

1

2

By
Robert Horvick

Foreword by Daniel Jebaraj

3

Copyright © 2012 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal, educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: Clay Burch, Ph.D., director of technical support, Syncfusion, Inc.

Copy Editor: Courtney Wright

Acquisitions Coordinator: Jessica Rightmer, senior marketing strategist, Syncfusion, Inc.

Proofreader: Graham High, content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story behind the Succinctly Series of Books ... 9

About the Author ... 11

Chapter 1 Algorithms and Data Structures ... 12

Why Do We Care? ... 12

Asymptotic Analysis ... 12

Rate of Growth ... 12

Best, Average, and Worst Case .. 14

What are we Measuring? ... 14

Code Samples ... 14

Chapter 2 Linked List ... 15

Overview .. 15

Implementing a LinkedList Class ... 17

The Node ... 17

The LinkedList Class ... 19

Add ... 20

Remove .. 21

Contains ... 23

GetEnumerator .. 24

Clear .. 25

CopyTo .. 25

Count ... 26

IsReadOnly .. 26

Doubly Linked List .. 26

Node Class .. 27

5

Add ... 27

Remove .. 29

But Why? ... 32

Chapter 3 Array List ... 34

Overview .. 34

Class Definition .. 34

Insertion ... 36

Growing the Array .. 36

Insert .. 38

Add ... 39

Deletion .. 40

RemoveAt .. 40

Remove .. 41

Indexing.. 41

IndexOf .. 41

Item .. 42

Contains ... 42

Enumeration ... 43

GetEnumerator .. 43

Remaining IList<T> Methods ... 43

Clear .. 43

CopyTo .. 44

Count ... 44

IsReadOnly .. 45

Chapter 4 Stack and Queue .. 46

Overview .. 46

6

Stack .. 46

Class Definition .. 47

Push ... 48

Pop ... 48

Peek ... 49

Count ... 49

Example: RPN Calculator .. 50

Queue .. 52

Class Definition .. 52

Enqueue ... 53

Dequeue .. 53

Peek ... 54

Count ... 54

Deque (Double-Ended Queue) .. 54

Class Definition .. 55

Enqueue ... 56

Dequeue .. 56

PeekFirst .. 57

PeekLast .. 58

Count ... 58

Example: Implementing a Stack .. 58

Array Backing Store ... 60

Class Definition .. 62

Enqueue ... 63

Dequeue .. 65

PeekFirst .. 67

PeekLast .. 67

Count ... 68

7

Chapter 5 Binary Search Tree ... 69

Tree Overview .. 69

Binary Search Tree Overview .. 70

The Node Class ... 71

The Binary Search Tree Class ... 72

Add ... 73

Remove .. 75

Contains ... 80

Count ... 82

Clear .. 82

Traversals .. 82

Preorder ... 83

Postorder ... 84

Inorder .. 85

GetEnumerator .. 86

Chapter 6 Set .. 88

Set Class .. 88

Insertion ... 90

Add ... 90

AddRange .. 90

Remove .. 91

Contains ... 91

Count .. 92

GetEnumerator .. 92

Algorithms .. 93

Union .. 93

8

Intersection .. 94

Difference ... 95

Symmetric Difference .. 96

IsSubset ... 97

Chapter 7 Sorting Algorithms ... 98

Swap .. 98

Bubble Sort .. 98

Insertion Sort .. 100

Selection Sort ... 103

Merge Sort ... 105

Divide and Conquer ... 105

Merge Sort ... 106

Quick Sort .. 108

9

The Story behind the Succinctly Series
of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

S

10

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

11

About the Author

Robert Horvick is the founder and Principal Engineer at Raleigh-Durham, N.C.-based Devlightful
Software where he focuses on delighting clients with custom .NET solutions and video-based
training. He is an active Pluralsight author with courses on algorithms and data structures, SMS
and VoIP integration, and data analysis using Tableau.

He previously worked for nearly ten years as a Software Engineer for Microsoft, as well as a
Senior Engineer with 3 Birds Marketing LLC, and as Principal Software Engineer for Itron.

On the side, Horvick is married, has four children, is a brewer of reasonably tasty beer, and
enjoys playing the guitar poorly.

12

Chapter 1 Algorithms and Data Structures

Why Do We Care?

I assume you are a computer programmer. Perhaps you are a new student of computer science
or maybe you are an experienced software engineer. Regardless of where you are on that
spectrum, algorithms and data structures matter. Not just as theoretical concepts, but as
building blocks used to create solutions to business problems.

Sure, you may know how to use the C# List or Stack class, but do you understand what is

going on under the covers? If not, are you really making the best decisions about which
algorithms and data structures you are using?

Meaningful understanding of algorithms and data structures starts with having a way to express
and compare their relative costs.

Asymptotic Analysis

When we talk about measuring the cost or complexity of an algorithm, what we are really talking
about is performing an analysis of the algorithm when the input sets are very large. Analyzing
what happens as the number of inputs becomes very large is referred to as asymptotic analysis.
How does the complexity of the algorithm change when applied to ten, or one thousand, or ten
million items? If an algorithm runs in 5 milliseconds with one thousand items, what can we say
about what will happen when it runs with one million? Will it take 5 seconds or 5 years?
Wouldn’t you rather figure this out before your customer?

This stuff matters!

Rate of Growth
Rate of growth describes how an algorithm’s complexity changes as the input size grows. This
is commonly represented using Big-O notation. Big-O notation uses a capital O (“order”) and a
formula that expresses the complexity of the algorithm. The formula may have a variable, n,
which represents the size of the input. The following are some common order functions we will
see in this book but this list is by no means complete.

Constant – O(1)

An O(1) algorithm is one whose complexity is constant regardless of how large the input size is.
The 1 does not mean that there is only one operation or that the operation takes a small amount
of time. It might take 1 microsecond or it might take 1 hour. The point is that the size of the input
does not influence the time the operation takes.

13

Linear – O(n)

An O(n) algorithm is one whose complexity grows linearly with the size of the input. It is
reasonable to expect that if an input size of 1 takes 5 milliseconds, an input with one thousand
items will take 5 seconds.

You can often recognize an O(n) algorithm by looking for a looping mechanism that accesses
each member.

Logarithmic – O(log n)

An O(log n) algorithm is one whose complexity is logarithmic to its size. Many divide and
conquer algorithms fall into this bucket. The binary search tree Contains method implements

an O(log n) algorithm.

Linearithmic – O(n log n)

A linearithmic algorithm, or loglinear, is an algorithm that has a complexity of O(n log n). Some
divide and conquer algorithms fall into this bucket. We will see two examples when we look at
merge sort and quick sort.

Quadratic – O(n2)

An O(n2) algorithm is one whose complexity is quadratic to its size. While not always avoidable,
using a quadratic algorithm is a potential sign that you need to reconsider your algorithm or data
structure choice. Quadratic algorithms do not scale well as the input size grows. For example,
an array with 1000 integers would require 1,000,000 operations to complete. An input with one
million items would take one trillion (1,000,000,000,000) operations. To put this into perspective,
if each operation takes one millisecond to complete, an O(n2) algorithm that receives an input of
one million items will take nearly 32 years to complete. Making that algorithm 100 times faster
would still take 84 days.

We will see an example of a quadratic algorithm when we look at bubble sort.

public int GetCount(int[] items)
{
 return items.Length;
}

public long GetSum(int[] items)
{
 long sum = 0;
 foreach (int i in items)
 {
 sum += i;
 }

 return sum;
}

14

Best, Average, and Worst Case
When we say an algorithm is O(n), what are we really saying? Are we saying that the algorithm
is O(n) on average? Or are we describing the best or worst case scenario?

We typically mean the worst case scenario unless the common case and worst case are vastly
different. For example, we will see examples in this book where an algorithm is O(1) on
average, but periodically becomes O(n) (see ArrayList.Add). In these cases I will describe the

algorithm as O(1) on average and then explain when the complexity changes.

The key point is that saying O(n) does not mean that it is always n operations. It might be less,
but it should not be more.

What Are We Measuring?
When we are measuring algorithms and data structures, we are usually talking about one of two
things: the amount of time the operation takes to complete (operational complexity), or the
amount of resources (memory) an algorithm uses (resource complexity).

An algorithm that runs ten times faster but uses ten times as much memory might be perfectly
acceptable in a server environment with vast amounts of available memory, but may not be
appropriate in an embedded environment where available memory is severely limited.

In this book I will focus primarily on operational complexity, but in the Sorting Algorithms chapter
we will see some examples of resource complexity.

Some specific examples of things we might measure include:

 Comparison operations (greater than, less than, equal to).

 Assignments and data swapping.

 Memory allocations.

The context of the operation being performed will typically tell you what type of measurement is
being made.

For example, when discussing the complexity of an algorithm that searches for an item within a
data structure, we are almost certainly talking about comparison operations. Search is generally
a read-only operation so there should not be any need to perform assignments or allocate
memory.

However, when we are talking about data sorting it might be logical to assume that we could be
talking about comparisons, assignments, or allocations. In cases where there may be ambiguity,
I will indicate which type of measurement the complexity is actually referring to.

Code Samples
The code samples found in this book can be downloaded at
https://bitbucket.org/syncfusion/data_structures_succinctly_part1/src.

https://bitbucket.org/syncfusion/data_structures_succinctly_part1/src

15

Chapter 2 Linked List

Overview

The first data structure we will be looking at is the linked list, and with good reason. Besides
being a nearly ubiquitous structure used in everything from operating systems to video games, it
is also a building block with which many other data structures can be created.

In a very general sense, the purpose of a linked list is to provide a consistent mechanism to
store and access an arbitrary amount of data. As its name implies, it does this by linking the
data together into a list.

Before we dive into what this means, let’s start by reviewing how data is stored in an array.

Integer data stored in an array

As the figure shows, array data is stored as a single contiguously allocated chunk of memory
that is logically segmented. The data stored in the array is placed in one of these segments and
referenced via its location, or index, in the array.

This is a good way to store data. Most programming languages make it very easy to allocate
arrays and operate on their contents. Contiguous data storage provides performance benefits
(namely data locality), iterating over the data is simple, and the data can be accessed directly by
index (random access) in constant time.

There are times, however, when an array is not the ideal solution.

Consider a program with the following requirements:

1. Read an unknown number of integers from an input source (NextValue method) until

the number 0xFFFF is encountered.
2. Pass all of the integers that have been read (in a single call) to the ProcessItems

method.

Since the requirements indicate that multiple values need to be passed to the ProcessItems

method in a single call, one obvious solution would involve using an array of integers. For
example:

void LoadData()
{

16

This solution has several problems, but the most glaring is seen when more than 20 values are
read. As the program is now, the values from 21 to n are simply ignored. This could be mitigated
by allocating more than 20 values—perhaps 200 or 2000. Maybe the size could be configured
by the user, or perhaps if the array became full a larger array could be allocated and all of the
existing data copied into it. Ultimately these solutions create complexity and waste memory.

What we need is a collection that allows us to add an arbitrary number of integer values and
then enumerate over those integers in the order that they were added. The collection should not
have a fixed maximum size and random access indexing is not necessary. What we need is a
linked list.

Before we go on and learn how the linked list data structure is designed and implemented, let’s
preview what our ultimate solution might look like.

 // Assume that 20 is enough to hold the values.
 int[] values = new int[20];
 for (int i = 0; i < values.Length; i++)
 {
 if (values[i] == 0xFFFF)
 {
 break;
 }

 values[i] = NextValue();
 }

 ProcessItems(values);
}

void ProcessItems(int[] values)
{
 // ... Process data.
}

static void LoadItems()
{
 LinkedList<int> list = new LinkedList<int>();
 while (true)
 {
 int value = NextValue();
 if (value != 0xFFFF)
 {
 list.Add(value);
 }
 else
 {
 break;
 }
 }

 ProcessItems(list);
}

17

Notice that all of the problems with the array solution no longer exist. There are no longer any
issues with the array not being large enough or allocating more than is necessary.

You should also notice that this solution informs some of the design decisions we will be making
later, namely that the LinkedList class accepts a generic type argument and implements the

IEnumerable interface.

Implementing a LinkedList Class

The Node
At the core of the linked list data structure is the Node class. A node is a container that provides

the ability to both store data and connect to other nodes.

A linked list node contains data and a property pointing to the next node

In its simplest form, a Node class that contains integers could look like this:

With this we can now create a very primitive linked list. In the following example we will allocate
three nodes (first, middle, and last) and then link them together into a list.

static void ProcessItems(LinkedList<int> list)
{
 // ... Process data.
}

public class Node
{
 public int Value { get; set; }
 public Node Next { get; set; }
}

// +-----+------+
// | 3 | null +
// +-----+------+
Node first = new Node { Value = 3 };

// +-----+------+ +-----+------+
// | 3 | null + | 5 | null +
// +-----+------+ +-----+------+
Node middle = new Node { Value = 5 };

18

We now have a linked list that starts with the node first and ends with the node last. The

Next property for the last node points to null which is the end-of-list indicator. Given this list, we

can perform some basic operations. For example, the value of each node’s Data property:

The PrintList method works by iterating over each node in the list, printing the value of the

current node, and then moving on to the node pointed to by the Next property.

Now that we have an understanding of what a linked list node might look like, let’s look at the
actual LinkedListNode class.

// +-----+------+ +-----+------+
// | 3 | *---+--->| 5 | null +
// +-----+------+ +-----+------+
first.Next = middle;

// +-----+------+ +-----+------+ +-----+------+
// | 3 | *---+--->| 5 | null + | 7 | null +
// +-----+------+ +-----+------+ +-----+------+
Node last = new Node { Value = 7 };

// +-----+------+ +-----+------+ +-----+------+
// | 3 | *---+--->| 5 | *---+-->| 7 | null +
// +-----+------+ +-----+------+ +-----+------+
middle.Next = last;

private static void PrintList(Node node)
{
 while (node != null)
 {
 Console.WriteLine(node.Value);
 node = node.Next;
 }
}

public class LinkedListNode<T>
{
 /// <summary>
 /// Constructs a new node with the specified value.
 /// </summary>
 public LinkedListNode(T value)
 {
 Value = value;
 }

 /// <summary>
 /// The node value.
 /// </summary>
 public T Value { get; internal set; }

 /// <summary>
 /// The next node in the linked list (null if last node).

19

The LinkedList Class
Before implementing our LinkedList class, we need to think about what we’d like to be able to

do with the list.

Earlier we saw that the collection needs to support strongly typed data so we know we want to
create a generic interface.

Since we’re using the .NET framework to implement the list, it makes sense that we would want
this class to be able to act like the other built-in collection types. The easiest way to do this is to
implement the ICollection<T> interface. Notice I choose ICollection<T> and not IList<T>.

This is because the IList<T> interface adds the ability to access values by index. While direct

indexing is generally useful, it cannot be efficiently implemented in a linked list.

With these requirements in mind we can create a basic class stub, and then through the rest of
the chapter we can fill in these methods.

 /// </summary>
 public LinkedListNode<T> Next { get; internal set; }
}

public class LinkedList<T> :
 System.Collections.Generic.ICollection<T>
{
 public void Add(T item)
 {
 throw new System.NotImplementedException();
 }

 public void Clear()
 {
 throw new System.NotImplementedException();
 }

 public bool Contains(T item)
 {
 throw new System.NotImplementedException();
 }

 public void CopyTo(T[] array, int arrayIndex)
 {
 throw new System.NotImplementedException();
 }

 public int Count
 {
 get;
 private set;
 }

 public bool IsReadOnly

20

Add

Behavior Adds the provided value to the end of the linked list.

Performance O(1)

Adding an item to a linked list involves three steps:

1. Allocate the new LinkedListNode instance.

2. Find the last node of the existing list.
3. Point the Next property of the last node to the new node.

The key is to know which node is the last node in the list. There are two ways we can know this.
The first way is to keep track of the first node (the “head” node) and walk the list until we have
found the last node. This approach does not require that we keep track of the last node, which
saves one reference worth of memory (whatever your platform pointer size is), but does require
that we perform a traversal of the list every time a node is added. This would make Add an O(n)

operation.

The second approach requires that we keep track of the last node (the “tail” node) in the list and
when we add the new node we simply access our stored reference directly. This is an O(1)
algorithm and therefore the preferred approach.

The first thing we need to do is add two private fields to the LinkedList class: references to the

first (head) and last (tail) nodes.

 {
 get { throw new System.NotImplementedException(); }
 }

 public bool Remove(T item)
 {
 throw new System.NotImplementedException();
 }

 public System.Collections.Generic.IEnumerator<T> GetEnumerator()
 {
 throw new System.NotImplementedException();
 }

 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
 {
 throw new System.NotImplementedException();
 }
}

private LinkedListNode<T> _head;
private LinkedListNode<T> _tail;

21

Next we need to add the method that performs the three steps.

First, it allocates the new LinkedListNode instance. Next, it checks whether the list is empty. If

the list is empty, the new node is added simply by assigning the _head and _tail references to

the new node. The new node is now both the first and last node in the list. If the list is not empty,
the node is added to the end of the list and the _tail reference is updated to point to the new

end of the list.

The Count property is incremented when a node is added to ensure the

ICollection<T>.Count property returns the accurate value.

Remove

Behavior
Removes the first node in the list whose value equals the provided value. The
method returns true if a value was removed. Otherwise it returns false.

Performance O(n)

Before talking about the Remove algorithm, let’s take a look at what it is trying to accomplish. In

the following figure, there are four nodes in a list. We want to remove the node with the value 3.

 A linked list with four values

public void Add(T value)
{
 LinkedListNode<T> node = new LinkedListNode<T>(value);

 if (_head == null)
 {
 _head = node;
 _tail = node;
 }
 else
 {
 _tail.Next = node;
 _tail = node;
 }

 Count++;
}

22

When the removal is done, the list will be modified such that the Next property on the node with

the value 2 points to the node with the value 4.

The linked list with the 3 node removed

The basic algorithm for node removal is:

1. Find the node to remove.
2. Update the Next property of the node that precedes the node being removed to point to

the node that follows the node being removed.

As always, the devil is in the details. There are a few cases we need to be thinking about when
removing a node:

 The list might be empty, or the value we are trying to remove might not be in the list. In
this case the list would remain unchanged.

 The node being removed might be the only node in the list. In this case we simply set
the _head and _tail fields to null.

 The node to remove might be the first node. In this case there is no preceding node, so
instead we need to update the _head field to point to the new head node.

 The node might be in the middle of the list. This is the case demonstrated in Figures 3
and 4.

 The node might be the last node in the list. In this case we update the _tail field to

reference the penultimate node in the list and set its Next property to null.

public bool Remove(T item)
{
 LinkedListNode<T> previous = null;
 LinkedListNode<T> current = _head;

 // 1: Empty list: Do nothing.
 // 2: Single node: Previous is null.
 // 3: Many nodes:
 // a: Node to remove is the first node.
 // b: Node to remove is the middle or last.

 while (current != null)
 {
 if (current.Value.Equals(item))
 {
 // It's a node in the middle or end.
 if (previous != null)
 {
 // Case 3b.

 // Before: Head -> 3 -> 5 -> null

23

The Count property is decremented when a node is removed to ensure the

ICollection<T>.Count property returns the accurate value.

Contains

Behavior
Returns a Boolean that indicates whether the provided value exists within the
linked list.

Performance O(n)

 // After: Head -> 3 ------> null
 previous.Next = current.Next;

 // It was the end, so update _tail.
 if (current.Next == null)
 {
 _tail = previous;
 }
 }
 else
 {
 // Case 2 or 3a.

 // Before: Head -> 3 -> 5
 // After: Head ------> 5

 // Head -> 3 -> null
 // Head ------> null
 _head = _head.Next;

 // Is the list now empty?
 if (_head == null)
 {
 _tail = null;
 }
 }

 Count--;

 return true;
 }

 previous = current;
 current = current.Next;
 }

 return false;
}

24

The Contains method is quite simple. It looks at every node in the list, from first to last, and

returns true as soon as a node matching the parameter is found. If the end of the list is reached
and the node is not found, the method returns false.

GetEnumerator

Behavior
Returns an IEnumerator<T> instance that allows enumerating the linked list

values from first to last.

Performance
Returning the enumerator instance is an O(1) operation. Enumerating every
item is an O(n) operation.

GetEnumerator is implemented by enumerating the list from the first to last node and uses the

C# yield keyword to return the current node’s value to the caller.

Notice that the LinkedList implements the iteration behavior in the IEnumerable<T> version of

the GetEnumerator method and defers to this behavior in the IEnumerable version.

public bool Contains(T item)
{
 LinkedListNode<T> current = _head;
 while (current != null)
 {
 if (current.Value.Equals(item))
 {
 return true;
 }

 current = current.Next;
 }

 return false;
}

IEnumerator<T> IEnumerable<T>.GetEnumerator()
{
 LinkedListNode<T> current = _head;
 while (current != null)
 {
 yield return current.Value;
 current = current.Next;
 }
}

IEnumerator IEnumerable.GetEnumerator()
{
 return ((IEnumerable<T>)this).GetEnumerator();
}

25

Clear

Behavior Removes all the items from the list.

Performance O(1)

The Clear method simply sets the _head and _tail fields to null to clear the list. Because

.NET is a garbage collected language, the nodes do not need to be explicitly removed. It is the
responsibility of the caller, not the linked list, to ensure that if the nodes contain IDisposable

references they are properly disposed of.

CopyTo

Behavior
Copies the contents of the linked list from start to finish into the provided
array, starting at the specified array index.

Performance O(n)

The CopyTo method simply iterates over the list items and uses simple assignment to copy the

items to the array. It is the caller’s responsibility to ensure that the target array contains the
appropriate free space to accommodate all the items in the list.

public void Clear()
{
 _head = null;
 _tail = null;
 Count = 0;
}

public void CopyTo(T[] array, int arrayIndex)
{
 LinkedListNode<T> current = _head;
 while (current != null)
 {
 array[arrayIndex++] = current.Value;
 current = current.Next;
 }
}

26

Count

Behavior
Returns an integer indicating the number of items currently in the list. When
the list is empty, the value returned is 0.

Performance O(1)

Count is simply an automatically implemented property with a public getter and private setter.

The real behavior happens in the Add, Remove, and Clear methods.

IsReadOnly

Behavior Returns false if the list is not read-only.

Performance O(1)

Doubly Linked List

The LinkedList class we just created is known as a singly linked list. This means that there

exists only a single, unidirectional link between a node and the next node in the list. There is a
common variation of the linked list which allows the caller to access the list from both ends. This
variation is known as a doubly linked list.

To create a doubly linked list we will need to first modify our LinkedListNode class to have a

new property named Previous. Previous will act like Next, only it will point to the previous

node in the list.

public int Count
{
 get;
 private set;
}

public bool IsReadOnly
{
 get { return false; }
}

27

 A doubly linked list using a Previous node property

The following sections will only describe the changes between the singly linked list and the new
doubly linked list.

Node Class
The only change that will be made in the LinkedListNode class is the addition of a new

property named Previous which points to the previous LinkedListNode in the linked list, or

returns null if it is the first node in the list.

Add
While the singly linked list only added nodes to the end of the list, the doubly linked list will allow
adding nodes to the start and end of the list using AddFirst and AddLast, respectively. The

ICollection<T>.Add method will defer to the AddLast method to retain compatibility with the

singly linked List class.

public class LinkedListNode<T>
{
 /// <summary>
 /// Constructs a new node with the specified value.
 /// </summary>
 /// <param name="value"></param>
 public LinkedListNode(T value)
 {
 Value = value;
 }

 /// <summary>
 /// The node value.
 /// </summary>
 public T Value { get; internal set; }

 /// <summary>
 /// The next node in the linked list (null if last node).
 /// </summary>
 public LinkedListNode<T> Next { get; internal set; }

 /// <summary>
 /// The previous node in the linked list (null if first node).
 /// </summary>
 public LinkedListNode<T> Previous { get; internal set; }
}

28

AddFirst

Behavior Adds the provided value to the front of the list.

Performance O(1)

When adding a node to the front of the list, the actions are very similar to adding to a singly
linked list.

1. Set the Next property of the new node to the old head node.

2. Set the Previous property of the old head node to the new node.

3. Update the _tail field (if necessary) and increment Count.

AddLast

Behavior Adds the provided value to the end of the list.

Performance O(1)

public void AddFirst(T value)
{
 LinkedListNode<T> node = new LinkedListNode<T>(value);

 // Save off the head node so we don't lose it.
 LinkedListNode<T> temp = _head;

 // Point head to the new node.
 _head = node;

 // Insert the rest of the list behind head.
 _head.Next = temp;

 if (Count == 0)
 {
 // If the list was empty then head and tail should
 // both point to the new node.
 _tail = _head;
 }
 else
 {
 // Before: head -------> 5 <-> 7 -> null
 // After: head -> 3 <-> 5 <-> 7 -> null
 temp.Previous = _head;
 }

 Count++;
}

29

Adding a node to the end of the list is even easier than adding one to the start.

The new node is simply appended to the end of the list, updating the state of _tail and _head

as appropriate, and Count is incremented.

And as mentioned earlier, ICollection<T>.Add will now simply call AddLast.

Remove
Like Add, the Remove method will be extended to support removing nodes from the start or end

of the list. The ICollection<T>.Remove method will continue to remove items from the start

with the only change being to update the appropriate Previous property.

RemoveFirst

Behavior Removes the first value from the list. If the list is empty, no action is taken.

Performance O(1)

public void AddLast(T value)
{
 LinkedListNode<T> node = new LinkedListNode<T>(value);

 if (Count == 0)
 {
 _head = node;
 }
 else
 {
 _tail.Next = node;

 // Before: Head -> 3 <-> 5 -> null
 // After: Head -> 3 <-> 5 <-> 7 -> null
 // 7.Previous = 5
 node.Previous = _tail;
 }

 _tail = node;
 Count++;
}

public void Add(T value)
{
 AddLast(value);
}

30

RemoveFirst updates the list by setting the linked list’s head property to the second node in the

list and updating its Previous property to null. This removes all references to the previous

head node, removing it from the list. If the list contained only a singleton, or was empty, the list
will be empty (the head and tail properties will be null).

RemoveLast

Behavior Removes the last node from the list. If the list is empty, no action is performed.

Performance O(1)

RemoveLast works by setting the list's tail property to be the node preceding the current tail

node. This removes the last node from the list. If the list was empty or had only one node, when
the method returns the head and tail properties, they will both be null.

public void RemoveFirst()
{
 if (Count != 0)
 {
 // Before: Head -> 3 <-> 5
 // After: Head -------> 5

 // Head -> 3 -> null
 // Head ------> null
 _head = _head.Next;

 Count--;

 if (Count == 0)
 {
 _tail = null;
 }
 else
 {
 // 5.Previous was 3; now it is null.
 _head.Previous = null;
 }
 }
}

public void RemoveLast()
{
 if (Count != 0)
 {
 if (Count == 1)
 {
 _head = null;
 _tail = null;
 }

31

Remove

Behavior
Removes the first node in the list whose value equals the provided value. The
method returns true if a value was removed. Otherwise it returns false.

Performance O(n)

The ICollection<T>.Remove method is nearly identical to the singly linked version except that

the Previous property is now updated during the remove operation. To avoid repeated code,

the method calls RemoveFirst when it is determined that the node being removed is the first

node in the list.

 else
 {
 // Before: Head --> 3 --> 5 --> 7
 // Tail = 7
 // After: Head --> 3 --> 5 --> null
 // Tail = 5
 // Null out 5's Next property.
 _tail.Previous.Next = null;
 _tail = _tail.Previous;
 }

 Count--;
 }
}

public bool Remove(T item)
{
 LinkedListNode<T> previous = null;
 LinkedListNode<T> current = _head;

 // 1: Empty list: Do nothing.
 // 2: Single node: Previous is null.
 // 3: Many nodes:
 // a: Node to remove is the first node.
 // b: Node to remove is the middle or last.

 while (current != null)
 {
 // Head -> 3 -> 5 -> 7 -> null
 // Head -> 3 ------> 7 -> null
 if (current.Value.Equals(item))
 {
 // It's a node in the middle or end.
 if (previous != null)
 {
 // Case 3b.

32

But Why?
We can add nodes to the front and end of the list—so what? Why do we care? As it stands right
now, the doubly linked List class is no more powerful than the singly linked list. But with just

one minor modification, we can open up all kinds of possible behaviors. By exposing the head

and tail properties as read-only public properties, the linked list consumer will be able to

implement all sorts of new behaviors.

 previous.Next = current.Next;

 // It was the end, so update _tail.
 if (current.Next == null)
 {
 _tail = previous;
 }
 else
 {
 // Before: Head -> 3 <-> 5 <-> 7 -> null
 // After: Head -> 3 <-------> 7 -> null

 // previous = 3
 // current = 5
 // current.Next = 7
 // So... 7.Previous = 3
 current.Next.Previous = previous;
 }

 Count--;
 }
 else
 {
 // Case 2 or 3a.
 RemoveFirst();
 }

 return true;
 }

 previous = current;
 current = current.Next;
 }

 return false;
}

public LinkedListNode<T> Head
{
 get
 {
 return _head;
 }
}

public LinkedListNode<T> Tail

33

With this simple change we can enumerate the list manually, which allows us to perform reverse
(tail-to-head) enumeration and search.

For example, the following code sample shows how to use the list's Tail and Previous

properties to enumerate the list in reverse and perform some processing on each node.

Additionally, the doubly linked List class allows us to easily create the Deque class, which is

itself a building block for other classes. We will discuss this class later in Chapter 4.

{
 get
 {
 return _tail;
 }
}

public void ProcessListBackwards()
{
 LinkedList<int> list = new LinkedList<int>();
 PopulateList(list);

 LinkedListNode<int> current = list.Tail;
 while (current != null)
 {
 ProcessNode(current);
 current = current.Previous;
 }
}

34

Chapter 3 Array List

Overview

Sometimes you want the flexible sizing and ease of use of a linked list but need to have the
direct (constant time) indexing of an array. In these cases, an ArrayList can provide a

reasonable middle ground.

ArrayList is a collection that implements the IList<T> interface but is backed by an array

rather than a linked list. Like a linked list, an arbitrary number of items can be added (limited
only by available memory), but behave like an array in all other respects.

Class Definition

The ArrayList class implements the IList<T> interface. IList<T> provides all the methods

and properties of ICollection<T> while also adding direct indexing and index-based insertion

and removal. The following code sample features stubs generated by using Visual Studio
2010’s Implement Interface command.

The following code sample also includes three additions to the generated stubs:

 An array of T (_items). This array will hold the items in the collection.

 A default constructor initializing the array to size 0.

 A constructor accepting an integer length. This length will become the default capacity of
the array. Remember that the capacity of the array and the collection Count are not the

same thing. There may be scenarios when using the non-default constructor will allow
the user to provide a sizing hint to the ArrayList class to minimize the number of times

the internal array needs to be reallocated.

public class ArrayList<T> : System.Collections.Generic.IList<T>
{
 T[] _items;

 public ArrayList()
 : this(0)
 {
 }

 public ArrayList(int length)
 {
 if (length < 0)
 {
 throw new ArgumentException("length");
 }

 _items = new T[length];

35

 }

 public int IndexOf(T item)
 {
 throw new NotImplementedException();
 }

 public void Insert(int index, T item)
 {
 throw new NotImplementedException();
 }

 public void RemoveAt(int index)
 {
 throw new NotImplementedException();
 }

 public T this[int index]
 {
 get
 {
 throw new NotImplementedException();
 }
 set
 {
 throw new NotImplementedException();
 }
 }

 public void Add(T item)
 {
 throw new NotImplementedException();
 }

 public void Clear()
 {
 throw new NotImplementedException();
 }

 public bool Contains(T item)
 {
 throw new NotImplementedException();
 }

 public void CopyTo(T[] array, int arrayIndex)
 {
 throw new NotImplementedException();
 }

 public int Count
 {
 get { throw new NotImplementedException(); }
 }

 public bool IsReadOnly

36

Insertion

Adding an item to an ArrayList is where the difference between the array and linked list really

shows. There are two reasons for this. The first is that an ArrayList supports inserting values

into the middle of the collection, whereas a linked list supports adding items to the start or end
of the list. The second is that adding an item to a linked list is always an O(1) operation, but
adding items to an ArrayList is either an O(1) or an O(n) operation.

Growing the Array
As items are added to the collection, eventually the internal array may become full. When this
happens, the following needs to be done:

1. Allocate a larger array.
2. Copy the elements from the smaller to the larger array.
3. Update the internal array to be the larger array.

The only question we need to answer at this point is what size should the new array become?
The answer to this question is defined by the ArrayList growth policy.

We’ll look at two growth policies, and for each we’ll look at how quickly the array grows and how
it can impact performance.

Doubling (Mono and Rotor)

There are two implementations of the ArrayList class we can look at online: Mono and Rotor.

Both of them use a simple algorithm that doubles the size of the array each time an allocation is
needed. If the array has a size of 0, the default capacity is 16. The algorithm is:

 {
 get { throw new NotImplementedException(); }
 }

 public bool Remove(T item)
 {
 throw new NotImplementedException();
 }

 public System.Collections.Generic.IEnumerator<T> GetEnumerator()
 {
 throw new NotImplementedException();
 }

 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
 {
 throw new NotImplementedException();
 }
}

size = size == 0 ? 1 : size * 2;

https://github.com/mono/mono/blob/master/mcs/class/corlib/System.Collections/ArrayList.cs
http://www.123aspx.com/rotor/RotorSrc.aspx?rot=39823

37

This algorithm has fewer allocations and array copies, but wastes more space on average than
the Java approach. In other words, it is biased toward having more O(1) inserts, which should
reduce the number of times the collection performs the time consuming allocation-and-copy
operation. This comes at the cost of a larger average memory footprint, and, on average, more
empty array slots.

Slower Growth (Java)

Java uses a similar approach but grows the array a little more slowly. The algorithm it uses to
grow the array is:

This algorithm has a slower growth curve, which means it is biased toward less memory
overhead at the cost of more allocations. Let’s look at the growth curve for these two algorithms
for an ArrayList with more than 200,000 items added.

The growth curve for Mono/Rotor versus Java for 200,000+ items

You can see in this graph that it took 19 allocations for the doubling algorithm to cross the
200,000 boundary, whereas it took the slower (Java) algorithm 30 allocations to get to the same
point.

So which one is correct? There is no right or wrong answer. Doubling performs fewer O(n)
operations, but has more memory overhead on average. The slower growth algorithm performs
more O(n) operations but has less memory overhead. For a general purpose collection, either
approach is acceptable. Your problem domain may have specific requirements that make one
more attractive, or it may require you to create another approach altogether. Regardless of the
approach you take, the collection’s fundamental behaviors will remain unchanged.

size = (size * 3) / 2 + 1;

38

Our ArrayList class will be using the doubling (Mono/Rotor) approach.

Insert

Behavior
Adds the provided value at the specified index in the collection. If the specified
index is equal to or larger than Count, an exception is thrown

Performance O(n)

Inserting at a specific index requires shifting all of the items after the insertion point to the right
by one. If the backing array is full, it will need to be grown before the shifting can be done.

In the following example, there is an array with a capacity of five items, four of which are in use.
The value “3” will be inserted as the third item in the array (index 2).

The array before the insert (one open slot at the end)

The array after shifting to the right

 The array with the new item added at the open slot

private void GrowArray()
{
 int newLength = _items.Length == 0 ? 16 : _items.Length << 1;

 T[] newArray = new T[newLength];

 _items.CopyTo(newArray, 0);

 _items = newArray;
}

39

Add

Behavior Appends the provided value to the end of the collection.

Performance
O(1) when the array capacity is greater than Count; O(n) when growth is

necessary.

public void Insert(int index, T item)
{
 if (index >= Count)
 {
 throw new IndexOutOfRangeException();
 }

 if (_items.Length == this.Count)
 {
 this.GrowArray();
 }

 // Shift all the items following index one slot to the right.
 Array.Copy(_items, index, _items, index + 1, Count - index);

 _items[index] = item;

 Count++;
}

public void Add(T item)
{
 if (_items.Length == Count)
 {
 GrowArray();
 }

 _items[Count++] = item;
}

40

Deletion

RemoveAt

Behavior Removes the value at the specified index.

Performance O(n)

Removing at an index is essentially the reverse of the Insert operation. The item is removed

from the array and the array is shifted to the left.

 The array before the value 3 is removed

 The array with the value 3 removed

 The array shifted to the left, freeing the last slot

public void RemoveAt(int index)
{
 if (index >= Count)
 {
 throw new IndexOutOfRangeException();
 }

 int shiftStart = index + 1;
 if (shiftStart < Count)
 {
 // Shift all the items following index one slot to the left.
 Array.Copy(_items, shiftStart, _items, index, Count - shiftStart);
 }

 Count--;
}

41

Remove

Behavior
Removes the first item in the collection whose value matches the provided
value. Returns true if a value was removed. Otherwise it returns false.

Performance O(n)

Indexing

IndexOf

Behavior
Returns the first index in the collection whose value equals the provided value.
Returns -1 if no matching value is found.

Performance O(n)

public bool Remove(T item)
{
 for (int i = 0; i < Count; i++)
 {
 if (_items[i].Equals(item))
 {
 RemoveAt(i);
 return true;
 }
 }

 return false;
}

public int IndexOf(T item)
{
 for (int i = 0; i < Count; i++)
 {
 if (_items[i].Equals(item))
 {
 return i;
 }
 }

 return -1;
}

42

Item

Behavior Gets or sets the value at the specified index.

Performance O(1)

Contains

Behavior Returns true if the provided value exists in the collection. Otherwise it returns

false.

Performance O(n)

public T this[int index]
{
 get
 {
 if(index < Count)
 {
 return _items[index];
 }

 throw new IndexOutOfRangeException();
 }
 set
 {
 if (index < Count)
 {
 _items[index] = value;
 }
 else
 {
 throw new IndexOutOfRangeException();
 }
 }
}

public bool Contains(T item)
{
 return IndexOf(item) != -1;
}

43

Enumeration

GetEnumerator

Behavior
Returns an IEnumerator<T> instance that allows enumerating the array list

values in order from first to last.

Performance
Returning the enumerator instance is an O(1) operation. Enumerating every
item is an O(n) operation.

Note that we cannot simply defer to the _items array’s GetEnumerator because that would

also return the items that are not currently filled with data.

Remaining IList<T> Methods

Clear

Behavior Removes all the items from the array list.

Performance O(1)

There are two options when implementing Clear. The array can be left alone or it can be

reallocated as a 0-length array. This implementation reallocates a new array with a length of 0.
A larger array will be allocated when an item is added to the array using the Add or Insert

methods.

public System.Collections.Generic.IEnumerator<T> GetEnumerator()
{
 for (int i = 0; i < Count; i++)
 {
 yield return _items[i];
 }
}

System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{
 return GetEnumerator();
}

Public void Clear()
{
 _items = new T[0];

44

CopyTo

Behavior
Copies the contents of the internal array from start to finish into the provided
array starting at the specified array index.

Performance O(n)

Note that the method does not simply defer to the _items array’s CopyTo method. This is

because we only want to copy the range from index 0 to Count, not the entire array capacity.

Using Array.Copy allows us to specify the number of items to copy.

Count

Behavior
Returns an integer that indicates the number of items currently in the
collection. When the list is empty, the value is 0.

Performance O(1)

Count is simply an automatically implemented property with a public getter and private setter.

The real behavior happens in the functions that manipulate the collection contents.

 Count = 0;
}

public void CopyTo(T[] array, int arrayIndex)
{
 Array.Copy(_items, 0, array, arrayIndex, Count);
}

public int Count
{
 get;
 private set;
}

45

IsReadOnly

Behavior Returns false because the collection is not read-only.

Performance O(1)

public bool IsReadOnly
{
 get { return false; }
}

46

Chapter 4 Stack and Queue

Overview

So far we’ve looked at collections that provide very basic data storage—essentially abstractions
over an array. In this chapter we’re going to look at what happens when we add a few very
basic behaviors that entirely change the utility of the collections.

Stack

A stack is a collection that returns objects to the caller in a Last-In-First-Out (LIFO) pattern.
What this means is that the last object added to the collection will be the first object returned.

Stacks differ from list and array-like collections. They cannot be indexed directly, objects are
added and removed using different methods, and their contents are more opaque than lists and
arrays. What I mean by this is that while a list-based collection provides a Contains method, a

stack does not. Additionally, a stack is not enumerable. To understand why this is, let’s look at
what a stack is and how the usage of a stack drives these differences.

One of the most common analogies for a stack is the restaurant plate stack. This is a simple
spring-loaded device onto which clean plates are stacked. The spring ensures that regardless of
how many plates are in the stack, the top plate can be easily accessed. Clean plates are added
to the top of the stack, and when a customer removes a plate, he or she is removing the top-
most plate (the most recently added plate).

We start with an empty plate rack.

 An empty plate stack (the spring is holding no plates)

And then we add a red, a blue, and a green plate to the rack in that order.

47

 A red, blue, and green plate are added to the plate rack

The key point to understand here is that as new plates are added, they are added to the top of
the stack. If a customer retrieves a plate, he or she will get the most recently added plate (the
green plate in Figure 14). The next customer would get the blue plate, and finally the red plate
would be removed.

Now that we understand how a stack works, let’s define a few new terms.

When an item is added to the stack, it is “pushed” on using the Push method. When an item is

removed from the stack, it is “popped” off using the Pop method. The top item in the stack, the

most recently added, can be “peeked” at using the Peek method. Peeking allows you to view the

item without removing it from the stack (just like the customer at the plate rack would be able to
see the color of the top plate). With these terms in mind, let’s look at the implementation of a
Stack class.

Class Definition
The Stack class defines Push, Pop, and Peek methods, a Count property, and uses the

LinkedList<T> class to store the values contained in the stack.

public class Stack<T>
{
 LinkedList<T> _items = new LinkedList<T>();

 public void Push(T value)
 {
 throw new NotImplementedException();
 }

 public T Pop()
 {

48

Push

Behavior Adds an item to the top of the stack.

Performance O(1)

Since we’re using a linked list as our backing store, all we need to do is add the new item to the
end of the list.

Pop

Behavior
Removes and returns the last item added to the stack. If the stack is empty,
an InvalidOperationException is thrown.

Performance O(1)

Push adds items to the back of the list, so we will “pop” them from the back. If the list is empty,

an exception is thrown.

 throw new NotImplementedException();
 }

 public T Peek()
 {
 throw new NotImplementedException();
 }

 public int Count
 {
 get;
 }
}

public void Push(T value)
{
 _items.AddLast(value);
}

public T Pop()
{
 if (_items.Count == 0)
 {
 throw new InvalidOperationException("The stack is empty");
 }

49

Peek

Behavior
Returns the last item added to the stack but leaves the item on the stack. If
the stack is empty, an InvalidOperationException is thrown.

Performance O(1)

Count

Behavior Returns the number of items in the stack.

Performance O(1)

Since the stack is supposed to be an opaque data structure, why do we have a Count property?

Knowing whether a stack is empty (Count == 0) is very useful, especially since Pop throws an

exception when the stack is empty.

 T result = _items.Tail.Value;

 _items.RemoveLast();

 return result;
}

public T Peek()
{
 if (_items.Count == 0)
 {
 throw new InvalidOperationException("The stack is empty");
 }

 return _items.Tail.Value;
}

public int Count
{
 get
 {
 return _items.Count;
 }
}

50

Example: RPN Calculator
The classic stack example is the Reverse Polish Notation (RPN) calculator.

RPN syntax is quite simple. It uses

<operand> <operand> <operator>

rather than the traditional

<operand> <operator> <operand>.

In other words, instead of saying “4 + 2,” we would say “4 2 +.” If you want to understand the
historical significance of RPN syntax, I encourage you to head to Wikipedia or your favorite
search engine.

The way RPN is evaluated, and the reason that a stack is so useful when implementing an RPN
calculator, can be seen in the following algorithm (stack operations are bold):

So given the input string “4 2 +,” the operations would be:

Now the stack contains a single value: 6 (the answer).

The following is a complete implementation of a simple calculator that reads an equation (e.g.,
“4 2 +”) from console input, splits the input at every space (e.g., [“4”, “2”, and “+”]), and performs
the RPN algorithm on the input. The loop continues until the input is the word “quit”.

for each input value

 if the value is an integer

 push the value on to the operand stack

 else if the value is an operator

 pop the left and right values from the stack

 evaluate the operator

 push the result on to the stack

pop answer from stack.

push (4)

push (2)

push (pop() + pop())

51

void RpnLoop()
{
 while (true)
 {
 Console.Write("> ");
 string input = Console.ReadLine();
 if (input.Trim().ToLower() == "quit")
 {
 break;
 }
 // The stack of integers not yet operated on.
 Stack<int> values = new Stack<int>();

 foreach (string token in input.Split(new char[] { ' ' }))
 {
 // If the value is an integer...
 int value;
 if (int.TryParse(token, out value))
 {
 // ... push it to the stack.
 values.Push(value);
 }
 else
 {
 // Otherwise evaluate the expression...
 int rhs = values.Pop();
 int lhs = values.Pop();

 // ... and pop the result back to the stack.
 switch (token)
 {
 case "+":
 values.Push(lhs + rhs);
 break;
 case "-":
 values.Push(lhs - rhs);
 break;
 case "*":
 values.Push(lhs * rhs);
 break;
 case "/":
 values.Push(lhs / rhs);
 break;
 case "%":
 values.Push(lhs % rhs);
 break;
 default:
 throw new ArgumentException(
 string.Format("Unrecognized token: {0}", token));
 }
 }
 }

 // The last item on the stack is the result.

52

Queue

Queues are very similar to stacks—they provide an opaque collection from which objects can be
added (enqueued) or removed (dequeued) in a manner that adds value over a list-based
collection.

Queues are a First-In-First-Out (FIFO) collection. This means that items are removed from the
queue in the same order that they were added. You can think of a queue like a line at a store
checkout counter—people enter the line and are serviced in the order they arrive.

Queues are commonly used in applications to provide a buffer to add items for future
processing or to provide orderly access to a shared resource. For example, if a database is
capable of handling only one connection, a queue might be used to allow threads to wait their
turn (in order) to access the database.

Class Definition
The Queue, like the Stack, is backed by a LinkedList. Additionally, it provides the methods

Enqueue (to add items), Dequeue (to remove items), Peek, and Count. Like Stack, it will not be

treated as a general purpose collection, meaning it will not implement ICollection<T>.

 Console.WriteLine(values.Pop());
 }
}

public class Queue<T>
{
 LinkedList<T> _items = new LinkedList<T>();

 public void Enqueue(T value)
 {
 throw new NotImplementedException();
 }

 public T Dequeue()
 {
 throw new NotImplementedException();
 }

 public T Peek()
 {
 throw new NotImplementedException();
 }

 public int Count
 {
 get;
 }
}

53

Enqueue

Behavior Adds an item to the end of the queue.

Performance O(1)

This implementation adds the item to the start of the linked list. The item could just as easily be
added to the end of the list. All that really matters is that items are enqueued to one end of the
list and dequeued from the other (FIFO). Notice that this is the opposite of the Stack class

where items are added and removed from the same end (LIFO).

Dequeue

Behavior
Removes and returns the oldest item from the queue. An
InvalidOperationException is thrown if the queue is empty.

Performance O(1)

Since Enqueue added the item to the start of the list, Dequeue must remove the item at the end

of the list. If the queue contains no items, an exception is thrown.

Public void Enqueue(T value)
{
 _items.AddFirst(value);
}

public T Dequeue()
{
 if (_items.Count == 0)
 {
 throw new InvalidOperationException("The queue is empty");
 }

 T last = _items.Tail.Value;

 _items.RemoveLast();

 return last;
}

54

Peek

Behavior

Returns the next item that would be returned if Dequeue were called. The

queue is left unchanged. An InvalidOperationException is thrown if the

queue is empty.

Performance O(1)

Count

Behavior
Returns the number of items currently in the queue. Returns 0 if the queue is

empty.

Performance O(1)

Deque (Double-Ended Queue)

A double-ended queue, or deque, extends the queue behavior by allowing items to be added or
removed from both sides of the queue. This new behavior is useful in several problem domains,
specifically task and thread scheduling. It is also generally useful for implementing other data
structures. We’ll see an example of using a deque to implement another data structure later.

public T Peek()
{
 if (_items.Count == 0)
 {
 throw new InvalidOperationException("The queue is empty");
 }

 return _items.Tail.Value;
}

public int Count
{
 get
 {
 return _items.Count;
 }
}

55

Class Definition
The Deque class is backed by a doubly linked list. This allows us to add and remove items from

the front or back of the list and access the First and Last properties. The main changes

between the Queue class and the Deque class are that the Enqueue, Dequeue, and Peek

methods have been doubled into First and Last variants.

public class Deque<T>
{
 LinkedList<T> _items = new LinkedList<T>();

 public void EnqueueFirst(T value)
 {
 throw new NotImplementedException();
 }

 public void EnqueueLast(T value)
 {
 throw new NotImplementedException();
 }

 public T DequeueFirst()
 {
 throw new NotImplementedException();
 }

 public T DequeueLast()
 {
 throw new NotImplementedException();
 }

 public T PeekFirst()
 {
 throw new NotImplementedException();
 }

 public T PeekLast()
 {
 throw new NotImplementedException();
 }

 public int Count
 {
 get;
 }
}

56

Enqueue

EnqueueFirst

Behavior
Adds the provided value to the head of the queue. This will be the next item
dequeued by DequeueFirst.

Performance O(1)

EnqueueLast

Behavior
Adds the provided value to the tail of the queue. This will be the next item
dequeued by DequeueLast.

Performance O(1)

Dequeue

DequeueFirst

Behavior
Removes and returns the first item in the deque. An
InvalidOperationException is thrown if the deque is empty.

Performance O(1)

public void EnqueueFirst(T value)
{
 _items.AddFirst(value);
}

public void EnqueueLast(T value)
{
 _items.AddLast(value);
}

public T DequeueFirst()
{
 if (_items.Count == 0)
 {

57

DequeueLast

Behavior
Removes and returns the last item in the deque. An
InvalidOperationException is thrown if the deque is empty.

Performance O(1)

PeekFirst

Behavior
Returns the first item in the deque but leaves the collection unchanged. An
InvalidOperationException is thrown if the deque is empty.

Performance O(1)

 throw new InvalidOperationException("DequeueFirst called when deque is empty");
 }

 T temp = _items.Head.Value;

 _items.RemoveFirst();

 return temp;
}

public T DequeueLast()
{
 if (_items.Count == 0)
 {
 throw new InvalidOperationException("DequeueLast called when deque is empty");
 }

 T temp = _items.Tail.Value;

 _items.RemoveLast();

 return temp;
}

public T PeekFirst()
{
 if (_items.Count == 0)
 {
 throw new InvalidOperationException("PeekFirst called when deque is empty");

58

PeekLast

Behavior
Returns the last item in the deque but leaves the collection unchanged. An
InvalidOperationException is thrown if the deque is empty.

Performance O(1)

Count

Behavior Returns the number of items currently in the deque, or 0 if the deque is empty.

Performance O(1)

Example: Implementing a Stack
Deques are often used to implement other data structures.

We’ve seen a stack implemented using a LinkedList, so now let’s look at one implemented

using a Deque.

 }

 return _items.Head.Value;
}

public T PeekLast()
{
 if (_items.Count == 0)
 {
 throw new InvalidOperationException("PeekLast called when deque is empty");
 }

 return _items.Tail.Value;
}

public int Count
{
 get
 {
 return _items.Count;
 }
}

59

You might wonder why I would choose to implement a Stack using a Deque rather than a

LinkedList. The reason is one of performance and code reusability. A linked list has the cost

of per-node overhead and reduced data locality—the items are allocated in the heap and the
memory locations may not be near each other, causing a larger number of cache misses and
page faults at the CPU and memory hardware levels. A better performing implementation of a
queue might use an array as the backing store rather than a list. This would allow for less per-
node overhead and could improve performance by addressing some locality issues.

Implementing a Stack or Queue as an array is a more complex implementation, however. By

implementing the Deque in this more complex manner and using it as the basis for other data

structures, we can realize the performance benefits for all structures while only having to write
the code once. This accelerates development time and reduces maintenance costs.

We will look at an example of a Deque as an array later in this chapter, but first let’s look at an

example of a Stack implemented using a Deque.

Notice that all of the error checking is now deferred to the Deque and any optimization or bug fix

made to the Deque will automatically apply to the Stack class. Implementing a Queue is just as

easy and as such is left as an exercise to the reader.

public class Stack<T>
{
 Deque<T> _items = new Deque<T>();

 public void Push(T value)
 {
 _items.EnqueueFirst(value);
 }

 public T Pop()
 {
 return _items.DequeueFirst();
 }

 public T Peek()
 {
 return _items.PeekFirst();
 }

 public int Count
 {
 get
 {
 return _items.Count;
 }
 }
}

60

Array Backing Store
As mentioned previously, there are benefits to using an array rather than a linked list as the
backing store for the Deque<int> (a deque of integers). Conceptually this seems simple, but

there are actually several issues that need to be addressed for this to work.

Let’s look at some of these issues graphically and then see how we might deal with them. Along
the way, keep in mind the growth policy issues discussed in the ArrayList chapter and that those
same issues apply here.

When the collection is created, it is a 0-length array. Let’s look at how some actions affect the
internal array. As we go through this, notice that the green “h” and red “t” in the figures refer to
“head” and “tail,” respectively. The head and tail are the array indexes that indicate the first and
last items in the queue. As we add and remove items, the interaction between head and tail will
become clearer.

Adding a value to the front of the deque

Adding a value to the end of the deque

Deque<int> deq = new Deque<int>();

deq.EnqueueFirst(1);

deq.EnqueueLast(2);

deq.EnqueueFirst(0);

61

Adding another value to the front of the deque; the head index wraps around

Notice what has happened at this point. The head index has wrapped around to the end of the
array. Now the first item in the deque, what would be returned by DequeueFirst, is the value at

array index 3 (0).

Adding a value to the end of the deque

At this point, the array is filled. When another item is added, the following will occur:

1. The growth policy will define the size of the new array.
2. The items will be copied from head to tail into the new array.
3. The new item will be added.

a. EnqueueFirst – The item is added at index 0 (the copy operation leaves this

open).
b. EnqueueLast – The item is added to the end of the array.

Adding a value to the end of the expanded deque

deq.EnqueueLast(3);

deq.EnqueueLast(4);

62

Now let’s see what happens as items are removed from the Deque.

Removing the first item from the expanded deque

Removing the last item from the expanded deque

The critical point to note is that regardless of the capacity of the internal array, the logical
contents of the Deque are the items from the head index to the tail index, taking into account the

need to wrap around at the end of the array. An array that provides the behavior of wrapping
around from the head to the tail is often known as a circular buffer.

With this understanding of how the array logic works, let’s dive right into the code.

Class Definition
The array-based Deque methods and properties are the same as the list-based, so they will not

be repeated here. However, the list has been replaced with an array and there are now three
properties to contain the size, head, and tail information.

deq.DequeueFirst();

deq.DequeueLast();

public class Deque<T>
{
 T[] _items = new T[0];

 // The number of items in the queue.
 int _size = 0;

 // The index of the first (oldest) item in the queue.
 int _head = 0;

63

Enqueue

Growth Policy

When the internal array needs to grow, the algorithm to increase the size of the array, copy the
array contents, and update the internal index values needs to run. The Enqueue method

performs that operation and is called by both EnqueueFirst and EnqueueLast. The

startingIndex parameter is used to determine whether to leave the array slot at index 0 open

(in the case of EnqueueFirst).

Pay specific attention to how the data is unwrapped in cases where the walk from head to tail
requires going around the end of the array back to 0.

 // The index of the last (newest) item in the queue.
 int _tail = -1;
...
}

private void allocateNewArray(int startingIndex)
{
 int newLength = (_size == 0) ? 4 : _size * 2;

 T[] newArray = new T[newLength];

 if (_size > 0)
 {
 int targetIndex = startingIndex;

 // Copy the contents...
 // If the array has no wrapping, just copy the valid range.
 // Else, copy from head to end of the array and then from 0 to the tail.

 // If tail is less than head, we've wrapped.
 if (_tail < _head)
 {
 // Copy the _items[head].._items[end] -> newArray[0]..newArray[N].
 for (int index = _head; index < _items.Length; index++)
 {
 newArray[targetIndex] = _items[index];
 targetIndex++;
 }

 // Copy _items[0].._items[tail] -> newArray[N+1]..
 for (int index = 0; index <= _tail; index++)
 {
 newArray[targetIndex] = _items[index];
 targetIndex++;
 }
 }
 else

64

EnqueueFirst

Behavior
Adds the provided value to the head of the queue. This will be the next item
dequeued by DequeueFirst.

Performance O(1) in most cases; O(n) when growth is necessary.

 {
 // Copy the _items[head].._items[tail] -> newArray[0]..newArray[N]
 for (int index = _head; index <= _tail; index++)
 {
 newArray[targetIndex] = _items[index];
 targetIndex++;
 }
 }

 _head = startingIndex;
 _tail = targetIndex - 1; // Compensate for the extra bump.
 }
 else
 {
 // Nothing in the array.
 _head = 0;
 _tail = -1;
 }

 _items = newArray;
}

public void EnqueueFirst(T item)
{
 // If the array needs to grow.
 if (_items.Length == _size)
 {
 allocateNewArray(1);
 }

 // Since we know the array isn't full and _head is greater than 0,
 // we know the slot in front of head is open.
 if (_head > 0)
 {
 _head--;
 }
 else
 {
 // Otherwise we need to wrap around to the end of the array.
 _head = _items.Length - 1;
 }

 _items[_head] = item;

65

EnqueueLast

Behavior Adds the provided value to the tail of the queue. This will be the next item
dequeued by DequeueLast.

Performance O(1) in most cases; O(n) when growth is necessary.

Dequeue

DequeueFirst

Behavior Removes and returns the first item in the deque. An
InvalidOperationException is thrown if the deque is empty.

Performance O(1)

 _size++;
}

public void EnqueueLast(T item)
{
 // If the array needs to grow.
 if (_items.Length == _size)
 {
 allocateNewArray(0);
 }

 // Now we have a properly sized array and can focus on wrapping issues.
 // If _tail is at the end of the array we need to wrap around.
 if (_tail == _items.Length - 1)
 {
 _tail = 0;
 }
 else
 {
 _tail++;
 }

 _items[_tail] = item;
 _size++;
}

66

DequeueLast

Behavior Removes and returns the last item in the deque. An
InvalidOperationException is thrown if the deque is empty.

Performance O(1)

public T DequeueFirst()
{
 if (_size == 0)
 {
 throw new InvalidOperationException("The deque is empty");
 }

 T value = _items[_head];

 if (_head == _items.Length - 1)
 {
 // If the head is at the last index in the array, wrap it around.
 _head = 0;
 }
 else
 {
 // Move to the next slot.
 _head++;
 }

 _size--;

 return value;
}

public T DequeueLast()
{
 if (_size == 0)
 {
 throw new InvalidOperationException("The deque is empty");
 }

 T value = _items[_tail];

 if (_tail == 0)
 {
 // If the tail is at the first index in the array, wrap it around.
 _tail = _items.Length - 1;
 }
 else
 {
 // Move to the previous slot.
 _tail--;

67

PeekFirst

Behavior Returns the first item in the deque but leaves the collection unchanged. An
InvalidOperationException is thrown if the deque is empty.

Performance O(1)

PeekLast

Behavior Returns the last item in the deque but leaves the collection unchanged. An
InvalidOperationException is thrown if the deque is empty.

Performance O(1)

 }

 _size--;

 return value;
}

public T PeekFirst()
{
 if (_size == 0)
 {
 throw new InvalidOperationException("The deque is empty");
 }

 return _items[_head];
}

public T PeekLast()
{
 if (_size == 0)
 {
 throw new InvalidOperationException("The deque is empty");
 }

 return _items[_tail];
}

68

Count

Behavior Returns the number of items currently in the deque or 0 if the deque is empty.

Performance O(1)

public int Count
{
 get
 {
 return _size;
 }
}

69

Chapter 5 Binary Search Tree

So far we’ve looked at data structures that organize data in a linear fashion. Linked lists contain
data from a single starting node to a single terminating node. Arrays hold data in contiguous,
one-dimensional blocks.

In this chapter, we will see how adding one more dimension will allow us to introduce a new
data structure: the tree. Specifically, we will be looking at a type of tree known as a binary
search tree. Binary search trees take the general tree structure and apply a set of simple rules
that define the tree's structure.

Before we learn about those rules, let’s learn what a tree is.

Tree Overview

A tree is a data structure where each node has 0 or more children. For example, we might have
a tree like this:

 An organizational tree structure

70

In this tree, we can see the organizational structure of a business. The blocks represent people
or divisions within the company, and the lines represent reporting relationships. A tree is a very
efficient, logical way to present and store this information.

The tree shown in the previous figure is a general tree. It represents parent/child relationships,
but there are no rules for the structure. The CEO has one direct report but could just as easily
have none or twenty. In the figure, Sales is shown to the left of Marketing, but that ordering has
no meaning. In fact, the only observable constraint is that each node has at most one parent
(and the top-most node, the Board of Directors, has no parent).

Binary Search Tree Overview

A binary search tree uses the same basic structure as the general tree shown in the last figure
but with the addition of a few rules. These rules are:

1. Each node can have 0, 1, or 2 children.
2. Any value less than the node’s value goes to the left child (or a child of the left child).
3. Any value greater than, or equal to, the node’s value goes to the right child (or a child

thereof).

Let’s look at a tree that is built using these rules:

Binary Search Tree

Notice how the constraints we specified are enforced in the diagram. Every value to the left of
the root node (8) has a value less than 8, and every value to the right is greater than or equal to
the root node. This rule applies recursively at every node along the way.

With this tree in mind, let’s think about the steps that went into building it. When the process
started, the tree was empty and then a value, 8, was added. Because it was the first value
added, it was put into the root (ultimate parent) position.

71

We don’t know the exact order that the rest of the nodes were added, but I’ll present one
possible path. Values will be added using a method named Add that accepts the value.

Let’s walk through the first few items.

8 was added first and became the root. Next, 4 was added. Since 4 is less than 8, it needs to go
to the left of 8 as per rule #2. Since 8 has no child on its left, 4 becomes the immediate left child
of 8.

2 is added next. 2 is less than 8, so it goes to the left. There is already a node to the left of 8, so
the comparison logic is performed again. 2 is less than 4, and 4 has no left child, so 2 becomes
the left child of 4.

3 is added next and goes to the left of 8 and 4. When compared to the 2 node, it is larger, so 3
is added to the right of 2 as per rule #3.

This cycle of comparing values at each node and then checking each child over and over until
the proper slot is found is repeated for each value until the final tree structure is created.

The Node Class

The BinaryTreeNode represents a single node in the tree. It contains references to the left and

right children (null if there are none), the node’s value, and the IComparable.CompareTo

method which allows comparing the node values to determine if the value should go to the left
or right of the current node. This is the entire BinaryTreeNode class—as you can see, it is very

simple.

BinaryTree<int> tree = new BinaryTree<int>();

tree.Add(8);

tree.Add(4);

tree.Add(2);

tree.Add(3);

tree.Add(10);

tree.Add(6);

tree.Add(7);

class BinaryTreeNode<TNode> : IComparable<TNode>
 where TNode : IComparable<TNode>

72

The Binary Search Tree Class

The BinaryTree class provides the basic methods you need to manipulate the tree: Add,

Remove, a Contains method to determine if an item exists in the tree, several traversal and

enumeration methods (these are methods that allow us to enumerate the nodes in the tree in
various well-defined orders), and the normal Count and Clear methods.

To initialize the tree, there is a BinaryTreeNode reference that represents the head (root) node

of the tree, and there is an integer that keeps track of how many items are in the tree.

{
 public BinaryTreeNode(TNode value)
 {
 Value = value;
 }

 public BinaryTreeNode<TNode> Left { get; set; }
 public BinaryTreeNode<TNode> Right { get; set; }
 public TNode Value { get; private set; }

 /// <summary>
 /// Compares the current node to the provided value.
 /// </summary>
 /// <param name="other">The node value to compare to</param>
 /// <returns>1 if the instance value is greater than
 /// the provided value, -1 if less, or 0 if equal.</returns>
 public int CompareTo(TNode other)
 {
 return Value.CompareTo(other);
 }
}

public class BinaryTree<T> : IEnumerable<T>
 where T : IComparable<T>
{
 private BinaryTreeNode<T> _head;
 private int _count;

 public void Add(T value)
 {
 throw new NotImplementedException();
 }

 public bool Contains(T value)
 {
 throw new NotImplementedException();
 }

 public bool Remove(T value)
 {
 throw new NotImplementedException();

73

Add

Behavior Adds the provided value to the correct location within the tree.

Performance O(log n) on average; O(n) in the worst case.

Adding a node to the tree isn’t terribly complex and is made even easier when the problem is
simplified into a recursive algorithm. There are two cases that need to be considered:

 The tree is empty.

 The tree is not empty.

 }

 public void PreOrderTraversal(Action<T> action)
 {
 throw new NotImplementedException();
 }

 public void PostOrderTraversal(Action<T> action)
 {
 throw new NotImplementedException();
 }

 public void InOrderTraversal(Action<T> action)
 {
 throw new NotImplementedException();
 }

 public IEnumerator<T> GetEnumerator()
 {
 throw new NotImplementedException();
 }

 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
 {
 throw new NotImplementedException();
 }

 public void Clear()
 {
 throw new NotImplementedException();
 }

 public int Count
 {
 get;
 }
}

74

In the first case, we simply allocate the new node and add it to the tree. In the second case, we
compare the value to the node’s value. If the value we are trying to add is less than the node’s
value, the algorithm is repeated for the node’s left child. Otherwise, it is repeated for the node’s
right child.

public void Add(T value)
{
 // Case 1: The tree is empty. Allocate the head.
 if (_head == null)
 {
 _head = new BinaryTreeNode<T>(value);
 }
 // Case 2: The tree is not empty, so recursively
 // find the right location to insert the node.
 else
 {
 AddTo(_head, value);
 }

 _count++;
}

// Recursive add algorithm.
private void AddTo(BinaryTreeNode<T> node, T value)
{
 // Case 1: Value is less than the current node value
 if (value.CompareTo(node.Value) < 0)
 {
 // If there is no left child, make this the new left,
 if (node.Left == null)
 {
 node.Left = new BinaryTreeNode<T>(value);
 }
 else
 {
 // else add it to the left node.
 AddTo(node.Left, value);
 }
 }
 // Case 2: Value is equal to or greater than the current value.
 else
 {
 // If there is no right, add it to the right,
 if (node.Right == null)
 {
 node.Right = new BinaryTreeNode<T>(value);
 }
 else
 {
 // else add it to the right node.
 AddTo(node.Right, value);
 }
 }
}

75

Remove

Behavior Removes the first node found with the indicated value.

Performance O(log n) on average; O(n) in the worst case.

Removing a value from the tree is a conceptually simple operation that becomes surprisingly
complex in practice.

At a high level, the operation is simple:

1. Find the node to remove.
2. Remove it.

The first step is simple, and as we’ll see, is accomplished using the same mechanism that the
Contains method uses. Once the node to be removed is identified, however, the operation can

take one of three paths dictated by the state of the tree around the node to be removed. The
three states are described in the following three cases.

Case 1: The node to be removed has no right child.

 Case 1—The node to be removed has no right child

In this case, the removal operation can simply move the left child, if there is one, into the place
of the removed node. The resulting tree would look like this:

76

 Case 1—Tree state after removal

Case 2: The node to be removed has a right child which, in turn, has no left child.

 Case 2—The node to be removed has a right child which has no left child

In this case, we want to move the removed node’s right child (6) into the place of the removed
node. The resulting tree will look like this:

77

 Case 2—Tree state after removal

Case 3: The node to be removed has a right child which, in turn, has a left child.

 Case 3—The node to be removed has a right child which has a left child

In this case, the left-most child of the removed node’s right child must be placed into the
removed node’s slot.

78

Let’s take a minute to think about why this is true. There are two facts that we know about the
sub-tree starting with the node being removed (i.e., the sub-tree whose root is the node with the
value 5).

 Every value to the right of the node is greater than or equal to 5.

 The smallest value in the right sub-tree is the left-most node.

We need to place a value into the removed node’s slot which is smaller than, or equal to, every
node to its right. To do that, we need to get the smallest value on the right side. Therefore we
need the right child’s left-most node.

After the node removal, the tree will look like this:

 Case 3—Tree after node removal

Now that we understand the three remove scenarios, let’s look at the code to make it happen.

One thing to note: The FindWithParent method (see the Contains section) returns the node to

remove as well as the parent of the node being removed. This is done because when the node
is removed, we need to update the parent’s Left or Right property to point to the new node.

We could avoid doing this if all nodes kept a reference to their parent, but that would introduce
per-node memory overhead and bookkeeping costs that are only needed in this one case.

public bool Remove(T value)
{
 BinaryTreeNode<T> current, parent;

 // Find the node to remove.
 current = FindWithParent(value, out parent);

 if (current == null)
 {
 return false;
 }

79

 _count--;

 // Case 1: If current has no right child, current's left replaces current.
 if (current.Right == null)
 {
 if (parent == null)
 {
 _head = current.Left;
 }
 else
 {
 int result = parent.CompareTo(current.Value);
 if (result > 0)
 {
 // If parent value is greater than current value,
 // make the current left child a left child of parent.
 parent.Left = current.Left;
 }
 else if (result < 0)
 {
 // If parent value is less than current value,
 // make the current left child a right child of parent.
 parent.Right = current.Left;
 }
 }
 }
 // Case 2: If current's right child has no left child, current's right child
 // replaces current.
 else if (current.Right.Left == null)
 {
 current.Right.Left = current.Left;

 if (parent == null)
 {
 _head = current.Right;
 }
 else
 {
 int result = parent.CompareTo(current.Value);
 if (result > 0)
 {
 // If parent value is greater than current value,
 // make the current right child a left child of parent.
 parent.Left = current.Right;
 }
 else if (result < 0)
 {
 // If parent value is less than current value,
 // make the current right child a right child of parent.
 parent.Right = current.Right;
 }
 }
 }
 // Case 3: If current's right child has a left child, replace current with current's

80

Contains

Behavior
Returns true if the tree contains the provided value. Otherwise it returns

false.

Performance O(log n) on average; O(n) in the worst case.

 // right child's left-most child.
 else
 {
 // Find the right's left-most child.
 BinaryTreeNode<T> leftmost = current.Right.Left;
 BinaryTreeNode<T> leftmostParent = current.Right;

 while (leftmost.Left != null)
 {
 leftmostParent = leftmost;
 leftmost = leftmost.Left;
 }

 // The parent's left subtree becomes the leftmost's right subtree.
 leftmostParent.Left = leftmost.Right;

 // Assign leftmost's left and right to current's left and right children.
 leftmost.Left = current.Left;
 leftmost.Right = current.Right;

 if (parent == null)
 {
 _head = leftmost;
 }
 else
 {
 int result = parent.CompareTo(current.Value);
 if (result > 0)
 {
 // If parent value is greater than current value,
 // make leftmost the parent's left child.
 parent.Left = leftmost;
 }
 else if (result < 0)
 {
 // If parent value is less than current value,
 // make leftmost the parent's right child.
 parent.Right = leftmost;
 }
 }
 }

 return true;
}

81

Contains defers to FindWithParent, which performs a simple tree-walking algorithm that

performs the following steps, starting at the head node:

1. If the current node is null, return null.

2. If the current node value equals the sought value, return the current node.
3. If the sought value is less than the current value, set the current node to left child and go

to step #1.
4. Set current node to right child and go to step #1.

Since Contains returns a Boolean, the returned value is determined by whether

FindWithParent returns a non-null BinaryTreeNode (true) or a null one (false).

The FindWithParent method is used by the Remove method as well. The out parameter,

parent, is not used by Contains.

public bool Contains(T value)
{
 // Defer to the node search helper function.
 BinaryTreeNode<T> parent;
 return FindWithParent(value, out parent) != null;
}

/// <summary>
/// Finds and returns the first node containing the specified value. If the value
/// is not found, it returns null. Also returns the parent of the found node (or null)
/// which is used in Remove.
/// </summary>
private BinaryTreeNode<T> FindWithParent(T value, out BinaryTreeNode<T> parent)
{
 // Now, try to find data in the tree.
 BinaryTreeNode<T> current = _head;
 parent = null;

 // While we don't have a match...
 while (current != null)
 {
 int result = current.CompareTo(value);

 if (result > 0)
 {
 // If the value is less than current, go left.
 parent = current;
 current = current.Left;
 }
 else if (result < 0)
 {
 // If the value is more than current, go right.
 parent = current;
 current = current.Right;
 }
 else
 {

82

Count

Behavior Returns the number of values in the tree (0 if empty).

Performance O(1)

The count field is incremented by the Add method and decremented by the Remove method.

Clear

Behavior Removes all the nodes from the tree.

Performance O(1)

Traversals

Tree traversals are algorithms that allow processing each value in the tree in a well-defined
order. For each of the algorithms discussed, the following tree will be used as the sample input.

 // We have a match!
 break;
 }
 }

 return current;
}

public int Count
{
 get
 {
 return _count;
 }
}

public void Clear()
{
 _head = null;
 _count = 0;
}

83

The examples that follow all accept an Action<T> parameter. This parameter defines the action

that will be applied to each node as it is processed by the traversal.

The Order section for each traversal will indicate the order in which the following tree would

traverse.

The sample tree for traversal ordering results

Preorder

Behavior
Performs the provided action on each value in preorder (see the description
that follows).

Performance O(n)

Order 4, 2, 1, 3, 5, 7, 6, 8

The preorder traversal processes the current node before moving to the left and then right
children. Starting at the root node, 4, the action is executed with the value 4. Then the left node
and all of its children are processed, followed by the right node and all of its children.

A common usage of the preorder traversal would be to create a copy of the tree that contained
not just the same node values, but also the same hierarchy.

84

Postorder

Behavior
Performs the provided action on each value in postorder (see the description
that follows).

Performance O(n)

Order 1, 3, 2, 6, 8, 7, 5, 4

The postorder traversal visits the left and right child of the node recursively, and then performs
the action on the current node after the children are complete.

Postorder traversals are often used to delete an entire tree, such as in programming languages
where each node must be freed, or to delete subtrees. This is the case because the root node is
processed (deleted) last and its children are processed in a way that will minimize the amount of
work the Remove algorithm needs to perform.

public void PreOrderTraversal(Action<T> action)
{
 PreOrderTraversal(action, _head);
}

private void PreOrderTraversal(Action<T> action, BinaryTreeNode<T> node)
{
 if (node != null)
 {
 action(node.Value);
 PreOrderTraversal(action, node.Left);
 PreOrderTraversal(action, node.Right);
 }
}

public void PostOrderTraversal(Action<T> action)
{
 PostOrderTraversal(action, _head);
}

private void PostOrderTraversal(Action<T> action, BinaryTreeNode<T> node)
{
 if (node != null)
 {
 PostOrderTraversal(action, node.Left);
 PostOrderTraversal(action, node.Right);
 action(node.Value);
 }
}

85

Inorder

Behavior
Performs the provided action on each value in inorder (see the description that
follows).

Performance O(n)

Order 1, 2, 3, 4, 5, 6, 7, 8

Inorder traversal processes the nodes in the sort order—in the previous example, the nodes
would be sorted in numerical order from smallest to largest. It does this by finding the smallest
(left-most) node and then processing it before processing the larger (right) nodes.

Inorder traversals are used anytime the nodes must be processed in sort-order.

The example that follows shows two different methods of performing an inorder traversal. The
first implements a recursive approach that performs a callback for each traversed node. The
second removes the recursion through the use of the Stack data structure and returns an

IEnumerator to allow direct enumeration.

Public void InOrderTraversal(Action<T> action)
{
 InOrderTraversal(action, _head);
}

private void InOrderTraversal(Action<T> action, BinaryTreeNode<T> node)
{
 if (node != null)
 {
 InOrderTraversal(action, node.Left);

 action(node.Value);

 InOrderTraversal(action, node.Right);
 }
}

public IEnumerator<T> InOrderTraversal()
{
 // This is a non-recursive algorithm using a stack to demonstrate removing
 // recursion.
 if (_head != null)
 {
 // Store the nodes we've skipped in this stack (avoids recursion).
 Stack<BinaryTreeNode<T>> stack = new Stack<BinaryTreeNode<T>>();

 BinaryTreeNode<T> current = _head;

86

GetEnumerator

Behavior Returns an enumerator that enumerates using the InOrder traversal

algorithm.

Performance O(1) to return the enumerator. Enumerating all the items is O(n).

 // When removing recursion, we need to keep track of whether
 // we should be going to the left node or the right nodes next.
 bool goLeftNext = true;

 // Start by pushing Head onto the stack.
 stack.Push(current);

 while (stack.Count > 0)
 {
 // If we're heading left...
 if (goLeftNext)
 {
 // Push everything but the left-most node to the stack.
 // We'll yield the left-most after this block.
 while (current.Left != null)
 {
 stack.Push(current);
 current = current.Left;
 }
 }

 // Inorder is left->yield->right.
 yield return current.Value;

 // If we can go right, do so.
 if (current.Right != null)
 {
 current = current.Right;

 // Once we've gone right once, we need to start
 // going left again.
 goLeftNext = true;
 }
 else
 {
 // If we can't go right, then we need to pop off the parent node
 // so we can process it and then go to its right node.
 current = stack.Pop();
 goLeftNext = false;
 }
 }
 }
}

87

public IEnumerator<T> GetEnumerator()
{
 return InOrderTraversal();
}

System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{
 return GetEnumerator();
}

88

Chapter 6 Set

The Set is a collection type that implements the basic algebraic set algorithms including union,

intersection, difference, and symmetric difference. Each of these algorithms will be explained in
detail in their respective sections.

Conceptually, sets are collections of objects that often have some commonality. For example,
we might have a set that contains positive even integers:

[2, 4, 6, 8, 10, ...]

And a set that contains positive odd integers:

[1, 3, 5, 7, 9, ...]

These two sets do not have any values in common. Now consider a third set that is all the
factors of the number 100:

[1, 2, 4, 5, 10, 20, 25, 50, 100]

Given these sets, we can now answer the question, “Which factors of 100 are odd?” by looking
at the set of odd integers and the set of factors of 100 and seeing which values exist in both
sets. But we could also answer questions such as, “Which odd numbers are not factors of 100?”
or, “Which positive numbers, even or odd, are not factors of 100?”

This may not seem very useful, but that’s because the example is somewhat contrived. Imagine
if the sets were every employee at a company and every employee who had completed the
mandatory annual training.

[All Employees]

[Employees Who Are Trained]

We could easily answer the question, “Which employees have not completed the mandatory
training?”

We can continue to add additional sets and start to answer very complex questions such as,
“Which full-time employees on the sales team who have been issued a corporate credit card
have not attended the mandatory training on the new expense reporting process?”

Set Class

The Set class implements the IEnumerable interface and accepts a generic argument which

should be an IComparable type (testing for equality is necessary for the set algorithms to

function).

89

The members of the set will be contained in a .NET List class, but in practice, sets are often

contained in tree structures such as a binary search tree. This choice of underlying container
affects the complexity of the various algorithms. For example, using the List, Contains has a

complexity of O(n), whereas using a tree would result in O(log n) on average.

In addition to the methods we will be implementing, the Set includes a default constructor and

one that accepts an IEnumerable of items to populate the set with.

public class Set<T> : IEnumerable<T>
 where T: IComparable<T>
{
 private readonly List<T> _items = new List<T>();

 public Set()
 {
 }

 public Set(IEnumerable<T> items)
 {
 AddRange(items);
 }

 public void Add(T item);

 public void AddRange(IEnumerable<T> items);

 public bool Remove(T item);

 public bool Contains(T item);

 public int Count
 {
 get;
 }

 public Set<T> Union(Set<T> other);

 public Set<T> Intersection(Set<T> other);

 public Set<T> Difference(Set<T> other);

 public Set<T> SymmetricDifference(Set<T> other);

 public IEnumerator<T> GetEnumerator();

 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator();
}

90

Insertion

Add

Behavior
Adds the item to the set. If the item already exists in the set, an
InvalidOperationException is thrown.

Performance O(n)

When implementing the Add algorithm, a decision needs to be made: will the set allow duplicate

items or not? For example, given the following set:

[1, 2, 3, 4]

If the caller attempts to add the value 3, will the set become:

[1, 2, 3, 3, 4]

While this might be acceptable in some contexts, it’s not the behavior we are going to
implement. Imagine a set that contains all the students at a local college. It would not be logical
to allow the same student to be added to the set twice. In fact, attempting to do so is likely an
error (and will be treated as such in this implementation).

Note: Add uses the Contains method.

AddRange

Behavior
Adds multiple items to the set. If any member of the input enumerator exists in
the set, or if there are duplicate items in the input enumerator, an
InvalidOperationException will be thrown.

Performance
O(mn), where m is the number of items in the input enumeration and n is the
number of items currently in the set.

public void Add(T item)
{
 if (Contains(item))
 {
 throw new InvalidOperationException("Item already exists in Set");
 }

 _items.Add(item);
}

91

Remove

Behavior
Removes the specified value from the set if found, returning true. If the set

does not contain the specified value, false is returned.

Performance O(n)

Contains

Behavior Returns true if the set contains the specified value. Otherwise it returns

false.

Performance O(n)

public void AddRange(IEnumerable<T> items)
{
 foreach (T item in items)
 {
 Add(item);
 }
}

public bool Remove(T item)
{
 return _items.Remove(item);
}

public bool Contains(T item)
{
 return _items.Contains(item);
}

92

Count

Behavior Returns the number of items in the set or 0 if the set is empty.

Performance O(1)

GetEnumerator

Behavior Returns an enumerator for all the items in the set.

Performance O(1) to return the enumerator. Enumerating all the items has a complexity of
O(n).

public int Count
{
 get
 {
 return _items.Count;
 }
}

public IEnumerator<T> GetEnumerator()
{
 return _items.GetEnumerator();
}

System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{
 return _items.GetEnumerator();
}

93

Algorithms

Union

Behavior
Returns a new set that is the result of the union operation of the current and
input set.

Performance
O(mn), where m and n are the number of items in the provided and current
sets, respectively.

The union of two sets is a set that contains all of the distinct items that exist in both sets.

For example, given two sets (each represented in red):

Two input sets before the union operation

When the union operation is performed, the output set contains all of the items in both sets. If
there are any items that exist in both sets, only a single copy of each item is added to the output
set.

The output set after the union operation (returned items are yellow)

94

A more concrete example can be seen when we union together multiple sets of integers:

[1, 2, 3, 4] union [3, 4, 5, 6] = [1, 2, 3, 4, 5, 6]

Intersection

Behavior
Returns a new set that is the result of the intersection operation of the current
and input sets.

Performance
O(mn), where m and n are the number of items in the provided and current
sets, respectively.

Intersection is the point at which two sets “intersect”—i.e., their common members. Using the
Venn diagram from the union example, the intersection of the two sets is shown here:

The intersection of the two input sets is shown in yellow

Or, using sets of integers:

[1, 2, 3, 4] intersect [3, 4, 5, 6] = [3, 4]

public Set<T> Union(Set<T> other)
{
 Set<T> result = new Set<T>(_items);

 foreach (T item in other._items)
 {
 if (!Contains(item))
 {
 result.Add(item);
 }
 }

 return result;
}

95

Difference

Behavior
Returns a new set that is the result of the difference operation of the current
and input sets.

Performance
O(mn), where m and n are the number of items in the provided and current
sets, respectively.

The difference, or set difference, between two sets is the items that exist in the first set (the set
whose Difference method is being called), but do not exist in the second set (the method's

parameter). The Venn diagram for this method is shown here with the returned set in yellow:

The set difference between two sets

Or, using sets of integers:

[1, 2, 3, 4] difference [3, 4, 5, 6] = [1, 2]

public Set<T> Intersection(Set<T> other)
{
 Set<T> result = new Set<T>();

 foreach (T item in _items)
 {
 if (other._items.Contains(item))
 {
 result.Add(item);
 }
 }

 return result;
}

public Set<T> Difference(Set<T> other)

96

Symmetric Difference

Behavior Returns a new set that is the result of the symmetric difference operation of
the current and input sets.

Performance O(mn), where m and n are the number of items in the provided and current
sets, respectively.

The symmetric difference of two sets is a set whose members are those items which exist in
only one or the other set. The Venn diagram for this method is shown here with the returned set
in yellow:

The symmetric difference of two sets

Or, using integer sets:

[1, 2, 3, 4] symmetric difference [3, 4, 5, 6] = [1, 2, 5, 6]

You may have noticed that this is the exact opposite of the intersection operation. With this in
mind, let’s see what it would take to find the symmetric difference using only the set algorithms
we’ve already looked at.

Let’s walk through what we want.

We want a set that contains all of the items from both sets except for those that exist in both. Or
said another way, we want the union of both sets except for the intersection of both sets. We
want the set difference between the union and the intersection of both sets.

{
 Set<T> result = new Set<T>(_items);

 foreach (T item in other._items)
 {
 result.Remove(item);
 }

 return result;
}

97

Step by step, it looks like this:

[1, 2, 3, 4] union [3, 4, 5, 6] = [1, 2, 3, 4, 5, 6]

[1, 2, 3, 4] intersection [3, 4, 5, 6] = [3, 4]

[1, 2, 3, 4, 5, 6] set difference [3, 4] = [1, 2, 5, 6]

Which yields the resulting set we wanted: ([1, 2, 5, 6]).

IsSubset
You might be wondering why I did not add an IsSubset method. This type of method is

commonly used to determine if one set is entirely contained in another set. For example, we
might want to know if:

[1, 2, 3] is subset [0, 1, 2, 3, 4, 5] = true

Whereas

[1, 2, 3] is subset [0, 1, 2] = false

The reason I haven't detailed an IsSubset method is that it can be performed using existing

means. For example:

[1, 2, 3] difference [0, 1, 2, 3, 4, 5] = []

An empty result set shows that the entire first set was contained in the second set, so we know
the first set is a complete subset of the second.

Another example, using intersection:

[1, 2, 3] intersection [0, 1, 2, 3, 4, 5] = [1, 2, 3]

If the output set has the same number of elements as the input set, we know the input set is a
subset of the second set.

In a general purpose Set class, having an IsSubset method might be useful (and could be

implemented more optimally); however, I wanted to make the point that this is not necessarily a
new behavior, but rather just another way of thinking about existing operations.

public Set<T> SymmetricDifference(Set<T> other)
{
 Set<T> union = Union(other);
 Set<T> intersection = Intersection(other);

 return union.Difference(intersection);
}

98

Chapter 7 Sorting Algorithms

In this chapter we are going to look at five algorithms used to sort data in an array. We will start
with a naïve algorithm, bubble sort, and end with the most common general purpose sorting
algorithm, quick sort.

With each algorithm I will explain how the sorting is done and also provide information on the
best, average, and worst case complexity for both performance and memory usage.

Swap

To keep the sorting algorithm code a little easier to read, a common Swap method will be used

by any sorting algorithm that needs to swap values in an array by index.

Bubble Sort

Behavior Sorts the input array using the bubble sort algorithm.

Complexity Best Case Average Case Worst Case

Time O(n) O(n2) O(n2)

Space O(1) O(1) O(1)

Bubble sort is a naïve sorting algorithm that operates by making multiple passes through the
array, each time moving the largest unsorted value to the right (end) of the array.

Consider the following unsorted array of integers:

void Swap(T[] items, int left, int right)
{
 if (left != right)
 {
 T temp = items[left];
 items[left] = items[right];
 items[right] = temp;
 }
}

99

Unsorted array of integers

On the first pass through the array, the values 3 and 7 are compared. Since 7 is larger than 3,
no swap is performed. Next, 7 and 4 are compared. 7 is greater than 4 so the values are
swapped, thus moving the 7 one step closer to the end of the array. The array now looks like
this:

The 4 and 7 have swapped positions

This process is repeated, and the 7 eventually ends up being compared to the 8, which is
greater, so no swapping can be performed, and the pass ends at the end of the array. At the
end of pass 1, the array looks like this:

The array at the end of pass 1

Because at least one swap was performed, another pass will be performed. After the second
pass, the 6 has moved into position.

The array at the end of pass 2

Again, because at least one swap was performed, another pass is performed.

The next pass, however, finds that no swaps were necessary because all of the items are in
sort-order. Since no swaps were performed, the array is known to be sorted and the sorting
algorithm is complete.

public void Sort(T[] items)
{
 bool swapped;

 do
 {
 swapped = false;
 for (int i = 1; i < items.Length; i++)
 {
 if (items[i - 1].CompareTo(items[i]) > 0)

100

Insertion Sort

Behavior Sorts the input array using the insertion sort algorithm.

Complexity Best Case Average Case Worst Case

Time O(n) O(n2) O(n2)

Space O(1) O(1) O(1)

Insertion sort works by making a single pass through the array and inserting the current value
into the already sorted (beginning) portion of the array. After each index is processed, it is
known that everything encountered so far is sorted and everything that follows is unknown.

Wait, what?

The important concept is that insertion sort works by sorting items as they are encountered.
Since it processes the array from left to right, we know that everything to the left of the current
index is sorted. This graphic demonstrates how the array becomes sorted as each index is
encountered:

An array being processed by insertion sort.

As the processing continues, the array becomes more and more sorted until it is completely
sorted.

 {
 Swap(items, i - 1, i);
 swapped = true;
 }
 }
 } while (swapped != false);
}

101

Let’s look at a concrete example. The following is an unsorted array that will be sorted using
insertion sort.

Unsorted array of integers

When the sorting process begins, the sorting algorithm starts at index 0 with the value 3. Since
there are no values that precede this, the array up to and including index 0 is known to be
sorted.

The algorithm then moves on to the value 7. Since 7 is greater than everything in the known
sorted range (which currently only includes 3), the values up to and including 7 are known to be
in sort-order.

At this point the array indexes 0–1 are known to be sorted, and 2–n are in an unknown state.

The value at index 2 (4) is checked next. Since 4 is less than 7, it is known that 4 needs to be
moved into its proper place in the sorted array area. The question now is to which index in the
sorted array should the value be inserted. The method to do this is the FindInsertionIndex

shown in the code sample following Figure 43. This method compares the value to be inserted
(4) against the values in the sorted range, starting at index 0, until it finds the point at which the
value should be inserted.

This method determines that index 1 (between 3 and 7) is the appropriate insertion point. The
insertion algorithm (the Insert method in the code sample following Figure 43) then performs

the insertion by removing the value to be inserted from the array and shifting all the values from
the insertion point to the removed item to the right. The array now looks like this:

Array after first insertion algorithm

The array from index 0 to 2 is now known to be sorted, and everything from index 3 to the end is
unknown. The process now starts again at index 3, which has the value 4. As the algorithm
continues, the following insertions occur until the array is sorted.

Array after further insertion algorithms

102

When there are no further insertions to be performed, or when the sorted portion of the array is
the entire array, the algorithm is finished.

public void Sort(T[] items)
{
 int sortedRangeEndIndex = 1;

 while (sortedRangeEndIndex < items.Length)
 {
 if (items[sortedRangeEndIndex].CompareTo(items[sortedRangeEndIndex - 1]) < 0)
 {
 int insertIndex = FindInsertionIndex(items, items[sortedRangeEndIndex]);
 Insert(items, insertIndex, sortedRangeEndIndex);
 }

 sortedRangeEndIndex++;
 }
}

private int FindInsertionIndex(T[] items, T valueToInsert)
{
 for (int index = 0; index < items.Length; index++)
 {
 if (items[index].CompareTo(valueToInsert) > 0)
 {
 return index;
 }
 }

 throw new InvalidOperationException("The insertion index was not found");
}

private void Insert(T[] itemArray, int indexInsertingAt, int indexInsertingFrom)
{
 // itemArray = 0 1 2 4 5 6 3 7
 // insertingAt = 3
 // insertingFrom = 6
 // actions
 // 1: Store index at in temp temp = 4
 // 2: Set index at to index from -> 0 1 2 3 5 6 3 7 temp = 4
 // 3: Walking backward from index from to index at + 1.
 // Shift values from left to right once.
 // 0 1 2 3 5 6 6 7 temp = 4
 // 0 1 2 3 5 5 6 7 temp = 4
 // 4: Write temp value to index at + 1.
 // 0 1 2 3 4 5 6 7 temp = 4

 // Step 1.
 T temp = itemArray[indexInsertingAt];

 // Step 2.

 itemArray[indexInsertingAt] = itemArray[indexInsertingFrom];

 // Step 3.
 for (int current = indexInsertingFrom; current > indexInsertingAt; current--)

103

Selection Sort

Behavior Sorts the input array using the selection sort algorithm.

Complexity Best Case Average Case Worst Case

Time O(n) O(n2) O(n2)

Space O(1) O(1) O(1)

Selection sort is a kind of hybrid between bubble sort and insertion sort. Like bubble sort, it
processes the array by iterating from the start to the end over and over, picking one value and
moving it to the right location. However, unlike bubble sort, it picks the smallest unsorted value
rather than the largest. Like insertion sort, the sorted portion of the array is the start of the array,
whereas with bubble sort the sorted portion is at the end.

Let’s see how this works using the same unsorted array we’ve been using.

Unsorted array of integers

On the first pass, the algorithm is going to attempt to find the smallest value in the array and
place it in the first index. This is performed by the FindIndexOfSmallestFromIndex, which

finds the index of the smallest unsorted value starting at the provided index.

With such a small array, we can tell that the first value, 3, is the smallest value so it is already in
the correct place. At this point we know that the value in array index 0 is the smallest value, and
therefore is in the proper sort order. So now we can begin pass two—this time only looking at
the array entries 1 to n-1.

 {
 itemArray[current] = itemArray[current - 1];
 }

 // Step 4.
 itemArray[indexInsertingAt + 1] = temp;
}

104

The second pass will determine that 4 is the smallest value in the unsorted range, and will swap
the value in the second slot with the value in the slot that 4 was held in (swapping the 4 and 7).
After pass two completes, the value 4 will be inserted into its sorted position.

Array after second pass

The sorted range is now from index 0 to index 1, and the unsorted range is from index 2 to n-1.
As each subsequent pass finishes, the sorted portion of the array grows larger and the unsorted
portion becomes smaller. If at any point along the way no insertions are performed, the array is
known to be sorted. Otherwise the process continues until the entire array is known to be
sorted.

After two more passes the array is sorted:

Sorted array

public void Sort(T[] items)
{
 int sortedRangeEnd = 0;

 while (sortedRangeEnd < items.Length)
 {
 int nextIndex = FindIndexOfSmallestFromIndex(items, sortedRangeEnd);
 Swap(items, sortedRangeEnd, nextIndex);

 sortedRangeEnd++;
 }
}

private int FindIndexOfSmallestFromIndex(T[] items, int sortedRangeEnd)
{
 T currentSmallest = items[sortedRangeEnd];
 int currentSmallestIndex = sortedRangeEnd;

 for (int i = sortedRangeEnd + 1; i < items.Length; i++)
 {
 if (currentSmallest.CompareTo(items[i]) > 0)
 {
 currentSmallest = items[i];
 currentSmallestIndex = i;
 }

105

Merge Sort

Behavior Sorts the input array using the merge sort algorithm.

Complexity Best Case Average Case Worst Case

Time O(n log n) O(n log n) O(n log n)

Space O(n) O(n) O(n)

Divide and Conquer
So far we’ve seen algorithms that operate by linearly processing the array. These algorithms
have the upside of operating with very little memory overhead but at the cost of quadratic
runtime complexity. With merge sort, we are going to see our first divide and conquer algorithm.

Divide and conquer algorithms operate by breaking down large problems into smaller, more
easily solvable problems. We see these types of algorithms in everyday life. For example, we
use a divide and conquer algorithm when searching a phone book.

If you wanted to find the name Erin Johnson in a phone book, you would not start at A and flip
forward page by page. Rather, you would likely open the phone book to the middle. If you
opened to the M’s, you would flip back a few pages, maybe a bit too far—the H’s, perhaps.
Then you would flip forward. And you would keep flipping back and forth in ever smaller
increments until eventually you found the page you wanted (or were so close that flipping
forward made sense).

How efficient are divide and conquer algorithms?

Say the phone book is 1000 pages long. When you open to the middle, you have cut the
problem into two 500-page problems. Assuming you are not on the right page, you can now pick
the appropriate side to search and cut the problem in half again. Now your problem space is
250 pages. As the problem is cut in half further and further, we can see that a 1000-page phone
book can be searched in only 10 page turns. This is 1% of the total number of page turns that
could be necessary when performing a linear search.

 }

 return currentSmallestIndex;
}

106

Merge Sort
Merge sort operates by cutting the array in half over and over again until each piece is only 1
item long. Then those items are put back together (merged) in sort-order.

Let’s start with the following array:

Unsorted array of integers

And now we cut the array in half:

Unsorted array cut in half

Now both of these arrays are cut in half repeatedly until each item is on its own:

Unsorted array cut in half until each index is on its own

With the array now divided into the smallest possible parts, the process of merging those parts
back together in sort-order occurs.

Array sorted into groups of two

The individual items become sorted groups of two, those groups of two merge together into
sorted groups of four, and then they finally all merge back together as a final sorted array.

107

Array sorted into groups of four (top) and the completed sort (bottom)

Let’s take a moment to think about the individual operations that we need to implement:

1. A way to split the arrays recursively. The Sort method does this.

2. A way to merge the items together in sort-order. The Merge method does this.

One performance consideration of the merge sort is that unlike the linear sorting algorithms,
merge sort is going to perform its entire split and merge logic, including any memory allocations,
even if the array is already in sorted order. While it has better worst-case performance than the
linear sorting algorithms, its best-case performance will always be worse. This means it is not
an ideal candidate when sorting data that is known to be nearly sorted; for example, when
inserting data into an already sorted array.

public void Sort(T[] items)
{
 if (items.Length <= 1)
 {
 return;
 }

 int leftSize = items.Length / 2;
 int rightSize = items.Length - leftSize;

 T[] left = new T[leftSize];
 T[] right = new T[rightSize];

 Array.Copy(items, 0, left, 0, leftSize);
 Array.Copy(items, leftSize, right, 0, rightSize);

 Sort(left);
 Sort(right);
 Merge(items, left, right);
}

private void Merge(T[] items, T[] left, T[] right)
{
 int leftIndex = 0;
 int rightIndex = 0;
 int targetIndex = 0;

 int remaining = left.Length + right.Length;

 while(remaining > 0)

108

Quick Sort

Behavior Sorts the input array using the quick sort algorithm.

Complexity Best Case Average Case Worst Case

Time O(n log n) O(n log n) O(n2)

Space O(1) O(1) O(1)

Quick sort is another divide and conquer sorting algorithm. This one works by recursively
performing the following algorithm:

1. Pick a pivot index and partition the array into two arrays. This is done using a random
number in the sample code. While there are other strategies, I favored a simple
approach for this sample.

2. Put all values less than the pivot value to the left of the pivot point and the values above
the pivot value to the right. The pivot point is now sorted—everything to the right is
larger; everything to the left is smaller. The value at the pivot point is in its correct sorted
location.

3. Repeat the pivot and partition algorithm on the unsorted left and right partitions until
every item is in its known sorted position.

 {
 if (leftIndex >= left.Length)
 {
 items[targetIndex] = right[rightIndex++];
 }
 else if (rightIndex >= right.Length)
 {
 items[targetIndex] = left[leftIndex++];
 }
 else if (left[leftIndex].CompareTo(right[rightIndex]) < 0)
 {
 items[targetIndex] = left[leftIndex++];
 }
 else
 {
 items[targetIndex] = right[rightIndex++];
 }

 targetIndex++;
 remaining--;
 }
}

109

Let’s perform a quick sort on the following array:

Unsorted array of integers

Step one says we pick the partition point using a random index. In the sample code, this is done
at this line:

int pivotIndex = _pivotRng.Next(left, right);

Picking a random partition index

Now that we know the partition index (4), we look at the value at that point (6) and move the
values in the array so that everything less than the value is on the left side of the array and
everything else (values greater than or equal) is moved to the right side of the array. Keep in
mind that moving the values around might change the index the partition value is stored at (we
will see that shortly).

Swapping the values is done by the partition method in the sample code following Figure 57.

Moving values to the left and right of the partition value

At this point, we know that 6 is in the correct spot in the array. We know this because every
value to the left is less than the partition value, and everything to the right is greater than or
equal to the partition value. Now we repeat this process on the two unsorted partitions of the
array.

The repetition is done in the sample code by recursively calling the quicksort method with

each of the array partitions. Notice that this time the left array is partitioned at index 1 with the
value 5. The process of moving the values to their appropriate positions moves the value 5 to
another index. I point this out to reinforce the point that you are selecting a partition value, not a
partition index.

Repeating the pivot and partition

110

Quick sorting again:

Repeating the pivot and partition again

And quick sorting one last time:

Repeating the pivot and partition again

With only one unsorted value left, and since we know that every other value is sorted, the array
is fully sorted.

Random _pivotRng = new Random();

public void Sort(T[] items)
{
 quicksort(items, 0, items.Length - 1);
}

private void quicksort(T[] items, int left, int right)
{
 if (left < right)
 {
 int pivotIndex = _pivotRng.Next(left, right);
 int newPivot = partition(items, left, right, pivotIndex);

 quicksort(items, left, newPivot - 1);
 quicksort(items, newPivot + 1, right);
 }
}

private int partition(T[] items, int left, int right, int pivotIndex)
{
 T pivotValue = items[pivotIndex];

 Swap(items, pivotIndex, right);

 int storeIndex = left;

 for (int i = left; i < right; i++)
 {

111

 if (items[i].CompareTo(pivotValue) < 0)
 {
 Swap(items, i, storeIndex);
 storeIndex += 1;
 }
 }

 Swap(items, storeIndex, right);
 return storeIndex;
}

	Table of Contents
	The Story behind the Succinctly Series of Books
	About the Author
	Chapter 1 Algorithms and Data Structures
	Why Do We Care?
	Asymptotic Analysis
	Rate of Growth
	Constant – O(1)
	Linear – O(n)
	Logarithmic – O(log n)
	Linearithmic – O(n log n)
	Quadratic – O(n2)

	Best, Average, and Worst Case
	What Are We Measuring?
	Code Samples

	Chapter 2 Linked List
	Overview
	Implementing a LinkedList Class
	The Node
	The LinkedList Class
	Add
	Remove
	Contains
	GetEnumerator
	Clear
	CopyTo
	Count
	IsReadOnly

	Doubly Linked List
	Node Class
	Add
	AddFirst
	AddLast

	Remove
	RemoveFirst
	RemoveLast
	Remove

	But Why?

	Chapter 3 Array List
	Overview
	Class Definition
	Insertion
	Growing the Array
	Doubling (Mono and Rotor)
	Slower Growth (Java)

	Insert
	Add

	Deletion
	RemoveAt
	Remove

	Indexing
	IndexOf
	Item
	Contains

	Enumeration
	GetEnumerator

	Remaining IList<T> Methods
	Clear
	CopyTo
	Count
	IsReadOnly

	Chapter 4 Stack and Queue
	Overview
	Stack
	Class Definition
	Push
	Pop
	Peek
	Count
	Example: RPN Calculator

	Queue
	Class Definition
	Enqueue
	Dequeue
	Peek
	Count

	Deque (Double-Ended Queue)
	Class Definition
	Enqueue
	EnqueueFirst
	EnqueueLast

	Dequeue
	DequeueFirst
	DequeueLast

	PeekFirst
	PeekLast
	Count
	Example: Implementing a Stack
	Array Backing Store
	Class Definition
	Enqueue
	Growth Policy
	EnqueueFirst
	EnqueueLast

	Dequeue
	DequeueFirst
	DequeueLast

	PeekFirst
	PeekLast
	Count

	Chapter 5 Binary Search Tree
	Tree Overview
	Binary Search Tree Overview
	The Node Class
	The Binary Search Tree Class
	Add
	Remove
	Case 1: The node to be removed has no right child.
	Case 2: The node to be removed has a right child which, in turn, has no left child.
	Case 3: The node to be removed has a right child which, in turn, has a left child.

	Contains
	Count
	Clear

	Traversals
	Preorder
	Postorder
	Inorder
	GetEnumerator

	Chapter 6 Set
	Set Class
	Insertion
	Add
	AddRange

	Remove
	Contains
	Count
	GetEnumerator
	Algorithms
	Union
	Intersection
	Difference
	Symmetric Difference
	IsSubset

	Chapter 7 Sorting Algorithms
	Swap
	Bubble Sort
	Insertion Sort
	Selection Sort
	Merge Sort
	Divide and Conquer
	Merge Sort

	Quick Sort

