = 10°C, as in white dwarf stars.
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GIBBS FREE ENERGY

The Helmholtz free energy £ introduced in Chapter 3 describes a systern at
constant volume and temperature. Bt many experiments, and in particular
muny chemical reactions, are performed at constunt pressure, often one atmo-
sphere, 1L ds welul 1o introduce another function to treat the equilibrivm

conliguration at constant pressure and temperature, As in Chaptler §, we
define the Gishs free energy G as

G=U-10 4+ pl £

Chemists often call this the free energy, and physicists ofien call it the
thermodynamic potential.

The most important property of the Gibbs free energy is that it is 2 minimum
for a system 3 in equilibrium at constant pressure when in thermal contact
with a reserveir B, The differential of G is

dG = dU ~ 1do — adt + pdV + Vidp.

Consider a system {Figure 9.1} in thermal contact with a heat reservoir @&,
at temperature 1 and in mechanical contact with a pressure reservoir 0, that
maintains the pressure p, but cannot exchange heat. Now dr = § and dp = 0,
so that the differential dG of the sysiem in the equilibrium configuration becomes

dG; = dUg — tdog + pdVs 2)
The thermodynamic identity (5.39} is
Id0'4=(IU5——;£dN3+p(W3, (3)

s0 that (2) becomes dG; = pdNy, But dN, = 0, whence

Gy =0, G

Gibbs Free Energy

Heat reservoir Heat reservoir

0y @,

\Plungcr o

equalize pressure

insulated.
Pressure seservoir
Gty

which is the condition for G Lo be an extremum with respect to system varnia-
tions at constant pressure, temperature, and particle number. These are, there-
fore, the natural variables for G(N,« .p).

That the extremum of G, must be a minimum, rather thag a maximum,
follows directly from the minus sign associated with the entropy in (1); Any

irreversible change taking place entirely within & will increase ¢ and thus
decrease G,

With (2),

dG = pdN — odr + Vdp. (3

The differential (5) may be written as

&G cG ¢G
we | -~} dp. 0
dG (&N), ,,dN + ( ar)hdr + (611)»;,: p {6)

Comparison of {5) and (6) gives the relations

(@GfaN),,

o (7

06/t = ~a; 8

263

Figure %1 A system in therma! equilibrium
with a heat reservoir and in mechanical
equilibrium with a barystat or pressure
rescrvoir which maintains a constant pressure
on the system. The barystat is thermally
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{eGlepyy, = V. 9

Three Maxwell relations ma
see Problem 1, '

In the Gibbs free energy & = U — 1g + p¥the variables tand pare intensive
quantities: they do not change value when two identical systems are put logether.
But U, o, V, and G are linear in the number of particles N': their value doubles
when {wo identical systems are put together, apart from interfice cflects. We
say that U, o, ¥, Nand G are extensive guantities. Assume that only ane particle
species is present. If G is directly proportional to N, we must be sble to write

¥ be obtained from these by cross--d-iITcrcmiation;

G = Neglpo, ' {10)

where @ is independent of N because it s
quantities pand . If two identical volumes of
ture, each wish {N molecuies

a function only of ihe intensive

gas atequal pressure and temipera-
» Are put together, the Gibhs free energy

G = {No(p) + INo(p1) = Nolp)
docs not change in the process. ft folfows from this argument that
(@G/oNY,. = o(p.). {1y
We saw in (7) that
(EG/ONY, . =, {12)
$0 that ¢ must be identical with 1, and {10) becomes

GIN.p1) = Nu(p,1). (13)

S S

Thus the chemical potentiai for a single-component system is equal to the
Gibbs free encrgy per particle, G/N. L'or G for ny ideal Bas, sce (21) below,

i more thun one chemical species is present, {13} is replaced by a sum over
all species:

G = ZNj;zj. (14)

J

Gibbs Free Energy

The thermodynamic ide_mity becomes
| e = dU + pdV — Zy,df;'j;- . {15)
and (5) becomes
dG = § wdN, - odv + Vip. {16}

We shali develop the theory of chemical equitibria by exploiting the property
that G = Y N, is a mivimum with respect to changes in the distribution of
reacting molecules at constant T, p- No new atoms come into the system in a

reaction; the atoms that are present redistribute themselves from one molecular
species to another molecular speeics.

T

a I . -t
e T Lt LI LT b

5 T o b o
[ SRR v i |- TN

Example: Conrpurivon of G with F, Lot us see what is different about the twa relutions

(EF/GN),‘V = u(N,1,V) (L7}
and

(CGIONY, , = p(t,p). (1%

We found in (6.18) that for ag ideal gas
#N VY = 1log(Ny/ Vag) , {19)
so that p(N,7,¥} is not independent of N and therefore we cannot write £ = Nuft,¥) as

the integral of {17).
That is, F is not directiy propartional to N if the systerm is kept at constant volume as the

number of particles is increased, Instead, from (6.24),
F(r,V,N} = Ni[log(N/ Wig) — 1] (20}
But the Gibbs free enerpy for the ideal gasis
GlepN) = F + p¥ = Nr[log(p/ruQ) ~ 1]+ Nt
Nrtloglp/ing) , (21)

i

by use of the ideal gas Jaw in the form N/V = pfr We ceadily identify ia (21) the chemical
Potential as

#rp) = ¢ log(p;’tna) . {22)

265
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by reference to the result G = Npdrp). We see that N appears unavoidably in s(e,V) in
{13}, but not in pu(z,p) in {223 The chemical potential is she Gibbs free energy per particic,
but il is not the Helmhohiz fres energy per particle. Of course, we are free to write poas eiiher
{19} or {22}, as is convenieat.

[ T T T e g . b i 3 g sy

T

EQUILIBRIUM IN REACTIONS
We may write the equation of 2 chemical reaction as
vA AL+ A =0, 23

or
Ty =0, @
i

where the A; denote the chemical species, and the v, are the coefficients of the

species in the reaction equation. Here v is the Greek letter nu. For the reaction
H; + (1, = 2HCl we have ’

Ay=H; Ay =Cly; Ay = HCL; vy =1; v,=1, vy=-2
{23)
The discussion of chemical equilibria is usually presented for reactions under

conditions of constant pressure and temperature. In equilibrium the Gibbs free

energy is a minimum with respect to changes in the proportions of the reactants.
The differential of G is

dG = 5 updN; — odv + Vip. (26}
i

Here ;18 the chemical potential of species j, as defined by p; = (6G/2N ), . At

constant pressure dp = Oand at constans temperature dr = 0; then (26) reduces
to

dG =¥ pdN,. 20
J .

The change in the Gibbs free energy in a reaction depends on the chemical

potentials of the reactants. Ln equilibrium G is an extremum and dG must be
IL10. .

Equilibrium for ldeal Gases

The _changc_: N in the number ol molecules of species f is proportional to the
coeflicient v; in the chemical equation Z"JAJ = 0. We may write dNin the form

dN; = v dd ’ (28)

where dN indicates how maay times the reaction (24) 1akes place, The change dG
in (27) becomes

dG = (2 vj-yf) 8. (29)
i

In equilibrium dG = 0, so that

{30)

This is the condition for equilibrivm in 2 transformation of matter at constant
pressure and femperature.® '

Equilibrium for Ideal Gases

We obtain a simple and useful form of the general equilibrium condition
Yvjuy = O when we assume that each of the constituents acts as an ideal gas.
We utilize (6.48) to write the chemical potential of species f as

#; = tflogn; — log e}, (31
where #; is the concentration of species j and
¢; = ng;Z {int), (32)

which depends on the temperature but not on the concentration. Here Z (int)
is the internal partition function, (6.44), Then (30) can be rearranged as

Ei:v, logm, = )J:vf loge , . (330}

" But the result is more general: once equilibrium is reached, the reaction does not proceed further,
and there is no further change in.the thormal averago valuss of the soneentrations, The velume at

£quilibrium will be known, a9 that the condition (30} applics 23 well when ¥ and 1 arc specifiod as
when p and t are specified. |
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OT as

i

3 togn = ¥ logey, (33b)
i : :
The left-hand side can be rewritten as

2 logn = log [ Tuy (33¢)

i f)

and the right-hand side can be expressed as
logife = log K(1). (33d)
i

Here Kz}, called 1he cquilibrium constant, is a function only of the tem peratugse,
With (32 we have

K1) = [Tig cxp{—-ijj{im),f’t] . {34)
i . . .

becavse the internal free energy is F(int) = —wr!og Z fint). From {33cd) and
(34) we have

N

[ = k0, 33)

i

known as the law of mass action. The resultsays that the indicated product of (he
concentrations of the reaciants is a function of the temperature alone. A change
in the concentration of any one reactant will foree a change in the equilibrium
concentration of one or more of the other reactants,

To ealeutate the equitibrium constant K{t}in (34), it is essential to choose in
a consistent way the zero of the internal energy of each reactant. We need
consistency here because the value of each partition function Zitint) depends
on our choice of the zero of the encrgy eigenstates, The different zeros for the
different reactants must be related 1o give properly the energy or free cnergy
difference in the redction. It is not difficult to arrange this, but 1t does not
happen without a conscious effort oncur part. For a dissociation reaction such
as M, = 2H, the simplest procedure is to choose the zero of the internal encryy
of each composite particle (here the H; melecule) to coincide with the encrgy
of the dissociated particles (here 2H) at resi, Accordingly, we place the energy
of the ground state of the composite particle al — £y, where £, is the energy

Equitibrium for ldegt Gases

required in the reaction to diss

ociate the composite patticle into its constituenzs
and is taken to be positive.

Example s Equilibrium of atomic and molecntar b ydrogen.
mass action for the reaction H; = 2 or H,
hydrogen into atomic hydrogen is

The statement of the law of
=~ 3H = 0 for the dissociation of molecular

[H.][H] "2 = ESQ = Kz} {36)

Hese [11,7 denotes the foncentration of motecular b

ydrogen, and [H] the concentraticn
el atomic hydragen. 1t follows that

] -~ 1 .
m = ﬁﬁz]uzxuz- 37

log K = togng(H,) ~ 2logng(H) - FH,)/, (38)

interms of the internal free energy of H,, per molecule, Spin factors are absorbed in FiH ).
Here the zero of energy is taken foran H atom at rest. The more tightly bound is H,, the

Is K, teading to a higher praportion of H, in the
mixture. The energy to dissociate Hy 15 4476 eV per molecule, at absolute zer

of molecular hydrogen iato atomic hydrogen is an
£ain in entrepy associated with the decomposition
ompensates Lhe loss in binding energy. [t is believed
actic space is present as H and not Hy,: The reaction
the low values of the toncentration of [,.

example of entropy dissociation: The
of H, into e independent particles ¢
that most of the hydrogen in intergal
equilibrium is thrown i the direction of H by
Hydrogen is very dilute in intergatactic space.

Example: pIf and the fonization of water,

In liquid water the lonization process

H,0~H* + OH- £39)

Proceeds 1o a shight extent. At room lemperature the reaction cquilibrivin is described
approximately by the concentration product

[H*)[OH"] = 10" " mel? 2, (0
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where the fanic concentrations are given in moles per liter, In purewates [H*] = [OH"] =
1677 mol1"*. An acid is said to act as a proton dunot, The concentration of H* ions is
increased by adding an acid to the water and the concentration of OH ™ jons will decrense
as required to maintain the product {H*J[OH "] constant. Simitasly, the concentration
‘of OH ™ ions can be increased by adding a base 1o the water, and the H ' concentration will
decrease accordingly. The physical state of water is mere complicated thaa the equation
of ihe ionization process suggests—the H* ions are not bare prolons, but are associated
with graups® of H,; O molecuies. This does not significantly affect the validity of the reaction
equation.

It is often convenient 1o express the acidity or alkalinity of 4 solution in tesms of the pil,
defined as

!
pH = ~log,o{H"]. | (41
. i

The pH of a solution is the negative of the legarithm base ten of the hydrogen ion concentra-
tion in moles per liter of solution. The pH of pure water is 7 because [H' ] = 107 "mol 174
The strongest acidic solutions have pH near 0 or even negative; an apple may have pH ~ 3.
Human blood plasma has a pH of 7.3 10 1.5 it is slightly basie,

Example: Kinetic model of mass ection.  Suppose that atoms A and B combine to form a
molecuie AB. We suppose ihat AB is formed in 2 biatomic collision of A and B. Lat 5,
ny, n,p denote the concentrations of A, B, and AB respectively. The rate of change of n, 5 is

dnpfde = Chyng — Digg (42)

where the rate constant € deseribes the formation of AB in a collision of A with B, and the
rate constant [ describes the reverse process, the thermal decay of AB into its component

aloms A and B. In theomal equitibrium the concentrations ol all constitutents are constant,
so that dny'dt = G and

Crpnyg = Dingg;  menpfiag = DIC, {43)
a function of tempetature only, This result is consistent with the law of mass action that we

derived earlier by standard thermodynamics.

Suppose AB is not formed principally by the bimolecular collision of A and B, but is
formed by some catalytic process such as

A+ E«—AE; AE+B«AB+E. {44

* The dominant species present is most Likely HL™* 4140, a compler of 4 water molecules surround-

ing one proton. A teview is given by M. Eigea and L. e Macyer, Proc. Roy. Soe (London) AT,
- 505(1958). . : : ) . - -

Equilibsiuns for fdval Gases

Here E is the catalyst which is returned 1o its original state at the end of the sccond step.
S0 tong as the intermediate product AE is so short lived thal no significant quantity of A
is tied up as AE, the ratio s g fa . in cquilibrivm must be the same as i AB were formed in
the direct process A + B+ AB treated above. No matier by what route the reaction
actually proceeds, the equilibrium must be the same. The rates, however, may differ.

The equality in equilibrivm of the direct and inverse reaction raies is called the priaciple
of detailed balance.

LTI

Comment: Reaction rates.  The law of mass action expresses the condition satisfied by the
concentrations ence a reaclion has gone 1o equilibrium. 1 tells us nothing about how fast
live reaction proceeds. A reaction A + B = C may evolve energy AJf as it proceeds, but
before the reaction can occur A snd B may have to negoliate s potential barrier, as in
Figure 9.2. The barrier height is calied the uctivation energy. Only molecules on the high
energy end of their energy disteibution will be able 1o react; others wilf net be able to get
over the potential hitl. A catalyst speeds up a reaction by offering aa allernale reuction path
with a lower energy of activation, but it does nol change the equilibsium concentrations.

T T, e T I T S TR I NI SEIODTD T
A-8
A+ B—~C
Eﬁ Activaiion
g energy
[
H
=
pot
& A+B
C

Schematic coordinale

Fipare 9.2 The quamtity AH measures the encrgy evolved in the reaction
and determines (he equifibrium concentration ratio [AJ{B}/[C]. The
activation encrgy is the height of the potential basrier to be negotiated

before the reaction can proceed, and it determines the rate at which the
reaction takes place.
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SUMMARY 2. Thermal foni-ation of kydrogen. Consider the! formation of atomic hy-
drogen in the reaction e + H ¢ = H, where e is ad electron, as the

of an electron on 3 proten H™, (4} Show that the
of the reactanis satisfy the relation

i adsorpti
1. The Gibbs free energy adsorplion

equilibrium concentrations
C=U—175 + 14

e —_ [e)(H* VM) = nyexp(—1fr) , 47
1S a munimum in thermal cquilibrium at constant temperature and pressure,

L ACG/o)y, = ~q; (€G/eply, = V; (€G/eNy, , = p.
3. G{T,p,N) = N}J(T,P)

where 1is the energy required 1o jonize stomic hydrogen, and Hy = (mf2eh?)3
refers to the electron. Negleet the spins of the particies; this assutmption does
not affect the final result. The resul is known as the Saha cquation. IT all the

4. The faw of mass action for a chemical reaction is that

Hn;"’ = K{1),

a function of the temperature alone.

PROBLEMS

L. Thermal expansion #ear absolute zero.  (3) Prove the three Maxwell rela-
lions

(EV/{}T)p &= —*(50’/@?), + (456}
(@VION), = +(dufap)y | {45b)
/30y = —(3oaN), (459)

Stricily speaking, {45a) should be written
{EV/{?I);’,H = _{ea/ap)z,h’ +

and. iwo subscripts should appear similarly in (45b) and (45¢). Tt is common to
omit those subscripts thay occur on both sides of these equalities. {b) Show with
the help of (45a) and the third luw of thermodynamics that the volume cocfi-

cent of thermal expansion
I fcv
“:?(EJ (46)
F4

approaches vero as 1 - (.

electrons and protons arise from the ionization of hydrogen atoms, then the
concentration of protons is equal 10 that of the ¢lectrons, and (he ¢lectron

concentration is given by

fe] = {H]' 20,172 exp(— 12

1. {48)

A similar problem arises in semiconducter physics in connection with the

thermal jonization of impurity atoms that are dono
Notice that:

{1} The exponent involves i and not 7, which sha

s of electrons,

ws that this is not a simple

“Boltzmann factor” problem. Here | is the jonization energy,
(2) The eleciron concentration is proportional 1o the square root of the

hydrogen atom concentration,

{3) Hwe add excess electrons 10 the system, then th
will decrease.

cconcentration of protons

(b) Let [Hiex)] denote the equilibrium concenération of H atoms in the
first excited electronie state, which is 3/ abave the ground state. Compare
(H{exe)] with{e] for conditions at the sus face of the Sun, with[H] = 10?3

and T = 3000K.

3. Ionization of donor impurities in semiconductors.
{called a donor) intraduced in place of a tetravalent

A pentavalent impurity
silicon atom in erystailing

silicon acts like a hydrogen atom in free space, but with e?/e playing the rale of
e’ and an effective mass m* playing the rofe of the electron mass m in the
description of the ionization encrgy and radius of the ground state of the
impurily atom, and also for the free electron. For silicon the diclectric constant

€ = 117 and, approximately, m* = 0.3 m. If there
estimate the concentration of conduction electrons

ire 1017 donors per em?,
at 100 K.

4. Biapolymer groseh, Censider the chemieal equitibrium of a solution

of lincar polymers made up of identical units, T

he basic reaction step is

monomer + Nmer == (N + 1)mer. Let Ky denote the equitibrium constant for
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this reaction. (a) Show from the law of mass action that the concentrations [ J

salisfy
N ] = ()UK KK - Ky _ {49)
{b) Show from the theory of reactions that for ideal gas conditions (an ideal
solution):
Ky = :%f(% expl(Fysr ~ Fy - Fy)ic) (50)
Here
ny(NY = (nh?M 1) 3% | 54

where My, is the mass of the Nmer moiecule, and Fy is the free energy of one
Nmer molecule. (¢) Assume N » 1, so that np{N}y = ny{N + 1). Find the
concentration ratio [N + UY[N] at room temperature if there is zero free
encrgy change in the basic reaction step: that is, if AF = Freg = Fy— F, =4,
Assume [1] = 10*® ™3, as for amino acid molecules in a bacterial cell. The
molecular weight of the monomer is 200. {d) Show that for the reaction to go in
the direction of long moleovles we need AF < —04 eV, approximately, This
condition is not satistied in Nature, but an ingenious pathway is followed that

simulates the condition. An elementary discussion is given by C. Kittel, Am. J.
Phys. 40, 60 {1972},

3. Particle-antiparticle equifibrium. (a) Find a quantitative expression for the

thermal equilibrium concentration n = n* = »~ in the particle-antiparticle
reaction A* 4+ A~

= 0. The reactants may be electrons and positrons; protons
and antiprotons; or electrons and holes in a semiconductor. Let the mass of
either particle be Af; neglect the spins of the particles. The minimum energy
release when A combines with A is A. Take the zero of the energy scale as the
energy with no particles present. (b} Estimate n in cm ™ for an electron {ora
hole} in a semiconductor T = 300K with a A such that Aft = 20. The hole is
viewed as the antiparticle to the electron. Assume that the electron concentration
is equal to the hole concentration; assume zlso that the particles are in the
classical regime. (¢) Correct the result of {a) to iet each particle have a spin of §.
Particles that have antiparticles are usvally fermions with spins of §.
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VAPOR PRESSURE EQUATION -

The curve of pressure versus volume for a quantity of matter at constant
temperature is determined by the free energy of the substance. The curve is
cafled an isotherm. We consider the jsotherms of a real gas in which the atoms
or melecules interact with one another and under appropriate conditions can
associate together in a liquid or solid phasc. A phase is a portion of a system
that is uniform in composition.

Two phases may coexist, with a definite boundary between them. An isotherm
ofa real gas may showa regionin the p— ¥ pi

ane in which liquid and gas cocxist
in equilibrium with each ot}

1er. As in Figure 10.1, part of the volume contains
atoms in the gas phase. There are isotherms at low temperatures for which
solid and liquid coexist and isotherms for which solid and gas cocxist, Ever
we say for the lguid-gas eguilibri
and the solid-liquid equilibrium. :

Liquid and vapor® may coexist on 2 section of an isotherm only if the
temperature of the isotherm lies below a eritical temperature t.. Above the
critical temperature only a single phase—the Auid phase—exists, no matter
how great the pressure. There is no more reason to call this phase a gas than
aliquid, so we avoid the issue and call it a fuid, Vatues of the critical temperature
for several gases are given in Table 10,4

Liquid and gas wil never coexist along the entire extent of an isotherm
from zero pressure to infinjie pressure; they coexist at most only along a
section of the isotherm. For a fixed temperature and fixed number of atoms,
there will be a volume above which all atoms presert are in the pas phase.
A small drop of water placed in an evacuated sealed bell jar at room temperature
will evaporate entirely, feaving the belt jar filed with H,0 gas at some pressure.
A drop of water exposed to air not already saturated with molsture may
evaporate entirely. There is a concentration of water, however, above which
the atoms from the vapor will bind themselves into a liquid drop. The volume
relations are suggested by Figure 10.1.

The thermodynamic conditions for the coexistence of two phases are the
conditions for the equilibrium of two systems that are in thermal, diffusive,

ything
um holds also for the solid-gas equilibrium

* Vaporis 4 1erm used for s gas when the gas i in equilibrium with its liguid or sotid form.

Curve wken a
constingt lempernture

by
p\’(\ i
—

Vapor Pressure Equation

I-—--Liquid + gas-e—u]

Liquid -+ Liguid + gas

Figure 10.1

Gas

Pressure-volume isotherm of a real gasat a

temperature such that liquid and gas phases may coexist, that
is,r < r.Inthe lwo-phase region of liquid + gas the pressure

is constant, bul the volume may change. Atag

iven temperature

thete s only a single vatue of the pressure for which a liquid

and its vapor are in equilibrium, If at this press
piston down, somne of the gas is condensed 1o 1
pressure remains unchanged as long as any gas

ure we move the
quid, but the
renlding,

Table 1.1 Critical temperatures of gases

T.inK T.inK
He 52 H, 332
Ne 444 N, 1260
Ar 151 0, 1543
Kr 210 H,0 647.1
Xe 2897 co, 304.2
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and mechanical contact. These conditions are that = Ty

= H2i Pr=pe
or, for liquid and gas,

LSt =g p=p,, (1)
where the subscripts [ and g denote the liquid and gas phases. Note that the
chemical potentials of the same chemical species in the two phases must be
equal ilthe phases coexist, The chemical potentials are evaluated at the common
pressure and common temperature of the liquid and-gas, so that

2dp T = g {p). ' 2)

At a general point in the p-t plane the two phases do nol coexist: If y, < Hy
the liquid phase alone is stable, and if H, <y the gas phase alone is stable.
Metastable phases may occur, by supercoaling or superheating. A metastable
phase may have a transient existence, sometimes brief, sometimes long, at a

temperature for which another and more stable phase of the same substance
has a fower chemical potential. '

Derivation of the Coexistence Curve, p Versus t

Let py be the pressure _for'which two phases, liquid and gas, coexist at the
iemperature zo. Suppose that the two phases also coexist at the nearby point
Po -+ dp;ty + di.The curveinthep, plane along which the two phases coexist

divides the p, 7 planc into a phase diagram, as given in Figure 102 for H,0.
it is a condition of coexistence that

HfPoute) = plporo) | 3)
and alsa that

kdpo + dpto + d3} = plpe + dp, 10 + d). 4}

Equations (3) and {4) give a relationship between dp and dr.
We make a series expansion of each side of (4) to obtain

a“? a#ﬂ
ByPotg) + (g)‘dp + ( > yth +

By, Jp
= = = el S
= atewd ¢ (F)ao v (P v 0

278

250 I T T
P('
200 - -
/’il = FI
BT e Figure 10.2  Phase diagram of H,O. The

150+ - refationships of the chemical potentials g, 51,

. and g in the sofid, liquid, and gas phases are

Solid Liquid

] g < gy

Pressure, in atm

U - International Critica! Tobles, Vol. 3, and P. W.
Bridgman, Proc. Am. Acad. Sci.47, 44t {1942},
‘ N for the several forms of ice, see Zemansky,
Gas
p. 375.
-uq < ]
50+ -
7 0 i 1
— 100 G 1 200 300 400

Temperature, in °C

In the limit as dp and dt approach zero,

= . &t
2, AV .i&), " (i_') e, (6)
(Ep):dp * (57 )P ! (6P :p ct I-'(

by {3} and (5). This result may be rearranged to give

).-(3

dp (E; ’ 1 /p

de ity - Tiﬂ{ '
("3}5"): (ap):

which is the differential equation of the coexistence curve or vapor pressure
Curve, )

The derivatives of the chemical potential which oceur in (7) may be expre§sed
in terms of quantities 'accessibie to measurement, In the treatment of the Gibbs

Y]

shown. The phase boundary here between ice
and wister is aot exactly verticad; the sfope is
attuaily negative, although very burge. After
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frec energy in Chapter 9 we found the refations

oo (8 (Do
N v/ N.p

With the definitions
v= VN, s=o/N 9

for the volume and £airopy per molecule in each phase, we have

o R N R S W
N\épJu. N~ "TAE) N\d)y,” TNT 5= i), )

Then (7} for dp/ds becomes

(11)

" Here 5, — 5, is the increase of entropy of the system when we transfer one

molecule fram the liguid 10 the gas, und v, — 1y s the increase of volume
of the systemn when we transfer one molecule from the liguid 1o the gas.

It is essential to undersiand that the derivative dp/dr in (11) is not simply
taken from the cquation of state of (he gas. The derivative refers to the very
special interdependent change of p and t in which the gas #nd Hquid continue
to coexist. The number of molecules in each phase will vary as the volume is
varied, subject only 1o Ny + N, = N, a constant. Here Ny and N, are the
nurabers of molecules in the liquid and gas phases, respectively,

The quantity s, ~ 5 is related directly 1o the quantity of heat that must
be added to the system to transfer onc molecule reversibly from the liquid
to the gas, while keeping the temperature of the system constant. (If heat is
not added 1o the system from outside in the process, the temperature will

decrease when the molecule is lranslerred to the gas) The quantity of heat
added in the transfer is

dQ = 1(s, — 5, (12)

by virtue of the connection between heat and (he change of entropy in a
reversible process. The quantity

L=xfs, ~s) ' _ . : {13}

Derivation of the Coexistence Curve, p Versns ¢

defines the Iatent heat of va
calorimetry.

We let

parization, and is easily measured by elementary

Av =y, — 1, (4

denote the change of volume when one molecule is translerred from the liquid
to the gas. We combine {12}, {33}, and {14} ta obtain

(153

This is known as the Clausius-Clapeyron equationor the vapor pressure cquatinn
The derivation of this cquation was a remarkable early accomplishment of

thermodynamies. Both sides of {15} are eusily determined cxperimentally, nud
the equation has been verified 1o high precision.

We abtaia a particularly useful form ol {13} if we make two approximations:
{#) We assume that 2y v;: the volume oecupied by an atom in the gas

phase is very much larger than in the liguid {or solid) phase, so that we may
replace Ap by v,

Av = Uﬂ = ¥V IN . (‘ﬁ}

i

At atmospheric pressure vy/2 = 10%, and the approximation is very good.
{b} We assume that the ideal gas law pl} = Nt applies to the gas phase,
so that (16) may be wrilten ag

Av x 1/p. {n

With these approximations the vapor pressure equation becomes

) {18)

where L is the latent heat per molecule. Given L as a function of temperuture,
this equation may be integrated to find the coexistence curve,

i, in addition, the latent heat L is independent of temperature over the
femperature range of interest, we may take L = Lg outside the integral. Thos
when we integrate (18) we obtain

7
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whence 2000
. 1200 3 — r‘é
logp = ~ Lo/t + constant;  p(v) = poexp(--Lo/ty , (20) )7(
. 500 <
where p, is a constant. We defined Lg as the latent heat of vaporization of L s pressure
one molecule. If L, refers insiead to one mole, then 2001 / (boiling point)
. 4
T) = poexp(~Lo/RT) , @1 100 /
Ligquid //
where R is the gas constant, R &= Ngky, where Ny is the Avogadro constant. For =5
walter the latent heat at the liquid-gas transition is 2485 7 27! at 0°C and 2260 E /
J g7 at 100°C, a substantial variation with tcmpcralur.c. - = o5
The vapor pressure of water and of ice is plotted in Fsgurf: 10.3 gs jogp g / . Vuapor
versus 1/T. The curve is Hnear over substantial regions, consistent with the 2 19 / .
L1
108 ] T T 2 /
\«Cnncal point : ' : - ) /-—-Alang this curve the liquid and vapor
: : ) R N e in equilibrium and coexist. Any- 7]
g / where olf the curve the system is all
\ 0.5 liguid or all vapor. At much higher
\ : / pressures a solid phase occurs.
104
\, Liquid water . 0.2 —
. 0.}
T 10° | atm A : 0 ] 2 3 4 5 6
—1 2 .
E Temperature, in K
. g o .
Figure 103 Vapor pressure of water and of ice :’. H? g Figure 104 Vapor pressure versus temperature for *He. After H. van Dijk
plotied versus 1/T. The vertical scaleis 5 i et al, Journat of Research of the National Busean of Standards 634,12
logarithmic. The dashed Jine is a straight fine, 2 {1959).
|- .
& N 0°C :
\ ' approximate result (20). The vapor pressute of *He, plotted in Figure 104,
{ S P b
. \ is widely used in the measurement of temperatures between 1 and S K.
\/1_C€ ) The phase diagram of *He at low temperatures was shown in Figure 7.14,
1o~ e Notice that (he liguid-solid cocxistence curve is closely horizontal below 14K,
\ : We infer from this and (11) that the entropy of the liquid is very nearly equal
\ - to the entropy of the solid in this region. It is remarkable that the entropies
2 o s .
10 LS 20 23 30 35 40 45 S50 should be so simifar, because a normal fiquid is much more disordered than 3
10%/T, in K™ solid, so that the entropy of a normal liquid is considerably higher than that
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© (Figure 7.15), and in this
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of a normal solid. But *He |

$ & quantum liquid. For another quantum liquid,
*He, the slope of the

liquid-solid curve is negative at low temperatures

region the entropy of the liquid is less 1han the eniropy
of the solid. The solid has more accessible states than the liquig! Liquid *He

has a relatively low eatropy for a liguid because jt approximates a Fermj gas,
which generally has a low eatropy when 1 «

T because a large proportion
of the atoms have their momenta ordered into

the Fermi sphere of Chapter 7.
Triple point.  The triple point ¢ of 2 substance is that point Pe T, in the p-t
plasie at which all three phases, vapor, liquid, and solid, are in equilibrium,
Here i, = 1y = p_ Consider an equilibrium mixture of liquid and solid phases
enclosed in a volume somewhat farger than that occupied by the mixture
alone. The remaining volume will contain only the vapor, in equilibrium with
both condensed phases, and at a pressure equal to the common equilibrium
vapor pressure of both phases. This pressure is the triple point pre

The triple point temperature is not identical with the melting
of the substance at atmospheric pressure. Meiting temperat
somewhat on pressure; the triple poiat temperature is the meltin
under the commeon equilibrium vapor pressure of the two condensed phases,

For water the triple point temperature is 0.01 K above the atmospheric
pressure melting temperature: T, = 0.01°C = 273.16 K. The Kelvin scale is
defined such that the {riple point.of water is exactly 27316 K ; see Appendix B.

S5ure.

lemperature
ares depend
g lemperature

Latent heat and enthalpy. The latent heat of a phase transformation, as from
the tiquid phase to the 8as phase, is equal to t times the entropy difference
of the two phases at constant pressure. The latent heat is also equal to the
difference of H = ¢/ + pV between the two phases, where M is called the
enthalpy. The differential is Jif = dU + pdV + Vdp. When we cross the
coexislence curve, the thermodynamic identity applies:

tdo = dU .} pdV - {0, — p)dN | (22
On the coexistence curve Hy = . Thus &t constant pressure

L=tAc =AU+ pAV = AH = 11, - p, (23

Values of I are tabulated; they are found by integration of the heat capacity
4l constant Prossure:

o\ 5 v Al
T/, ot J, fizy » T J,

Derivation of the Coexistence € urve, p Versas ¢

or

H= {C,dr. ' (25)

T T s ey s 3

el S etar,

Example: Uodefsysrrmfargas«wﬁc!equiﬁbn’unr. We construet a simple model to de-
seribe a solid in equilibrium with 3 g4as, as in Figure 10.5. We can easily derive the vapor
pressure curve for his model. Roughly the szme model would apply 1o a tiquid,

Imagine the solid to consist of N atoms, cach bound as a harmonic oscillator of fre-
quency o to a fixed center of force, The binding eaergy of each atom in the ground state is
£q; that is, the energy of an atom in it ground state is — g, referred to 2 free atom af rest,
The energy states of a single oscittator are nhe — g where 1 is a positive integer or zero
(Figuzre 10.8). For the sake of simplicity we suppose that cach atom can osciflate only ino..e
dimension. The result for oscillators in three dimensions js el as a problem.

The pariition funciion of & single osciliator in the solid is

Z =Y exp[ —(nheg ~ E0)/T] = expley/t) Y exp{—nhew/t) = I"_i:;?;ff;ium

(26)
The free energy F, is
Fo=U, — 10, = ~1logZ,. (27)

The Gibbs free encrgy in the solid is, per atom,

G,ﬁ(j,—TG',*'-pU,:F,“i*pU,:}l,. (28}

may be in the gas,

235

Figure 0.5 Atoms in a solid in equiltbrium
with atoms in she gas phase. The cquilibrium
pressure is a function of temperature, The
encrgy of the atoms in the solid phase is lower
than in the gas phase, but the entropy of the
atoms tends 1o be higher in the gas phase. The
cquibibrium configuration is determined by the
counterplay of the two effects. A low
temperature most of the atoms sre in the solid;
at high temperature all or most of the atoms
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Figure 10.6  Siates of an atom bound as a
harmenic oscillator of frequency w. The ‘o e — g
ground state is assumed 16 be g, below that of a
frec atom at rest in the gas phase.

i — gy
2w - g
fw — £y

—_— —

Ground state OfF
bound atom

The pressure in the solid is equal to that of the gas with which it is in contact, but the
volume v, per atom in the solid phase is much smaller than the volume ¢, per atom in the
gas phasel v, <« v, )

Il we neglect the term pu, we have for the chemical potential of the solid p, = F,, whence
the absolute activity is :

Ay = exp(p,f1) = exp(F /1) = expl~logZ)}

i

-é— = exp(—egofti{1 —~ exp(—hwf}]. {29)

We make the ideal gas approximation 1o describe the gas phase, and we take the spin of
the atom to be zero. Then, from Chapter 6,

i. __?_’i_ _ _E_ _ g znhl‘ 3f2 (30)
*’_nQ_met Mz ’

The gas Is in equilibrium with the solid when 1, = 4, or

p = wngexp(—go/t)1 ~ exp(~hawfr)] a1
If we insert ny from (3.63):
(M2 si2
p= (5;,;5) 2 exp(~eo/t){1 -~ exp(~ha/t}]. (32)
e e £ e e T e A R R S Eet |

Van Der Waals Equation of Stare

VAN DER WAALS EQUATION OF STATE

Thessimplest model of 2 liquid-gas phase transition is that of van der Waals, who
modified the ideal gas equation p¥ == Nt to take into account approximately
the interactions between stoms or molecules. By the argument that we give
below, he was led to a modified equation of state of the form

(p + Na/VI(V = Nb) = Nt , (33)

known as the van der Waals equation of state. This is written for N atoms in
volume V. The a, b are interaction constants to be defined; the constant @ is
a measure of the long range attractive part of the interaction between two
molecules, and the constant b is a measure of their short range repulsion
(Figure 10.7). We shall derive (33} with the help of the general relation p =
~{@F/8V), 5. We shall then teeat the thermodynamic propertics of the model
in order to exhibit the liguid-gas transition.
For an ideal gas we have, [rom (6.24),

Flideal gas) = — Ntfloglng/n) + L] {34)

The hard core repulsion at short distances can be treated approximately as
if the gas had available not the volume ¥, bat the free volume ¥ — Nb, when
b is the volume per molecule, We therefore replace the concentration n = NjV
in (34) by N/{V — Nb). Thus, instead of (34}, we have

F = —Nt{loglng(V — NB)/N] + 1} {35)

To this we now add a correction {or the intermolecular attractive forces.

\\-/ has a hard, impenetrable core.
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s Figure 10.7 The inleraction energy between
ES two molecnies consists of a short range

u repulsion plus a long range attraction. The
_'_‘: short range repulsion can be described

= \ - approximately by saying that each molecule
&

&
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Mean Field Method

There exists a simple approximate method, called the mean field methad, for
taking inte account the effect of weak long range interactions among the
particles of a system. The most widely known applications of the method are to
gases and to ferromagnets, et i{r) denote the potential energy of interaction
of two atoms separated by a distence r. When the concentration of atoms in

the gas is n, the average value of the total interaction of all other atoms on
theatomatr = G ig

J;Idlfcp(r)n = [T v o) = ~2na, (36)

where —2a denoles the value of the inte

useful convention., We exclude the hard
volume of integration. In w

gral §d¥ o(r). The factor of twa is a
core sphere of volume b from 1he
siting {36) we assume that the concentration n is

Critical Points for the van der Waals Gas

R

f=
&

o 7
X

(L a—

)2

=0
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Figure 10.8  Directions of inlermolecuiar
forces that act on molecules near the boundary
of a volume ¥. The vap der Waals argument
Suggesis that these forces contribute an internal
pressire N¥as V2 which is to be added to the
external pressuce p, so that p 4+ NVt should
be used as the pressure in the gas biw,

constant throughout the volume accessible to the molecules of the gas. That is, O e

we use the mean valve of n. Thig assumption is the essence of the mean field ) o

approximation. By assuming uniform concentration we ignore the increase e . : Figure 109 The cantainet of volume ¥ has N
of concentration in regions of strong attractive potential energy. In madern b € mofecules, each of volume b, The volume nol
language we say that the mean field method neglects correlations between

interacting molecules,

From (36) it follaws that the interactions change the energy and the free
energy of a gas of N molecules in volume ¥ by

AF = AU = —42Nna) = - N2a/v. 37

The factor  is common to self-energy problems: it arranges that an interaction
“bond” between two molecyles is counted only once in the total energy. The
exact number of bonds is {N(N — 1), which we approximate as N2

We add (37) 1o (35) to abiain the van der Waals approximation for the
Helmholtz free encrpy of 4 gas;

or

the van der Waals equation of state. The terms in g and b

occupied by molecules is ¥ — b, Entuition
suggests that this free volume should be wsed in
the gas faw in place of the container volume V.

{40)

‘ are interpreted in
FvdW) = — weflog[ngV - NBYNY + 1) — N, {38) Figures 10.8 and 109,
The pressure is Critieal Poiats for the van der Waals Gas
We define the quantities
Nt Nig
= —fCFfGV) g = —— LT 39
R (9)

P = af21b; V, = 3NB; T, = 8as21b.

(41)
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1.5

1.0

pip.
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00_5 1.0 1.5 2.0

Yive—

Figure 10.10  The van der Waals equation of state near
the critical temperature. Courtesy of R, Cahn.

In terms of these quantitics the van der Waals equation becomes

L 3 MY N B )
pe VIV AV 3] 3z,
This equation is plotted in Figure 10.10 for several temperatures near the

temperature 1. The equation may be written in terms of the dimensionless
variables

p=pne VP=wyv; t=17, (43

as

v o3 n_ s &3 #4)
O

This result is known as the law of corresponding states. In terms of p, V, &,
. a1l gases look alike—if they obey the van der Vi{aals‘equatlon, Values gf a

Gikbs Free Encrgy of the van der Waals Gas

and b are wsually obtained by fitting to the observed 7. and 7. States of two
substances at the same B, V, % are called corresponding states of the substances.,
Real gases do not obey the equation io high accuracy,

At on¢ point, the critical point, the curve of p versus ¥ at constant 7 has a
horizontal point of inflection. Here the local maximum and minimum of the

p-V curve coincide, and there is no separation between the vapor and liguid
phases. At a horizontal point of inflection

e 2z
(E!;) ~ 0, (9_‘5) 0. 45)
ev/, C\aF,

These conditions are satisfied by (@} ifp=1;P = 1:7=1 Wecall . ¥

o
and 1, the critical pressure, critical volume, and critical lemperature, respectively.
Above 1, no phase separation exists.

Gibhs Free Energy of the van der Waals Gas

The Gibbs frec enérgy of the van der Waals gas exhibits the characteristics of
the fiquid-gas phase transition at constant pressure. With G = F + pV, we
have from (38) and {39) the result

Ntv 2N%a

G(t,V.N) = Vo T v Nz{log[ny(V — NDYN] + 1), {16)

This equation gives G as a function of V, 1. N; the natural variables for G are
o1, No Unfortunately we cannot conveniently put G into an analytic form as a
function of pressure instead of volume, We want G{r,p,N)} because we can then
obtaia ufz,p) as G{z,p, NN by {9.13). Tt is ¢ that determines the phase coexistence
refation ¢y = g1, The results of numerical catculations of G versus p are plotted
in Figure 10.11 for temperatures below and at the critical temperature, At any
temperature the lowest branch represents the stable phase; the other branches
Tepresent unstable phases. The pressure at which the branches cross determines
the transition between gas and tiquid; this pressure is called the equilibrium
vapor pressure. Results for G versus 7 are plotted in Figuce 10,12,

Figure 10.13 shows, on a p-V diagram, the region ¥V < V¥, in which only the
liquid phase exists and the region ¥ > ¥, in which only the gas phase exists.
The phases coexist between ¥, and ¥5. The value of ¥, or ¥; is determined by
the condition that #dn.p) = p(r,p) along the horizontal line belween V; ang

~ ¥,. This will occur if the shaded area below the line is equal to the shaded area

e
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' T = 0.95
Liguid
—0.44 .
G/N‘rl. // :
Gas IL./Vapcr pressure

—0.48 !

A !

i

0.7 0.8 Gs
P"Pc.—.-
{a)
—-0.3
T=1 Afd/
I
G/ / - Criticat point
—{0.4
Gas
-—{.5
0.8 0.9 1.0 E1 1.2
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(k)

Figure 10.11 (a) Gibbs free energy versus pressure for van
der Waals equation of state: v = 5.95t,. Courtesy of R. Cahn,

(b) Gibbs frec energy versus pressure for van der Waals equation of
statel T = g,

above the line. To see this, consider

dG = —adt + Vdp + pdN.

{47

We have dG = Vdp at constant 1 and constant total number of particles. The

difference of G between V, and V, is

Gy— G = [vip,

(48)

SR

—~2.436
7 =095
ﬂQb = |
—2.440 \
Unstiabie
G/Nr, - \
~2.444 \
Gas
—2.443 1 1 !
0.984 0.986 0.988 0.9%0
7L
{a)

Figure 10.12a  Gibbs free energy versus temperature for van der Waals equation
of state at p = 095 p_. Courtesy of A. Manolie.

~2.30
5= 10
w figh = 1
m 240 \\
G/Nz, -2.50 \\
\Gas
—2.60
0.90 0.95 1.00 1.05 1.10
7’71,
(b}

Figure 10.12b  Gibbs free energy versus temperature for vaq der Waals cquation
of state at the critical pressure p,. :

any
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T = constant

L Liquid

Cocxistence line

o e e
o TP ——

~
g

Figure 10.13  Isotherm of van der Waals gasata
temperature below the critiead temperature. For volumes
less than ¥, only the fiquid phase cxists; for vofumes
above ¥; oaly the gas phase exists. Belween ¥, :md. ¥z
the system in stable cquilibeium lics along the coexistence
line and is an inhomogencous mixture of twa phases. The
liquid and gas phases coexist, The proportion of the )
liquid and gas phases muist be such that Ehc sum of their
volumes equals the volumie V that is available,

but the integral is just Lh.c sum of the shaded areas, one negative and one positive.
When the magnitudes of the areas are equal, G lz.p) = Glv,p) and p(r,p) =

p{z.p) along the horizontal coexistence line drawn in the hgure. In equilibrium
We require g, = .

Nucleation. Let Ap = #, — i, be the chemical poi_ent.iai. difference _betv%rce]rz
the vapor surrounding a small liquid droplet and the liquid in bulk (an mﬁm;e ¥
targe drop). i Ap is positive, the bulk liquid wilt have a lower free energy t 1;.11;
the gas and thus the liquid will be more stable than the ga.s.‘Howev;:r, rt ¢
sutface free energy of a liquid drop is positive and tends to increase nc:j [rlcc
energy of the liguid. At small drop radii the surface can be dommanz. anG‘bl;S
drop can be unstable with respect to the gas. \‘\_ie calculate the ?hange m! i >
free energy when a drop of radius R forms. If n, is the concentration of molecu

in the liquid,

AG = G, ~ G, = ~(4z/3)R%n, dp + 4zR%y (49)

Ferromagnetism

or

larger R the drop will tend to

Brow spontancously because tha, too, will lower
the free energy.

The free oenergy barricr {Figure 10.14) that must be ov
factuation ia order for an
{51} in (45):

creome by a thermat
ucleus to grow beyond R, is found by substitation of

(AG), = (6a/3)[y*fm A, : {52)

If we assume that the va

par behaves like an jdeal £a5, we can use Chapter 5
1o express Ap as

Ap = tloglp/p.,) .

where pis the Vapor pressure in the gas phase and Peg the cquilibrivm vapor

pressure of the bulk liguid (R — o) We use y = 72ergem=2 1o estimate R,
for water at 300K and P=1llp, tobet X 10~ %¢m,

Ferromagnetism

A ferromagnet has a spontaneous magnetic moment, which means a magnetjc
moment even in zero applied magnetic feld. We develop the mean field apprexi-
mation to the temperature dependence of the magnetization, defined as the
magnetic moment per vnit volume, The centratassumption is that each magnetic
atomy experiences an effective field Bg proportional to the mignetization;

By = iAf, (53)

where /s a constang, We take the external applied field as zera,

295



296

Chapter 10: Phese Transformativns
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Figure 10.14  Excess free energy of drop relative to gas, as
function of drop radius R, both in reduced units. The gas is
supersaturated because the fiquid has the lower fres energy for
this curve as drawn, but the surface encrgy of smatl drops creates
an energy barrier that inhibits the growsh of nuclei of the liquid

phase. Thermal fluctuations eventually may carry nuclei over the
bacrier, ’

. B . . ol
Consider a system with a concentration n of magnetic atoms, each of spin 3

and of magnetic moment . In Chapter 3 we found an exact result for the
magnetization in a field B:

M = nptanh{pB/r). - (54
In the mean field approximation (53) this becomes, for a ferromagnet,

M = ngtanh(uidM/fzy, . - (53

Ferromagnetism
tanhini/1)
for 1 =05

fort =1

for ¢

1f
[

0 1 1 1

] 1
0 02 04 06 08 10

N

Figure 10.15  Graphical soluiion of Eq. (56) for the
reduced magnetization m as a function of temperature.
The reduced magnetization is defined as m = Minp. The
lefi-hand side of Eq. {36} is pioticd as a straipght tine m
with unit slape. The right-hand side is tanh(m/1) and is
plotted versus m: for three different values of the reduced
temperature t = tfup’d = t/r., The three curves
correspond o the temperatures 2t,, 1, and 057, The
curve Jor « = 2 jutersects the straight fine m only at

# = 0, as appropriate for the paramagnetic region {there
is no external applicd magnetic fietd). The curve for 1 = |
{or 1 = 7.} is tangent to the straight fine nr at the origin:
this temperature marks the onsel of fecromagnetisim. The
curve for ¢ = 0.5 is in the ferromagnetic region and
intersects the straight line 1t at about m = 0.94 Kjt. As

¢ ~+ O the intercept moves up to m = 1, so that all
magretic moments are lined up at absolute zero,

4 transcendental equation for M. We shall sce that solutions of this equation
with nonzero M exist in the temperature range between 0 and .. To solve (55)

we write it in terms of the reduced magnetization m = M/np and the reduced
temperature ¢ = t/np?l, whence

m = tanh{m/r). {56}

We plot the right and left sides of this equation separately as functions of m,
as in Figure 10.15. The intercept of the two curves gives the value of m at the

temperature of interest. The critical temperature is & = I, or 1, = np®d The

curves of M versis 7 obtained in this way reproduce roughly the features of the 7
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mean field theory.

10 oo
o

0.3

g 0
Figure 10.16  Saturation magnetization of E
nicket a5 a function of temperature, together o

with the theoretical curve for spin }on the 04
-

0.2

0
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Y 0.2 0.4 0.6 08 1.0

/7,

experimental resuits, as shown in Figure 10.16 for nickel! As t increases the
magnelization decreases smoothly lozeroatt = r,, catled the Curie temperature.

LANDAU THEORY OF PHASE TRANSITIONS

Landan gave a systematic formutation of the mean feld theory of phase transi-
tions applicable to a large variety of systems exhibiting such transitions. We
consider systems at constant volume and temperature, so thit their Helmholtz
frecenergy F= U — ois 2 minimum In equilibrivm. The big question is, a
misimum with respect Lo what variables? It is not helpful to consider all possible
variables, We suppose here that the system can be described by a single order
parameter £, the Greek xi, which might be the magnetization in a ferromagnetic
system, the dielectric polarization in a ferroelectric system, the fraction of
superconducting electrons in a superconductor, or the fraction of neighbor A-B
bonds to total bonds in an altoy AB. In thermal equilibrium the order parameter
will have a certain value & = dolr). In the Landau theory we imagine that £
can be independently specified, and we consider the Landau free energy function

Filés) = UEa) = wa(én) (57

where the enerpy and efitropy are taken whea the order parameter has the
specified value £ not necessarily &5, The equitibrium value Eolz) is the value of

Landay Theory of Phase Transitions

¢ that makes F, a minimuem, at a Biven v, and the actual Helmholiz free energy
Flz} of the system at 7 is equal to that minimum:

Fp= Fldod) < Fuly - it ¢ 2 g, {58)

Plotted as a function of £ for constant 7, the Landay free encegy may have more
than one minimum. The lowest of these determines the equilibrium state. In a
first order phase transition another minimum becomes the lowest minimum as
7 i5 increased.

We restrict ourselves to systems for which the Landau function is an even
funciion of & in the absence of applicd fields. Most ferromagnetic and ferro-
electric systems ase examples of this. We also assume that F (¢ 1} is a sufficiently
welk-behaved function of £ that it can he expanded in a power scries in Fmm

something that should not be taken for granted. For an even function of £ as
assurned,

FUST) = golt) + g1} + Lg,(0)8* + L9618 + -+ - (59)

The cntire temperature dependence of F (¢1) is contained in the expansion
coeflicients gq, g;, 44. g5. These coefficients are matters for experiment or theory.
The simplest example of a phase transition occurs when g:(1) changes sign at

atemperature to, with g, positive and the higher terms negligible. For simplicity
we lake g,{r) linear in 1:

gaf1) = {v — o)z, {60)

over the temperature range of interest, and we take g 38 constant in that range,
With these idealizations,

Flén) = golt) + fu(r ~ )% + 1948* {61}

The form {60) cannot be accurate over a very wide temperature range, and it
certainly fails at low lemperatures because such a linear dependence on tem-
perature is not consisient with the third law,

The equilibrivm value of & is found at the minimum of FUE ) with respect

to &:

(BFJES). = (v — t)ad + g, = 0, {62)

which has the roots

(=0 and & = (1, - (afoy) (63)
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T >,

With o and g, positive, the root £ = 0 corresponds 1o the minimum of the fee
energy funclion {61) at temperatures above 1,; here the Heimboltz free energy is

Flt) = golt). {64

The other root, & = (2/g,)(ty — 1) correspoads 1o the minimum of the free
energy funclion at temperatures below 74 here the Helmholtz free energy is

Landau free energy

F1) = golt) ~ (22/49)(z — ©o)% (65)

The variation of F{r) with temperature is shown in Figure 1(.17. The variation
of Fi(£;7) as a function of &2 for three representative temperatures is shown in

Figure 10.18, and the temperature dependence of the equilibrium value of £ is
shown in Figure 10.19,

Our model describes a phase transition in which the value of the order parat-
eter goes continuously to zero as the temperature is increased {o tg. The entropy

Figure 1018 Landau free energy function versus at

representative tomperatures, As the femperature drops below 1
il the equitibrium value of £ gradually increascs, as defined by the
: position of the minimum of the free encrpy.
] -
:
1 1.0
1 Il
1 "\
H \
1
o l 0.8 ~3
& t \\
>y i
e 1
E 1 0.6 P
° Curve of ' &) \
2 minimum ; £(0) \
= free energy 1 0.4
’ |
I
I
i
Region of order { Reet r 0.2
o
parameter £ >0 CED;_D_HOD
. =0,
no order o
3 ¢ 02 04 06 08 10
1 .
Ty /1,
! - Figure 10.19  Spontancous polarization versus
. : : temperature, for a second-order phase transition. The
F]gure} 017 Tcmperatutc_d_c;)cndcncc ofthe [ree energy a eurve is not realistic at low temperatures because of the
for an idealized phase iransition of the sccondrmdcr. . . o

use of Eq. (60): the third law of thermodynamics requires
that #/dt —+ 0ast— 0. . :
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—dFfdt is continuous at 1 = Ta. S0 that there is no latent heat at the transition
temperature 1,. Such a transition is by definition a second order transition.
Transitions with a nonzero latent heat are called first order transitions; we
discuss them presently. The real world contains a remarkable diversity of

second order transitions; the best examples are ferromagnets and super-
conductors.

R et A A N gt o Y YT e
e e St e L T LT TS

e

Example: Ferromagnets. In the mean field approximation, ferromagnets satisly the

Landau theory, To show this, consider anatom of magacticmoment gina magnetic field B,
which we shall set equal 10 the mean field iM as in (33). The interaction encrgy density is

UMY == M- B = —1iA12 (66}

where the factor L is common 10 self-ene

rgy problems. The entropy densily is given approxi-
mately by Problem 2.2 g

o{Ad) = constant — M¥/Zuu? | (67

in the regime in which Af « nge. Thus the free energy lunction per unit volume is

. Ty .
F (M) = constant — —}Mz(/f'- ——~2~> + terms of higher order. {68}
nu
At the transition temperature the coefficient of AM? vanishes, so that
19 = np?i {69)

in agreement with the discussion lollowing (56).

L ey TG S M A =T SRS
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First Order Transitions

A latent heat characterizes a first order phase transition. The iquid-gas transi-
tion at constant presstre is a first order transition. In the physics of solids first
order transitions are common in ferroelectric crystals and in phase transforma-
tions in metals and alloys. The Landau function describes a first order transition

when the expansion coefficient g4 1 nezative and g, is positive. We consider

) _FL(*':QT} = golt) + 2aft — 1p)e? — %_ng'f)i'f‘ + %Q_s‘:ﬁ + o : .{70}

First Order Transitions

P}‘W

Landau free energy

Figure 1620 Landau free energy funciion versus fina
first order transition, at representative lemperatures, At 1,
the Landau function hag equal minima at £ = Qand at a
finite £ as shown, For ¢ Beiow 1, the absolute minimum is at
larger values of & as ¢ passes through t, there is a
discontinuous change in the position of the absolute
minimum, The arcows mark the minima,

The extrema of this function are

given by the roots of EF O = 0 as in
Figure t0.20:

At = 10)d — lgy(0)E? + gel® = 0. £7%)

Either & = Q or

&t~ 7o) ~ lgu(O)E? + g8 = 0, (72)

Al the transition lemperature 7, the free energies w

it be equal for the phases
with ¢ = 0 and with the root ¢

# 0. The value of ¢, will not be equal to 1,

I03
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Figure 16,21

Dependence ol §ont — 1, fora
typical first order phase traosition.
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-80 —60 40 =20 {a 20 40
in K

T -,

and the order paramelter £ (Figure 10.21) does not go continuously {o zero at
1,. These resubts differ from those in the second order phase transition treated
carlier, where £ went to zero continuously at 1o = t,. A first order transfor-
mation may show hystcresis, as in supcrcooling or supersaturation, but no
hysteresis exists in a second order transition.

SUMMARY

1. The coexistence curve in the p-t plane between two phuses must satisfy the
Clausius-Clapeyron equation:

dp L

dt A’

where L is the latent heat and Av is the volume difference per atom between
the two phases. -

2. The latent heat L. = H, — H,, where H = U + pV is theenthalpy,

3. The van der Waals equation of state is
T {p + Ng/VIV — Nb) = Nt
4. In the Landau free energy function
Fifx = Ugs) — wldn) .

the energy and entropy are taken when the order parameter has the sp‘eciﬁcd
value £, not necessarily the thermal equilibrium value £,. The function F,

is @ minimum with respect to £ when the system is in thermal equilibrium.

FProblems

5. A first order phase transition is characterized b

y a latent heat and by
hysteresis,

PROBLEMS
1. Entrapy, energy, and enthalpy of van der Waals pas. (1) Show that the cn-
tropy of the van der Waals gas is
o = Nilogfny(V — NBYNT + §}. (73)
{b) Show that the enerey is
U = %Nr.';— Nia/v. {14)
{c} Show thatthcemhalpy H = U + pVis
H(t,V) = §Nt + N3bt/V - 2NV (78)
Hizp) = Nt + Nbp — 2Nup/t. (76}

All results are given to first order in the van der Waals correction terms o, b

2. Caleulation of dT[dp for water, Caleulate from the Vapor pressure egud-
tion the vatue of dT/dp near p = 1 atm for the liquid-vapor equilibrivm of

waler. The heat of vaporization at 160°C is 22605 g~ ', Express the result in
kelvin/atm.

3. Heat of vaporization of ice. The pressure of water vapor over ice is 3.88 mm

Hg at —2°C and 4.58 mm Hg at 0°C. Estimate in Jmol ! the heat of vaporiza-
tion of ice at —1°C.

4. Gas-solid equilibrizin, Consider a version of the exampie (26}-(32) in which
we let the oscillators in the solid move in three dimensions, (a) Show that in the
high temperature regime {t » hw) the Vapor pressure is

AT o3
P = (ﬂ) 'E_I—ﬁ E)(p{-— ED/T}. (77

{b) Explain why the latent heat per atom is £p = iT.

3. Gas-solid equilibrium. Consider the gas-solid equilibrium under the ex-
treme assumption that the entropy of the solid may be neglected over the tem-
perature range of interest. Let — £, be the cohesive energy of the solid, per atom.
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Treat the gas as ideal and monatomic, Mike the approximation that the volume

accessible to the gas is the volume V of the container, independent of the much

. F,
smatler volume occupied by the solid. {a) Show that the total Hetmholtz free Y
¢nergy of the system ig '

E Normal
F=F 4 Fom —Ngg + Ngt{]og(Ng/VnQ) - 17, (78} 2 —04 Fy
1=
. ] = Superconductor )
where the totat number of atoms, N = N, 4 N, is constant. (b) Find the mjnj- &
mumofthe free energy with respectto N showthatin the equilibrium condition g —06 \
L5
' u \ T,= LI1S0K
: N
N, = neVexp(—egft). {79 w98
{c) Find the equilibrium VApor pressure., 10
Bt 0.5 10
6. Thermodynamics of the superconducting transition, {a) Show that Temperature, K
b d(BY) B, dB, - Figure 10.22  Experimental values of the free energy as a function of
(US"GN)/V:TM=“"—'4 {80
Mo dv pgdr

lemperature for aluminum in the superconducting state and in the normal
) state. Below the transilion temperature T, = 1180 K the free cnergy is lower
: . : in the supercanducting state. The two curves merge at the transition
in St units for B.. Because B, decreases with increasing temperature, the right - temperature, so that the ghase transition is sccond order (there is no latent heat
side is negative. The superconducting phase has the lower entropy: it is the more of transition at T,}. The curve Fs is measured in zero magnetic field, and Fyis
X ntropy'in both phases wili go 1o zero, consistent

measured in a magaetie field sufficient 1o put the specimen in the normal state,
his imply for the sha peolthe curve of B, versys 17 Countesy of N, E. Phillips.
b)Atz = Towehave B, = 0and henee oy = ax. Show sl 1his result ks 1he

foltowing consequences: (1) The two free Chnergy curves do not cross at 1, but
merge, as shown in Fipure 10,22, {2} The two encrgies are the sume: Ugle) =
Uxlt). {3) There is no latent heat associated with the transition af 1 = T,.

' i tnpl] g 7 itioe. : urves ol most
What is the Tatent heat of the transition when carried out in a magnetic field, 7'1 i‘:ggiggg‘ig':;‘:i\"{;ﬁi sg"C'l‘(‘;‘s’:‘{‘:;g‘i;‘:giﬁﬁf;I“Té‘:gﬁ?:mfa:
ALt < 1.7 (c) Show that Cy and C,, the heat capacities per unit volume, are sup ave shap :
related by Bx) = Bo[1 ~ (x/r.)7]. (83)
AC = C Cy = = B (&1 Assume that Cg vanishes faster than lineacly as v — 0. Assume also that Cyis
T s T Ly = 5RO,
2y dt

linear in 7, as for a Fermi gas (Chapter 7). Draw on the resulls of ?roblcxn_§ to
calculate and plot the « dependences of the (wo entropics, the two heat capacities,
Figure 8.18 is a plot of C/T vs T? and shows that Cy decreases much faster and the latent heat of the transition. Show that Cyle ¥ Cilz) = 3.

than linearly with decreasing 1, while Cy decreases as y1. For ¢ « T, AC s

dominated by C,. Show that this implies 8. First gvder crysal fransformation,  Consider a coystal that can exist incither

of two structures, denoted by « and B. We suppose that the # structure is the
1 4°R stabie low temperature form and the # structure is the stable high temperature
P —— B, —= {82 ' form of the substance. 1f the zero of the energy scale is taken as the state of

Ho " drt Ly scparated atoms at infinity, then the encrgy density 0} at 1 = 0 will be
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negative. The phase stable at 1 = 0 wilt have the lower value of U(0); thus
U(0) < U40). If the velocity of sound r in the § phase is lower than v, in the
a phase, corresponding to lower values of the elastic moduli for §, then the
thermal excitations in the g phase will have larger amplitudes than in the g
phase. The larger the therma! excitation, the larger the entropy and the lower
the free energy. Soft systems tend to be stable at high temperatures, hard
systems at low. (a) Show from Chapter 4 that the free energy density contributed
by the phonons in a solid at a temperature much less than the Debye temperature
is given by — e300, in the Debye approximation with » taken as the
velocity of all phonons, (b} Show that at the transformation temperature

T = (30 UH0) — UOV)/e, ™ — 0,73, (84)

There will be a finite real solution if g < r,. This example is a simplified model
of a class of actual phase transformations in solids, {¢) The latent heat of trans-
formation is defined as the thermal energy that must be supplied 1o carry the
system through the transformation. Show that the latent heat for this model is

L=y - Uvam) (85) .

In {84) and (85), U refers to unit volume,
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SOLUBILITY GAPS

Mixtures are systems of two of more different chemical ¢
have only two constituents, Mixtures with 1}
ternary and quaternary mixtures. If the co
cudes, the mixture is called an atloy.

A mixture is homogeneous w
scale to form a single phase, as §

pecics. Binary mixtures
iree and four constituents are called
nstituents are atoms, and not mole-

hen its constituents are intermixed on an atomic
n a solution. A mixture is heterogensous when it
contains two or more distinet phases, such as oil and water. The everyday
expression “oil and water do not mix” means that their mixture does not form
& single homogeneous phase, '

The properties of mixtures differ from the properties of pure substances. The

but an alloy of 69 pet Auand 31 pet Si melts {and solidifies) at 370°C. This is not
the result of the formation of any low-melting Au-Si compound: microscopic
investigation of the solidified mixture shows a two phase mixture of almost
pure Au side by side with almost pure Si (Figure 11.1). Mixtures with such
properties are common, and they ate of practical importance precisely because
of their lowered melling points.

What determines whether tw
geneous mixture? W
with each other in a
understood fram th
evolve to the confy
dissolve in each oth

0 substances form a homegeneous or a hetero-
hat is the composition of the phases that are in equilibrium
heterogeneous mixture? The properties of mixtures can be
¢ principle that any system at a fixed temperature will
guration of minimum free energy. Two substances will
er and form a homogeneous mixture if that is the configura-
tion of lowest free energy accessible 1o the components. The substances will

Solubitity Gaps

{0 um

Figure 11,1 Heterogencous gold-silicon alfoy. When a mixture of 69 pct Auand 31 pet
Siis mehed and then solidified, the mixture segregates into a phase of abmost pure Au
{tight phase) coexistent with a phase of almost pure Si {dark phase}. Magnified about
800 times. The composition given is that of the lowest-melting Au-Si misture, the
so-called eutectic mixivre, 3 concep! explained later in the text. Photograph courtesy
ol Stephan Justi.

form a heterogencous mixture if the combined free energy of the two separaie
phases side by side is tower than the free energy of the homogencous mixture:
then we say that the misture exhibits a sclubility gap.

A heterogeneous mixture will melt at a lower temperature than the separate
substances if the free energy of the homogencous melt is lower than the com-
bined free energies of the tweo separate solid phases.

Throughout this chapter we assume for simplicity that the external pressure
may be neplected. and we set p¥ = 0. Then volume changes do not involve
work, and the appropriate free energy is the Helmholtz free energy F rather
than the Gibbs free energy 6. We will usually simply speak of the free encrgy.

We discuss binary mixtures of constituents that do not form well-defined
compounds with each other. Qur principal interest is in binary alloys. Consider
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Many applications of materials science, and large parts of chemistry and
biophysics, are concerned with the propertics of multicomponent systems thag
have two or more phases in coexistence. Beautiful, unexpected, and important
physical eflects oceur in such systems. We treat the fundamentals of the subject
in this chapter, with examples drawn {rom simple situations.

SOLUBILITY GAPS

Mixtures are systems of two or more different chemical species. Binary mixtures
have only two constituents. Mixtures with three and four constituents are called
ternary and quaternary mixtures. If the constituents are atoms, and not mole-
cules, the mixture is cailed an atioy.

A mixture is homogeneous when its constituents are intermixed on an atomic
scale to form a single phase, as in a solution. A mixture is heterogeneosus when it
contains {we or more distinct phases, such as oil and water, The everyday
expression “oil and water do not mix™ means that their mixture does not form
a single homogeneous phase.

The properties of mixtures differ from the properties of pure substances, The
melting and solidification properties of mixtures are of specizl interest. Hetero-
geneous mixtures may melt at lower temperatures than their constituents,
Consider a gold-silicon alloy: pure Au melts at 1063°C and pure Si at 1404°C,
but an alloy of 69 pet Au and 31 pet Simelts (and solidifies) at 370°C. This is not
the result of the formation of any low-
investigation of the solidified mixture shows a two phase mixture of almost
pure Au side by side with almost pure Si {Figure 111), Mixtures with such
properties are common, and they are of practical importance precisely because
of their lowered melting points.

What determines whether two substances form a homogeneous or s hetero-
geneous mixture? What is the composition of the phases that are in equilibrium
with each other in a heterogeneous mixture? The properties of mixtures can be
understood from the principle that any system at a fixed temperature will
evolve to the configuration of minimum free energy. Two substances will
dissolve in each other and form a homogencous mixture if that is the configura-
tion of lowest free energy accessible to the components. The substances will

melting Au-Si compound: microscopic

Solubility Gaps

[0 pm

Figure kLT Heterogeneous gold-silicon allay. Whea a mixture of 63 pet Au and 31 pat
Siis mehed and then solidified, the mixture segregates into a phase of almast pure Au
{tight phase} coexistent with a phase of aimost pure Si {dark phase). ‘M;\‘gniﬁcd about
800 times. The composition given is that of the lowest-melting Au-Si mixture, the

so-called eulectic mixture, a concept explained later in the text. Photograph courlesy
of Stephan Justi,

form a heterogéneous mixture if the combined free energy of the two se‘paralc
phases side by side is lower than the [ree energy of the homogeneous misture;
then we say that the mixture exhibits a solubility gap.

A heterogeneous mixture will melt at a lower temiperature than the separate
substances if the [ree energy of the homogencous melt is tower than the com-
bined free energies of the (wo separate solid phases.

Throughout this chapter we assume for simplicity that the external pressure
may be neglected, and we set pV = 0. Then volume changes do not }n\'olx'e
work, and the appropriate free encrgy is the Helinholtz free energy £ rather
thin the Gibbs free encrgy G, We will usually simply speak of the {ree energy.

We discuss binary mixtures of constituents that do not form well-defined

compounds with each other. Our principal interest is in binary alloys, Consider

k25
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a mixture of N, atoms of substancs A and ¥y atoms of substance B, The total
number of atoms is

N =N, + N, | )

We express the composition of the system ia terms of the fraction x of B atoms:

X = Ng/Nj 1= x s NN (2)

Suppose the system forms a homogencous solution, with an average free energy
per atom given by '

f = F/N. (3

Suppose further that f(x) has the functional form shown in Figure 11.2. Because
this curve containg a range in which the second derivative diffdx? is negative,
we can draw 2 line tangemt 1o the curve at two points, at x = x, and x == Xp.
Free encrgy curves of this shape are common, and we will see later what may
cause this shape. Any homogeneous mixture in the composition range

X, <X <X, 4
is unstable with respect to 1wo "sep-aréi!'e phases of composition x, and Xp. We
shall show that the average free ¢nerBy per atom of the segregated mixture is

given by the point i on the straight line connecting the points z and B. Thusinthe
entire composition range {4) the segregated system has a lawer free energy than

the hemogencous system.
Proof: The free enesgy of a segregated mixture of the 1wo phases « and Bis

Fo= N f(x) + Nyf(xy) . )

where N, and ¥, are the total numbers ofatoms in phases « and , respectively.
These numbers satisfy the relations

(Vx + .‘\’ﬁ = l\r; 'YxNa + .\'31\!‘5 == 1&"3 N . (6)

which may be soived for N, and Ny

g

Solubifity Gaps
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Figure 11.2  Free Enesgy par alom as a function of composition, for a
systemn with a solubility gap. If the free energy per atom of a
homogeneous mixture has a shape such that a tangent can be drawn
that touches the curve at 1wo different points x and B, the compaosition
range between the two poinis is unstable, Any mixture with a
composition in this range will decompose into two phases with the
compasition v, and Xp. The free energy of the two phase mixture is
given by the point { on the straight line, below the point b,

From ({5} we obtain

ﬁmu§m§§zmrwmm+umnmmL (5

for the frec energy of the two phase system. This result is linear in x and is 3
straight line in the f-x plane. Ifwe set ¢ = %, O Xy, ¢ see that the line does po
through the poiats a and B.Thus £ in the interval between %, and xg s given by
the point i on the straight line connecting z and g,

313
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Wehave not yel made use of the assumption that the straightfine is tangent to
J{x) at the points x and §, and thersforz our result holds for any straight line
that has two points 2 and ff in common with f(x). But for a given value of x, the
lowest free energy is obtained by drawing the Jowest possible straight fine that
has two points in common with f{x), on opposite sides of x. The lowest possible
straight line is the two-point tangent shown. The compaositions x, and x, are
the limits of the selubility gap of the systam.

Qnce the system has reached its lowest free energy, the two phases must be in

diffusive equilibrium with respect to both atomic species, so that their chemical
potentials sutisfy

Has = flag] Hea = Hgg. (%)

We show in Problem 1 that g, and py are given by the intercepts of the twa-
point tangent with the two vertical edges of the fxyplotat x = Qand x = 1,
as in Figure 11.2.

ENERGY AND ENTROPY OF MIXING

The Helmholtz free energy F = U - 16 has contributions from the cncrg)-r and
from the entropy. We treat the effect of mixing two components A and B on
both terms, Let 1, and uy be the energy per atom of the pure substances A and B,

referred to separated atoms at infinity. The average energy per atom of the
constituents is

o= (N upNglN = uy + g ~ 1,0, {103

which defines a straight line in the u—x plane, Figure 11.3. The average energy
per atom of the homogencous mixture may be larger or smalier than for the
separate constituents. In the example of Figure 11.3, the energy of the homoge-
neous mixture is larger than the energy of the separate constituents. The
energy excess is called the energy of mixing,

Ithe —to term in the free energy is negligible, asat 7 = 8, 3 positive mixing
energy means that a homogeneous mixture is not stable. Any such mixture will
then separate into two phases. But at a finite temperature the — 1o term in the
frec energy of the homogeneous mixture always tends to [ower the free €nergy.

Theentropy of a mixture contains a contribution, called the entropy of mixing,
that is not present in the entropics of the separate components. The mixing
entropy arises when atoms of the different species are interchanged in position;
this operation generates a different state of the system. Because of such inter-

Engrgy and Entropy of Mixing

X

Figore 113 Energy per atom as a function of composition
in 1 system wilh a positive mixing encrgy. A stmple
example {or which a solubility gap may oceur is that of a
system in which the energy per alom of the homogeneous
misture s greaser than that of the suparate phases, so that
dufdx? < O for all compositions. The mixing energy is the
difflerence between the ulx) curve and the straight line,

changes 2 mixture has more accessible states than the two separate substances,
and hence the mixture has the higher entropy.

In {3.80} we calculated the mixing entropy oy, of a homogencous alloy
A B, tofind

oy = —N[{l — x)iog(l — x) + xlogx], (in

as plotted in Figure 1 1.4, The curve of oy, versus x has the important property
that the slope at the ends of the composition range is vertical. We have

j{r_%i = log{l — x) — logx = log

{12)

]
X

which goesto +wasx -» Dandto —coasx — 1.

i15
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Figure 11.4 Mixing entropy. Tn any mixture of iwo constituents 2n
interchange of two atoms of different species feads to 2 new state of the
system. The logarithm of 1he number of states related in this way is the . Figure 11.5 Free energy per atom versus composition, at three
MIXIng entropy. B temperatures. The curve fy is the free cneIgy per atom ;-'Elhoui the
mixing entropy contribution, For ilustration a parabolic composttion
dependence is assumed, and the temperature dependence of f; is
neplecied. The three solid curves represent the free cnergy including
the mixing eatropy, for the temperatures 0.8 v,,, 1.0 ¢, and 1.2 Tt
where 1y is the maximum temperature for which there is a solubility
gap. The phase separation at 0.8 5 15 apparent,

X

Consider now the quantity

Tl¥) = %) ~ (o = o )N, (13)

. our argument this is irrelevant. Three important deductions follow from the
which is the free energy per atom without the mixing entropy contribution, The construction of the f{x} curves:
non-mixing pait of the entropy, ¢ — s, i5 usually nearly the same for the (@) At all finite temperatures f(x) turns up at both ends of the composition
mutuee as for the separate cempoaents, so that {o — oy)r is ncaily a linear range, because of the infinjte slope of the mixing entrepy contribution.
function of the composition x. If we assume this, the f{x} curve has the same p (b} Below a certain temperature 7, there is a composition range within which
shape as the u(x) curve, but offset vertically, the negative second derivative of the Jolx) curve s stronger than the
If we add the mixing eatropy contribution ~Tay N 10 fy(x}, we oblain at . positive second derivative of the —1a,, contribution, thereby making it
VErIous lemperatures the S{x} curves shown in Figure 11.5. In drawing the e possible 1o draw a common tangent to f{x} at two different values of x.

figure we have ignored the temperature dependence of fy{x) itself, because for (¢} Above ty the curve has a positive second derivative at all compositions,
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We conclude that the A-B system with positive mixing energy will exhibit a
solubility gap below the temperature 7,,. The composition range of the gap

. widens with decreasing temperature, but the gap can reach the edges of the

composition range only as t -» 0. At any finite temperature there is a finite
solubllity of A in B and of B in A, a result obtained earlier in Chapter 3. The
new resuit is that the mutual sotubility is limited orly below 1,,. Positive
mixing energies arise in different ways. We now discuss three examples.

AT e e
B I N R S

Example: Binary alloy with nearest-neighbor interactions, Consider an alioy A, __B, in
which the attractive interaction between unlike atoms is weaker than the atiractive inter-
action between like atoms. For simplicity we speak of the interactions as honds. There are
three different bonds: A-A, A-B, and B-B. Let Uax Usg @14 1y be the potential energics of
each bond. These binding energics wilt wsually be negative with respect to separated atoms.

We assume the atoms are randomly distributed amang the fatlice sites. The average
encrgy of the bonds surrounding an A atom is

up = {1 — xhuy, + XUag {14)

where(l ~ x}is the proporticn of A and x is the propertion of B. This result is wri

lienin the
mean field approximation of Chapter 10. Similarly, for B atoms, :

Uy = (1 ~ Xupp + Xuyg. {15)

The total energy is obiained by summing over both atom types. Il each atom has p nearest
neighbors, the average energy per atom is

uo=4pl(1 — xhuy + xug) _
= 3p[(1 = Pupp + 251 — Xupg + X7y, (16}

The factor § arises because each bond is shared by the two atoms it connects, The result (16)
can be wrilten as

w=3pl(1 — xhan + Xitgs] + . (17}
Here

uy = px{l — x}um — %(”AA + tgal] {18)

is the mixing energy. On this model the mixing energy as a function of x isa parabola, asin
Figure 11.5.

¥
I
3
1o

Energy and Entropy of Mixing

A solubility gap occurs whenever d*f/dx* < 0, that is, when

d dluy, Fa  dloy,
PRERR N TR TR {2
From {18},
diy
T =~ ae = s + )] (20)
From (12),
2
_I_QGE I T < %E_ 20
N odx? Ml x}7 4

The cqual sigo holds for x = 4. With these resulis {19) yields

Ty = 3p{ua — Ylas + ugal] &2

as the lower Hmit of the tenperature for a solubility gap.

There zre many reasons why mixed bonds may be weaker than the bonds of the scparate
constitucnts. If the constiluent atoms of an alloy differ in radius, the difference introduces
clastic strains that raise the eaergy. Water and oil "do not min™ beeanse waler molecules
carry a large electric dipole moment that leads to a stzong electrostatic atlracton between

water motecules. This altraction is absent in water-oil bonds, which are only about as
strong as the weaker oil-oil bonds.

Example: Mixture of two solids with different crystal struciures,  Consider a homoge-
neous crystalline mixture of gotd and silicon, The stable erystal strueture of gold is the face-
centered cubic structure in which every atom is surrounded by twelve equidistant nearest
neighbors, The stable erystal structure of silicon is the diamond structure in which every
alom is surrounded by only four equidistant nearest neighbors, If in pure Au we replace a
small fraction x of the atoms by Si, we obtain a homogeneous mixiure Auy _,Si, with the
fec crystat structuee of Au. Similarly, if in pure $7 we replace o small fraction 1 — x of the
atoms by Au, we obtain a homogencous mixtute Auy ., Sig, but with the diamond crystal
structure of Si. There are two different free energies, ont for each erystal structure {Figure
11.6). The two curves must cross somewherc in the composition range, or else pure Au and
5i would not erystallize in different structures. The equilibrinm curve consists of the lower
of the twa curves, with a kink at the crossover point. Such a systern exhibits a solubility
gap on either side of the crossover composition. The curves shown in the figure are sche-
malic; in the actual Au-Si system the uastable range extends 5o close to the edges of the
dizgram that it cannot be represented on a full-scale plot extending from x = QOtox = 1.
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Figure 116 Free GRerRy versus composition for crystalline
homogencous mixtures for which the twe constituents of the
mixtuce crystallize in different crystal structures. Two different
free energy cusves are mnvelved, one for each crystal structure.

Different crystal structures for the pure constituents are an important cause of solubility
£aps in crystaliine solid mixtures. Qur argument applies lo mixtures of 1his kind, provided
the two structures do not transforin continuously into each other with <hanging composi-
tion, This is a tacit assusiption in our discussion, un assumplion not always satisficd when
the twa erystal structures ure closely similar. The ather assimplion we make throughout
this chapter is that no stable compound formation should occur. In the presence of com-
pound formation the behavior of the mixture may be more complex.

[ Rt e AR SR R S e ety

Example: Liguid * e~ He wiviues ag fow femperetures. . The most teresting figuid mix-
ture with a solubility gap is 1he misture of the two heliem isotapes *He and *He, atoms of
the former being fermions wnd of (e fatter bosons, There is a solubility gap in the mixture
below 087K, a5 in Figure 11.7. This property is atilized in the helium dilution refrigerator
{Chapter 12). The mixing encrgy must be positive to have a sofubitity gap. The origin of the
positive mixing cnerey is the folow ing: *He stoms are bosons. At suflicienlly low tempera-
tures aimost afl *He zloms occupy the ground state orbity of the system, where they huve

Phase Biagrams for Simple Solubiliry Gaps
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Figure 117 Liquid mixtures of 3He and *He.

zcro kinetic energy. Alimost the entire kinetic energy of the mixture is contributed by the
*He atoms, which are fermions. The energy per atom of a degenerate Fermj #as increases
with concentration as 0?3, as in Chapter 7. This encegy has a negative second derivative
¥e/fn® o 2upext, which by (19 is equivalent 1o 2 positive mixing energy.

Phase Diagrams for Simple Solubitity Gaps

A phase disgram represents 1he temperature dependence of solubility gaps, as in
Figure {18, The wo compositions x, and Xg are plotted horizontdly, the
carresponding temperature vertically. The x, and xy branches merge at the
maximem temperature Tu for which a solubility gap exists. Ata given tempera-
lure any misture whose overall compaosition fulls within the range enctosed by
the curve is unstable ag a homogeneous mixture, The phase diagrams of actuul
mixtures with solubility gips may be more complex, according {o the actual
form of the free energy relation S{x), but the uaderlying principles are the same,

e

i



322

Chapter 11: Binary Mivtures

Stable
Tyl
Decomposition
Theam - -0
i ! !
] ! 1
1 1 |
Tt I |
» t : 1
i 1
? ; ! t
| Unstable |
! L !
| { t
| ! '
[
; i f
i i
u | : |
| o
| ! i
i | i
| | §
| 1
! l )
0 X, X xg i
X

Figure 118 Phase diagram fora binary system with a solubility
g2p. A homogescous mixture of composition x will be unstable at
temperature 7 if the point {x,7) falls below 1he stabitity boundary
curve, The mixture witl thes form two separake phases of the
compositiens given by the intersections of the stabiiity boundary
curve with the horizontal line for temperature 1. The stability
bouridary curve shown here was calculated quantitatively for the .
system of Figure 115, wilh a parabolic f(x)

PHASE EQUILIBRIA BETWEEN LIQUID
AND SOLID MIXTURES

When a small fraction of a homogencous liguid mixture freezes, the composition
of the solid that forms is almost always different from that of the liquid. Tl}c
phenomenon is readily understood from the free energies for liquid and solid

mixtures. We consider a simple model, under two assumptions: {a) Neithcrrlh‘c

Fhase Equilibeia Between Liquid and Solid Mixtures

solid nor the tiquid has a solubitity gap. (b)
constituent A is lower than the me}
We consider a temperature between

The free energies per atom, fi{x} for the solid and J1{x) for the liguid, are
shown qualitatively in Figure 119a. The two curves interseet al some com-
position. Let us draw a tangenl common to both curves, touching fyatx = x

s
and f, at x = x;. We can define three compositian ranges, each with differcnt
internal equilibria;

{a} When x < x;, the system in e
(bY When x; < x « X5,

The melting temperature ¢ »of pure

ting temperature 1 of pure constituent B.
Taand 7.

quilibrium is a homogeneous liquid,

the system in equilibrium consists of two phases, a
solid phase of compesition xg and & liquid phase of composition Xy,

{c) When x > x; the system in equilibrium is a homogeneous solid.

‘The compositions x; and x¢ of a solid and a liquid phase in equilibrium are
temperature dependent. As the temperiiture decreases the free cnergy of the
solid decreases more rupidly than that 6l the liquid, The tanpential poiis in
Figure 1192 move 1o the lef, This behavior is represented by a phase dizgram
similir to the earlicr representation of the equitibrium composition curves for
niixturcs with phase separation, In Figure 1.9b the curve for X, is catled the
liquidus curve; the curve for xg is the solidus curve,

The phase diagrams have been determined experimentally for vast numbers
of binary mixtures. Those for most of the possible binary alloys are known.*
For most metal alloys the phase diagrams are morc comptlicated than Figure
11.9b, which was drawn for a simple sysiem, germanium

When the temperature is lowered in a bina
diagram of Figure 11.9%, solidification takes place over a finite temperature
range, not just at a fixed temperature. To see this, consider a liquid with the
initial compesition x,; shown in Figure 11.10. As the {emperature is lowered,
solidification begins at t = 1. The camposition of the selid formed is given
by x5, so that the composition of the remaining liquid is changed. In the
example x;y > x;,, sothat the liguid moves towards lower values of x, where the
solidification temperature is lower. The lemperature has to he lowered if
solidification is to continue, The composition of the liquid moves along the
tiquidus curve until the solidification js completed at ¢ = za. The solid formed
is nonuniform in composition and is not in equilibrium. The s

nize afterward by atomic diffusion, particularly if the te
high for a long time. But for many solids atomic diffusion
inhomogeneity remains “frozen in” indefinitely,

-silicort,
vy liguid mixture with the phase

olid may homoge-
mperature remains
is too slow, and the

* The standard tabulations are by M. Hanscr, Constitution of bnary afloys, McGraw-Hill, 1958;
R. P. Eliiot, Constitution of biriary alloys, first supplement, McGraw-Hill, 1963; F. A. Shunk,
Constitution of binary elloys, 3ec9nd supplement, McGraw-Hill, 1969.
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Figure 119 Plase cquilibrium between liquid snd solid mixtures, In

this example neither phuse exhibits a solubility gap, We assume

Ta <7 <1y The upper figure {u} shows the free energies for the two phiscs;
the lowet figure (b) shows the cotresponding phase diagram. The curves Xy
and x5 in the phase diagram are called the Hquidus and the solidus curves,
The phase diagram is the Ge.§j phase diagram, with T, = 940°C and

Ta = 1412°C, ) :
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Phase Equilibria Beiween Liguid and Sofiy Mixiures

Figure 1518 Most liquid mixtures do not sofidify at a sharp
. lemperature, but over g finite lemperature range from T tot,, The

kigher-melting constituen precipitates first, thereby enriching the
lawer-melting constituent in the Hguid phase and thus lowering the
solidification temperatuee of lhe liquid,

Advanced Treatment: Eutectics. There are many binary systems in which the

liquid phase remains 2 liquid down to temperatures significantly below the
lower melting temperature of the constituents, The gold-silicon alloy is such a
system: a mixture of 69 pet Ay and 31 pet Si starts to solidify at 370°C. At other
Compositions solidification starts at a higher temperature, When we plot the
temperature of the onset of solidification as a function of alloy composition,
we obtain the two-branch liguidus carve in Figure 11.11. Mixtures with two
liquidus branches are called eutectics. The minimum solidification temperature
is the eutectic lempecature, where the composition is the cutectic composition.

The solidified solid at the eutectic composition is & two phase solid with
neaely pure gold side by side with nearly pure silicon, as in Figure [1.1. In the
solid Au-St mixture there is 4 very wide solubility gap. The low mlting point
occurs for the cutectie composition because the froe cnergy of the homogencous
melt is lower than the free encegy of the two phase solid, for temperalures at
of above the cutectic temperature,

Such behavior is common among systems that exhibit g solubility gap in the
solid but not in the liquid. The behavior of eutectics can be understood from the
free energy plats in Figure 11123, We assume Sfelx} for the solid as in Figure 11,6,
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Figure11.11 Eutectic phass diagram of gold-sificon alloys. The liqﬁidus consists of twa
branches that come together at the eutectic temperature T, = 3M°C, The horizontal

line and the experimental data points at 376°C indicate that throughout the entire

composition range the mixture does not compiete its solidification until the cuteciic
temperature is reached.

corresponding to different crystal structures ¢ and 8 for the two pure con-
stituents. Figure 11.12a is constructed for a temperature above the cutectic
temperature but below the melting temperature of either constituent, so that
the free energy of the liguid reaches below the common tangent to the solid
phase curves. We can draw two new two-point tangents that give even lower free
energies. We now distinguish five different composition ranges:

(&) and (e). For x « x,qo0rx > Xgs, the equitibrium state of the system is a
homogeneaus sotid. In the first range the solid will have the crystal structure «;
in the second range the structure is g,

{e). Forx, < x < xp, the equilibrium state is a homogenreous liquid.

(v} and (d). For x5 < x < x; or Xy < X < Xpg, a liguid phase is in
equilibrium with a solid phase, ‘

As the temperature is lowered, fis and f;; decrease more rapidly than f,
and the range of the homogeneous liquid becomes narrower, Figure 11.12b

shows the corresponding phase diagram, including the two solidus curves,

Phase Equilibria Between Liguid and Solid Mixtures

{a)

(&)

Figure 1112 Free energies (o) and phase diagram (bl in 2 simple cuteclic
system.

At the eutectic temperature 7, the free energy of the liquid phase is tangential
to the commeon tangent to f¢ and Jgs» a5 in Figure 11,13, The composition at
which f; touches the tangent is the eutectic composition. At t < 1,, the free
energy f, lies above the tangent, although f; may be below the free energy of
a homogeneous solid.

A mixture of composition equal to the eutectic composition solidifies and

" melts at a single temperature, just like a pure substance. The solidification of

17
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S

Figure 1113 Free energies in a ewlectic Systematt = randalt < 1,

compositions away from the eutectic composition starts at a higher temperature

and ends at the eutectic temperature. Melting stards at the cutectic lemperature
and ends at a higher lemperature.

The minimum property of 1he mc@t'ing temperature of eutectics is widely
utilized, The Au-Sj eutectic

plays a large role jn semiconductor device tecl-
nology: the eutectic permits low temperature welding of electrical vontact
wires made of gold to silicon devices. Lead-1in alloys exhibit a eutectic {(Figure
LL14} a1 183°C 10 give solder a melling temperature below that of pure {in,
212°C. According to whether a sharp melting temperature or a melfting range is
desired, either the exact eatectic composition (26 pet lead) or a different con-
position is employed. Salt sprinkled on ice melts the jce because of the iow
eutectic temperature ~21.2°C of the H,0-NaCl eutectic at §.17 mol pet NaCh

The solidus curves of cuteatic systems vary greatly in characler. For the
Pb-Sn system {Figure 11,14} the solid phases in equilibriom with (he melt
contain an appreciabie fraction of the misority constituent, and this fraction
increases with decreasing temperature, In other systems this fraction may be
small or may decrease with decseasing temperature, or both, The Au-Si system
is an example: The eeletive concentrution of Au in solid Siin equitibrium with
an Au-Si melt reaches a maXimum value cfonly 2 x 18~ %aroung 1300°C, and
it drops off rapidly at lower lemperature.

In our discussion of the frec energ

Y curves of Figures 1112 and 11.13 we
assumed that the composition at whict

v the tiquid phase free energy touches the
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Figure 1114 (a} Phase disgram of the Ph-Sn system, after Hansen. {b) Microphategraph

of Lhe Pb-Sn eutectic, magnificd about 806 times. Courtesy of J. D, Hunt and K, A,
Jackson. :
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tanigent 1o the solid phase curves lies between the compositions x,5 and xg.
In some systems this point lies outside the interval, as if either fis and f; or [y,

and f; were interchanged in Figure 11.12a. Such systems are catled peritectic
systems.

SUMMARY

1. A mixture exhibits a solubility gap when the combined free energy of two

separate phases side by side is lower than the [ree energy of the homogeneous
mixture.

. The mixing entropy arises when atoms of different species are interchanged
in position. For the alloy A, _.B_, we have

Gy = —N[(l — X)log(t ~ x) + xlogx].

- The mixing energy for nearest-neighbor interactions is

Hy = px{i — x)[“_m = Y0uan + ugal]
[or p nearest neighbors,

- The liquidus is the composition curve xp versus t for a liquid phase in
equilibrium with a solid. The solidus is the composition curve Xg versus 1
for a solid phase in equilibrium with a Liquid.

. Mixtures with two branches to the liquidus curve are cailed eutectics. The
rairimum solidification temperature is called the ewtectic temperature.

PROBLEMS ‘

L. Chemical potentials in two-phase equilibrium. Show that the chemical po-
tentials yi, and gy of the two atomic species A and B of an equilibrium iwo
phase mixture are given by the intercepts of the two-point tangent in Figure 11.2
with the vertical edges of the diagram at x = Qand x = 1.

2. Mixing energy in*He-*He and Pb-Sn mixtures. The phase diagram of lig-
uid JHe—*He mixtures in Figure 118 shows that the solubility of He in “He
remains finite (about 6 pet) as 1~ 0, Similarly, the Pb~Sn phase diagram of
Figure 11.14 shows a finite residual solubility of Pb in solid Sa with decreasing

Problems

t. What do such finite residual solubitities imply about the form of the Function
1fx)?

3. Segregation coefficient of impurities. LciBbean impurity in A, with x « 1,
in this limit the nen-mixing parts of the free energy can be expressed as linear
funciions of x, as fofx) = fol0) + xf,(0), for both liguid and solid phases.
Assume that the liquid mixture is in equilibrium with the solid mixture. Caleulale
the equilibrium concentration ratio k «= xg/x, called the segregation coefficient.
For many systems k « I, and then a substance may be purified by melting
and pastial resolidification, discarding a small fraction of the melt. This principte
is widely used in the purification of materials, as in the zone refining of semi-
conduciors. Give a numerical vatue for k for fog' — fi,' = 1eVand T = 1000 K.

4. Solidification range of a binary alloy. Consider the solidification ofa binary
atloy with the phase diagram of Figure 11.10. Show that, regardless of the
instial composition, the melt will always bccomg_ fully depleted in component B
by the time the last remnant of the melt solidifies. That is, the solidification
wiil not be complete until the temperature has dropped to T,.

5. Alloying of gold into silicon. () Suppose a 1000 A layer of Auis evaporated
onto a 5i crystal, and subsequently heated to 400°C. From the Au-$i phase
diagram, Figure 11.11, estimate how deep the gold will penctrate into the

silicon crystal. The densities of Au and Si are 19.3 and 233gem ™. {b) Redo
the estimate for 800°C,
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Chapter 12: Cryogenics

Cryogenics is the physics and technology of the production of low temperatures.
We discuss the physical principles of the most important cooling methads,
down to the lowest temperatures.

The dominant principlke of low temperature generation down 1o 10m¥K is the
cooling of a gas by letting it do work against a force during an expansion. The
gas employed may be a conventional gas; the free electron gas in & semicon-
ductor; or the virtual gas of *He atoms dissoived in liquid “He. The force
against which work is done may be external or internal to the gas. Below
10mK the dominant cooling principle is the isentropic demagnetization of a
paramagnetic substance.

We discuss the cooling methods in the order in which they occur in a
labaratory cooling chain that starts by liquefying heliun and proceeds from
there to the lowest laboratory temperatures, usuaily 18mXK, sometimes 1 pK.
Household cooling appliances and automobile air conditioners utilize the
same evaporation cooling method that is used in the laboratory for cooling
liquid helium below its bolling temperature, to about 1 K.

COOLING BY EXTERNAL WORK
IN AN EXPANSION ENGINE

In the iseatropic expansion of a monatomic ideal gas from pressure p, to a
lower pressure p,, the temperature drops according to

T, = TI(PJJ'PJ”S» ()

by (6.64). Suppose p, = 32alm; p, = latm; and T, = 300K; then the tem-
perature will drop to 75 = 75K. We are chiefly interested in helium as the
working gas, and for helium {1} is an cxccllcnt approximation if the cooling
process is reversible.

The problems in implementing expansion cooling arise from the partial
irreversibility of actual expansion processes. The problems are compounded
by the nonexistence of good low temperature lubricants. Actual expansion

coaling cycles follow Figure 12.1. The compression and expansion parts of

Cooling by External #ork in an Expansion Engine

Compressor Heal ejection

T

; ’ l Heamt exchanger

)

/ Expansion

O AR LN TR R

KHIIIIHHHIH
HIIIHHHHH

AR T T

Working —. f,
volume

Figure 12,1 Simple expansion refrigerator. A working gas is
compressed; the heat of compression is gjected inta the
enviconment. The compressed room temperature gas is
precooled further in the counterfiow heal exchanger. It then
does work in aa expansion enging, where it cools to a
lemperature below that of the working volume. After extracting

hf:al from the working volume, the gas returns to the compressor
via the heat exchanger,
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the cycle are separated. The compression is performed at or above room
temperature. The hot compressed gas is cooled to near reom temperature
by ¢jecting heat into the environment. The gas is further precooled in a counter-
flow heat exchanger by contact with the cold return gas stream at the low
temperature of 1he cooling load. The gas is then cooled to its lowest temperature
in the expansion engine, usually a low friction turbine. The cold gas extracts
heat from the cooling load and then returns to the compressor via the heat
exchasiger. The hent exchanger greatly reduces the cooling requirements im-
posed on the expansion engine. The design of the heat exchanger is as importan
as the design of the expansion engine.

The work extracled by the expansion engine is the enthalpy difference
between the input and output gas: The total energy flowing into the eXpunsion
engine is the internal energy U, of the gas plus the displacement work p, ¥,
done by the compressor, where both U, and ¥, refer to a given mass of gas.
The totl energy leuving the engine with the gas is the energy U, of the gas
plus the work p, 1, required to move the gas against the pressure p,. The work
extracted by the engine is the difference :

W (U + p) = (Us + pa¥i) = Hy = Hy, )

For a monatomic ideal gas U = §Nt and pV = Nr, hence H = $Nt. The
work performed on the enging by the gas is

W o= $N(t, ~ 13). (3)

The ccunterflow heat exchanger is an enthalpy exchange device: it is an
expansion engine which extracts no external work.

Most gas liquefiers use expansion engines to precool the gas close to its
liquefaction temperature. It is impractical to carry the expansion cooling to
the point of fiquefaction: the formation of a liquid phase inside expansion
engines causes mechanical operating difficulties. The final liguefaction stage
is usually a Joule-Thomson stage, discussed below. Helium and hydrogen
liquefiers usuaily contain two or more expansion engines at successive tem-
peratures, with multiple heat exchangers, .

The principle of cooling by isentropic expansion of an ideal gas is upplicabig
to the eleciron gas in semiconductors. When electrons flow from a semi-
conducior with high electron concentration into a semiconductor with a lower
clectron concentration, the clectron gas expands and docs work against the
potential barrier between the two substances that equalizes the two chemical
poteatials. The resulting electronic cooling, cailed the Peltier effect, is used

Gas Liguefuction by the Joule-Thomson Effect

down to about 195K quite routinely;

in muitistage units semperatures down
to 135 K have been achicved.

Gas Liquefaction by the Joule-Thomson Effect

Intermolecular autractive interactions cause the condensation of all gases. A1
lemperatures slightly above the condensation temperature the interactions are
strong enough that work against them during expansion causes significant
cooling of the gas. If the cooling is sufficient, part of the gas will condense.
This process is Joule-Thomson liquefaction.

The practical implementation is simple. Gas at pressure p, is forced through
a constriction called an expansion valve into space with a lower pressure p,,
as In Figure 12.2. The work is the difference between the displacement work
~pd¥, done on the gas i pushing it through the expansion valve and the
displacement work + p, d ¥, recovered from the gas on the downstream side,
Here dV, is negative and d¥, is positiva,

The overall process is at constant enthalpy. To see this, notice that the
expansion valve acts as an expansion engine that extracts zero work. With
W = Qin (2}, we have H, = H, in the Joule-Thomson cffect, For an ideal gas
H = N1, 50 that 1; = 1, in the expansion, There is zero cooling effect for an
ideal gas, '

In real gases a small temperature change occurs because of the internal
work done by the molecules during expansion, The sign of the temperature

Pu ¥y

Expansion vulve

Figure 12.2 The Joule-Thomson effeet. A gas is pushed
through an expansion vatue. Il the pas is nonideal, there wilt
be a temperature change during the expansion because of work
done against the intermolecular forces. If the temperature is
initially below a certain inversion tempeeature, t,,,, the gas

will cool on Joule-Thomson expansicn.
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Table 121 Liguelaciion data for fow boiling zases

7). T., Ton BH, K, ALY,
Gas K K K - ki/mol ' em®/mol watt hryinter
COo, 195 304 £2050) 252 - ma3 34
CH, 12 191 {1290y 8.18 1 344 66
0, 962 155 893 882 281 87
N, 173 176 621 - 557 l 34.6 45
H, 204 333 205 00 | 286 81
‘He 418 5.25 51 0082 4 320 071
He 320 ! 335 23 0025 1 508 0.14

NoTE: T, = utmospheric-pressure boiling temperature; T, = critical temperature: Ty, = Joule-
Thomson inversion temperature; AH = molar latent heat ol vaporization; ¥, = molar volume of
the liquid. The fast column, AH/Y, indicates the heat én walls that can be taken up for a refrigerunt
consumption of 1 liter per hour; T, vaiucs in parentheses are van der Waals values culeulated
from T, and not ncasured value.

Carbon dioxide selidifics when cooled at atmospheric pressure, because its triple point occurs
sbove atmosplieric pressure. Sobid COQy is hnown as dry ice. Metluane, CH,, is e privcipal con-
stitueat of nateral gas, which is liguefied in huge guantities for shipping as LNG (ugi. Ligquid

oxygen and nitrogen are separated in Lhe Bauefaction of air. For helium, we give dala both for the
common isotope *He and for *He.

change during a Joule-Thomson expansion depends on the initial temperature.
All gases have an inversion temperature 1., below which such an expansion

cools, above which it heats the gas. Inversion temperatures for common gases
are listed in Table 121,

N TN I RN A oA

S R o5 NS0 SO PP MDA P S - |

Example: Joule-Thontsan effect for van der Wanls gas. We found in {10.75) that
H = Nt + (NYVYBT — 20) {4)

for a van der Waals gus, where a and b are positive constants, The fast two terms are the
corrections caused by the short range repulsion and the long range attraction. The correc-
tions have opposite signs. The tolal correction changes sign at the temperatuse

T = 2ab = 1, (3)

where 7, is the critical temperature, defined by {10.46).

The temperature z,,, is the inversion temperature. For 1 < 1,,, the enthalpy at fixed
temperature increases as the volume increases; here in expansion the work done against the
altractive imteractions between molecules is dominaal. In a process at constany enthalpy

_this increase is compensated by a decrease of the §N1 term, that is, by cooling the gas. For

Gas Liguefaction by the Joule-Thomson Effect

T > 1, the enthalpy at a fixed temperature decreases because now the work done by the
strong short range repulsive interaciions is dominant:

at the higher temperature the
miolecuies penetrate farthier into the repulsive region.

T S
AR F

T LA M S A e LLI53

Linde eyele.  In gas tiqueficrs the Joule-Thomson expansion 1s combined with
& counterflow heat exchanger, as shown in Figure 12.3. The combination is
called a Linde cycle, after Carl von Linde who used such a cycle in 1895 10
liquefy air starting from room temperature. In our discussion we assume that
the expanded gas returning from the heat exchanger is at the same temperature
as the compressed gas entering it. We neglect any pressure difference between
the output of the heat exchanger and the pressure above the liquid.

To and from compressor
or precooling stages

~+——Heat exchanger

Figure 12.3  The Linde cycle. Gas is liquefied
by combining Joule-Thomson expansion with
a counterflow heat exchanger,

/}T expansidn valve

Liguefied gas

f‘--:t,-:fy-r,@aﬁ;: IR
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0.4 r

0.3

0.2~

Liguefuction coelficient A

O

* Refrigeration load @, in J mol™

0 "0 20 30 a0
' Inpul pressure, atm

Figure 124 Performance of helium liguefiers operating by the Linde cycle,
as a function: of the inpuyt pressure, for an output pressure of 1 atm and

for various vatues of the input temperature. The solid curves give the
liquefaction coefficient, The broken curves give 0, = How — H,,, he
internal refriperation Joad availuble a1 4.2 K ifthe load is placed insidc the
liguchier and the s1ill cold helium gas baited off by the load is retarned
through the heat exchanger rather than bailed off into the amosphere.

See Problem 3. Afier A 5, Crolt in Advasced cryugenics (C. A, Bailey, ed),
Plenum, 1971, p. 187,

e rra ey

Evagorarion Cba!fng: Pumped Helium, 10 0.3 K

The combination hew exchianger-
drrangement. Let one mole of it
fraction 4 is lguefied. Constant ¢

expansion valve is g coustant enthalpy
as enter the combination; suppose that the
nlhalpy requires thay

M= Mg + (4 ~ 2y, ©)

Here H,, = H{T.p.) and H,. = H( TinPou) are the enthalpies per mole of
gas at the input and output pressures, bath at the Common upper temperatyre
of the heat exchanger. Hy, is the enthalpy per male of liquid at its boiling ten:-
perature under the pressure Pouw- From {6} we obtain the fraction

‘Houl — "{irt -
BT I 17
Huu: - Hliq

called the tiquefaction coefficient.
Liquefaction 1akes place when H, » Hi, s that is, when

}!(Tinvpaul) > I‘I(Timpin)- (3}

Only the enthalpies at the ;
the Joule-Thomson exp
will take place.

The three enthalpies in (7) are known experimentally. Figure 124 shows the
liquefaction coefficient calealated from them for hebium. The liauefaction
coeflicient drops rapidiy with increasing T, because of the decrease of the
numeratar in (7) and the increase of the denominater. To obtain uselul Higue-
faction, say 4 > p.i, input temperatures below one-third of the inversion
ally required. For many gases ikis requires precooling of
the gas by an expansion engine. The combination of an expansion engine and
a Linde cycle is cafled 2 Claude cycle. The expansion enging is invariably
preceded by another heat exchanger, 45 in Figure 12,1,

npul temperature of the heat exchanger matter. If
ansion at this temperatuce coals the gas, liquefiction

Evaporation Cuoling: Pumped Hetium, ta 0.3 &

Starting from liquid helium, the simplest route to lower temperatures iy ¥
evaporation cooling af the liquid helium, by pumping away Letium vupor, i
latent heat of vaparization of the liquid helium is extracted along with the VARG,
The heat extraction causes the further cooling: work is done against the inter-
atomie forces thinl caused the helium 1o liquefy in the first place. In Joule-
Thomson cooling the jnitjal state is a gas, while in evaporation cooling the
initial state is a liquid, )
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TFable 122 Temperatures, in kelvin, at which the vapor pressurcs of *He and
*He reach speeificd values

ptorr} Hil 1o Hits 191 1 10 100
“He 0.56 0.66 0.79 098 127

X ) ! 2 1.74 2.64

*He 0.23 0.28 0.36 047 066 1.03 . 1.79

Fhe lowest temperature accessible by evaposation cooling of liguid helium
is a problem in vacuum technology (Chapter 14). As the temperature drops, the
equilibrium vapor pressure drops (Table £2.2) and so daes the rate at which
helium gas and its heat of vaporization can be extractéd from the Hquid helium
bath.

Evaporation cooling is the dominant cooling principle in everyday cooling
devices such as household relrigerators and freczers and in air conditioners.
The only difference is in the working substance.

Helium Dilution Refrigerator: Millidegrees

Once the equiilibrium vapor pressure of liquid *He has dropped to 1072 1orr,
classical refrigeration principles lose their utility. The temperature range from
06K to 0.01 K is dominated by the helium dilution refrigerator, which is an
evaporation refrigerator in a very clever quantum disguise.*

We saw in Chapter 7 that *“He atoms are basons, while *He atoms are fer-
mions. This distinction is not important at temperatures appreciably higher
than the superiluid transition temperature of *He, 2.17 K. However, the two
isotopes behave as altogether different substances at lower temperatures. Below
087K tiquid *He and *He are immiscible over a wide composition range, like
oif and water. This was discussed in Chapter 11 and is shown ia the phase
diagram of *He-*He mixtures in Figure 11.7. A mixture with composition in
the range labeled unstable will decompose into two separate phases whese
compositions are given by the two branches of the curve enclosing that area.
The concentrated *He phase floats on top of the dilute He phase.

As T — 0, the *He concentration of the phase dilute in *He drops to about
6 pet, and the phase rich in *He becomes essentially pure *IHe. Consider a liquid

* For good seviews, see D, S. Befls, Contemporary Physics 9.97{1968); 1. C. Wheatley, Am. I, Phys.
36, 181 (1568}, for a general review of cooling techniques below 1 K see W. I, Huiskamp and Q. V.
Leunasmaa, Repts. Prog, Phys. 36, 423 {1973); O. V. Lounasmaa, Experimental principles and

me.fhatf's below 1 K, Academic Press, New York, 1974, A very elementary account is O, V, Lounasmaa,
Scxm_ufzc American 221; 26 (1969). . o . ‘

Helivm Dilution Refrigerator: Millidegrees

SHe
| -“evaporation”

Figure 125 Cooling principle of the helium difution refrigerator. Liguid
*He is i equilibriom with a *He-*He mixture, When *He ts added to the

mixture, *He evaporates from the pure *He fiuid and absorbs heat in the
process,

3He~*He mixture with more than & pet *He at a temperature in the millidegree
range, near the bottom of Figure 11.7. At these temperalures zlmost all the *He

atoms have condensed into the ground state orbital. Their entropy is negligible -

compared to that of the remaining *He atoms, which then behave as if they were
present alone, as a gas occupying the volume of the mixture. 1 the *He concen-
tration exceeds 6 pet, the excess condenses into concentrated liguid *He and
latent heat is liberated. If concentrated liquid *He is evaporated into the *He
rich phase, the latent heat is consumed. The principle of evaporation cooling
can again be applied: this is the basis of the helium dilution refrigerator.

To see how the solution of *He can be employed 1o obtain refrigeration,
consider the equilibrium between the concentrated *He liquid phase and the
dilute *He gas-like phuse {Figure 12.5). Suppose that the *He*He ratio of
the dilute phase is decreased, as by dilution with pure *He. In order to restore
the equilibsium concentration, *He atoms will evaporate from the concentrated
*He liquid. Cooling will result,

To obtain a ¢yclic process the *He-*He mixture must be separated again,
The most commosn method is by distillation, using the different equilibrivm
vapor pressures of *He and *He {Fable 12.2). Figure 12.6 shows a schematic
diagram of a refrigerater built on these principles. The diagram is highly
oversimplified. n particular, in actual refrigerators the heat exchanger between
the mixing chamber and the still has an elaborate multistage design. Analternate
method* to separate the He-*He mixture utilizes the superfluidity of *He
below 2.17K. For a variety. of practical reasons it is less commonly used,
although its performance is excetlent. ' ‘ ' :
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Figure 12,6 Helium ditution reftigerator. Precooled liquid *He enters a mixing
chamber at the lawer end of the assembly, where cooling tukes place by the quasi.
Svaporation of the *He atoms into the denser *He-*He mixed phase underneath,

The quasi-gas of °H atoms dissolved in liquid 4 then diffuses through » counterfiow
heut cxchanger inio a st There the *He is distilleg from the *He-*He mixture
selectively, and is pumped off, To obain a uselul e evaporation and circulation
fate, heat must be added (o the still, to raise ils temperature 1o about 0.7 K, at which
temperature the *He VaPOr pressure is slill much smaller. Thus, the *He does not
circulate to any appreciable extent; the Yo moves through a nearly stationary
background of *He. The Pumped-off *He is returned 1o the system and is condensed

clrculation pump over the pressure in the siiif, The liquified *He is cooled further,
fisst in the still, then in the countgrfiow
chamber.

The helium dilution refrigerator has a low temperature Hmit. In the conven.
tionat evaporation refrigerator this limit arose because of the disappearance of
the gas phase, but the quasi-gas phase of *He pessists down to 1 = g, However,
the heat of quasi-vaporizalion of *He vanishes proportionally to 12, and as 4
result, the heat removal rate from the mixing chamber vanishes as ¢2, T!;
practical low (emperature Hmit is about 10 mK, In one representative device
& temperature of 83mK has been achieved: the same device was capable of
removing 40 W at 80 mK,

Temperitures below SmK can be achicved by single shot operation. If, in
the design of Figure 12.6, we shut off the 3He supply afler some time ofoperation,
there is no need to cool the incoming *He itself, and the temperature of the
mixing chamber drops below its steady state value, until all *He has been
removed from the chamber,

The dilution refrigerator is not the only cooling method in the millikelvin
range that utilizes the peculiar properties of *He, An alternate method, known
as Pomeranchuk cooling, wiilizes the phasc diagram of *He, as shown i Fig-
wre 715, with its negative slope of the phase boundary between Hguid and
solid *He. The interested reader is referred to the reviews by Huiskamp and
Lounasmaa, and by Lounasmaa, cited carlier.

* N. M. Pennings, R, de Bruyn Quboter, K. W, Taconis. Physica B 81, 101 (1976), and Physica B
B4, 102 {1576). . .

45



36

Chapter 12 Cryogenics

ISENTROPIC DEMAGNETIZATION:
QUEST FOR ABSOLUTE ZERO

Below 6.0f K the dominunt coeling process is the iscntropic (ndiabatic} demag-
netization of a paramagnetic substance. By this process, temperatures of 1 mK
have been attained with electronic paramagnctic systems and § pK with nuclear
paramagnetic systems, The method depends on the fxet fhat at o fixed tempera-
ture the entropy of a system of magnetic moments is lowered by application of a
magnetic field—essentially because fewer states are accessible 1o the system
when the level splitting {s large than when the level splitting is small. Examples
of the dependence of the entropy on the magnetic field were given in Chapters 2
and 3. :

We first apply a magnetic field B, at constant temperature t,. The spin excess
witl attain a value appropriate to the valuc of B, fr). If the magnetic field is then
reduced to B, without changing the entropy of the spin system, the spin excess
will remain unchanged, which means that Bz, will equal By /1. 1{ B, « B,
then z; <« 1,. When the specimen is demagnetized iscntropically, entropy can
flow into the spin sysiem only from the system of lattice vibrations, as in Fig-
ure 12.7. At the temperatures of interest the entropy of the lattice vibrations is
usually negligible; thus the entropy of the spin system will be essentially constant
during isentropic demagnetization of the specimen.

? ;
{
i |
1
% b Latlice
= =
& { g
= | o
i i Total i E
=l &
Spin ! .
P 1 Spm
Lattice Time — ! Time —
Before New equilibrium Before | New equilibrium

Time at which’
magnelic field
is removed

TFime at which
magnetic feld
is removed

Figure 12.7" During isentropic demagnetization the total entropy of the g
specimen is constant, The initial entropy of the iattice should be smalf in

comparison with the entropy of the spin system in order to obtain significant
cooling of the lattice, . S .

Iscatropic Demagnetization : Quest for Absolute Zerp
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Figure 12.8  Eniropy for a spin  system as a function af temperature, assuming
ag internal rundom magnetic ficld B, of 100 gauss. The specimen is magnetized
isothermalty along ob, and is then insulated thermully, The external magnetic

field is traed off ulong be, by order to keep the figure on a reusonuble seute

the initial temperatore T, and the externat magnetic ficld are Jower than would by
uscd in prictice.

The steps carried out in the cooling process are shown ia Figure 12.8. The
field is applied at temperature 1, with the specimen in good thermal contact
with the surroundings, giving the isothermal path ab. The specimen is then
insulated (Ao = 0} and the field removed; the specimen fotlows the constant
entropy path be, ending up at temperature r,. The thermal contact at T, I8
provided by helium gas, and the thermal contact is broken by removing the
gas with a pump.

The population of a magnetic sublevel is a function only of mB/t, whete m
is the magnetic moment of a spin. The spin-system entropy is a function anly
of the population distribution; hence the spin entropy is a funiction only of mB/z.
Il B, is the effective field that corresponds to the diverse local interactions among

the spins or of the spins with the lattice, the final temperature t, reached in an
isentropic demagnetization experiment is

1, = 1,{B,/B}, )]

where B is the initial field and t, the initial temperature. Results are shown in

Figure 129 for the paramagnetic salt known as CMN, which denotes cerous
magnesium ni!ratc.

347



348

Chapter 12: Cryogenics

Final magnetic field, in 10% gauss
L8]

: .
0 (e8] 0.2 0.3 0.4 65 06
' Final temperature, in K

Figure 12,9 Final magnctic field B versus final
lemperature T, for magnetic cooling of cerous magnesium
nitrate. 1 these cxperiments the magnetic field was pot
removed entirely, but only 1o the jndicated values. The
imitiaf fichds xny temperalitrés were identical fn ali runs.
Afler unpublished results of I S. il and 1. 4. Milner,

as cited by N, Kurti, Nuove Cimento (Supplemento) 6,
1109 (1957).

The process described so far is a single shot process. It is easily converted

into a cyclic process by thermally disconnecting, in one way or anotker, the :

demagnetized working substance from the foad, reconnecting it to the reservoir
at 7, and repeating the process *

Noctear Demagnetization

Because nuclear magnetic momenlts are weak, nuclear magnetic interactions
are much weaker than similar electronic interactions. We expect 1o reach a
temperatore 100 times lower with a nuclear paramagnet than with an electron
paramagnet. The iritial temperature of the nuclear stage in a nuclear spin-

"LVl Heer, OB, Barnes, and 3. G, Daunt, Rev. Sci. Inst, 25 1088 (1959); W. . Praut, §, S,
Rosenblum, W, A, Steyert, and J. A, Barclay, Cryogenics 17, 381 {1977

Nuclear Demagnerization

Initial magnetic field in kG

5 10 20 30

—
DD

o oo oo

Final temperature, in 'pK
Lt

Gé ! 2 3
Initial B/7 in 168 G/K

Figure 1210 Nuclear demagnetizations ofcoppcr
rucled in the metad, starting from 0.012 K and varions

fichls. Alter M_ V. Hobden and N, KNurti, Phil, biap.
4, 1902 (1935w,

cooling experiment must be lower than in an electron spin-cooling experiment.
lwestartat B = S0kG and Ty =001 K, then mB/k,T, =~ 0.5, 2nd the entropy
decrease on magnetization i over 10 percent of the maximum spin entropy.
This is sufficient to overwhelm the lattice and from (9) we estimate a final
lemperature T, = 1077 K. The first auclear cooling experiment was carried
out by Kerti and coworkers on Cu nuclei in the metal, starting from a first
stage at about Q02K as attained by electron demagnetization cooling, The
lowest temperature reached in this experiment was 1.2 x 10-¢ K. The results
in Figure 12,10 fit a line of (he form of (9): Ty = T,(3.1/B) with Bin 2AUSS, 50
that B, = 3.1 pauss. This is the effective interaction field of the magnetic mo-
ments of the Cu nuclei. The motivation for using nuclei in a metal rather thag
in an insulator is that conduction electrons help ensure rapid thermal contac
ol tattice and nucle] at the temperature of the first stage.

Temperatures below [ 4K have been achieved in experiments in which the
cooling load was the system of nuclear spins itsclfy particularly in CXperiments
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that were combinations of coolinge

xperiments and nuclear magnetic resonance
experiments.* :

SUMMARY

1. The two dominant prinei

. ples of the production of low temiperatures are the
cooling of x g

as by letting it do work against a force during an cxpansion
and the isentropic demagnetization of paramagnetic substance,

2. Joule-Thomson cooling is an irreversible process in which work is done
apainst interatomic alsuctive forces in o gas. U is vsed i the !

St ast cooling
stage in liquelying Jow-boiling gases.

- Inevaporation cooling the work is also done against the interatomic forces,
but starting from the liquid phase rather than the gas phase. Using different
working substances, evaporation cooling forms the basis of houschold
cooling devices, automobile air conditioners, and

laboratory cooling devices
(in the range 4 K down to 10mK).

. The helium dilution refrigerator is an evaporation cooling device in which
the gas is the virtual gas of *He atoms dissolved in “He.

. Isentropic demagnetization utilizes the lowering of the temperature of a
system of magnetic moments, when an external magnetic field is reduced in
strength. The magnetic moments may be electronic or nuclear moments.

By using nuclear toments, temperatures in the micrekelvin range may be
achieved. '

PROBLEMS

1. Helium as a van der Waals gas.
for helium by treating it as a v
coefficients @ and b in such 2 w

{a} Estimate the liquefaction cocfficient 2
an der Waals gas. Select the van der Waals
ay that for one mole 2N s the actual molar
volume of liguid helivm and that Zufb is the actual inversion temperature.
Use the data in Table 12.1. Approximate the denominator in {7} by setting

Hou ~ Hyy = AH + 3z, ~ Tl‘;q} , (10}

* See, for example, M. Chapeliier, M. Geldman, V. H. Chau and A. Abragam, Appl. Phys. 41,

i

ETECAEnS

Problems

where AH is the latent heat of vaporization of fiquid helium. (Explain how this
approximalion arises il one freats the expanded gas as an ideal gas). The
resulling expression gives 7 as a function of the molar volumes V, and V,,,.
Convert ta pressures by approximating the F's via the ideal gas faw. (b) Insert
numerieal values for 7 = 15K and compure with Figure 124,

2. Mdeal Carnot liguefier. () Caloulate the work W that would be required to
liquefy one mole of a monatomic ideal gas il the liquefier operated reversibly.
Assume that the gas is supplicd at room temperature To. and under the same
pressuee po at which the liqueficd gas is removed, typically | atmosphere, Let
T, bethe boiling temperature of the as at this pressure, and A the latent heut
of vaparization. Show that under 1hese conditions

. Ty Top=T To = T
I-V,“m%th(legT:w e f)j_r TR US

To derive (1) assume that the gas is first cooled at fixed pressure Po from T,
to Ty, by means of a reversible refrigerator that operates between the fixed
uppet temperature Ty = Ty and a variable lower temperature equal 1o the gas
temperature. Initially 7, = Ty, and attheend T, = T,. After veaching T, the
refrigerator extracts the fatent heat of vaporization at the fixed lower tempera-
ture T,. {b) Insert Ty = 300K and values for T, and AH characteristic of
helium. Re-express the result as kilowatt-hours per liter of liquid helium.
Actual helium liquefiers consume $ 10 [0k Wh_liter.

3. Claude cycle helium liguefier. Considera helium liquefierin which { mols™!
of gas enters the Linde stage at T, = 15K and at a pressure p;, = 30aim.
{a) Calculate the rate of liquefaction, in liter hr !, Suppose that ali the fiquefied
helium is withdrawn 10 ool an external experimental apparatus, releasing the
boiled-off hetium vapor into the atmosphere. Caleulate the cocling load in
walls sufficient o evaporate the helium at the rate it is liquefied. Compare this
with the cooling load oblainable if the liquefier is operated as a closed-cycle
reftigerator by placing the apparatus into the Hoquid collection vessel of the
liquefier, so that the stili cold boiled-off helium gas is returned through the heat
exchangers. (b) Assume that the heat exchanger belween compressor and ex-
pansion engine {Figure 12.1) is sutficiently ideal that the expanded return pas
that feaves it with pressure p,, is at essentially the same temperature T, as the
compressed gas entering 1t with pressuse p,. Show that under ordinary liquefier
operation the expansion engine must extract the work

H’; w= h‘{T“P;) - H{Tin,pin}

"'7 (E - ‘;-)[H(Tmpnu!) - H{Tin'Puul)} = %;‘ R(Tt - Tin} L] (12} ]
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per mole of compressed gas. Heze Ty, po, oo, and 2 have the sa
as in the Linde cycle secijon of this chapler. Assume the
eperates isentropically between the pressure-temperature pairs {P..T.) and

{Pin:To). From (12)and the given values of (i, T caleulate (2., T ) (c) Estimate

me Mmeaning

in.
the minimum COMPresser power required to operate the liquefier, by assuming
that the compression i isothermal from Poey 10 p, 8t temperature T, = 50°C

4. Evaporarion cacling limit.  Fstimate the lowest lemperature T, that can
be achieved by Evaporation cooling of liquid *He if the cooling load is 0.1 W
and the vacuum pump has a pump speed § = [0%Titers ™4, Assume that the
hefium vapor pressure ubove the boiling heliwg is cqual to the equilibrium
vapor pressure corresponding to T and assume that the helium 215 Witrms
UP L0 ro0m temperature and expands accordingly before it enters the pumy,
Note: The molar volume of un jdeul Cas ol room tempersture and atmospheric
pressure (7601011} is abow 24 liers. Repent the calcubation for a much smaller

heat load (1072 W) and a faster pump (10° titer 5~ '). Pump speed is defined i
Chapter 14.

5. Initial temperature Jor demagnetization cooling,  Consider a paramagnetic
salt with a Debye temperature {Chapter 4) of 100K, A magnetic field of 100G
of 10tesla is availabie in (he laboratory, Estimate the lemperature to which the
salt must be precoaled by other means in order that significant magnetic cooling
may subsequently be gbtained by the isentropic demagnetization process. Take
the magnetic moment of a paramagnetic fon to be 1 Bohr magneton, By signifi-
cant cooling we may understand cooling to 0.1 of the initial temperature,

expansion engine -
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I1. Electron-Hole Pair Generation 388
Note: This chapter is wrilten for students with a professional interest in semiconduciors, We assume

familiarity with conduction and valence bands

i electrons and holes; donors and acceptors. The
notation is (hat:

n, = concentration of conduction electrons;
n, = coneenlration of holes;

=
i

; = value of 0, or a, for an intrinsic semiconductor;
, = effective quantum cencenteation for conduction ciectrons;
n, = effective quantum concentration for haies.

]
1t

In the semiconductor literature
and valence bands. Notice tha
carricr mobilities.

- and n, are called the effective densities of states for the conduction
we use g for the chemical patential or Fermi jevel, and we use Jtlor

Energy Bands; Fermi Level; Electrons and Holes

ENERGY BANDS; FERMI LEVEL;
ELECTRONS AND HOLES

The application of the Fermi-Dirac distribution to electrons in semiconductars
is central 1o the design and operation of all semiconductor devices, and thus
to much of modern electronics. We treat below those aspects of the physics
of semiconductors and semiconductor devices that are parts of thermat physics.
We assume that the reader is familiar with the basic ideas of the physics of
electrons in crystalline solids, as treated in the texis on solid state physics
and on semiconductor devices ¢ited in the 'ge;mrai references. We assume the
concept of energy bands and of conduction by electrons and holes. Qur principal
aim is 10 understand the dependence of the all-important concentrations of
conduction electrons and of holes tpon the impurity concentration and the
temperature. ' '

A semiconductor is a system with electron orbitals grouped into two energy

bands separated by an encrgy gap (Figure 13.1). The lower band is the valence
band and the upper band is the conduction band.* In a pure semiconductor at
© = O all valence band orbilals are oceupied and all conduction band orbitals
are empty. A full band cannot carry any current, so that a pure semiconductor
at t = 0 is an insulator. Finite conductivity in a semiconductor follows either
from the presence of electrons, called conduetion clectrens, in the conduction
band or from unoccupied orbitals in the vatence band, cafled holes.

Two differeat mechanisms give rise to conduction electrons arrd holes:
Thermal excitation of electrons from the valence band to the conduction band,
ot the presence of impurities that change the balance between the number
of orbitals in the valence band and the number of electrons available to fitl them,

We denote the energy of the top of the valence band by e, and the energy
of the bottom of the conduction band by ¢.. The difference

g, =& — g, (n

is the energy gap of the semiconductor. For typical semiconductors g, is betwean
0.1 and 2.5 electron volts. In silicon, g, == L1 eV. Because 1 =~ 1/40e¥ at room

* We treat both bands as single bands; for our purposcs it does not matter that both may be groups

- of bands with additional gaps within each group,
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Figure 13,1 Energy band strutture of a purg semiconductor or insulator.
The clectron orbitals oteur in bands which extend through the crystal.
Atr = 0 aff orbitals P o the top of the valence bang are filled, and 1the

conduction band is empty. The encrgy interyal between the bands is called
the energy gap,

emperature, we usually have & » 7. Substances with 4 gapof more than about
235 cEV are wsually instlators. Table 13.1 gives the CRCTEY gaps for selected
semiconductors, together wirh other properties necded later,

Let n, dencte the concentration of conduction electrons and ny the cop-
centration of holes. Iy 4 pare semicenductor the two wil] be equal;

1, = Hy {2)

il the cryszal is electrically neutrat,

Maost semiconductars as used in devices have been intentionaliy doped with
impuritics that may becone thermatly jonized i the semiconductor at room
lemperature. Impurities that pive an electron to the crystal (and become
positively charged i the process) are called donors, Impurities that accept

Encrgy Baads; Fermi Level; Electrons and Hales

Table 131 Band structare data of some imporiant semiconductors

: Deasity-of-states Diclectric
Energy Quantum concentrations - eflective masses, constants,
gaps at of electrons and holes in units of the relative to
00K at 300K free clectron mass vacuum
& ", ", mrAm o m €/gq
ey cm ¥ cm?
——te e
5i L4 27 x 1ot 11 x 1o" £.06 0.58 1.7
Ge 067 O x 1010 5.2 x Ipi8 .56 0.3% 158
GaAs 143 46 x 107 L3 x 10'* 0.07 071 E3.13
inP £.35 49 x 1047 6.9 = ip'# G073 0.42 12.37
InSb i 018 46 % 106 62 x 1418 0.615 4.39 17.58

an electron from the valence band (and become negatively charged in the
process) are called acceptors,

Let ny* be the concentration of positively charged donors and m,” the
concentration of negatively charged acceptors. The difference

An = p,* }1,'“ N (3}

is called the net ionized donor concentration. The electrical neutrality condition
becomes

e = by = Am =yt - gy -, (4)

which specifies the difference batween electron and hote concentrations,

The electron concentration may be caleulated from the Fermi-Dirac dis-
tribution function of Chapter 6:

1
explle — p)fe] + 1°

(5}

where g is the chemical potentiaf of the electrons, The subscript e refers to
clectrons. In semiconductor theory the electron ehemical potential is always
called the Fermi level. Further, in sensiconductar theory the charseter p is
almost always reserved for the electron and hole mobilities, and the Fermi
level is designated by & ar by {. To aveid canfusion with the Fermi energy
of & metal which we designated as e, and which stands for the Fermi levei
in the limit t - 0, we shalf maintain our previous usage of the letter u for the
chemical potential at any femperature,
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Given pand 1, the number of conduction electrons is obtained by sumiming
the distribution {unction f.(e) over all conduction band arbitas:

N, =3 fie). {6
[4¢:]

The number of holes is

M=2Dwmm:§mm

Y8

N

where the summation is over all valence hand orbitals. Here we have introduced
the quantity

A= 1 = f4e) = 1

Pl =g+ 1 ®

which is the probability that an orbital at snergy & is unoccupied, We say
that the unoccupied orbital js “occupied by a hole™; then f{e} is the distribution
function for holes just as f{e)
parison of (8) with (5} shows that the hole occupation probability involves
# = & where the electron occupation probability involves s — p,

The concentrations n, = N /V and n, = N,j¥ depend on the Fermi level,
But what is the value of the Fermi level? It is determined by the electrical
neutrality requirement (4}, now written as ndp) - nf{u) = An. This is an

implicit equation for H; ta solve the equation we must determine the functional
dependences n,{;) and n,{p).

Classicat Regime

We assume that both electron and hole concentrations are in the classical
regime defined by the requirements that fo<«1land f, « 1, as in Chaper 6.
This will be true if, as in Figure 13.2, the Fermi level lies inside the energy gap
and is separated from both band edges by energies large enough that

exp[—{e. — ) «< 1y exp[—{u — g)t] « 1. (%
To satisly (9) both (g, ~ ) and (x — £} have to be positive and at least a
few times larger than 1. Such a semiconductor is called nondegenerate. The
inequalities (9} place upper limits on the electron and hole concentrations and
are satistied in many applications. With (9} the two occupation probabilities
- Jdeyand fi(e) reduce 1o classical distributions: T

is the distribution [unction for electrons. Com- .

Classical Regime

i
t
:
Conduction
band
N n
v J Valence VY

1 — fle Y << L band
¢ i
Jley |
{

Figure 13.2  Occupancy of orbitals at a finite temperature, zceording to the Fermi.
Diszc distribution function. The conduction and valence bands may be represented
in terms of temperature-dependent effective numbers N,, N, of degenerate orbitals
located af the two band edges ¢, ¢,. The n,, n, are the corresponding quantum
concentrations,

fl) = exp[—(e — m/1];  fle) = exp[—(u — &)/7]. {10)

We use (6) and (10) to write the total number of conduction electrons in the
form

Ne o=} exp[ —(e - pyjr] = exp[ s, ~ if)/f}{z,;ﬁxp["(e - Ec}ﬂ} ,
of

: Nu = Nrexp[m(sc - jl)ft], (11)

159



350

Chapter 13: Senticonductor Statisries

where we defipne
Ne= 5 exp[—(e - sy/e, BE
- B ) ) . o

Hete e — £, is e cenergy of a conduction e
band edpe ¢, 15 otigin.

The expression for N, has the mathematjcal form o
for one electron in the conduction band. I Chapter 3 we evaluated a similar
sum denoted there by Z,, and we can adapt that result ta the present problem
with an approximute modification for band structure effects, Because of the
rapid decrease of expf —{¢ - &J/11 s ¢ increases above its minimum value
at g, only the distribution of orbitals within a range of 4 few £ gybove &, really
matiers i the evaluation of the sum in {12). The orbitals high in the band
make a neglipible contribution. The iImportaet point is that near the bund edge
the electrons behyve very much fike free particles, Noy only ire the electrons
mobile, which causes the conductivity of the semiconductor, but the energy
distribution of the orbitals near the band edge usuatly differs from that of free
particles only by A proportionality factor in the energy and eventually in the
sum for Z,, .

We can arrange for 4 sujtahle proportionality factor by use of a device
called the density-of-states effective mass. For free particles we caletlated the
partition function £y in (3.62), bul for zero spin. For particles of spin ¥ the
result is larger by a factor of 2, so that (12) becomes

eciron referred 10 the conduction

{ 2 partition function

Ne=Z) = gV = 2mepanntpiny, {13)

Numerically, this gives

NV > 2500 x 1009 (TH00 K)oy -2 {14}

where T is in kelvin, :
The quantity N, for actugl semiconductors exhibits the SAMIC lemperature

dependence as {13}, but differs in magnitude by a proportionality factar. We
express this formaily by writing, in analogy to (13},

Ne = 2m y2ehdPiy | (15)
where m.* is called the density-of-states effective mass for elecirans. Experi-
mental values are given in Table 131, The introduction of effective masses
Is more than a formality, Yo the theory of efectrons in erystals it is shown that

Classical Repime

the density-of-states masses, however. ]
We define the quantum concentration n, for conduction electrons as

B ® NSV = 2m b1/ 2nnt)32, (16}
S
By {11} the conduction clectron concentration " = N /¥ becomes
e = neexpl (e, - p)je). {17}

The carlier assumption (3) is cquivalent to ke assumption Wt n, « n, so
that the conduction clectrons actas an ideal pas, As an aid 1o memory, we may
think of N_ as arising from N, orbitals at &, with the Fermi lavel at y1. Warning:
In the semiconductor literature m is invariably cafled the effective density of
states of the conduction band.

Similar reasoning gives the number of hales i (he valence band:
Ny = Y expl—{u — g)j] = Nyexp[—(p — g)/], (18)
va
with the definition

N, = Zcxp£ﬁ(£, - &)/t]. {19
VR

We define the quantum concentration n, for holes as

o= NV = 2 ¥ 2mhyir {200

whiere w,* s the density-sf-states effective mass for holes. By (18) the hole
concentration m, = N, /V is

e

n, = nvexp{—(;! - ﬁr}/r]'

e

{21)
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Like (17), this gives the carrier concentration in terms of the quantum con-
centration and the position of the Fermi level relative to the valence band

edge. In the scmiconductor literature n, is called the effective density of states
of the valence band.

Law of Mass Action

The product nn, is independent of the Fermi level so long as the concentrations
are in the classical regime. Then

Mty = nexpl —(e, — g,)/1] = nn,expl-g.fr) {223)
where the energy pape

s = £ — £, I a pure semiconductor we have 1, = n,,
ard the common value of the two concentrations is ca

iled the intrinsic carrier
concentration n, of the semiconductor, By {(22a),

ny o= ("c”r)”z cxp( L 59,[21’), (22b)

‘The Fermi leve! independence of the product n,m, means that this produc(.

retains its value even when n, # ny,
impurily atoms, provided both conc
We may then write {22a) as

as in the presence of electrically charged
catrations remain in the classical regime.

oy = n?, {22¢)

The value of the product depends only on the temperatuse. This result is the
mass action law of semiconductors, similar to the chemical mass action law
(Chapter 9).

Intrinsic Fermi Level

For an intrinsic semiconductor n, = n;, and we may equate the right-hand
sides of {17} and (22b):

3’!; EXIP[‘—(E‘. - [1)/'5] == (ncnu)”zexp{--ag/}c}. (23)

Insert e, = ¢, — ¢, and divide by n expi—e./1):

c':gp(y[r) = (m,/n) " exp[(e, + )2,

PG ir e ol L BV S

Denors and Acceprors

We take logarithms to obiain
o= e, + £} + ;‘;r[og(nr,’uf) =% +£) + %r]og(mh“/uzi*) N (24)

by use of (16) and (20). The Fermi level for an intrinsic semiconductor lies near

the middle of the forbidden gap, but displaced from the exact middic by an
amount that is usually small.

n-TYPE AND p-TYPE SEMICONDUCTORS
Doners and Aceeptors

Pure semiconductors are an idealization of fitle practical interest. Semicon-
ductors used in devices usually have impurities intentionally added in order to
increase the concentration of either conductian electrons or holes. A sermicon-
ductor with more conduction electrons than holes is called n-type; a semi-
conductor with morte holes than elecirons is calted p-type. The letters n and p
signify negative and positive majority carriers. Consider a siticon crystal in
which some of the Si atoms have been substituted by phosphorus atoms.
Phosphorus is just to the right of Si in the periodic table, hence each P has
exactly one electron more than the §j it replaces. These extra electrons do not
fit into the fifled valence band; hence a Si crystal with some P atoms will contain
more condduction electrons and, by 1he luw of mass action, fewer holes than o
pure Si crystal. Nest consider aluminum atoms. Aluminum is just to the teft
of Siin the periedic table, hence Al has exuctly one clectron fewer than the Si
it replaces. As a resuft, Al atoms increusc the number of holes and deerease the
aumber of conduction ¢lectrons.

Most impurities in the same columns of the periodic table as P and Al will
behave in Si just as P and Al behave. What matiers is the number of valence
electrons relative 1o §i and not the total number of clectrons on the atom,
Impurities from other columns of the periodic table will not behave so simply.
Similar reasoning can be applied to other semiconductaors, for example GaAs,
For the present we assume that each donor atom contributes one electron which
may enter the conduction band or fill one hole in the valence band. We also
assume that each acceptor atom removes one electron, either from the valence
band or from the conduction band. These assumptions are called the approxi-
mation of fully jonized impurities: all impurities when ionized are either posi-
tively charged donors D* or negatively charged acceptors A™.

The electrical neutrality condition (4) teld us that

An =n, — n, = n,* - {25}
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Because n, ~ n2n,

from themass action law, we see thay {250 1eads toa quadratic
¢quation for p,: B

2

=, An = 2 (28)
The positive raot is
e = Hlanm? + R L Any (27a}
and because fly = 1, ~ Anwe have
B, = H(An)? +. T . Anj, (27%)

Most often the doping concentralion is ]

arge compared 1o the intriasic con-
centration, so that ejther 1, or n, is much

larger than g

An] 5y, {28)
This condition defines an extrinsic semiconductor, The Square roots in (27)
can then be cxpanded: : :

[(am? + dn2]i2 = At + (QmfAny¥]r2
> ;;\u{ + 2n,-2fi£\):f. (29

In an nype semiconduetor Ay is positive and (27) becomes

Me 2 An 4 op Ay~ Any o ny > YA « n, (30}
Inap-type sermiconductor Ay s negative and (27 becomes
He = 02| An] « i = |An] 4 0 an] = Ja]. (31)

The majority carrier concer
the magnitide of An,
proportional 1o [An].

Uration in the extrinsic Gmit {28} is nearly equal to
while the minority cargjer concentration is faversely

Fermi Level in Extrinsic Semicenductop

By use of the muss action law we caleulaied tl
having 1o calculate the Fermi level first, The
1, by solving {17 or (21) for 1

e CUrTiCr concentratjons without
Fermi level is obtained fromn, or

T A e e L

[T -

0.0 *F— :

0.2~
0.3

felype, da = 012 ¢p-3

LConduction ban

Begencrate Senicanducteors jss

TR e

d -

Figure 13,3 The Fermi tevet ;
varfous doping concentrations. The Ferm{Jevels
the band edges. A smalt decreas
been neglected,

o7 Valence band -

<00 306

% silicon as a fuaclion ol lemperature, for

are expressed relative to

¢ of the energy Bup with temperature has

o8~ rloglngn) = ¢, + tlogpn in,). {32

the valence band edge.

Dregencrate Semiconductors

When one of the carrier concentratio
tum concentration, we may no tonger use i+
carrier. The calculation of the CRITier concentrati
of the Fermi gas in Chapter 7. The sum over a4
cqual to the number of elecisans, is wrilten 1g a
states times the distributjon function:

N = f{f{,ﬂ(fl]f(ﬁ) .

ns is increased and approaches the quan.
re classical distribution {10} for that

on now follows the trealment
il occupied orbitals, which i
e integral over the density of

{33)
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where for free pasticles of mass m the density of states is

Vo 2m\¥i
%}mz?f(}':;) g, (34)

That is, De)de is the number of orbitals in the energy interval {2 + de). To
make the transition to conduction electrons in semic
byaVimby m* and e by g £. We gbiain

T m N\ ar el ~ g )'?
BT

Letx = (g eleandy = {u — £)/x. We use the definition (16} of n, 1o obtain

onductors we replace N

' 2 e dx x'/?
njng s f(g) = - R o— 34
! (i) Jrd® L explx — i) (38)

The imegraf I{n} in (38) is known as the Fermi-Diréc in{cgrnf.
Whene, — p» v we kave —q » 1, 50 that exp{x — 5} » L. In this limit

nefn, = \%{ e [ dxem it = % TR exp[{p — g)], (37

the famitiar result for the ideal gas,

In semiconductors the electron concentration rarely exceeds several times
the quantum concentration n,. The deviation between ihe value of 4 from (35)
and the approximation {37} then can be expanded into a rapidly converging
power series of the ratie » = n,/n, called the Joyce-Dixon approximation:*

3 - ]Ggr:%.r——(i ﬁ)z

r= n,/n., (38)

Figure 13.4 compares the cxact relation €36} with the

(38).

* W. B. Joyce and R. W. Dixon, Appl. Phys. Lest. 31, 354 (19771, If the right side of (38) is written
as 3 A the first four cocllicicnss are Ay == 353553 x J07H A; = 495009 % 1073 4, =
148386 x K074 A, = —4.42563 x 1075,

approximations (37} and

A
fa
i
<
e
H
oo
¥
i

TR

Begenerate Semiconductors

r o= {(), exact

10k 7 :}ogr

7oz,

a1

6.0

0.001 I i 1 I I | t 1 I H ! | I
9___] wl -5 —4 =3 -2 -1 ¢ 1 2 3 4 5 6 7

n={x— el

Figure 13.4  Elcctron concentration as a fungtion of Fermi lovel, for H near or

above conduction band edge e, The dashed curve represents the first term of the
Joyce-Dixon approximation (38),
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When n, is no longer small compared to n,

: . the expression of the mass action
law must be modified. In Problem 4 we ask 1

he reader 1o show that

oy = expl —n,/8n, + - 3

(39)

Ilthe gap itself depends on the carrier concentrations, the value of n; 10 be used
here wilk depend on conceniration,

Imparity Levels

The addition of impurities to a semiconductor moves some orbitals from the
conduction or valence band into the energy gap, where the orbitals now appear
as localized bound states, We consider phosphorous in a silicon crysial, If the
P atom has released its extra electron to the $i conduction band, the atom
Appeurs as a positively charged jon, The positive ion attracts the electrons in
the conduction band, and the ion can bind an electron just as a proton can
bind an electron in a hydrogen atom. However, the binding energy in the
semiconductor is several orders of magnitude lower, mostly because the binding
efiergy is to be divided by the square of the static dielectric constant, and
partly because of mass effccts.:"l"abh_: 132 gives the jonization energics for
column V donors in Si and Ge. The lowest orbital of an electren bound to a
donor corresponds to an energy levél Ags = & — &; below the edge of the
conduction band (Figure 13.5). There is one set of bound orbitals for every
donor.

A parallel argument applies to holes and acceptors. Orbitals are split off
from the valence band, as in Figure 13.5. For each acceptor atom there is one
set of bound erbitals with gn ionization energy Az, = g, ~ £, of the same order
s Ag,. Tonization energies for column 1} acceptors in Siare listed in Table 13.2,

In GaAs the ionization energies for all eoi

umn V1 donoss except oxygen are
close to 6 meV. For 2ine,

the most imporant aceceptor, de, = 24 meV. Some

Tuble 13.2 toniziion encrgics of column ¥ donors and
column 1 aceeptors in 8i und Ge, in meV

Aceeptors
Al Gu in

Oecupation of Donor Levels

T t‘_ n,

Figure J3.5 Donor and acceptor impurity levels in the encegy
gup of a4 semicvonductor.

impurities generate orbitals dee? inside the forbidden gap, sometimes wizh.
multiple orbitals corresponding to different ionization states,

Occupation of Donror Levels

A donor level can be occupied by an clectron with either $pin up or spin down.
Hence there are two different orbitals with the same energy. However, the
occupations of these two orbitals zre nat independent of each other: Once l_hc
level is occupied by one electron, the donor cannot bind a second clcciror? with
opposite spin. As a result, the occupation probability for a donor level is rlwt
given by the simple Fermi-Dirac distribution function, but by a function
treated in Chapter 5. We wrile the probability that the donor orbital is vacant,
50 (hat the donor is ienized, in a form shightly different from (5.73):

l
1 2expllp — et}

(DY (40)

Here &, is the cnergy of a singly oecupied donor orbital relutive to the origin
of the encrgy. The probability that the denor orbital is oceupicd by an clectron,
sar that the dosor is neutral, is given by {5.74):

H
o {“n
JID) Y+ Sexplle, — pyn]
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Acceptors require extra thought. In the fon
cach of the chemical bonds between the acceptor atom and the surrounding
semiconductor atoms contains 4 pair of electrons with antiparallel spins. There
is only one such state, hence the jonized condition contributes only one term,
expf(s ~ £)/1], to the Gibbs sum for the aceeptor. In the neutral condition A
ol the scceplor, one electran is missing {rom the surrounding bonds. Because
the missing eleciron may have either spin up or spin down, the neutral condition
is represented twice in the Gibbs sum for the acceptor, by aterm 2 x | = 2,

Hence the thermal averape occupancy is

ized condition A~ ofthe acceptor,

TR (A i N ! _ y
SeT =3 tepl(p — &) 1+ 2expf(e, — el “2)

The newtral condition A, with the acceplor arbit

al unoccupied, aceurs with
probability

2 1
o Sy R T 4
1A 24 explip ~ 1] 11 fexp[(n — &)/7) )

Thevalue of An = n,+ L ¢

.~ is the difference of concentrations of D¥ and A~
From (40} or {42) we have : )

. . ny -
T = e T -

- - y
Hy == naf(A ) = m. (45)

The neutrality condition {4} may be rewritten as
AT, b o= + nt =t {46)

This expression may be visualized by a logarithmic plot of 1™ and n* as func-
tions of the position of the Fermi level {Figure 13.6). The four dashed Enes
represent the four terms in (46); the two salid lines represent the sum of all
positive and all negative charges. The actual Fermi level occurs where the total
positive charges equal the total negative charges.

For my* —n," >, as in Figure 13.6, the holes can be neglected; for
B," ~ mg* > o the electrons can be neglected. If one of the two impurity
species can be neglected, the majority carrier coneentration can be calcutated

in closed form. Consider an i-type semiconductor with no acceptors. The

Occupation of Donor Lesels

.- Neutrality
.

l‘]“

14

i(}l:

n
foor-

108 T log 2
5 “:,[:\

\

B b ————

Figure 13.6 Graphical determination of Fermi leve! and eleciron concentration in
an n-type semiconducter containing both doners and acceplors.

neutrality point in Figure 13.6 is now given by the intersection point Ofﬂtlf: n*
curve with the n, curve, If the donor concentration is not too high, the m[er_-
section will be on the straight portion of the n, curve, along which the approxi-
mation (17} holds. We rewrite this as

exp{p/1) = {n/n}exple./1); (47

exp[(u — s.,,)/r:] = (rr,/ng)cxp[(s,_ - gift] = n,/_n,t , {48)

= 35!533’:: : —
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where

o neexpl—(e, — E)ft] = 1 €xp(--Ag,/fr) - (49

Is the electron concentration that would be presén
the Fermi fevel coincided with the donor
fonization energy,

We insert (48) inlo (44} and set n, = 1" 1o obtain

level. Here Ag, = E. — £415 the donor

Np =4 : ’ {50
U+ Py )
ettt = dngn, (51}

This is a quadraric cquation in n,; the positjve solution is

ne=4a 50 4 Bayfn )12 1, ¥4]

For shallow donor levels, n,* is large and close to n. If the do

ping is sufficiently
weak that 8n, <« n,

*, the square root may be expanded by use of

(F+ x)"2 ~ b — % enn | (53}

for x « 1, With x = 8ryfn* we ohlain

e > e — Wl fn* = pgy — 2ng/n,*), {34)

fonization, For example, for P in §i a1 300 K, we have Ae, ~ 1741 from
Table 13.2, so that #e* = 0.175a, from {49). If ny = 0.01n,, Eq. (54) predicts
that 11.4 pet of the donors remain un-ionized. The limit o

fweak fonizution is
the subject of Problem 4.

Example Semi-insuluting gallium arsenide.  Couly pure GaAs be prepared, it would hgve
an intrinsic carrier concentration ai room temperature of w, 107 cm 7, With such a low
conceatration of carriers, (949 Jpgg than a metal, the conductivity would be claser to an
insulator than 10 a conventional semiconductor, Intrinsic GaAs would be usclui as an
insulating substrate on which to prepare thin Lyers of doped GaAs as aeeded for devices,

There does not exist a technology to purify any substance to 107 impuriies per om®,

tin the conduction band jf

p-nJunctions

However, i1 s possible 1o achieve near intrinsic carrier toncentrations in GaAs by doping
with high concentrations (10'3-617 ¢m” ) of oxygen and chromium together, two impu-
rities that have theiy impurity levels near the middle of the ¢nergy gap. Oxygen enters un
As site and is a donor jn GaAs, as expected from the pasition of O in the periodic table
tefutive 10 As; the etiergy leved® is about 0.7 eV below & Chromium is un accoptor with ag
crergy fevel about 9.84 eV below E.

Consider a GaAs erystal doped with both oxygen and chromium. The ratio of tha two
concentralions is nol critical; anything with an Q:Cr ratio between about 1:10 and 10:1
witl do, If th i i

over the indicated concentration r#tio range the Fermi Jevel is pinned to a range baiween
1.37 above the O level and 1.5¢ below the Cr level. With the Fermi level pinned near the
middle of the energy gap, the crystal must act as nearly intrinsic.

Gallium arsenide doped in this way is called semi-insulating GaAs and §s used extensively
as & high-resistivity {108 1o 1949 (3 cm} substrate for GaAs devices. A similar doeping pro-
cedure is possible in [P, with iron taking the place of chromium,

p-n JUNCTIONS

Semicoriductors used in devices are almost never uniformly doped. An under-
standing of devices requires an understanding of nonuniformly doped tzmj-
conductors, particularly of structures called p-n junctions in which the deping
changes with position from p-typelo n-type within the same crystal. We conswder
2 semiconductor crystal inside which the doping changes abruptly at x = g
from a uniform donor concentration my 1o a uniform accepior concentration
"o, s in Figure 13.7a. This is an example of a p-n junction. More complicated
device structures are made up from simple junctions: a bipolar transistor hns
two closely spaced p-n junctions, of the SEqUENCE p-i—p Of a~p-n.

P-n junctions contain a built-in electrostatic potential step ¥, even in the
absence of an externally applied voltage (Figure 13.7h). With no externatly
applied voltage, the clectrons on the two sides of the junction are in diffusive
equilibrium, which means that the chemical potentials {(Fermi tevels) of the two
sides are the same, Because (he position of the Fermi level within the band
structure depends on the local doping, constancy of the Fermi level forces o
shilt i the clectron energy baads in erossing the junciion (Figure 13.7c). The
shift is el4,. The potential step of height e, is an example of the petential siep
required 1o equalize the total chemical potential of two systemis when the
intrinsic chemical potentials are unequal, as discussed in Chapter 3.

* R Zucea, 2 Appl Phys. 48, 1557 (1977). The cergy assignaent is somew hat uncer(ain,
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Figure 13.7 A pon junction. (3} Doping distribution. 1t is assumed
that the dopiag chunges abruptly from a-type to p-type. The two
doping levels are usually different. {5} Electrosiatic potential. The
built-in valtage ¥, establishes diffusive equilibrium between the
two sides with different electron concentrations as well as hole
concentrations. (c} Energy bands. Because the Fermi level must be
constant throughout the structure, the bands on the two sides are
_shifted retative 1o cach other, {d) Space charge dipole required to
-generate the built-in voltage and to shilt the energy bands.
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p-i Junctions

We assume thut the two doping concentrations my, 1, lie in the extrinsic but
nondegenerate range, as defined by

N K Ry K KN, N, {55}

1 the donors are fully ionized on the n side and the acceptors fully ionized on
the p side, then the electron and hole concentrations satisfy

7, 2 Hy; - (56)

one on the nside and the other on the p side. {(We have dropped the superscripts

# from ny, 1,.) The conduction band energies on the i and p sides follow from
{17

& = - Tlogluging; 57
L, = pt - tloglng/n) = — tlogl?fnn), (58)
by {22¢). Hence
eVy: = £, — £, = tloglnm,/n?) , (59)
or
ey = 6y — tloglumyfng,). {60)

For doping concentrations ny = 0.00n_and 2, =~ 0.01n,, we find eV}, = £, — 921,
which is 0.91 ¢V in siticon at room temperature.

A step in electrostatic potential is required to shift the band edge energies on
the two sides of the junction relative to each other. The electrostatic potential
o(x} must satisfy the Poisson equation

dZ
() : E;"; = JE)’ 61

where p is the space charge densily and e the permittivity of the semiconductor.
Space charge must be present whenever @ varies. In the vicinity of the junction
the charge carriers no longer neutralize the impurities as in the bulk material,
The space charge must be positive on the # side and negative on the p side
{Figure 13.7d). Positive space charge on the n side means that the electron
concentration is ¥ess than the donor concentration. Indeed, as the conduction
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band edge is rajsed relative to the fixed Fermi level,
decrease of the electron concentration n,,

Take the origin of the electrostatic potential at x = . o0,
Then g(x) = £~} — eplx), and (17) becomes

{17} predicts an exponential

so that gf - o) = @,

n(x) = n, cxp[er,o(:c)/r]. 6

The Poisson cquation (ﬁi) is

die o e eny
= o= -2 [y — ndx)] = —-w-e—[l — expleg/1)]. (63)
Multiply by 2dp/dx 10 obtain
ded*e 4 dp\? 2eny d T
PR L = o - . - 64
dx dx? 7 dyx (ri_\' € dx (¥ € c'xp(up/t]}, 9

Integrate with the initial condition @~ ) = 0:

Ao\ Zen, Tt : ' -
(;!*x‘) = ‘*"—E“—* [{p + E — ECXP(L(,D/T):]. ) (633

At the interface x = 0 we assume that’

i

=) =V, » /e, {66)

where ¥, is that part of the buitt-in electrostatic potential drop that occurs on
the n side, The exponential on the right-hand side of {65) can be neglected, and

we obtain
E = [(Zen,/e)(V, — /e)]!/ {67
forthe x component of the electric field F = — dipfidx at the interfzce. Similarly,
E [{Zerra,fe)(Vp -~ 1fey}i?, (68}

where ¥, is that part of the built-in electrostatic otential drop that occurs on
” P P p

the pside, The two £ ficlds must be the same; from this and from Yo+ V=,
we find

€ My + Hy

112
E = (Ef _ﬂt’.'i,*(yb.. . zt/el) . (69}

Reverse-Biased Abrupt p-n function

The field E {5 the same as i on the n-type side all electrons had been depleted
from the junction to a distance

2e

E bz ) ) 12
Wy == (E,,—,;uc, - r/e)) = (f—i%mf - 2r/e}) . (10)
F

€ nyln, + ny)

with no depletion at [x] > w,. The distance w, is used in semiconductor device

theory as a measure of the depth of pesctration of the space charge transition
fayer into the n side.

Similarly, on the p side,

E (2 e v
Wy = 5”“ = (;;‘(VL - r/e)) = (—E*"*-E—“(Vu -~ 21/")) SRtL)

e (g + my)

The total depletion widih W b w, s

{72}
g . ngy

12 W, —2
W= (?EM(KI . 2r,’e)) = M_
E
If we assume n, = ng = 10%cem=3 ¢ = [0coiand ¥, — 2¢/e = 1 volt, we rind
£=425 x 10*Vem ™ and w = 4.70 x 107 %em.

Reverse-Biased Abrupt p-n Junction

Leta voltage ¥ be applied 10 a p-u junction, of such sign that the pside is at a
negative voltage relative to the side, which means that ¥ rajses the potential
cnergy ofthe electrons on the pside. This voltage will drive cond uction elecirons
from the p side to the n side, and holes from the u side to the p side. But the
pside in butk contains a very low concentration of canduction electrons, and the
it side cantaing a very low concentration of holes, consistent with the mass
action law. As a result, very little current fows. The distributions of electrans,
holes, and potential are approximately the same as if the built-in voltage were

increased by the applied voltage, Figure 13.8. The field at the interfuce is now
given by

e o, i 12
SN UL TOY ) — It 73
E (E e+ ony m l * ib‘) r,f.’]) ! ( }
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_corzect electron distribution {62).

Chapier 13: Semiconductor Statistios

£Hx)

Figure 138 Reverse-biased

p-r junction, showing the quasi-Fermi
levels g, and pp.

and the junction thickness is given by

W= (ﬁm i+ u - 2r/e]) = M‘

e mn, {74)

In the semiconductor device literature we often find {73) and {74)
term 2t/e, because certain approximations have been made ab
charge and field distribution; we have solved th

without the
out the space
Poisson equation with the

Curreat Flow: Drift apd Diffusion

NONEQUILIBRIUM SEMICONDUCTORS

Quasi-Fermi Levels

When a semiconductor is iluminated w

ith dight of quantum tnergy greater
than the energy gap, el

ectrons are raised from the valence band to the conduc-
tion band. The clectron and the hole concentralions creat
arc farger than their equitibsium concentrations. Similar nonequilibrium con-
centrations arise when a forward-biased p-n junction injects clectrons into a
p-type semiconductor or holes into un n-type semiconductor. The electric
charge associated with the injected carrier {ype attracts oppositely charged

carriers from the external efectrodes of the semiconrductor so that both earrier
concentrations increase.

ed by illumination

Fhe excess carriers eventually recombine with each other. The recombination
times vary greatly with the semiconductor, from less than 1095 1o longer than
107 s, Recombination tinmes in high purity St are near 10725, Even the shortest
recombination times are much longer than the times (~ 1075} required at
feom temperatuse for the conduction electrons to reach thermal equilibrium
with each other in the conduction band, and for the holes to reach therma
equilibrium with each other in the valence band. Thus the orbital occupancy
distributions of elecirons and of holes are very close to equilibrium Fermi-Dirac
distributions in each band separalely, but the total number of holes is not in
equilibrium with the total number of electrons.

We can express this steady state or
that there are different Fermi levels He
Fermi levels:

quasi-equilibrium condition by saying
and p, for the two bands, called Guasi-

e b

I+ explte — o

ol = el 5
ke !

T1F expfle — pe]"

Quasi-Fermilevels are wsed extensively in the analysis of semiconducior devices,

Current Flow: Drift and Diffusion

I the conduction band quasi-Fermi level is at a constant energy throughout a
semiconductor crystal, the conduction electrons throughout the crystal are in
thermal and diffusive equilibrium, and no electron current will flow. Any
conduction electron flow in a semiconductor at 2 uniform temperature must be
caused by a position-dependence of the conduction band quasi-Fermi level.

7%
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If the gradient of this fevel is sufficiently weak, we m
tribution of conduction electrons to
proportional 1o this gradient:

2y assume that the con-
the total electrical current density is

e o grad ye, (76)

Here d, is an electrica] current density, not a particle Rux density. Because each
electron carries the charge — ¢, we have

J, = (=) x {electron flux density), {7

where the electron flux density is defined as the number of conduction clectrons

Crossing unit arca in unit time. The close connection of {76) to Ohm's law is
treated in Chapter 14. Because the flow of particles is from high 10 low chemieal
potential, the conduction electron flux is opposite ta grad g, bul because
electrons carry 3 negative charge, the associated electrical current density is
in the direction of grad p,. We view grad H a5 the driving foree for this current,
Foragiven driving force, the current density is proportional to the concentration

n, of conduction electrons, Thus we write

do = g geadp {78)

where the proportionality constant f. is the electron mobility. The symbol I,
should not be confused with the conduction band quasi-Fermi level, ..
I the electron concentration is in the extrinsic but nondegenerate range,

Ko, «on,, {79)

the conduction band quasi-Fermi level is given by (15), which can be writien
in terms of the electron concentrition as

e =g+ tlogln,fn), (30}
Thus (78) becomes

J. = fn.erade, 4 Hergradn,. - {8D)

A gradient in the conduction hand edzearises from a gradient in the electrostatic
potential and thus frorm an clectric field:

grade, = —egradg = ¢F, ' {82}

Current Flow: Drift and Biffusion

We introduce an electron diffusion coefficient p, by the Einstein relation

D, = pafe , {83)

discussed in Chapter 14. We now write (78) or (81} in the final form

J. = efinE + eD, gradn,, {84)

There are two different contribwtions to the surrent: one caused by an electric
field and one caused by a concentration gradient,

Analogous resulis apply to holes, with one difference. The valence band quasi-
Fereai level is not the chemical potential for holes, but is the chemical poteiitil
for the clecirons in the vilence bund. loles nre missing clectrons i hole cucrent
to the right is really an electron current (o the left. But holes €arry a positive
rather than a negative charge. The two sign reversals cancel, and we may view
grad p, as the driving force for the contribution J, of holes to the total electrical
current density, We write, analogously to (78),

d = fin, grad g, {85}

Carrying through the res; of the argument lzads 1o

Ji = e E eDy gradn, {345)

as the analog of {84), with the Einstein relation Dy = [,t/e. Note the different
sign in the diffusion term: Hales, like electrons, diffuse from high to fow con-
centrations, but hole diffusion makes the opposite contribution to the electric
current, because holeg carry the opposite charge.

| ASEE e £ 4 S it 1 e T e P R A R A PRI

Example: Infection laser, The highest nonequilibrium carrier concentzations in semi-
conductors occur in injection lasers, When by electron injection the occupation f(e,) of
the lewest conduction band orbital becomes higher than the occupation file,} of the highest
valence band orbital, the populition is suid to be inverted, Lascr theory telis us that light
with a quantum BOLIRY £ - £, = g, can then be amplified by stimututed emission. The
condition for poputation inversjon is that

f(e) > f(e,). {87)
With ke quasi-Fermi distributions {75) this condition is expressed us

#:M#u>8:~£u=€

b (88)

ord

o

381



Chapter 13: Semicanductor Statistics

Electron flow

™
o
-

o "JW\,F" fies e

By e

“* Hole flow -

Figure 139 Double-helerostructuse injection faser. Electrons fow from the
right into the active layer, where they form a degenerate electron gas. The
potential barrier provided by the wide energy gap on the pside prevents the
clectrons from escaping to the left. Holes flow from the lefl iato the active

layer, but cannol escape to the right. When (88} is afiained, laser action
becames possibile.

Far laser action the quasi-Fermi levels must be separated by more than the energy gap.
The candition {88) requires that at least one of the quasi-Fermi levels Jie inside the band
to which it refers. This is a necessary, but not a suficient cendition for laser operation.
An important additional condition is that the €nergy gap is a direct gap rather than an
indircet gap. The distinction is treated in solid state physics texts, The most important
semiconductars with a direct gap are GaAs and InP.

The population inversion is most casily achicved in the double heterostructure of Fig-
ure 13.9; here the lasing semiconductor is embedded between two wider-gap semiconductor
regions of epposite doping. An example is GaAs embedded in AlAs. In such a structure
therc is a potential barrier that prevents the outflow of electrons to th
B opposite poteatial barrier that prevents the outfow of holes t
Except for the current caused by the recombinution itself, the clectro
are in diffusive cquilibrium with the clectrons in the n contact, and the clectron quasi-
Fermi level in the active fayer lines up with the Fermi level in the n contact, Similarly, the
valence band quasi-Fermi level Hoes up with the Fermi level in the p contuct. Inversion
can be achieved if we apply a bias voltage farger than the voltage equivalent of the active
layer encegy gap. Most injection lasers utilize this double heterosttucture principle.

T At G o e e N e
Gt U U SR T L W LY PR

e p-type region, and
0 the ntype region.
ns in the active Biyer

- ]
T T T
Al IR T et R e N RN S SO APCE

Current Flaw: Drift and Diffusion

JET ey e ey

Example: Carrier recombination through an inmpurity level,

combine either by an efectron falling direaly into a hole w
or they can recombine through an impurity level in the ene
is dominant in silicon. W
semiconductor statissi

Electrons and holes can re-
ith the emission of a photon,
gy gap. The impurity process
e discuss the process as an instructive example of quasi-equilibeium
es. Consider an impurily recombination orbital gt eReIgy ¢, in
Figure 13.10. Four transition processes are indicated ia the figure. We assume that the

rate R,, at which conduction electrons fall into the recombination orbitals is described by
a law of the form

Ry =(1 = fon, , (89)

where £, is the [raction of recombination orbitals already occupied by an electron {and
henee not available), and 1, is a characteristic time constant for the Caplure process, We
assume the reverse process proceeds at the rate

Ry = fft., {90}

where ! is the Lime constant for the reverse process. We take R, independent of the con-

centration of conduction elecirons, because we ssurme that », « n,. The time constaats t,

[t oS S

Figure 13.10  Eleciron-hole recombination through
. impurity recombination orbitals at £, inside lbc energy

184
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and ¢’ are related, because i cquilibrium the twg rates R, and R, must cangel Thug

i';=(5:_fz”_v) - o1
Lo j; [ £ '
e evaluated in thermal cquilibrism, which Means we use {17) for ,

the spin multiplicity of the recombination levels, Wi
distribution for s we have

- We ignore
th the equilibrium “ermi-Disae

= S0 = exp[ - (u - &)/} 92)
Thus (91) becomes
i *
;ng = ?‘Eﬁxp[—(E‘ - E‘.J/I'] = E:— » (93)

where n,* is defined as the conduction electran concentration that would be present ifihe
cquilibrivn Fermi level # i (17) coincided with the recombination level 1§ (92) and {93)
ar¢ inserted ing {89 and {90), the net electron recombination rage becormes -

Rz = R‘f’ - R.ﬂt z} [(I .h f;}”r - j:"e-‘]‘ {94)

The analagous recambination rate for holes is obtained by the substitelions

' LI
Reo nel He*, tg - R}n ny, nh b !Jn

and

Here 1, is the lifetitne of holes jn the fHimi
electrons, and ¥ is, by definition,

m* = nyexpl (g, — &3/1] = nln*, (56}

With these substitttions the neg hole recombinatjon fate is

Ry = [.fr”k = (it - JJ.:)”).*}J{’&- 97)

In steady state the Wo recombination fales must beequal: R, = Ry = R Equations {943
And {87} are two equations for the (wa usknowns f, and B, We eliminate £ 10 fing

2
M — 1,

P e s AU 98}
(n* + n )y, + (m* + e, ) (

o

&£

Y

I e L

SUMMARY

L. In semiconductors the eleciron orbitals are grotped into a valence band

{completely occupied at t = 0y, 5 pure semiconductor) and g conduction
band {comp[elcly Empty at vt =  jg 4 pure scmécenducmr). separated by
an energy gap. Electronsg in the conduction band are cafled conducticn
electrons; empty orbitals in the valence band are catled holes,

2, The probability of occupancy of a bang

orbital with ENETRY £ is goverred
by the Fermi-Djrac distribution function

1
Sy

Here 1 is the chemical potential of the cIéctrons, called the Fermi level.

3. The energetic focation of the Fermj fevel in an electrically neutral semj-
tonductor is governed by the neutrality condilion

e = my = Ap

Here n, and Hy are the foncentrations of conduction electrons and holes,
and An is the excess Concentration of positively charged impuritics over
negatively charged impurities,

4. A semiconductor is said to be i the classical regime when fn, << o, and
My < n,. Here

By = Am, \¥o/2ah2)yt

are the quantum concentrations for electrons and holes: aL® and in* are
effective masses for electrons and holes, In the semiconductor literature,

i, and n, are catled the ctfective densitjzes of states for the conduction ang
valence bands,

————
* R.N. Hall, Phys. Rev, 87,387 (1952), w. Shockiey and W, T, Read, Jr., Phys. Rev, 37, 83501932,
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5. 1n the classical regime

n

.= neexpl—{g, — i,
M= neexpl —(n — e3/x],

i

where e, and ¢, are the energies of the ed

ges of the conduction and valence
bands,

6. The mass action faw states that in the classical regime the product

nay =t = o expl - /1)

is independent of the impurity concentration. The intriosic concentration
n, s the conmon value of i, and n, in an intrinsic (= purc} semiconductor,
The quantity -

g, = £ — g,
is the energy gap..

- A semiconductor is called s-type when negative charge carriers {=con-
duction electrons) dominate; it is called p-type when positive charge
carriers (=holes) dominale. The sign of the dominasnt charge carriers is
opposite to the sign of the dominant ionized tmpuritics.

8. A pn junction is a reetifying semiconductor structure with an internal
transition from p-type to n-type. A p-n junction contains internai electric
fields even in the absence of an applied voltage. For an abrupt junction the
field at the p-n interface is

2e nn 12
Ew 2L [V 4+ V) — 21/¢ .
T (V] + %)~ 22e]
Here € is the pcrrﬁiliivizy, n, and n, are ionized acceptor and donor con-
centrations, and | V] and ¥, are the applied and the built-in reverse bias.
9

- The electric current densities due 1o electron and hole flaw are given by

d, = ef,nE + eD,gradn, ,

i

d, = efiyi, E ~ eD, gradn,,

- Here 7, and i, are the clectron and hole mobilities, and -

[N s

A b

i

M
.

IR

Problems

D, = /e, D, = fzfe

are the electron and hele diffasion coefficients.

PROBLEMS

L. Weakly doped semiconductor. Calculate the electron and hole concentra-
ticns when the net dowor concentration is small compared to the intrinsic
concentration, jAn| « n,.

2. Intriasic conductivity and minimum conduetivity. The electrical condue-
tivity is .

a=e{n i, + nji), 99)

where fi. and fi, are the electron and hote mobilitics. For most semiconductors
E. > J. {2} Find the net ionized impurity concentration An = net — 0, for
which the conductivity is a minimum. Give 2 mathematical expression for this
minimum conductivity. (b} By what factor is it lower than the conductivity ofan
Intrinsic semiconductor? {¢) Give numerical values 300K for Sifor which the
mobilities are fi, = 1350 and i, = 480cn? V=¥ s ¢, and for IuSb, for which
the mobitities are i, = 77000 and i, = 750em?V"*s™ %, Calculate missing
data from Table 13.1,

3. Resistivity and impurity concentration. A manufacturcr specifies the re-
sistivity p = 1/o of & Ge crystal as 20 ohm cm. Take fi, = 3900 cm? V™! g1
and fi, = 1500 cm® V™! 57!, What is the net impurity concentration a} if the
crystal is n-type; by if the crystal is p-type?

4. Mass action faw for high eleciron concentrations, Derive {39}, which is the
form of the law of mass action when n, is ro longer small compared to n,.

3. Electron and hole concentrations inInSh. Calculate n,, m,, and g — g, for
n-type InSb at 300K, assuming n,* = 4.6 % 10%cm™? = n,. Because of the
high ratio n/n and the narrow energy gap, the hole concentration is not
negligible wader these conditions, nor is the nondegenerate approximation
n, <« n_ applicable. Use the generalized mass action law {39}, Solve the tran-
scendental equation for n, by itetation or graphically.

6. Incomplete ionization of deep imparities. Find the fraction of ionized
donor impurities if the donor ionization cnergy is large enough that Ae, is larger
than tlog(n/8n,} by several timies ©. The result explains why substances with
large impurity ionization energies remain fnsulators, even if impure.
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7. Built-in field Jor exponential doping profile, Suppose that in g p-type
semiconductor the jonized acceplor concentration af x = Xy isn,”

£ H" < Jlu
and fails off exponentially to a vajue n,”

My > mpat x o= x; What is the
built-in electric field in the interval {x1:%2)? Give numerical values for nyfn, =
10% and x, — Xy =107 em, Assume T = 300 K. Impurity distributions such
45 this occur in the base region of many R=p-# transistors, The buift.in field
aids in driving the injected electrons across the base,

8. Einstein relation Sor Bigh electron concentrations. Use the I oyee-Dixon

approximation (38) 10 give a series expansion of (he ratio D /fi, for electron
concentrations approaching or exceeding i,

9. Injection faser. jse the Joyce-Dixon approximation to calculate gt T —

30K the electron-hole pair concentration in GaAs that satisfies the inversion
condition {88), assuming no jonized impurities,

10, Minority carrier lifetime.  Assume both electron
in a semiconductor are raised by 8n above their equilibrium values. Define a pet
minerity carrier lifetime ¢ by R = dnfr. Give expressions for ¢ in terms of 1he
carrier concentrations n, and n,; the energy of the recombination level, as
expressed by n,* and m*; and the time constants £, and 1,, in the limits of very

small and very large values of §n. Under what doping conditions s ¢ indepen-
deat of §n? .

and hole concentrations

11 Electron-fole pair generation. Inside a reverse biased pon junction both

electrons and holes have been swept.ow. (a) Calculate the electron-hols pair

i ions, assuming n,* = p,* and f,=1t, =1
{5} Find (he factor by which this generation rate is higher than the generation
rate in an -type semiconductor from which the holes have been swept out,
but in which the tlectron concentration remains equal to mt » om0} Give a
numerical value for this ratio for Siwith n,* = 10%6cp-3

5
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Chapter 14

Kinetic Theory
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KINETIC THEORY OF THE IDEAL GAS LAW

Maxwell Distribution of Velocities
Experimental Verification _
Collision Cross Sections and Mean Free Paths

TRANSPORT PROCESSES

Particle Diffusion
Thermal Conductivity
Viscosity

Generalized Forees
Einstein Relation

KINETICS OF DETAILED BALANCE

ADYANCED TREATMENT:
BOLTZMANN TRANSPORT EQUATION

Particle Diffusion
Classical Distributjon
Fermi-Dirac Distribution
Electrical Conductivity

LAWS OF RAREFIED GASES

Flow of Molecules Through a Hole

Exampie: Flow Through a Long Tube
Speed of a Pump

SUMMARY
PROBLEMS

1. Mean Speeds in a Maswellian Distribution

2. Mean Kinetic Energy in a Beam

3. Ratio of Thermal to Electrical Conduativity

4. Thermal Conductivity of Metals

5. Boltzmann Eguaticn and Thermal Conductivity
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6. Flow Through a Tube
1. Speed of a Tube

T an conscious of bein

the theory of gases is again revived, na

421
421

g only an indipidual struggling weakly against the stream
of time. But it still remains in my powe

7 1o contribute in such a way that, when
t too much will have 1o be rediscovered,

L. Boltzmann

Kinetic Theory of the Ideal Gas Law

In this chapter we give a kinetic derivation of the ideal pas law, the distribution
of velocities of gas molecules, and transport processes in gases: diffusion,
thermal conductivity, and viscosity. The Boltzmann transport equation is
discussed. We also treat gases at very low pressures, with reference 1o vacuum

pumps. The chapter Is essentially classical physics because the quantum theory
of transport is difficult.

KINETIC THEORY OF THE IDFAL GAS LAW

We apply the kinetic method to obtain an elementary derivation of the ideal gas
law, p¥ = Nz. Consider molecules thal strike a unit area of the walj of a
container. Let v, denote the velocity componeat normal to the planc of the wali,

as in Figure [4.1. If 2 molecule of mass M is reflected specularly (mirror-like)
frorm the wall, the change of momentum of the molecule is

—~2Mil':|. {1}

This gives an impulse 2M|v. to the wall, by Newton's second law of motion, The
pressure on the wall is

momentum change /aumber of molecules striking )
p= per moleculc unit area per unit time ’

Let a(v,)dv, be the number of molecuies per unit volume with the z component
of the velocity between o, and v, + dv,. Here {a(v)dv, = N/¥ = n The
number in this velocity range that strike a unit area of the wall in unit time is
alv.)v, dv,. The momentum change of these molecules is = 2Mr a{v e dey, s0
that the total pressure is

p = f:lMu,za(v,)dv, = M ffgvﬁa(t‘:)a‘v:.. {3

The integral on the right is the thermal average of v,? times the concentration,
50 that p = Mn{u,’). The average value of $Mr.? is 11, by equipartition of

39
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l Pressure

Figure {41 The ¢hange of momentum of & U/\ v

molecule of velocity v which is reflected from
the wall of the comtainer is - 2M{v.|.

7 axis
e |
energy {Chapter 3). Thus the pressure is
p=nM{® = nr = NV, pV = Nz {4

This is the ideal gas law, .
The assumption of specular reflection is canvenient, but it is immaterial to the

result. What comes intg the surface must go back, with the same distribution,
if thermal equilibrium is 1o be maintained.

Maxwell Distribution of Velocities

We now transform the cncrgy distribution function of an jdeal gas into a
classical velocity distribution function. Often when we mean “speed” we shall

say “velocity”™, as this is 1he tradition in physics when no confusion {5 caused.
In Chapter 6 we found the distribution function of an ideal gas to be

fley = dexp(—e, /1), : (5)
where fie) is the probubility of oceupancy of un orbital of encrgy
I fo\?
£y = m(*f) {6)

in a cube of volume ¥ = L3 Tt
number between o and g + dn is
probability such an orb

1 average number of atoms with quantum
(the number of orbitals jn this range} x {the
ital is occupied). The number of orbitals in the positive

Maxwell Distribution of Felocities

octant of a spherical shell of thickness dn is §(4mn?)dn, whenee the desired
product is '

(an dn)fle,) = Luin? exp{—&,/t)dn. (7

We take the spin of the atom as zero.

To oblain the probability distribution of the classical velocity, we must
find a connection between the quantum number o and the classica velooity
of a particle in the orbital ¢,. The classical kinetic energy 1M 57 is related to the
quantlum energy (6} by

h* fany? hn Afl
L B AL =y :
it 2M(L) S VTR Wl )

We consider a system of N particles in volume V. Let NP{ekly be the number of
atoms with velocity magnitude, or speed, in the range dv at ». This is evaluated
from (7) and (8} by setting dn = {dnfde)dv = (MLihaddv. We have

: Kl
NP(de = drin? exp(—g, /1) “f::j dp-
i

MIN? )
= %ni.(T”—‘) e exp( ~ Mo?/2z)do, (9)

in

From Chapter 6 we know that 2 = nfng = (NJLPW2nh¥M1PR) co that the
fuctor standing to the left of p? becomes

INQrP ALY 10)
LA (

TN(2R) AL M
o P .
2ux

Thus

Plo) = 4n{M{ 2 et eap( - Alo20), (b

This is the Maxwell velocity distribution {Figure [4.2). The quantity P{)dy is the
probability that a particle has its speed in v a1 . Numerical vafues of the roet
mean square thermal velocity and the mean speed are given in Table 141,
using the results o, = (3t/M)2 and 7 = (St;mANY2 from Problem 1.
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I I
\  Vrms
fv-—u'(ip \
&
/
Figure 142 Manwell velocity distribution as o P /
function of the speed in units of the most g / \
probable speed v, = {2 t/M)""% Also shown é / \
are the mean speed € and the roel mean square @
velogity 2, ’éi /
LY
L/
0 H 2
. w
(2 /M0)312

Table 141  Molecutar velosities at 273 K, in 10* cms ™!

Gas Vyime z Gas ’ Brms z
H,. 184 169 0, 46 42
He 131 12t Ar : 4.3 40
H,0 62 - 57 Kr 286 2.63
Me 58 33 Xe 221 209
N, 49 4.5 Free electron 1160, 1013,

Experimental verification. The velocity distribution of atoms of potassium
which exit from the slit of an oven has been studied by Marcus and McFee*
The curve in Figure 14.3 compares the experimental results with the prediction
of {12) below; the agreement is excellent, We need an expression for the velocity
distribution of atoms that exit from a small hole! in an oven. This distribution is
different from the velocity distribution within the oven, because the flux through
the hole involves an extra factor, the velocity component normal 1o the wall.
The exit beam is weighted in favor of atoms of high velogity at the expense of
those at low velocity. In proportion to their concentration in the oven, fast atoms

* P, M. Marcus and 1. K. McFee, Recent research in molecuiar beams, ed. 1. Esterman, Academic

Press, 1959,

! In such experiments a round hole is said {0 be small if 1he

of an atom in the oven. If the hole is not smalk in this sense, ¢
“ by the laws of hydrodynamic Bow and not by gas kinctics.

diameter s fess than a mean free path
he fow of gas from it will be governcd

LR VAT K o

Collision Cress Sections and Mean Free Paths

bl
10
o ’@E
g
=7 %?,
z .
‘é 5 Jl{
E !
2 - i
O Ty TS T Y 13

Transit timg ———w

Figure 143 Meusured 1ransmistion points and caleulated
Maxwell transmission curve for potassium atoms that exit from
an aven at a temperature 157°C. The horizontal axis is the transit
time of the atoms transmitted. The intensity is in arbitrary units;
the curve and the points are normalized to the same

> maxisim
value. Afier Marcus and McFee. - :

strike the walls more often than slow atoms sirike the walls. The weight facior
is the velocity component v cos § normal 1o the plane of the hole. The average
of cos @ over the forward hemisphere is just a numerical factor, namely 1. The
probability that an atom which leaves the hole will have a velocity between
vand v + do defines the quantily Py, (v)ds, where

Pbc:m{b‘) s UPMaxwzli o DJ exp(vaz/Zr) E] (E 2}

Wilh Pygyyen given by (11). The disteibution (12) of the transmission through a
hoe is called the Maxwell transmission distribution.

Collision Cross Sections and Mean Free Paths

We can estimate the collision rates of gas atoms viewed as rigid spheres, Two
atoms of diameter d will collide if their centers pass within the distance d of

each other. From Figure 14.4 we see that one collision will occar when an atom
has traversed ar average distance

= Innd®, 13)

395

%



98 Chapter 14; Kinetie Theory

Figure 14,4 (a) Two rigid spheres wilt collida
if their ceaters Pass within a distance o of each
cacl: other. (b) An atom of diameter 4 which'
travels a long distance L wil} Sweep out 3
volume rd?L in the sense that il will eoilide
with any atom whose center lies within the
volume, I v is the concentyation of atoms, the
average number of atoms in this volume ig
ard*L. This is the number of collisians. The
average distance botween collisions is

lm

L f

ned?l, pad?

where n is the number of atems per vait volume. The length ! s called the mean
free path: it is (he average distance traveled by an atom between collisions, Our
result neglects the velocity of the target aloms,

We estimate the order of magnitude of the mean free path. If the atomie
diameter d is 2.2 A as for helium, then the colfision Cross section a_is

o= nd? = (314)(2.7 » 107%em)? = 153 % 10716 o2, (14)

The concentration of melccus

esofanideal gas a10°Cand T am is given by the
Loschmidt number

o = 269 x 10*% atomsem = | (15}

defined as the Avagadro number divided by the motar volume at °C and 1 atm,

The Avogadro number is the number of molecuies in one mole; the molar

volume is the volume occupied by one mole, We combine {4}and (13) to obiain

i

Transport Processes

the mean [ree path under standard conditions:

I 1

I = = '
mdhg, {152 % 0™ em?)(2.69 % 165 cm- 5

=244 x 107* con. (16a)

This Tength is about 1000 times larger than the diameter of an atom, The
associated collision rate is :

Ve 10%cmrs™!

0 -1
i 107 %em

s7E, {15b)

At a pressure of 107 %atm or ldyneem™2, the concentration of ators ‘s
reduced by 1078 and the mean [ree path is increased to 25 em. At 107 % atm the
mean free path may not be small in comparison with the dimensions of any
particular experimental apparatus, Then we are in what is ealled the highvacuum
region, also called the Knudsen region. We assume below that the mean free
path is small in comparison with the relevant dimension of the apparatus,
cxcepl in the section on faws of rarcfied guses.

TRANSPORT PROCESSES

Consider a system not in thermal equilibrium, but in a nonequilibrium steady
state with a constant Bow from one end of the system 10 the other, For example,
Wwe may ereste a steady state nonequilibrium condition in a system by placing
opposite ends in thermal contact with large reservoirs at two dilferent tempera-
tures. if reservoir 1 is at the higher temperature, energy will low through the
system from reservoir 1 to reservoir 7, Energy flow in this direction will increase
the total entropy of reservoir 1 + reservolr 2+ system. The temperature
gradient in the system is the driving force; the physical quantity that is trans-
ported through the specimen in this process is energy.

There is a lincar region in most transport processes in which the flux is
directly proportional to the driving force:

flux = (coeflicient) x {driving force) , {17
provided the force is not too large. Such a relation is called a linear phenome-
nological law, such as Ohm's law for the conduction of clectricity. The definjtion

of the fux density of a quantity 4 js:

J = fux density of 4 = net quantity of 4 transported across
unit area in unit time. (18)

397



Table 142 Summary of phenomenclogical transport laws

A pproximate

Flux of
particle
property

expression

n

Name oflaw for coeflcient

Law

Gradient

Effert

Coefficient

i
L=N

k]

Fick's faw

— Dprada

dn Diffusivity D J, =
dz

Number

Diffusion

}; = {ptl

Newtonian viscosiy ©

dv,
-

-3

Viscosity i

do,
dz

M

Transverse

Viscosity

momentum

K e ﬁc,.?:!

J,= ~Kegradr Fourier's law

Thermal

dT
C"T

conductivity K

dp,
dz

Energy

Thermal

conductivity

Ohn's law

=E,

Conductivity &

Jg= 0oL

tp
Tds

Charge

Electrical

conductivity

@ = slecirostatic potential

SYMBOLS: # == number of particies per unil volume

electric field intensity

q = clectric chdrge
M = mass of particie

E=

T = mean thermal speed = (Jo|)

! == mean {ree path

ey

p = mass per unit volume
p = momenium

heat capacity per unit volume

P, == thermal enargy per unit volume

Fo/A = shear force per unit area

o

G e verit g

B LR,

e

&y

Pariicle Diffusion

The net transport is the transport in one direction minus the transport in the
opposite direction. Various transport laws are summarized in Table 14.2,

Particle Diffusipn

In Figure 14.5 we consider a system with one end in diffusive contact with a
reservair at chemical potential #;5 the other end is in difTusive contact with g
res¢rvoir at chemical potential g,. The temperature is constant, H reservoir |
is at the higher chemical petential, then particles will flow through the system
[rom reservoir 1 to reservoir 2. Particle flow in this direction will increase the
iotal entropy of reservoir 1 + reservoir 2 + system,

Consider particle diffusion, first when the difference of chemical potential is
caused by a difference in particle concentration. The flux density J, is the

number of particics passing tirough a'unit area it unit time. The driving force
ofisothermal difTusion is usually t

aken as the'gradient of the particle concentra-
tion along the system:

“Jy = —Dgradn, (19)

The relation is calied Fick's law; here D is the 3
diffusivity,

Particles trave! freely over distances of the order of the mean free path |
before they collide. We assume that in a collision at position z the particles
come into a local equilibrium condition at the local chemical potential p(-) and
focal concentration (). Let I be the 2 component of the mean free path. Across
the plane at z there is a particle flux density in the positive z direction equal to
dn(z — L)%, and a flux density in the negative z direction equal to —a(z +
LJE.. Here n{z — L) means the particle concentration at z — I, The net particle

Reservoir |
#1

Figure 14.5 - Opposite ends of the system are in diffusive
comtact with reservoirs at chemical potentials #; and u,. The
., temperature is consant everywhere ’ : ‘

article diffusion constant or
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Aux density is the average over all directians on a hemisphere of

L= Mtz — 1y < gz ))&, = —3";' 7L {20)

We want to €Xpress the average valye of

¢k in terms of 7l Here I; = lcosg
is th

T, = Fcosfis the projection of the
over the surface of 2 hemisphere,

because all forward directions are equally likely, The elemeny of surface area

is 2msin O dg. Thus

ix .
2a 1" cos? fsin 4 4o
LS =7l 1A

e (21)
s0 that
i
VA T ;Z-’ (22)

ity is given by

On comparison with {19) we see that the diffusiv

SO = ey, (2
where (o3 is the mean drift velocity of the particlesinthe 2 d
veloeily is zero in thermgy equitibrium,

HAisa quantity like energy or momentum that depends on the velocity of
a molecule, then we always find a similar expression:

irection. Tl drift

1= fapav) - o)

RSN i e D E R

]

where f is a factor with magnitude of th

Thermal Condueriviy 'y

e order of unity, The exact value of f,

depends on the velocity dependence of Lt and may be calculated by the method

of the Boltzmann transport equation treated at the end of this chapter,
' simplicity we set Fo=1in this discussion, By analogy with (19) for particle

diffusion, the phenomeno!ogical law for the transport of A is
J, = ~Dgradp, ,
with the particle diffusivity D given by (22). )
Thermal Conductivity
Fourier’s law
Jo = —Kgradt

describes the cnergy fux density J, in terme of the thermal conduetivity X

For

{26)

27

and

the temperature gradient (Figure 14.6). This form assumes that there is 2 nct
transport of ¢nergy, b not of particles. Another term must be added il addi-
tional energy is transported by means of particle flow, as when electrons flow

under the influence of an electric field,
The energy flux density in the z direction is

JF=p ey,

{28)

where (o,> is the mean drift velocity; p, is the enesgy density. This result |s
valid within a factor of the order of unity, as discussed. By analogy with the

diffusion equation, the right-hand side is equal 1o

~Ddp jix = = D{dp Jeniidvidx.

R © 1. K '.f
Reservoir 1 . Ruservoir 2

T2

Ty e

Systens

Figure 14.6  Opposite ends of the sysiem are in thermal
contact with reservoirs at emperatures 1y and 1.

(29)

S I
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This describes the diffusion of energy. Now @

pJET s just the heat capacity
per unit volume, deasted by C,.. Thus

J, = —=DCprad; (30

on comparison with (27) the thermal conductivity is

K= DO =1C,70 (313

The thermal conductivity of a gas is independent of pressure until at very low
pressutes the mean free path becomes limited by the dimensions of the appara-
tus, rather than by intermolecular collisions. Until very low pressures are

attained there is no advantage (o evacualing a Dewar vessel, because the heat
losses are independent of pressure as long as (31) applies.

Viscosity

" Viscosity is a measure 6[ the diffusion of momentum parallel to the fow velocity

and transverse to the gradient of the fow velocity. Consider a gas with flow

velocity in the x direction, with the flow velocity gradient in the 7 direction. The
viscosity coctficient J) is defined by

Xom e g (32)

Here v, is the x component of the flow velocity of the gas; p, dzpotes the x
component of momentum; and X, is the x component of the shear force exerted
by the gas on a unit arca of the xy plane normal 1o the z direction. By Newton's
second law of motion a shear stress X. acts on the xy plane if the plane receives
anet flux density of x momentumn J_{p,), because this flux density measures the
rate of change of the momentum of the plane, per unit area.

In diffusion the particle Bux density in the z direction is given by the number
density n times the mean drilt velocity (v} in the z direction, so that J.7 =
n{v.y = — Ddnjdz. In the viscosily equation the transverse momentum deasity
Is nMu,; its flux density in the z direction is (nMuJ{v.>. By analogy with (26)
this flux density equals - Dd{nMe,)Adz, within a factor of the order of tnity.
With p = nM as the mass density,

Jlpd = prde,y = ~Dpdufdz = —iydo i )

AT

Viscosiry
Thus, with D given by 23),

n = Dp = gzl

(34

gives the coefficient of viscosity. The CGS unit of viscos

ity is calfed the poise.
The mean free pathis | =

t/nd?n from (13), where 4 is the molecular diameter
and nis the concentration, Thus the viscosity may be expressed as

= M&3xd? | {35)
which is independent of the Eas pressurg. The independence fails at very high
pressures when the molecules are ncaA_rly always in contact or at very low
pressures when the mean free path is !onécr than the dimensions of the
apparatus.

Robert Boyle in 1660 reported an early observation on the pressure inde-
pendence of the damping of 2 peadulum in air:

Experiment 26 .. .. We observ'd also that when the Receiver was full of Air,
the included Perdulum contini’d its Recursions about Sfifteen mimutes {or @
quarter of au hour) before it lefi off swinging: and that after the exsuction of
the Air, the Vibration of the same Pendulun (being fresh put into motion)
appear'd not (by a minutes Watch) ro last sensibly langer. So that the evens of
this experiment being other than we expected, scarce afforded us any other
satisfuction, than that of our not having omitied 1o 1ry i1,

Although at first glance implausible, this result is readily understood. With
decreasing pressure the rate of momentum-transfer collisions decreases, but
each colliding particle comes lrom [arther away. The larger the distance, the
larger the momentum difference; the increasing momentum transfer per collision
cancels the decreasing collision rate.

1t is easier to measure the viscosity than the diffusivity. IfD

= pgfpas predicted
by (34), then K is related to y by

K = nCy/p. (36)

The observed values of the ratio Kp/nC, given in Table 14.3 are somewhat
higher than the value unity predicted by our approximate calculations. Tm-
proved calculations of the kinetic coefficients K, D, y take account of minor,
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404 Chapter 143 Kinetie T heory Generalized Forces 4b5
;Fable H'_J Frperimental valucs of K. D, . and If'omc_"at Gicar:i_‘il_mh Let & denate the entropy density; let €32t denote the net rate of change of
Gas K, inmWem-! K™Y - D inemis=t i, in ppoise Ko, : entropy density at a fixed position r. Then, by the equation of continuity,
He 1.50 — 186. 240 . €3/3t = g, - divJ,. (39)
Ar 0.18 0.158 210, 249 .
H 1.82 £.28 84, 1.91 ;
Ni .26 — 167, 191 I a unit volume element the net rate ol appearance of en
Q, 0.7

tropy is equal to the
— 189 1.90 fate of production g, minus the loss —div J, attributed to the transport current.
NOTE: Values of the theemat cenductivity are 41 300 K.

In a transfer process U and N are conserved. The equation of continuity for
the cnergy density u is

but difficult, effects we have neglected; see the w
references,

= = —div.],: {40}
orks cited in (he general ol

MERILC % 7% Sotinbon s A YOO
| vy Bt bt et el

in , $1
N . L = = —div],. (41}
Comment, The diffusivity of Bd5 atoms is direily proportional to their Vviscosity, The &t
diffusivity of 3 particle suspended in a liquid or pas s 4 different problem: the viscosily of :
the solvent opposes (he diffusion of the suspended particle. We find £ o t/n, wheee D Let us take the divergence of J. in (38):
- 1efers 1o the particles and i refers 1o the liquid. The Stokes-Einstein relation for suspended ) - 7.

Particles is b = 1/6ayR, wh

ere R is the radius of (he sphere in suspeasion.

o NI i S
AP N3 et b

. i

. i Givd, = —divl], + J, - gradiift)

e et = L T e N Pl a T

Commenr, The quintity v = nip is caik:d_t]n: kinematic n'sco;ity; if {34) holds, v should = A{pf)divl], — Jic wrad(ufr). (42)
be cqual 19 the diffusivity . The ratio y/p enters intg hydrodynamic theory and into the

Beynold's number criterion for laminar flow,

Ermmieres o

Let (37) refer 1o unit volume; we take a partial derivative with respect o time
to obtain the net rate of entropy change:

Generalized Forees

™y
=
T

The transfer of entropy from cne part ofa s
of any transport process, We can relate (h
fux density of particles and of cnergy. By
identity at constang volume,

ystem to another is o consequence
¢ rate of change of entropy to the )
analogy with the thermodynamic : We use (10)-(43) to rearrange (39) in
. dissipation:

{33)

23

a7
-~

H
[
|

!
LR~

l

a form suggestive of the ohmic power

: Gu = X - grad{ife} + J, - grad{—pu/r), 44
do = EJU -4 dN, (37

T T i or

: ‘ 00 =3, F, 4 J,F.. (43)
W& write the entropy current density J, as
Here Foaad F, are generalized forces defined by
1
T S W (38)
T T .

oy
i

= grad(l/1);  F, = grad{— ). {46)
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Efustein relation

In an isothermat process F, in (46) may be wrilten as F, = {— i)

: grad j or,
In terms of the iaternal and external parts of the chemical poie

atial, as
Fr» = —{ ,"t)[gmd Hine + grad#txl} a7

For an ideal gas p,, = tloglning), so that gradp,, = {cn)gradn; for an
electrostatic potential grad Hen =g grad @ = —gE, Thus

Fo = —({/0ftn  gradn — gE] (48)
Now the particle flux density ako has two terms, wrilten as

Jo= ~D,gradn + ngE , {49)

where D, is the diffusivity and i is the mobility, which is the drift velacity per

unit electric field. The ratio of the coefficients of gradn 1o E is D,/nf in (49)
and t/ng in (48). These ratios must be equal, so that

{30}

which is called the Einstein relation between the diffusivity and the mobility
for a classical gas.

R T T T T Tyt e

Al ins

T T T e tmomoeere et oy oy

Comment. We gain ah advantage, for reasons related to the thermodynamics of irrevers-
ible processes, if we usc F, and F, in {(46) as the dtivin

g forees for the linear transport
processes. We write

do= LyF, + LgFy 3= Ly)F, + LyF, 51

The Onsager relation of irreversibie thermedynamics is that

LigB) = Ly(~B) (52)

whete B is the magnetic ficld intensity, If B = 0, then Liy = Ly always. For {52) to hold,
the driving forces F must be defined as in {46). Other definitions of the forces are perfectly
valid, such as the paic grad t and grad s, but do not necessarify lead 10 coefficients L that

satisfy the Onsager relation. For a derivation see the baok by Landau and Lifshitz cited
in the general references.

T e

vl

e A

Kinetics af Detailed Balance

KENETICS OF DETAILED BALANCE

Consider a system with two states, one at cnergy A and one at energy —A. In
an ensemble of N such systems, N* are at A and N~ are at —-4A, with N =
N* « N7.To establish thermal equilibrium there must exiss some mechanism
whereby systems can pass between the two states. Consider the rate equation
for transitions into and out of the upper state;

UN*fdt = aN™ — gN* (53)

where a, f may be functions of the temperature, The transition rate from — 1o
+ is directly proportional to the number of systems in the — state. The transi-
tion rate from + to — is directly proportional to the number of systems in the
-+ state,

In thermal equilibrium (AN /dr) = 0, which can be satished only if
/B = (NTIKNTY = expl—24/1) (54)

the Boltzmann factor. This resull expresses a relution between x{z) and B{r) that
must be satisfied by any and every mechanism that assists in the transitions. As
an example, suppose that the transition + — — proceeds with the excitation
of a harmenic oscillator from a state of energy sz to a state of energy {s + )e;
in the inverse process — — + the oscillator goes from st to {s ~ e In the
quantum mechanical theory of the oscillator it is shown that

B _Probs—s+ 1) s+

x Probls—s— 1) s '

for the excitation and de-excitation of the oscillator, a result derived in most
texts on quantum theory. The value of {5} is found from the Planck distribution:

expfe/t)

© R

1
ST
so that, with £ = 2A 1o conserve energy,
afff = {s¥/{s + 1) = exp({—2A/). {55

This satisfies the condition (54).
The principle of detailed balance emerges as a generalization of this argument:
in thermal equilibrivm the rate of any process that leads to a given state must
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ADVANCED TREATMENT:
BOLTZMANN 'l?ANSPORT EQUATION

The classical theory of lransport processes is based on the Boltzmann transport

x-dimensional space of Cartesian coordinates and
velocity v. The classical distribution function S(r) is defined by the relation

f{r,\‘)u;r dv = number of particles in dr dv. {56}

SO+ et dey + dv) = flry) | {57)

in the absence of collisions. With collisions

S+ dex + dey + dv} - fltey) = :lt(Ef/Er)m,im,,s. (58)
Thus

di(éfje} + dr - grad, f+ dv- grad, S = dEfidn) ., {59}

Let  denote the acceleration dv/idr; then

Effér + v grad, f+ «- arad, f= G . (60)
—— e
This is the Boltzmann (ransport cquation,

I many problems the collision term {&ffen). . may be treated by the introduc-
tion of a retaxation time t.(r,¥), defined by the equation

(Wl = =] ~ oy~ B

ROCUETRNE

SEYD

Particle Diffision

Here f, is the distribution function in the
for relaxation time with 1 for tem
distribution of velocities is sat upby
The decay of the distribution towar

mal equilibrium. Do not confuse T,
perature. Suppose that g nonequilibrium
external forces which are suddenly removed,
ds equilibeium is then obtained from (61} as

e L T e {62)
cf . T,

if we note that a/3t = 0 by definition of the equilibriem distribution, This
tquation has the solution

=Rh=(f~ Joh<oexp(—1/1,). (63)

It is not excluded 1hat e may be a function of r and v,

We combine (36), (60}, and {61} 10 obrain the Baltzmann transport cquation
in the relaxation time dpproximation:

(64}

In the steady state f/Ct = § by definition.

Particle Diusion

Consider an isothermal System with a gradient of the particle concentration,

The steady-state Boltzmang transport equation in the relaxation lime approxi-
mation becomes

vedfldx = —{f ~ fyre., (63)

where the nonequilibrium distribution function f varies along the x divection,
We may wrile (65) to first order as

hH>fy - v, dfgfdx | {66)

where we have replaced fjex by dfyfix. We can ircrate to obtain higher order
solutions when desired, Thug the second order solustion is

fo= fo = 0t dfufl = fy - exdids + o220t (e

The iteration js necessary for the treatment of nonlinear effects.

09
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Classical Distribution

Let /g be the distribution function in the classical limit:

fo = expl{p — elftl, (68}

as in Chapter 6, W
distribution functio
linear in f and f,.
(56). Then

¢ are at liberty 10 take whatever normalization for the
n is most convenient because the fransport equation is
We can take the normatization as in (6%) rather than as in

dfpfdx = (dfo/dp)(dpfdx) = (fo/t{dufdxy, {69

and the first order solution (66) for the nonequilibsium distribution becomes

I = fo = (o fo/oidusdx). o)

The particle flux densily in the x directjon is

' j,,’:jmJi)(a)da - '(71)_

where T} is the density of orbitals per unit volume per unit ENergy range:

L2
Dle) = ZI-F(‘ET) gl {72)

as in (7.65) for a particle of spin zero. Thus

= f v, o O{edde — (dpfdx) f (0,20 fo O e)de 3

The first integral vanishes because v, is an odd function and £, is an even func-
tion of v,. Fhis confirms that the net particle flux vanishes for the equilibrium
distribution f;. The second integral will not vanish,

Before evaluating the second integral, we have an opportunity to make use
of what we may know about the velocity dependence of the retaxation time 7.
Only for the sake of example we assume that 7, is constant, independent of
velocity; 1, may then be taken out of the integral:

I = (e [0, D(eNe @)

A

YT

n_;i.'a.v,mjr,_-r:.

Ferai-Dirae Bistribution

The integral may be weitten as

§ 0D e = 3—%—/;[{%1&11'3)}'09(5).*1'5 = ntfMl , (75)

because the integral is just the kinetic energy density 3nt of the particles. Here

oDleide = nis the concentration. The particle Rux density is
S = — (MY dpfdx) = —(ee/MY(dnfdxy {76)

because p = 1logn & constant, The result (76) is of the form of the diffusion
equation with the diffusivity

D = /M = Ko, an

Another possible assumption about the relaxation time is that it is
proportienal to the velocity, as in 7,
Instead of (74) we have

inversely
= lfv, where the mean free path !is constant.

It = =) [0,z | (78)

and now the integral may be written as
}fvfo‘ﬂ(s)ds = ine , {79
where T is the average speed. Thus

T = ~{(En/ndp/dx) = —ie(dnjdy) | {80)

and the diffusivity is

o
I
&

{81}
Fermi-Dirac Distribution
The distribution function is
i
Jo

T T e — 82
explle— el + 17 o ( )_
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To form dfyjdx as in (69} we need the derivative dfpfdu. We argue below that

dfofdi = 6z — 0. {83)

at Jow temperatures 1 « - Here 5 is the Digac delta function, which has the
property for a general function Fle) that

_I“‘xm)a{g — WMz = F(p). (84)

Now consider the integral {2 F (e)dfy, didde. At low temperatures df, /du is very
large for ¢ = #and is small elsewhere. Unless the function Flg) is very rapidly
varying near y we may take Fie) outside the integral, with the value Flu):

!

J':F(e}(f&fo/du)de = F(p) J'o “fpldi)de = ~ F(g) fn “(dfy de)de
~Hul L} = Flufo, (83)

where we have used diofdy = —df, de. We have also used f, = 0 fore = 0.
At low lemperatures f(0) ~ 1; thus the right-hand side of (85) is just F(u),
consistent with the delta function approximation. Thus o

it

dfofdx = 8 ~ pdupdx, (86)
The particle Alux density is, from {71y
I = (i), J'cja(a - D) (87)

where ¢ is the relaxation time at the surface & = y of the Fermj sphere. The
integral has the value

12 (3n2e,) = nfe , (88)

by use of D(y) = 3nfZep at absolute zero, from {7.17), where £ = b2
defines the velocity vr on the Fermi surface. Thus

L= e mdp i, (85}
At absolute zero p(0) = (7% 2m)(3a%m)? 3, whence

dufdx = {3ih 1}2:;:}(3:&:3}2"3,&; "Ny

i

Herrhdn x| ’ ) (90

Laws of Rorefied Gases
50 that ($7) becomes
” S = =20, 3m)er djdx = wfv;’r,cbz]dx. {91}
The diffusivity is the cocflicient of dnjdx;
D= fe {92}

closely similar in form to the result {77) for the classical distribution of velocities,
In (92} 1he relaxation uime is to be taken at the Fermi energy.

We see we can solve transport problems where the F, ermi-Dirac distribution
applies, as in mietals, as easily as where the classical approximation applies.

Electrical Conductivity

gdpfdx = ~gF_of the external potential, where E, is the x component of the
electric field intensity. The electric current density foliows from (76):

J; = (r,/m)E; g - nglefm (53}

for a classical gas with relaxation time t.. For the Fermi-Dirac distribution,
from (89,

Joo= (gt B, g = nge, for, (94}

LAWS OF RAREFIED GASES

Thus far in this chapter the discussion of transport has assumed that the
molecular mean free path is short in comparison with the dimensions of the
apparatus. At a gas pressure of 1076 gt at room temperature, the mean free
path ofa molecule is of the order of 25 em. The diameter of 3 faboratory vacuum
system connection may be of the order of 25 cm, thus of the order of the mean
free path. We may usefully draw a line here and denote pressures lower than
I % 107®atm as high vacuuns, This pressure is approximately 0.1 Nm™? or
I'x 107%kgem™? or 76 x 107" mmHg or 7.6 x 10 *torr. The Kaudsen
region of pressures Is understood to be the region in which the mean [ree path
is much greater than the dimensions of the apparatus. A knowledge of the
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behavior of gases in this pressure region is important in the use of high vacuum

The terminology recommended by the American Vacuum S
in terms of tosr, where 1 torr = 1 mm Hg=1333x 10"%p
1333 dynecm™?; here I bar = {8 dynecm ™ ?
Then:

ociety is expressed
_ ar = 1333Nm"? =
= 0.587 standard atmospheres.

high vacuum 1073107 % tarr

very high vacuum 1078-107% torr

ultra high vacuurn  below 1079 torr.

Flow of Molecules Through a Hole

In the Knudsen regime we do not need 10 solve 4 hydrodynamic flow probfem

in orders to gel the rate of efftux of gas molecules through a hole, because the
malecules do not sce cach other. We have mercly Lo caleudate the rate J, at

which molecules strike uait area of surface per unit time. We find for the flux
density

(93)

where # is the concentration and % is the mean speed of a gas moleculs. To
prove {95), consider a unit cube centaining n molecules. Fach molecule strikes
the +z face of the cube {t, times per unit time, so that in unit time $ie, molecules
strike unit area,

We solve for 7, in terms of 2. Because o, = ccos, we require the average of
c0s 8 over a hemisphere: )

2 J“‘” cos Bsindf
Cde PP
2n J:J! sin 8 de

(éos & = (96)

LS A

Therefore 2, = 12, and (95) is obtained. The expression (95} for the flux forms
the basis for many calculations of gas flow in vacuum physics in the Knudsen
Tegime,

If A is the area of the hole, the total particle flux, which is the number of
molecules per unit time, is '

DD =T = uS | Lo

LIS o

T ROt T

Flow of Molecules Through a Hole

where

S = Lir %)

The conductance § ofthe hole is defined as the volume of gas per unit time flowing
through the hole, with the volume 1akes at the actual pressure p of the gas, The
conductance is usually expressed in liters per second. For the average air
molecule at T = 300K we have £ =~ 4.7 x 0%cms- '; for a circular hole of
10em diameter, (98) feads to a conductance of 917 liter/sec, roughly 1000
liter/sec,

For a hole with a given conductance the total particle flux is propostional 1o
the concentration n or, becausa P = ny, to the pressure p:

vals-lg (99)
T T
Here we have defined the quantity

Q=p5, (100)
sometimes called the throughput, which is widely used by vacuum physicists as
a convenient measure of the flow. The quantity O is numerically (not dimen-
sionally) equal 10 the gas volume flowing per unit time, but referred to the
volume at unit pressure, in whatever units are used to ex press pressure, Vacuum
physicists like to express pressure in torr, hence they usually express flux in
tore-liters per second, From the ideal gas law one finds that 1 torr-liter at
360 K is equivalent 10 535 x 10 *mole or 3.22 x 10'® molecules.

Our caiculations have expressed the flow of gas through a hole into a perfect
vacuum. With gas on both sides, the net flux from side 1 to side 2 will be

? "
AD = Lilnz, — 7y = %A(Eim‘ - 513%) (101)
Ty 1)
The condition for zero net flux is
Pr__nit 12 (102}
Pz B 72 & B T2, ’

using the proportionality of 2 to 2 In the Knudsen regime cqual pressures
do not imply zero net flux if the temperatures on the two sides are different.
At equal pressures gas will flow from the cold side 1o the hot side; zero gas
flow requires a higher pressure on the ho! side. :
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Ift, = 1., Eq. (101} can be wrilten

t . b
AP = — nys = ;U’x ™ Pa)S == ;AQ > {103)
where
A2 =p,S ~ p,S = 9, — ¢, (164)
L B e P T v v ; .

et i L T

Example: Flow through a long tube. We assume that the motecules which strike the inper
wall of the tube are re-emitted in al directions; that is, the reflection a1 the surface is
assumed to be diffuse. Thus when there is a net fiow there is a net momentum transfer to
the tube, and we must provide a pressure head 1o supply the momentum transfer. Leg o be
the velocity component of the gas molecules paralled 1o the wall before striking the wall,

tnldng | _ ) (105}

where d is the dismeter and 1. the length of the tube. The momentum transfer 1o the tube
must equal the force due to the pressure differential Ap:

nl dneM(u = A Ap. (106)

We solve for the flow velocity (ub to obtain

_Ap L 44 Ap it 4

=l TS 107
= NRRd T WL (107
The net Qux is
Ad Ap
D e = Ap -t e LS 108
AD = ndurA PR T (105)
where
T Ad
Y =t AQfAp = - DE 169)
ST Ay {

is the conductance of the tube, defined analogously to the conductance of a hole, Eq. (97).

SRS,

PR L R T

Fih s

oty

Speed of a Pump

A more detailed caleulation, with averages over the velocity distribution taken maore
carclully, feads to a conductance differing from (109) by a fuctor §/3x:

8 tdd 2
- JAE 2 0
In MEL  3AEL (i0)

The conductance of 2 tube cannat be larger than that of a hole with the same area. From
{98). (£0), and (121) below,
32 d 4d
Sune/S, Sl SR 1

Stuvel S In MEL T 3L (i
This ratio will be farger than unity for 3L < 44 Iy writing (106} we assumed implicitly
that every malecule hits the tube wall, This will not be true for a short tube. For our resyit

to be valid we must suppose that the tube is long encugh to make the ratia {111} be smak
compared to unity, which means

L > 3d. {t12)

Using our carlier example for the conductance of a hole, we find that the conductance of
atube t meter long and 10 em in diameter is about {22 fiter/sec, for air at 300 K.

P

e e L T T e e T
Speed of a Pump

The speed of g pumpis defined simifarly (o the conductance of a hole orofa tube:
it is defined as the volume pumped per unit time, with the volume taken at the
intake pressure of the pump. The same symbot § is used as for conductance;
sometimes the conductance of an aperture or a tube is referred (o as its speed,
The product @ = pS fora pump is often called the throughput of the pumyp,

Ifa pump of speed 5, evacuates a vicuum system through a tube of condue-
tance §,, the effective pumping speed S, of the combination is given by

Lt
Sar S, 8

(113)

just as foc the conductance of two electrical conductors in serjes.

Proaf: Iet p, denote the pressure at the input ead of the tube, and let P

denote the pump intake pressure at the output end of the tube, Continuity of
flux requires that

P Sy = {p, — S, = J 25 Y ) (114)

417



418

solution

Chapter 14: Kinetic Theory
50 that

1.’1 Sp S+ Sp [ 1 .
— et = = a F=1. ) il
B2 Serr S # Sp M S )

equivalent to (113).

The relation {113) for Ser explains why in high vacuum systems the connee
tions between the pump and the vessel to be evacuated must be as short and of
as large a diameter as possible. A long and narrow connecting tube makes poor
use of a high speed pump. Further, the speed of the pump itself cannot be Jarger
than the conductance of its own aperture,

How rapidly does a pum
the ideal gas law pl =
to Eq. (99) we find

pwith eflective speed § evacuate a volume V7 From
N1, and from the definition of pump speed analopous

dp _tdN 0 pS
e e 2 B 116
de V di 4 ¥ (116}

If the pump speed is independent of pressure, this differentjal equation has the

P} = plOexp(-t/te); 1, = VJS., {1

For a volume of 100 liters connected to 2 pump with a speed of 100 liter/sec, the
pressure should decrease by e per second,

Any user of vacuum techaology soon discovers that the pumpdown of a
vacuum system proceeds much more slowly in the high and ulirahigh vacuum
regions than expected on the hasis of pumping speed and system vol
desorption of surface gas predominales—ofien by many orders of ma
over volume gas, The surface emits adsorbed molecu
evacuates molecules from the volume,

ume. The
gnitude--—
les as fast as the pump

SUMMARY
1. The probability that an atom has velocityindo at v is

Plo)dy = 4::(;\{/27!1')3’202exp(—Mvzjlc)dv s

the Maxwell velocity distribution, ‘

el

»
T T Al

ALY
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Problems
2. Diflusion is described by

J, = —Dgradn; D= ig

where T is the mean speed and { is the mean frec path.

3. Thermal conductivity is described by

d,= —-Kgradr; K =10,
where Cy refers to unit volume.
4. The coefficient of viscosity is given by

= el
where p is the mass density.

According to the principle of detailed balance, in thermal equitibrium the
rate of any process that leads 1o  given state mus} equalexactly therate of the
inverse process that leads from the state. ’

The Boltzmann transport equation in the relaxation time approximation is

&

3{+a-grud,f+v-grud,fz—£{ji9.

<

7. The clectrical conductivity of a Fermi Bas is

6 = ng*tjm ,

where 1, is the telaxation time,

PRORBLEMS

1. Mean speeds in a Maxwellian distribution. {a)} Show that the root mean
square velocity v, is

Voms = {0 = (Br/ANH, (118)

Because (v*) = (o,%) + (1,%) + <, and (5,2 = 0,5 = ), it fol-
lows that .

(W = (MM < g, 302, i {119)
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The results can alsg be obtained directly from 1h
the averape kinetjc energy of an ideal gas. {
value of the speed Do 5

€ expression in Chapter 3 for
b} Show that the most probable

Vep = (2T/M)Y2 {120)

By most probable value of he speed we mean the maximum of the Maxwell

distribittion as a function of 4, Notice that Ymp < Vrms- {€) Show that the mean
speed E is

T _['0” dvpP(s) = (Ba/mM)M2, (121
The mean speed may also be written as 1]>. The ratio

Dyme/T = 1.085, (122)

(d) Show that €., the mean of ¢}

12 absolute value of the » componcnt of the
velocity of an atom, is

T od = e = Q. (123)

2. Mean kinerie energy in & beany.
of molecules that exits from asma
now that the molecules are collim
50 1hat the molecules that pass

velocity component normal o th
energy? Comment : The molecules
thermal equilibrium after they h
oven is depleted with respect 1o

" (&} Find the mean kinetic energy in g beam
Hholeinan oven at temperature 7. (b} Assume
ated by a sccond hole farther down the beam,
throuph the second hole have only a4 small
¢ axis of emission, What is the mean kinetic
in the beam do not collide and are not in real
uve exited from the oven. The 2as lefl in the
fast moleceles, and the residual gas will coal
flowing in through the walls of the oven.

3. Ratio of thernal to electyical conductiviry, Show for a classical gas of
particles of charge ¢ that

Kftg = 32q7 o KiTo = k292 Sl

inconventional units for Kand 7. Thisis know n as the Wiedemann-Franz ratio,

4. Thermal conductivity of metals, The thermal conductivity of copper at
room temperature is largely carried by the conduction electrons, one per atom.
The mean free path of the electrons at 300 K is of the order of 400 x 10~ 8 cm.

B A B e poat

LAy .

Problems

The conduction electron concentration is 8 x 107 perem®. Estimate (a) the
clectron contribution to the heat ca pacity; (b) the electronic contribution to the
thermal conductivity; {c) the electrical conductivity, Specify units,

5. Boltzmann equation and theringl comductivity, Consider a medium with
temperature gradient dr/dx, The particle concentration is constant, (a} Employ

the Boltzmaan transport equation in the relaxation time approximation to
find the first order nonequiiibrium classical distribution:

3 £ dt
J=fy— ”xfc(“:,_; + ;E)fa T (125)

(b} Show that the energy flux in the x direction is

dt of 3 it
= o8, Lo 38 & e | 125
- T

where o2 = 2¢/3 (c) Evaluate the integral to obtain for the thermal conduc-
tivity K = Snzr, /i,

6. Flow through a tube. Show that when a liquid fows through a narrow tube

under a pressuce difference p between the ends, the total volume flowing through
the tube in unit time is

V= (na*/3yLYp , {127

where i is the viscosity: L is the length; a is the radius. Assume that the flow is
laminar and that the flow velocity at the walls of the tube is zero,

7. Speed of a tube.  Show that for air at 20°C the speed of & tube in liters P
second is given by, approximately,

3
Sr o= —-1331_ . (128)
L+ 3d
where the length L and diameter 4 are in centimeters; we have tried to correet
for end ellects on a tuhe of finjte length by wealing the ends as two halves of a
hole in series with the tube.

(21
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Chapter I5: Propagation

Ehe purpose of this terminal chapter is to bring within the compass of the text
t

e most imporlynt problems in the Propagation of heat and the propagation
ofsound, both classical subjects that are partofan education in thermal physics.

HEAT CONDUCTION EQUATION

Consider first the derivatio

A ol the diffugion cquation, which is found from the
Fick faw {14.19} for the p

article flux density:

J, = =D, gradn | (1)
where D, is the particle diffusivity and n the particle concentration. The equation
of continuity, ' )

én .

P div], =0, (2}

¥

assures that the number of particles is conserved. Because div grad = V2,
substitution of {1} in (2) gives

L
E; = ,.,V 1. (3)
This partial differential equation describes the time-
particle coneentration 5,

Th? thermal conductivity equation is derived similarly. By (14.27-14.30) we
havein a homageneous medium

dependent diffusion of the

J, = —Kgradr, {4)
The eguation of continuity for the energy density is
5 0t .
C@T -+ dl‘-"Ju =0 . K {3)

Dispersion Relation,  Versus &

where € is the heat capacity per unit volume, We combine (4} and (5} 10 obtain
the heat conduction equation

g=&wn b, = KiC, {6)

This equation describes the time-dependent diffusion of (he temperature, The
equation is of the form of the particle diffusion equation {3). The quanlity D,

is calied the thermal diffusivity; fora gas it is approximately equai to the particle
diffusivity, as in (14.23).

[

P

L e e LoD TR

Comment.  The cddy curreat equation of clectromagnetic theory* has the same form as
3 and (6 H 8 is the magaetic ficid imensity, then

B
'-5—: =D, V8. 7)

" The constant D, may be called the magnstic diffusivity and in S1 is equad 10 Vou; in CGS,

Dy = eYdnaw It has the dimeasions {length)? (time)™ and is directly proportional to the
{skin depth)? times the frequency, When we have solved ane equation, say (3), we have
solved three problems,

I}

T R = 3 o e i
R R RPN PN R A AR et G S

L e S ) B Y

Dispersion Relation, & Versus k
We look for solutions of the diffusivity equation
DV20 = ¢0/ét (3)
that have the wavelike form
8 = Ogexplitker — wi)], i)

with w as the angular [requency and k as the wavevector. Plane wave analysis is
an excellent approach to this problem, cven though it will tern oul that the
Jiffusion waves or heat waves are sg highly dumped that they are hardly waves

* See, forexample, W. R Smythe, Static and Jynamic electricity, McGraw-1ili, 3ed ed., 1968, p. 269,
This book has an unusually il treatment of eddy cusrent problems.

s
ROTEACT {1l =

425



426

Chapter 15 Propagation

al all. Substitute (9 in (8) 1o obtain the relation belween k and o
DR = . (10)
A relation exk) for a plane wave is called dispersion relation.

Penetration of Temperature Oscillation

Consider the variation of tem

perature in the semi-infinite medium z > 0 when
the temperature of the p!

ane z = 0 is varied periodically with time as
0{0,8) = f,cos w1, {11}

which is the real part of Jaexp{

~ &), for real 8. Then in the medium 2 > 0
the temperature is

b(z,1) = B, Refexplifkz — wi)])
= 0, Re{exp[_il"z(w/D}‘”: — fwe]}, - (i2)

where Re denotes real part and %2 = {i

02,0y = 0, Relexp{—:z/8)expli(z;5) — iwr}}
“= Gy exp(—z/8) cos e — z/3). (13)

The quantity § = (2D/w)' has the dimensions of a tength and represents the
characteristic penetration depth of the temperature variation: at this depth the
amplitude of the oscillations of § is reduced by e, The characteristic depth iz
called the skin depth if we are dealing with the eddy current equation. The
wave is highly damped in the medium the wave amplitude decreases by ™ *
in a distance equal to a wavelength/2s.

If the thermal diffusivity of soil is taken as D ~ tx 1.(}‘"3cmzs' !, then the

penetration depth of the diurnal cycle of heating of the ground by the sun and
cooling of the ground by 1he night sky (& = 073 x 107*57 Y is

L{diurnal} = (2Djw)"? 2 Scm.

For the annual cycle, ‘

L{annual) % I m.

P IV Thus, with § = (2Dfwyi?

A .._r.r-m!a.}

Pk bt K

MR N e e £t e
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Development of a Pulse

A layer of 10em of carth on top of a cellar will tend to avernge out day night
variitions of surface temperature, but the suier/winter variation g

$1s ZL)[}
of the cellar reg

uires several meters of earth, Actual vitlues of the thermul
difusivity are sensitive 1o the composition and condition of the soil or rock.
MNotice that a fgure of merit for celiar construction involves the thermal
diffusivity, and not the conductivity alone.

Development of a Pulse

In addition to the wavelike solutions of the form {9), the diffusion equation has
several other uselul forms of solutions. We confirm by insertion in {8) that

O(x,1) = (4aDe)~ Y2 exp( — x3/4D0) (1)

is a solution. The proportionality faciot has been chosen so that

f_"ja(x,r)dx = 1. (15)

The solution (14) corresponds 1o the time development ofa pulse whichatt = 0
has the form of a Dirac delta fuaction 8(x), sharply localized at x ==
elsewhere,

The pulse might be 2 temperature pulse, as when a pulsed laser or pulsed
electron beam heats a surface bricfly. Let ( be the quantity of heat deposited on
the surface, per unit area. The temperature distribution is then given by

0, and zero

G{x,1) = (2Q,’Cﬁ(4nbr)””1 exp(—x*/4Dn , (16)

where €, is the heat capacity per unit volume of the material. The function is
plotted in Figure 15.1. The factor 2 arises because all heat is assumed to flow
inwards from the surfuce, while for the solution {14) symmetrical flow was
assumed. Another example of the application of{(14) is the diffusion of impurities
deposited on the surface of a semiconductor, to form a p-1 junction inside the
semiconductor.

The pulse spreads out with increasing time. The mean square value of x is
given by )
(X e f x20{x,)ix / _[ O(x.0)dx = 2Dr . (7

after evaluating the Gaussian integrals. The root mean square value is

,_\:,m_s{:) = {xTHi o (2D, ) {1y
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Figere 15,1 Plot of spread of tempe

sature pulse with time, for 45D = 1,
from Eq. (16). A1t = g the pulse is a

delta function,

e o e e B R 5 vyt et S
Cormmens, This result shows that the wideh of the distribution increases 25 £, which is
2 general characteristic of diffusion aad random walk problems
quite untike the motion of 4 wave

for which @ = ek, where v is (k

in one dimension. It js
pulse in a aondispersive medium, which is a medjum
€ constant vetocity, The connection with Brawnian motion
or the random walk prablem follows if we ser to be the duration of each step of & random
walk; then 1 = Nig, where N is the oumber of steps. It foliows that

Yo} = (ADrg)l3 N2 {19

50 that the tms displacemeny §
This is the result observed in
suspensions of smal] partigl

S propartional to the Square rool of the number of sleps.
studics of the Browaiag motion, the random motion of
s tn liquids,

P aAC b AN + S N

L GO e i ar T o LT r et i e |
Dbl e T SR

Tinte-Independent Distribution
Diffusion with a Fixed Boundary Condition at x = 0
H a selution of (8) is diffcrentiated or integeated with respect 1o aay of ig

independent variables, the resul may again be a solution. An important example
is obtained by integrating (14) with respect to x;

d(x0) = (dnDp)~? fo * dx’ exp{—x'?7aDry
=ﬁf;dscxp(—sz}m§crfu . (20}

where v = x/(4D1Y%, Here we have introduced the error funetion defined by

.l' 2 f” ds exp{ - s%) (21}
= —5%)
er z. Tid D
Tables of the error function are readily available. The error function has the
properties
' erf(0) = 0:  lim erf(x) = . 22)

Of particular practical interest is the diffusion of heat or of particles into an
infinite solid from a surface at x = 0, with the fixed boundary condition = 8,

atx =0and 0 = Oatx = . (For: < 0 we assume & = 0 everywhere)) The
solution is

B0x.0) = 0o[1 — erf(x/{4D0)"*)1, (23)

Again we see that the distance al which 8(x,1} reaches a specified value is propor-
tional to (4D1)'2, The application of this solution 1o the diffusion of impurities
into a semiconductor is discussed in 2 problem.

Time-Independent Distribution

Let us look at a solution of {8) that is independent of the time. The diffusivity
equation reduces to the Laplace squation

Vi = 0. (24

Consider a szmi-infinite medium bounded by the plane z = 0 and extending

along the positive 7 axis. Let the temperature vary sinusoidally in the boundary
plane:

0(x,5.0) = By sinkx. (25)
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Chapter 15: Prapagation
The solution of {24) in the medium is

Ofx, 12} = 84 sinkx expl{—kz). - {26)

The temperature variation is damped exponentially with the distance from the
boundary plane. The lemperature distribution

in the time-independent problem
must be maintained by

constant heat sources on the boundary plane z = Q.

PROPAGATION OF SOUND WAVES IN GASES

Results developed earlier in this book can be applied to the study of sound waves
in gases. Thermal effects ase important in this problem. Let apf

pressure associated with the sound wave; the form of the wav
as

x,t} denote the
¢ may be written

dp = dpexplitky — wn)], an

where k is the wavevector and ¢ is the an

gular frequency, The wave propagates
in the x direction. : o

We suppose the equation of state is that of an ideal gas:

pV = Nt , or = prfM {28)

where p = NAM/V is (e mass density, and M is the mass of a molecule. The
force equation referred 1o unit volume is

u ép Tdp  p &

f 2 i B

-2 _ P er 2
ot 8x Max  Mox 29)

Here u is the x component of the velocity of a volume element. The motion is
subject to the equation of continuity

dpfdt + divipy) = 0 , (30)
or, in one dimension,
Spfdt + Hpu)jéx = 0. {31)

The thermodynamic identity is

au + pdV = 1ds | (32a)

=

R e N e L

oAk o]

Propagation of Sound Waves in Gases
which can also be written

di dy do
o AL 3
7 +p v =T T {32b)

If we assume {pending discussion below} that the
during the passage of a sound wave, Eq. (32b) becomes

Cole/en) + (pIvieVien = 0 | (33)

where £, is the heat capacity at constant volume, per unit volume. We can re-
write the second term in terms of 3p/ét because p = NMIV and (I V)(@V/E1) =
—{t/p)}{dp/61). Now the {hermodynamic identity appears as

Culde/an) ~ (pfpy@psery =o. (34
Let us define the [ractional deviations s, 8 by

P = polt - 5); T = T79(l + ), (35}

where pg, 1o are the density and temperature in the absence of the scund wave,
We assume that v, 5, 8 have the form of a traveling wave: exp{itkx — wn}. The
three equations {29), {(31), (34) that govern the moticn now become

—iwpu + ik (tpo/M)s + {pro/M)F) = O; {36)
—lwpys + ik(pous + pu) = G; (37
—iwry O 8 + i (pfp)pgs = 0. (38}

We assume that at sufficiently small w

ave amplitudes it is a good approxima-
tion to neglect in these equations ter

ms in the squares and cross products of
1,5, and §. For example, pu = py(f + shu becomes port if the cross product su is
neglecied. The equations thus reduce to, with the subscripts dropped from

pandr,
wu — {ke/M)s — (ke/MYO = 0O; {39)
ws — ku = 0; {40)
16 ~ ps = 0 oG —ns =0, (81)

¢ is no entropy exchange -
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where n is the concentration. These equations have a solution only if
“=GuyMeg @

wherey = (&, + e, = Co/Cy in our units, The velocity of sound js

b = dfok = (yo/haye, (43)

With polyatomic gases {43) is valid at low fre

quencics, but as the frequency ig
ion above which the velacity of

" sound inereases. The transition region between low frequency and high fre.

quency propagation is associated with relaxation effects,
Thermal relaxation describe

s the establishment of thermal equilibrium ina
system. Energy dissipalion res

ults when all parts of a system are not at the same
temperature: the dissipation is strongest when the pertod of the heating and
cooling half-eycle in the sound wave is cemparable with the tine required for
heat exchange between the different degrees of freedom of the system. In

melecule and the external transtation siates,

LctthﬁhcalcapacilyC,and temperature v, = Tl + ) refer to the internal
states, while C, and t = Toll + 8) refer 1o the translational states, Then {34)
becomes

Cilenfén + G, (eeer) - (p/p)apjery = 0, (34

or, in place of {38},

~lw1Ci0, ~ fwr,C, 0 + 1{p/p)pas = 0. (43)

Supposc that the transfer of energy between the internal and external states has
the characteristic thme detay 14 such that

CT /6t = —(1 W, (46)

o il

Ay TR AT

Thermnal Relaxation

or

Tl = (6 — 0,)/1,. ' (47)

Herz 1, is called the relaxation time. There will be separate refaxation times for
the rotational-translational transfer and the vibrational-transiational transfer,
We combine €39}, (40}, (45) and {47} to obtain the dispersion relation

K = a2 LG oty

- 48
p T Cy + dwrgC, e

where C,, C, refer 1o the translational states alone. In the low frequenty limit
wiy << 1 and

Co + €
L2 = m?(,umé—rai =} (Mfyet) , {49)

where g is the Jow frequency limit of the total heat capacity ratio (C, + C\y
{Cr + C) The low lrequency limit of the veloeity of sound is

6,(0) = {yor/MyH2. {30)

In the high frequency limit wry » 1 and
K% = HMENC,/C) = wiatyy, ). {51)

Here v refers only to the translational States; at high frequencies the internal
states are not excited by the sound wave, The high frequency limit of the velocity
of sound is

B(00) = {p,1/M)H2, (52)

Values of 3y are given in Table 5.1 if no internal states at ali are excited,
fm TR ] )

The wave is attenuated when £ is complex; the imaginary part ol k gives the
pressure attenuation ceefficient «. From (48} it is found that the maximum
absorption per wavelength océurs when @ = 2r/ty and is given approsinusiely
by

{(xi) . =~ E.E&:_(_"_‘i._u €

2. ¢, G Fo,

(53)
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Table 15,1  Ratio C,-Cy = y for gases

Gas Temperature, <C ¥
Air 17 1.403
H,0 100 1.324
H, 15 1410
Gy —~181 1450
i3 1.401
200 1.396
2000 1,303
Co, 15 1.304
Ar 15 1.668
He - $80 1.660

NOTE: For a monatomic ideal gas, CJCy = 573 = 1667, a8
fos Ar and He. For a dialomic gas at a temperatuze high
enough to excite the rotational motion, C,;Cy = /5 = 140,
as for O, and H; at room temperature; at lemperatures
sufficiently high to cxcite also the vibrational metion,
C,fCy = 9/ = 1.286, 35 for O, at 2000°C. The values given
are of v, applicable o static processes and to scund waves
in the Limit of fow frequencies. For very high frequency
sound waves only the translational molion is excited and
72 = 5:3is applicabie.

For CO; gas at the relaxation frequency of 20kHz under standard conditions
the intensity is observed to decrease by 1/e in about 4 wavelengths—a massive
absarption, in agreement with theory.

PRI

Example: Heat transfer in o sound wave, Fquation (33) expresses the isentropic assump-
tion: the equation neglects the thermal conductivity which gives rise to some transier of
thermal energy within the sound wave betwees successive warm and cool half cycles. The

assumplion thatde = 0 must be modified 10 1ake account of heat flow. The heat conduction
equalion {6} may be wtilten as

K&t/ex® = 185/81 {54)
where & is the entropy density. Then {34) becomes

Colérjan) ~ lp/pd@p/an) = K(2%t)oxY) ,

[+}4

—iwtl 8 + iwps = w'Krk_’B. . SR ) B

P e ——

i O Y

ot S

I irprkants

ity

Summary
When we use this in place of (41), the dispersion relation wil) becomes
o + Ve
k= wl(Mr) 2 — 6
@l m(cp n m’kl)‘ (56)

with W = K/w. Atlow lrequencies W? is much smaller than €y, so that the sound velocity
is equal 10 the isentropic result r, = (yo1/AM)' 2, as before. The condition Wi* « Cpis
essentially the candition | « J, where 7 is the molecular meas fiee path and 1 is
length of the sound wave. The altenuation of the
inary part of the wavevector k and is denoted b
region W « ¢ is that

the wave-
pressure oscillation is given by the imag-
y 2. The tesult from (56) in the low frequency

@ = (g = DpKa?f2eC, {57)

where €, refers to unit volume.

ey e i e A
L e T Iy N B s

SUMMARY

» The heat conduction equation is the partial differential equation that follows
- when the phenomenological transport equatien {here the Fourier law) is
combined with the equation of continuity. We obtain

ot A

— =DV b =K

dt

2. The time-dependent diffusion equation and the eddy current equation have
the same form, so that their solutions may be translated from the solulions

of the heat conduction equation, these being often more familiar in the
literature.

b

Frequently it is uscful to construct solutions in the form of superpositions
of plane waves of the form

8 = Opexplifk-r — )l

The differential equation then gives the refation betwesa @ and k, called the
dispersion relation of the problem.

4. The propagation of sound waves in gases depends on the rate of exchange of
energy between the translational, rotational, and vibrational motions of a
molecule. A low frequency sound wave is described by isentropic, and not
isothermal, parameters-—a result that seems paradexical at first sight.
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PROBLEMS

L. Fourier analysis of pulse. Consider a distribution tha
£ =0 has the form of & Djrac della function &{x).
fepresented by a Fourier integral:

t at the initial iil‘;}e

A delta function ean be
I rx 3

0{x,0) = 3(x) = 5 7 dkexplitx). (58)

At later times the pulse becomes

O{x,1) = Z—Infjn dkexplithx — wnl, {59)

or, by use of (10},
5(\':’)—ﬁI ’ dk ihx ~~ [kE
X1} = — kexplikx - Dk 1. (60)

Eva]qa;c the fniegral to obtain the result (14). The method can be extended to
d_escr_lbc the time development of any distribution givenat ¢ == 0, If the distsiby-
tion is f(x,0), then by the definition of the delta function

fx,0 =lId-x’_‘/l:('x’,0)5(A\' - x), (a1}
The time development of §(x — x')is
Blx - x'\1) = (47:Dt)‘"*exp[—~(x — % /4Di] (62}

by (14). Thus at time ¢ the distribution Jtx.0) has evolved to

Ja0) = (dnpy)=t f dx’ [ D)exp] ~(x — x)}/ap]. (63)

This is & powerlul gencral solution.

2. Diffusion in two aud three dimensions, (2} Show that the diffusion equation
m lwo dimensions admiss the selution ’

0,(1) = {Co/1) exp{—r¥/4Di) (64)
and in three dimensions

0380) = (Ca/t*)exp(— r/apin); (63)

P Rk

Problems

by Evgiuase the constants C; and Cy. These solutions are analogous to (14)
and describe the evolution of a delta function at ¢ == 0,

3. Teniperature vaviations insoil.  Consider a hypothetical climate in which
both the duily and the annuat variations ofthe lemperature are purely sinusoidal,
with amplitudes 0, = 10°C. The mean annual lemperature 0y = 10°C, Take
the thermal diffusivity of the soit tobet x 107 em? s~ Whatis the minimum
depth at which water pipes should be buried in this climate?

4. Cooling of a slah, Suppose a hat slab of thickness 2a and initial uniform
temperature 8, is suddenly immersed into water of temperature 8, < 9,,
thereby reducing the temperature at the surface of the slab abruptly to @, and
keeping it there, Expand the lemperature in 1he slab in a Fourier series. Afler
some time alt but the longest wavelength Fourier component of the temperalure
will have decayed, and then the temperature distribution becomes sinusoidal,
Aller what time will the temperature difference between the center of Lhe sfals
and its surface decay to 0.01 of the initial dilfference 8, — 6,7

5. p-n junction: diffusion from a fixed surfuce concentration, Suppose a sili-
con crystal is p-type doped with a concentration of w, = 10'%c¢m =3 of boron
atoms. If the crysial slab is heated in an atmosphere containing phosphorus
aloms, the Jatter wilt diffuse as donors with a concentration a,{x} into the semi-
conductor. They will farm a £t junction at that depth at which n, o= oy,
Assume that the diffusion conditions are such that the phosphorus concenti-
tion at the surface is maintained aui ) = 10'7cm "% Take the diffusion
cocfficient of donors o be D = 10~ 1oy~ ' What is the value of the constart

C in the cquation x = Ce'2 where x is the depth of the p—n junction and 1 is
the time?

6. Heat diffusion with internal sources. When internal heat sources are pres-
ent, the continuity equation (5) must be modified to read

¢

Y
213

+div], =g, , (66}

where g, is the heat gencration rate per unit volume. Examples include Joule
heat generated in a wire; heat frem the radioactive decay of trace elements
inside the Earth or the Moon. Give an expression for the temperature rise at the
center af (a) a eylindrical wire and {b} the spherical Farth, on the assumption
that g, is independent of position and is constant with time,

7. Critical size of muclear reactor. Extend the considerations of the preceding
problem to particle diffusion, and assume that there is a net particle generation
rate g, that is proportionul to the local particle concentration, g, = nity, where
fo is a characleristic lime constant. Such behavior describes the neutron senera-
tion in a nuclear reactor. The value ofto depends on the concentration of 235
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nuclel; il no surface losses took place, the neutro
as exp(1/to). Consider 2 reactor in the shapecofac
that surface losses pin the neutron surface con
Eq. (3), il augmented by a generation term R

1 concentration would grow
ube of volume L2 and assume
centration at zero. Show that
= n/tg, has selutions of the form

a{x, 3z, o« expt/t;)cos(k x) costky)eos(k 2}, (67)

where kL, kL and k_L are integer multi

denes of the net time constant toonk,, k, k, and 1, and show that for at least
one of the solutions of the form {67) the nieutron concentration grows with time
if L exceeds a critical value L., Express L,

< 88 4 function of D, and {,. In
actual nuclear reactors this increase js ultimately halied because the neuiron
generation rate g, decreases with increasing temperature,

ples of 7. Give the functional depen-

P ryrt i S
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Appendix A

Some Integrals Containing
Exponentials

LoTaL fE

THE GAUSS INTEGRAL
Let

Ip = fj:exp(~—x2)dx =2 [ exp(~x2)dx. {1)

The following trick is used to evaluate Ta. Wrile (1) in terms of a different
integration variable: 4

Iy = f;: expl - y2ydy. (2}

Multiply {1} and (2) and convert the result ta a double integral:

I = fj: exp{—x?)dx J.j: exp{—y¥)dy = f:: Jj: exp - (x* + yi)dxdy.
{3)

This is an integral over the entire x-
¢, as shown in Figure A.1. Then,
dxdy becomes dd = rdr de:

¥ plane. Convert to polar coordinates r and
x4+ y* = r? and the area element do =

Iyt = J.:““‘: exp(—-r’}rdr}d{a w 2R f:exp(——rzl rdr,

Because of dlexp(-~r*}] = -~ Zexp(~r)rdr, the integral over ris elementary:

1 = -—-nfa’{cxp(—~r2)3 = _[nexp{_rz)jl -
r =0
Thus
Iy = f::exp(—xl)dx e 2J.:6Xp(-—-xz)dx = gl @
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Figure A1

The area elemeny dA = rdrdg,

Some Integrals Conraining Expanentials

GENERALIZED GAUSS INTEGRALS,
AND GANMMA FUNCTION INTEGRALS

Integrals of the form

Lo = 2 [ “xmexpi— 33, > ~1), (5)

where nt need not be an integer, may be reduced to the widely tabul

function T'(z), by (he substitutions x?

ated gamina
=g 2y = Ty,

O N (m — 12, (6)

The integral in {6}

may be viewed as the defj nition of I'(z)
values of =

for noninteger positive

The gamma function satisfies the recursion relation

T+ 1) = al™(n) . n

Itis easily obrained for n>0fr
extend the definition {6) of (2
it is always possible to reduce
interval 0 < 7 < 1.

om {6) by integration by parts, and it is used lo
1o negative values of z. By using {7} repeatedly
I'(z} for arbitrary argument 1o a value in the

o

ST . i
[ ety

g

The Stirling Approximation

Form =0,n= -1 from {4):

o= [Ty e dy = Ty = i @

Uniis an even integer, m = 21 > 0,nisa half-integer, and = [ 4, then we find
by repeated application of (7), with the ajd of (8), that

I =2 J-:x“cxp(qxzjdx = J;my"*e"dy
ST D =0-Hx-Px- xixtxan )

Form = 1,5 = 0

I = ZJ:.'(exp{——_\'l)dx = J:e"'dy =F{1) =1 {10)

W is an odd integer, m = 3 + 1=

Linisan integer, m = | > 0, and we find
similarly, with the aid of {10)

ey =2 f:x"“ expl—x?)dy = J?y’e"’dy
=P+ D=l (1) x % 2 x [ =11 (1)

The gamma function for positive integer argument is simply the factorial of
the integer preceding the argument,

THE STIRLING APPROXIMATION

For targe values of i, #! can be approximuted by

———

1 ! ,
ul (Zrm}”zn"explr*n + o + G(F)] {12a}
or
1 ! 0 ! {(12b)
logn! = Yog2n + (v + legn —n + 1~27: + o)

Here the term 1/12n is the first term of a1 expansion by powers of 1/, %Img
0(1/n?) stands for omitted higher order teems in this cxpunsion, of order 1n
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or higher. In practice, even the term 1121 s usu
is to check on the accuracy of the approximat
correction introduces only a change below th
expression has the desired accuracy.

To derive (12) we wrile, in accordance with (1),

ally omitted. Tis principal rale
on. If ihe effect of the 1/120-

e desired accuracy, the entire

nl = f:f'e“‘dx = J? exp[ flx)]dx , (13)

where

Jix) = nlogx — x. {14}

We make the substitution

X=kyd =l + 078, Uy = ntdy. {15)

Then
Jx) = nlogn —~ n + g(y), (16)

where
9(y) = nflog(l + yn=4) — 4], (i

With these,

exp[fI)] = wre "exply(1], (18)
nl = niyren f:m exp[g(y)]dy. (19

The function (3 has it§ maximum at y = 0 goy = 0. Using the Taylor
expansion of the logarithm, - D

log{l+s}=s—%5z+%s"--is4+"-. (20)

with s = {y2/n)'2, we éxpnnd (3

= 1},2 1 yl 3z
9‘”‘"[“5::*5(7{) - ]

SO @y

|

Ak

ol o X N K

L

(T o

The Siirling Approximation

In the limit n ~+ 0, 5 - 0, and all but the frs

Uterm in (21) vanish, and the
integral in (19) becomes

[Zwesnlotndy = [ expl- 2230 = myi, 22

with the aid of {4). If (22) is inserted into {19) the result is identical to {1Za)except

for the correction term 1/12n. 1ts derivation is a bit tedious. We work with
logu!and write

A 1
lognt = {log2r + (0 + Hogn — n + "~ + O(Tﬁ)' (23a)

Hwereplacenbyn — 1,
toglnr — 1)t = {log2n + (n — LYlog(n ~ 1) — n—1
1
P I o(_,). 23b)
n-1 i
We subtract (23b) from {23a):

lognl — log(n — 1)

it

H W”! = logn
OB Ty T o8

#

{n + 3logn — (n ~ Hlogln — 1) ~ 1

A A i

e 4 Of = 24
+ = nniro(n,). 24

where all omitted terms are now at least of order 1/ The two terms in A
can be combined:

A A A A i
— TR e T 0 — 1. 25
I | nfn — 1) n* + (n’) (25}

1£ this is inserted into (24), we find

n

4 H
i = (n— Blog pein el 0(‘—]—3). {26
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For large n the logarithm may be expanded according 1o (20), with 5 = —. Hn:

ioggim_.'_“]o) 1“1 _1+_\L_+J_.+{} ,l‘ {27
e DY T PR u? =7

i { t 1

— _ll_wzl e e e _l.
-3 Ogn——l +2n 2u+3ﬁl 4112+Gu3

1 1 :
= i —- 9
b+ t2n? + 0(!13)- (=8)

If this is inserted in (26 we see that 4 = 112,

We are often interested notin al but asly in logn!, and only 10 an accuracy

approximate value of logn! and the
uch an approximation is obtained by
ase less rapidly than lincarly with -

true value decreases with mcreasing n, §
neglecting ail terms in (12b} that incre

e

logn! > ntopn — o,

(29)

e e

AT e

Appendix B
Temperature Scales

DEFINITION OF THE KELVIN SCALE

Numerical values of lemperature® ! are ngt expressed in practice in terms of he

fundamental temperature 1, whose unit is the unit ofenergy, but on the (absolute)
thermodynamic temperature seale 7T, the Kelvin scale, whose unit is the kelvin,
symbol K. The kelvin was defined in 1954 by international agreement as the
fraction 1/273.16 of the temperature T, of the tripie point of pure water, Hence,
by this definition, T, = 2713.16K, cxactly. This temmperature is 0.01 K above the
aumospheric-pressure freezing poimt of water (the ice point), T, = 273,15 K.
The triple point is more easily and accurately reproducible than the ice point.
The triple paint establishes itsc]faummalicaliy in any clean evacuated vessel
that is partially backfilled with pure water and cooled until part but not all of
the water is frozen, leading 10 an equilibrive between solid ice, liquid water,
and the water vapor above the ice-water mixture, .

The Celsius temperature seale ¢ is defined in terms of the Kelvin scale, by

=T - 273315K, H

Temperatures on this scale are expressed in degrees Celsius, symbol *C Tem.-
perature differences have the same value on both Kelvin and Celsjus scales,

The conversion factar kg between the fundamental lemperature 1 and the
Kelvin temperalure,

T = kT, )

—————

* We appeeciate the assistance of Norman E. Philtips in the preparation of this appendix,
T The ultimate survey of the state of development of precise temperature measuremenis is the
proceedings of an internationat ¥ mposium taking place every few years under the titte Temperature,
its measurement and control in sciprce and indusiry, The proceedings are published under the same
litte. ¥oi. 1: C. O, Fuirchitd, edisor: Reinhold, 1950, This volume it targely obsolete, Vol. 30 . [
3 Reinhotd, (955, Althuugh na fonger reflecting the state of the ary, this velome is still
uful for its theraugh introduciory discussions of pringi i
measurements, rot all of which ace repeated in the luter valumes. Vol 303 parts): C. M. Herzfeld,
cditor; Reinhold, (962, Perhaps the most yaeful valume beeause of iis introductory diseussion of
principies of various methods of temperatyre measuremsents. Yol 4(3 pasis): H. H. Plamb, edijor:
Instrument Society of America, Fitisburgh, 1973, Most useful for representing the state of the ap

of various methods of lemparature measusements; contains less introductory review maleri
than Vol, 3.
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is called the Boltzmann constant Its numerical value must be determined
experimentatly; the best current value® is

Ng = {1.350662 + 0.000044) x 107 #Serg K+, 3

The value of the Bolizmann constant is determined with the aid of certain
model systems whose structuges are sufficiently simple th
the energy distribution of the quantum slates, and from it the entropy as a
function of the energy, ¢ = o{U} The fundamental temperature as a function

of the energy is (U} = {¢afeU)™". Examples of model systems used in the
determination of kg are the following:

{@) Ideal gas. In the limit of low particie concentratien all gases behave as
ideal pases, satisfying pV = NkyT.One obtains kg by measuring the pV product
of a known amount of gas at a known kelvin iemparature T, extrapolated to
vanishing pressure. The detarmination of the number of pucticles N invariably
involves the Avepudro constant N independently known,

(B} Black body radiation. We can obtain ky by fitting the meusured spuctral
distribution of 2 biack body of known Kelvin femperature T to the Planck
radiution faw (Chapter 43 Because this law involves t through the ratio b/ =

fiw/kyT, this determination requires the independent knowledge of Planck’s
consiant.

at one cao caleulate

(c} Spin paramagnetism, n the limit of vanishing interaction the magnetic
motment M of a system of ¥ spins in a magnelic field B, at temperature 1, is
given by Eg. {(3.46). Various paramagnetic salts, such as cerous magnesium
nitrate (CMN) are good approximations 1o noniateracting spin systems if the
temperature is not tao low. By filting measured values ol M as a function of BT
to {3.46) we can determine the ratio m/kg, where m is the Intrinsic magnetic
moment of the electron, known indcpendeml}. Usually only the low-field
portion is used, in which case 1he number of spins must aiso be known, which
involves again N,. Precision results require correction for weak residual spin
interactions, similar to corrections for particle interactions in a gas.

The ky value given in {3} is a weighted average of several determinations.
With an uncertainty of about 32 parts per million, it is one of the least accurately
known fundamental constants, Most of this uacertainty is due to the difficulty
of the measurements and 1o the nonideality of the systems used for these

measurements. About 5 parts per mitlion are due to the limited accuracy with
which f and N, are known,

* E. R. Coher and B. N. Taylor, J. Phys. Chem. Refererce Data 2, No. 4 (1973).

o
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Primary and Secondary Thermometors

When expressing lemperature as conventional Kelvin temperature T rather

than fundamental temperature T, it is customary to absorb the Boltzmann
coastant into the definition of a conventional entropy S,

S = ko {4

The refation 40 = 1ds beiw

een reversible heat transfer and entropy transfer
then becomes

40 = Tds. (5)
PRIMARY AND SECONDARY THERMOMETERS

Any accurately measurable physical 'pmpc:iy X whose value is an accurately
known function of the temperature, ¥ = X, may be used as a thermometric
barumeter 1o meusure the temperatuse of the systemn possessing (he property
X and of any systeny in thermal wyuilibrium with it Used in this wiy, the
system with the property X is a thermomcter. The principles underlying
ihe most commionly used thermometers are Listed in Tables Bl and B2, The
thermometers listed in Table B.2 are called secondary thermometers, defined
as thermometers whase temperature dependence X{T') must be calibrated
empirically, by comparison with another thermometer whose calibration is
already known. The calibration of ali secondary thermometers must ultimately
be traceable to a primary thermometer. But once calibrated, secondary ther-
momelers are easier to use and are more reproducible than the primary ther-
mometess available at the same temperature,

Any calculable model system that can be used to determine the vatue of the
Boltzmann constant k; can be used as g primary thermometer, and the three
model systems discussed above are the mast important primary thermomelters
(Table B.1).

The precision and accuracy of thermometers vary greatly. Precision is
expressed by the variation AT observed when the same temperature is measured
at different times with the same instrument, Accuracy is expressed by the
uncertainty AT with which the thermometer reproduces the true Kelvin scale.
Secondary thermometers based on electrical resistance measurements may
achieve a precision of 1 part in 10, The precision of thermomelers based on
mechanical pressure measurements is much poorer, particularly at low pres-
sures, For example, helium vapor pressure thermometers at the lower end of
their useful range have a precision of zbout | part in 10° The accuracy of
secondary thermometers is limited by the accuracy of the primary thermometers
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range used
[K]
41400
20
0.061-4
> 1360

Temperature
<0.001-6.05

/

Typical
werking
substances
Metals: Cu, T4, Pt

“He, N,
‘He, *He

CMNT

» plus text reference, In praciice, corrections for

/

(378
(15.43)
(3.46)*
{4.22)

Defining
cquation

{(heo/7)?
quition underlics the basic idea

nges quoted are the ranpes used

L= fyeMR;
x = natie;

pV = .Nt;

Model system and
property utilized
Speed of sound /
Defining equation™ indicales which ¢

Magnetic susceptibility of noninieracting

spin system

2] Statie pressure at constant volume
Nugiear spins

1) Electronic sping

b)
Black body rudiation

L

Table B.1 Principles of the most important primary thcrmamcl_crs

~aTE: The cojumn ™

Ideal gas

i
1
H
,.mqu

Thermodynamic Thermornetry 449
w0 Table B.2 Principles of the maost important sccondary
ek thermormelers : o B
5 %%%
i. £ : : Useful range
£ = Physical property in K
5T T R
Lg' g Thermoelectric voltage of thermocouples® 400-1400
2z Thermal expansion of liquid in glass 200400
P Electrical resistance :
ZZ ; metals* | 14-700
Eg semiconductors {germanium)? 0.05--77
5 = commercial carbon resistors? 0.05-20
w3 Vapor pressure of Hiquefied pas
_;-'; _:.-. jHe 1-52
g3 He 0.3-32
£ [

NOTE: The temperaturg EaNges are approximaie ranges of wide utility,
( not ultimate limits,

E . U:’cd as interpolating instrumen in the 1PTS.
' Widely used as trycgenic laboratory thermomeler] cach specimen
musi be individuany calibrated 1o deliver usahble accuricy,

iblish i dexizable overl

= oy, g e (AR,

I magnesium g

used fo calibrate them. The accuracy of primary thermometers is limited by
their relatively poor precision and by residual Variations between different

i 3 ¥ accuracy of prinvary
thermometers is about ! part in 10* above 100 K, about i part in 107 around
1K, and about I part in 10?2 near 0.0 K.

=
u
B

=
Iy
=)
[=]
=
(1]
—
(53
o
g
o
=3
3
[~
5]
-
4]
e
g
=
1]
—
=
1]
)
=
]
7]
%
=
g
fa
=

wed CMN in lun

THERMODYNAMIC THERMOMETRY

!

¢ privciple is used m

may be necded. The temperature
L angd i

= Tt is possible to perform primary thermometry without telying on the theoretj-
Eg e cally known properties of simple model systems, by somehow utlizing the
; 535 S relation {5). We give three examples,
§ §§’§-§ ‘ {a} Carnat eycle. Consider a Carnat cycle operating between a known tom-
3 %5 g 3 perature 7'y and the unknown temperature T,, Because of cntropy conservation
S é%‘;‘; é i e heat frunsfers at the two ®mperatures satisfy /T, = Q,/T,. The un-
12533 known wmpersture can be determined by measuring the ratio of the wo leat
§ g‘J‘ ;8 S : teansfers. The method is not very practical.
> Ue - <

: (b} Magnetic calorimetry, Suppose a paramagnetic substance is initially at a
: known temperature Ty, i a magnetic feld B,. Let the substance be cooled by
isentropic demagretization to the unknown temperature T, I now a knowa
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small amount @9 of heat is added to t
dS = d0/T,. The substance is then i
magnetic field B, is determined at whic
to Ty. The feld #, will be found sij
Entcopy conservation requires

he substance, its entropy is raised by
seniropically re-magnetized, and the
h the temperature has returned exactly
ghtly different than B,:8, = B, + dB,

dS = dQ/T, = S(T,.B;) ~ S(T,.B,) = (35/6B), dB. ©)

From the thermodynamic identit

¥ for the Helmholtz free cacrgy for a magnetiz.
able substance,

dF = 84T — 4B ) {7)
one obtains, by the usual cross-differcntiation, the Maxwell relation

(E813B); = (OM/ET),. ®

We insert {8} into {6) to find the expression for the unknown temparature:

T, = (Q/dB)OMIT),. _ @

Thequantities 0 at T = TyanddBat T

= T, are known, and ihe temperature
derivative of M at T

= T, and B = B, is easily measured. The method makes
no assumptions about the ideality of the paramagnetic substance, and it has
therefore been used extensively at low temperatures.

£ Clausius-Clapeyron thermometry,  The melting temperature T,, of a sub-
stanee vartes with pressuce p according to the Ci

ausius-Clapeyron equation of
Chapter 10:

AT fdp = T, AV/AH , (10)

where AV s the volume change during melting, and AH the latent heat of
fusion. If both quantities have been measured o

s functions of pressure, (10} can
be integrated;

T, /T, = cxpLT(AV/Afﬂdp. (an

I T, and p, are known, a measurement of the pressure p, at which the unknown
temperature T, is the equilibrium melting temperature permits catculation of

sy

en

International Practical Temperature Scale (IPTSY

T, from (11). By utilization of the streng temperattite dependence of the
solldification pressure of liquid *He, the method has been used as an alternative
lo magnelic thermometry at low lemperatures.

INTERNATIONAL PRACTICAL TEMPERATURE
SCALE (IPTS)

Many known phase equilibrium lemperatures can be reproduced far more
precisely than the accuracy with which their exact location on the Kelvin scale
can be determined by primary thermometry. To facilitate practical thermometry,
a number of easily reproducible phase equilibrium temperatures have been
determined as accurately as possible and have been assigned best values to
define an International Practical Temperature Scale (IPTS). On the IPTS the
selected equilibrium points are treated as if thseir temperatures were known fo be
exactly equal 10 their assigned values. Intermediate temperatures are determined
by & precisely specified interpolation procedure that is chosen to reproduce the
true Kelvin scale as accurately as possible. The present version of the scale is

- IPTS68, adopted in 1968 by international agreement, covering lemperatures

from the triple point of hydrogen {1381 K) upward.* Table B3 gives the
assigned temperatures for IPTS6S, ‘

In the range between 1381 K and 903.89 K, which is the melling point of
antimony, a platinum resistance thermometer is used as the interpolating
instrument. In the range from 903,89 K t0 1337.58 K, the melting point of gold,
a platinum-platinum/rhodium thermocouple is used. Above 1337.58 K black
body radiation is used.

Below 13.81 K no precisely defined pracedisre has been apeeed. Tn the ringe
between 52K and 1381 K various scales bused on the vapor pressure of
hydrogen are in practical use, Below $.21 K, the eritical point of *He, down (o
about 0.3K, the 1958 and 1962 helium scales* are widely used as de facto
extensions of IPTS68. The 1958 “He scale relates the vapor pressure of *He to
the temperature T the 1962 *He scale uses the vapor pressure of *He.

As the accuracy of primary temperature measurements {nproves, €rrors in
practical scales such as IPTS become wacovered, leading eventually to revision

of the practical scales. Table B.3 lists some errors now believed to exist in
IPTS68.

* See, for example, American frstitute of Physics handbook, 3cd ed., MceGraw-Hill, 1972; Scciion 4:
Heat, M. W, Zemansky, cditor. Contains complete eriginal references.
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Table‘ B3 Assigned lemperatures of the International
Practical Temperature Seale of 1968

Appendix C
Poisson Distribution

R e Lt A e L
ERSivira i e R T LT T

—_— T
Equilibrium poiny i Tose Teg - T,

Substance Type in K ink

bydrogen | 1 1o

hydrogen . T , -

h;'dmgm EQSG torr) %gggz The Poisson distribution law is a famous result of prabability theory. The result

neon b 27.402 Is useful in the design and analysis of counting experiments in physics, bislogy,

Oxygen ! 54,361 operations rescarch, and engineering. The statistical methods we have developed

fm’fﬁ" f’ 90.188 lend themselves to an elegant derivation of the Poisson Taw, which is concerned

water B ;g}? gxgg with the occusrence of small numbers of objects in random sampling processes,

tin J $05.1181 0.044 [t is also called the law of small numbers, if on the average there is one bad

SZ;I’:‘; ; 69243 0.066 penny in a theusand, what is the prabability thut N bad pennies will be found in

1235.08 e o .
gokd \Lﬂ a given sumple of one hundred pennies? The problemn was first considered and

NOTE: Except for the triple points and the 17.042K point, alf
equilibria are those a1 g pres y

Po = 1OLISNm~? [~
bu_iling point of hydroge;
£ in the second Fo%un}n eefer 10 wriple points, boiling paints,
and freezing POIts.* The fast colums containg esiimates of

errors known 1o exist, from Physics Today 19
{Dec. 1976), ¥sics Today 29, No. 12, p. 19

* Al data from the
Ird ed, McGraw-1ii

editor, 1. 1972; Section 4; Heat, M. W, Zemansky,

American Institnte of Physics handbook,

o kel S

solved in a remarkable study of the rale of luck in criminal and civil law trials
in France in the early nineteenth century.

We derive the Poisson distribution law with ihe aid of 2 model system (hat
consists of a large number R of independent faltice sites in thermat and diffusive
centact with a gas. The gas serves as a reservolr, Each lattice site may adsorb
zera or one atom. We want to find the probabilities

PO P(1), P(2), ..., PIN), ...,

thatatotal £ 0,1, 2,. .. » N, ..., atoms are adsorbed on the R sites, if we are
given the average number (N} of adsorbed atoms over an ensemble of similar
sysiems.

Consider a system composed of 2 single site. It is convenient 1o set the binding
energy of an atom to the site as zero. The identical form for the distribution is
found if a binding energy is included in 1he caleulation, The Gibbs sum is

=144, i
where the term 7 is proportional to the prabability the site is occupied, and
the term L is proportional to the probability the site is vacant. Thus the absolute

probability that the site is occupied is

P

f =

{2)

g4

The actual vatue of 2 15 determined by the condition of the gas in the reservoir,
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bacause for diffusive contact between the Iattice and the reservoir we must have

Allattice) = i(pas), (3)

by the argument of Chapter 5. The evaluation of
given in Chapter 6,

We now extend the treatment to R independent sites. Then

(gas) for an ideal gas was

Fu ™ FiFe o Fa=(1+ IR @

By the argument used in Chapter 1 we know that the binomial expansion of

(O + @) or (1 + 3% counts once and only once every state of the system of
R sites. Each site has two alternative states, namely O {or vacant or @ for

oceupied, which corresponds in the Gibbs sum to the term 1 for 2° and the
term i for 11,

In the low-oceupaney limit of f « 1 we have J = 7, whence
C{NY = fR =R (3)

is the average total number of adsorbed atoms. The Poisson distribution is
concerned with this low-oecupancy limit. We can now write 4) as

_ ARNE (N
G = (1 + ‘E) = (1 + T) . (8

MNext we let the number of sites R increase without limit, while holding the
averzge number of occupied sites (V) constant. The Poisson distribution is
concerned with infrequent events! By the definition of the exponential function

we have
R
lim (1 + @) = exp{NY, 7
R—w R
56 that
;P
Fiot = eXp{N) = exp{IR) = }:%?%— (8
N .

The last step here is the expansion of the exponential function in a power series.

Poisson Distribution 455
The term in 2% in 3, is proportional to the probability P{N) that ¥ sites
are occupied. With the Gibbs sum as the normalization factor we have in the
limit of kirge R:
‘NpN NpN H
. IR i A" RY¥expl{—~iR)
PNy = "l ol A Bl g 9
A T T e
or, because AR = (A" from (5),
N
- (N
PIN) = (N exp(~¢ >)_ (10)
N1
This is the Poisson distribution law. = . -
Particular interest attaches to the probability P{0} that none of the sites
is occupied. From (10) we find, with (NY® = tand 0! = |,
PO} = exp(—(NY); - log P(0) = — (N 1y
Thus the probability of zero occupancy is simply related to the average number
{N} cof occupied sites. This suggests a simple experimental procedure for the
determination of (N): just count the sysfems that have no adsorbed atoms.
Values of P(N) for several values of (N} are given in Table C.1. Plots are
given in Figure C.Y for ¢NY = 05,1, 2, and 3.
. NY expl{— (X
Table C.1 Values of the Poisson distribution function PUN) < i—luf%émw
{N>
01 43 0.5 [th) 039 i 2 3 4 5
POy 08048 0.7408 06065 04966 04066 03679 01353 00498 OO0IB3  (.0067
FP(1} 00303 02222 03033 03476 0.3659 0367 02707 01494 00733 09337
P2 00045 00333 00758 01217 01647 0183 02707 02240 03465 00842
P(3) 00002 00033 0026 00284 00494 00613 0184 02230 01954 0.1404
P(4) 06003 00016 00050 0.011) 00153 00902 04680 01954 01755
P(5) B0002 00007 00020 00031 00351 01008 0.1563 01755
P(6) 00001 00003  0O005 0120 0OSDY 04042 01462
P(7) GO001 00034 00216 00595 0.1044
P(8) 00009  DOOSL  0.0298  0.0653
PO . 00002 00027 O0132 00363
P{10} . 0.0008 00053

0.018¢
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Figure C.{

Example: Incorrect and cerrect counting of states.

Poisson distribution, P versus N, for several values of (N>,

{2} The Gibbs sum for the R sites is ot

= 1Ak 224 33 ool g {12)

Why not?
(b} The correet sum is

ot = (1 + ) R RJ‘.%MZZ }

where

GIR.N} =

is the binomial cocflicient, Note that g{R,N) is the number of ind
system for & given number of adsorbed atoms

| SeRE i [ et

Example: Elementary derivarion af P(0).

randoin among L dishes, Fach dish is viewe

R

3 S SRR L 3 g(RNM

n=0

(13
R!
(R — NI NI

ependent states of the
N. The Gibbs sum is 2 sum over alt states.

Let a total of R bacteria be distributed at
4asa systein of many sites to which a bacterium

Poisson Distribution

may atach. The L dishes tepresent an ensembile of L identical systems. The averape number
of bacteria per dish is

(N> = R/L. {14

Each tlime a bacterium is distributed, the probability that a given dish wiil receive that
bacterium is 1/L. The probability the given dish wilk not receive the bacterium is

(1 - "E) (t5)

The probability in R tries that the given dish will receive no bacteria is

1 R
Pi0) = (1 - —E) (16)

because the factor (15) enters on each try.
We may write {16) as

. (DR .
= A 17
P(O) (: . ) . amn
by use of (N) = R/L. We know that in the limit of farge R,
N R
exp{—{NY) = lim (l A4 )) N {18)
Ro= R

by the definition ol the exponetial function. Thus for B » 1and £ » 1 we have

P(0) = cxp{~(N}) - (i9)

in agreement with (L ).

Lo

PROBLEMS

i. Random puises. A radicactive source emits alpha particles which are
counted at an average rate of one per second. {a) What is the probability of
countingexactly [0 alpha patticlesin 552 (b} Of counting 2in 157 {c) Of counting
none in 55? The answers to {a) and {b) are not identical,
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2 Aﬁpmadx 1o Gawssian distribution. Show that the Poisson function P(N) =
{N> cxp(»(N).)[Ni closely approaches a Gaussian function in form, for
farge (N). That is, show when N is close to N that '

PINY = Aexp[~ BIN — (N))?],
where 4, B are quantitics to be determin
us¢ the Stirling approximation. In the Ga

of {N); in the development of the Poisson function you may find 4, B are

fun_caions of N, but the two forms ol 4, B are closely equivalent over the range in
which the exponential factor has significant vatues,

ed by you. Hinr: Work with log P(N}:
ussian form both 4 and Bare functions

B vt

oy e

g
L

DL Yy A Ty St Py iy nt

Appendix D
Pressure

| S O I R T I L g T T Ay m’}‘??ﬁ?‘r’:"’?f‘.”:’n?‘? AATAT e

i d

Lel a pressure p, be applied normal to the faces of a cube fitled with a gas or

liquid in quantum state s. By elementary mechanics (Chapter 3) the pressure
is equal to

pe= —dUMV (1

where U, is the energy of the system in the state 5. We can also write the pressure
as

Py = —(dUJdVY, | )

where (dL//dV), denotes the expectation valuc* of dU/fd¥V over the state s at
volume V. Ii is important that we can cafeulate p by (2} which is at a fixed
volume with no ambiguity about the identity of the selected state 5, whereas
{})involves following the state through two volumes, ¥ and ¥ + 4V, with some
possible doubt whether the state rewmains the same. The ensemble average
pressure p is the average of p, over the states represented in the ersemble;

P =<py = —{dU/dV),> 3

Because the number of states in the ensemble is constant, the entropy is constant,
50 that the derivative js at constant entropy. We may therefore write

pﬁ_Gg). @

The result (4) uses the energy of the System expressed as U{o,V, . . ); that is,
as a function of the volume V and the ENtropy o—not the temperature 1, It is

the entropy and not the temperature that is to be held consiant in the
differentiation.

* The equivalence of (1) and {2) is an example of the Hellmang-Feynman theorem of quantum
mechanics, according to which the derivative of the hamillonian ¥ and eaecgy sigenvalue U with
tespect to a parameter X are related by dU/dd = A fd]>. The derivation may be found on
p. £192 of C. Cohen-Tannoudji, 8. Diu, and F. Lalos, Quantum mecharics, Witey, 1977; see also
E. Merzbacher, Quantum mechanies, 2nd ed, Wilcy, 1970, p. 442.
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Appendix F,
Negative Temperature

a‘;;&zmmmdhgsmrﬂﬁ’zﬂzw s PR e e -,

The result of Problem 2.2 for the entro
CNergy in a magnetic field is pletted h
which (3a/2U), is nepative {Figure E.2
of the upper state is greater tha
condition obtains
Figure E.3.

The concept of Regalive lemperatyre is physically meanin
that satisfies the fotlowin

Py of a spin system as a function of the
ere in Figure E.1, Notice the region in
). Negative © means that the pepulation
n the population of the lower stare, When this
we say that the popuiation is inverted, as illustrated jn

gfid for a system
& restrictions; (a} There must be a finite upper Jimit 10
, for otherwise 3 systen: 2t a negative temperature
nergy. A freely moving particle or a harmonic oscilfator
e temperatures, for there is no upper bound on their encrgies,
Thus only certain degrees of frecdom of a particle can be at

cannothuve negativ

a negative tempera.-

D8 r——

0.6

Entropy o
b=
o+

0.2

PRI

OG 0.2 0.4 0.6 0.8 10
Energy U e

Figure E.1 Entropy as funclion of encrgy for a two state system.
The separation of the states js g Lin this example. I the
left-liand side of the figure o/éll is positive, so that 1 is positive.
On the right-hand side Co/0U is negative and 1 is negative,

Nepative Temperature
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Figure E2  Temperature versus cnergy for the two
stale system, Here

1 i

Co Ek)lwb"
auty & u

Notice that the eaergy is not a maximurm at T= +m,
but is 2 maximun a1 ¢ = -0,

ture: the nuclear spin orientation in 4 magnetic field is the degree of freedon:
most commonly considered in experiments at negative temperatures. {bj The
System must be in internal thermal equilibrium. This means the states must have
occupancies in aceord with the Bolizmann factor taken for the appropriate
negative temperature. {c) The states that are at a negative temperature must be
isolated and inaccessible to those states of the body that are at a positive
lemperature,

The ordinary translational and vibrational degrees of freedom of a body
have an entropy that increases without limit as the energy increases, in contrast
ta the two state or spin system of Figure E.I If ¢ increases without limit, then ¢
is always positive. The exchange of energy between a system at a negative
temperature and a system that can only have a positive temperature (because of
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Negative Temperanry

.,
i

R EEE R

Figurfa E3 Possible spin distributions for various posilive and
negalive temperatures. The magnetic field is directed upward. The
Egative Spin temperatures cannol Jasy indefinitely because of weak
caupﬁng between spins and the lattice, The lattice can oty be at a
positive temperature because it energy level spectrum is unbounded
or top. The downward-directed $pins, asal 1 = —1,, tuen over one

by one, thereby releasing energy to the latiice and approaching
equilibrium with the luttice at 4 common positive temperature. A
nuclear spin system at negative temperature may relax quite slowly,
over a time of minutes of hours; duting this time experiments at
negative temperatures may be carried out.

an .unbcmndcd spectrum} will lead always to an equilibrium configuration in
which both systems are at » positive temperature.

Negative temperatures correspond to higher energies than positive tempera-
tures. When a system at g negative temperature is brought inte contact with a
sysiem at a positive temperature, energy will be transfersed from the negative
temperature to the positive lemperature. Negative temperatures are hotter
than positive temperatures,

The temperature scale frot cold 1o hot runs +0 Koo 430K, .. ,tw K,
—wkK,. ..., ~300K,..., 0K Note that if a system at — 300 K is brought

into thermal contact with an identical system at 300K, the final equilibrium
temperature is not 0 K, but is +wkK.

Nut_:]car and e!cciron spin systems can be promoted to negative temperatures
by suitable radio frequency techniques. If a spin resonance experiment is

Negative Temperature

carried out on a spin system at aegative temperature, resonant emission of
encrgy is obtained instead of resonant absorption.* A negative temperature
system is uselul as an rf amplifier in radio astronomy where weak signals must
be amptified.

Abragam and Proctor’ have carried out an elegant series of experiments on

calorimetry with systems at negative temperatures. Working with a LiF erystal,

they established one temperature in the system of Li nuclear spins and another
temperature in the system of F nuclear spins. In a strong static magnetic field
the two thermat systems are essentially isolated, but in the Fard's magnetic
field the energy levels overlap and the two systems rapidly approach equilibrium
among themselves (mixing), It is possible to determine the temperature of the
systems before and after the systems are allowed to mix. Abragam and Proctor
found that if both systems were initidlly at positive temperatures they attained
& common positive temperature on being brought into thermal contact. If both
syslems were prepared initially at negative temperatures, they auained a
common negative temperature on being brought into thermal contact. if
prepared one at a positive temperature and the other at a negative temperatare,
then an intermediate temperature was attained on mixing, warmer than the
initial positive temperature and cooler than the initial negative temperalure,

FURTHER REFERENCES
ON NEGATIVE TEMPERATURE

N. F. Ramsey, “Thermodynamics and statistical mechanics at negative absolute
temperature,” Physical Review 103, 20{1956).
M. J, Klein, “MNegative absolute temperature,” Physical Review 104, 530 (1956),

* E. M. Puzcell and R. V. Pound, Physical Review 81,279 {1951}
VAL Abragam and W, G. Procior, Physical Review 106, 160 [1957); 109, 1441 {1958},
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Index

Abragam, H., 350, 463 filack body rudintion, 98

Abraham, B. M., 209 Bockris, J. O, M., 248
Absolute activity, 139 Boltzmann constant, 41, 45, 446
Absorption refrigerator, 258 Boltzmann facior, 58, 6t

Absorptisity, 97 Bolzmann transport equation, 408, 421
Acceptor, 357, 363 Bora, M., 106

Aceessibie state, 29 Rose-Einstein condensate, 202

Activation energy, reactions, 271 Bose-Einstein distribution, 157, 159
Aclive transport, 145 Boson, 152
Activity, absolute, 139 Boson gas, 199
Age, Sun, 111 - . cendensation, 205
. Adr conditioners, 235 ’ degenerate, 221
room, 133 : fluctuation, 222
Alloy, binary, 186, 310, 331 one dimension, 222
gold in silicon, 331 Boson system, 223
mixing energy, 318, 330 Bridgman, P. W, 279
solidification range, 33§
system, 16 CMN, 348, 448
Anderson, A C., 219 Carbon monoxide poisoning, 145
Asgtonind, E,, 142 Camot coefficient,
Almosphere, 126, 143, 179 refrigerntor performance, 234
Atoms, in a box, 74 Camot cycle, 235
velocity distcibulion, 394 ideat gas, 237

Average value, 22 thermodynamic thermosmetsy, 449
Avogadro constant, 282 Carnot efficiency, 230

Carnot engine, photon, 258

Carnot inequality, 228, 232

e A e et

Barclay, §. A, 345 Carnot liquefier, 351
Barnes, C. B, 345 Carrier concentration, intrinsic, 362
Barometric pressure, 125 Carrier lifetime, 388
equation, 126 Currier recombination, 333
Battery, electrachemical, 129 Cartalyst, 27t
Bertram, B, 210 Celsins temperature scale, 445
1 Betts, D. S 342 Centrifuge, {43
H Binary alloy, 16, 310, 331 Cerium magnesium nitrate, 348, 448
A Binary model systems, 10 Chapelfier, M., 350
i Binowial distribution, 22 Chandrasekhar limit, 222
k3 _ expansion. 14 Characteristic height, atmosphere, 126
- Biopolymer growth, 273 . o Chau, V. H., 350 .
A S . .
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Index

Chemical equilibria, 266

Chernical potentiust, 1138, 119, 148, 161

and entropy, 131

equivalent definition, 148

external, 149

ideat gas, 120, 169

internat, 122, 124

mobile magnetic pariicles, 127

near absolute zera, 199

total, 122, 124

two phise equilibrium, 330
Chemical reaction, 266
Chemical work, 250

ideal pas, 251
Classical distribution, 410

function, 161
Classical limit, 160
Classical regime, 74, 153, 159, 358
Claude eycie, 34}

helium liquefier, 351
Clausius-Clapeyron equation, 281
Clayton, b, D)., 222
Closed systern, 29

Coefficient, refrigerator pedormance, 734

Coefficient, viscosity, 402
Coexistence curve, 278 -
Cohen, E. R_, 446 .
Cohcnﬂ‘ammudji, C., 459
Collision cross seciions, 395
Collision rates, 395
Concentration fluctuations, 147
Condensed phase, 203
Conductance, hole, 415

tube, 416
Conduction band, 355
Conduction electrons,

semiconductors, 355
Conducrivity, electrical, 413, 421

intrinsic, 387

thermal, 401, 421
Configuration, most probable, 33, 35

Convectjve isentropic cquilibrium, 179

Cooling, demagnetization, 352

evaporation, 341 i

external work, 334

nonmiciallic sofid, 259

of slab, 437
Cooper puir, 250, 257
Corresponding states, faw of, 290
Cosmic background radiation, 98
Counterfiow heat exchanger, 336

- Critical magnetic field, 253

Critical point, 291
van der Waals gas, 289
Critical radius, nucleation, 295
Critical size, nuclear reacior, 437
Critical temperature, 276
gases, 277
Croft, A. 5., 340
Cryogenics, 333
Crystal transformation, 307
Crystalline mixture, 319
Curie temperatare, 298
Cycle, Carnot, 236

DNA molecule, 85
Daunt, 1. G., 348
de Bruyn, B, 345
De Maeyer, L., 270
Debye T faw, 106
Debye temperature, 105
Debye theory, 102
Degenerate Fermi gas, 219
Begenerate gas, 182
Degenerate semiconductors, 358, 365
Demagnetization, cocling, 352
isenizopic, 346 .
nuclear, 348 -
Density of orbitals, 187, 218
Density of states, 184
effective, in semiconductors, 380
effective mass, 350
Detailed balance, kinctics, 407
principle of, 271
Deviation, integrated, 54
Biatomic molecules, rotation, 34
Diesel engine, 188
Differential relations, 70
Diffusion
current flow, 379
equation, 437
fixed bourdary, 429
heat, 437
interna) heat sources, 437
pariicle, 399, 409
p-1i junction, 437
Diflusive equilibsium, 120
Diffusivity, 399, 428, 437
Dilution refrigerator, helivm, 342
Dispersion relation, 425
Distribution, classical, 161, 410
Bose-Finstein, 158
Fermi-Dirac, 154, 411
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Donor, 356, 363

levels, 369
Donoer imgpurities, foaization, 273
Doping concentrations, 375
Doping profile, 358
Dry adiabatic Tapse rate, 270

Earth, distance from Sun, 11§
Eddy current equation, 425
Effective density of states, 36}
valence band, 362
Effective mass, 360
Effective work, 246
Efficiency, Carnet, 230
Eigen, M., 27¢
Einstein condensation, 199
temperature, 205
Einstein relation, 406
high electron concenlrations, 388
Einstein temperature, solids, 84
Elasticity of polymers, 86
Electrical conductivity, 413, 421
Electrical noise, 98
Eieclrochemical battery, 129
Electrolysis, 247
Electron-hole pair peneration, 388
Election mobility, 380
Elementary excitations, 212
Effiott, R. P., 323
Ewmigsivity, 97
Energy, conversion, 240
conversion efficiency, 230
degenerate boson gas, 221
equipartition, 77
Fermi gas, 185
fluctuations, 83, 113
geothermal, 259
ideal gas, 76
magnetic, 252
mean kinetic, 420
mixing, 314, 330
thermal average, 140
transfer, 227
two state system, 62
van der Waals gas, 305
Encrigy gap, 355
Enscmble, averape, 31, 62
constraction, 32
sysiems, 31
Enthalpy, 246, 284
van der Waals gas, 305

Enlropy, 42, 45, 52
accumulation, 229
and chenical potential, 13§
conventional, 45
degenerate boson gas, 221
degencrate Fermi gas, 219
free energy, 165
heat flow, 44
taw of increase, 54
as logarithm, 50
of mixing, 78, 178, 314
and occupancy, 114
and temperaiuse, 52
transfer, 227
van der Waals gas, 303
Equation of continuity. 424

Equation of state, van der Waals, 287, 289

Equilibria, chemical, 266
“-phasa, 322
Equilibrium, hydrogen, 269
gas-solid, 285, 305
particle-antiparticle, 274
reaciions, 266
two phase, 330
vapor pressure, 291
Equitibrium coastant, 268
Equipartition of energy, 77
Error function, 429
Eutectic, 325
Evaporation coafing, 341
limit, 352
Expansion, cooling, 334
engine, 334
Fermi gas, 259
irreversible, 175
isothermal, 171
Extensive quantities, 264
Extreme relativistic particies, 117
Extrinsic semiconductor, 164
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Fermi encrgy, 155, 183

Fermi gas, 183
fluctuations, 222
ground siate, 185
irreversible expansion, 250
liquid helium-3, 219
metals, 194
relativistic, 218

Fermi level, 155, 357
intrinsic, 362

extrinsic semiconductor, 364
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Fermi-Dirag intepral, 366
Fermion, 152 .
Ferromagnetism, 295, 302
Fick's law, 399
First law, 49
First order transition, 302
Flow, through hote, 415
through tube, 416, 421
speed, 422
Fluctuations, Bose gas, 223
concentration, 147
energy, 83, 113
Fermi gas, 222
time of, 178
Flux density, 397
Fourier analysis, 436
Fourier's taw, 401
Free energy, 163
Gibbs, 246, 262
harmonic oscillator, 32
Helmholiz, 68
paramagnetic syslem, 69
photon gas, 112
wo state system, 83
‘Free energy function, Landau, 298
Fruten, J. S, 142
Fuel cell, 247, 248
Fundamental assumption, 29
Fundamental temperature, 41

Gallium srsenide, semi-insulating, 372
Gamma lunction integral, 440
Gas constant, 166
Gas, critical lemperatures, 277
degenerate, 182
degenerate boson, 221
degenerate Fermi, 219
ideal, 72
liquefaction, 317
one-dimensional, 86
potential energy, 143
quantum, 182
tarefied, 413
sound waves, 430
Gas-solict equilibrium
Gauss integral, 439
Gaussian distribution, 20
Generalized forces, 404, 405, 458
Generation, clectron-hole pair, 388
Geothermal energy, 259
Giaugue, W., 167
Gibbs factor, 134, 138

Gibbs free cnerpy, 246, 262
van der Waals gas, 291
Gibbs sum, 134, [38, 146
ideal pas, 169, 180
wo level sysiem, 146
Giffard, R, R, 103
Goldman, M., 350
Grand canonical distribution, 138
Grand partition function, 138
Grand sum, 138
Greenhouse effect, 115
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Halfcell potentials, 131
Hall, R, N, 385
Hall-Shotkley-Read theory, 383
Hansen, M., 123
Harmonic oscillater, 52, 82
free energy, 82
mubtiplicity function, 24
Harwit, M., 219
Heat, 44, 68, 227, 240
definition, 227
" isobaric, 245
path dependence, 245
vaporization of ice, 305

-Heal capacily, 63, 165

degenerate boson gas, 221
electron gas, 189
intergalactic space, 113
liquid helium-4, 113
photans and phonons, 113
solids, 1313
two state system, 62
Heat conduction equation, 424
Heat engine, 228, 230
refrigerator caseade, 258
Heat exchanger, counterRow, 338
Heat flow, 44
Heat transfer, sound wave, 434
Heat pump, 235, 257
Heat shield, 112
reflective, 115
Heer, C. V., 348
Helium dilusion refrigerator, 342
Helium liquefier, 351
Helmholiz free energy, 63
Heme groug, 140
Hemoglobin, 143
Henshaw, D. G, 214
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Hobden, M. V|, 349
Holes, 177, 355

conductance, 415

quantum concesntration, 361
Hook, J. R, 217
Huiskamp, W. 1., 342
Hydrogen, equilibrium, 269

IPTS, 451
Ice, heat of vaporization, 305
Ideal gas, 72, 74, 160, 169
calculations, 180
Carnet cycle, 237
chemical potential, 120, 169
chemical work, 251
cnergy, 76
Gibbs sum, 180
internal degree of freedom, 179
isentropic relations, 179
Kelvin, 446
law, 17
law, kinetic theory, 391
one-dimensional, 86
sudden expansion, 243
thermodynamic identity, 177
two dimensions, 180
Impurity atom fonization, 143
Impurity level, 368, 383
carrier recambination, 383
Increase of entrapy, law of, 45
Inequality, Carnot, 232
Tujection laser, 381, 388
Integrals containing cxponentials, 439
Intensive quantities, 264
Intergalactic space, heat capacity, 113
Interaal chemical potential, 122, 124
lnternational Practical Temperature
Seale, 451
Intrinsic conductivity, 387
Intrinsic Fermi level, 362
fnversion lemperature, 336
fonization, deep impuritics, 388
donor impurities, 273
impurity atom, 143
thermal, 273
water, 269
[rreversibility, sources, 232
Irreversible thermodynamics, 406
Irreversible wark, 242
lsentropic demagnetization, 346
Isentropic expansion, (14, 148
Iseatropic process, 173
Isentropic selations, ideal gas, 179
[sobaric process, 245
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Laagmuir adsorption, 143
Isothermat work, 245
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Joule-Thomson effect, 337
van der Waals gas, 338
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Jayce-Dixon approximation, 366
Jostner, F, 219
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scale, 445
Kinematic viscosity, 404
Kinetic model, mass action, 270
Kinetic theory, ideal gas jaw, 391
Kineties, detailed balance, 407
Kirchhoff law, 96, 115
Klein, M. §, 463
Knudsen regime, 397, 413
Kramers, H. C., 114
Kurti, N, 348, 349

Lalog, F., 459
Lambda point, helium-4, 210
Luaudau free energy function, 298
Landau function, 6%, 298
Landau theory, phase transitions, 298
Langmuir adsorption isotherm, 143
Laser, injection, 381, 388
Latent heat, 281, 284
crthalpy, 284
increase of entropy, 45
vaporization, 281
Law of corresponding states, 290
Law of increase of entropy, 45
Law of mass action, 268, 362, 382
Laws of rarefied gases, 413
Laws of thermodynamics, 48, 49
Leff, H. 5., 259
Leggett, AL 5., 217
Lein, W.H_, 133
Linde cycle, 339
Liouville theorem, 408
Liquid helium 1, 209
Liquid helium-3, 217
superiluid phases, 217
Liquid helivin-4, 207
heat capacity, 113
Liquid *He-*He misture, 326
mixing cacrgy, 330
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Laschmidt number, 396
Lounasmaa, 0. Y., 342
Low orbital free atoms, 20t

Low temperature thermometry, 448
Lynds, B., 111

McTee, L H., 394

Magnetic concentration, 145

Magnctic ditTusivity, 425, 437

Magnetic energy, 252

Magnetic ficld, adsorption of 0,. 147
mobile magnetic particies, 127
spin entropy, 170
in superconductors, 253

Mugnetic susceptibility, 8

Magnctic system, 23

Magnetic work, 252

Magnctization, 70

Murcus, P. M., 394

Mass action, faw, 268, 270, 362, 387

Maxweli disiribution of velocities, 392, 419

Maxwell relation, 7t, 272
Maxwell transmission distribution, 395
Maxwell velocity distribution 393
Mean field method, 288
Mean free path, 395
Mean speeds, Maxwellian distribution, 419
Mean value, 22
Meissner effect, 252
Merzbacher, E., 459
Metastable phases, 278
Meyer, L., 215
Milner, J. H., 348
Minority carrier lifetime, 358
Mixing, energy, 314, 330
entropy, 78, 178, 314
Mixture, binary, 31¢°
crystalline, 319
liguid *He—*He, 320
phase equilibriz, 322
Mobile magnetic particles,
chemical potential, 127
Mobility, electron, 380
Moalecules, Earth’s atmosphere, 145
Monkey-Hamlet, 53
Most probable coafiguration, 33, 15
Multiple binding of O, 148
Multiplicity, 7
Multiplicity function, 15, 18
harmonic oscillator, 24
Myoglobin, 140, 142 - -

Negative temperature, 460
“MNever,” 53 _
Niels-Hakkenberg, C. G., 114
Nondegenerate semivonductor, 358
Nonequilibrium semiconductors, 379
Norma| phase, 203
Nuclear demagnetization, 348
WNuclear marter, 198
Nuclear reactor, critical size, 437
Nucleation, 294

critical radius, 295
Nyquist theorem, 98

Occupation donor levels, 369
Casager relation, 406
Orbital, 9, 152

occupancy, 202

symmetry, 177
Order parameter, 298
Oshorne, D, W, 209
QOverhauser effect, 84

Paramagnetic system, 69
Paramagnetism, 52, 446
Pasticle-antiparticle equilibrium, 274
Particle diffusion, 399, 409
Partition function, 61

two systerns, 85
Paseal (Pa), back endpaper
Path dependence, 240
Pauli exclusion principle, 152
Peltier effect, 336
Penetration, temperature oscillation, 426
Pepnings, M. H., 345
Peritectic systems, 330
Perpetual motion, 590
pH, 269
Phase, 267

condensed, 203

equilibria; 322

normali, 203

relations of helium, 210
Phase diagram, 321
Phase transitions, 298

Landay theory, 298

superconducting, 306, 307
Phenomcnological laws, 398
Phillips, N. E., 195, 196, 254
Phonon, 102

heat capacity, 113

mode, 164

~solids, 102
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Photon, Carnot eagine, 258
condensation, 331
heat capacity, 113
“thermal, 110
Photon gas, 112, 114
free energy, 112
isentropic expansian, 114
on¢ dimension, 112
Pitlans, H., 111
Planck distribution funclion, 89, 91
Planck law, 91, 835
p-N junction, 373
reverse-biased, 377
Poise, 403
Poisson distribution, 138, 453
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Poisson cquaticn, 375
Pollution. theninad, 258
Polymaer, 86
clasticity, §6
Peputition inversion, 460
Pound, R. V., 463
Prag, W. P, 348
Pressure, 64, §64 :
degenerate Fermi gas, 219
thermal radiation, 1t
Principle of detailed balaace, 271
Probability, 30
Proclor, W. G., 463
Propagation, sound waves, 430
Pulse, development, 427
Fourier analysis, 436
random, 457
Pump, speed, 417
Purcell. E. M., 463

Quantum concentration, 73, 85
conduction elestrons, 361
holes, 361

Quantum gas, 182

Quantum regime, 182

Quasi-Fermi fevel, 379

Quasiparticle, 212

Radiant energy fux, 114
Radiant object, 114
Radiation
black body background, 98
thermal, 111
Ramsey, N. F., 463
Rarefied gases, laws of, 413
Reaction, chemical, 266 o
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Recombination, carrier, 383
Reese, W., 2i9
Refrigerator performance,
Caract coefficient, 234
coefficient, 234
helium dilution, 342
light bulb in, 259
Reif, F., 245
Relativistic Fermi gas, 218
Relativistic white dwarfs, 222
Relaxation, thermat, 432
time, 433
Reservoir, 58
Resistivity, 387
Reverse-biused p-» junction, 377
Reversible isothermal expansion, 171
Reversible process, 64
Room air conditioner, 253
Rose, W, K., 197
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Rossi-Fanclli, A, 142
Ratation, diatemic molecules, 84

Sackur-Tetrode equation, 77, 165
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Schindler, H., 148
Schottky anomaly, 63
Second law, 49, 240
Secend order transition, 304
Scgregation coefiicient, 331
Semiconducter, 353
degenerate, 358, 365
donor impurities, 273
extrinsic, 364
impurity atom jonization, 143
n- and p-type, 363
nondegenerate, 358
nonequilibrivm, 379
Semi-insulating gallium arsenide, 372
Shockisy, W, 385
Shunk, F. A, 323
Simmonds, §., 142
Smythe, W, R, 425
Sail, temperature variations, 437
* thermal diffusivity, 427
Solar constant, 110
Solidification eange, 331
Solidus curve, 323

Solubility gap, 310, 311
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Solidus curve, 323
Solubility gap, 310, 311
phase diagram, 3]
Sound wave, heat transfer, 414
propagation, 430
Specific heat, 63
Speed, pump, 417
tube, 422
Spin entropy, 170
additivity, 53
Spin excess, 14
Spin system, 19, 37, 52
Srinivasan, §., 248
Stefan-Bolizmann constang, 94
Stefan-Boltzmann law, 91, 94
Steyert, W. A, 148
Stirling approximation, 19, 44}
Siokes-Finstein refation, 404
Struve, 0., 111
Sudden expansion, idea) gas, 243
vacuum, 175 ’
Sun
age, 11
interior lemperature, 1§}
trass and radins, {1}
surface temperature, 140
Supcrconducling transition, 306
Superconductor, 352
magnetic work, 252
Supercooling, 278
Superfiuid phases, 217
Superfluidity, 212
Supesheating, 278
Superinsulation, 19
Susceptibility, negnetic, 8t
Sweason, C. AL 210

Taconis, K. W, 345
Tayior, B. N, #6
Treters, W. D, 259
Temperatare, 4t
critical, 274
Earth's surface, 111
cstimation of surface, 97
fundamental, 41
Kelvin, 41
negative, 441
oscillation, 426
scales, 445
Sur’s average, 1)
Sun’s surface, 116
. variations in soil, 437

Temperature oscillation, penetration,
426, 437

Thermal average, 62
Thermal conductivity, 401, 421
metals, 421 : :
Thermal contact, 33, 37
Thermal diffusivity, 425
soil, 427
Thermal equilibrium, 38, 39
values, 36
Thermat expansion, 272
Thermal jonization of hydsogen, 272
Thermal photon, 110
Thermal poilution, 258
Thermal radiation, 111
Thermal relaxalion, 432
Thermodynamic identity, 67, 133, 177
Thermodynamic relations 1,212
Thermodynamic thermometry, 449
Thermodynamics, supercenducting
transition, 306
Thermometers, 447
Third faw, 49
Throughput, 415
Torr, 414 .
Transitions, first order, 302
secend order, 304
Transmission distribution,
Maxwell, 395
Transport processes, 397
Treloar, L. R G, 86
Triple point, 284
Two state system, 62, §1
lree energy, 81
heat capacity, 62

Universe, entropy of, 116

v. Kirmin, T., 106
Vacuum physics, 413
Valence band, 355
effective density of states, 362
van der Waals gas, critical points, 259
cnerpy, 305
enthalpy, 305
equation of state, 387, 289
Gibbs free energy, 291
helium, 350
Joule-Thomson effeer, 338

- Vapor pressure, cquilibrium, 291

Vapor pressure equation, 276, 281
Vaporization, lateat heat, 281
ice, 363

Velocity of sound, 432

Virial theorem, 111

Viscosily, 402 -
kinematic, 404
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calculation of dT/dg, 305
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Weinstock, B., 209
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White dwarf star, 196
miss-radius relationship, 219
refativistic, 222
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Work, 227, 240
chernical, 251
constand pressure, 245
constant temperature, 245
definition, 227
irreversible, 242
isobaric, 245
isothermal, 245
magnetic, 252
path dependence, 240
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Energy

11 =10"erg -

Lcal = 41843

leV =

L kWh = 16 x 1083
P BTU = 10551
Power

IWs=1Jls!=]

0O0OA

107 ergs™!

1hp = 746 W == S500t Ibs—?

Pressure

OOy

Unit conversions

160219 x 107" | = 1.60219 x 107 2 erg = 23.061 keal maoi~!

[Pa = 1Nm™* = 001 mbar = 107 bar = 10 dyn em"2

= 1501 » 1073 mm Hg or torr
Ihar = 10%dynem™? = [0 N~ 2 = 750 mm Hg
ImmHg =1 torr = 1333 N m"~? = 1333 dyn em~2
Latm = 760 mm Hg = 1013 x 105 Nm~?

* A10°C where the acecleration of gravity has the standard vatuc 9.80665 m s~ 2,

e

1013 x 10%dynom™2 = {.013 bar

R,

T, = 21315K,

Po= 101325 Nm™? == J atm

Table of Values
Quantity Symbol Yalue CGS Si
Velocity of light c 2997925 0°%cms 105 ms™*
Proton charge e 1.602t9 — 107
4.80325 EY esn —
Planck’s constant h 6.62618 10 ergs 107345
h = hi2n £.05459 lO"”trgS 107355
Avogadra'’s number N 602205 x 10V mol™? - —
Alomic mass unit amu 166057 107y 10737 g
Electron rest mass nt 9.10953 1=y 1073 kg
Proton rest mass M, [.67265 10" g 10727 kg
Proton mass/electron mass M ofm 1836.2 - —
Reciprocal fine structure e 137.016 — —
_ constant kefe?
Electron radius e finc? r, 281794 10" em 107 m
Electron Compton F 1.86159 197 em 107 m
wavelength hfme
' Bohr radius #¥/me? 75 529177 107 %em 107,
Bohir magaeton eh/Ime Hs 9.27408 10" Perg G? 19~y
Rydberg constant me*/2h* R, or Ry 2.1791 107 Herg 10788
[3.6058 eV
1 electron voll ev 160219 10" erg 107493
eV/ih 241797 x 10'*Hz o —
eV/he 8.06548 16 em™? (U
eV iky 116045 = 10K — —
Boltzmann constant ky 1.38066 107 Berg Kt 19713 3K !
Permittivity of free space £ — 1 107 fdnc?
Permeabitity of fres space Ho — ] 4r % 1677
Molar gas constant Nk, R 831441 107ergmol 'K ImoimtK?
Molar volume ideal gas, at 2241383 108 em? mol ™! 107 mPmol ¢

Source: £, R. Cohen and B. N. Taylor, Journal of Physical and Chemical Reference Data 2¢4), 663 (1573).



