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Preface

There are obvious stages of satellite data collection and processing. In general, 
there are two modes of interaction between remote sensing and geographical 
information systems (GIS). Remote sensing can be used to generate digital maps 
that can be integrated into GIS development, whereas GIS data can be applied 
to interpret and classify remotely sensed data. There is no doubt that it is very 
important to find out reliable digital sources and point out the proper method for 
achieving high-accuracy data processing.

Remote sensing and GIS technology are used to improve  satellite image processing 
and classification. Research in this area is linked to numerous factors that affect 
Earth monitoring such as natural resources, natural disaster observation, urban 
extension, and intensification of land use and land cover including deforestation, 
afforestation, land abandonment, and so on. As such, GIS and remote sensing 
represent useful tools for assessing/evaluating the detection of changes.

In recent years, however, more sophisticated data-driven methods have been used 
for Earth monitoring because they are more robust and have better capability to 
handle complicated relationships between input variables. It takes a vital place in 
use of current technology applications of different machine learning algorithms, 
including artificial neural networks (ANN), adaptive neuro-fuzzy inference 
systems (ANFIS), decision trees (DT), or support vector machines (SVM).

From this point of view, achievements in GIS applications are becoming widely 
important.

In chapter 1 SAR modeling of geophysics measurements is described for analyzing 
and modeling SAR interferometric processes in scenarios with different geometric, 
kinematics, and geological structures as well as for generating pseudo SAR inter-
ferograms based on geophysical measurements and topographic maps.

Chapter 2 of this book introduces various navigation implementations using 
alternate technologies integrated with GPS or operated as standalone devices for 
expanding navigation systems through combining advanced GIS data processing 
technologies. 

Chapter 3 analyzes machine learning in GIS to develop the megacities application.

In chapter 4, we present research results related to the factors that affect high-accuracy 
data processing. To begin, we include a study of equatorial plasma bubbles using sky 
and GPS systems to measure total electron content (TEC) using a GPS receiver and 
images of the nightglow OI 630.0 nm emissions.

Chapter 5 describes the study of the spectral optimization of an airborne multi-
spectral camera for land cover classification focuses on the choice of such relevance 
score. Several criteria are compared through both quantitative and qualitative 
analyses. To achieve a fair comparison, all tested criteria are compared to classic 
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hyperspectral data sets using the same optimization heuristics: an incremental one 
to assess the impact of the number of selected bands and a stochastic one to obtain 
several possible good band subsets and to derive band importance measures out 
of intermediate good band subsets.

Chapter 6 highlights the Hölder exponent and variance-based clustering method for 
classifying land use/land cover in high spatial resolution, remotely sensed images 
with clustering techniques.

In Chapter 7, an integrated database of road design elements is used for exporting 
all the design elements to the GIS program by creating an integrated road database. 
The achieved database has capability of spatial analysis and connectivity, integrat-
ing other parts of the road network in the city.

Chapter 8 presents the results of research using low-cost RGB-D sensors for 
autonomous pothole detection with spatial fuzzy c-means segmentation. Results 
demonstrate the advantage of complementary processing of low-cost multisensory 
data, through channeling data streams and linking data processing according to 
the merits of the individual sensors, for autonomous cost-effective assessment of 
road-surface conditions using remote sensing technology.

Rustam B. Rustamov
EILINK Research and Development Center of Khazar University,

Baku, Azerbaijan

Chapter 1

InSAR Modeling of Geophysics
Measurements
Andon Lazarov, Dimitar Minchev and Chavdar Minchev

Abstract

In the present work, the geometry and basic parameters of interferometric
synthetic aperture radar (InSAR) geophysics system are addressed. Equations of
pixel height and displacement evaluation are derived. Synthetic aperture radar
(SAR) signal model based on linear frequency modulation (LFM) waveform and
image reconstruction procedure are suggested. The concept of pseudo InSAR mea-
surements, interferogram, and differential interferogram generation is considered.
Interferogram and differential interferogram are generated based on a surface
model and InSAR measurements. Results of numerical experiments are provided.

Keywords: InSAR, geometry, signal modeling, SAR interferogram, SAR differential
interferograms

1. Introduction

Synthetic aperture radar (SAR) is a coherent microwave imaging instrument
capable to provide for data all weather, day and night, guaranteeing global coverage
surveillance. SAR interferometry is based on processing two or more complex
valued SAR images obtained from different SAR positions [1–4]. The InSAR is a
system intends for geophysical measurements and evaluation of topography, slopes,
surface deformations (volcanoes, earthquakes, ice fields), glacier studies, vegeta-
tion growth, etc. The estimation of topographic height with essential accuracy is
performed by the interferometric distance difference measured based on two SAR
echoes from the same surface. Changes in topography (displacement), precise to a
fraction of a radar wavelength, can be evaluated by differential interferogram
generated by three or more successive complex SAR images [5, 6]. Demonstration
of time series InSAR processing in Beijing using a small stack of Gaofen-3 differen-
tial interferograms is discussed in [7].

A general overview of the InSAR principles and the recent development of the
advanced multi-track InSAR combination methodologies, which allow to discrimi-
nate the 3-D components of deformation processes and to follow their temporal
evolution, are presented in [8]. The combination of global navigation satellite
system (GNSS) and InSAR for future Australian datums is discussed in [9].

A high-precision DEM extraction method based on InSAR data and quality
assessment of InSAR DEMs is suggested in [10, 11]. InSAR digital surface model
(DSM) and time series analysis based on C-band Sentinel-1 TOPS data are presented
in [12, 13]. DEM registration, alignment, and evaluation for SAR interferometry,
deformation monitoring by ground-based SAR interferometry (GB-InSAR), a field

1XIV
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test in dam, and an improved approach to estimate large-gradient deformation using
high-resolution TerraSAR-X data are discussed in [14–16]. InSAR Time-Series Estima-
tion of the Ionospheric Phase Delay: An Extension of the Split Range-Spectrum Technique
and InSAR data coherence estimation using 2D fast Fourier transform are performed
in [17, 18].

In comparison with the results described in the aforementioned publications, the
main goal of the present work is to suggest an analytical model of multi-pass InSAR
geometry and derive analytical expressions of current distances between SAR’s
positions and individual pixels on the surface and to describe principal InSAR
parameters: topographic height and topographic displacement from the position of
InSAR modelling. The focus is on the two modelling approaches: first, by the
definition of real scenario, geometry, and kinematics and SAR signal models and
corresponding complex image reconstruction and interferogram and differential
interferogram generation and, second, the process of pseudo SAR measurements
and interferogram generation that is analytically described. Results of numerical
experiments with real data are provided.

The rest of the chapter is organized as follows. In Section 2, 3D InSAR geometry
and kinematics are analytically described. In Section 3 and Section 4, analytical
expressions of InSAR relief measurements and relief displacement measurements
are presented. In Section 5 and Section 6, SAR waveform, deterministic signal
model, and image reconstruction algorithm are described. In Section 7, numerical
results of InSAR modelling based on the geometry, kinematics, and signal models
are provided. In Section 8 and Section 9, a pseudo InSAR modelling of geophysical
measurements and numerical results are presented, respectively. Conclusion
remarks are made in Section 10.

2. InSAR geometry and kinematics

Assume a three-pass SAR systemviewing three-dimensional (3-D) surface presented
by discrete resolution elements, pixels. Each pixel is defined by the third coordinate

zij xij, yij
� �

in 3-D coordinate systemOxyz. Let A, B, and C, be the SAR positions of

imaging. Between every SAR position,C2
3 ¼ 3 InSAR baselines can be drawn.

The basic geometric SAR characteristic is the time-dependent distance vector
from SAR to each pixel on the surface in the n-th SAR pass at the p-th moment
defined by

Rn
ij pð Þ ¼ Rn pð Þ � Rij ¼ xnij pð Þ, ynij pð Þ, znij pð Þ

h iT
, (1)

where n = 1–3 is the number of SAR passes and Rn pð Þ ¼ R0n þ V:p:Tp is the
distance vector in the n-th SAR pass at the p-th moment, R0n is the initial distance
vector in the n-th SAR pass, Rij is the constant distance vector of the ij- th pixel on
the surface, and xnij pð Þ, ynij pð Þ, and znij pð Þ are the current coordinates of Rn

ij pð Þ written
by the expression.

xnij pð Þ ¼ xn pð Þ � xij, ynij pð Þ ¼ yn pð Þ � yij, z
n
ij pð Þ ¼ zn pð Þ � zij (2)

where xij ¼ iΔX, yij ¼ jΔY, and zij ¼ zij xij, yij
� �

is the pixel’s discrete coordinates

and xn pð Þ, yn pð Þ, and zn pð Þ are the SAR current coordinates in the n-th pass, defined
by the following equation.
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xn pð Þ ¼ xn0 � VxpTp, y
n pð Þ ¼ yn0 � V ypTp, zn pð Þ ¼ zn0 � VzpTp, (3)

where xn0, y
n
0, and zn0 are the SAR initial coordinates in the n-th pass, measured at

the initial moment; Tp is the time repetition period; p is the number of the emitted

pulse; V ¼ Vx,V y,Vz
� �T is the SAR vector velocity; Vx ¼ V cos α, V y ¼ V cos β,

and Vz ¼ V cos δ are the components of vector velocity; cos α, cos β, and cos δ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos 2α� cos 2β

p
are the guiding cosines; and V is the module of the vector

velocity V. Modulus of the current distance vector Rn
ij pð Þ is defined by

Rn
ij pð Þ ¼ xnij pð Þ

h i2
þ ynij pð Þ
h i2

þ znij pð Þ
h i2� �1

2

: (4)

Eq. (4) can be used to model a SAR signal from the ij-th pixel in the n-th SAR
pass by calculation of the respective time delay and phase of the signal.

3. InSAR relief measurements

The distances to ij-th pixel from SAR in m-th and n-th pass (m 6¼ n) at the
moment of imaging can be defined by the cosine’s theorem, i.e.,

Rn
ij

���
��� ¼ Rm

ij

���
���
2
þ B2

mn � 2Bmn Rm
ij

���
��� cos π

2
� θmij � αmn½ Þ�

h i� �1
2

, (5)

where Bmn is the modulus of the baseline vector, θmij is the look angle, and αmn is
a priory known tilt angle, the angle between the baseline vector and plane Oxy. The
look angle θmij and height hm of an ij-th pixel on the surface with respect to m-th
SAR position in the moment of imaging can be written as

θmij ¼ αmn þ arcsin
Rm
ij

���
���
2
þ B2

mn � Rn
ij

���
���
2

2Bmn Rm
ij

���
���

, (6)

zij ¼ hm � Rm
ij

���
��� cos θmij : (7)

The distance difference, ΔRmn
ij

���
��� ¼ Rn

ij

���
���� Rm

ij

���
���, can be expressed by the interfer-

ometric phase difference ΔRmn
ij

���
��� ¼ λ

2π Δϕ
mn
ij . In case Rm

ij

���
��� can be measured, i.e.,

Rn
ij

���
��� ¼ Rm

ij

���
���þ ΔRmn

ij

���
���, then

θmij ¼ αmn þ arcsin
Bmn

2Rm
ij
� λ

2πBmn
Δϕmn

ij 1þ λ

4πRm
ij
Δϕmn

ij

 !" #
, (8)

zij ¼ hm � Rm
ij : cos αmn þ arcsin

Bmn

2Rm
ij
� λ

2πBmn
Δϕmn

ij : 1þ λ

4πRm
ij
Δϕmn

ij

 !" #( )
:

(9)
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4. InSAR measurements of relief displacement

Consider a three-pass SAR interferometry (Figure 1). Let A and B be the two
positions of imaging which can be defined by two passes of the same spaceborne
SAR in different time (two pass interferometry). The third position C is defined by
the third pass of the spaceborne SAR. The surface displacement, Δzij, due, for
instance, to an earthquake could derive from two SAR interferograms built before
and after the seismic impact. The temporal baseline, the time scale over which the
displacement is measured, must follow the dynamics of the geophysical phenome-
non. Short-time baseline is applied for monitoring fast surface changes. Long tem-
poral baseline is used for monitoring slow geophysics phenomena (subsidence). The
interferometry phase before event is derived from complex images acquired by A
and B SAR positions in the moment of imaging, while the interferometry phase
after event is derived from complex images acquired by A and C SAR positions in
the moment of imaging. The distances R1

ij,R
2
ij, R

3
ij, and Rd3

ij after standard manipula-
tions are written as.

R2
ij ≃R1

ij � B1 sin θij � α1
� �þ B2

1

2R1
ij
,R3

ij ≃R1
ij � B2 sin θij � α2
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2R1
ij
, (10)

Rd3
ij ≃R3

ij � Δz cos θij þ B2

R1
ij
sin α2

 !
þ Δzij
� �2
2R1

ij
,

where R1
ij,R

2
ij, and R3

ij are the slant ranges from A, B, and C positions of SAR
system to the observed pixel in the moment of imaging before the surface

Figure 1.
InSAR geometry and kinematics.
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displacement and Rd3
ij is the slant range to from C SAR position to the observed pixel

after Δzij surface displacement.
Given the SAR wavelength λ, the phase differences proportional to range differ-

ences related to a particular pixel before and after displacement in the moment of
imaging can be written as.

ϕAB ¼ 4π
λ

R1
ij � R2

ij

� �
,ϕAC ¼ 4π

λ
R1
ij � R3

ij

� �
,ϕAC

d ¼
4π
λ

R1
ij � Rd3

ij

� �
(11)

Neglecting the term Δzð Þ2=2R1
ij in Eq. (10) can be rewritten as.

ϕAB ¼ 4π
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B1 sin θij � α1
� �� B2

1

2R1
ij

 !
; ϕAC ¼ 4π

λ
B2 sin θij � α2
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2R1
ij
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(12)

ϕAC
d ¼

4π
λ
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2R1
ij
þ Δz cos θij þ B2

R1
ij
sin α2

 !" #

ϕAC þ Δz cos θij þ B2

R1
ij
sin α2

 ! (13)

The displacement Δzij is extracted from the differential interferometric phase dif-
ference ΔΦd ¼ ϕAC

d � ϕAB. Considering B2=R1
ij < < 1, then ΔΦd ¼ ΔΦþ 4π

λ Δzij cos θij,
where

ΔΦ ¼ 4π
λ

B2 sin θij � α2
� �� B1 sin θij � α1

� �� B2
2 � B2

1

2R1
ij

" #
: (14)

For surface displacement zij can be written as

Δzij ¼ λ

4π
ΔΦd � ΔΦ

cos θij
: (15)

5. SAR waveform and deterministic signal model

The SAR transmits a series of electromagnetic waveforms to the surface, which
are described analytically by the sequence of linear frequency modulation (chirp)
pulses as follows

S tð Þ ¼
XM
p¼1

A exp � j ω t� pTp

� �
þ b t� pTp

� �2� �� �
, (16)

where A is the amplitude of the transmitted pulses, Tp is the pulse repetition
period, ω ¼ 2π:c=λ is the angular frequency, p ¼ 1,M is the index of LFM emitted
pulse,M is an emitted pulse number for synthesis of the aperture, c ¼ 3� 108 m/s is
the light speed in vacuum, ΔF is the LFM pulse bandwidth, b ¼ π:ΔF=T is the chirp
rate, and T is the time LFM pulse width.

The SAR signal, reflected by ij-th pixel and registered in the n-th pass, can be
expressed as
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the light speed in vacuum, ΔF is the LFM pulse bandwidth, b ¼ π:ΔF=T is the chirp
rate, and T is the time LFM pulse width.

The SAR signal, reflected by ij-th pixel and registered in the n-th pass, can be
expressed as

5

InSAR Modeling of Geophysics Measurements
DOI: http://dx.doi.org/10.5772/intechopen.89293



Snij tð Þ ¼ aij zij
� �

rect
t� tnij
T

exp � j ω t� tnij
� �

þ b t� tnij
� �2� �� �

(17)

rect
t� tnij pð Þ

T
¼ 1, 0<

t� tnij pð Þ
T

≤ 1j
(

, (18)

where aij zij
� �

is the reflection coefficient of the pixel from the surface.

The parameter aij zij
� �

is a function of surface geometry; tnij pð Þ ¼
R1
ij pð ÞþRn

ij pð Þ
c is the

time propagation of the reflected signal from the ij-th scattering pixel registered in
the n-th pass.

SAR signal reflected from the entire illuminated surface is an interference of
elementary signals of scattering pixels and can be written as

Sn tð Þ ¼
X
i

X
j

aij zij
� �

rect
t� tnij
T

exp � j ω t� tnij
� �

þ b t� tnij
� �2� �� �

: (19)

The time dwell t of the SAR signal return for each transmitted pulse p can
be expressed as t ¼ tnijmin pð Þ þ kΔT, where k ¼ knijmin pð Þ, knijmax pð Þ is the sample
number of the SAR return measured on range direction in n-th pass, knijmin ¼
int tnijmin pð Þ=ΔT
h i

, knijmax ¼ int tnijmax pð Þ=ΔT
h i

, ΔT ¼ 1= 2ΔFð Þ is the sample time

width, and knmax pð Þ is the number of the furthest range bin where SAR signal is
registered in n-th pass. Hence, in discrete form SAR signal can be rewritten as

_S
n
k, pð Þ ¼

X
i

X
j

aij zij
� �

rect
t� tnij
T

exp � j ω k� 1ð ÞΔT � tnij pð Þ
� �

þ b k� 1ð ÞΔT � tnij pð Þ
� �2� �� � : (20)

The expressions derived in Section 2 and Section 5 can be used for modeling the SAR
signal return in case the satellites are moving rectilinearly in 3-D coordinate system.

6. SAR image reconstruction

The complex image reconstruction includes the following operations:
frequency demodulation, range compression, coarse range alignment, precise
phase correction, and azimuth compression. The frequency demodulation is
performed by multiplication of Eq. (20) with a complex conjugated function

exp j ω k� 1ð ÞΔT þ b k� 1ð ÞΔT½ �2
� �n o

.

Thus, the range distributed frequency demodulated SAR return in n-th pass for
p-th pulse can be written as

_̂S
n
k, pð Þ ¼

X
i

X
j

aij zij
� �

rect
k� 1ð ÞΔT � tnij

T
: exp � j ωtnij pð Þ þ b k� 1ð ÞΔT � tnij pð Þ

� �2� �� �
:

(21)

The range compression of the LFM demodulated SAR signal is performed by

cross correlation with a reference function, exp jb k� 1ð ÞΔT½ �2
n o
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_S
n
R k̂, p
� �

¼
XK

k¼1

_̂S
n
k, pð Þ exp jb k� k̂� 1

� �
ΔT

h i2� �
(22)

where K is the full number of LFM samples, the range bins where SAR signal is
registered, and by Fourier transform

_S
n
R k̂, p
� �

¼
XK

k¼1

_̂S
n
k, pð Þ: exp j

2πkk̂
Kn

max

 !
, (23)

for each p ¼ 1,M and k̂ ¼ 1,K.
The range alignment and higher-order phase correction are beyond of the scope

of the present work. The azimuth compression is accomplished by Fourier trans-

form of the range compressed signal, _S
n
R k̂, p
� �

. The complex image extracted from

the n-th pass data can be expressed as

_I
n

k̂, p̂
� �

¼
XM
p¼1

_S
n
R p, k̂
� �

exp j
2πpp̂
M

� �
, (24)

for each p̂ ¼ 1,M, k̂ ¼ 1,K.
The complex SAR image extracted from the n-th pass data preserves phases

defined by distances from the satellite to each pixel at the moment of imaging.
Based on pixel phases and image co-registration, a complex interferograms and
differential interferograms can be created.

7. InSAR modeling: numerical results

The SAR signal model and imaging algorithm are illustrated by results of
numerical experiments. Consider three pass satellite SAR system with position
coordinates at the moment of imaging as follows.

x10 ¼ 0 m; y10 ¼ 10:103 m, z10 ¼ 100:103 m, x20 ¼ 0 m, y20 ¼ 10, 1:103 m,

z20 ¼ 100:103 m,

x30 ¼ 0 m, y30 ¼ 10, 2:103 m, z30 ¼ 100:103 m:

Coordinates of vector-velocity of the satellite are vx ¼ 0 m/s, v y ¼ �600 m/s,
and vz ¼ 0 m/s. The surface observed by the SAR system is modeled by the
following equation

zij ¼ 3 1� xij
� �2 exp �xij2 � yij þ 1

� �2� �
� 10

xij
5
� xij3 � yij5

� �
exp �xij2 � yij2

� �
�

� 1
3
exp � xij þ 1

� �2 � yij2
h i , (25)

where xij ¼ iΔX, yij ¼ jΔY, i ¼ 1, I, j ¼ 1, J, I = 128 pixels; J = 128 pixels; ΔX; ΔY-
the spatial resolution of the pixels.

Normalized amplitude of reflected signals from every pixel aij ¼ 0:001. The
spatial resolution of the pixel are ΔX ¼ ΔY ¼ 2 m. Wavelength is 0.03 m. Carrier
frequency is 3.109 Hz. Frequency bandwidth is ΔF ¼ 250 MHz. Pulse repetition
period is Tp ¼ 25:10�3 s. LFM pulse duration is T ¼ 5:10�6 s. Sample time duration
is ΔT ¼ 1, 95:10�8 s. LFM sample number is K = 512. Emitted pulse number is
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6. SAR image reconstruction

The complex image reconstruction includes the following operations:
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The range compression of the LFM demodulated SAR signal is performed by

cross correlation with a reference function, exp jb k� 1ð ÞΔT½ �2
n o
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M = 512. Digital geometry description and SAR signal modeling are performed
based on the theory in Sections 3 and 4. The complex images are extracted from
the SAR signal by applying correlation range compression and FFT azimuth
compression. Based on a priori-known kinematical parameters of satellites and
coordinates of reference point from the surface autofocusing phase correction of the
SAR signals registered in the both passes can be implemented.

The real and imaginary components of the SAR complex signal measured in the
first SAR pass are depicted in Figure 2.

The complex SAR image’s amplitude and phase obtained in the first SAR pass are
depicted in Figure 3. The orientation of the surface’s image (Figure 3a) in the frame
is defined by the position of the SAR at the moment of imaging.

The real and imaginary components of the SAR complex signal measured in the
second SAR pass are depicted in Figure 4.

Figure 2.
The real (a) and imaginary (b) component of the SAR complex signal measured in the first SAR pass.

Figure 3.
The amplitude (a) and phase (b) component of the SAR complex image obtained in the first pass.
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The complex SAR image’s amplitude and phase obtained in the second SAR pass
are depicted in Figure 5. It can be seen that the shape of the surface (the amplitude
of the complex image) is similar to the shape of the surface obtained by the first
SAR pass. In contrast, the phase structures of both complex images are different
based on the different SAR positions in respect of the surface in the first and second
pass at the moment of imaging.

By co-registration of the first and third SAR complex images, a complex SAR
interferogram can be created with components in a coherent map and interfero-
metric phase depicted in Figure 6.

The real and imaginary components of the SAR complex signal obtained in the
third SAR pass is depicted in Figure 7.

The complex SAR image’s amplitude and phase obtained in the third SAR pass
are depicted in Figure 8. The shape of the surface obtained in the third SAR pass is

Figure 4.
The real (a) and imaginary (b) component of the SAR complex signal measured in the second SAR pass.

Figure 5.
The amplitude (a) and phase (b) components of the SAR complex image obtained in the second pass.
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similar to the shape of the surface obtained by the first and second SAR passes.
Comparing phase structures of the three complex SAR images, it can be noticed that
they are different based on the different SAR’s positions in respect to the surface at
the moment of imaging.

Under pixel co-registration of the first and third SAR complex images, a com-
plex SAR interferogram can be created with components in a coherent map and
interferometric phase depicted in Figure 9.

Due to precise under pixel co-registrations of the first and second and the first
and third SAR complex images, the phase interferograms depicted in Figures 6b
and 9b, respectively, are characterized with the similar structures.

8. Pseudo InSAR modeling of geophysical measurements

Consider three-pass InSAR geometry (Figure 1). The vector distances from the
SAR positions to each ij-th pixel from the region of interest are RS

ij ¼ RS � Rij,

where S ¼ A,B,C denotes the SAR position at the moment of imaging, RS ¼
xS, yS, zS
� �Tdenotes the SAR vector position, and Rij ¼ xij, yij, zij

h iT
denotes the ij-th

pixel vector position. Coordinates of SAR positions in the moment of imaging are as
follows: for a master SAR position A, xA, yA, zA; for a slave SAR position B, xB, yB,
zB; and for a slave SAR position C, xC, yC, zC.

After distance measurements from the master SAR position A and slave SAR
positions B and C, respectively, to each ij-th pixel on the surface and co-registration
of so obtained master image and slave images, the instrumental interferometric
phase differences are calculated as follows

• without pixel displacement
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In order to unwrap the interferometric phases, standard algorithms, MATLAB
unwrap function, 2-D Costantini phase unwrapping based on network program-
ming, and 2D Goldstein branch cut phase unwrapping, can be applied.

Figure 9.
The coherent map (a) and interferometric phase (b) of the complex SAR interferogram created by the first and
third SAR complex images.
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9. Pseudo InSAR geophysical measurements: numerical results

Consider a GeoTIFF file of Dilijan region in Caucasus, Armenia, located at the
geographical coordinates 40° 440 27″ north and 44° 510 47″ east longitude. Consider 2-
pass InSAR scenario. Coordinates of SAR positions in the moment of imaging are the
following: master SAR position A, xA ¼ 0 m, yA ¼ 300:3� 103 m, zA ¼ 3� 105 m
and slave SAR position B xB ¼ 0 m, yB ¼ 300� 103 m, zB ¼ 3� 105 m. Wavelength
is 0.05 m. Distances at the moment of imaging from the SAR position A and SAR
position B to each pixel on the surface are illustrated in Figure 10a, b. Interferogram
wrapped phases and unwrapped phases are presented in Figure 10c, d, respectively.

Consider a three-pass InSAR scenario and a surface before (Figure 11a) and
after (Figure 11b) displacement described by MATLAB function peaks. Coordinates
of SAR positions in the moment of imaging are the following: master SAR position
A, xA ¼ 350 km, yA ¼ 350 km, zA ¼ 800 km; slave SAR position B xB ¼ 351:5 km,

Figure 10.
Distances from SAR position A (a) and SAR position B (b) to each pixel on the surface in pseudo color map,
interferogram wrapped phases (c) and unwrapped phases (d).

Figure 11.
Surface (peaks) before (a) and after (b) displacement.
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yB ¼ 350 km, zB ¼ 800 km; and slave SAR position C xC ¼ 350 km, yC ¼ 351:2 km,
zC ¼ 800 m. Wavelength is 0.03 m.

Distances to the surface at the moment of imaging as pseudo collar maps mea-
sured from SAR positions A, B, and C are presented in Figure 12a–c, respectively.
AB interferogram without surface displacement and AC interferogram with surface
displacement are presented in Figure 12d, e, respectively. Differential interfero-
gram AB-AC is presented in Figure 12f.

The differential interferogram obtained by pixel subtraction of interferograms in
Figure 12d, e is presented in Figure 12f. It illustrates the displacement of the surface.
Only deformed part of the surface as differential fringes is depicted. The pseudo InSAR
modeling can be applied to generate interferograms and differential interferograms
based on real geophysical measurements and Geo TIFFmaps of the observed surface.

10. Conclusions

A multi-pass InSAR system has been theoretically analyzed and numerically
experimented. Geometry and kinematics of multi-pass InSAR scenario have been
analytically described. Mathematical expressions for definition of current distance

Figure 12.
Distances to the surface measured from SAR positions A (a), B (b), and C (c). AB interferogram (d), AC
interferogram (e) with surface displacement, and differential interferogram AB-AC (f).
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vectors between SAR system and surface’s pixels are derived. The basic InSAR
parameters are defined. Analytical expressions to calculate pixel heights and pixel
displacement have been derived. A model of linear frequency modulated SAR
signal, reflected from the topographic surface, has been developed. An image
reconstruction algorithm has been described. Numerical results verifying InSAR
geometry, kinematics, and signal models are provided. Based on geometrical, kine-
matical, and signal models, numerical interferograms of a topographic surface have
been created.

A pseudo InSAR approach has been applied to model processes of interfero-
grams and differential interferogram generation using GeoTIFF files and measure-
ments of distances from SAR positions to each pixels of the observed surface at the
moment of imaging. Based on distance vector description of the InSAR scenario, the
interferometric phase and interferometric differential phase have been analytically
described. Pseudo InSAR geophysical measurements and interferograms and dif-
ferential interferogram generation have been illustrated by results of numerical
experiments.

In conclusion, the results in the present work can be applied for analysis and
modeling of SAR interferometric processes in scenarios with different geometric,
kinematics, and geological structures as well as for generating pseudo SAR interfer-
ograms based on the geophysical measurements and topographic maps.
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parameters are defined. Analytical expressions to calculate pixel heights and pixel
displacement have been derived. A model of linear frequency modulated SAR
signal, reflected from the topographic surface, has been developed. An image
reconstruction algorithm has been described. Numerical results verifying InSAR
geometry, kinematics, and signal models are provided. Based on geometrical, kine-
matical, and signal models, numerical interferograms of a topographic surface have
been created.

A pseudo InSAR approach has been applied to model processes of interfero-
grams and differential interferogram generation using GeoTIFF files and measure-
ments of distances from SAR positions to each pixels of the observed surface at the
moment of imaging. Based on distance vector description of the InSAR scenario, the
interferometric phase and interferometric differential phase have been analytically
described. Pseudo InSAR geophysical measurements and interferograms and dif-
ferential interferogram generation have been illustrated by results of numerical
experiments.

In conclusion, the results in the present work can be applied for analysis and
modeling of SAR interferometric processes in scenarios with different geometric,
kinematics, and geological structures as well as for generating pseudo SAR interfer-
ograms based on the geophysical measurements and topographic maps.
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Chapter 2

Expanding Navigation Systems 
by Integrating It with Advanced 
Technologies
Menachem Domb

Abstract

Navigation systems provide the optimized route from one location to another. 
It is mainly assisted by external technologies such as Global Positioning System 
(GPS) and satellite-based radio navigation systems. GPS has many advantages such 
as high accuracy, available anywhere, reliable, and self-calibrated. However, GPS is 
limited to outdoor operations. The practice of combining different sources of data 
to improve the overall outcome is commonly used in various domains. GIS is already 
integrated with GPS to provide the visualization and realization aspects of a given 
location. Internet of things (IoT) is a growing domain, where embedded sensors 
are connected to the Internet and so IoT improves existing navigation systems and 
expands its capabilities. This chapter proposes a framework based on the integra-
tion of GPS, GIS, IoT, and mobile communications to provide a comprehensive and 
accurate navigation solution. In the next section, we outline the limitations of GPS, 
and then we describe the integration of GIS, smartphones, and GPS to enable its use 
in mobile applications. For the rest of this chapter, we introduce various navigation 
implementations using alternate technologies integrated with GPS or operated as 
standalone devices.

Keywords: navigation, GPS, IoT, GIS, public transport, smartphone application, 
UAVs, MAV, indoor/outdoor navigation, vision-based navigation, obstacle detection, 
SURF, control system, obstacle avoidance, pedestrian navigation system,  
modified RHKF filter, indoor assistive navigation, context-aware, semantic map,  
obstacle avoidance, tango device, near-field communication, indoor navigation, 
indoor positioning, mobile, NFC internal, sensor fusion, map matching,  
hidden Markov models, Kalman filter

1. The limitations of GPS

Some of the downsides of GPS are listed in [1]. Among these are several limi-
tations which are relevant to this chapter. The weak intensity signal causes GPS to 
be less applicable for cases where stable navigating is mandatory or cases where 
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Chapter 2

Expanding Navigation Systems 
by Integrating It with Advanced 
Technologies
Menachem Domb

Abstract

Navigation systems provide the optimized route from one location to another. 
It is mainly assisted by external technologies such as Global Positioning System 
(GPS) and satellite-based radio navigation systems. GPS has many advantages such 
as high accuracy, available anywhere, reliable, and self-calibrated. However, GPS is 
limited to outdoor operations. The practice of combining different sources of data 
to improve the overall outcome is commonly used in various domains. GIS is already 
integrated with GPS to provide the visualization and realization aspects of a given 
location. Internet of things (IoT) is a growing domain, where embedded sensors 
are connected to the Internet and so IoT improves existing navigation systems and 
expands its capabilities. This chapter proposes a framework based on the integra-
tion of GPS, GIS, IoT, and mobile communications to provide a comprehensive and 
accurate navigation solution. In the next section, we outline the limitations of GPS, 
and then we describe the integration of GIS, smartphones, and GPS to enable its use 
in mobile applications. For the rest of this chapter, we introduce various navigation 
implementations using alternate technologies integrated with GPS or operated as 
standalone devices.

Keywords: navigation, GPS, IoT, GIS, public transport, smartphone application, 
UAVs, MAV, indoor/outdoor navigation, vision-based navigation, obstacle detection, 
SURF, control system, obstacle avoidance, pedestrian navigation system,  
modified RHKF filter, indoor assistive navigation, context-aware, semantic map,  
obstacle avoidance, tango device, near-field communication, indoor navigation, 
indoor positioning, mobile, NFC internal, sensor fusion, map matching,  
hidden Markov models, Kalman filter

1. The limitations of GPS

Some of the downsides of GPS are listed in [1]. Among these are several limi-
tations which are relevant to this chapter. The weak intensity signal causes GPS to 
be less applicable for cases where stable navigating is mandatory or cases where 
navigating at indoor and covered areas. The low granularity of the signal accu-
racy makes navigation in crowded cities where landmarks are so close such that 
GPS is not able to differentiate among them and so is not effective. Furthermore, 
GPS signal may disperse and change its direction due to interruptions caused 
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by skyscrapers, trees, geomagnetic storms, etc. The impact of unreliable GPS is 
huge especially due to the constant growing use of navigation applications such 
as Google Maps and Waze, which heavily rely on GPS signal. The impact may be 
more car accidents in cases where required information is missed exactly at the 
time it is critical and useful for driving continuation. GPS signal is not enough 
for covering all navigation instances. Local and timely knowledge is required for 
updated and accurate information to be able to properly react instantly when 
obstacles appear in the road ahead, for example, whether a deep pit or a flooding 
road is likely to be or if the road is closed. To reduce the dependency on GPS, 
several methods and technologies have been proposed, such as detailed map 
information, data from sensors, vision-based measurements, stop lines, and 
GPS-fused SLAM technologies.

2. GPS and GIS integration

A geographic information system (GIS) is a system designed to capture, store, 
manipulate, analyze, manage, and present all types of geographical data. Many 
electronic navigation systems deliver its road-guiding instructions using just 
verbal commands referring to the associated electronic map displayed to the user. 
This approach assumes the user familiarity with street maps and road networks, 
which sometimes is not so. In addition, there are places where street maps are not 
commonly used and instead landmarks are used allowing the intuitive naviga-
tion by recognizable and memoizable views along the route. The introduction 
of buildings as landmarks together with corresponding spoken instructions is a 
step towards a more natural navigation. The integration of GPS and GIS provides 
this capability. The main problem lies in identifying suitable landmarks and 
evaluating their usefulness for navigation instructions. Existing databases can 
help to tackle this problem and be an integrated part of most navigation applica-
tions. For example, Brondeel et al. [2] used GPS, GIS, and accelerometer data to 
collect data of trips and proposed a prediction model for transportation modes 
with high correction rate. ResZexue et al. [3] developed a logistics distribution 
manager (LDM) software and a smart machine (SM) system. It is based on fus-
ing GPS, GIS, Big Data, Internet+, and other technologies to effectively apply its 
attributes and benefits for achieving a robust information management system 
for the logistics industry. The resulting logistics facility has shorter distribution 
time, improved operational competitiveness, optimized the workflow of the 
logistics distribution efficiency, and saved cost. These examples demonstrate  
the level of improvements we can expect by integrating GPS and GIS as well as 
the IoT, mobile phones, and other current technologies.

3. GPS and mobile phone integration

GPS positions provided via phone are generated using multiple different 
methods, resulting in highly variable performance. Performance depends on the 
smartphone attributes, the cell network, availability of GPS satellites, and line 
of sight to these satellites. The time from turning on the smartphone to getting 
GPS coordinates is relatively long. To accelerate it, a variety of techniques got 
used. Some phones have incomplete GPS hardware, requiring a cell network 
to function. The quality of the GPS antenna determines the duration until the 

19

Expanding Navigation Systems by Integrating It with Advanced Technologies
DOI: http://dx.doi.org/10.5772/intechopen.91203

device will get a lock. For example, the S3 Mini device has relatively good GPS 
hardware, including GLONASS and A-GPS support.

4. Urban vehicles navigation

Urban canyons, sky blockage, and multipath errors affect the quality and accu-
racy of GNSS/GPS. Public transportation in modern cities may have hundreds of 
routes and thousands of bus stops, exchange points, and busses. These two factors 
make urban bus systems hard to follow and complex to navigate. Mobile applica-
tions provide passengers with transport planning tools and find the optimal route, 
next bus number, arrival time, and ride duration. More advanced applications 
provide also micro-navigation-based decisions, such as current position and bus 
number, the number of stops left till arrival, and exchange to a better route. Micro-
navigation decisions are highly contextual and depend not just on time and location 
but also on the user’s current transport mode, waiting for a bus or riding on a bus. 
Emerging technology is where accuracy and robustness are critical requirements 
for safe guidance and stable control. GNSS accuracy can be significantly improved 
using several techniques such as differential GNSS (DGNSS), augmented GNSS, 
and precise positioning services (PPS). These techniques add complexity and 
additional cost. Multi-constellation GNSS also enhances the accuracy by increas-
ing the number of visible satellites. In dense urban areas where high buildings are 
common, the geometry of visible satellites often results into high uncertainty in the 
vehicle’s GNSS position estimate resulting in performance in dense urban areas still 
being challenging.

4.1 Bus navigation using embedded Wi-Fi and a smartphone application

Urban Bus Navigator (UBN) is a system infrastructure that connects passengers’ 
mobile smartphones with Wi-Fi-enabled busses, gaining real-time information 
about the journey and transport situations of passengers [4]. A key feature of 
UBN is a semantic bus ride detection that identifies the concrete bus and route the 
passenger is riding on, providing continuous, just-in-time dynamic rerouting and 
end-to-end guidance for bus passengers. Technical tests indicate the feasibility of 
semantic bus ride detection, while user tests revealed recommendations for effec-
tive user support with micro-navigation. The system elements include semantic bus 
ride detection using a Wi-Fi-based recognition system and a dynamic trip tracking. 
The semantic bus ride detection combined with the phone’s GPS is used to monitor 
the passenger’s trip progress. Deviations are immediately recognized and trigger 
replanning the trip, resulting a new set of navigation instructions for the passenger. 
The architecture is composed of Wi-Fi for proximity detection of busses by the 
passenger’s mobile phone, a smartphone application for trip planning using macro-
navigation, a context-aware trip hints using micro-navigation, context sensing, bus 
ride recognition, and trip tracking.

4.2 GNSS/IMU sensor fusion scheme

This urban navigation is based on detecting and mitigating GNSS errors caused 
by condensed high buildings interfering signals going through [5]. It is using a 
map-aided adaptive fusion scheme. The method estimates the current active map 
segment using dead-reckoning and robust map-matching algorithms modeling the 
vehicle state history, road geometry, and map topology in a hidden Markov model 
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huge especially due to the constant growing use of navigation applications such 
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time it is critical and useful for driving continuation. GPS signal is not enough 
for covering all navigation instances. Local and timely knowledge is required for 
updated and accurate information to be able to properly react instantly when 
obstacles appear in the road ahead, for example, whether a deep pit or a flooding 
road is likely to be or if the road is closed. To reduce the dependency on GPS, 
several methods and technologies have been proposed, such as detailed map 
information, data from sensors, vision-based measurements, stop lines, and 
GPS-fused SLAM technologies.

2. GPS and GIS integration

A geographic information system (GIS) is a system designed to capture, store, 
manipulate, analyze, manage, and present all types of geographical data. Many 
electronic navigation systems deliver its road-guiding instructions using just 
verbal commands referring to the associated electronic map displayed to the user. 
This approach assumes the user familiarity with street maps and road networks, 
which sometimes is not so. In addition, there are places where street maps are not 
commonly used and instead landmarks are used allowing the intuitive naviga-
tion by recognizable and memoizable views along the route. The introduction 
of buildings as landmarks together with corresponding spoken instructions is a 
step towards a more natural navigation. The integration of GPS and GIS provides 
this capability. The main problem lies in identifying suitable landmarks and 
evaluating their usefulness for navigation instructions. Existing databases can 
help to tackle this problem and be an integrated part of most navigation applica-
tions. For example, Brondeel et al. [2] used GPS, GIS, and accelerometer data to 
collect data of trips and proposed a prediction model for transportation modes 
with high correction rate. ResZexue et al. [3] developed a logistics distribution 
manager (LDM) software and a smart machine (SM) system. It is based on fus-
ing GPS, GIS, Big Data, Internet+, and other technologies to effectively apply its 
attributes and benefits for achieving a robust information management system 
for the logistics industry. The resulting logistics facility has shorter distribution 
time, improved operational competitiveness, optimized the workflow of the 
logistics distribution efficiency, and saved cost. These examples demonstrate  
the level of improvements we can expect by integrating GPS and GIS as well as 
the IoT, mobile phones, and other current technologies.

3. GPS and mobile phone integration

GPS positions provided via phone are generated using multiple different 
methods, resulting in highly variable performance. Performance depends on the 
smartphone attributes, the cell network, availability of GPS satellites, and line 
of sight to these satellites. The time from turning on the smartphone to getting 
GPS coordinates is relatively long. To accelerate it, a variety of techniques got 
used. Some phones have incomplete GPS hardware, requiring a cell network 
to function. The quality of the GPS antenna determines the duration until the 
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device will get a lock. For example, the S3 Mini device has relatively good GPS 
hardware, including GLONASS and A-GPS support.

4. Urban vehicles navigation

Urban canyons, sky blockage, and multipath errors affect the quality and accu-
racy of GNSS/GPS. Public transportation in modern cities may have hundreds of 
routes and thousands of bus stops, exchange points, and busses. These two factors 
make urban bus systems hard to follow and complex to navigate. Mobile applica-
tions provide passengers with transport planning tools and find the optimal route, 
next bus number, arrival time, and ride duration. More advanced applications 
provide also micro-navigation-based decisions, such as current position and bus 
number, the number of stops left till arrival, and exchange to a better route. Micro-
navigation decisions are highly contextual and depend not just on time and location 
but also on the user’s current transport mode, waiting for a bus or riding on a bus. 
Emerging technology is where accuracy and robustness are critical requirements 
for safe guidance and stable control. GNSS accuracy can be significantly improved 
using several techniques such as differential GNSS (DGNSS), augmented GNSS, 
and precise positioning services (PPS). These techniques add complexity and 
additional cost. Multi-constellation GNSS also enhances the accuracy by increas-
ing the number of visible satellites. In dense urban areas where high buildings are 
common, the geometry of visible satellites often results into high uncertainty in the 
vehicle’s GNSS position estimate resulting in performance in dense urban areas still 
being challenging.

4.1 Bus navigation using embedded Wi-Fi and a smartphone application

Urban Bus Navigator (UBN) is a system infrastructure that connects passengers’ 
mobile smartphones with Wi-Fi-enabled busses, gaining real-time information 
about the journey and transport situations of passengers [4]. A key feature of 
UBN is a semantic bus ride detection that identifies the concrete bus and route the 
passenger is riding on, providing continuous, just-in-time dynamic rerouting and 
end-to-end guidance for bus passengers. Technical tests indicate the feasibility of 
semantic bus ride detection, while user tests revealed recommendations for effec-
tive user support with micro-navigation. The system elements include semantic bus 
ride detection using a Wi-Fi-based recognition system and a dynamic trip tracking. 
The semantic bus ride detection combined with the phone’s GPS is used to monitor 
the passenger’s trip progress. Deviations are immediately recognized and trigger 
replanning the trip, resulting a new set of navigation instructions for the passenger. 
The architecture is composed of Wi-Fi for proximity detection of busses by the 
passenger’s mobile phone, a smartphone application for trip planning using macro-
navigation, a context-aware trip hints using micro-navigation, context sensing, bus 
ride recognition, and trip tracking.

4.2 GNSS/IMU sensor fusion scheme

This urban navigation is based on detecting and mitigating GNSS errors caused 
by condensed high buildings interfering signals going through [5]. It is using a 
map-aided adaptive fusion scheme. The method estimates the current active map 
segment using dead-reckoning and robust map-matching algorithms modeling the 
vehicle state history, road geometry, and map topology in a hidden Markov model 
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(HMM). The Viterbi algorithm decodes the HMM model and selects the most likely 
map segment. The projection of vehicle states onto the map segment is used as a 
supplementary position update to the integration filter. The solution framework 
has been developed and tested on a land-based vehicular platform. The results show 
a reliably mitigate biased GNSS position and accurate map segment selection in 
complex intersections, forks, and joins. In contrast to common existing adaptive 
Kalman filter methods, this solution does not depend on redundant pseudo-ranges 
and residuals, which makes it suitable for use with arbitrary noise characteristics 
and varied integration schemes.

4.3 Navigation based on compass-based navigation control law

Urban environments offer a challenging scenario for autonomous driving 
[6]. The proposed solution allows autonomously navigate urban roadways with 
minimum a priori map or GPS. Localization is achieved by Kalman filter extended 
with odometry, compass, and sparse landmark measurement updates. Navigation 
is accomplished by a compass-based navigation control law. Experiments validate 
simulated results and demonstrate that, for given conditions, an expected range can 
be found for a given success rate.

The architecture contains steering and speed controllers, an object tracker, a 
path generator, a pose estimator, and a navigation algorithm using sensors allow-
ing real-time control. High-level localization is provided by the pose estimator, 
which utilizes only odometry measurements, compass measurements, and sparse 
map-based measurements. The sparse map-based measurements generated from 
computer vision methods compare raw camera images to landmark images con-
tained within a sparse map. The roadway scene includes lane line markings, road 
signs, traffic lights, and other sensor measurements. The scene information and the 
inertial pose estimate are fed into a navigation algorithm to determine the best route 
required to reach the target. This navigation scheme is provided by a compass-based 
navigation control law.

5. Space navigation systems

Common navigation technologies assume navigation on a surface with two-
dimension (2D), flat land area. Navigation in three-dimension (3D) is much more 
complicated requiring at least new technologies to complement the existing 2D 
navigation technologies.

5.1 Autonomous navigation of micro aerial vehicles

In this section we present a low-computational method for state estimator 
enabling autonomous flight of micro aerial vehicles [7]. All the estimation and con-
trol tasks are solved on board and in real time on a simple computational unit. The 
state estimator fuses observations from an inertial measurement unit, an optical 
flow smart camera, and a time-of-flight range sensor. The smart camera provides 
optical flow measurements and odometry estimation, avoiding the need for image 
processing, usable during flight times of several minutes. A nonlinear controller 
operating in the special Euclidean group SE(3) can drive, based on the estimated 
vehicle’s state, a quadrotor platform in 3D space guaranteeing the asymptotic stabil-
ity of 3D position and heading. The approach is validated through simulations and 
experimental result.
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5.2 Vision-based navigation for micro helicopters

Weiss [8] developed a vision-based navigation system for micro helicopters 
operating in large and unknown environments. It is based on vision-based methods 
and a sensor fusion approach for state estimation and sensor self-calibration of sen-
sors and with their different availability during flight. This is enabled by an onboard 
camera, real-time motion sensor, and vision algorithms. It renders the camera and 
an onboard multi-sensor fusion framework capable to estimate at the same time 
the vehicle’s pose and the inter-sensor calibration for continuous operation. It runs 
at linear time to the number of key frames captured in a previously visited area. To 
maintain constant computational complexity, improve performance, and increase 
scalability and reliability, the computationally expensive vision part is replaced by 
the final calculated camera pose.

5.3 Space navigation using formation flying tiny satellites

Traditional space positioning and navigation are based on large satellites flying 
in a semi-fixed orbit and so are costly and less flexible [9]. Recent developments of 
low-mass, low-power navigation sensors and the popularity of smaller satellites, a 
new approach of having many tiny spacecrafts flying in clusters under controlled 
configurations utilizing its cumulative power to perform necessary assignments. 
To keep stable but changeable configurations, positioning, attitude, and intersatel-
lite navigation are used. For the determination of relative position and attitude 
between the formation flying satellites, Carrier-phase differential GPS (CDGPS) 
is used, where range coefficients, GPS differential corrections, and other data are 
exchanged among spacecrafts, enhancing the precision of the ranging and naviga-
tion functions. The CDGPS communicates the NAVSTAR GPS constellation to 
provide precise measures of the relative attitude, the positions between vehicles, 
and attitude in the formation.

6. Pedestrian navigation systems

Pedestrian navigation services enable people to retrieve precise instructions 
to reach a specific location. As the spatial behavior of people on foot differs in 
many ways from the driver’s performance, common concepts for car navigation 
services are not suitable for pedestrian navigation. Cars use paved roads with clear 
borderlines and road signs, and so keeping the car on track is its main role, neglect-
ing obstacles and hazards, unless it is integrated with a social network. However, 
pedestrians, unlike like cars, may not follow the defined road. This makes personal 
navigation more complicated and forces us adding special features required for safe 
navigation. Pedestrian navigation requires very accurate, high-resolution, and real-
time response [10]. Solely GPS does not support last moment route changes, such 
as road detours, significant obstacles, and safety requirements. However, integrat-
ing the IoT and GPS via an application generates a solution providing accurate 
and safe navigation. To enable it, a two-stage personal navigation system is used. 
In the first stage, the trail is photographed by a navigated drown, and the result-
ing video is saved in a cloud database. In the second stage, a mobile application is 
loaded to the pedestrian’s mobile phone. Once the pedestrian is about to walk, it 
activates the mobile application which synchronizes itself with the cloud navigation 
database, and then instructions from the mobile phone guide the pedestrian along 
the trail-walk. A more advanced system contains the two stages within the mobile 
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(HMM). The Viterbi algorithm decodes the HMM model and selects the most likely 
map segment. The projection of vehicle states onto the map segment is used as a 
supplementary position update to the integration filter. The solution framework 
has been developed and tested on a land-based vehicular platform. The results show 
a reliably mitigate biased GNSS position and accurate map segment selection in 
complex intersections, forks, and joins. In contrast to common existing adaptive 
Kalman filter methods, this solution does not depend on redundant pseudo-ranges 
and residuals, which makes it suitable for use with arbitrary noise characteristics 
and varied integration schemes.
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Urban environments offer a challenging scenario for autonomous driving 
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minimum a priori map or GPS. Localization is achieved by Kalman filter extended 
with odometry, compass, and sparse landmark measurement updates. Navigation 
is accomplished by a compass-based navigation control law. Experiments validate 
simulated results and demonstrate that, for given conditions, an expected range can 
be found for a given success rate.
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ing real-time control. High-level localization is provided by the pose estimator, 
which utilizes only odometry measurements, compass measurements, and sparse 
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tained within a sparse map. The roadway scene includes lane line markings, road 
signs, traffic lights, and other sensor measurements. The scene information and the 
inertial pose estimate are fed into a navigation algorithm to determine the best route 
required to reach the target. This navigation scheme is provided by a compass-based 
navigation control law.
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Common navigation technologies assume navigation on a surface with two-
dimension (2D), flat land area. Navigation in three-dimension (3D) is much more 
complicated requiring at least new technologies to complement the existing 2D 
navigation technologies.

5.1 Autonomous navigation of micro aerial vehicles

In this section we present a low-computational method for state estimator 
enabling autonomous flight of micro aerial vehicles [7]. All the estimation and con-
trol tasks are solved on board and in real time on a simple computational unit. The 
state estimator fuses observations from an inertial measurement unit, an optical 
flow smart camera, and a time-of-flight range sensor. The smart camera provides 
optical flow measurements and odometry estimation, avoiding the need for image 
processing, usable during flight times of several minutes. A nonlinear controller 
operating in the special Euclidean group SE(3) can drive, based on the estimated 
vehicle’s state, a quadrotor platform in 3D space guaranteeing the asymptotic stabil-
ity of 3D position and heading. The approach is validated through simulations and 
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Weiss [8] developed a vision-based navigation system for micro helicopters 
operating in large and unknown environments. It is based on vision-based methods 
and a sensor fusion approach for state estimation and sensor self-calibration of sen-
sors and with their different availability during flight. This is enabled by an onboard 
camera, real-time motion sensor, and vision algorithms. It renders the camera and 
an onboard multi-sensor fusion framework capable to estimate at the same time 
the vehicle’s pose and the inter-sensor calibration for continuous operation. It runs 
at linear time to the number of key frames captured in a previously visited area. To 
maintain constant computational complexity, improve performance, and increase 
scalability and reliability, the computationally expensive vision part is replaced by 
the final calculated camera pose.

5.3 Space navigation using formation flying tiny satellites

Traditional space positioning and navigation are based on large satellites flying 
in a semi-fixed orbit and so are costly and less flexible [9]. Recent developments of 
low-mass, low-power navigation sensors and the popularity of smaller satellites, a 
new approach of having many tiny spacecrafts flying in clusters under controlled 
configurations utilizing its cumulative power to perform necessary assignments. 
To keep stable but changeable configurations, positioning, attitude, and intersatel-
lite navigation are used. For the determination of relative position and attitude 
between the formation flying satellites, Carrier-phase differential GPS (CDGPS) 
is used, where range coefficients, GPS differential corrections, and other data are 
exchanged among spacecrafts, enhancing the precision of the ranging and naviga-
tion functions. The CDGPS communicates the NAVSTAR GPS constellation to 
provide precise measures of the relative attitude, the positions between vehicles, 
and attitude in the formation.

6. Pedestrian navigation systems

Pedestrian navigation services enable people to retrieve precise instructions 
to reach a specific location. As the spatial behavior of people on foot differs in 
many ways from the driver’s performance, common concepts for car navigation 
services are not suitable for pedestrian navigation. Cars use paved roads with clear 
borderlines and road signs, and so keeping the car on track is its main role, neglect-
ing obstacles and hazards, unless it is integrated with a social network. However, 
pedestrians, unlike like cars, may not follow the defined road. This makes personal 
navigation more complicated and forces us adding special features required for safe 
navigation. Pedestrian navigation requires very accurate, high-resolution, and real-
time response [10]. Solely GPS does not support last moment route changes, such 
as road detours, significant obstacles, and safety requirements. However, integrat-
ing the IoT and GPS via an application generates a solution providing accurate 
and safe navigation. To enable it, a two-stage personal navigation system is used. 
In the first stage, the trail is photographed by a navigated drown, and the result-
ing video is saved in a cloud database. In the second stage, a mobile application is 
loaded to the pedestrian’s mobile phone. Once the pedestrian is about to walk, it 
activates the mobile application which synchronizes itself with the cloud navigation 
database, and then instructions from the mobile phone guide the pedestrian along 
the trail-walk. A more advanced system contains the two stages within the mobile 
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application. The mobile video camera is activated and captures the trail images in 
front of the pedestrian, processes it, and guides the pedestrian accordingly. In case 
of an upcoming obstacle, the application proposes the safest and most effective 
detour and guides the pedestrian accordingly.

Personal navigation systems are very accurate and safe, operate indoor and 
outdoor, and are available as long as the mobile phone is connected, and its internal 
storage is big enough. It provides spatial information for climbing, wandering, 
or tramping users. It is used for locating casualties, as well as for self-orientation 
of rescue teams in areas with low visibility. In military and security operations, 
localization and information technologies are used by soldiers to self-locate, collect, 
and collate. A similar implementation with the same functionality is a walking 
stick with embedded micro devices and software as described above and a wearable 
Bluetooth headset with an embedded camera in front of it.

6.1 Landmark-based pedestrian navigation systems

Navigation in cities is commonly done by the target address: zip-code, street, 
and house number. However, in cases where people do not use street and house 
number as an address but rather use landmarks to identify the route to the target as 
well as the target location [11], by combining CIS and GPS, the desired landmarks 
coordinates are loaded to the cloud database, and the corresponding navigation 
application is modified to identify the landmarks on ground.

A landmark-based navigation system is composed of a video camera to obtain and 
analyze pedestrian paths, selected reliable landmarks along the main routes, a rout-
ing table containing all relevant origins and destinations within the site, positions of 
view and orientations to assert maximal coverage of interesting spots, thousands of 
partial routes for the entire recording period, and the detected stops over a whole day 
for different definitions of a stop. Based on the defined sections and the landmarks 
and decision points, a routing table is created to define navigational instructions 
from each origin in the station to each possible destination. Table columns cor-
respond to the original landmarks and the decision points; rows correspond to 
destination landmarks. The identified landmarks and the defined route instructions 
are used to develop an audio guiding system using speech recognition and text-to-
speech software. The audio guiding system employs verbalisms that are as distinct 
and clearly recognizable as the visual landmarks and that the users can intuitively 
combine the description with what they see.

6.2 Shoe navigation based on micro electrical mechanical system

A micro electrical mechanical system (MEMS) [12] is a family of thumbnail 
technologies enabling a wide variety of advanced and innovative applications. 
When such device is mounted on a shoe, it collects the number of steps, average 
step width, and walking directions. This data is constantly collected and processed, 
and via signals it guides the person wearing the shoe. Due to the magnetic field, 
some navigation errors may occur; a special filter offsets it by using a special filter. 
Experiments show that this approach is applicable and efficient.

7. Indoor navigation technologies

Indoor navigation systems became popular due to the lack of GPS signals indoors 
and the increase in navigation needs especially in small areas, such as parking 
garages and huge complex of buildings. Several indoors navigation systems have 
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already been implemented. Each of them is based on a different technology that 
complies with the specific requirements and constraints of the location it is expected 
to navigate in. We assume that each solution has technical and usability limitations. 
It helps tracking objects by using wireless concepts, optical tracking, ultrasound 
techniques, sensors, infrared (IR), ultra-wide band (UWB), Wireless Local Area 
Networks (WLANs), Wi-Fi, Bluetooth, radio frequency identification (RFID), 
assisted GPS (A-GPS), and more. Most solutions have limited capabilities, accuracy, 
unreliability, design complexity, low security, and high configuration costs.

7.1 NFC-based indoor navigation system

NFC technology allows communication over short-range, mobile, and wire-
less conditions. NFC communication happens when two NFC-capable devices are 
close to each other. Users use their NFC mobiles to interact with an NFC tag or 
another NFC mobile. NFC-based indoor navigation system enables users to navigate 
through a complex of buildings by touching NFC tags spread around and orienting 
users to the destination [13]. NFC internal has considerable advantages to indoor 
navigation systems in terms of security, privacy, cost, performance, robustness, 
complexity, and commercial availability. The application orients the user by receiv-
ing the destination name and touching the mobile device to the NFC tags and so 
navigates to the desired destination.

7.2 Indoor garage navigation based on car-to-infrastructure communication

Indoor micro-navigation systems for enclosed parking garages [14] are based on 
car-to-infrastructure communication providing layout information of the car park 
and the coordinates of the destination parking lot. It uses unique signal rates. In case 
a car is detected, the system calculates its position and transmits data to a vehicle 
to substitute the internal positioning system. With this information the vehicle is 
guided. Integration to the outdoor navigation system is available to allow smooth 
transition from/to outdoor/indoor.

7.3  Autonomous vision-based micro air vehicle (MAV) for indoor and outdoor 
navigation

In this section we introduce a quadrotor that performs autonomous navigation 
in complex indoor and outdoor environments [15]. An operator selects target 
positions in the onboard map, and the system autonomously plans flights to these 
locations. An onboard stereo camera and an inertial measurement unit (IMU) 
are the only sensors. The system is independent of external navigation aids like 
GPS. All navigation tasks are implemented onboard the system. The system is 
based on FPGA-dense stereo matching images using semi-global matching, locally 
drift-free visual odometry with key frames and sensor data fusion. It utilizes the 
available depth images from stereo matching. To save processing time and make 
large movements or rather low frame rates possible, the system works only on fea-
tures. A wireless connection is used for sending images and a 3D map to the opera-
tor and to receive target locations. The results of a complex, autonomous indoor/
outdoor flight support this approach. The position is controlled by the estimated 
motion of the sensor. To enable it, a state machine controller, a tracking position 
system, and a reference generator are implemented. The reference generator is 
used to create smooth position, velocity, acceleration, and a tracking controller 
based on a list of waypoints. The flown path is composed of straight line segments 
between any two waypoints.
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to navigate in. We assume that each solution has technical and usability limitations. 
It helps tracking objects by using wireless concepts, optical tracking, ultrasound 
techniques, sensors, infrared (IR), ultra-wide band (UWB), Wireless Local Area 
Networks (WLANs), Wi-Fi, Bluetooth, radio frequency identification (RFID), 
assisted GPS (A-GPS), and more. Most solutions have limited capabilities, accuracy, 
unreliability, design complexity, low security, and high configuration costs.

7.1 NFC-based indoor navigation system

NFC technology allows communication over short-range, mobile, and wire-
less conditions. NFC communication happens when two NFC-capable devices are 
close to each other. Users use their NFC mobiles to interact with an NFC tag or 
another NFC mobile. NFC-based indoor navigation system enables users to navigate 
through a complex of buildings by touching NFC tags spread around and orienting 
users to the destination [13]. NFC internal has considerable advantages to indoor 
navigation systems in terms of security, privacy, cost, performance, robustness, 
complexity, and commercial availability. The application orients the user by receiv-
ing the destination name and touching the mobile device to the NFC tags and so 
navigates to the desired destination.

7.2 Indoor garage navigation based on car-to-infrastructure communication

Indoor micro-navigation systems for enclosed parking garages [14] are based on 
car-to-infrastructure communication providing layout information of the car park 
and the coordinates of the destination parking lot. It uses unique signal rates. In case 
a car is detected, the system calculates its position and transmits data to a vehicle 
to substitute the internal positioning system. With this information the vehicle is 
guided. Integration to the outdoor navigation system is available to allow smooth 
transition from/to outdoor/indoor.

7.3  Autonomous vision-based micro air vehicle (MAV) for indoor and outdoor 
navigation

In this section we introduce a quadrotor that performs autonomous navigation 
in complex indoor and outdoor environments [15]. An operator selects target 
positions in the onboard map, and the system autonomously plans flights to these 
locations. An onboard stereo camera and an inertial measurement unit (IMU) 
are the only sensors. The system is independent of external navigation aids like 
GPS. All navigation tasks are implemented onboard the system. The system is 
based on FPGA-dense stereo matching images using semi-global matching, locally 
drift-free visual odometry with key frames and sensor data fusion. It utilizes the 
available depth images from stereo matching. To save processing time and make 
large movements or rather low frame rates possible, the system works only on fea-
tures. A wireless connection is used for sending images and a 3D map to the opera-
tor and to receive target locations. The results of a complex, autonomous indoor/
outdoor flight support this approach. The position is controlled by the estimated 
motion of the sensor. To enable it, a state machine controller, a tracking position 
system, and a reference generator are implemented. The reference generator is 
used to create smooth position, velocity, acceleration, and a tracking controller 
based on a list of waypoints. The flown path is composed of straight line segments 
between any two waypoints.
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8. Obstacle avoidance navigation systems

A comprehensive automated navigation system must incorporate effective 
tools for detecting road obstacles and instantly propose the optimal alternate route 
bypassing the detected obstacle. It combines optimal route finding, real-time route 
inspection, and route adjustments to ensure safe navigation. The following are three 
examples utilizing advanced technologies such as computer vision, fuzzy logic, and 
context-aware. More examples can be found in [16].

8.1 Image processing obstacle avoidance navigation

Unmanned aerial vehicles (UAVs) use vision as the principal [17] source of 
information through the monocular onboard camera. The system compares the 
obtained image to the obstacles to be avoided. Micro aerial vehicle (MAV), to detect 
and avoid obstacles in an unknown controlled environment. Only the feature points 
are compared with the same type of contrast, achieving a lower computational 
cost without reducing the descriptor performance. After detecting the obstacle, 
the vehicle should recover the path. The algorithm starts when the vehicle is closer 
to the obstacle than the distance allowed. The limit area value is experimentally 
obtained defining the dimensions of obstacles in pixels at a specific distance. The 
output of the control law moves the vehicle away from the center of the obstacle 
avoiding it. If the error is less than zero, the vehicle moves to the right side. 
Detouring of permanent obstacles, a preliminary process is applied to scan the route 
and correct it such that the corrected route already considers all known obstacles 
and skips them.

8.2 Fuzzy logic technique for mobile robot obstacle avoidance navigation

Mobile robots perform tasks such as rescue and patrolling. It can navigate intelli-
gently by using sensor control techniques [18]. Several techniques have been applied 
for robot navigation and obstacle avoidance. Fuzzy logic technique is inspired by 
human perception-based reasoning. It has been applied to behavior-based robot 
navigation and obstacle avoidance in unknown environments. It trains the robot to 
navigate by receiving the obstacle distance from a group of sensors. A reinforce-
ment learning method and a genetic algorithm optimize the fuzzy controller for 
improving its performance while the robot moves. Comparing the performance of 
different functions such as triangular, trapezoidal, and Gaussian for mobile robot 
navigation shows that the Gaussian membership function is more efficient for 
navigation.

A similar concept is using neural network learning method to construct a 
path planning and collision-free for robots. Real-time collision-free path plan-
ning is more difficult when the robot is moving in a dynamic and unstructured 
environment.

8.3 Context-aware mobile wearable system with obstacle avoidance

The system is composed of three embedded components; a map manager, a 
motion tracker, and a hindrance dodging [19]. The map manager generates seman-
tic maps from a given building model. The hindrance dodging detects visible objects 
lying on the road and suggests a safe bypass route to the target location. A devel-
oped prototype performed very well proving that this navigation system is effective 
and efficient.
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Chapter 3

A Review of the Machine Learning
in GIS for Megacities Application
Nasim Tohidi and Rustam B. Rustamov

Abstract

Machine learning (ML) is very useful for analyzing data in many domains,
including the satellite images processing. In the remote sensing data processing, ML
tools are mainly founded out a place for filtering, interpretation and prediction
information. Filtering aims at removing noise and performing transformations,
which is vital segment of data processing as useful performance of data validation.
An interpretation is significant part of it as the stage of objects classification
depends of existing task for solution. Prediction is performed to estimate precise
values of underlying parameters or future events in the data. It can be used suc-
cessfully above achievements in a variety of areas. An urbanization is one of the
spheres of advance technology application where highly need to collect appropriate
data for understanding of challenges facing society. The process of urbanization
becomes very important problem, thanks to city expansion. Each city is a compli-
cated system. It consists of various interactive sub-systems and is affected by
multiple factors, including population growth, transportation and management
policies. To understand the driving forces of the urban structure change, the
satellite-based estimates are considered to monitor these changes, in long term. GIS
(geographic information system) is equivalent to methods related to the use of
geospatial information. Besides, the increasing application of ML techniques in
various fields, including GIS, is undeniable. Thus, the chapter attempts to review
the application of ML techniques in GIS with a focus on megacities and theirs
features fixing/identification and solution.

Keywords: geographic information system, machine learning, urbanization,
data processing, modeling

1. Introduction

Today there is a growing need for the collection, processing, management and
efficiently use of reliable spatial information. Therefore, it is very significant to be
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customers and optimizing processes. As cities get larger, spatial information
becomes like a key tool in efficient urban service delivery, public safety, and overall
resource management.

On the other hand, today, artificial intelligence methods, especially ML tech-
niques, have come to the attention of scientists and officials in various fields, to
analyze and manage the enormous data that is produced at any given moment, and
one of the most exciting tools that have entered the material science toolbox in
recent years is ML. Undoubtedly, one of these fields is GIS.

In practice, a GIS allows users to understand the spatial dimensions of their
work and relate it to information such as population information as well. The data
collected and stored by the GIS can be used for different purposes ranging from
transport, draught analysis, agriculture, disease-outbreak analysis, land occupancy,
etc. At the same time GIS makes possible to storage a big volume of data in safely
stage and access to them at any needed time and rapid base. So, the goal of this
chapter is to review past works and research in this area, because it can be supposed
that can help greatly in understanding the current situation and capabilities;
besides, it will be attempt of step in planning for future developments in the field
of GIS.

The remainder of this chapter is organized and structures as follows. In Section 2,
main definitions are mentioned. Section 3 presents an overview of ML application in
GISs and related works in this area. In Section 4, it has been introduced the evaluation
metrics and datasets. The last Section 5 provides conclusions.

2. Fundamental principles

In order to review the ML application in GIS, the first is needed to familiarize
with the basic concepts in this regard. The followings are some fundamental prin-
ciples and definitions.

2.1 Machine learning

ML is an application of artificial intelligence that provides systems the ability to
automatically learn and improve their performance from experience without being
explicitly programmed. ML focuses on the development of computer programs that
can access data and use it in the process of learning [1].

The process of learning begins with observations or data, such as examples,
direct experience, or instruction. The data will be used in order to look for patterns
in it and make better decisions based on the provided examples. The primary goal is
to allow the machines learn without human intervention or assistance and adjust
actions accordingly.

ML algorithms are often categorized as supervised or unsupervised,
however this categorization is very general and it cannot cover all of the available
methods [2]:

• Supervised ML algorithms can use what has been learned in the past by using
labeled examples to predict future events from unseen data. Starting from the
analysis of a training dataset (labeled examples), the learning algorithm
predicts the output values. The system is capable of providing targets for each
new input after sufficient training. Besides, the algorithm can compare its
output with the correct output and find errors to modify the model
accordingly. Examples of these algorithms: Support Vector Machine (SVM),
Decision Tree, Random Forest, KNN, Regression, etc.
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• Unsupervised ML algorithms are used when the training data is not labeled or
classified. The purpose of these algorithms is to examine how systems can
derive a function to describe the hidden pattern of unlabeled data. They may
not specify the appropriate output, but it explores data and can infer to
describe hidden structures from unlabeled data. Examples of these Learning:
Apriori algorithm, K-means, EM.

• Semi-supervised ML algorithms fall in between the two types of
previously mentioned algorithms, because they use both labeled and
unlabeled data for training. Usually, a small portion of data is labeled and a
large amount of it, is unlabeled. The systems that use these algorithms can
achieve high level of accuracy. Typically, semi-supervised learning is selected
when the acquired labeled data requires skilled and relevant resources in
order to learn from it (producing labeled data costs money and takes time.).
Otherwise, accessing to unlabeled data generally does not require additional
resources.

• Reinforcement learning algorithms are learning methods that interacts with its
environment by generating actions and receiving punishments or rewards.
Trial and error search and delayed reward are the most important features of
these algorithms. They allow systems agents to automatically determine the
ideal behavior in a particular context in order to maximize its performance
quality. Simple reward feedback is known as the reinforcement signal.
Examples of these Learning: Q-learning, Markov Decision Process.

ML enables analysis of massive amount of data. Besides, it generally
provides faster, more accurate results in order to identify profitable opportunities
or dangerous risks, it may also require additional time and resources to train it
properly. ML requires formatted data that is analyzed to build a ML model.
In other words, it requires an appropriate set of data that can be applied to a
learning process.

ML can be used in cases where using human resources is not time/cost effective
or when many variables are being considered simultaneously. ML uses the prepared
data to train a ML algorithm. An algorithm is a computerized procedure or recipe.
When the algorithm is trained on the data, a ML model will be generated. Once the
data is prepared and the algorithm trained, the ML model can make predictions
about the unseen data, on its own.

Selecting the right algorithm for the issue is necessary for applying ML success-
fully. Selection is largely influenced by the application and the data available.

2.1.1 Choosing the most appropriate ML algorithm

There are a large number of ML algorithms available. Choosing the optimal
algorithm for a specific problem is dependent on its features such as speed, accu-
racy, training and predicting time, amount of data required to train, data type, how
easy is it to implement, etc. Most of the time, for GIS applications, time is very
important.

To avoid dependence on the specific conditions, it is common to analyze the
runtime of algorithms in an asymptotic sense. So, considering n the number of
training sample, p the number of features, nt the number of trees, nsv, the number of
support vectors and k, the number of clusters, following are time complexity factors
of some ML algorithms, which help to choose the correct algorithm for the issue
(Table 1):
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explicitly programmed. ML focuses on the development of computer programs that
can access data and use it in the process of learning [1].

The process of learning begins with observations or data, such as examples,
direct experience, or instruction. The data will be used in order to look for patterns
in it and make better decisions based on the provided examples. The primary goal is
to allow the machines learn without human intervention or assistance and adjust
actions accordingly.

ML algorithms are often categorized as supervised or unsupervised,
however this categorization is very general and it cannot cover all of the available
methods [2]:

• Supervised ML algorithms can use what has been learned in the past by using
labeled examples to predict future events from unseen data. Starting from the
analysis of a training dataset (labeled examples), the learning algorithm
predicts the output values. The system is capable of providing targets for each
new input after sufficient training. Besides, the algorithm can compare its
output with the correct output and find errors to modify the model
accordingly. Examples of these algorithms: Support Vector Machine (SVM),
Decision Tree, Random Forest, KNN, Regression, etc.
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• Unsupervised ML algorithms are used when the training data is not labeled or
classified. The purpose of these algorithms is to examine how systems can
derive a function to describe the hidden pattern of unlabeled data. They may
not specify the appropriate output, but it explores data and can infer to
describe hidden structures from unlabeled data. Examples of these Learning:
Apriori algorithm, K-means, EM.

• Semi-supervised ML algorithms fall in between the two types of
previously mentioned algorithms, because they use both labeled and
unlabeled data for training. Usually, a small portion of data is labeled and a
large amount of it, is unlabeled. The systems that use these algorithms can
achieve high level of accuracy. Typically, semi-supervised learning is selected
when the acquired labeled data requires skilled and relevant resources in
order to learn from it (producing labeled data costs money and takes time.).
Otherwise, accessing to unlabeled data generally does not require additional
resources.

• Reinforcement learning algorithms are learning methods that interacts with its
environment by generating actions and receiving punishments or rewards.
Trial and error search and delayed reward are the most important features of
these algorithms. They allow systems agents to automatically determine the
ideal behavior in a particular context in order to maximize its performance
quality. Simple reward feedback is known as the reinforcement signal.
Examples of these Learning: Q-learning, Markov Decision Process.

ML enables analysis of massive amount of data. Besides, it generally
provides faster, more accurate results in order to identify profitable opportunities
or dangerous risks, it may also require additional time and resources to train it
properly. ML requires formatted data that is analyzed to build a ML model.
In other words, it requires an appropriate set of data that can be applied to a
learning process.

ML can be used in cases where using human resources is not time/cost effective
or when many variables are being considered simultaneously. ML uses the prepared
data to train a ML algorithm. An algorithm is a computerized procedure or recipe.
When the algorithm is trained on the data, a ML model will be generated. Once the
data is prepared and the algorithm trained, the ML model can make predictions
about the unseen data, on its own.

Selecting the right algorithm for the issue is necessary for applying ML success-
fully. Selection is largely influenced by the application and the data available.

2.1.1 Choosing the most appropriate ML algorithm

There are a large number of ML algorithms available. Choosing the optimal
algorithm for a specific problem is dependent on its features such as speed, accu-
racy, training and predicting time, amount of data required to train, data type, how
easy is it to implement, etc. Most of the time, for GIS applications, time is very
important.

To avoid dependence on the specific conditions, it is common to analyze the
runtime of algorithms in an asymptotic sense. So, considering n the number of
training sample, p the number of features, nt the number of trees, nsv, the number of
support vectors and k, the number of clusters, following are time complexity factors
of some ML algorithms, which help to choose the correct algorithm for the issue
(Table 1):
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Where:

• Time for Learning is time associate with training of dataset. It varies with size
of data and algorithm we are using in that.

• Time for Predicting is time associate with testing of dataset or predicting
unseen data. It varies with size of data and algorithm we are using in that.

Most of the time, about 80 percent of the dataset will be used for training and
the remaining part will be used for tuning and testing. In addition, it should be
noted that, as the training phase most of the time can be performed offline, the
predicting time is more important for developers.

Generally, it can be used the points above to shortlist a few algorithms, but it is
hard to know right at the start which algorithm will work in the best way. It is
usually desirable to work iteratively. Among the ML algorithms can be identified as
potential good approaches, throw the data into them, run them all in either parallel
or serial, and at the end evaluate the performance of the algorithms to select the best
one(s).

2.2 Megacity

A megacity is defined by the United Nations (UN) as a city which has a popula-
tion of 10 million or more people. Currently, there are 38 megacities in the World
(Figure 1). The UN statistics indicate that the city with the largest populations
worldwide is Tokyo with 38.8 million people. Recently, the UN has predicted that
the number of megacities will rise to 41 by the year 2030.

The urbanization process poses enormous challenges for governments, social
and environmental planners, engineers, architects and the residents of the mega-
cities. No wonder, the growing population of cities creates demand, in areas such as
housing and services. The environmental destruction and poverty are two other
concerns, which city administrations have to take care of, as especially poor people
do not have the necessary financial resources to tackle these problems.

Megacities affect a variety of living conditions for citizens. Although stress level,
traffic jams, poor air quality and increasing health risks, make life more difficult in
megacities, most people still choose to live there. Therefore, more accurate govern-
mental programs are needed to help improve living conditions for the metropolitan
inhabitants.

Algorithm Learning Predicting

Regression O(p2nþ p3) O(p)

Decision Tree O(n2pÞ O(p)

Random Forest O(n2pntÞ O(pntÞ
Naïve Bayes O(np) O(p)

SVM O(n2pþ n3) O(pnsvÞ
KNN — O(np)

K-means O(npkþ1) O(k)

Table 1.
Time complexity of some ML algorithms.
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As more cities are becoming megacities and existing megacities are growing,
policymakers and urban planners are grappling with the questions of how to make
growth at this scale sustainable, and how to tackle the escalating social, economic
and environmental problems evident in the world’s megacities. One of the most
popular solutions is ML.

3. Application of machine learning in GIS

Urban dispersal and expansion has become an important issue for municipali-
ties, environmental scientists and urban planners. Especially, in megacities, this
issue becomes more vital. Currently, more than %50 of the world’s population lives
in urban areas and then it is predicted to grow over the %65 by 2050, according to
the United Nation report. For example, all population in the 500,000+ urban areas
of Australia and New Zealand combines to equal that of Moscow or Bangkok, and
only slightly larger than Los Angeles (16.4 million). It is known that developing
countries have already begun a rapid urbanization [4]. The fact that the global
population has increased rapidly since the industrial revolution of the 18th century,
highlights the problems of urban planning and urbanization, because of the popu-
lation gathering in certain centers [5]. This unnatural pace of urbanization has
created significant social and environmental challenges for decision-makers [6]. In
addition, modeling and simulation are effective tools for discovering the urban
development mechanisms and for providing planning in growth management.
Therefore, monitoring and modeling the urban sprawl of cities is a necessary key
parameter to prevent precautions [7, 8].

As it has been illustrated in Figure 2, Asia remains the dominance in terms of
megacities, with nearly 58 percent of the population in larger metropolitan areas.
This is approximately five times as many greater urban area residents as in North
America or Africa. Besides, Asia has more than five times as many larger urban area
residents as Europe and eight times that of South America [3].

Figure 1.
The 38 megacities in 2019 [3].
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megacities, most people still choose to live there. Therefore, more accurate govern-
mental programs are needed to help improve living conditions for the metropolitan
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As more cities are becoming megacities and existing megacities are growing,
policymakers and urban planners are grappling with the questions of how to make
growth at this scale sustainable, and how to tackle the escalating social, economic
and environmental problems evident in the world’s megacities. One of the most
popular solutions is ML.

3. Application of machine learning in GIS

Urban dispersal and expansion has become an important issue for municipali-
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issue becomes more vital. Currently, more than %50 of the world’s population lives
in urban areas and then it is predicted to grow over the %65 by 2050, according to
the United Nation report. For example, all population in the 500,000+ urban areas
of Australia and New Zealand combines to equal that of Moscow or Bangkok, and
only slightly larger than Los Angeles (16.4 million). It is known that developing
countries have already begun a rapid urbanization [4]. The fact that the global
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highlights the problems of urban planning and urbanization, because of the popu-
lation gathering in certain centers [5]. This unnatural pace of urbanization has
created significant social and environmental challenges for decision-makers [6]. In
addition, modeling and simulation are effective tools for discovering the urban
development mechanisms and for providing planning in growth management.
Therefore, monitoring and modeling the urban sprawl of cities is a necessary key
parameter to prevent precautions [7, 8].

As it has been illustrated in Figure 2, Asia remains the dominance in terms of
megacities, with nearly 58 percent of the population in larger metropolitan areas.
This is approximately five times as many greater urban area residents as in North
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Urban expansion modeling became widespread in the 1960s [9] and have accel-
erated with the developments of the technologies like Remote Sensing (RS) and
GIS. Today, RS has been widely recognized as an essential tool for urban planning,
management and design due to allows to get spatiotemporal data that are necessary
for modeling environmental impacts, urban expansion and population growth.
Particularly, the benefits of satellite-based image data have attracted attention of
the scientific studies on urban expansion and environment [10, 11]. RS enables the
collection of spatial details data for large areas at different time intervals; therefore,
it provides a unique perspective on revealing the spatial and temporal dynamics of
the change process in the land use and urban expansion [12]. GIS technology is
described as an effective tool for identifying and monitoring the land cover change
at different scales [13–16].

The dynamic modeling via GIS as a tool for urban simulation has rapidly gained
popularity [7, 17]. The application of ML models has increased noticeably in RS filed
due to the increased availability of powerful and flexible ML software and
improvements in computing performance [18, 19].

The useful application of artificial neural networks (ANNs) in interpreting spa-
tial resource information have been proven i.e. one of the most common are back-
propagation neural networks, which are widely used by spatial planners. However,
to improve the usability of ANNs for map-based applications, a more efficient
method for communicating between the GIS and a trained ANN, is critical. When
ANNs and GIS are used together for many applications to improve decision-making
quality. The ANN design will consist of numerous layers, all of which can have
different weights. The training process of an ANN involves changing the weightings
over time until as it is desired the network reaches the static or optimum firing
state. After training, an ANN can be used for applications effectively and consis-
tently. Through the application of an ANN, GIS professionals can add another
dimension to their spatial capabilities. In some research, a combination of neural
networks with remote sensing image data for mapping the urbanization dynamics,
has been proposed [20–22].

As another helpful technic, recently evolutionary algorithms have been used to
tackle a variety of complex computation and optimization problems, such as natural
language processing [23], route finding [24] and image processing [25]. One of the
most important applications of evolutionary algorithms is in the field of GIS
[26–28]. It should be noted that generally these algorithms are not fast in compari-
son with other ML algorithms and their main usage is for optimization.

All in all, there are two main ways for satellite-image processing that each of
them has its own advantages and disadvantages. Sometimes there is high-resolution
data (satellite images) so processing this amount of data would take a lot of time,
with high accuracy. Some other cases, depending on the issue the resolution is not
good, but the measurement methods are highly qualified.

Figure 2.
Built-up urban area population in 2019.

34

Geographic Information Systems in Geospatial Intelligence

3.1 Process description: impact and influence determination

Over the years, the fast development of map services [29] and volunteered
geographic information (VGI) [30] has provided a huge number of geo-tagged
images. This data source has given information on every corner of a city and has
been enabling broader and more in-depth quantitative research in related fields.
These data improve the understanding of the dynamic and physical features of the
city by identifying landmark [31], detecting urban identities [32, 33], assessing the
living environment inequality [34], and modeling human activities [35] and popu-
lar places [36]. Also, they provide information on the social and physical structures
of dynamic metropolitan environments [36, 37].

The MIT Media Lab launched the “Place Pulse” program in 2013, which is a data
collection platform that enables volunteers to take part in the urban perception
rating experiment. By the end of 2016, the MIT Place Pulse dataset had collected
1,170,000 pairwise comparisons from 81,630 online participants for 110,988 city-
scape images. Given this dataset and advances in ML techniques, many studies have
tried to analyze human perceptions of urban appearance [34, 38–41].

Since previous approaches use low or mid-level image attributes, they have
problem in extracting high-level information about the natural image. Some
examples of these attributes are: Gist, SIFT- Fisher Vectors, DeCAF features [41],
geometric classification map, color Histograms, HOG2x2, and Dense SIFT [40].

For instance, according to building models, SVM and Linear Regression were
used in [41] to predict image labels. Support Vector Regression was used in [40],
Ranking SVM it has been used in [42], and several convolutional neural network
(CNN) based approaches were used in [39, 41, 42].

Among the various image representations and models, approaches that uses
deep convolutional neural network (DCNN), have outperformed conventional
methods to a large extent. In [39], authors introduce a DCNNmodel that is based on
the Deep Residual Network (ResNet) [43], which won the first place in the
ImageNet Large Scale Visual Recognition Competition [44].

Recently, a shift-invariant and hierarchical model has emerged in the form of
DCNN, because of the availability of large-scale annotated datasets and the rapid
development of high-performance computing systems. In some research, DCNN
was employed to conduct human perception modeling and prediction. Due to its
powerful capability to learn and represent automatic image feature, this model has
attracted a lot of attention and achieved great success in multiple fields, including
speech recognition [45], natural language processing [46], and visual object detec-
tion [43, 47].

A very deep convolutional neural network is hard to train and optimize because
of disappearance gradients and the curse of dimensionality [43, 48]. ResNet is
known as an acceptable attempt to address this problem. It was designed to learn
the residual functions with regard to the layer inputs rather than learning the
unreferenced functions [43].

In [49], a data-driven ML approach that measures how people perceive a place
in a large-scale urban region, was proposed. In particular, a deep learning model,
that had been trained with millions of human ratings of street-level imagery, was
used to predict human perceptions of a street view image. The model achieved a
high accuracy rate in predicting six human perceptual indicators. These indicators
are: beautiful, boring, depressing, lively, safe and wealthy. It could help to map the
distribution of the city-wide human perception for a new urban area. Besides, to
determine the visual points that may cause a place to be perceived as various
perceptions, a series of statistical analyses was performed. From the 150 object
categories that had been segmented from the images of the street view, many
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Urban expansion modeling became widespread in the 1960s [9] and have accel-
erated with the developments of the technologies like Remote Sensing (RS) and
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at different scales [13–16].
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popularity [7, 17]. The application of ML models has increased noticeably in RS filed
due to the increased availability of powerful and flexible ML software and
improvements in computing performance [18, 19].

The useful application of artificial neural networks (ANNs) in interpreting spa-
tial resource information have been proven i.e. one of the most common are back-
propagation neural networks, which are widely used by spatial planners. However,
to improve the usability of ANNs for map-based applications, a more efficient
method for communicating between the GIS and a trained ANN, is critical. When
ANNs and GIS are used together for many applications to improve decision-making
quality. The ANN design will consist of numerous layers, all of which can have
different weights. The training process of an ANN involves changing the weightings
over time until as it is desired the network reaches the static or optimum firing
state. After training, an ANN can be used for applications effectively and consis-
tently. Through the application of an ANN, GIS professionals can add another
dimension to their spatial capabilities. In some research, a combination of neural
networks with remote sensing image data for mapping the urbanization dynamics,
has been proposed [20–22].

As another helpful technic, recently evolutionary algorithms have been used to
tackle a variety of complex computation and optimization problems, such as natural
language processing [23], route finding [24] and image processing [25]. One of the
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Figure 2.
Built-up urban area population in 2019.
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3.1 Process description: impact and influence determination

Over the years, the fast development of map services [29] and volunteered
geographic information (VGI) [30] has provided a huge number of geo-tagged
images. This data source has given information on every corner of a city and has
been enabling broader and more in-depth quantitative research in related fields.
These data improve the understanding of the dynamic and physical features of the
city by identifying landmark [31], detecting urban identities [32, 33], assessing the
living environment inequality [34], and modeling human activities [35] and popu-
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problem in extracting high-level information about the natural image. Some
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used in [41] to predict image labels. Support Vector Regression was used in [40],
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of disappearance gradients and the curse of dimensionality [43, 48]. ResNet is
known as an acceptable attempt to address this problem. It was designed to learn
the residual functions with regard to the layer inputs rather than learning the
unreferenced functions [43].

In [49], a data-driven ML approach that measures how people perceive a place
in a large-scale urban region, was proposed. In particular, a deep learning model,
that had been trained with millions of human ratings of street-level imagery, was
used to predict human perceptions of a street view image. The model achieved a
high accuracy rate in predicting six human perceptual indicators. These indicators
are: beautiful, boring, depressing, lively, safe and wealthy. It could help to map the
distribution of the city-wide human perception for a new urban area. Besides, to
determine the visual points that may cause a place to be perceived as various
perceptions, a series of statistical analyses was performed. From the 150 object
categories that had been segmented from the images of the street view, many
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objects were identified as being positively or negatively correlated with each of the
indicators. The mentioned results helped urban planners and researchers to take a
step toward getting the interactions of the place sentiments and semantics.

Big data are voluminous and complex data of different qualities, that have the
potential to generate new hypotheses and new methods for understanding interac-
tions between social, biophysical and infrastructure domains of complex urban
systems that face the challenges of climate change [50, 51].

The movement of people tracked through cell phones is an example of crowd-
sourced and big data, which offers manifold new possibilities for assessing the city’s
inner workings, and the availability, quality and quantity of data is evolving, rapidly
(Figure 3). Crowd-sourced information can be used as a reliable proxy, with much
better resolution and replication, for more traditional methods of empirical social
survey [53].

Similar analyses of social media provide the opportunity to complement the
existing traditional ways of collecting information about human behavior in cities,
which can be brought together with other sources of biophysical and infrastructural
data, especially in spatial formats, collected through GIS [54, 55].

Big data can also come from urban hotlines, city planning offices, tax assessor
databases, records about utility use and repair, and the rapid emergence of sensors
and instrumented buildings, ecological spaces and even roads [56].

In Figure 3, The direction of change is shown by color, where I equals warmer
and wetter; II colder and wetter; III colder and drier; and IV warmer and drier
conditions. The direction of change is measured with the Euclidean distance in the
2D space including temperature and precipitation change. The classification of the
magnitude of change corresponds to quartiles.

The usefulness of big data for understanding urban systems such as efficacy
of climate solutions and climate impacts will only increase with time [56].

Figure 3.
Mapping direction of temperature change from 1901 until 2014 and rainfall from 1901 until 2013
in cities [52].
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Decision-makers of cities need improved information, that regularly updated, about
human behavior and perceptions and how they relate to climate change, both
globally and locally. Considering human behavior in cities and linking it to down-
scaled climate projections and remotely sensed observations of urban form, land
cover, land-use patterns and social-demographic information from national and
international databases, has the potential for improved decision-making to drive a
much more nuanced and highly spatially resolved platform. Over the past decade,
with the advancement of the digital social sciences and big data, as well as the
increasing use of social media data (SMD) in geographical studies, new opportuni-
ties have emerged for augmenting urban systems and climate impacts research and
expanding them [57].

Geocoded SMD, which comes from social media users (e.g., Twitter, Facebook,
Instagram) opens up a significant new opportunity to fill data gaps and address
many of the obstacles that prevent researchers and practitioners from understand-
ing the human behavior component of urban system dynamics and climate change.

SMD and other big data let researchers to ask a wide range of spatially explicit
questions at an unprecedented scale. Most of the time, social media allows users to
manually select the location from where they post a message, or automatically adds
it via geolocation tracking services. However, at present, geo-located tweets and
Flickr photographs represent a small portion of the overall volume of SMD (e.g.,
only %1 of all tweets are tweets that geocoded via GPS constitute) [58] the sheer
quantity of these data makes them worth investigating. Geotagged tweets can
reinforce traditional control data (e.g. remotely sensed images, roads, parcels). For
instance, for modeling population distribution, geo-located Twitter messages can
serve as control data [59].

Research using geo-located SMD is also starting to take shape to study socioeco-
nomic disparities and their relationship to climate impacts in cities. For example,
crowd-sourced data from Foursquare users in London, had been used to be a
reliable proxy for the localization of income variability and highlighting places
which are more at risk across the city [60].

Yet, mapping based on data that are demographically unrepresentative, can
also regenerate spatial segregation and give an unfair picture of the places which
matter citywide [61]. The same is true for global-scale analyses. The amount
of geocoded tweets widely varies among nations. The United States and Brazil are
some of the countries whit the highest proportion of geocoded and non-geocoded
tweets, while countries such as Norway and Denmark record considerably lower
values [62].

The emergence of various types of big data provides interesting options for
evaluating how people use and respond to urban events, policies, programs and
designs to adapt and mitigate climate change. New types of data can be an impor-
tant source for examining the use, value and social equity of specific spaces in the
city, that provide refuge during climate driven extreme events, such as parks,
vacant areas and open spaces that can provide, like cooling during heat waves.
Working with big data can provide opportunities for multi-year to decadal datasets
to understand the interactions between human and nature in the city and could be
crucial to evaluate progress on examining influences of climate change and of
mitigation options in cities [57].

Various sources of big data have already been helpful for awareness of disaster
risk management and climate adaptation planning. In [63], authors for assessing the
desired location and capacity of flood evacuation shelters, used volunteered geo-
graphic information through SMD as a source; while, in [64], researchers used SMD
sourced observations of flooding to develop a method for estimating flood extent in
Jakarta. In addition, following the devastating impact of Hurricane Sandy in New
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York City, scientists used SMD in Twitter to reveal the geographies of a range of
social processes and actions that happened shortly after the event [65].

In another research, Twitter data collected have been used during the devastat-
ing Sendai earthquake in Japan to assess social networks and build a database to
study the human landscape of post-disaster effects [66]. Understanding interactions
between climate change and fire prone landscapes is another major concern for
adapting with climate change and for reducing the disaster risk. In [67], authors
were able to use SMD to evaluate spatial patterns of situational awareness during
the Horsethief Canyon Fire in Wyoming, besides they demonstrated the usefulness
of SMD for actionable content during a crisis.

Another promising route which has been used in previous research, is the com-
bination of satellite data with other datasets and analyzing it by ML. For example, in
[68], authors proposed an accurate, scalable and cheap method for estimating
consumption expenditure and asset wealth from high-resolution satellite imagery.
In this research, using satellite data from five African countries: Nigeria, Tanzania,
Uganda, Malawi, and Rwanda, they showed how a CNNN can be trained to detect
image features that can explain up to 75% of the variation in local-level economic
outcomes, which result in estimation of poverty levels via satellite data.

Another point is that, big data can become a central tool for online monitoring of
urban risks and climate policies, made possible by sensor-based cities and the large
amounts of data typically generated by their residents through social media. Appli-
cations include [69]:

• Use real-time data extracted from local weather stations, rainfall and sewer
gauges to collect real-time data in hydrodynamic models for improved flood
prediction;

• Combine local high frequency observations, with regional monitoring and
forecasts, along with tracking of geospatial social messaging (e.g., posts about
occurring events) to provide improved early warning about potential effects;

• Use image processed CCTV feeds to understand the risks, for instance, water
surface locations and social media feeds to validate in real-time the emergent
the flooding patterns;

• Integrate spatially heterogeneous sensor data from flows and movements with
geospatial social messaging, CCTV and other data to reach a better
understanding of the temporal dynamics of impacts;

• Combine CCTV monitoring with social media data feeds to improve
understandings of citizen reaction and response to emerging impacts for
optimized hazard mitigation and planning in future;

• Apply knowledge from previous events, like modeling result sets of both risks
and impacts, to improve pre-response event from the site to the city-scale for
future events.

ML techniques, especially neural networks, are powerful tools for multi-
dimensional and complex big data analysis, where complexity needs to be
reduced to understand its main drivers [70]. CNNs work well to classify images
[71], and are widely used to evaluate land-use patterns [72]. Some researchers have
gone even further and combined this approach with the socio-economic data
analysis [68, 73].

38

Geographic Information Systems in Geospatial Intelligence

As mentioned before, authors’ work in [68] is very instructive. Using a combi-
nation of CNN, daytime satellite imagery and nightlight data, they predict poverty
in five African countries at a village scale. For this purpose, they did their analysis in
three steps. In the first step the CNN is trained on ImageNet [74] to learn how to
recognize visual attributes like edges and corners. Second, it was well tuned so as to
be able to predict intensities of the night-time in daytime images. Nightlights are a
universally consistent poverty predictor. Therefore, the model was trained to focus
on the aspects in daytime imagery, which are relevant to poverty estimation. In the
third and final step, socio-economic survey data was used to train ridge-regression
models on both household surveys and the image features from the previous two
steps. Their approach used night-time data as a globally consistent, but very noisy
proxy for poverty in an intermediate step and eventually explains %37–55 of aver-
age household consumption, and %55–75 of the variation in average household asset
wealth. While it used publicly available data, it delivered better results than
cellphone-based studies and outperforms products that rely solely on nightlights.

Recently another study used data extracted from Google Street View images and
ML methods, such as v-support regression and feature extraction, to estimate high
income areas in US cities [38]. From another perspective, phone records were used
to reveal detailed mobility patterns for improving the understanding of travel
behavior and traffic management [75].

3.2 High-precision measurement

An example of the activity recognition task is transportation mode detection can
be in which data from smartphone sensors carried by users are employed to deduce
what transportation mode the individuals have used. Microelectromechanical sys-
tems (MEMS), such as gyroscopes and accelerometers are embedded in most
smartphone devices [76] from which the data can be obtained at high frequencies.

Nowadays, smartphones have powerful sensors like Global Positioning System
(GPS), accelerometer, light sensors, gyroscope, etc. Having such sensors that
embedded in a small device carried in all life activities has allowed researchers to
investigate new research areas. Some of the benefits of these smart devices include
ability to send and receive data through various ways (e.g. Wi-Fi/cellular network/
Bluetooth), ubiquity and processing data [77]. The knowledge of individuals’ trans-
port mode can be adopted in many applications and also can facilitate several tasks,
as follows:

1.Knowing transportation mode is a necessary part of urban planning for
transportation, which is usually examined through questionnaires or telephone
interviews or travel diaries [77, 78]. Most of the time, this traditional method
of polling is inaccurate, expensive, limited to a specific area, and not up-to-
date [79].

2.As environmental applications, by obtaining the transport mode, the carbon
footprint and the amount of calories burnt of individuals can be determined.
Besides, health situation and physical activities can be monitored, the risk
exposure can be tracked, and the environmental influences of one’s activities
can be examined [80].

3.Other applications such as giving real-time information to users with the
knowledge of speed and transport mode from the them as probes [77, 81],
offering individuals with personalized messages and advertisements based on
their transportation mode [77].
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Several studies have used GPS data for classification purposes. However, using
GPS sensors have some limitations, such as: in shielded areas like tunnels, GPS
information is not available and the GPS signals may be lost especially in high dense
locations, which results in erroneous position information. In addition, the GPS
sensor consumes power a lot, so sometimes users turn it off to save the battery
[79, 81]. Some research focus on developing detection models using ML techniques
and data obtained from smartphone sensors like gyroscope, accelerometer and
rotation vector, without GPS data [82]. In this way, it has the advantage of consid-
ering multiple sensors even without using GPS, the transportation modes can be
identified.

4. Evaluation methods

Given the area of research, there are always some standard methods to evaluate
a system that uses a ML algorithm. In addition, there should be some standard
datasets the are prepared for the learning process (training, tuning and testing).
Therefore, in the following the evaluation metrics and datasets in GIS for urbaniza-
tion are introduced.

4.1 Metrics

There is no single connotation for the word “quality”, because it is difficult to
define quality with an absolute concept. Obviously, the data quality within software
systems relates to the benefits that can be achieved by an organization. Further-
more, it is dependent on various aspects. Thus, to measure data quality accurately,
one unique feature has to be chosen for considering the contribution of other
attributes of the data quality as a whole. Following aspects can be used to describe
the data quality (Table 2) [83].

It should be noted that by getting a high score in any of the mentioned dimen-
sions, does not simply mean that a high quality data has been achieved. For exam-
ple, the timelines may only matter in terms of correctness (correct user information
is available, but if it is not updated, then it is useless). Sometimes, these features
complement to each other [83].

Dimensions Definition

Relevance The importance of each piece of information stored in the database.

Reliability The sources of data are reliable.

Correctness The real world situation is represented by each set of stored data.

Timeliness The data has been updated on time and with adequate frequency

Precision The accuracy of the stored data is enough to characterize it.

Unambiguous Each piece of data carries a unique meaning.

Accuracy The level of data that can be accurately represented.

Objectivity Data is objective: do not need people to judge, interpret, or evaluate.

Security Access is secure and limited.

Completeness The absence of the essential data: how much available data is missing.

Table 2.
Patterns of data quality dimensions.
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The goals of data quality metrics are multi-dimensional. Indeed, they can set
information quality objectives for data creators and managers to achieve, set stan-
dards for data to be produced, acquired and curated, and introduce measurement
methods for quality judgment.

These metrics include rules that determine the thresholds of meeting appropri-
ate professional expectations and govern the measurement of data quality aspects
and levels. In order to configure and organize the rules, a basic structure is needed
to distinguish the transformation process from data quality expectations to a set of
applicable claims and to prevent unprofessional conduct [84].

Defining dimensions of data quality metrics can meet some purposes. Most of
the time, the dimensions are classified according to accepted standard of scholarly
activities within an academic discipline as well as other related disciplines that use
the data. Scientists have developed several sets of data quality dimensions [85].

The dimension categories differ from each other, according to the academic
field(s) in which data are regulated or by the different researchers’ understanding
and preference. Not only their dimensions are categorized differently among
scholars, but also their definitions vary according mostly to different types of data.
In practice, variations exist, such as integrity may be described in a different way to
measurement adjusted strategies, and accuracy may be calculated at different levels
of explanation [85].

Landslide susceptibility mapping (LSM) is a prime step in implementing the
immediate disaster management planning and risk mitigation measures. All sus-
ceptibility models must be verified for their predictions accuracy. An unverified
prediction model and susceptibility maps are nonetheless meaningless and hence do
not have any scientific significance. The issue of LSM validation have tackled by
many studies [86].

Several LSM approaches have been developed and described in numerous
papers. These approaches are mainly divided into three groups: heuristic, deter-
ministic and statistical techniques.

The heuristic techniques are based on the expert’s knowledge to group landslide-
prone areas into several ranks from high to low classes. It is often used for suscep-
tibility mapping in large areas. While, deterministic techniques rely on numerical
modeling of the physical mechanism that controls slope failure. However, they are
not suitable for a large-scale mapping, due to their problematic and impractical
need for a huge array of data, namely rock mechanical properties, the wetness and
soil saturation and soil depth. Statistical and probabilistic techniques including
bivariate, multivariate statistical methods, certainty factor, as well as knowledge-
based techniques such as ANNs and fuzzy logic approaches are promising methods
for predicting the landslides [87].

In most cases, the models are tested with an independent set of data, which was
not used for training the model. In [88], authors reported a three following approach
to obtain an independent sample of the landslide for validation purpose [87].

1.From the entire landslide inventory map of the study area, two sets of
randomly divided landslide polygons should be created, one for the
susceptibility analysis and one for validation the models;

2. In a part of the whole study area, the susceptibility analysis should be
performed; the obtained result should be tested in another part, distinctly with
different landslides;

3.The analysis should be performed using landslides happened in specific period
and validation should be carried using landslides occurred in a different
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Table 2.
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The goals of data quality metrics are multi-dimensional. Indeed, they can set
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period. This is the most sufficient to test the validity of the prediction mode,
however, the toughest to apply as it requires knowledge of the temporal
distribution of landslides over an adequately long-time spans.

As an example, image classification is not valid without evaluating its accuracy.
The source of errors could stem from the classification itself, image recording,
inappropriate training data and so on, however, in accuracy evaluation it is assumed
that all differences between classification results and reference data comes from the
classification errors.

Confusion matrix is one of the most common methods that evaluates classifica-
tion accuracy. This matrix contains a category comparison of relationship between
known, ground-truth data and classification results for the same category.

The overall accuracy of the classification process, is measured in percent and
indicates the number of pixels which correctly classified divided by the total num-
ber of pixels. Kappa coefficient is a measure of overall statistical agreement. It
measures the overall agreement of classification results, excluding agreement
acquired, not on purpose, but by chance [89].

4.2 Data

From the very first satellite launched in 1972 till the Landsat 8, launched in 2013,
Landsat satellite data have been recognized as a source of objective and reliable
information. These missions provide high quality worldwide multispectral data and
have been successfully used in countless applications in science [90].

The Landsat archive has provided multispectral data over the Earth for about
40 years. This fact makes Landsat data an attractive information source for studies
related to change detection, especially for identifying land use and land cover
changes indications.

World population was more than 7 billion at the time of the latest Landsat,
Landsat 8. Considering the valuable information about changes to Earth’s land
surface for more than 40 years, the Landsat program has given decision makers a
reliable source for managing Earth’s resources for the planet’s burgeoning popula-
tion with integral information about the World’s food, water, forests and how land
resources are being used [90].

Imagery from these satellites is distributed for free and was obtained from the
USGS website: http://earthexplorer.usgs.gov/.

Landsat 5 had Multi-Spectral Scanner (MSS) and Thematic Mapper (TM)
sensors. TM sensor has 6 spectral bands with the resolution – 30 m and 1 thermal
infrared band with resolution of 120 m (Table 3) [91].

Landsat 7 has Enhanced Thematic Mapper Plus (ETM+) sensor with 6 multispec-
tral bands with 30 m resolution, 1 thermal band with the resolution of 60 m and 1
panchromatic band with 15m resolution (Table 4). Bands 1–5&7were used for LULC
classification, while band 6 for LST extraction in both cases of Landsat 5 and 7 [91].

High-resolution maps of settlements and urban footprints form the basis for an
integrated evaluation of global settlement patterns. In the past decade, there has
been rapid progress in preparation of such maps. New satellite technology and
improved data processing using ML have facilitated rapid improvement in their
accuracy and resolution. The MODIS 500 urban land cover [92], until recently
represented the state of the art in urban land cover datasets [93]. It is now
outperformed by both the Global Urban Footprint (GUF) dataset which have
higher resolution and accuracy than any other urban land cover dataset [94], even if
comparing it to the high quality Global Human Settlement Layer (GHSL) [95, 96] or
GlobeLand 30 [97]. The GUF attributes a binary urban footprint at a resolution as
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high as 0.4″ (approximately 12 m) at the equator and 0.6″ in the mid-latitudes on a
global coverage. Also it is freely available for scientific use. This high resolution
constitutes a paradigm shift in studying urban extent for cities around the world.

The importance of the satellite imageries for evaluating urbanization by mea-
suring land use and land cover change for cities and their surroundings, is undeni-
able. Remote sensing (RS) is a reliable data source, which provides spatially
consistent coverage of large areas with temporal frequency and high spatial detail.
Besides, it is useful for analyzing phenomenon that is time dependent, such as
urban expansion [98]. Therefore, RS is an accurate and effective data source for
monitoring expansion of metropolitans, especially in cases that information related
to the land use management is inconsistent and inappropriate.

This is a list of some other datasets that provide information related to GIS for
urbanization:

1.GLOBAL Map1: It is a set of digital maps that cover the entire world to express
the status of global environment, accurately. It is developed through the
cooperation of National Geospatial Information Authorities (NGIAs) in the
world. The Global Map provides eight main map themes at a nominal
ground resolution of 1 km for raster data and at a scale of 1:1,000,000 for
vector data. These themes are:

• Transportation

• Boundary

Band Spectral band Resolution

1 0.45–0.52 μm 30 m � 30 m

2 0.52–0.60 μm 30 m � 30 m

3 0.63–0.69 μm 30 m � 30 m

4 0.76–0.90 μm 30 m � 30 m

5 1.55–1.75 μm 30 m � 30 m

6 10.4–12.5 μm 120 � 120 m

7 2.08–2.35 μm 30 m � 30 m

Table 3.
Landsat 5 TM bands.

Band Spectral band Resolution

1 0.45–0.515 μm 30 m � 30 m

2 0.525–0.605 30 m � 30 m

3 0.63–0.69 μm 30 m � 30 m

4 0.75–0.90 μm 30 m � 30 m

5 1.55–1.75 μm 30 m � 30 m

6 10.4–12.5 μm 60 m � 60 m

7 2.09–2.35 μm 30 m � 30 m

Table 4.
Landsat 7 ETM+ bands.

1 https://nationalmap.gov/small_scale/atlas-ftp-global-map.html?openChapters=chptrans#
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panchromatic band with 15m resolution (Table 4). Bands 1–5&7were used for LULC
classification, while band 6 for LST extraction in both cases of Landsat 5 and 7 [91].

High-resolution maps of settlements and urban footprints form the basis for an
integrated evaluation of global settlement patterns. In the past decade, there has
been rapid progress in preparation of such maps. New satellite technology and
improved data processing using ML have facilitated rapid improvement in their
accuracy and resolution. The MODIS 500 urban land cover [92], until recently
represented the state of the art in urban land cover datasets [93]. It is now
outperformed by both the Global Urban Footprint (GUF) dataset which have
higher resolution and accuracy than any other urban land cover dataset [94], even if
comparing it to the high quality Global Human Settlement Layer (GHSL) [95, 96] or
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The importance of the satellite imageries for evaluating urbanization by mea-
suring land use and land cover change for cities and their surroundings, is undeni-
able. Remote sensing (RS) is a reliable data source, which provides spatially
consistent coverage of large areas with temporal frequency and high spatial detail.
Besides, it is useful for analyzing phenomenon that is time dependent, such as
urban expansion [98]. Therefore, RS is an accurate and effective data source for
monitoring expansion of metropolitans, especially in cases that information related
to the land use management is inconsistent and inappropriate.

This is a list of some other datasets that provide information related to GIS for
urbanization:

1.GLOBAL Map1: It is a set of digital maps that cover the entire world to express
the status of global environment, accurately. It is developed through the
cooperation of National Geospatial Information Authorities (NGIAs) in the
world. The Global Map provides eight main map themes at a nominal
ground resolution of 1 km for raster data and at a scale of 1:1,000,000 for
vector data. These themes are:

• Transportation

• Boundary

Band Spectral band Resolution
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• Drainage

• Population Centers

• Elevation

• Vegetation

• Land Cover

• Land Use

2.Gridded Population of the World (GPW)2: It is the dataset of NASA’s
socioeconomic data and applications center, which includes raw population,
and population density of the past, current and future prediction. The purpose
of GPW is to provide a spatially disaggregated population layer that is
compatible with datasets from social, economic, and Earth science disciplines,
and RS. This data is globally consistent and spatially explicit for research,
decision-making and communication.

3.World Bank Geodata3: In this data, a wide range of World Bank datasets
converted to KML format, including GNP, schooling and financial data.

4.Global ADMINISTRATIVE Areas4: Administrative areas in this database are
countries and lower level subdivisions such as provinces and departments. The
latest version is 3.6 and it was released in 2018. It restricts 386,735
administrative areas, and scientists can download the spatial data by country.

5.Armed CONFLICT Location and Event Dataset5: This data includes all
reported conflict events in 50 countries in developing world, from 1997 to
present.

6.Global Rural-Urban Mapping Project (GRUMP)6: It is the dataset from
NASA’S socioeconomic data and applications center, which includes
information on rural and urban population balances.

7.Open Street Map (OSM)7: Crowdsourced data for the whole world, which
contains many important things like points of interest, buildings, roads and
road names, ferry routes, etc.

8.Geohive8: the initiative is made available by Ordnance Survey Ireland for easy
access to public spatial data, and includes population and county statistics. it is
not provided in GIS data formats, but it is easily convertible from CSV.

2 https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
3 https://sourceforge.net/projects/googleworldbank/
4 https://gadm.org/
5 https://www.acleddata.com/
6 https://sedac.ciesin.columbia.edu/data/collection/grump-v1
7 https://learnosm.org/en/osm-data/osm-in-qgis/
8 https://geohive.ie/
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4.2.1 Urban landscapes

The World Bank, in south and east Asia, has explored the patterns, conse-
quences and policy implications related to spatial development of cities by outlining
the increasing availability of spatial data and developments in analytics. Data from
Earth observation (EO) satellite can give valuable results which are useful for
measuring urban growth over a wide range of spatial and temporal scales, especially
when combined with data from other sources. The resulting digital urban maps give
an accurate, up-to-date and cost effective resource to assist governments in under-
standing the nature of urban development and making informed decisions. EO
datasets allow for harmonized and standardized measurements. Also, they enable
planners to make spatially and temporally consistent comparisons and global
assessment. In addition, they are particularly significant for monitoring and under-
standing the evolution of cities. For instance, allowing authorities to know when
built-up areas spill across formal administrative boundaries. This shows the need to
cooperate with adjoining administrative areas on issues like collecting garbage or
connective infrastructure [99].

The World Bank has created a database to analyze the speed, magnitude and
spatial form of urbanization in EO data. These data help researchers examine the
drivers and influences of the urbanization nature and how the urban landscape has
evolved into its current state. It offers a basis for understanding the effects of policy
change and identifying priorities for new initiatives. In particular, the focus is on
exploring the institutional frameworks for urban management, like mechanisms to
coordinate service delivery across administrative jurisdictions, investment for
example in transport and other network infrastructure and regulation such as zon-
ing and pricing of services.

About twelve years ago, the World Bank launched the “Earth Observation for
Development” initiative. So, data in areas where data are commonly scarce and
unreliable, are provided. Such information is useful for building project fundamen-
tals against which progress can be gauged, high priority issues identified and miti-
gation measures determined. Focus of this project is on areas like metropolitan
development and related fields including disaster risk management, the environ-
ment, water and energy. The bank has also developed the Urban Management and
Analysis (PUMA) platform to facilitate more collaboration between policymakers
and other development stakeholders, toward these purposes. By using this tool,
users with no GIS experience would be able to access, analyze and share urban
spatial data in an interactive and customizable way [100].

These activities have resulted in more than 30 technical helping projects that
done for urban planners and partners, in the period 2008–2018. As a result, highly
specialized big data mapping products and monitoring systems that leverage EO
data for South Asian cities have been launched.

4.2.2 Megacities

In the South Asia Megacities Improvement Program, EO big data was used to
analyze 20 years of urban expansion in the metropolitan areas of Delhi, Mumbai
and Dhaka. These data make it possible to measure the qualitative and quantitative
aspects of transformation, like the distribution and density of urban sprawl, the
growth rate of built-up areas and urban land use change. This information helps
analysts to trace how informal settlements grow outside the cities’ boundaries, and
to understand the drivers of land use [99]. Therefore, some important insights into
land cover and use in the three cities revealed (Figure 4). Furthermore, it showed
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and Dhaka. These data make it possible to measure the qualitative and quantitative
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the percentage of land taken by settlements and industrial build-up, agriculture,
natural or semi-natural vegetation and forest [101].

By using it, urban planners and development stakeholders could understand
existing demands and plan for future needs. For instance, in Delhi, the
maps illustrate that with industrial development, the urban expansion is
accelerated. This mostly happened between 2003 to 2010; however, a considerable
increase in construction sites shows that it will continue in the future, so it must
be planned [101].

By using digitized spatial data, analysts would be able to study the target at
different administrative levels: metropolitan, city, district or sub-district, and also
other non-administrative units. These datasets make it possible to aggregate flexi-
bly. One example is showing the proportion of sprawl by district, its density, the
drivers of urban change and class evolution within urban areas. Together with
environmental or socio-economic data, the data can prepare information on the
proportion of population to urban growth, and can measure indicators like com-
pactness, the ratio of green space to citizens, and the accessibility of these areas.

The results of applying EO big data can be crucial for coordination between
public, private and household investment in infrastructure, productive capital and
housing, respectively. Thus, policymakers would be able to promote optimal spatial
and transportation links between businesses, affordable housing and commercial
units, health and education services and recreational areas. In addition, these views
can be applied to support rural-to-urban migrants and ensuring that rapid urbani-
zation is inclusive. Since EO big data methods spread across the world’s megacities,
and are refined and adapted, they will provide valuable tools to policymakers, and
greater benefits for the citizens of the future.

Figure 4.
Sample visualizations from the South Asia geospatial analysis [101].
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4.2.3 Residential cities

EO big data approaches are also contribute to drive sustainable urban develop-
ment. The mentioned research on the use of high-resolution satellite data for pov-
erty mapping, draws emerging techniques that can show fast changing urban areas
in near real-time. These methods can determine built-up area, density of cars and
buildings, and types of roofing and road. Via ML techniques and image processing
algorithms, also they can calculate whether buildings are more rectangular or have
more chaotic angles, that indicates higher poverty level, and construct poverty
indicators like the ratio of paved roads in an area. So, stakeholders can target their
interventions exactly where they are mostly useful [101].

All in all, analysis of EO big data can be an important tool for managing city
development in low-income countries. It can measure and track the urban expan-
sion and highlight the drivers of economic growth. This result in better under-
standing the factors contributing to inefficiencies and inequality in urban areas, and
providing optimized policies. Besides, they can create flexibility in urban environ-
ments, so that residents, businesses and systems can adapt to persistent stresses or
shocks. Also they can provide residential cities that meet their residents’ needs.

5. Conclusions

This book chapter briefly introduced ML and past research about the application
of ML algorithms for processing of daily satellite imagery. It has been demonstrated
several aspects of detecting and classification of Earth features merging into local
geographical and geodetical system with further GIS development. The main pur-
pose of the chapter is to provide existing resources for researchers to be aware of the
up-to-date status of development of ML application in GIS in particular in studies of
megacities.

The real potential of ML in GIS is not sufficiently developed yet. On one hand,
both fields intersect in analytical discussions. At the same time, most GIS applica-
tions which are desirable for ML implementation, are driven by conventional
approach and standard tools of commercial GIS packages.

Merging GIS and ML offers a potential mechanism to reduce the cost of analysis
of spatial information by decreasing the amount of time spent on data interpreta-
tion. This integration allows the interpretive outcome from a small area to be
transferred to a larger, geographically similar area, without the extra time and
expense of putting geographers in the field for a time sufficient to cover
geographical area.

ML can be considered both as a science and as engineering, depending on the
goal. This technology is often seen as part of computing; however, it has links with
various other areas including philosophy, psychology and linguistics. Its techniques
can provide benefits within GIS over traditional methods, like statistical analysis,
especially if data show some form of non-linearity. Thanks to such an opportunity
of ML/GIS technology makes most successfully to apply for monitoring and
observation consequences of megacity development.

Most people are unaware that they use artificial intelligence in their daily life.
Finding solutions to decision-making issues by using models that allow decision
makers to express their limitations and imprecise concepts that are used with large
volume of geographic data, costs a lot. This chapter is expected to open opportunity
to understand clearly fundamental aspects of ML/GIS development with basically
related to the megacity studies.
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Figure 4.
Sample visualizations from the South Asia geospatial analysis [101].
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4.2.3 Residential cities
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Chapter 4

Study of Equatorial Plasma 
Bubbles Using ASI and GPS 
Systems
Dada P. Nade, Swapnil S. Potdar and Rani P. Pawar

Abstract

The plasma irregularities have been frequently observed in the F-region, at low 
latitude regions, due to the instability processes occurring in the ionosphere. The 
depletions in electron density, as compared to the background density, is a signature 
of the plasma irregularities. These irregularities are also known as the “equatorial 
plasma bubble” (EPB). These EPBs can measure by the total electron content (TEC) 
using GPS receiver and by images of the nightglow OI 630.0 nm emissions using all 
sky imager (ASI). The current chapter is based on the review on the signature of the 
EPBs in TEC and ASI. measurements. We have also discussed the importance of the 
study of EPBs.

Keywords: EPB, plasma irregularities, GPS and TEC

1. Introduction

The ionospheric radio wave communication, especially navigation is strongly 
influenced by the equatorial spread-F irregularities. Therefore, it is a scientific 
interest to do study these irregularities and its morphology and dynamic for the bet-
ter communication system. The equatorial spread-F irregularities have been studied 
by several investigators using number of measurement techniques (e.g., [1–3]). 
The ground-based measurement techniques such as all sky imager (ASI), scanning 
photometer, RADAR and ionosonde are mostly used to study the dynamics of these 
irregularities. In equatorial-low latitude F-region, the electron density is depletes 
or enhance with respect to the background density due to vertical dynamics of F 
region. This is a key factor for generation of ionospheric irregularities. The size of 
these domains of irregularities ranges from a few hundred of kilometers in the east-
west direction [4, 5] and a thousands of kilometers in north-south direction aligned 
with magnetic field lines (e.g., [6]). Basically, they occurred in the low latitude F 
region over an altitude 250–350 km, such irregularities have observed as dark and 
bright patches in the nightglow images of OI 630.0 nm emission. The dark patches 
are also called as equatorial plasma bubbles (EPBs) (e.g., [7, 8]) and bright patches 
are called as plasma blobs (e.g., [9, 10]).

Few investigators have been reported the nocturnal variations in occurrence 
(e.g., [7, 11, 12]) and zonal drift velocity (e.g., [8, 13]) of EPBs using OI 630.0 nm 
images. Many researchers have addressed generation mechanism of EPBs using dif-
ferent techniques (e.g., [14–16]). According to them, the EPBs are generated in the 
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bottom side of F-region (e.g., [9, 17]) at the equator, mainly by the nonlinear evolu-
tion of the generalized Rayleigh-Taylor (GRT) instability [18] and E × B drift [14]. 
After sunset, the rapid uplifting of F-region is one of the key factors in generating 
of EPBs [19, 20].

The first time observation of plasma blobs has made with images of OI 
630.0 nm, which were taken by the ground-based ASI from Cachoeira Paulista 
[21]. Using the similar data from the Boston University, Arecibo, Krall et al. [22] 
have also reported the observations of plasma blobs. The general characteristics of 
plasma blobs have been studied by using measurements of total electron content 
(TEC) [23].

Nade et al. [10], suggested that the plasma blobs occurred with EPBs and the 
variations in apex height may responsible for occurrence of the plasma blobs over 
low latitude region. However, the generation mechanism of EPBs and plasma 
blobs is not yet clearly understood [24] and it is most challenging issue to study the 
dynamics of the low latitude F region. In addition, several questions were raised 
by Kil et al. [25] on the EPB-blob connection. They reported that the creation of 
plasma blobs is not depending on EPBs and they also mentioned that the occurrence 
rate of EPBs varies with solar activity while blobs occurred frequently with solar 
activity. Based on these results they raised the question, why the occurrence of 
plasma blobs shows opposite nature with solar activity? These questions are creat-
ing inspiration to do more research in the same area.

2. Methodology

2.1 Nightglow emission OI 630.0 nm measurement

Based on numerous ground-based and in-situ studies, it is widely accepted that 
the nightglow OI 630.0 nm emissions are generated at low latitude F-region heights 
(250–300 km). The nightglow emission in F-region at (1D) 630.0 nm is governed 
by dissociative recombination between ions and electrons [26, 27]. The nightglow 
OI 630.0 nm images are used to study the characteristics of EPBs. Otsuka et al. [28] 
suggested that the ASI is an important aide towards improving the understanding 
of the coupling between ionosphere and thermosphere using images of nightglow 
OI 630.0 nm emission and OH emission. Because OH emissions are generating at 
around 100 km (ionosphere) while OI 630.0 nm emissions are generating at around 
250 km (thermosphere).

Few methods are available in literature to analyze the all sky image data [29, 30].  
Kubota et al. [31] has introduced a new method to convert the pixel images of the 
ASI into actual geographic coordinates for 250 km altitude, the airglow emission 
layer. Then to retrieve information from image data, the pixel value of images 
converted into corresponding latitude-longitude values by Narayanan et al. [32]. 
Recently, by the combination of both methods, Sharma et al. [33] has introduced 
the “average method” to process and analyze the image data.

Figure 1 illustrates processed images of OI 630.0 nm, which are taken on 17-18 
January, 2012, showing the time evolution and structure of the EPBs and plasma 
blobs. In Figure 1, yellow and white arrows are showing signature of EPB and 
plasma blobs respectively in the OI 630.0 nm images.

To retrieve the pixel intensity from images of nightglow OI 630.0 nm Taori et al. 
[34] has introduced “the image crop method.” In this method, we have selected only 
a square bin of 5 × 5 pixel at the center of the image corresponding to a rectangular 
field of view having ~1° along the zenith. The average intensity of this square bin is 
considered as intensity of OI 630.0 nm emission to study the nocturnal variation in 
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intensity. Thus, we got the intensity data of OI 630.0 nm emission for each indi-
vidual image with respect to time.

2.2 TEC measurements

Up to 11 GPS satellites are in view and provide outputs in 22 receiver channels 
[35]. The ionosphere has an effect on the signal of GPS satellite. TEC is measured 
along the path from the GPS satellite to a receiver. The TEC is defined by the 
integral of electron density in TEC unit (TECU), where  1 TEC unit =  10   16  electrons /  m   2   
column along the signal transmission path. The dual frequency GPS receivers are 
used to measure the TEC, which is one of the most important methods to investi-
gate the dynamics of ionosphere. Several research groups are showing interest in 
the equatorial ionospheric research using GPS data. Dow et al. [36] did an analysis 
of the importance of GPS data in support of the terrestrial reference frame, earth 
observations and research, positioning, navigation and timing as well as other 
applications that benefit the society. The slant TEC is the measure of the total 
number of free electrons in a column of unit cross section along the path of the 
electromagnetic wave between the satellite and the receiver [37].

A dual frequency (L1 = 1575.42 MHz and L2 = 1227.60 MHz) GPS receiver 
(LEICA GRX1200GGPRO GNSS) is operating at Hyderabad (17.37°N, 78.48°E) 
[3]. It is a unique station to study the ionospheric irregularities because it is 
located at the northern crest of the equatorial ionization anomaly (EIA). A dual-
frequency GPS receiver can measure the difference in ionospheric delays between 
the L1 and L2 of the GPS frequencies, which are generally assumed to travel along 
the same path through the ionosphere. Thus, the group delay can be obtained as

Figure 1. 
Sequences of images of OI 630.0 nm obtained on 17-18 January, 2012 in IST at Kolhapur. Yellow and white 
arrows are showing dark and bright (EPB and plasma blob) respective structures in images.
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  ∆ (𝛿𝛿t)  =  𝛿𝛿t  L1   −  𝛿𝛿t  L2    (1)

Here,  ∆ (𝛿𝛿t)   is a time delay in the pseudo-range   ( 𝛿𝛿t  L1  )   at L1 and pseudo-range  
  ( 𝛿𝛿t  L1  )   at L2. The resulting equation is (Jain et al., 2011),

  ∆ (𝛿𝛿t) = 40.3 × TEC ×    (   f  L1  2   −  f  L2  2  )  _________ 
c ×  f  L1  2   ×  f  L2  2  

    (2)

where   f  L1    and   f  L2    are the group path lengths corresponding to the high and low 
GPS frequencies   f  L1   = 1575.42 MHz  and   f  L2   = 1227.60 MHz , respectively and “ c ” is 
speed of light in vacuum. The TEC can be obtained by rewrite above equation as,

  TEC =   1 ____ 40.3   ×   c ×  f  L1  2   ×  f  L2  2   _________ 
 (  f  L1  2   −  f  L2  2  ) 

   × ∆ (𝛿𝛿t)   (3)

The signal from different GPS satellites, at random elevation angles, recorded as 
a TEC measurements. These different satellites are identified by a pseudo-random 
number (PRN). The portions of the ionosphere cross by GPS signal depend on the 
elevation angle of GPS satellite. Therefore, in the present work the TEC data of only 
those GPS satellites, having elevation angles above 30° to avoid the multipath effect 
of signals, are considered. The maximum elevation angle over Hyderabad station is 
60°. The STEC is measured at every 30 s by the GPS receiver.

3. Equatorial plasma bubble by GPS

The study of the spatial and temporal progress of EPBs formed in the iono-
sphere has been carried out using two different techniques radio waves as well 
as optical imaging over the globe. The optical imaging techniques have a limited 
coverage area, but have high resolution, while the radio wave techniques have a 
wide coverage area but can have low resolution for the ionospheric studies. The 
all sky imager is widely used instrument for the optical imaging of plasma bubble 
while GPS receivers used to study the ionospheric irregularities using radio 
waves. The Figure 2 illustrates the occurrence of EPBs as D1 and D2 in the TEC 
measurements. The nocturnal variation in TEC with respect to local time (Indian 
Standard Time) observed on April 1, 2011 and April 2, 2011. The EPBs in TEC is 
indicated by D1 and D2. The occurrence period of EPBs is indicated by rectangu-
lar in the Figure 2.

Nishioka et al. [38] did a comprehensive study of the occurrence of plasma 
bubbles using ground-based GPS receiver from dip equator stations. They have 
considered Data from 2000 to 2006 from a network of 23 GPS receivers such as net-
work of International GNSS Service (IGS), a GPS network by the Japan Agency for 
Marine-Earth Science and Technology (JAMSTEC), and Scripps Orbit Permanent 
Array Center (SOPAC), etc. They found a different characteristic rate of EPB 
occurrence in different regions also the dependency of the occurrence on the solar 
activity was different among the regions. They concluded that the sunset time lag 
effect plays an important role for the monthly variation and two asymmetries which 
could not be explained with the sunset time lag scenario (1) asymmetry between 
two solstices and (2) asymmetry between two equinoxes. They also found that the 
plasma bubble occurrence was high and constant for a stations having height on the 
dip equator (HODE) was <700 km and it is began to decrease for stations having 
HODE was higher than 700 km and was almost zero for the stations having HODE 
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higher than 900 km.. They defined HODE as shown in figure as an altitude of the 
geomagnetic field line on the magnetic dip equator which passes 400 km altitude 
above a site of GPS receiver.

Haase et al. [39] have studied the Propagation of plasma bubbles over Brazil 
from GPS and airglow data. They have mapped the airglow data to the GPS line-
of-sight geometry for the direct comparison and revealing of resolvable westward 
tilt of the plasma depletion that may be due to vertical shear. They found the direct 
correspondence between integrated electron content (IEC) depletions and char-
acteristics of depletions seen in horizontal airglow images, with very consistent 
observations of scale, amplitude, drift velocity and timing.

The EPB is monitored by using data provided by ground-based GNSS receiver 
Network over the South American continent by Takahashi et al. [40]. They have 
mapped the total electron content which could cover almost all of the continent 
within 4000 km distance in longitude and latitude. The TEC variability is moni-
tored continuously with a time resolution of 10 min. The bubble structures are 
compared with simultaneous observations of OI630 nm all-sky image at Cachoeira 
Paulista (22.7°S, 45.0°W) and Cariri (7.4°S, 36.5°W). The formation and develop-
ment of the bubble and eastward drifting features were successfully monitored and 
analyzed in this study. They found that the plasma bubbles observed during the 
December solstice has a periodic spacing, which is a periodic seeding mechanism of 
the bubbles.

The occurrence and characteristics of EPBs have been analyzed using the TEC 
data from GPS receivers over Hong Kong during 2001–2012 by Kumar et al. [41]. 
They found that the maximum occurrences of EPBs during the equinoctial months 
while minimum during the December solstice throughout 2001–2012. They also 
used the TEC data from different GNSS receivers over the Hong Kong. They con-
cluded that the asymmetry in the EPB occurrences could be caused by the suppres-
sion of the growth rate of the instability by inter hemispheric neutral winds, which 
is known to be a primary cause for triggering EPB or ESF. The influence of solar and 
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Figure 2. 
The nocturnal variation in TEC with respect to local time (Indian Standard Time) observed on 01-02 April 
2011. The EPBs in TEC is indicated by   D  1    and   D  2   . The occurrence period of EPBs is indicated by rectangular.
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  ∆ (𝛿𝛿t)  =  𝛿𝛿t  L1   −  𝛿𝛿t  L2    (1)
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c ×  f  L1  2   ×  f  L2  2  

    (2)
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   × ∆ (𝛿𝛿t)   (3)
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higher than 900 km.. They defined HODE as shown in figure as an altitude of the 
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analyzed in this study. They found that the plasma bubbles observed during the 
December solstice has a periodic spacing, which is a periodic seeding mechanism of 
the bubbles.

The occurrence and characteristics of EPBs have been analyzed using the TEC 
data from GPS receivers over Hong Kong during 2001–2012 by Kumar et al. [41]. 
They found that the maximum occurrences of EPBs during the equinoctial months 
while minimum during the December solstice throughout 2001–2012. They also 
used the TEC data from different GNSS receivers over the Hong Kong. They con-
cluded that the asymmetry in the EPB occurrences could be caused by the suppres-
sion of the growth rate of the instability by inter hemispheric neutral winds, which 
is known to be a primary cause for triggering EPB or ESF. The influence of solar and 
magnetic cycle is also studied.
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2011. The EPBs in TEC is indicated by   D  1    and   D  2   . The occurrence period of EPBs is indicated by rectangular.
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Magdaleno et al. [42] studied the Climatology characterization of EPB using GPS 
data for the period 1998–2008. They have considered the slant total electron content 
(sTEC) derived from global positioning system (GPS) data from 67 International 
GNSS Service (IGS) stations distributed worldwide around the geomagnetic equator 
and the region of the ionospheric equatorial anomaly (IEA). The Ionospheric Bubble 
Seeker method is used to detect and distinguishes TEC depletions associated with 
EPBs. They found the largest occurrence rate of EPBs over the South America-Africa 
region and shown that the occurrence rate goes on decreasing as we go from the 
magnetic equator to higher latitudes.

First time study of the occurrence frequency of EPB over West Africa is done 
by Okoh et al. [42] using an ASI and GNSS Receivers from June 9, 2015 to January 
31, 2017. This ASI is installed at Abuja (Geographic: 8.99°N, 7.38°E; Geomagnetic: 
1.60°S) which covers almost the entire airspace of Nigeria. They found most occur-
rences of EPB during equinoxes and least occurrences during solstices also the 
occurrence rate of EPBs were highest around local midnight and lower for hours 
farther away. They also observed that the on/off status of EPB in airglow and GNSS 
observations are in 70% agreement.

Kumar [43] has studied the morphology of the EPB with respect of the solar activ-
ity over the Indian region from 2007 to 2012. The sTEC data are also considered from 
ground-based GPS receiver at Hyderabad (17.41° N, 78.55° E, Mag Lat 08.81° N) and 
two receivers at Bangalore (13.02°/13.03° N, 77.57°/77.51° E, Mag. Lat. 04.53°/04.55° 
N) in Indian region. He also observes that the occurrence of EPB is maximum in 
equinoctial months. He concluded that the equinox maximum in EPB occurrences for 
high solar activity years may be caused by the vertical F-layer drift due to pre-reversal 
electric field (PRE). This is expected to be maximum when daynight terminator 
aligns with the magnetic meridian, i.e., during the equinox months, whereas maxi-
mum occurrences during the solstice months of solar minimum could be caused by 
the seed perturbation in plasma density induced by gravity waves from tropospheric 
origins. The seasonal dependence of the EPBs occurrence is also studied.

Recently, Takahashi et al. [44] in detail studied the Occurrences of EPB (EPBs) 
and medium-scale traveling ionospheric disturbances (MSTIDs). They have used 
the GPS satellite data-based total electron content mapping, ionograms, and 
630 nm all-sky airglow images observed over the South American continent during 
the period of 2014–2015. They observed a close relationship between the inter-
bubble distance and the horizontal wavelength of the MSTIDs. They concluded 
that the MSTIDs are followed by EPBs primarily in the afternoon to the evening 
period due to the strong tropospheric convective activities (cold fronts and/or 
intertropical convergence zones) and the MSTIDs could be one of the seeding 
sources of EPBs.

Barros et al. [45] used ground-based network of GNSS receivers used to moni-
tor EPB (EPBs) by mapping the total electron content (TEC map). They consid-
ered TEC data from GNSS receivers over South America for the period between 
November 2012 and January 2016. They found the latitudinal gradient varying from 
123 ms−1 at the Equator to 65 ms−1 for 35° S latitude in the zonal drift velocities of 
the EPBs. They concluded that the latitudinal gradient in the inter-bubble distances 
seems to be related to the difference in the zonal drift velocity of the EPB from the 
Equator to middle latitudes and to the difference in the westward movement of the 
terminator.

Over the Thailand region, the statistical analysis of the separation distance 
between EPB is carried by Bumrungkit et al. [46]. The separation distance between 
EPBs is calculated using the Haversine formula technique in which the dual fre-
quency GPS signal used. Their results show that the separation distances between 
EPBs on disturbed days in 2015 are in the range of 100–1200 km.
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The effects of the R-T instability and EPB on the GPS signal are also studied by 
Panda et al. [47]. They have considered various instances of ionospheric distur-
bances triggered by natural processes such as earthquakes and volcanic eruption 
in the recent decade to investigate the spatiotemporal and seasonal effects of 
ionospheric irregularities on the GNSS signals. They found that the co-seismic 
ionospheric disturbances are difficult to study at the equatorial region due to mask 
of the EPBs but over the high latitude region these co-seismic ionospheric anomaly 
van be studied.

The effects of plasma bubbles on the GPS signal path and the positioning issue 
is studied by Moraes et al. [48]. The analysis focused on data from November 15, 
2014 to November 30, 2014 and from February 4, 2015 to February 18, 2015, at São 
José DOS Campos, Brazil. They found that passing through the EPB, the radio signal 
may take a longer propagation path and have more losses of signal lock. The posi-
tioning errors may result in these cases.

Rajesh et al. [49] demonstrate that the EPBs appear to extend toward equator or 
pole as a result of the descending F layer and the recombination between free elec-
trons of F layer and ions of the E layer at different latitudes. The apparent extension 
would vary from night to night depending on the post sunset vertical velocity of the F 
layer. Over equatorial region background electron density may be playing a vital role 
in providing the equinoctial asymmetry in the occurrence of ESF irregularities [16].

The effect of equatorial height variation of F region on ionospheric irregulari-
ties in the low latitude F region is also an important aspect. The apex height is also 
contributing in the occurrence of EPBs. Haaser et al. [50] suggested that EPBs 
occurred near the geomagnetic dip equator (<20° dip), typically within the night-
time ionospheric anomaly, while plasma blobs occurred mainly away from the 
geomagnetic dip equator, outside the anomaly regions (>15° dip). Yokoyama et al. 
[51] reported that the zonal structure of the plasma blobs in the northern hemi-
sphere corresponded to that of the topside EPB in the southern hemisphere on a 
common magnetic flux tube, although the plasma blobs and the EPBs are separated 
by more than 20° in latitude.

Based on satellite data, Le et al. [52] reported that the localized eastward 
polarized electric field plays an important role in the creation of EPBs and plasma 
blobs. The strength of localized eastward polarized electric field is may depend on 
the virtual height of the F region at dip equator. They are directly proportional to 
each other. The fluctuations in the virtual height of the equatorial F region creates 
oscillations of F region in wave nature along the latitudes which is started from the 
magnetic equator to low latitude (±20°) crest of a wave. The background plasma 
density and fluctuations in plasma density are important factors for characterizing 
plasma blobs [53].

The eastward polarized electric field helps to combine flowing plasma with the 
background plasma over low latitude. Due to this combination, EPBs are generated 
over low latitude regions. According to literature serve, it is clear that ionospheric 
irregularities like EPBs or plasma blobs are not observed regularly. This may happen 
because of low combination or no combination of the plasma. Thus, this combina-
tion depends on the strength of eastward polarized electric field. If the strength of 
eastward polarized electric field is very low, then combinations will not possible 
while, for its particular value, low energy regions created which are captured 
in optical data as dark regions. These dark regions are also called as EPBs. If the 
strength of eastward polarized electric field is very high then, the rate of recombi-
nation will increase and high energy regions may create over low latitude regions. 
These high energy regions cause the enhancement in intensity of OI 630.0 nm 
emission, called as plasma blobs. The strength of eastward polarized electric field is 
also depends on the virtual height of F region at dip equator. Our results and analysis 
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gives strong support for this statement. Herein, one more thing is that the flowing of 
plasma is in wavy nature, travel from the dip equator to low latitude. This nature of  
the flowing of plasma also makes an effect on the combination or recombination  
of plasma over low latitude regions. Thus to explain this nonlinear problem we need 
of more theoretical models.

4. Conclusions

Understanding of fundamental of EPBs, generation magnesium is very impor-
tant for better communication and navigation system. Thus, we need more observa-
tions to study such phenomenon. In this chapter we have summarized the recent 
review on observation of EPBs using GPS and ASI.
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Chapter 5

Spectral Optimization of Airborne
Multispectral Camera for Land
Cover Classification: Automatic
Feature Selection and Spectral
Band Clustering
Arnaud Le Bris, Nesrine Chehata, Xavier Briottet
and Nicolas Paparoditis

Abstract

Hyperspectral imagery consists of hundreds of contiguous spectral bands. How-
ever, most of them are redundant. Thus a subset of well-chosen bands is generally
sufficient for a specific problem, enabling to design adapted superspectral sensors
dedicated to specific land cover classification. Related both to feature selection and
extraction, spectral optimization identifies the most relevant band subset for spe-
cific applications, involving a band subset relevance score as well as a method to
optimize it. This study first focuses on the choice of such relevance score. Several
criteria are compared through both quantitative and qualitative analyses. To have a
fair comparison, all tested criteria are compared to classic hyperspectral data sets
using the same optimization heuristics: an incremental one to assess the impact of
the number of selected bands and a stochastic one to obtain several possible good
band subsets and to derive band importance measures out of intermediate good
band subsets. Last, a specific approach is proposed to cope with the optimization of
bandwidth. It consists in building a hierarchy of groups of adjacent bands,
according to a score to decide which adjacent bands must be merged, before band
selection is performed at the different levels of this hierarchy.

Keywords: hyperspectral, classification, band selection, spectral optimization,
land cover

1. Introduction

High-dimensional remote sensing imagery, such as hyperspectral (HS) imagery,
generates huge data volumes, consisting of hundreds of contiguous spectral bands.
Several difficulties are caused by this high dimensionality. First, the Hughes phe-
nomenon [1] can occur when classifying such data, even though modern classifiers
such as support vector machines (SVM) and random forests (RF) are less sensitive
to it [2, 3] except when very few training data are available [4]. Second, important
computing times are required to process such high-dimensional data. Third, storing
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1. Introduction

High-dimensional remote sensing imagery, such as hyperspectral (HS) imagery,
generates huge data volumes, consisting of hundreds of contiguous spectral bands.
Several difficulties are caused by this high dimensionality. First, the Hughes phe-
nomenon [1] can occur when classifying such data, even though modern classifiers
such as support vector machines (SVM) and random forests (RF) are less sensitive
to it [2, 3] except when very few training data are available [4]. Second, important
computing times are required to process such high-dimensional data. Third, storing
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data requires huge volumes. Last, displaying high-dimensional imagery can be
necessary, while human vision is limited to three colours [5, 6].

Hyperspectral data consist of hundreds of contiguous spectral bands, but most
of these adjacent bands are highly correlated to each other. Thus a subset of well-
chosen bands is generally sufficient for a specific problem. This enables to design
adapted superspectral sensors dedicated to such specific land cover classification.
Spectral optimization (SO) or optimal band extraction (BE) consists in identifying
the most relevant spectral band subsets for such specific applications. Spectral
optimization is a specific dimensionality reduction (DR). DR aims at reducing data
volume minimizing the loss of useful information and especially of class separabil-
ity. Dimensionality reduction techniques can be separated into feature extraction
(FE) and feature selection (FS) categories.

FE consists in reformulating and summing up original information. Principal
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Thus, this study focuses on the comparison of several FS criteria (presented in
Section 2.1) for supervised classification problems (that is to say when classes and
their ground truth are taken into account). To have a fair comparison, all these
criteria will be optimized using the same generic optimization algorithms. It was
here decided to use such generic optimization heuristics, in the context of sensor
design, since such methods enable to easily control the number of bands to select
and to add additional constraint within the band extraction process as in the
second part of the study. The use of generic optimization methods necessarily
excludes of the comparison feature ranking criteria (such as ReliefF [11, 12]) and FS
methods where the score and the optimization method are strongly related to, for
instance, SVM-RFE [13]. All criteria will be tested on several classic hyperspectral
data sets.

2.1 FS: state of the art

Even though hybrid approaches involving several criteria exist [14, 15], FS
methods and criteria are often differentiated between ‘filter’ (independent from
any classifier), ‘wrapper’ (related to the classification performance of a classifier)
and ‘embedded’ (related to the quality of classification models estimated by a
classifier, but not directly to classification accuracy). It is also possible to distinguish
supervised and unsupervised ones, especially for filters, that is to say whether a
notion of classes is taken into account or not. All approaches mentioned below are
summed up in Tables 1 and 2. Nevertheless, it must be kept in mind that hybrid
approaches involving several criteria belonging to these different FS criteria cate-
gories often exist, as, for instance, in [14] or [15], where features are selected based
on a wrapper method, respectively, guided or associated with filter criteria (mutual
information between selected bands and between the ground truth).

2.1.1 Filter

Filter methods compute relevance scores independently from any classifier.
Some filter methods are ranking approaches: features are ranked according to an
individual score of importance. Such individual feature scores can be supervised or

Table 1.
State of the art of feature selection criteria: the criteria that work with the FS criteria evaluation framework
used in this study are underlined [16–47].

71

Spectral Optimization of Airborne Multispectral Camera for Land Cover Classification…
DOI: http://dx.doi.org/10.5772/intechopen.88507



Thus, this study focuses on the comparison of several FS criteria (presented in
Section 2.1) for supervised classification problems (that is to say when classes and
their ground truth are taken into account). To have a fair comparison, all these
criteria will be optimized using the same generic optimization algorithms. It was
here decided to use such generic optimization heuristics, in the context of sensor
design, since such methods enable to easily control the number of bands to select
and to add additional constraint within the band extraction process as in the
second part of the study. The use of generic optimization methods necessarily
excludes of the comparison feature ranking criteria (such as ReliefF [11, 12]) and FS
methods where the score and the optimization method are strongly related to, for
instance, SVM-RFE [13]. All criteria will be tested on several classic hyperspectral
data sets.

2.1 FS: state of the art

Even though hybrid approaches involving several criteria exist [14, 15], FS
methods and criteria are often differentiated between ‘filter’ (independent from
any classifier), ‘wrapper’ (related to the classification performance of a classifier)
and ‘embedded’ (related to the quality of classification models estimated by a
classifier, but not directly to classification accuracy). It is also possible to distinguish
supervised and unsupervised ones, especially for filters, that is to say whether a
notion of classes is taken into account or not. All approaches mentioned below are
summed up in Tables 1 and 2. Nevertheless, it must be kept in mind that hybrid
approaches involving several criteria belonging to these different FS criteria cate-
gories often exist, as, for instance, in [14] or [15], where features are selected based
on a wrapper method, respectively, guided or associated with filter criteria (mutual
information between selected bands and between the ground truth).

2.1.1 Filter

Filter methods compute relevance scores independently from any classifier.
Some filter methods are ranking approaches: features are ranked according to an
individual score of importance. Such individual feature scores can be supervised or

Table 1.
State of the art of feature selection criteria: the criteria that work with the FS criteria evaluation framework
used in this study are underlined [16–47].

71

Spectral Optimization of Airborne Multispectral Camera for Land Cover Classification…
DOI: http://dx.doi.org/10.5772/intechopen.88507



unsupervised. For instance, the well-known ReliefF score [11, 12] or scores mea-
suring the correlation between features and ground truth [29] are supervised ones.
However, such individual feature importance measures do not take into account the
correlations between selected features. Thus, a feature subset composed of the n
best features according to such measures is not necessarily an optimal solution, in
the sense that it is not parsimonious.

Other ranking methods are unsupervised: they use importance measures
calculated from a feature extraction technique. For instance, [48] ranks bands
according to a score of importance calculated from PCA decomposition. Correlated
bands are then removed according to a divergence measure. Du et al. and
Hasanlou et al. [49, 50] have a similar approach using ICA instead of PCA. Other

Table 2.
Pros and cons for the different families of FS criteria.
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unsupervised approaches also use results of a PCA selecting the most similar
features to the first PCA [46, 51].

Other filter approaches associate a score to feature subsets. In unsupervised case,
[25] also performs a constrained energy minimization to select a set of bands having
minimum correlation between each other. In supervised cases, separability mea-
sures such as Bhattacharyya or Jeffries-Matusita (JM) distances can be used in order
to identify the best feature subsets for separating classes [30, 35, 45, 52]. Other
separability measures based on the minimum estimated abundance covariance
(related to the ability of the band subset to correctly unmix several sources) have
also been used as in [53].

High-order statistics from information theory such as divergence, entropy and
mutual information can also be used to select the best feature sets achieving the
minimum redundancy and the maximum relevance, either in unsupervised situa-
tions as in [6, 22] or in supervised ones as in [14, 17, 54–56]. Martínez-Usó et al. [22]
first clusters ‘correlated’ features and then selects the most representative feature of
each group. Le Moan et al. [6] selects the three bands belonging to three red, green
and blue spectral domains so that their correlation is minimized. In supervised
cases, [14, 17, 54, 55, 57] select the set of bands that are more correlated to the
ground truth and less correlated to each other. The most difficult is then to balance
both criteria.

The orthogonal projection divergence [16] is another way to measure correlation
between bands by the extent to which it is possible to express one band as a linear
combination of the already selected bands. Last, [20] uses support vector clustering
applied to features in order to identify the most relevant ones.

To sum it up, there are many various filter criteria corresponding to different
approaches. Ranking methods according to an individual feature importance score
remain limited, especially the ones only based on a supervised score, since they are
not aware of the dependencies between selected features. Filter approaches associ-
ating a score to feature subsets are more interesting. Supervised and unsupervised
approaches can be distinguished. Unsupervised approaches are interesting, but in a
classification context, there is still a risk to select features that will not be all useful
for the classification problem.

2.1.2 Wrapper

Wrapper relevance score associated with a feature set simply corresponds to its
corresponding classification performance (measured by an accuracy score). Exam-
ples of such scores can be found in [14, 15, 58, 59] using SVM classifier, [60, 61]
maximum likelihood classifier, [21] random forests, [46] spectral angle mapper or
[26] a target detection algorithm.

2.1.3 Embedded

Embedded FS methods are also related to a classifier, but feature selection is
performed using a feature relevance score different from a classification accuracy.
Most of the time, embedded approaches directly select features during the classifier
training step. Several types of embedded FS approaches can be distinguished [62].

Some embedded approaches are regularization based models. A classifier is
trained according to an objective function where a fit-to-data term that minimizes
the classification error is associated with a regularization function, penalizing
models when the number of features increases or forcing model coefficients associ-
ated with some features to be small. Features with the coefficients close to 0 are
eliminated. Examples of some approaches can be found in [23, 31, 63]. They also
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include the L1-SVM [64] and the least absolute shrinkage and selection operator
(LASSO) FS [18, 63] approaches. Such approaches are fast and efficient. However,
it can be more difficult to adapt them, for instance, to take into account additional
constraints, since FS criterion and optimization method are linked.

Other embedded approaches use the built-in mechanism for feature selection in
the training algorithm of some classifiers. For instance, random forests (RF) [41]
and decision trees can be considered as performing an embedded feature selection,
since, when splitting a tree node, only the most discriminative feature according to
Gini impurity criterion is used among a feature subset randomly selected [41]. This
FS eliminates the less useful features, but there is no guarantee to select a parsimo-
nious feature subset: redundant features can be selected.

Some embedded approaches also provide feature importance measures, such as
random forest classifier [41]. It is processed on samples left out of the bootstrapped
samples and is based on the permutation decrease accuracy: the importance of a
feature is estimated by randomly permuting all its values in these samples for each
tree, as the difference averaged over all the trees between prediction accuracy
before and after permuting this feature. Other embedded approaches providing
feature importance use them in a pruning process that first uses all features to train
a model, before progressively eliminating some of them while maintaining model
performance. SVM-RFE [13] is a well-known embedded approach where the
importance of the different features in a SVM model is considered. Such approach
has been extended to multiple kernel SVM by [32], associating a different kernel to
each feature, estimating the model and then using the weights associated with these
kernels as feature importance measures.

Other approaches do not calculate a score of importance for each feature indi-
vidually, but evaluate the relevance of sets of features. Such scores often measure
the generalization performance of the obtained model. Thus, the FS is not directly
performed during the training step, but uses an intermediate result of the training
step. For instance, [37, 59] use the generalization performance, e.g. the margin of
a SVM classifier, as a separability measure to rank sets of features. The out-of-bag
error rate of a random forest [41] can also be considered as such score. These scores
are calculated for feature subsets and measure the generalization performance of
the model provided by the classifier. Thus, they can be considered as an alternative
between filter separability measures and wrapper scores.

Embedded approaches can also be extended to unmixing methods, as, for
instance, in [43] where band selection is integrated into an endmember and abun-
dance determination algorithm by incorporating band weights and a band sparsity
term into an objective function.

2.1.4 Optimization methods

Another issue for band selection is to determine the best set of features
corresponding to a given criteria. An exhaustive search is often impossible, espe-
cially for wrapper techniques. Therefore, heuristics have been proposed to find a
near-optimal solution without visiting the entire solution space. Optimization
methods can be either specific to a FS method (as for most embedded ones) or
generic. Generic optimization methods can be divided into two groups: sequential
and stochastic.

Several incremental search strategies have been detailed in [44], including the
sequential forward search (SFS) starting from one feature and incrementally adding
another feature making it possible to obtain the best score or on the opposite the
sequential backward search (SBS) starting for all possible features and incremen-
tally removing the worst feature. Variants such as sequential forward floating
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search (SFFS) or sequential backward floating search (SBFS) are proposed in [44].
Serpico and Bruzzone [24] also proposes a variant of these methods called steepest
ascent (SA) algorithms.

Among stochastic optimization strategies used for feature selection, several
algorithms have been used for feature selection, including genetic algorithms
[14, 15, 26, 37, 59], particle swarm optimization (PSO) [53, 58], clonal selection
[61], ant colony [65] or even simulated annealing [30, 40].

In the specific case of hyperspectral data, adjacent bands are often very corre-
lated to each other. Thus, hyperspectral band selection faces the problem of the
clustering of the spectral bands. Band clustering/grouping has sometimes been
performed in association with individual band selection. For instance, [15] first
groups adjacent bands according to conditional mutual information and then
performs band selection with the constraint that only one band can be selected per
cluster. Su et al. [66] performs band clustering applying k-means to band correla-
tion matrix and then iteratively removes the too inhomogeneous clusters and the
bands that are too different from the representative of their cluster. Martínez-
Usó et al. [22] first clusters ‘correlated’ features and then selects the most represen-
tative feature of each group, according to the mutual information. Chang et al. [40]
performs band clustering using a more global criterion taking specifically
into account the existence of several classes. Simulated annealing is used to maxi-
mise a cost function defined as the sum, over all clusters and over all classes, of
correlation coefficients between bands belonging to a same cluster.

3. Which band selection criterion?

This study is a comparison of FS criteria that can be optimized using generic
optimization heuristics, thus excluding several specific embedded or ranking
approaches. The following FS criteria (listed in Table 3) were evaluated.

3.1 Compared FS criteria

3.1.1 Filter FS criteria

Filter criteria are independent from any classifier. Only scores assessing the
relevance of feature subsets were considered, excluding filter FS methods
ranking features independently according to an individual feature score
(e.g. ReliefF).

3.1.1.1 Separability

Separability measures are used to identify the feature subsets achieving the
best class distinction. Fisher, Bhattacharyya and Jeffries-Matusita measures
[30, 35, 45, 52] are such scores. They were used assuming Gaussian class models.
Let μi

! and Σi be the mean and covariance matrices of the spectral distribution
of class i. Fisher separability between classes i and j is defined in equation (1)

Fij ¼
ðw! � μi! �μ!j

� ��2

t w! Σi þ Σj
� �

w!
 where w! ¼ Σi þ Σj

� ��1
μ
!
i � μj

!� �
(1)

Bhattacharyya separability between classes i and j is defined by equation 2.
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As Bhattacharyya and Fisher separability measures are defined for binary
problems, their mean overall possible pairs of classes were here used as FS criteria.
To sum it up, the next separability measures were used as FS criteria:

• Mean Fisher (fisher) separability measures calculated over all pairs of classes
(equation 3):

1
nb_pairs_of_classes

Xc�1
i¼1

Xc
j¼iþ1

Fij (3)

• Mean Bhattacharyya (Bdist) separability measures calculated over all pairs of
classes (equation 4):

1
nb_pairs_of_classes

Xc�1
i¼1

Xc
j¼iþ1

Bij (4)

• Jeffries-Matusita measure (jm) defined in equation 5:

JM ¼
Xc�1
i¼1

Xc
j¼iþ1

1� e�Bij
� �

(5)

Table 3.
Selected FS criteria to be compared.
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3.1.1.2 Mutual information

Another FS criterion based on high-order statistics from information theory, e.g.
mutual information (MI), was adapted from [14] and tested: it took into account
both feature-class dependencies and between feature correlations. It is defined in
equation 6.

J Sð Þ ¼
X
f ∈ S

I C; fð Þ � 1
#S

X
f ∈ S

X
s∈ S; s 6¼f

I  f ; sð Þ
H  fð Þ:H sð Þ (6)

for a feature subset S, where I C; fð Þ is the MI between feature f and classes,
I  f ; sð Þ is the MI between features f and s and H  fð Þ is the entropy of feature f . It is
referred to as mi in Table 3.

3.1.2 Wrapper and embedded FS criteria

Several classifiers were used to define wrapper scores related to their classifica-
tion performances achieved using feature subsets. Only fast classifiers which did
not require an optimization of hyper-parameters were used:

• Maximum likelihood classification (ML): assuming a Gaussian model for the
spectral distribution of classes, mean vectors and covariance matrices are
estimated for each class during the training step. Each new sample is then
labelled by its most probable class according to the model.

• SAM and SID: these classifiers are specific to hyperspectral data. The spectral
angle mapper (SAM) consists in classifying a sample according to the angle
between its spectrum and reference spectra. The spectral information divergence
[42] comes from dissimilarity measures between statistical distributions and
more precisely the Kullback-Leibler measure.

• Support Vector Machine (SVM) [67]: SVM has been intensively used to
classify remote sensing data and especially hyperspectral data [2, 15, 28].
Training a SVM classifier aims at estimating the best frontiers between classes.
Only a one-against-one linear SVM was used here. Indeed, it is fast and enables
to avoid an optimization of hyper-parameters, contrary to other kernels.
Besides, using a linear SVM introduces a constraint to select bands achieving a
linear separation between classes.

• Decision trees (DT) [19].

• Random forests (RF) [41] is a modification of bagging applied with decision
trees. It can achieve a classification accuracy comparable to boosting [41] or
SVM [33]. It does not require assumptions on the distribution of the data, which
is interesting when different types or scales of input features are used. It was
successfully applied to remote sensing data such as multispectral data,
hyperspectral data or multisource data. This ensemble classifier is a combination
of tree predictors built from multiple bootstrapped training samples. For each
node of a tree, a subset of features is randomly selected. Then, the best feature
with regard to Gini impurity measure is used for node splitting. For
classification, each tree gives a unit vote for the most popular class at each input
instance, and the final label is determined by a majority vote of all trees.
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These different classifiers were chosen because their underlying principles were
different from each other. SAM, SID and ML rely on class models, while the others
use inter-class separation models. RF can model even complex class frontiers
remaining quite fast, while linear SVM selects features achieving the most possible
linear separation between classes.

Wrapper FS scores measuring classification performance were considered:

• Kappa coefficient: for all of these classifiers, the Kappa coefficient has been
used as a FS score.

• Classification confidence score: in addition, another FS score taking into
account the classification confidence was also used [47]. Indeed, most
classifiers provide classification confidence indices and a class membership
measuring the degree to which the sample belongs to the different classes
according to the classifier. Let X ¼ xi; yi

� �� �
1≤ i≤ n be a set of labelled ground

truth samples xi and their associated true label yi. Let m x; cð Þ be the class
membership measuring the probability for x to belong to class c. A possible
feature selection score R taking into account class membership measures and
thus classification confidence can be defined by equation 7:

R Xð Þ ¼
Xn
i¼1

δ yi; c xið Þ
� �

:m xi; c xið Þð Þ (7)

with δ i; jð Þ ¼ �1f if i 6¼ j and 1 otherwise g and c xð Þ the label given to x by the
classifier. Such score measures both the ability to well classify the test samples for a
given feature set and the separability between classes. Indeed, the more the samples
are well classified, the more the score increases. The more the classifier is confident
for well-classified samples, the more the score increases. The more the classifier is
confident for bad-labelled samples, the more the score decreases. This confidence
score was used in our experiments only for RF and linear SVM classifiers.

Embedded FS criteria. The two following criteria measuring the generalization
performance of two classifiers were also tested. They are not pure embedded but
can be considered as intermediate between wrapper and embedded. However,
differentiating them from previous common wrapper scores, they are here referred
to as ‘embedded’ in the sense that they assess the classification performance directly
using a measure calculated directly while training the classifier and not after an
evaluation of the model on a test data set. These scores are:

• The margin of a linear 1-vs-1 SVM classifier (without parameter optimization)
(svm.lin.marg), that is to say the distance between the class frontier and its
support vectors.

• The out-of-bag error [41] of a RF classifier (rf.oob). The out-of-bag samples are
left out of the bootstrapped samples when training the RF.

3.2 Assessment approach

It must be kept in mind that study is a comparison of FS criteria and not of
optimization methods. Thus all were optimized using the same optimization heuris-
tics on the same classic hyperspectral data sets (3.3). The proposed workflow
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(Figure 1) includes two steps. The suitable number of bands to select is first estimated
for each data set, thanks to an incremental FS optimization algorithm called sequen-
tial forward floating search (SFFS) [44]. Then, the core comparison of FS criteria was
performed. They were optimized to select this fixed number of bands using a sto-
chastic FS optimization algorithm. A genetic algorithm (GA) (3.2.2) was used. Indeed,
it proved to be efficient and generic enough to be used for all tested criteria. Besides it
can provide valuable intermediate results (3.2.4) to assess FS stability. GA was
launched several times to select this fixed number of bands for all tested FS criteria. It
thus provided several possible band subset solutions. Indeed, performing FS several
times was also a way to benefit from the stochastic nature of GA and thus to explore
more band subset configurations. These different solutions were then quantitatively
evaluated, according to different classifiers, to be able to draw conclusions about their
relevance quite independently from a given classifier (3.2.3). Besides, to perform a
qualitative analysis of the obtained solutions (and especially their stability), band
importance measures were derived from intermediate results provided by this sto-
chastic FS (3.2.2). It enabled to visually identify the parts of the spectrum considered
as important by the FS criterion and to have a qualitative analysis concerning the
stability of the proposed band subset solutions according to the FS criterion.

In practice, for each FS criterion, the GA feature selection process was launched
five times on five limited data sets (100 training and 500 (300 for Indian Pines)
testing samples) randomly selected with replacement among the whole data set. To
sum it up, at the end, 25 ‘optimal’ feature subset solutions were thus obtained for
each criterion and had to be evaluated (Figure 2).

Figure 1.
Assessment process.
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3.2.1 Optimal band subset size using a sequential FS algorithm

Intermediate results of a sequential FS algorithm were used to identify how
many bands must be selected. In our experiments, the sequential forward floating
search (SFFS) algorithm was used [44].

This optimization method provides useful intermediate results. Indeed, it selects
the ‘best’ sets of bands for different band subset sizes, starting from 1. Thus, it
provides for each of them both the selected band subset (that could then be evalu-
ated according to the performance of several classifiers) and the value reached by
the FS score. Therefore, it enables to observe the evolution of FS score and classifi-
cation quality, with the number of selected bands and then to decide how many
bands are necessary to obtain suitable results. Other sequential methods as SVM-
RFE [13] or SFS could also provide such information, but contrary to them, SFFS
has the advantage to question at each step the selected set of bands obtained at the
previous step, which enables possible modifications in the already selected band
subset.

3.2.2 Band subset solutions using a genetic algorithm

Genetic algorithm (GA) is a family of stochastic optimization heuristics simu-
lating the evolution mechanisms on a population of individuals. A score measuring
its adaptation and its aptitude to stay alive is associated with each individual. In FS
context, each individual is a feature subset and the score is the FS score.

Algorithm 1 Genetic algorithm.

It is intended to select less than p bands among a band set B. J is the FS score to
optimize.

Figure 2.
Evaluation of FS criteria using band subsets obtained using a GA optimization.
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Initialization: (t 0) Randomly generate a population G 0ð Þ of N individuals,
i.e. N sets of p bands.
while t< tmax do

//generation loop
t tþ1
Calculate the score of each band subset of the current population.
Keep only the n (n<N) best band subsets of the current population. Let R tð Þ
be this remaining population.
Generate a new population G tð Þ of N individuals from R tð Þ:
for all new individual do

Randomly select 2 parents among R tð Þ.
Obtain a new individual by randomly crossing these 2 parents.
Random mutations occur (randomly replacing a selected band by another
one) in order to avoid to stay in a local optimum.

end for
end while

3.2.2.1 GA-derived importance measures

The GA approach has some advantages for our problem. First, only the best
solution is usually kept, while GA has visited many other candidates. Many of
them have scores quite similar to the score of the best solution: they are almost as
good as the final solution. Therefore, these intermediate results can be used to
determine which bands are often selected in the solutions (see Figure 3) of these
intermediate good band subset populations [27]. Thus, an individual band impor-
tance score I bð Þ (defined in equation 8) is calculated for each band b, measuring the
occurrence at which it has been selected by GA among the different n best sets of
bands obtained for all generations

I bð Þ ¼
X
t

X
R∈L tð Þ

δ b;R tð Þð Þwhere δ b;Rð Þ ¼ 1 if b∈R,0 otherwise: (8)

To increase robustness, GA can be launched several times (i.e. so that different
initializations and mutations occur) and over several training/testing sets randomly
extracted from the whole data set. The proposed importance score is calculated
for each of these results. Finally, the mean of these scores is considered for each
band, giving the importance associated with this band.

3.2.3 Quantitative evaluation

In state of the art, FS is often considered as a first step in a specific
classification workflow. In this context, wrappers are considered as achieving the
best classification performance for a problem while sometimes lacking
generality and being too classifier dependent. However, in our superspectral sensor
design context, selected band subsets must be as efficient as possible for most
classifiers and not only for the used FS criteria. Therefore, selected band subsets
were here evaluated considering their classification quality reached with several
classifiers.

Kappa coefficient was used as classification quality measure for the next
classifiers: ML, RF and 1-vs-1 SVM with a radial basis function (RBF) kernel (with
optimized parameters). It can here be noted that the latter was the only one not
involved previously in a tested FS criterion. Thus, RBF SVM is the only classifier
that is completely independent from all tested FS criteria. To come into details,
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evaluation was performed and averaged on five training/testing sample sets: for
each of them, classifiers were trained using 50 samples per class (in order to be in a
difficult case with few training samples), and results were evaluated on all
remaining ground truth samples. For each FS criterion, all selected band subsets
(obtained for the several launches of the algorithm) were evaluated, and the mean
Kappa coefficient was then computed over all of them (see Figure 2).

3.2.4 Selected band stability

Another evaluation criterion of the FS criteria quality was the stability of
the selected features. As explained in Section 3.2.2, band importance profiles
(Figure 3) can be derived from intermediate results of a GA feature selection. As
the contiguous bands in hyperspectral data are correlated, such band importance
profile should be quite regular and smooth (i.e. not too noisy). The smoothness/
regularity of these profiles is thus related to the stability of the solutions
obtained using a FS criterion. Furthermore, the final optimal solutions provided
by the different launch of GA can also be examined. This analysis remains only
qualitative.

3.3 Data sets

Three state-of-the-art available hyperspectral data sets were used for the
experiments:

• Pavia City Centre scene1: This first data set is a hyperspectral scene
acquired by the ROSIS sensor over the city centre of Pavia with a 1.3 m
spatial resolution. It is a reflectance VNIR hyperspectral image with a

Figure 3.
Each line is a band subset selected in the intermediate results of GA, and each black dot represents a selected
band. Blue histogram represents the importance associated with each band.

1 Pavia data set is provided by Pavia University available at http://www.ehu.eus/ccwintco/index.php?

title=Hyperspectral_Remote_Sensing_Scenes.
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spectral resolution ranging from 460 nm to 860 nm. Noisy bands have
been discarded, and only 102 spectral bands from the original 115 bands
have been kept. It covers an urban area (city centre). Its associated
land cover ground truth consists of nine urban classes (materials and
vegetation).

• Indian Pines scene2: This hyperspectral scene was collected by the AVIRIS
sensor over the Indian Pines test site in North-western Indiana. It is a radiance
VNIR-SWIR hyperspectral image consisting of 220 spectral bands ranging
from 400 to 2500 nm. Its associated ground truth consists of agricultural
classes and other classes concerning perennial vegetation (forest, grass). In our
experiments, only nine classes out of the original were kept. The discarded
classes concerned less than 400 samples, which were considered as too few for
our experiments.

• Salinas scene3: This hyperspectral scene was collected by the AVIRIS sensor
over the Salinas Valley in California at a 3.7 m spatial resolution. It is an at-
sensor radiance VNIR-SWIR hyperspectral image consisting of 224 spectral
bands ranging from 400 to 2500 nm. Its associated ground truth consists of
agricultural classes, that is to say different kinds of culture at different
growing steps.

3.4 Results and discussion

3.4.1 Optimal number of bands using SFFS

An optimal number of bands to select was identified using SFFS incremental FS
method, starting from one selected band and incrementing the band subset until a
maximal number of bands. Indeed, this maximum number of bands was fixed to 20
considering the superspectral sensor design application, for which the number of
possible spectral bands is limited. In practice, the influence of the number of
selected bands on the FS score and on the classification performance (measured by
Kappa and the F-score of the worst classified class) for a RBF SVM classifier using
the best selected band subset was considered. The optimal number of bands was
chosen as the one from which these scores virtually no longer increase. Results
obtained using several FS scores were also considered to make this decision, and at
the end, the number of bands to select is a trade-off between several FS criteria.

For Pavia data set, the influence of the number of selected bands on the FS score
and on the classification performance (measured by Kappa and the F-score of the
worst classified class) for a RBF SVM classifier using the best selected band subset
can be seen in Figure 4. The different quality indices no longer evolve a lot from
five bands, except the minimal F-score increasing slightly up to seven bands. Sim-
ilar results were obtained using several FS criteria, even though some differences
exist. For instance, the quality indices increased slower for jm than for rf.conf in
Figure 4. Thus seven bands were selected for Pavia data set for further
experiments.

2 Indian Pines data set is provided by Purdue University and available at https://engineering.purdue.ed

u/�biehl/MultiSpec/hyperspectral.html.
3 Salinas data set was downloaded from http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_

Remote_Sensing_Scenes.
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The same kind of results was obtained for Salinas, and seven bands were also
selected for this data set in further experiments.

For Indian Pines, obtained results are slightly different as shown in Figure 5.
The FS score increases fastly until seven bands are selected. Then, it remains quite
constant for rf.conf but continues to very slightly increase for jm. The same
phenomenon can be observed for classification accuracies reached by a RBF SVM
classifier using the selected band subsets. For rf.conf FS criterion, a maximum is
reached around 10–11 selected bands, while for jm, a stage is reached for these
values followed by a new slight increase.

However, it must be kept in mind that this data set is more difficult than the
other ones. Indeed, on the one hand, it offers less training/testing samples (and thus
an increased risk of over-fitting). On the other hand, classes are more difficult to
distinguish to each other, and raw classification results (that is to say without any
regularization post-processing step) remain noisy. Thus 10 bands were selected in
further experiments for Indian Pines data set.

3.4.2 Comparison of FS criteria

GA optimization heuristic was then launched to select 7 bands for Pavia, 10
bands for Indian Pines and 7 bands for Salinas. For each FS score, several feature
subset solutions were proposed using GA. Their classification quality rate (Kappa)
(averaged over all of them) using several classifiers is presented in Figure 6. At the
first glance, most of the time, Kappa coefficients reached using features selected
according to different FS scores are correlated over the different classifiers (RBF
SVM, RF and ML) used for evaluation. Indeed, if a FS score leads to the best
classification for a classifier, it will also generally be the best for the other classifiers.
Thus the relevance of score appeared to be quite independent from the classifier
used at validation step.

Figure 4.
Pavia test site: influence of the number of selected bands on the feature selection score (left) and on classification
performance (using the best band subset with a RBF SVM classifier) (right with kappa coefficient for the blue
line and F-score of the worst classified class for the red line). Two FS criteria tested: rf.conf (top) and jm
(bottom).
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It can also be noticed from Figure 6 that the best FS scores lead to quite
equivalent classification quality. This is clearly visible for Pavia and to a less extent
for Salinas. On the opposite, results are more contrasted on Indian Pines. This might
be due to the fact that Indian Pines is a more difficult data set, with a stronger intra-
class variability and inter-class similarity, whereas Pavia is a quite simple data set
with few well-distinguished classes. These results will now be discussed for each
category of FS criteria. Band importance provided by GA will also be considered.

3.4.2.1 Comparison of wrapper criteria

It can be seen from Figure 6 that the FS scores sam.K and sid.K are less good than
the other wrapper scores. This phenomenon appears strongly for Indian Pines and
Salinas and is also a light trend for Pavia. The fact that it is more striking on Indian
Pines scene can be related to the important intra-class variability of this data set.

The other wrapper scores relying on Kappa coefficient as a measure of classifi-
cation performance lead to quite equivalent quantitative results. However, band
importance profiles (Figures 7 and 8) provide other additional information. For
instance, for Pavia data set (Figure 7), the FS score svm.lin.K tends to select the first
bands (around band 5) of the spectrum, even though these bands are quite noisy.
ml.K score performs very well considering classification performance but tends to
be very sensitive to a probable atmospheric artefact, paying a lot of importance to
bands from band 80 to band 85 and especially to band 82. This part of the spectrum
corresponds to an atmospheric correction artefact, and not to a true discriminant
phenomenon. This trend to select bands corresponding to this artefact is also
observed for other FS scores.

Using classification confidence-based FS scores instead of classic classification
accuracy scores tends to improve results. This trend can be observed in Figure 6
both for RF and SVM: using rf.conf instead of rf.K or using svm.lin.conf instead of

Figure 5.
Indian Pines test site: Influence of the number of selected bands on the feature selection score (left) and on
classification performance (using the best band subset with a RBF SVM classifier) (right with kappa coefficient
for the blue line and F-score of the worst classified class for the red line). Two FS criteria tested: rf.conf (top)
and jm (bottom).
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svm.conf tends to slightly improve classification quality. Considering band impor-
tance profiles obtained for Pavia (Figure 7), using rf.conf instead of rf.K avoids to
select the noisy bands around band five. Band importance profiles obtained using rf.
conf also seem to be slightly more regular than using rf.K both for Pavia (Figure 7)

Figure 6.
Mean kappa coefficients obtained by classifiers RBF kernel SVM (red), RF (blue) and ML (yellow) using band
subsets selected using the different FS criteria for the three data sets. From (a-c): Pavia, Indian Pines and
Salinas.

Figure 7.
Pavia test site: band importance profiles obtained using several FS criteria: (a) ml.K, (b) svm.lin.K, (c) rf.K
and (d) rf.conf.
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and Indian Pines (Figure 8). Thus, using a confidence-based FS score tends to
regularize feature importances and thus to stabilize feature selection.

3.4.2.2 Comparison of wrapper and embedded criteria

Classification qualities reached using both tested embedded criteria (svm.lin.
marg and rf.oob) appeared to be generally less good than using the wrapper scores
associated with these two classifiers. This is especially clear for svm.lin.marg, which
is the worst FS score, for all classifiers used at evaluation step.

Even though it performs quite well, feature subsets selected using rf.oob lead
generally to worse classification performance than using the best wrapper scores,
and especially rf.K and rf.conf, also associated to random forests.

3.4.2.3 Comparison of wrapper and filter criteria

Considering classification quality (Figure 6), mutual information (mi) leads to
different results for the various data sets: on Pavia data set, feature subsets selected
according to this FS score enable to reach classification performance as good as
the best wrapper scores, while on Indian Pines data set, obtained results are among
the worst. Band importance profiles (Figures 9 and 10) obtained using mi are also
very different from those obtained for the other FS scores: they tend to neglect wide
parts of the spectrum. This is especially striking for Indian Pines data set, where
bands from 30 to 100 are not considered as important, contrary to other FS scores.

The other tested filter FS scores are separability measures. They perform very
well considering classification quality (Figure 6): they lead to classification results
as good or better than those obtained using the best wrapper FS scores. In
particular, the Jeffries-Matusita separability distance (jm) appears to be one of
the best FS scores.

However, considering band importance profiles obtained for Pavia (Figure 9)
using jm, it tends to strongly focus on a part of the spectrum (bands 80 to 85)
concerned by artefacts caused by atmospheric corrections. This phenomenon also

Figure 8.
Indian Pines test site: band importance profiles obtained using several FS criteria: (a) ml.K, (b) svm.lin.K,
(c) rf.K and (d) rf.conf.
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and Indian Pines (Figure 8). Thus, using a confidence-based FS score tends to
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associated with these two classifiers. This is especially clear for svm.lin.marg, which
is the worst FS score, for all classifiers used at evaluation step.

Even though it performs quite well, feature subsets selected using rf.oob lead
generally to worse classification performance than using the best wrapper scores,
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3.4.2.3 Comparison of wrapper and filter criteria

Considering classification quality (Figure 6), mutual information (mi) leads to
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the best wrapper scores, while on Indian Pines data set, obtained results are among
the worst. Band importance profiles (Figures 9 and 10) obtained using mi are also
very different from those obtained for the other FS scores: they tend to neglect wide
parts of the spectrum. This is especially striking for Indian Pines data set, where
bands from 30 to 100 are not considered as important, contrary to other FS scores.

The other tested filter FS scores are separability measures. They perform very
well considering classification quality (Figure 6): they lead to classification results
as good or better than those obtained using the best wrapper FS scores. In
particular, the Jeffries-Matusita separability distance (jm) appears to be one of
the best FS scores.

However, considering band importance profiles obtained for Pavia (Figure 9)
using jm, it tends to strongly focus on a part of the spectrum (bands 80 to 85)
concerned by artefacts caused by atmospheric corrections. This phenomenon also

Figure 8.
Indian Pines test site: band importance profiles obtained using several FS criteria: (a) ml.K, (b) svm.lin.K,
(c) rf.K and (d) rf.conf.
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occurred for bdist and fisher and, as explained above, was also observed for some
wrapper FS scores.

Furthermore, band importance profiles obtained using jm FS score seem
slightly more noisy or more difficult to interpret than using the best wrapper
FS scores (rf.K,rf.conf).

3.4.3 Conclusion

FS score comparison. Some wrapper, embedded and filter FS scores were tested
and evaluated on several data sets:

• svm.lin.marg appears clearly as the worst of them, performing poorly on all
data sets.

• Other ones (sam.K, sid.K and im) perform quite good on simple data sets but
poorly on the most difficult one (Indian Pines).

• Most perform well, leading to good classification performance. The best FS
scores are filter separability measures or wrapper FS scores. However some
slight trends can be observed:

◦ Filter separability scores tend to lead to slightly better classification results
than wrapper scores. Especially jm often appears as the best FS score
according to quantitative analysis. However, considering band importance
profiles, it tends to lead to less regular profiles and thus to less stable
solutions than some wrapper scores. Besides they appear to be sensitive to
an atmospheric correction artifact for Pavia data set.

Figure 9.
Pavia test site. Band importance profiles obtained using several FS criteria: (a) JM distance and (b) mutual
information.

Figure 10.
Indian Pines test site. Band importance profiles obtained using several FS criteria: (a) JM distance and
(b) mutual information.
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◦ Confidence-based wrapper scores taking into account classification
confidence (rf.conf or svm.lin.conf) perform better than classic wrapper
scores expressed as a simple classification “hard label” error rate. This
trend could be observed both in quantitative (classification performance)
and qualitative (band importance profiles) analyses. Indeed, taking into
account classification confidence tends to regularize feature importances
and provide more stable feature subsets.

At the end, the most interesting FS scores are rf.conf for wrappers and jm for
filters, since they lead to the best quantitative results. rf.conf seems to provide more
stable results than jm, considering its more regularized band importance profile.
Besides it is more robust to some artefacts (e.g. atmospheric correction artefact for
Pavia). However, even though computing times were not discussed in this study, it
must be added that FS selection using filter separability measures (such as jm) is
faster than using wrapper scores such as rf.conf.

Thematic comments. Conclusions about interesting spectrum parts can be
drawn using the importance profiles provided by the different FS criteria:

• Optimized spectral configurations are different from one FS criterion to
another. Indeed, some parts of the spectrum are identified as important by
most FS criteria, but other ones correspond to a clear disagreement.

• Spectrum parts considered as important can often be understood considering
the spectra of classes. Indeed, they can correspond to almost constant
spectrum parts located before or after a strong variation of spectra of some
classes. They can also correspond to intersections between the spectra of
several classes.

• For Indian Pines and Salinas scenes, no precaution was taken to handle noisy
bands corresponding to the main atmospheric absorption windows. However,
importance measures associated with these bands were very weak for most
FS criteria (except the worse of them). Such observation can be considered as
an additional quality criterion for the tested FS scores.

• Band importance profiles obtained for Indian Pines are often more difficult
to analyse than for Pavia. Nevertheless, some common trends could be
observed, especially in the SWIR domain, where some blobs along the
spectrum are visible for most FS criteria and might correspond approximately
to the locations of some spectral bands of the WorldView-3 satellite.

4. Exploring bandwidth and extracting optimal spectral bands using
hierarchical band merging

Works in the previous section were dedicated to the identification of a FS score.
It was used for band selection, that is to say to select a subset of original bands out
of a hyperspectral data set (without optimizing their weights). This section will
focus on band extraction and will consider band subsets composed of spectral bands
with different spectral widths. Indeed, optimizing spectral width is important to
design a spectral sensor, as having wider bands is a way to limit signal noise while
having too wide bands can also lead to a loss a useful information.
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4.1 Band grouping and band extraction: state of the art and proposed strategy

4.1.1 State of the art

Band grouping and clustering. In the specific case of hyperspectral data, adjacent
bands are often very correlated to each other. Thus, band selection encounters the
question of the clustering of the spectral bands of a hyperspectral data set. This can
be a way to limit the band selection solution space. Band clustering/grouping has
sometimes been performed in association with individual band selection. For
instance, [15] first groups adjacent bands according to conditional mutual informa-
tion and then performs band selection with the constraint that only one band can be
selected per cluster. Su et al. [66] performs band clustering applying k-means to
band correlation matrix and then iteratively removes the too inhomogeneous clus-
ters and the bands too different from the representative of the cluster to which they
belong. Martínez-Usó et al. [22] first clusters ‘correlated’ features and then selects
the most representative feature of each group, according to mutual information.
Chang et al. [40] performs band clustering using a more global criterion taking
specifically into account the existence of several classes: simulated annealing is used
to maximise a cost function defined as the sum, over all clusters and over all classes,
of the sum of correlation coefficients between bands belonging to a same cluster.
Bigdeli et al. and Prasad et al. [38, 68] perform band clustering, but not for band
extraction: a multiple SVM classifier is defined, training one SVM classifier per
cluster. Bigdeli et al. [68] has compared several band clustering/grouping methods,
including k-means applied to the correlation matrix or an approach considering the
local minima of mutual information between adjacent bands as cluster borders.
Prasad and Bruce [38] proposes another band grouping strategy, starting from the
first band of the spectrum and progressively growing it with adjacent bands until a
stopping condition based on mutual information is reached.

Band extraction. Specific band grouping approaches have been proposed for
spectral optimization. De Backer et al. [30] defines spectral bands by Gaussian
windows along the spectrum and proposes a band extraction optimizing score based
on a separability criterion (Bhattacharyya error bound) thanks to a simulated
annealing. [34] merges bands according to a criteria based on mutual information.
Jensen and Solberg [69] merges adjacent bands decomposing some reference spec-
tra of several classes into piece-wise constant functions. Wiersma and Landgrebe
[70] defines optimal band subsets using an analytical model considering spectra
reconstruction errors. Serpico and Moser [52] proposes an adaptation of his steepest
ascent algorithm to band extraction, also optimizing a JM separability measure.
Minet et al. [26] applies genetic algorithms to define the most appropriate spectral
bands for target detection. Last, some studies have also studied the impact of
spectral resolution [71], without selecting an optimal band subset.

4.1.2 Proposed approach

The approach proposed in this study consists in first building a hierarchy of
groups of adjacent bands. Then, band selection is performed at the different levels
of this hierarchy.

Thus, it is here intended to use the hierarchy of groups of adjacent bands as a
constraint for band extraction and a way to limit the number of possible combina-
tions, contrary to some existing band extraction approaches such as [52] that extract
optimal bands according to JM information using an adapted optimization method
or [26] that directly use a genetic algorithm to optimize a wrapper score.

90

Geographic Information Systems in Geospatial Intelligence

4.2 Hierarchical band merging

The first step of the proposed approach consists in building a hierarchy of groups
of adjacent bands that are then merged. Even though it is here intended to be used
to select an optimal band subset, this hierarchy of merged bands can also be a way
to explore several band configurations with varying spectral resolution, that is to
say with contiguous bands with different bandwidth.

4.2.1 Proposed algorithm

Notations. Let B ¼ λif g0≤ i≤ nbands be the (ordered) set of original bands. Let

H ¼ H ið Þ� �
0≤ i< nlevels be the hierarchy of merged bands. H ið Þ ¼ H ið Þ

j

n o
1≤ j≤ ni

is the

ith level of this hierarchy of merged bands. It is composed of ni merged bands, that
is to say ni ordered groups of adjacent bands from B.

Thus, each H ið Þ
j is defined as a spectral domain:

H ið Þ
j ¼ H ið Þ

j :λmin;H
ið Þ
j :λmax

h i

Thus, the merged band B1 ⊕B2 obtained when merging two such adjacent
merged bands B1 and B2 is B1 ⊕B2 ¼ B1:λmin;B2:λmax½ �.

Let J :ð Þ be the score that has to be optimized during the band merging process.
The proposed hierarchical band merging approach is a bottom-up one. The

algorithm is defined below:
Initialization: H 0ð Þ ¼ B (that is to say that each merged band of the first level of

the hierarchy only contains one individual original band).
Band merging: create level l + 1 from level l:
Find the pair of adjacent bands at level l that will optimize the score if they are

merged: find k̂ ¼ argminkJ T H lð Þ; k
� �� �

with

T H lð Þ; k
� � ¼ H lð Þ

0 ;…;H lð Þ
k�1;H

lð Þ
k ⊕H lð Þ

kþ1;H
lð Þ
kþ2;…;H lð Þ

nl

h i
Þ.

Then H lþ1ð Þ ¼ T H lð Þ; k̂
� �

.

A table Llþ1
l is defined to link the different merged bands at consecutive hierar-

chy levels:

for 1≤ j≤ k̂, Llþ1
l H lð Þ

j

� �
¼ H lþ1ð Þ

j

Llþ1
l Hk̂

lð Þ� �
¼ Hk̂ lþ1ð Þ

Llþ1
l Hk̂

lð Þ þ 1
� �

¼ Hk̂ lþ1ð Þ

for k̂ þ 2≤ j≤ nl, Llþ1
l H lð Þ

j

� �
¼ H lþ1ð Þ

j�1 .

At the end, the value of a pixel in a merged band is defined as the mean of its
values over the different bands it contains.

4.2.2 Band merging criteria

Several optimization scores J were examined. (In the algorithm described
in Section 4.2.1, this score is aimed to be minimized.) They can be either
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supervised or unsupervised, depending whether classes are considered or not at
this step.

4.2.2.1 Correlation between bands

Between band correlation (either the classic normalized correlation coefficient
or mutual information) (see Figure 11) measures the dependence between bands.
So a first band merging criterion intends to merge adjacent bands considering how
they are correlated to each other. Thus, it tries to obtain consistent groups of
adjacent correlated bands.

Such measure inspired from [40] can be defined by the next function in
equation 9 (intended to be minimized):

J H lð Þ
� �

¼
Xnl
i¼1

XH lð Þ
i :λmax

b1¼H lð Þ
i :λmin

XH lð Þ
i :λmax

b2¼H lð Þ
i :λmin

1� c b1; b2ð Þð Þ (9)

where c b1; b2ð Þ is the correlation score between bands b1 and b2.

4.2.2.2 Spectra approximation error

Band merging can also use the method as described in [69] to decompose some
reference spectra of several classes into piece-wise constant functions (Figure 12).
Adjacent bands are then merged trying to minimize the reconstruction error
between the original and the piece-wise constant reconstructed spectra.

Such measure is defined by the next function (see equation 10) for a set sj1≤ j≤ ns
of ns spectra:

J H lð Þ
� �

¼
Xns
j¼1

Xnl
i¼1

XH lð Þ
i :λmax

b¼H lð Þ
i :λmin

∣sj bð Þ �mean sj;H
lð Þ
i

� �
∣ (10)

where mean sj;H
lð Þ
i

� �
denotes the mean of spectra sj over spectral domain H lð Þ

i .

Figure 11.
Examples of groups of bands superimposed on the band correlation matrix (for Pavia data set).
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4.2.2.3 Separability

Another criterion to merge adjacent band is their contribution to separability
between classes. Possible separability measures are the Bhattacharyya distance
(B-distance) or the Jeffries-Matusita distance [35, 52] already used as FS score in 3.

At a level of the band merging hierarchy, the best set of merged bands is the one
that maximizes class separability. So a possible criterion J (to minimize) for band
merging can be defined by equation 11 as

J H lð Þ
� �

¼ �JM H lð Þ
� �

(11)

4.2.3 Results

Figure 13 shows results on Pavia data set for the three criteria described in the
previous section. The separability-based criterion tends to lead to more different
results than the other ones. The different criteria do not consider the same parts of
the spectrum as having to be kept at fine resolution. For instance, correlation or
spectra reconstruction criteria tend to fast merge bands between number 30 and 32,
while separability tends to preserve them at fine resolution. On the opposite, sepa-
rability tends to fast merge some bands in the red-edge domain, while the other
criteria keep this domain at fine resolution. This can be understood considering the
underlying criteria; indeed adjacent bands are not very correlated to each other in
this domain, and the slope of spectra is strong for vegetation classes; thus they
cannot be merged easily according to correlation or spectra approximation error
band merging criteria. On the opposite, the only interesting information for classi-
fication (e.g. for class separability) is the fact there is a slope there and thus the
values of the bands before and after this domain. Thus, merging these red-edge
bands will have a little impact on class separability.

As the hierarchy of merged bands can also be a way to explore several band
configurations with varying contiguous bands with different spectral resolution, the
different band configurations corresponding to the different levels were evaluated
using a classification quality measure. Thus, for each level, a classification was
performed using a support vector machine (SVM) classifier with a radial basis
function (rbf) kernel and evaluated. Its Kappa coefficient was considered.

Such results are presented on Figure 14. It can be seen that some spectral config-
urations made it possible to obtain better results than at original spectral resolution.
Configurations obtained using the correlation coefficient are generally less good than
for the two other criteria. Except for Pavia, the spectra piece-wise approximation

Figure 12.
On the left, examples of merged bands superimposed on the original reference spectra. On the right, piece-wise
constant reconstructed spectra for these merged bands (Pavia data set).
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Figure 13.
Hierarchies of merged bands obtained for different criteria for Pavia data set: Spectra piece-wise approximation
error (top), between band correlation (middle) and class separability (bottom). X-axis corresponds to the band
numbers/wavelengths. y-axis corresponds to the level in the band merging hierarchy (bottom, finest level with
original bands; top, only a single merged band). Vertical black lines are the limits between merged bands: the
lower the hierarchy, the more the merged bands are. Reference spectra of the classes are displayed in colour.
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error merging criterion tends to lead to the best results. But for Pavia, the classifica-
tion Kappa reached using the different criteria remained very similar.

4.3 Band selection within the hierarchy

4.3.1 Greedy algorithm

To optimize spectral configuration for a limited number of merged bands, a
greedy approach was first used: it performed band selection at the different levels
of the hierarchy of merged bands, paying no attention at results obtained at the
previous level. Thus a set of merged bands was selected at each level of
the hierarchy.

The feature selection (FS) score to optimize was the JM separability measure.
It was optimized at each level of the hierarchy using an SFFS incremental
optimization heuristic [44].

4.3.1.1 Results

Obtained results on Pavia data set are presented on Figure 15: five merged bands
(as in [27]) were selected at each level of the hierarchy of merged bands. The
positions of the selected merged bands do not change a lot when climbing the
hierarchy, except when reaching the lowest spectral resolution configurations. At
some levels of the hierarchy, the position of some selected merged bands can also
move and then come back to its initial position when climbing the hierarchy.

Thus, it can be possible to use the selected bands at a level l to initialize the
algorithm at the next level lþ 1. This modified method will be presented in
Section 4.3.2.

Figure 14.
Kappa (in %) reached by a rbf SVM for the different band configurations of the hierarchy (x-axis = number of
merged bands in the spectral configuration corresponding to the hierarchy level): for Pavia (top), Indian Pines
(middle) and Salinas (bottom) data sets.
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Figure 15.
Pavia data set: selected bands at the different levels of the hierarchy using the greedy approach for hierarchies of
merged bands obtained using different band merging criteria: spectra piece-wise approximation error (top),
between band correlation (middle) and class separability (bottom); x-axis corresponds to the band numbers/
wavelengths; y-axis corresponds to the level in the band merging hierarchy (bottom—finest level with original
bands; and top—only a single merged band).
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The merged band subsets selected at the different levels of the hierarchy were
evaluated according to a classification quality measure. As in the previous section,
the Kappa coefficient reached by a rbf SVM was considered. Results for Pavia and
Indian Pines data sets can be seen in Figure 16. At each level of the hierarchy, 5
bands were selected for Pavia, and 10 bands for Indian Pines. It can be seen that
these accuracies remain very close to each other whatever the band merging crite-
rion used, and no band merging criterion tends to really be better than the other
ones. Results obtained using merged bands are generally better than using the
original bands.

4.3.2 Taking into account the band merging hierarchy during selection

4.3.2.1 Proposed algorithm

The previous merged band selection approach is greedy and computing time
expensive. So an adaptation of the SFFS heuristic was proposed to directly take into
account the band merging hierarchy in the band selection process. As for the
hierarchical band merging algorithm, a bottom-up approach was chosen. Contrary
to the greedy approach, this one uses the band subset selected at the previous lower
level when performing band selection at a new level of the hierarchy of merged
bands. This algorithm is described below:
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Let S lð Þ ¼ fS lð Þ
i g1≤ i≤ p be the set of selected merged bands at level l of the

hierarchy. (NB: the same number p of bands is selected at each level of the hierarchy.)
Initialization: standard SFFS band selection algorithm is applied to the base

level H 0ð Þ of the hierarchy.
Iterations over the levels of the hierarchy:
Generate S lþ1ð Þ from S lð Þ:
S lþ1ð Þ  fLlþ1

l S lð Þ
i

� �
g1≤ i≤ p

Remove possible duplications from S lþ1ð Þ.
if #S lþ1ð Þ < p,
find

s ¼ argmaxb∈H lþ1ð Þ S lþ1ð Þ J S lþ1ð Þ∪b
� �

S lþ1ð Þ  fS lþ1ð Þ; sg

endif
Question S lþ1ð Þ: find band s∈ S lþ1ð Þ such that S lþ1ð Þ\ sf g maximizes FS score, i.e.

s ¼ argmaxz∈ S lþ1ð Þ J S lþ1ð Þ\ sf g
� �

.

S lþ1ð Þ  S lþ1ð Þ\fsg

Then apply classic SFFS algorithm until #S lþ1ð Þ ¼ p.

4.3.2.2 Results

Obtained results on Pavia scene for the band merging criterion ‘spectra piece-
wise approximation error’ are presented in Figure 17: five merged bands were
selected at each level of the hierarchy, starting from an initial solution obtained at
the bottom level of the hierarchy.

As for previous experiments, obtained results were evaluated both for Pavia
(5 selected bands) and Indian Pines (10 selected bands) data sets. Kappa reached for
rbf SVM classification for merged band subsets selected at the different levels of the
hierarchy (built for band merging criterion ‘spectra piece-wise approximation

Figure 17.
Pavia data set: Selected bands at the different levels of the hierarchy using the proposed hierarchy aware
algorithm for a hierarchy of merged bands obtained using spectra piece-wise approximation error band merging
criteria.
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error’) can be seen both for the greedy FS algorithm and for the hierarchy aware
one in Figure 18: obtained results remain very close, whatever the optimization
algorithm.

Both algorithms lead to equivalent results considering classification performance
(see Table 4), while the proposed hierarchy aware algorithm is really faster.

5. Conclusion

Hyperspectral imagery consists of hundreds of contiguous spectral bands, but
only a subset of well-chosen bands is generally sufficient for a specific classification

Figure 18.
Kappa (in %) reached for rbf SVM classification for merged band subsets selected at the different levels of the
hierarchy (built for band merging criterion ‘spectra piece-wise approximation error’) for Pavia and Indian
Pines data sets, using the hierarchy aware band selection algorithm.

Table 4.
Computing times and best kappa coefficients reached on Pavia (for a 5-band subset) and Indian Pines
(for a 10-band subset) data sets for band merging criterion ‘spectra piece-wise approximation error’.
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problem. So it is possible to design superspectral sensors dedicated to specific land
cover classification tasks. This chapter presented a spectral optimization strategy to
identify the most relevant spectral band subset for such sensor, optimizing both
band position and width. Spectral optimization involves a band subset relevance
score as well as a method to optimize it.

This study first focused on the definition of this relevance score. Several filter,
wrapper and embedded scores compatible with generic optimization heuristics
were compared, and both their classification performance and selection stability
were considered for band selection problem. At the end, most of them brought good
results. Jeffries-Matusita distance score tended to lead to slightly better quantitative
classification results than the best wrapper scores but also being less stable. Wrap-
per scores taking into account classification confidence performed better than clas-
sic wrapper scores expressed as a simple classification “hard label” error rate. For
instance, a random forest confidence-based score was identified as one of the best
criteria, considering both quantitative and qualitative analyses. As an intermediate
result of this FS criteria comparison, a method to create band importance profiles
according to the different criteria was proposed providing visual hints about the
relevance of the different parts of the spectrum. Then the study focused on the
optimization of bandwidth, which is important in a spectral sensor design context,
as having wider bands is a way to limit signal noise while having too wide bands can
also lead to a loss a useful information. A strategy consisting in building a hierarchy
of groups of adjacent bands before applying band selection at the different levels of
this hierarchy using an adaptation of an incremental algorithm for this problem.
This band grouping strategy enabled to limit the problem’s combinatory while
considering relevant band subsets composed of spectral bands with different spec-
tral widths. It was also a way to consider several possible solutions and evaluate
their impact.

To conclude, algorithms proposed in this study were applied to design a sensor
dedicated to classify urban materials [36, 72].
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Chapter 6

Clustering Techniques for Land
Use Land Cover Classification of
Remotely Sensed Images
Debasish Chakraborty

Abstract

Image processing is growing fast and persistently. The idea of remotely sensed
image clustering is to categorize the image into meaningful land use land cover
classes with respect to a particular application. Image clustering is a technique to
group an image into units or categories that are homogeneous with respect to one or
more characteristics. There are many algorithms and techniques that have been
developed to solve image clustering problems, though, none of the method is a
general solution. This chapter will highlight the various clustering techniques that
bring together the current development on clustering and explores the potentiality
of those techniques in extracting earth surface features information from high
spatial resolution remotely sensed imageries. It also will provide an insight about the
existing mathematical methods and its application to image clustering. Special
emphasis will be given on Hölder exponent (HE) and Variance (VAR). HE and VAR
are well-established techniques for texture analysis. This chapter will highlight
about the Hölder exponent and variance-based clustering method for classifying
land use/land cover in high spatial resolution remotely sensed images.

Keywords: remote sensing image, clustering, classification, land use, land cover,
features, extraction

1. Introduction

High spatial resolution remotely sensed imagery helps to obtain quality and
detailed information about the earth’s surface features in conjunction with their
geographical associations. The internal changeability within the identical land-use
land-cover units augments with the rise of resolution. The augmented changeability
diminishes the statistical distinguishability of land-use/land-cover classes in the
spectral data space. This reduced distinguishability tends to decrease the accuracies
of pixel-based clustering algorithms such as Fuzzy C Means [1], minimum distance
classifiers [2] and K-Means [3]. These pixel-based clustering techniques assign a
pixel to a region according to the similarities of spectral signature. It considers only
one pixel at a time [4]. Spectral signatures are the specific combination of emitted,
reflected or absorbed electromagnetic (EM) radiation at varying wavelengths which
can uniquely identify an object [4].

Compared to IRS-1A/1B sensors, the spectral resolution of high spatial resolution
images is normally relatively poor. Spectral resolution describes a sensor’s ability to
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identify fine intervals of wavelength. The better the spectral resolution, the finer
the channel or band width. Therefore, between spatial and spectral resolution, there
is a trade-off. It is mainly true for panchromatic (PAN) images of high spatial
resolution, namely CARTOSAT-II 1m and IKONOS 1m. There is a need to consider
the spatial relationships between pixel values, also known as the ‘texture’ of the
scene objects to classify high-resolution (HR) images owing to the wide difference
in the spatial structure in these images. Consequently, multiple texture-based clus-
tering technique namely GLCM [5–8], Markov random field (MRF) model [5],
Gray scale rotation invariant [9] were evolved for clustering remote sensing images
having high spatial resolution. Nevertheless, above mentioned methods are appro-
priate in textured area of HR images. A region is called textured; where the intensity
dissimilarity within adjacent pixels is substantial. A region is said to be non-
textured, where the intensity dissimilarity among adjacent pixels is insignificant
[10, 11]. But texture-based classification techniques failed in non-textured region of
high spatial resolution image as much variation is not found in the spatial pattern of
those regions of the image [12]. Thus, we can infer from earlier studies that classi-
fication of high spatial resolution imageries either by pixel or texture-based algo-
rithm may not yield desired results.

Some more techniques namely watershed approach [13, 14], region-growing
approach [4, 15], mean shift approach [16, 17], region merging approach [18] etc.
are in use for clustering high spatial resolution remote sensing images. Application
of these approaches for clustering of images either leads to under-segmentation or
over-segmentation [19, 20]. Structural image indexing approach [21], semi-
supervised feature learning approach [22] and multi-scale manner using SVM
approach [23] are also found fairly suitable in clustering high resolution images. The
imagery of higher resolution includes textured and non-textured areas. Hence, pixel
or texture-based algorithm for clustering of high-resolution imagery does not pro-
duce expected results. This type of high-resolution imagery clustering research is in
the trend. Multi-circular local binary pattern and variance-based method [10] were
used separately to cluster high resolution image having textured and non-textured
regions. The Multi circular local binary pattern operator has been used here for
measuring the spatial structure of the image. But, disadvantage in this strategy is
that multi-circular local binary pattern operator is susceptible to noise as it exactly
sees the value of the moving window’s central pixel as a limit for computing the
spatial structure around the central pixel.

In last one decade the Hölder exponent (HE) has been used for calculating
spatial structure of the images [24–26]. It is also being used for clustering high-
resolution images [12]. HE gives an evidence of the spatial structure of the image
and is not much influenced by the noise. In addition, spatial structure, contrast of
the local image holds considerable property for calculating the texture around the
pixel. In this research, high-resolution picture textured and non-textured region is
originally segmented using HE and VAR-based method and subsequently separately
clustered and non-textured areas. VAR is used to calculate the contrast around the
pixel. The suggested method is applied with a 1 m spatial resolution on high resolu-
tion IKONOS PAN images.

2. Methods

The suggested high-resolution image ‘P’ clustering technique has three main steps:
(i) image transformation, (ii) segmentation and extraction, and (iii) clustering. Ini-
tially, every pixel of the image is converted into a degree of texture or non-texture
around the pixel. In the second step, using segmented image mask, the transformed
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image is segmented and non-textured and textured regions are extracted from the
initial image. Finally, the two areas obtained are separately clustered.

2.1 Transformation of image

The Hölder Exponent (HE) and VAR are jointly used to convert the image for
computing the texture. The HE calculates each pixel of P’s spatial structure. Besides
spatial structure, local image contrast also grasps important property for computing
the texture around the pixel. In this research, therefore, VAR is used to calculate the
contrast around the pixel.

2.1.1 Hölder exponent

Hölder exponent has been used for investigating the texture in high-resolution
images [12]. It measures the irregularity in the vicinity. Supremacy of applying
Hölder Exponent in HR images are that (i) it can be used as an instrument to
calculate each pixel of the image’s spatial structure, (ii) no previous data on the
pixel intensity is required and (iii) is not very sensitive to noise [12].

Definition of HE [27]: Let μ be a measure on a set Ω as well as for all x Є Ω,
э α(x), such that μ (Br(x)) � rα, for small r. Here Br(x) is circle (2D) of radius i
centered on x. Then α (x) is called the HE on x.

A sequence of 15 values of radius r (i.e. 1,√2,√5, 3, √13, 3√2, 5,√29, 2√10,
3√5, 7,√61, 6√2, √85, 7√2) centered on x are used as a scale parameter for
calculating HE value around each pixel x in the image [12] and the total number (N)
of intersected pixels by the perimeter of series of circles of radius r is considered as a
scale parameter for computing VAR value around x [12].N is computed using Eq. (1).

N ¼
Xt
r¼1

mr (1)

where t is the total number of identified circles, mr is the number of intersected
pixels on the perimeter of the radius r circle.

2.1.2 VAR (σ2) for contrast measurement around each pixel of the image

To get the contrast value of (x, y), the neighbor’s σ2 of each pixel (x, y) is
calculated over the entire image. Using Eq. (2), the σ2 (x, y) is realized

σ2 x, yð Þ ¼
Pt

r¼1
Pmr

j¼1 arj � μ
� �2

N
(2)

where arj is the intensity value of pixel (r,j),

μ ¼
Pt

r¼1
Pmr

j¼1arj
N

Thus obtained α(x,y) and σ2 (x,y) for each P(x,y). Afterward, these values are
used in Eq. (3) to obtain the corresponding pixel value (x,y) in the transformed
image T. Each pixel (x,y) of T signifies the degree of texture around that pixel.

T x, yð Þ ¼ α x, yð Þ þ σ2 x, y
� �

2
(3)
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2.2 Image segmentation and extraction

The image ‘T’ is segmented into textured and non-textured regions based on a
threshold value ‘δ’. The pixel value in T below the ‘δ’ is considered to be a non-
textured region, whereas greater than or equal to ‘δ’ is considered to be the textured
region in the segmented image. Pixels are labeled as zero in non-textured areas,
whereas pixels are marked as one in textured areas in the segmented image mask
and depicted as follows:

Γ x, y
� � ¼ 1,T x, yð Þ≥ δ

0,T x, yð Þ< δ

(
(4)

where T(x,y) and Γ(x,y) represents the pixel value in (x,y) position of the two
dimensional transformed image and segmented image respectively and δ represents
the threshold value. The δ is calculated by using Eq. (5).

δ ¼ Tmin þ Tmax � Tmin

K
(5)

where Tmin and Tmax represents minimum and maximum pixel gray value in T
respectively and K is user defined value.

IKONOS PAN sensor image of size 256� 256 pixels (shown in Figure 1a) is used
to achieve the optimum K. The suggested clustering method is also implemented for
distinct K values on this image.

The segmented image is subsequently used to obtain the textured and non-
textured region from the initial image P. This process’s mathematical representation
is shown as follows:

R1 x, y
� � ¼ P x, y

� �
, Γ x, y

� � ¼ 0

0, Γ x, y
� � 6¼ 0

(
(6)

R2 x, y
� � ¼ P x, y

� �
, Γ x, y

� � ¼ 1

0, Γ x, y
� � 6¼ 1

(
(7)

where P, Γ, R1 and R2 indicates original image, segmented image, extracted non-
textured region from original image P and extracted textured region from original
image P respectively.

2.3 Clustering

Initially, a threshold is used to segment the transformed image into textured and
non-textured region. Afterward, the original image is extracted into textured and
non-textured regions using the segmented image mask and clustered indepen-
dently. The extracted textured region (R2) is clustered by means of ISODATA
clustering algorithm [28] considering HE, VAR and intensity values of individual
pixel of textured area. The clustering algorithm of ISODATA is less computational,
easy and non-supervisory. Whereas the non-textured area (R1) of the image is
categorized using the clustering algorithm of ISODATA. In the event of non-
textured region, the individual pixel HE and VAR value is not regarded for classifi-
cation as there is no important variation in texture between classes. The classified
outputs of the non-textured and textured region are subsequently produced sepa-
rately and mixed together to obtain the final classified image.
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Figure 1.
(a) IKONOS image showing vegetation, built-up area, fallow and water body categories, (b) classified image
obtained by applying “HE-VAR and PAN” based method on Figure 1a, (c) classified image obtained by
applying “MCLBP and VAR” based method on Figure 1a, (d) classified image obtained by applying “proposed
classification method” on Figure 1a, (e) IKONOS image showing fallow, water bodies, vegetation and built-up
area categories, (f) classified image obtained by applying “HE-VAR and PAN” based method on Figure 1e, (g)
classified images obtained by applying “MCLBP and VAR” based method on Figure 1e, (h) Classified images
obtained by applying “proposed classification method” on Figure 1e.
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This research uses “HE-VAR and PAN” and “MCLBP and VAR” based clustering
technique to show the power of the suggested clustering technique. The technique
based on “HE-VAR and PAN” clusters the entire image using the HE, VAR and
intensity of each pixel of the IKONOS PAN image. The suggested technique of
clustering is then contrasted with the outcomes of the clustering method based on
“HE-VAR and PAN” and “MCLBP and VAR” to demonstrate the strength of the
suggested technique of clustering.

3. Results and discussion

The projected clustering method imagines threshold δ to get the segmented
image mask from the transformed image. The threshold is computed using a con-
stant ‘K’. In this study, proposed clustering procedure is implemented on IKONOS
PAN image with spatial resolution 1 m for ‘K’ values between 3 and 7 and subse-
quently, classification rate is measured for these ‘K’ values using the ground truth
data. The classification accuracy with different ‘K’ is shown in Figure 2. The ‘K’
affects the accuracy in classifying High spatial resolution images considerably as
shown in Figure 2. For computing texture, a suitable choice of ‘K’ is important. In
this study, superlative performance in high-resolution image classification was
accomplished with K = 5. The optimum K is discovered based on Figure 1a and is
also implemented in the classification of Figure 1e in addition to other images and
found classification accuracy is more than 88%. Thus, from the present study, we
can infer that the same K value is suitable for most images.

The Proposed clustering method, “MCLBP and VAR” based method and “HE-
VAR and PAN” based method were applied on two different 1 m PAN (IKONOS)
images (size 256 � 256 pixels) covering (i) vegetation, (ii) built-up area, (iii) water
bodies, and (iv) fallow (shown in Figure 1a, e). Texture is observable in in
Figure 1a, e. The results of proposed method are then compared with the results
obtained from the analysis based on “HE-VAR and PAN” and “MCLBP and VAR”
respectively.

Figure 1f–h shows the classification outcomes of the methods “HE-VAR and
PAN,” “MCLBP and VAR” and “Proposed classification” after proceeding to the
second IKONOS image respectively. Figure 1b–d shows the classification outcomes
of the methods “HE-VAR and PAN,” “MCLBP and VAR” and “Proposed classifica-
tion” after proceeding to the first IKONOS image respectively. Classified images
recognize varied features in Figure 1b–d, f–h. From the results, it is evident that the

Figure 2.
Classification accuracy as a function of K.
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method based on “MCLBP and VAR” gives less heterogeneous segments than the
method based on “HE-VAR and PAN,” while the method based on “Proposed
classification method” provides more homogeneous segments with distinct classes
than the method based on “MCLBP and VAR.”

The ground truth data is collected using GPS equipment for the class vegetation,
built-up area, fallow and water body of sample size of 656, 519, 577 and 462 square
meters respectively. Afterward, ArcGIS software is used to transfer the ground
truth data into vector data. Subsequently, by overlaying the ground truth informa-
tion distinctly on the results acquired from both IKONOS images (Figure 1a, e)
adopting methods such as “HE-VAR and PAN,” “MCLBP and VAR” and “Proposed
clustering,” the classification accuracies for each strategy are shown by confusion
matrix. The confusion matrices (Table 1) calculated for Figure 1b–d showed that
the precision of classification of vegetation, built-up area, fallow and water bodies is
(73, 69, 59 and 87% respectively) based on the ‘HE-VAR and PAN’ technique and
(79, 71, 68 and 89% respectively) based on the ‘MCLBP and VAR ‘technique,
whereas (91, 86, 85 and 94% respectively) by the “Proposed clustering” method.
Table 2 demonstrates the confusion matrices calculated for Figure 1f–h showed
that the precision of classification of vegetation, built-up area, fallow and water
bodies is (73, 74, 66 and 88% respectively) based on the ‘HE-VAR and PAN ‘tech-
nique and (78, 76, 68 and 89% respectively) based on the ‘MCLBP and VAR ‘tech-
nique whereas (90, 87, 86 and 93% respectively) by the “Proposed clustering”
method.

The categorized result for Figure 1a, e shows that the “HE-VAR and PAN”

method under segment as a result (i) fallow assorted with water bodies shown in
Figure 1b, f, (ii) built-up region assorted with fallow and vegetation shown in
Figure 1f, (iii) vegetation assorted with water bodies shown in Figure 1b, f, (iv)
fallow assorted with built-up region shown in Figure 1b. This incoherence
decreases vegetation, fallow, water bodies and built-up area classification precision
as shown in Tables 1 and 2. The technique based on “MCLBP and VAR” somehow
overcomes these inconsistencies. It is discovered that, as shown in Figure 1c, g, the
superposition of fallow, water body, vegetation region becomes less. In addition,
decreased inconsistencies improve the accuracy of the classification of fallow, water
body and vegetation regions (see Tables 1 and 2).

“HE-VAR and PAN” based method classifies water bodies and fallow areas as a
single class (Figure 1b, f) since the texture patterns of these two areas does not
show much difference in high resolution imageries as shown in Figure 1a, e.
“MCLBP and VAR” based technique demonstrates improvement in classifying the
fallow areas and water bodies which is observable in Figure 1g. But this method
could not extract non-textured region appropriately form Figure 1a since MCLBP is
sensitive to noise. Therefore “MCLBP and VAR” based method could not discrimi-
nate appropriately fallow areas and water bodies in Figure 1a as visible in Figure 1c.
HE is not as much of sensitive to noise therefore the proposed technique partitions
the image into textured and non-textured regions noticeably which in turn helps in
classifying the fallow and water bodies as shown in Figure 1d.

The proposed clustering method is applied further on a 1 m PAN (IKONOS)
image (Figure 3a) of (i) urban woodland, (ii) building, (iii) water bodies, and (iv)
fallow to show the robustness and validity of the method in classifying land use
area. The method satisfactorily discriminate urban woodland, building, fallow and
water bodies as shown in Figure 3b. The algorithm also implemented on two extra
1 m PAN (IKONOS) images: (i) Figure 4a of fallow, vegetation, built-up area and
bare land and (ii) Figure 4c of water, vegetation, fallow and built-up area. The
findings (Figure 4b, d) show that vegetation, fallow, built-up region, bare soil and
water bodies are satisfactorily discriminated against by the algorithm.
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can infer that the same K value is suitable for most images.

The Proposed clustering method, “MCLBP and VAR” based method and “HE-
VAR and PAN” based method were applied on two different 1 m PAN (IKONOS)
images (size 256 � 256 pixels) covering (i) vegetation, (ii) built-up area, (iii) water
bodies, and (iv) fallow (shown in Figure 1a, e). Texture is observable in in
Figure 1a, e. The results of proposed method are then compared with the results
obtained from the analysis based on “HE-VAR and PAN” and “MCLBP and VAR”
respectively.
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second IKONOS image respectively. Figure 1b–d shows the classification outcomes
of the methods “HE-VAR and PAN,” “MCLBP and VAR” and “Proposed classifica-
tion” after proceeding to the first IKONOS image respectively. Classified images
recognize varied features in Figure 1b–d, f–h. From the results, it is evident that the
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method based on “MCLBP and VAR” gives less heterogeneous segments than the
method based on “HE-VAR and PAN,” while the method based on “Proposed
classification method” provides more homogeneous segments with distinct classes
than the method based on “MCLBP and VAR.”

The ground truth data is collected using GPS equipment for the class vegetation,
built-up area, fallow and water body of sample size of 656, 519, 577 and 462 square
meters respectively. Afterward, ArcGIS software is used to transfer the ground
truth data into vector data. Subsequently, by overlaying the ground truth informa-
tion distinctly on the results acquired from both IKONOS images (Figure 1a, e)
adopting methods such as “HE-VAR and PAN,” “MCLBP and VAR” and “Proposed
clustering,” the classification accuracies for each strategy are shown by confusion
matrix. The confusion matrices (Table 1) calculated for Figure 1b–d showed that
the precision of classification of vegetation, built-up area, fallow and water bodies is
(73, 69, 59 and 87% respectively) based on the ‘HE-VAR and PAN’ technique and
(79, 71, 68 and 89% respectively) based on the ‘MCLBP and VAR ‘technique,
whereas (91, 86, 85 and 94% respectively) by the “Proposed clustering” method.
Table 2 demonstrates the confusion matrices calculated for Figure 1f–h showed
that the precision of classification of vegetation, built-up area, fallow and water
bodies is (73, 74, 66 and 88% respectively) based on the ‘HE-VAR and PAN ‘tech-
nique and (78, 76, 68 and 89% respectively) based on the ‘MCLBP and VAR ‘tech-
nique whereas (90, 87, 86 and 93% respectively) by the “Proposed clustering”
method.

The categorized result for Figure 1a, e shows that the “HE-VAR and PAN”

method under segment as a result (i) fallow assorted with water bodies shown in
Figure 1b, f, (ii) built-up region assorted with fallow and vegetation shown in
Figure 1f, (iii) vegetation assorted with water bodies shown in Figure 1b, f, (iv)
fallow assorted with built-up region shown in Figure 1b. This incoherence
decreases vegetation, fallow, water bodies and built-up area classification precision
as shown in Tables 1 and 2. The technique based on “MCLBP and VAR” somehow
overcomes these inconsistencies. It is discovered that, as shown in Figure 1c, g, the
superposition of fallow, water body, vegetation region becomes less. In addition,
decreased inconsistencies improve the accuracy of the classification of fallow, water
body and vegetation regions (see Tables 1 and 2).

“HE-VAR and PAN” based method classifies water bodies and fallow areas as a
single class (Figure 1b, f) since the texture patterns of these two areas does not
show much difference in high resolution imageries as shown in Figure 1a, e.
“MCLBP and VAR” based technique demonstrates improvement in classifying the
fallow areas and water bodies which is observable in Figure 1g. But this method
could not extract non-textured region appropriately form Figure 1a since MCLBP is
sensitive to noise. Therefore “MCLBP and VAR” based method could not discrimi-
nate appropriately fallow areas and water bodies in Figure 1a as visible in Figure 1c.
HE is not as much of sensitive to noise therefore the proposed technique partitions
the image into textured and non-textured regions noticeably which in turn helps in
classifying the fallow and water bodies as shown in Figure 1d.

The proposed clustering method is applied further on a 1 m PAN (IKONOS)
image (Figure 3a) of (i) urban woodland, (ii) building, (iii) water bodies, and (iv)
fallow to show the robustness and validity of the method in classifying land use
area. The method satisfactorily discriminate urban woodland, building, fallow and
water bodies as shown in Figure 3b. The algorithm also implemented on two extra
1 m PAN (IKONOS) images: (i) Figure 4a of fallow, vegetation, built-up area and
bare land and (ii) Figure 4c of water, vegetation, fallow and built-up area. The
findings (Figure 4b, d) show that vegetation, fallow, built-up region, bare soil and
water bodies are satisfactorily discriminated against by the algorithm.
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Figure 3.
(a) IKONOS image showing urban woodland, building, water body and fallow categories, (b) classified image
obtained by applying “proposed classification method” on Figure 3a.

Figure 4.
(a) IKONOS image showing fallow, built-up area, vegetation and bare soil categories, (b) classified image
obtained by applying “proposed classification method” on Figure 4a, (c) IKONOS image showing vegetation,
fallow, built-up area and water bodies categories, (d) classified image obtained by applying “proposed
classification method” on Figure 4c.
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4. Conclusion

In the present study, the spatial structure of local image texture is computed
using HE. The contrast around the pixel is measured using VAR. Afterward, the
image is transformed using HE and VAR together for measuring the texture. A
threshold δ is used to extract textured and non-textured region from the image. The
classification algorithm ISODATA is used to classify the textured region taking into
account HE, VAR and intensity values of the textured area’s individual pixels.
Whereas ISODATA clustering algorithm classifies the extracted non-textured
region of the image. The HE and VAR value of individual pixels is not regarded for
classification in the event of non-textured region. From the research outcomes, it is
discovered that the suggested technique is helpful to extract earth surface charac-
teristics from complicated remote sensing images that contain both textured and
non-textured areas. Moreover, it can be considered as an intuitively appealing and
unsupervised clustering algorithm for extracting features from remotely sensed
images. As a result, the method is potentially useful to extract earth surface features
by clustering high spatial resolution panchromatic images more efficiently.
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Chapter 7

Building an Integrated Database of 
Road Design Elements
Ali Dhafer Abed

Abstract

The road network is the main artery within the city structure, which requires 
designing of routes and classification within the standards. Hence, the importance 
of this chapter, which will focus on the standards and design elements of the 
engineering design of road in terms of road type system, functional classification 
system, traffic volume system, number of traffic lane system, road width design, 
side slopes and elevations of road layers, super elevation, design speed, overtak-
ing and stopping sight distance, longitudinal and cross sections of the road path, 
design elements of horizontal and vertical curves, and intersections. The Civil 
3D Land Desktop, GIS programs, and remote sensing technology will be used to 
design the path of major highway linking two urban areas in Mosul (Northern Iraq), 
which will be considered a case study. The path of the road and its elements will be 
designed according to special criteria that are compatible with the topography and 
nature of the area. The geometric data of the road will then be exported with all 
the design elements to the GIS program to build an integrated road database. The 
database is capable of spatial analysis and connectivity with other parts of the road 
network in the city.

Keywords: GIS, spatial database, road design, Civil 3D, AASHTO

1. Introduction

Transport has now become an important factor in determining the housing and 
workplaces of the largest segment of society. Transport has thus become an essential 
element in determining land uses; it is not affected by land uses only but affects 
them. The transport activities directly or indirectly lead to the transfer of civilization 
and civil landmarks to the farthest points in the country, open to human societies’ 
paths to flow of science and knowledge, improve the health and social conditions 
and enjoy the joys of life and nature, and expand the perceptions of these communi-
ties and openness to ensure stability and development. In light of this, the efficiency 
of the transport system and roads requires continuous planning and design for the 
road, especially with respect to the design of engineering elements of the road, in 
order to provide the movement of society and maintenance at an acceptable level.

The engineering design of the road is defined as the process of finding the engi-
neering dimensions of each road and arranging the visual elements of the road such 
as the path, distances of sight and passing, width, slopes, curves, super elevation, 
and other engineering characteristics. The horizontal and vertical design elements 
of the road are considered the most important elements of road design because their 
minimum limits are the basic for the design speed and the ruling slopes.
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The horizontal and vertical roads’ elements, the configuration of road path and 
grade affects safe operating speeds, and sight and passing distances for highway and 
roads’ capacity establish the general character of a highway, more than any other 
design consideration. These components will significantly affect the safety, opera-
tional efficiency, and aesthetics of the highway.

Therefore, this chapter will focus on the design of the main elements of a road 
linking the city of Mosul and Makhmour (Northern Iraq) district south of Mosul. 
The surveying data was prepared by the Ministry of Municipalities for the proposed 
route of this road using a differential GPS device.

These surveys are a 900-m strip survey of the proposed route of the Mosul-
Makhmour highway with a length of up to 20 km. Field surveying data will be used 
to prepare a geometric design for the proposed road linking for the two regions by 
using AutoCAD Civil 3D Land Desktop program and in accordance with interna-
tional standards.

Initially, a path was proposed for this road depending on spatial analysis by GIS 
program to get optimum path linking between two areas. The stations, the type of 
road, the number of its lanes, its dimensions, its horizontal and vertical elements, 
and the slopes were defined according to the main design criteria of urban roads. 
The results were illustrated by longitudinal and cross-sectional plots showing the 
changes in the natural shape of the ground and all the elements of the horizontal 
and vertical curves of the road. After which, the volume of the earthworks was 
calculated for excavation and burial. Thus, a road connecting two urban areas was 
achieved in a manner that does not cause accidents and achieves the smooth flow 
of vehicles by making all elements of the road consistent with the expectations of 
drivers to avoid sudden changes in design specifications. Finally, all the designed 
road data were exported to the GIS program to build an integrated database for this 
road that can be linked to the rest of the city network, as well as all spatial analyses 
and network analyses.

2. Transportation planning

Transport is an important part of the planning process for cities and regions. 
Every planning activity, whether land uses, work centers, cultural, marketing, or 
leisure activities, depends in one way or another on transportation. The transport 
and traffic sector is considered an important sector in economic development, and 
this is reflected in the high expenses allocated to the development of this sector, 
which in Iraq up to 20% of the allocations of annual investment plans [1].

Transport planning is a structured approach to understanding traffic and 
transport characteristics. It aims to achieve an efficient and appropriate system 
that meets the current and future requirements of the community. We can define a 
number of objectives for this process [2]:

• Provide the most appropriate type of transport system according to the avail-
able potentials.

• Developing and increasing the efficiency of economic activity by reducing 
transport costs.

• Development of an integrated system of transport routes.

• Know how and when to improve the old road or build new roads according to 
future requirements.

123

Building an Integrated Database of Road Design Elements
DOI: http://dx.doi.org/10.5772/intechopen.88678

• Optimal expenditures through the implementation of program cost and 
benefits for road projects to the general community.

• Development of programs and techniques for further urban and regional 
development.

• Reducing traffic accidents.

• To preserve and improve the environment.

• Also designed to design road networks according to planning standards, the 
most important of which are as follows [3]:

 ○ The network hierarchy, which is related to the functional classification of 
the different ways of fast, primary, and secondary traffic.

 ○ The network serves land use (residential, industrial, commercial, cultural, 
etc.) in a good way, providing easy access to parts of the city or regions.

 ○ The large and equivalent link between the city’s internal network and the 
regional road network.

 ○ Network service for the gradual development of the city.

 ○ Avoid traffic jams that may occur at intersections by creating junctions at 
levels or any other planning solutions.

3. Road network classification systems

The systems adopted in the road network classification classify the network into 
four sections according to the following concepts [4]:

a. Road location systems and neighborhoods: The road is classified according to 
its location according to the following concepts: the type of use of the road, the 
date of construction of the road, the uses of the ground surrounding the road, 
topography of the area of the road, and nature of the area.

b. Road engineering design system: These systems are based on the engineering 
classification of the road network according to the following systems, number 
of road lanes, system dividing the road, and switching systems from one road 
to another.

c. Road administration systems: These systems work on road management 
according to the following concepts, road planning according to levels, road 
paving systems and maintenance, road ownership systems, and type of tiling 
material systems.

d. Vehicle traffic systems: The road network is classified according to the move-
ment of vehicles and their relation to the type of vehicle, according to the 
following, traffic volume of the road, purpose of the trip, type of vehicle using 
the road, and the roads’ functional classification.
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and traffic sector is considered an important sector in economic development, and 
this is reflected in the high expenses allocated to the development of this sector, 
which in Iraq up to 20% of the allocations of annual investment plans [1].

Transport planning is a structured approach to understanding traffic and 
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• Optimal expenditures through the implementation of program cost and 
benefits for road projects to the general community.

• Development of programs and techniques for further urban and regional 
development.

• Reducing traffic accidents.

• To preserve and improve the environment.

• Also designed to design road networks according to planning standards, the 
most important of which are as follows [3]:

 ○ The network hierarchy, which is related to the functional classification of 
the different ways of fast, primary, and secondary traffic.

 ○ The network serves land use (residential, industrial, commercial, cultural, 
etc.) in a good way, providing easy access to parts of the city or regions.

 ○ The large and equivalent link between the city’s internal network and the 
regional road network.

 ○ Network service for the gradual development of the city.

 ○ Avoid traffic jams that may occur at intersections by creating junctions at 
levels or any other planning solutions.

3. Road network classification systems

The systems adopted in the road network classification classify the network into 
four sections according to the following concepts [4]:

a. Road location systems and neighborhoods: The road is classified according to 
its location according to the following concepts: the type of use of the road, the 
date of construction of the road, the uses of the ground surrounding the road, 
topography of the area of the road, and nature of the area.

b. Road engineering design system: These systems are based on the engineering 
classification of the road network according to the following systems, number 
of road lanes, system dividing the road, and switching systems from one road 
to another.

c. Road administration systems: These systems work on road management 
according to the following concepts, road planning according to levels, road 
paving systems and maintenance, road ownership systems, and type of tiling 
material systems.

d. Vehicle traffic systems: The road network is classified according to the move-
ment of vehicles and their relation to the type of vehicle, according to the 
following, traffic volume of the road, purpose of the trip, type of vehicle using 
the road, and the roads’ functional classification.
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4.  Classification of road network according to the criteria of  
capacity and rank

• Free streets: These streets are designed for the purpose of speeding and long 
distances in international and regional trips, with a capacity of between 1800 
and 2000 vehicles/h, with lanes ranging from 4 to 8 lanes, at a speed of opera-
tion ranging from 80 to 120 km/h.

• Express streets: The streets are meant to serve the largest number of citizens, 
high speed, long distances for regional trips, a capacity of between 1400 and 
1800 vehicles/h, and lanes of 4–8 lanes, with a speed of operation ranging 
from 60 to 80 km/h.

• Arterial streets: The streets with medium-distance urban trips, easy access 
between parts of the city and a capacity of 800–1200 km/h, with a speed of 
40–60 km/h.

• Collected streets: These streets mean short urban trips, easy access between the 
city, and a capacity of 600–900 vehicles/h, with a speed of 30–50 km/h.

• Local streets: For short transport service, at a low speed of 20–30 km/h, with a 
capacity of 500–700 vehicles/h [5].

5. Functional classification of urban roads

The importance of functional classification is determined by which the role of 
each road is defined for the traffic and transport service. The degrees of urban roads 
vary according to the areas they serve, whether residential, commercial, residential-
commercial, etc. and also according to the total movement that will be generated 
from those areas served. Classification of roads in urban planning can be summa-
rized as follows [6–8]:

a. Major urban roads: These roads link the main centers of activity in urban areas. 
They are connected to the regional network and take the largest traffic load in 
the urban area. These roads have width about 40 m or more.

b. Secondary urban roads: These roads collect the vehicles from the main roads 
and distribute them to the degree of lower roads, and their widths are about 
(16–25 m).

Degrees Minimum speed (km/h) The desired speed (km/h)

Local road 30 50

Collector road 50 60

General arterial road 80 100

Less disturbance 70 90

Tangible disturbance 50 60

Highway 90 120

Table 1. 
Design speed of urban roads [6, 7].
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c. Urban roads of the third degree (local): Collecting vehicles from the residential 
areas and areas of activity to the highest road degree and carrying the least 
amount of traffic in the network and is the lowest degree in the hierarchy of the 
road network and its widths about (12–16 m).

The design characteristics of the road must be commensurate with the design 
speed chosen and expected for environmental and terrain conditions, and the designer 
should choose the appropriate design speed based on the planned road degree, terrain 
characteristics, traffic volume, and economic considerations. Note Table 1.

6. Highway capacity and level of service

The capacity of the road is the maximum number of vehicles expected to pass 
over a particular part of a lane or road during a given period of time under the 
prevailing traffic conditions.

Service level is the qualitative measurement of the effect of a number of factors 
such as operating speed, travel time, traffic failures and freedom of maneuver, 
and crossing, driving safety, comfort, road suitability, and operating costs for the 
service provided by the road to its users. Table 2 shows the characteristics of the 
service level according to the type of road [9, 10].

The level of 
service

Urban arterial Two lanes road

A The average speed is about 90% of the 
speed of free flow. Delay at intersections 
with traffic signals is minimal

The average speed of the road is 93 km/h or 
greater. Most of the crossings are carried out 
without delay. In the ideal case, the traffic 
volume is 420 vehicles/h for both directions

B The average speed of traffic decreases due 
to the delay in intersections and the impact 
of vehicles on some of them and about 
70% of the speed of traffic. Load factor at 
0.1 intersections and peak hour factor 0.8

The average speed of the road is 88 km/h or 
more. The load coefficient may be up to 0.27. 
Traffic volume is 750 vehicles/h for both 
directions

C Travel speed is about 50% of the speed of 
free flow. Run balanced. Long rows of cars 
when traffic signals are possible

The average speed of the road is 84 km/h or 
more. The flow rate in the ideal case is about 43% 
of the capacitance, with a mean traffic in ideal 
conditions 1200 vehicles/h in both directions

D Average speed 40% of free flow rate. The 
flow rate is unbalanced, and delays at 
intersections may be comprehensive

The average speed is 80 km/h. The flow rate 
is about 64% of the capacity, with continuity 
in the imposition of overflow and flow of 
approximately 1800 vehicles/h for both 
directions

E Speed of flow is 33% of free flow speed, 
volume at capacity, and flow is not 
balanced. The coefficient of load at 
intersections (0.7–1.0). The peak hour 
factor is 0.95

The average flow rate is about 72 km/h. The 
flow rate in ideal conditions is 2800 vehicles/h; 
level E may not be accessible as the operation is 
converted from service level D to F directly

F The average speed of traffic between 
25 and 33% of the speed of free flow, 
high delay times at the branches of 
intersections

The operating speed is less than 72 km/h, and 
the traffic are overcrowded and constrained 
with unexpected characteristics, volume less 
than 2000 vehicles/h in both directions

Table 2. 
Service level characteristics by road type [9, 10].
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Service level characteristics by road type [9, 10].
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7. Specifications and determinants of roads’ design and general criteria

7.1 Stopping sight distance (SSD)

The distance traveled by the vehicle from the instant the driver sights an object 
necessitating a stop to the instant the brakes are applied and the distance required to 
stop the vehicle from the instant brake application begin or defined as the sum of dis-
tances from when the driver decides to apply the break until the car stop, as in Eq. (1):

SSD = (0.278×V×t) + (0.039 ×     v   2  _ a   )    (1)

where (SSD) is the stopping sight distance in m, (V) is the initial speed (kph), 
(a) is the rate of deceleration (3.4 m/S2), and (t) is the Brake reaction time, which is 
assumed to be 2.5 seconds by AASHTO [11].

Table 3 can illustrate the stopping sight distance and its relation to the design 
speed, brake reaction distance, and braking distance on level. Table 4 illustrates 
increment of the stopping sight distance and its relation to the design speed and 
brake in state of slope directed down [12–14].

Design speed 
(Km/h)

Brake reaction 
distance (m)

Braking distance on 
level (m)

Stopping sight distance

Calculated (m) Design (m)

20 13.9 4.6 18.5 20

30 20.9 10.3 31.2 35

40 27.8 18.4 46.2 50

50 34.8 28.7 63.5 65

60 41.7 41.3 83.0 85

70 48.7 56.2 73.4 129

80 55.6 73.4 129.0 130

90 62.6 92.9 156.5 160

100 59.5 114.7 184.2 185

110 76.5 138.8 215.3 220

120 83.4 156.2 248.5 250

130 90.4 193.8 284.2 285

Table 3. 
Stopping sight distance and its relation to the design speed and brake [12].

Design speed (km\h) Increase the stopping sight distance in state of downslope (m)

3% 6% 9%

40 2 4 6

50 3 6 10

60 5 10 18

70 7 15 6

80 9 21 -

90 12 29 -

100 16 38 -

Table 4. 
Relationship between design speed and increment of stopping sight distance in state of downslope [15].
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7.2 Passing sight distance (PSD)

It represents enough free distance of traffic so that the driver can see the driver 
in front of him to be able to complete the process of circumventing without touch-
ing the car that passes without being intercepted by any counter vehicle may 
appear after the start of the bypass and then return to the right warm easily after 
the overtaking process. PSD is designed for two-lane highway as in Table 5 which 
illustrate passing sight distance with respect to the design speed for passed and 
passing vehicle [16].

7.3 Horizontal planning of the road

The horizontal curve is a part of circular curves, which consist of intersection 
of two tangents of road. Horizontal curve has four types illustrated in Figure 1. 
The location and configuration of the horizontal curve are affected by some of the 
factors as follow [18]:

1. Physical condition: land uses, earth topography and geophysical conditions, 
intersection with waterway and man-made barriers.

2. Environmental circumstances: impacts on the adjacent land use, community-
based impacts, and environmentally sensitive areas.

3. Economics condition: cost of construction, road ownership costs, effects of 
utility, costs of operating, and maintenance.

4. Road safety: distance of sight, alignment consistency, considerations of the 
human factor.

5. Classification and design considerations of highway: level of service, func-
tional classification, design speed, and standards.

Design speed 
(km/h)

Assumed speed (km/h) Passing sight distance (m)

Passed 
vehicle

Passing 
vehicle

From exhibit 
3–6

Rounded for design

30 29 44 200 200

40 36 51 266 270

50 44 59 341 345

60 51 66 407 410

70 59 74 482 485

80 65 80 538 540

90 73 88 613 615

100 79 94 670 670

110 85 100 727 730

120 90 105 774 775

130 94 109 812 815

Table 5. 
Passing sight distance for the design of two-lane highways [16, 17].
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7.4 Vertical planning of the road

Vertical road planning consists of a series of longitudinal tendencies connected 
to each other by vertical curves (note Figure 2). Vertical planning is governed by a 
number of factors: safety, terrain, road speed, design speed, horizontal planning, 
construction cost, vehicle characteristics, and rain drainage. Visibility in all parts 
of the longitudinal sector must be met with the minimum distance required to stop 
(not overtaking), according to the design speed corresponding to the roadway. 
There are general considerations in the vertical planning of the road, which can be 
summarized as follows [19, 20]:

1. The goal should be to obtain an easy linear elevation design with gradual 
changes in line with the type of road or its degree and the nature of the land.

2. Avoid wavy vertical planning or vertical planning with hidden dips, because 
it is bad-looking and dangerous. Hidden dips cause accidents in overtaking, 
fooling the overtaking driver beyond the low, and thinking the road is free of 
anti-cars. But in the low-depth depressions, such as a longitudinal ripple, there 
is a lack of reassurance in the driver because it cannot determine the presence 
or absence of a vehicle likely to be hidden behind the high part. This type of 
longitudinal layout can be avoided by horizontal curvature or gradual change 
of slopes at light rates, possibly by increasing cutting and filling.

3. The longitudinal refraction bending planning should be avoided (two verti-
cal curves in the same direction separated by a short tangent), especially in 
concave curves where the complete view of the two curves is not acceptable.

4. It is preferable for long slopes to have steep slopes at the bottom, and then the 
slope falls close to the top, or the continuous gradient is reduced by the intro-
ducing short distances where the slope is less than that of a regular full slope. 
This is especially relevant for low-design speed road conditions.

Figure 1. 
Types of horizontal curves.

129

Building an Integrated Database of Road Design Elements
DOI: http://dx.doi.org/10.5772/intechopen.88678

5. K values can be used to compute the length of vertical curve for the crest and 
sag vertical curves. And vertical curve should have minimum length equal to 
three times the design speed.

6. SSD in most cases will be used for the length of vertical design, but for trucks 
it is not necessary because the driver of the truck is able to see farther than the 
passenger car. So, the SSD for trucks and passenger cars is balance.

Table 6 can illustrate the relationship between design control for SSD with 
respect to the K value for the vertical curve, while Table 7 shows design controls for 
vertical curve based on PSD [21].

Figure 2. 
Type of vertical curve [19].

Design speed (km/h) Stopping sight distance (m) Rate of vertical curvature (K)

Calculated Design

20 20 0.6 1

30 35 1.9 2

40 50 3.8 4

50 65 6.4 7

60 85 11 11

70 105 16.8 17

80 130 25.7 26

90 160 38.9 39

100 185 52 52

110 220 73.6 74

120 250 95 95

130 285 123.4 124

Table 6. 
Design control for stopping sight distance with respect to the K value for vertical curve [20].
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7.5 Super elevation

Super elevation allows the car to travel across a curve safely and at a higher speed 
than is possible with the natural crown section. The overall super elevation rate 
increases with speed and a sharper curvature (note Figure 3). Table 8 can illustrate 
the maximum lateral lifting value of super elevation [22].

where Rv is the vehicle’s traveled path radius, Ff is the force of side frictional, FC is 
the centripetal force, Wp is the weight of vehicle parallel to the road path surface, W 
is the vehicle weight, Wn is the vehicle weight normal to the road path surface,  
Fcn is the gravitational force that works naturally on the road surface, e is the number 
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the topography type and the height of the cutting or the filling, and the maximum 
side slope desired in the roads for the filling slope less than or equal to (2:1) depends 
on soil analysis [24, 25].

8. Spatial data of study area and method of processing

For the purpose of designing the proposed road elements of the study area 
between Mosul and Makhmour, the spatial data of the study area were obtained 
from the Ministry of Municipalities of Mosul City.

The spatial data is the field survey data of the route of the road, completed by a team 
of engineers from the Ministry of Municipalities. The survey data was conducted in the 
form of a strip width 900 m around the proposed route. A 900-m width was selected to 
cover all the places that the road path might pass, because the path was selected roughly, 
not accurately. The length of the strip survey is 20 km to connect the two urban areas.

The survey data contains a set of point coordinates (3626 points) observed with 
a high-precision equipment (Leica viva GS15). The coordinates’ projection was 
WGS84-UTM-Zone38N. These data is an unprocessed raw data, unrelated to each 
other, and contains many coordinates that may not be connected to the pathway. 
For the purpose of processing these data and linking it together, adjusting the sys-
tem of coordinates, adjusting the elevations, and creating a digital elevation model 
for the region, the Civil 3D Land Desktop program will be used to process this data 
and then export it to the GIS program.

Spatial analysis will be used in the GIS program to select the optimal path that con-
nects the two study areas based on spatial data. The optimal path for the proposed road 
will be chosen according to planning and design criteria. This path will be exported to 
the Civil 3D program again to identify the rest of the design elements of the road.

Degree of the 
road

Maximum side lifting value of the road is 
desirable (m/m)

Maximum lateral lifting value is 
absolute (m/m)

Highway 0.08 0.10

Arterial road 0.08 0.10

Collector road 0.08 0.12

Local road 0.10 0.12

Table 8. 
Maximum lateral lifting value according to AASHTO [22].

Height (m) Earth work Plan Wavy Mountainous

Desired Max slop Desired Max slop Desired Max slop

0–1 Cut 1:6 1:4 1:6 1:3 1:6 1:3

Fill 1:6 1:6 1:4 1:4 1:4 1:4

1–3 Cut 1:4 1:3 1:3 1:2 1:3 1:2

Fill 1:4 1:4 1:4 1:4 1:3 1:3

5–3 Cut 1:3 1:2 1:3 1:2 1:3 1:2

Fill 1:4 1:3 1:4 1:3 1:3 1:1.5

5 Cut 1:2 1:2 1:2 1:2 1:2 1:2

Fill 1:3 1:2 1:3 1:2 1:2 1:1.5

Table 9. 
Side slope (horizontal to vertical) for the type of terrain except rocks [25].
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In the Civil 3D program, all the design elements of the road will be defined 
according to the AASHTO standards, leading to the final stage where the road 
contains an integrated database ready for implementation.

9.  Methodological steps for designing road elements using Civil 3D Land 
Desktop and GIS software

In order to define the proposed road path and all its horizontal and vertical and 
design elements, these points will be used in the definition and design of road ele-
ments according to the following methodological steps:

a. The civil 3D land desktop program has been configured to be in meter units, 
1:1000 horizontal scale and 1:50 vertical scale, UTM, WGS 84 Datum as Figure 4.

b. The survey points were imported within the program and arranged and modified 
(point number, coordinates values, elevations) to be ready for the purpose of 
design road elements, as in Figure 5. Constructing a surface triangulated irregular 
network (TIN) and connecting the points’ coordinates for the purpose of deriving 
the elevations of the road depending on it, as in Figure 6. The TIN surface is then 
exported to GIS as digital elevation model (DEM).

c. The Geographic Information system (GIS) program was used to select the best 
route for the road connecting the city of Makhmour with the city of Mosul, as 
in Figure 7 which shows the sequence of steps to choose the path. The network 
of TIN has been reclassified according to the elevation values, so that the road 
passes from the flat areas as much as possible, as the land on which the road 
passes has steep slopes. The land use layer has been reclassified so as not to cross 
the road with any unwanted land use. The best and shortest route between 
the two urban areas was then chosen. The length of the best selected path was 
18210.88 m. Its alignment, stations, width, and number of lanes were defined 
and exported to the civil 3D.

d. ASHTO standards were adopted in the design of horizontal elements of the pro-
posed highway. These design elements were defined to the Civil 3D as follows:

Figure 4. 
Configuration of units, scale, projection of Civil 3D program.

133

Building an Integrated Database of Road Design Elements
DOI: http://dx.doi.org/10.5772/intechopen.88678

• The design speed = 100 km/h.

• Maximum longitudinal slope = 3%.

• Maximum side slope = 4/1.

• Stopping sight distance SSD = 185 m.

Figure 5. 
Modify coordinates of survey points.

Figure 6. 
Constructing the TIN surface to link between coordinates.
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• Supper elevation = 4%.

• Break reaction distance = 60 m.

• Break distance on level = 115 m.

• For concave and convex vertical curves (sag and crest), SSD = 185 m, 
PSD = 670 m, K = 45.

Figure 7. 
Sequence of steps in GIS to select the best route for connecting the city of Makhmour with the city of Mosul.
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• Minimum length of vertical curve = 700 m.

• The level of service was A, the number of lane 2 was with two direction, the 
chosen width was 12 m per lane, and the traffic volume was 420 vehicles/h 
in both directions.

e. The design elements for the horizontal curves were illustrated as in Figures 8 
and 9. Where the highway contained four horizontal curves designed accord-
ing to the design standards. Figure 10 can illustrate the proposed path of road 
after adding the stations. While, Figure 11 illustrate the definition of the design 
velocity of horizontal curves.

f. A longitudinal section of the proposed road was produced on a horizontal scale 
(1:600) and a vertical scale (1:100), as in Figure 12a and b.

g. The construction line (formation level), which represents the final level of the 
road, has been defined so that it achieves the lowest proportion of cuttings and 
fill in the earthworks and with the lowest vertical curves and as in Figure 13, 
which illustrates the elements of vertical curves and stations of PVC, PVI, 
and PVT through the table stations, as well as the levels of these stations, their 
slopes, and the length of their vertical curves, and the type of curve. Figures 14 
and 15 illustrate the longitudinal section after adding the line of construction 
and vertical curves.

Figure 8. 
Design elements for horizontal curves.
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Figure 9. 
Design elements for the horizontal curves.

Figure 10. 
The proposed path of highway after adding the stations.

Figure 11. 
Define design velocity of horizontal curves.
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h. The cross sections of the proposed road were generated and designed accord-
ing to the criteria that correspond to the cross sections of the reality of the case 
(width of the total road 24 m, shoulder length 1 m, side slope 1/2, supper eleva-
tion 4%, the thickness of the tiling was defined as 10 cm, thickness of the sub-
base 15 cm). Note Figure 16 which illustrates the forms of some of cross sections.

Figure 12. 
(a) Longitudinal section of the proposed road and (b) profile’s design elements.

Figure 13. 
Define vertical curve elements of the road.
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Figure 14. 
The longitudinal section of the road after adding construction line.

Figure 15. 
Section of profile illustrates vertical curve elements.

Figure 16. 
Forms of some cross sections of the proposed road.
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i. Calculated volume of the earth works in a way of prismoidal formula as shown 
in Table 10, which shows the volume of cut and fill for each station of the 
proposed road. These data of volume were exported from Civil 3D to GIS as 
attribute table.

Table 10. 
Calculated volume of cut and fill for each station of the proposed road.
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Figure 14. 
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Figure 15. 
Section of profile illustrates vertical curve elements.

Figure 16. 
Forms of some cross sections of the proposed road.
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10. Conclusion

1. The length of the proposed road was 18210.88 m according to the data of the 
Ministry of Municipalities, 24 m width with two corridors, and the coordinates 
system was UTM.WGS 1984 and Zone 38N.

2. The TIN is the basis of the accuracy of the roads’ coordinates, because it is 
observed with accurate GPS devices.

3. All horizontal and vertical road elements are defined through the CIVIL 3D 
program, facilitating and accelerating the design process in accordance with 
international standards.

4. Four horizontal curves and three vertical curves were proposed for the pro-
posed road, according to the topography of the earth, which required this 
number of curves.

5. The design of the roads using Civil 3D and GIS in all its components makes the 
design process highly efficient through the speed of time, little effort, and low 
cost.

6. Civil 3D has all the international standards used in road design and has all the 
tools that can easily define all design elements for roads and export it to GIS.

7. The program provides us with longitudinal and cross sections that show the 
change in ground and construction line levels very accurately, which facilitates 
the process of proposing tiling and cladding levels.

8. The volume calculated by using the program is very precise. The earthwork 
produced by the pieces can be used to bury the areas that need to be buried. 
The construction line chosen to represent the proposed road level was chosen 
at the same depth as the depth of the burial.

9. The road data exported to the GIS program has created an integrated road 
database. This database can be performed on any kind of spatial analysis or 
network analysis of the roads within the environment of the GIS.
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Chapter 8

On the Use of Low-Cost RGB-D
Sensors for Autonomous Pothole
Detection with Spatial Fuzzy
c-Means Segmentation
Yashon Ombado Ouma

Abstract

The automated detection of pavement distress from remote sensing imagery is a
promising but challenging task due to the complex structure of pavement surfaces,
in addition to the intensity of non-uniformity, and the presence of artifacts and
noise. Even though imaging and sensing systems such as high-resolution RGB
cameras, stereovision imaging, LiDAR and terrestrial laser scanning can now be
combined to collect pavement condition data, the data obtained by these sensors are
expensive and require specially equipped vehicles and processing. This hinders the
utilization of the potential efficiency and effectiveness of such sensor systems. This
chapter presents the potentials of the use of the Kinect v2.0 RGB-D sensor, as a low-
cost approach for the efficient and accurate pothole detection on asphalt pave-
ments. By using spatial fuzzy c-means (SFCM) clustering, so as to incorporate the
pothole neighborhood spatial information into the membership function for clus-
tering, the RGB data are segmented into pothole and non-pothole objects. The
results demonstrate the advantage of complementary processing of low-cost
multisensor data, through channeling data streams and linking data processing
according to the merits of the individual sensors, for autonomous cost-effective
assessment of road-surface conditions using remote sensing technology.

Keywords: Kinect RGB-D sensor, pothole detection, spatial fuzzy-c means
clustering (SFCM), sensor calibration

1. Introduction

Presently, two approaches are typically used to monitor the condition of pave-
ments: manual distress surveys and automated condition surveys using specially
equipped vehicles. Traditionally, in order to determine the serviceability of road
pavements, designated pavement officers perform on-site inspection, either by
walk-observe-record or by windshield (drive-by) inspection, so as to aggregate the
roughness, rutting and surface distresses [1, 2]. With the advancement of sensor
technology, numerous automatic pavement evaluation systems have been proposed
to aid in pavement condition inspection during the last two decades [3]. Currently,
there exist several off-the-shelf commercial systems, which are being widely used
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by some of the road maintenance agencies for detailed pavement distress evaluation
and exclusive crack analysis. Among which, the Fugro Roadware’s ARAN, CSIRO’s
RoadCrack and Ramböll OPQ’s PAVUE are of the world’s leading manufacturers
offering an integrated full-fledged pavement evaluation system equipped with
Global Positioning System (GPS)/Inertial Measurement Unit (IMU) sensors, Light
Detection And Ranging (LiDAR) system, high definition video camera, and special
lighting illumination systems [2]. Nonetheless, technology for the monitoring of
pavement condition does not appear to have kept pace with other technological
improvements over the past several years. Furthermore, these pavement monitor-
ing and evaluation approaches remain rather reactive than proactive in terms of
detecting distresses and damage, since they merely record the distress that has
already appeared, and most of these methods either require significant personnel
time or the use of costly equipment. Thus these systems and techniques can only be
used cost-effectively on a periodic and or localized basis, and may not allow for
continuous long-term monitoring and deployment at the network level, due limita-
tions in hardware and software development and costs.

For sustainable and cost-effective road infrastructure management, the road
agencies charged with the responsibility of road maintenance and repairs should be
able to continuously collect road condition data within their network, with the
objective of building and implementing pavement information and management
systems (PIMS) using non-destructive techniques. However, as already stated
above, data collection for a whole network such as an entire city or town is expen-
sive and time consuming, if pursued by traditional surveys. Developments in sensor
technology for digital image acquisition and computer technology for image data
storage and processing can allow the local agencies to use digital image processing
for pavement distress analyses. In order to overcome the cost limitations in pave-
ment data collection, this chapter presents a pervasive and ‘smart’ nature of the
low-cost consumer-grade devices, in the acquisition of roadway condition data. By
using such devices, no dedicated and expensive platforms and drivers are needed
for automated data collection, and are as such suitable in the long-term in terms of
costs, implementation and operations for road condition surveys.

Besides the data acquisition systems, in order to enhance the automation of
pavement condition monitoring, there have also been advancements in the data
collection techniques (e.g., [4–7]), and automated data processing techniques
[8–10]. Because of the irregularities in terms of noise and topographic structure of
pavement surfaces, more research is still ongoing on the accurate detection, classi-
fication and quantification of cracks and potholes. In addition, the computational
costs for automated pavement distress detections are expensive, and better
approaches are still necessary in the evaluation of the automated crack measure-
ment systems under the various conditions [11].

The commercially available state-of-the-art systems, which comprise of digital
camera and laser-illumination module, and laser road-imaging vehicles costs about
$150,000. On the other hand, the pavement-surface profiler laser sensors, which
are commonly used for measurement of road rutting-depth or surface-roughness,
cost in the range of $130,000–$150,000. Comparatively, mobile pavement imaging
techniques and manual inspection approaches respectively costs $88.5/mile and
$428.8/mile, and the cost of using multi-sensor hybrid systems can range from
$541/mile to $933/mile [2]. For fully automated pavement mapping systems, the
cost of the imaging sensors and operations defines the purchase pricing, which
averages at approximately $697,152 [12]. This chapter presents an approach for the
customization of a low-cost imaging system, Kinect v2.0 sensor, as a prototype for
cost-effective pavement imaging, and a data processing pipeline for pothole detec-
tion and extraction on asphalt pavements.
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2. Measurement principle of the Kinect v2.0 RGB-D sensor

The Kinect v2.0 is the successor of the Xtion Pro Live RGB-D camera, called the
Kinect v1.0. The version 2.0 Kinect RGB-D camera consists of a color (RGB)
camera, an IR illuminator or projector and IR camera (Figure 1(a)). While the RGB
camera records color information in high definition (HD), the IR projector emits an
infrared laser and the IR camera is the sensor for the infrared laser. The Kinect v2
field in the horizontal is 70.6° and 60° in the vertical as depicted in Figure 1(c). The
values in the z-direction (depth values), are calculated using the Time of Flight
(ToF) principle [16, 17], as shown in Eq. (1), and the x and y values are determined
by using the homogeneous image coordinates u and v, and calculated as in Eqs. (2)
and (3) [18]. The RGB and IR images acquired with the Kinect v2.0 partially
overlap, because the RGB color camera has a wider horizontal field of view (FOV),
and IR camera has a larger vertical FOV [15].

z ¼ h ¼ c � Δφ
4πf

(1)

x ¼ u� Cx

f x
(2)

y ¼ v� Cx

f y
(3)

where z is the depth measure in meters, Δφ is the phase shift, c is the speed of
light and f is the modulation frequency; x is the horizontal position, u is the vertical
image coordinate, Cx is optical center in the X-direction and f x is the focal length in
the X-direction, and y is the vertical position, v is the horizontal image coordinate,
Cy is optical center in the Y-direction and f y is the focal length in the Y-direction. In
Figure 1(b), P is the measured point on object surface, E is the IR emitter C is the IR
sensor, and h or z is the unknown distance of measured point from sensor origin.

For the Kinect v1.0 RGB-D camera, the IR camera analyses a fixed speckle
pattern projected by the IR projector and computes depth values by triangulation.
This pattern analysis is referred to as the structured light (SL) approach, whereby a
memorized IR pattern stored in the RGB-D camera’s computer architecture is

Figure 1.
(a) Kinect sensor v2.0 cameras; (b) and (c) principle of Time of Flight (ToF) phase measurement in Kinect
v2.0, and (d) Kinect v2.0 and the field of view geometry [13, 14]. (e) Field of view (FoV) of Kinect v2.0 RGB
and IR cameras [15].
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projected onto the screen and compared with the current pattern on the screen [19].
If there are any obstacles in the way, the IR pattern changes shape from which the
depth values can be deciphered. The Kinect v2.0 however, uses ToF technique to
acquire depth values, where the sensor measures the time it takes for the modulated
laser pulses from the IR projector to reach the object and then back to the IR camera
[13]. The RGB resolution of the Kinect v2.0 is at 1920 � 1080 pixels, and the IR
camera has a resolution of 512 � 424 pixels, with corresponding pixel sizes of 3.1
and 10 μm respectively. The collection of the x; y; zð Þ points results into 3D point

(a)

Specifications Microsoft Kinect
v1.0

SoftKinetic
DS311

SoftKinetic
DS325

SwissRanger
SR4000

Range (short) N/A N/A 15 cm–1.5 m N/A

Range (long) 0.8–4 m 1.5–4.5 m N/A 0.8–8 m

Resolution (depth) QVGA (640 � 480) QVGA (320 �
240)

QVGA (160 �
120)

176 � 144

Field of view (H � V
� D)

57.5° � 43.5° � N/A 57.3° � 42° �
73.8°

74° � 58° � 87° 43° � 34° � N/A

Technology (depth
sensor)

Light coding Depth sense CAPD ToF Time of Flight
(ToF)

Frame rate (depth
sensor)

30 25–60 25–60 50

Resolution (RGB) 640 � 480 or 1280
� 960

640 � 480 1280 � 720
(HD)

N/A

Field of view (RGB) 57.3° � 42° � N/A 50° � 40° �
60°

63.2° � 49.3° �
75.2°

N/A

Frame rate (RGB) 30 <25 <25 N/A

Power/data
connection

USB 2.0 (1) USB 2.0 (1) USB 2.0 (1) Lumberg M8 Male
3-pin

Size (W � H � D) 27.94 � 7.62 �
7.62 cm

24 � 5.8 � 4 cm 10.5 � 3.1 �
2.7 cm

6.5 � 6.5 � 6.8 cm

Price $99 $299 $249 $4295

(b)

Parameter specification Kinect v1.0 Kinect v2.0

Resolution of RGB camera (pixel) 640 � 480 or 1280 � 960 1920 � 1080

Resolution of IR and depth camera (pixel) 640 � 480 512 � 424

Field of view (FOV) of color camera 62° � 48.6° 84.1° � 53.8°

Field of view (FOV) of IR and depth image 57.5° � 43.5° 70.6° � 60°

Tilt motor Yes No

Maximum skeletal tracking 2 6

Method of depth measurement Structured light Time-of-Flight (ToF)

Depth distance working range 0.8–4.0 m 0.5–4.5 m

USB 2.0 3.0

Price $99 $200

Table 1.
Comparative specifications of Kinect v1.0 and Kinect v2.0 and other low-cost sensors.
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cloud. This implies at the acquisition rate of 30 frames per second (fps), every
frame of the Kinect v2.0 outputs 217,088 colored 3D points. The advantage that the
Kinect v2.0 has over its predecessor Xtion Pro Live (Kinect v1.0), is that since it
uses the principle of the ToF instead of relying on projected IR patterns for com-
puting depth, the interference problem is greatly reduced as the sensor does not
have to compute distances between neighboring points on the pattern [13]. The
other advantage with the Kinect v2.0 over the Xtion, is that the camera has a built in
ambient-light rejection method, which makes it possible to use in an outdoor envi-
ronment with near infrared sources of interference [16]. Table 1(a) presents a
summary of the differences between the Microsoft Kinect sensor v1.0 and other
low-cost sensors, and Table 1(b) presents the fundamental characteristics of the
Kinect versions 1.0 and 2.0.

3. Low-cost hardware system design and set-up for pavement data
acquisition using Kinect v2.0

The establishment and design of an optimal low-cost imaging system, compris-
ing of the hardware platform and peripheral requirements, with interface for
Kinect-computer data acquisition, visualization and storage, in both static and
dynamic acquisition modes is illustrated in Figure 2, and is termed as integrated
Mobile Mapping Sensor System (iMMSS). For the implementation of the iMMSS,
two main sets of equipment are used: (i) the Kinect v2.0—for RGB, Infrared (IR)
and depth data capture, and (ii) a DC-AC power inverter—12 V DC to AC 220 V/
200W output. The power inverter is adaptable to the car charger port for powering
the Kinect sensor for static and continuous pavement data acquisition modes. The
iMMSS data acquisition system hardware-software set-up is as illustrated in the
photo in Figure 2. The three main criteria in the field experimentation using the
iMMSS comprise of: the shooting angle (vertical and oblique), shooting distance
from the pavement, and the overall target positioning. Figure 2 illustrates the
hardware layout and software data capture system. The sensing device is housed
within a sensor rack mounted onto the exterior of the wagon. To improve the
contrast of the Kinect’s laser pattern over the road surfaces, from the reflected IR
radiation from sunlight an umbrella was used to block the rays from the sun and to
create a shadow.

In terms of data acquisition in static and dynamic mode (Figure 2), the Kinect
sensor captures depth and color images simultaneously at a frame rate of up to 30
fps. The integration of depth and color data results in a colored point cloud that

Figure 2.
iMMSS hardware-software set-up for road pavement data capture, visualization and storage using the Kinect
sensor.
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acquisition using Kinect v2.0
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Figure 2.
iMMSS hardware-software set-up for road pavement data capture, visualization and storage using the Kinect
sensor.
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contains about 300,000 points in every frame. By registering the consecutive depth
images it is possible to obtain an increased point density, and to create a complete
point cloud. To realize the full potential of the sensor for mapping applications an
analysis of the systematic and random errors of the data is necessary. The correction
of systematic errors is a prerequisite for the alignment of the depth and color data,
and relies on the identification of the mathematical model of depth measurement
and the calibration parameters involved. The characterization of random errors is
important and useful in further processing of the depth data, for example in
weighting the point pairs or planes in the registration algorithm [20].

1.Pothole detection and the bias field effect

Under perfect conditions, potholes tend to have two visual properties charac-
terized by: (i) low-intensity areas that are darker than nearby pavement because of
road surface irregularity [21], and (ii) the texture inside the potholes being coarser
than the nearby pavement [1, 22]. However, as illustrated in [8, 23], the pothole
area is not always darker than nearby pavement. Furthermore, the irregularity of
the road surface produces shadows at pothole boundaries, which is darker than
nearby pavement. These conditions results into the lower accuracy of pothole
detection using visual 2D techniques as was reported in [8]. In RGB imagery,
pothole detection is influenced by the spill-in and spill-out phenomenon [1, 8],
which is typically characterized by the similarities in the defect and non-defect
features and regions. These results in the corruption of the defect regions on the
pavement, with a smoothly varying intensity inhomogeneity called bias field. Bias is
inherent to pavement imaging, and is associated with the imaging equipment limi-
tations and also the pavement surface noise [1, 2].

Bias field in pothole detection can be modeled as a multiplicative component of
an observed image, and varies spatially because of inhomogeneities, and can be
modeled as in Eq. (4).

Yj ¼ BjXj þ n (4)

where Yj is the measured image at voxel j; Xj is the true image signal to be
restored; Bj is an unknown noise or bias field, and n is the additive zero-mean
Gaussian noise. Eq. (4) modeled as an additive component by applying a logarith-
mic transformation, it is possible to obtain a simplified form as:

yj ¼ xj þ bj (5)

where xj and yj are the true and observed log transformed intensities at the jth
voxel, respectively, and bj is the noise or bias field at the jth voxel.

Bias or noise can be corrected by using prospective and retrospective methods.
Prospective methods for noise minimization aim at avoiding the intensity inhomo-
geneities in the image acquisition process. Prospective methods are capable of
correcting intensity inhomogeneity induced by the imaging devices; they are not
able to remove object-induced effects. Retrospective methods in contrast, rely only
on the information in the acquired images, and can thus remove intensity inhomo-
geneities regardless of their sources. The obvious choice in noise minimization is
therefore the retrospective methods, which include filtering, surface fitting, histo-
gram, and segmentation. Among the retrospective methods, segmentation-based
approaches are particularly attractive, as they unify the tasks of segmentation and
bias correction into a single framework. When an observed pixel yj is defined as
noisy, the neighboring pixels can be used to correct it, since the pixel is expected to
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be similar to its surrounding pixel. That is, the data points with similar feature
vectors can be grouped into a single cluster and the data points with dissimilar
feature vectors are also grouped into different clusters. By using a pre-segmentation
clustering algorithm, the Euclidean distance between neighboring pixels is com-
puted and used for the a priori clustering. This means that pixels that produce the
lowest distance values to their neighbors are categorized as being nearly similar.
Two pixels with similar neighboring values are expected to be close to each other,
and hence the pixels can be clustered together. On way of minimizing noise through
clustering is by using the k-means clustering algorithm, whereby the distance mea-

sure between every point z jð Þ
j , and the cluster vj is optimized by calculating the

Euclidean distance measure z jð Þ
i � vj

���
���
2
. The value of this distance measure func-

tion is an indicator of the proximity of the n data points to their cluster prototypes.
Once the pre-clustering is carried out, a more robust segmentation approach can
then be applied, to cluster the smoothened pavement image.

Image segmentation can be performed using different techniques such as:
thresholding, clustering, transform and texture based methods [24]. Histogram-
based thresholding is the simplest and often used approach [25]. Many global and
local thresholding methods have been developed. While the global thresholds seg-
ment the entire image, with a single threshold using the gray-level histogram, the
local based thresholds partition the image into a number of sub-images and select a
threshold for each of the sub-image. The global thresholding methods select the
thresholding based on different criterion such as: Otsu’s method [24], minimum
error thresholding [26], and entropic method [27]. These one-dimensional (1D)
histogram thresholding methods work well when the two consecutive gray levels of
the images are distinct. Further, all the 1D thresholding techniques do not combine
the spatial information and the gray-level information of the pixels into the seg-
mentation process. The performance of the thresholding techniques will lead to
misclassifications in inherently correlated imagery, which are already corrupted by
noise and other artifacts.

Real-world images are often ambiguous, with indistinguishable histograms. As
such, it is complicated for the classical thresholding techniques to find criterion of
similarity or closeness for optimal thresholding. This ambiguity in image segmenta-
tion can be solved by using fuzzy set theory, as a probabilistic global image segmen-
tation approach. Using the conventional FCM formulation, each class is assumed to
have a uniform value as given by its centroid. Similarly, each data point is also
assumed to be independent of every other data point and spatial interaction between
data points is not considered. However, for image data, there is strong correlation
between neighboring pixels. In addition, due to the intensity non-uniformity arti-
facts, the data in a class no longer have a uniform value. Thus to realize meaningful
segmentation results, the conventional FCM algorithm has to be modified to take into
account both local spatial continuity between neighboring data and intensity non-
uniformity artifact compensation. This chapter illustrates the use of spatial fuzzy c-
means SFCMð Þ, so as to incorporate the spatial neighboring information into the
standard fuzzy c-means for pothole detection on pavement surfaces.

3.1 Fuzzy c-means clustering with spatial constraints

FCM is an unsupervised fuzzy clustering algorithm. The conventional clustering
algorithms determine the “hard partition” of a given dataset based on certain
criteria that evaluates the goodness of partition, so that each datum belongs to
exactly one cluster of the partition. The soft clustering on the other hand finds the
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nearby pavement. These conditions results into the lower accuracy of pothole
detection using visual 2D techniques as was reported in [8]. In RGB imagery,
pothole detection is influenced by the spill-in and spill-out phenomenon [1, 8],
which is typically characterized by the similarities in the defect and non-defect
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inherent to pavement imaging, and is associated with the imaging equipment limi-
tations and also the pavement surface noise [1, 2].

Bias field in pothole detection can be modeled as a multiplicative component of
an observed image, and varies spatially because of inhomogeneities, and can be
modeled as in Eq. (4).

Yj ¼ BjXj þ n (4)

where Yj is the measured image at voxel j; Xj is the true image signal to be
restored; Bj is an unknown noise or bias field, and n is the additive zero-mean
Gaussian noise. Eq. (4) modeled as an additive component by applying a logarith-
mic transformation, it is possible to obtain a simplified form as:
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where xj and yj are the true and observed log transformed intensities at the jth
voxel, respectively, and bj is the noise or bias field at the jth voxel.

Bias or noise can be corrected by using prospective and retrospective methods.
Prospective methods for noise minimization aim at avoiding the intensity inhomo-
geneities in the image acquisition process. Prospective methods are capable of
correcting intensity inhomogeneity induced by the imaging devices; they are not
able to remove object-induced effects. Retrospective methods in contrast, rely only
on the information in the acquired images, and can thus remove intensity inhomo-
geneities regardless of their sources. The obvious choice in noise minimization is
therefore the retrospective methods, which include filtering, surface fitting, histo-
gram, and segmentation. Among the retrospective methods, segmentation-based
approaches are particularly attractive, as they unify the tasks of segmentation and
bias correction into a single framework. When an observed pixel yj is defined as
noisy, the neighboring pixels can be used to correct it, since the pixel is expected to
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be similar to its surrounding pixel. That is, the data points with similar feature
vectors can be grouped into a single cluster and the data points with dissimilar
feature vectors are also grouped into different clusters. By using a pre-segmentation
clustering algorithm, the Euclidean distance between neighboring pixels is com-
puted and used for the a priori clustering. This means that pixels that produce the
lowest distance values to their neighbors are categorized as being nearly similar.
Two pixels with similar neighboring values are expected to be close to each other,
and hence the pixels can be clustered together. On way of minimizing noise through
clustering is by using the k-means clustering algorithm, whereby the distance mea-
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Euclidean distance measure z jð Þ
i � vj

���
���
2
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tion is an indicator of the proximity of the n data points to their cluster prototypes.
Once the pre-clustering is carried out, a more robust segmentation approach can
then be applied, to cluster the smoothened pavement image.

Image segmentation can be performed using different techniques such as:
thresholding, clustering, transform and texture based methods [24]. Histogram-
based thresholding is the simplest and often used approach [25]. Many global and
local thresholding methods have been developed. While the global thresholds seg-
ment the entire image, with a single threshold using the gray-level histogram, the
local based thresholds partition the image into a number of sub-images and select a
threshold for each of the sub-image. The global thresholding methods select the
thresholding based on different criterion such as: Otsu’s method [24], minimum
error thresholding [26], and entropic method [27]. These one-dimensional (1D)
histogram thresholding methods work well when the two consecutive gray levels of
the images are distinct. Further, all the 1D thresholding techniques do not combine
the spatial information and the gray-level information of the pixels into the seg-
mentation process. The performance of the thresholding techniques will lead to
misclassifications in inherently correlated imagery, which are already corrupted by
noise and other artifacts.

Real-world images are often ambiguous, with indistinguishable histograms. As
such, it is complicated for the classical thresholding techniques to find criterion of
similarity or closeness for optimal thresholding. This ambiguity in image segmenta-
tion can be solved by using fuzzy set theory, as a probabilistic global image segmen-
tation approach. Using the conventional FCM formulation, each class is assumed to
have a uniform value as given by its centroid. Similarly, each data point is also
assumed to be independent of every other data point and spatial interaction between
data points is not considered. However, for image data, there is strong correlation
between neighboring pixels. In addition, due to the intensity non-uniformity arti-
facts, the data in a class no longer have a uniform value. Thus to realize meaningful
segmentation results, the conventional FCM algorithm has to be modified to take into
account both local spatial continuity between neighboring data and intensity non-
uniformity artifact compensation. This chapter illustrates the use of spatial fuzzy c-
means SFCMð Þ, so as to incorporate the spatial neighboring information into the
standard fuzzy c-means for pothole detection on pavement surfaces.

3.1 Fuzzy c-means clustering with spatial constraints

FCM is an unsupervised fuzzy clustering algorithm. The conventional clustering
algorithms determine the “hard partition” of a given dataset based on certain
criteria that evaluates the goodness of partition, so that each datum belongs to
exactly one cluster of the partition. The soft clustering on the other hand finds the
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“soft partition” of a given dataset. And in “soft partition”, the datum can partially
belong to multiple clusters. Soft clustering algorithms do generate a soft partition
that also forms fuzzy partition. A type of soft clustering of special interest is one
that ensures membership degree of point xj in all clusters adding up to one
(Eq. (6)), and also satisfies the constrained soft partition condition.

X
i

μci xj
� � ¼ 1, ∀xj ∈X (6)

The fuzzy c-means is a clustering method which allows one piece of data to
belong to two or more clusters [28, 29]. The standard FCM algorithm considers the
clustering as an optimization problem where an objective function must be mini-
mized, and assigns pixels to each category by using fuzzy memberships. If I ¼
xj ∈Rd� �

j¼1,…,N is a p�N data matrix, where, p represents the dimension of each xj
“feature” vector, and N represents the number of feature vectors (pixel numbers in
the image), then the FCM algorithm is an iterative optimization that iteratively
minimizes the objective function, with respect to fuzzy membership 0U0, and set of
cluster centroids, 0V 0as in Eq. (7).

JFCM ¼
XN
j¼1

Xc
i¼1

umij � xj � vi
�� ��2 (7)

where uij represents the fuzzy membership of pixel xj in the ith cluster and u ¼
u1; u2;…; ucð Þ are the set of cluster centers; 0C0 is the number of clusters; viis the ith
cluster center; �k k is a Euclidean distance or the normmetric, andm is a constant for
fuzziness exponent. The parameter m controls the fuzziness of the resulting parti-
tion or the fuzziness of the consequential partition, and m ¼ 2 is used in this study.

The cost function is minimized when pixels close to the centroid of their clusters
are assigned high membership values, and low membership values are assigned to
pixels with data far from the centroid. The membership function represents the
probability that a pixel belongs to a specific cluster. In the FCM algorithm, the
probability is dependent solely on the distance between the pixel and each individ-
ual cluster center in the feature domain. By minimizing Eq. (7) using the first
derivatives with respect to uij and vi then setting them to zero using the Lagrange
method, the membership functions and cluster centers are updated by solutions of
uij and the fuzzy centers vi:

uij ¼ 1

Pc
k¼1

xj�vik k
xj�vkk k

� �2= m�1ð Þ (8)

and

vi ¼

PN
j¼1

umij xj

PN
j¼1

umij

(9)

Starting with an initial guess for each cluster center, the FCM converges to a
solution for vi representing the local minimum or a saddle point of the cost function.
Convergence can be detected by comparing the changes in the membership
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function or the cluster center at two successive iteration steps. In an image, as
illustrated in [1], the neighboring pixels are normally highly correlated. This is
because these neighboring pixels possess similar feature values, and the probability
that they belong to the same cluster is often high. The introduction of the spatial
information is an important cue in resolving the mixel problem within a pavement
pothole voxel. While this spatial relationship is important in clustering, it is not
utilized in a standard FCM algorithm. To overcome the effect of noise in the
segmentation process, [30] proposed spatial FCM algorithm in which spatial infor-
mation can be incorporated into fuzzy membership functions directly using a spa-
tial function. The spatial information is introduced while updating the membership
function uij in the repetitive FCM algorithm because the neighborhood pixels pos-
sess same properties as the center pixel. To exploit the spatial information, the
spatial function is defined by hij (Eq. (10)).

hij ¼
X

k∈NB xjð Þ
uik (10)

whereNB xj
� �

is a local square window centered on pixel xj in the spatial domain,
and in this illustration, a 5 � 5 window is used.

Like the membership function, the spatial function hij represents the probability
that pixel xj belongs to the ith cluster. The spatial function of a pixel for a cluster is
large if the majority of its neighborhood belongs to the same clusters. The spatial
function is used in updating the membership function again, and is incorporated
into membership function as follows as presented in Eq. (11) [30].

u
0
ij ¼

upijh
q
ij

Pc
k¼1

upkjh
q
kj

(11)

where p and q are two parameters used to control the relative importance of both
the membership and spatial functions respectively.

In a homogenous region within an image, the spatial functions will strengthen
the original membership, and the clustering result remains unchanged. However,
for a noisy pixel, this formula reduces the weighting of a noisy cluster by the labels
of its neighboring pixels. As a result, misclassified pixels from noisy regions or
spurious blobs can easily be corrected. The spatial FCM with parameter p and q is
denoted SFCMp,q. For p ¼ 1 and q ¼ 0, the SFCM1,0 is identical to the conventional
or standard FCM. In the SFCMp,q, the objective function is not changed, instead the
membership function is updated twice. The first update is the same as in standard
FCM that calculates the membership function in the spectral domain. However in
the second phase, the membership information of each pixel is mapped to the
spatial domain, and the spatial function is computed from that. The spatial function
is defined as the sum of the membership values in spatial domain in the entire
neighborhood around the pixel under consideration. The FCM iteration proceeds
with the new membership that is incorporated with the spatial function. The itera-
tion is stopped when the maximum difference between two cluster centers at two
successive iterations is less than a threshold (=0.02). After the convergence,
defuzzification is applied to assign each pixel to a specific cluster for which the
membership is maximal. The SFCMp,q works well for high as well as low density
noise, and can be applied for single and multiple feature data. As compared to other
methods FCM based methods, SFCMp,q gives superior results without any bound-
ary leakage even at high density noise, when the q value is carefully selected [31].
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The cost function is minimized when pixels close to the centroid of their clusters
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Starting with an initial guess for each cluster center, the FCM converges to a
solution for vi representing the local minimum or a saddle point of the cost function.
Convergence can be detected by comparing the changes in the membership
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function or the cluster center at two successive iteration steps. In an image, as
illustrated in [1], the neighboring pixels are normally highly correlated. This is
because these neighboring pixels possess similar feature values, and the probability
that they belong to the same cluster is often high. The introduction of the spatial
information is an important cue in resolving the mixel problem within a pavement
pothole voxel. While this spatial relationship is important in clustering, it is not
utilized in a standard FCM algorithm. To overcome the effect of noise in the
segmentation process, [30] proposed spatial FCM algorithm in which spatial infor-
mation can be incorporated into fuzzy membership functions directly using a spa-
tial function. The spatial information is introduced while updating the membership
function uij in the repetitive FCM algorithm because the neighborhood pixels pos-
sess same properties as the center pixel. To exploit the spatial information, the
spatial function is defined by hij (Eq. (10)).
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is a local square window centered on pixel xj in the spatial domain,
and in this illustration, a 5 � 5 window is used.

Like the membership function, the spatial function hij represents the probability
that pixel xj belongs to the ith cluster. The spatial function of a pixel for a cluster is
large if the majority of its neighborhood belongs to the same clusters. The spatial
function is used in updating the membership function again, and is incorporated
into membership function as follows as presented in Eq. (11) [30].
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where p and q are two parameters used to control the relative importance of both
the membership and spatial functions respectively.

In a homogenous region within an image, the spatial functions will strengthen
the original membership, and the clustering result remains unchanged. However,
for a noisy pixel, this formula reduces the weighting of a noisy cluster by the labels
of its neighboring pixels. As a result, misclassified pixels from noisy regions or
spurious blobs can easily be corrected. The spatial FCM with parameter p and q is
denoted SFCMp,q. For p ¼ 1 and q ¼ 0, the SFCM1,0 is identical to the conventional
or standard FCM. In the SFCMp,q, the objective function is not changed, instead the
membership function is updated twice. The first update is the same as in standard
FCM that calculates the membership function in the spectral domain. However in
the second phase, the membership information of each pixel is mapped to the
spatial domain, and the spatial function is computed from that. The spatial function
is defined as the sum of the membership values in spatial domain in the entire
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with the new membership that is incorporated with the spatial function. The itera-
tion is stopped when the maximum difference between two cluster centers at two
successive iterations is less than a threshold (=0.02). After the convergence,
defuzzification is applied to assign each pixel to a specific cluster for which the
membership is maximal. The SFCMp,q works well for high as well as low density
noise, and can be applied for single and multiple feature data. As compared to other
methods FCM based methods, SFCMp,q gives superior results without any bound-
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3.2 Depth image data smoothing and hole-filling

To correctly analyze and potentially combine the RGB image with the depth
data, the spatial alignment of the RGB and the depth camera outputs is necessary.
Additionally, the raw depth data are very noisy and many pixels in the image may
have no depth due to multiple reflections, transparent objects or scattering in
certain nearby surfaces. As such the inaccurate and or missing depth data (holes)
need to be recovered prior to data processing. The recovery is conducted through
application-specific camera recalibration and or depth data filtering. In this section
we deal with the depth data filtering first, and in the next subsection, the camera
calibration is discussed. By enhancing the depth image using color image, the
following issues are addressed: (i) due to various environmental reasons, specular
reflections, or simply the device range, there are regions of missing data in the
depth map; (ii) the accuracy of the pixels values in the depth image is low, and the
noise level is high. This is true mostly along depth edges and object boundaries,
which is exactly where such information is most valuable; (iii) despite the calibra-
tion, the depth and color images are still not aligned well enough. They are acquired
by two close, but not similar, sensors and may also have differences in their internal
camera properties (e.g., focal length). This misalignment leads to small projection
differences, even, again, these small errors are more noticeable especially along
edges, and (iv) usually the depth image has lower resolution than the color image,
and therefore it should be up-sampled in a consistent manner.

Because of the limitations in the depth measuring principle and object surface
properties, the depth image from Kinect inevitably contains optical noise and
unmatched edges, together with holes or invalid pixels, which makes it unsuitable
for direct application [32]. In order to remove noise from the depth image, the joint
bilateral filter is preferred. This is because the joint bilateral filter has the advantage
of preserving edges while removing noises, analyzing through every image pixel
and replacing every image pixel-by-pixel with the median of the pixels in the
corresponding filter region R. This process can be expressed according to Eq. (12).

I0 u; vð Þ ! median I uþ i; vþ jð Þ i; jð Þ∈Rj gf (12)

where, u; vð Þ is the position of the image pixel and i; jð Þ is the neighborhood size
of the image region and these are specified as a two element numeric vector of
positive integers. By using median filtering, each output pixel contains the
median value in the i � j neighborhood around the corresponding pixel in the
input image.

In filling holes in depth images: (i) [33] used bilateral filter and median filter in
the temporal domain; (ii) [34] proposed joint bilateral filter and Kalman filter for
depth map smoothing, and to reduce the random fluctuations in the time domain.
Jung [35] proposed a modified version of the joint trilateral filter (JTF) by using
both depth and color pixels to estimate a filter kernel and by assuming the presence
of no holes. Liu et al. [36] employed an energy minimization method with a regu-
larization term to fill the depth-holes and remove the noise in depth images. The
linear regression model utilized was based on both depth values and pixel colors.
From the above studies, it is noted that the methods are primarily based on different
types of filters to smooth noise in depth images and to fill holes by using color
images to guide the process.

Introduced by [37], the bilateral filter is a robust edge-preserving filter with two
filter kernels: a spatial filter kernel and a range filter kernel, which are traditionally
based on a Gaussian distribution, for measuring the spatial and range distance
between the center pixel and its neighbors, respectively [38].
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By letting IX be the color at pixel x, and IIX be the filtered value, it is desired for
IIX to be:

IIX ¼
P

y∈N xð Þf S x; yð Þ � f R Ix; Iy
� � � IyP

y∈N xð Þf S x; yð Þ � f R Ix; Iy
� � (13)

where y is a pixel in the neighborhood N(x) of pixel x, where f S x; yð Þ ¼

exp � x�yk k2
2σ2S

� �
and, f R Ix; Iy

� � ¼ exp � Ix�Iyk k2
2σ2R

� �
are the spatial and range filter

kernels measuring the spatial and range/color similarities. The parameter σS defines
the size of the spatial neighborhood used to filter a pixel, and σR controls how much
an adjacent pixel is down-weighted because of the color difference.

The limitation of the conventional bilateral filter is that it can interpret impulse
noise spikes as forming an edge. A joint or cross bilateral filter [39, 40] is similar to
the conventional bilateral filter except that in the case of the joint bilateral filter, the
range filter kernel f R �ð Þ is computed from another image called the guidance image.
The guide image J indicates where similar pixels are located in each neighborhood.
With J as the guidance image, then the joint bilateral filtered value at pixel x is
determined as in Eq. (14).

IJX ¼
P

y∈N xð Þ f S x; yð Þ f R Jx; Jy
� �

Iy
P

y∈N xð Þ f S x; yð Þ f R Jx; Jy
� � (14)

It is important to note that the joint bilateral filter ensures the texture of the
filtered image IJ to follow the texture of the guidance image J. In the implementa-
tion this paper, the image intensity was normalized such that it ranges from [0, 1],
and image coordinates were also normalized so that x and y also reside in [0, 1].

With this depth hole filling based on the bilateral filter, the depth value at each
pixel in an image is replaced by a weighted average of depth values from nearby
pixels. While the joint bilateral filter has been demonstrated to be very effective for
color image upsampling, if it is directly applied to a depth image with a registered
RGB color image as the guidance image, the texture of the guidance image (that is
independent of the depth information) is likely to be introduced to the upsampled
depth image, and the upsampling errors mainly reside in the texture transferring
property of the joint bilateral filter [38]. Meanwhile, the median filtering operation
minimizes the sum of the absolute error of the given data [41], and is much more
robust to outliers than the bilateral filter. A possible solution to the “hole-filling”
problem in depth imagery is to focus on the combination of the median operation
with the bilateral filter so that the texture influence can be better suppressed while
maintaining the edge-preserving property [42].

3.3 Calibration of RGB and IR Kinect cameras

Despite the fact that the Kinect, like other off-the-shelf sensors, has been cali-
brated during manufacturing, and the camera parameters are stored in the device’s
memory, this calibration information not accurate enough for reconstructing 3D
information, from which a highly precise cloud of 3D points should be obtained.
Furthermore, the manufacturer’s calibration does not correct the depth distortion,
and is thus incapable of recovering the missing depth [43]. Using a 9 � 8
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3.2 Depth image data smoothing and hole-filling
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Additionally, the raw depth data are very noisy and many pixels in the image may
have no depth due to multiple reflections, transparent objects or scattering in
certain nearby surfaces. As such the inaccurate and or missing depth data (holes)
need to be recovered prior to data processing. The recovery is conducted through
application-specific camera recalibration and or depth data filtering. In this section
we deal with the depth data filtering first, and in the next subsection, the camera
calibration is discussed. By enhancing the depth image using color image, the
following issues are addressed: (i) due to various environmental reasons, specular
reflections, or simply the device range, there are regions of missing data in the
depth map; (ii) the accuracy of the pixels values in the depth image is low, and the
noise level is high. This is true mostly along depth edges and object boundaries,
which is exactly where such information is most valuable; (iii) despite the calibra-
tion, the depth and color images are still not aligned well enough. They are acquired
by two close, but not similar, sensors and may also have differences in their internal
camera properties (e.g., focal length). This misalignment leads to small projection
differences, even, again, these small errors are more noticeable especially along
edges, and (iv) usually the depth image has lower resolution than the color image,
and therefore it should be up-sampled in a consistent manner.

Because of the limitations in the depth measuring principle and object surface
properties, the depth image from Kinect inevitably contains optical noise and
unmatched edges, together with holes or invalid pixels, which makes it unsuitable
for direct application [32]. In order to remove noise from the depth image, the joint
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I0 u; vð Þ ! median I uþ i; vþ jð Þ i; jð Þ∈Rj gf (12)

where, u; vð Þ is the position of the image pixel and i; jð Þ is the neighborhood size
of the image region and these are specified as a two element numeric vector of
positive integers. By using median filtering, each output pixel contains the
median value in the i � j neighborhood around the corresponding pixel in the
input image.

In filling holes in depth images: (i) [33] used bilateral filter and median filter in
the temporal domain; (ii) [34] proposed joint bilateral filter and Kalman filter for
depth map smoothing, and to reduce the random fluctuations in the time domain.
Jung [35] proposed a modified version of the joint trilateral filter (JTF) by using
both depth and color pixels to estimate a filter kernel and by assuming the presence
of no holes. Liu et al. [36] employed an energy minimization method with a regu-
larization term to fill the depth-holes and remove the noise in depth images. The
linear regression model utilized was based on both depth values and pixel colors.
From the above studies, it is noted that the methods are primarily based on different
types of filters to smooth noise in depth images and to fill holes by using color
images to guide the process.

Introduced by [37], the bilateral filter is a robust edge-preserving filter with two
filter kernels: a spatial filter kernel and a range filter kernel, which are traditionally
based on a Gaussian distribution, for measuring the spatial and range distance
between the center pixel and its neighbors, respectively [38].
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By letting IX be the color at pixel x, and IIX be the filtered value, it is desired for
IIX to be:

IIX ¼
P

y∈N xð Þf S x; yð Þ � f R Ix; Iy
� � � IyP

y∈N xð Þf S x; yð Þ � f R Ix; Iy
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where y is a pixel in the neighborhood N(x) of pixel x, where f S x; yð Þ ¼

exp � x�yk k2
2σ2S

� �
and, f R Ix; Iy

� � ¼ exp � Ix�Iyk k2
2σ2R

� �
are the spatial and range filter

kernels measuring the spatial and range/color similarities. The parameter σS defines
the size of the spatial neighborhood used to filter a pixel, and σR controls how much
an adjacent pixel is down-weighted because of the color difference.

The limitation of the conventional bilateral filter is that it can interpret impulse
noise spikes as forming an edge. A joint or cross bilateral filter [39, 40] is similar to
the conventional bilateral filter except that in the case of the joint bilateral filter, the
range filter kernel f R �ð Þ is computed from another image called the guidance image.
The guide image J indicates where similar pixels are located in each neighborhood.
With J as the guidance image, then the joint bilateral filtered value at pixel x is
determined as in Eq. (14).

IJX ¼
P

y∈N xð Þ f S x; yð Þ f R Jx; Jy
� �

Iy
P

y∈N xð Þ f S x; yð Þ f R Jx; Jy
� � (14)

It is important to note that the joint bilateral filter ensures the texture of the
filtered image IJ to follow the texture of the guidance image J. In the implementa-
tion this paper, the image intensity was normalized such that it ranges from [0, 1],
and image coordinates were also normalized so that x and y also reside in [0, 1].

With this depth hole filling based on the bilateral filter, the depth value at each
pixel in an image is replaced by a weighted average of depth values from nearby
pixels. While the joint bilateral filter has been demonstrated to be very effective for
color image upsampling, if it is directly applied to a depth image with a registered
RGB color image as the guidance image, the texture of the guidance image (that is
independent of the depth information) is likely to be introduced to the upsampled
depth image, and the upsampling errors mainly reside in the texture transferring
property of the joint bilateral filter [38]. Meanwhile, the median filtering operation
minimizes the sum of the absolute error of the given data [41], and is much more
robust to outliers than the bilateral filter. A possible solution to the “hole-filling”
problem in depth imagery is to focus on the combination of the median operation
with the bilateral filter so that the texture influence can be better suppressed while
maintaining the edge-preserving property [42].

3.3 Calibration of RGB and IR Kinect cameras

Despite the fact that the Kinect, like other off-the-shelf sensors, has been cali-
brated during manufacturing, and the camera parameters are stored in the device’s
memory, this calibration information not accurate enough for reconstructing 3D
information, from which a highly precise cloud of 3D points should be obtained.
Furthermore, the manufacturer’s calibration does not correct the depth distortion,
and is thus incapable of recovering the missing depth [43]. Using a 9 � 8
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checkerboard, with 30 mm square fields, a set of close-up RGB/IR images of the
checkerboard placed in different positions and orientations (Figure 3(a)), can be
collected and used for calibration. The Bouguet’s Camera Calibration Toolbox [44]
in MATLAB can be used for the identification of RGB and IR camera parameters,
utilizing the two versions of Herrera’s method [45]. IR camera calibration, the IR
emitter should be disabled during imaging so as to achieve appropriate light condi-
tions. The output matrices for the intrinsic, distortion and extrinsic calibration
parameters are presented in Table 2.

3.3.1 Initialization of intrinsic and extrinsic calibration

For the color camera, the initial estimation of Ic and T ið Þ
c for all calibration images

is carried out as described in Bouguet’s toolbox. The intrinsic parameters for the
depth camera are defined as I

0
d ¼ fd; cd; kd; c0; c1f g, since the depth distortion terms

are not considered. They are initialized using preset values, which are publicly

Figure 3.
Checkerboard RGB (top) images and the corresponding IR (bottom) calibration images. From the case study
roads, a database of 10,540 color and depth test image frames has been acquired and being processed.

Intrinsic calibration matrix

536.782668 0.000000 319.133028

0.000000 536.889190 258.356500

0.000000 0.000000 1.000000

Distortion calibration matrix

0.243645 �0.572745 �0.008210 0.000119

Extrinsic calibration matrix

0.999987 �0.004894 �0.001283 110.506445

�0.004661 �0.989735 0.142836 �133.830468
�0.001969 �0.142828 �0.989746 867.124291

0.000000 0.000000 0.000000 1.000000

Table 2.
Intrinsic, distortion and extrinsic calibration matrix parameters.
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available for the Kinect, online. For each input disparity map i, the plane corners
are extracted, defining a polygon. For each point xd inside the polygon, the
corresponding disparity d is used for computing a depth value zd using z ¼ 1

c1duþc0,
where d ¼ du since the measured disparities are used, and c0 and c1 are part of the
depth camera’s intrinsics. The correspondences xd; yd; zd

� �
are used for computing

3D Xc points originating a 3D point cloud. To each 3D point cloud, a plane is fitted
using a standard total least squares algorithm.

3.4 Pothole search engine

As a pre-processing step and prior to the segmentation and clustering of the RGB
and depth data, pothole search engine (PSE) is necessary. It is then possible to
extract potholes-only images for further autonomous processing. This can be
accomplished by using a 2-class k-means clustering of the candidate RGB image
frames, and is confirmed using ellipsoidal fitting on the classified binary image
frame.

3.4.1 k-means clustering and edge ellipse fitting for pothole search

Since the data collected comprises of pothole and non-pothole pavement defect
image frames, the first preprocessing step after the calibration is to eliminate the
non-pothole images from the database. Using unsupervised classification on the
acquired RGB data frames, images with potential potholes are selected based on k-
means clustering [46], and adaptive median filtering. From the candidate potholes
images, edge lines are estimated and the corresponding ellipse(s) are fitted using
least squares optimization. This algorithm is applied in a batch processing mode,
and the efficiency of the approach is then confirmed by using visual inspection and
comparison.

3.4.2 Horizontal and vertical integral projection (HVIP)

Integral projection (IP) has the discriminative to accumulate and resolve the
pixel histograms into pothole and non-potholes pixels, by analyzing the horizontal
and vertical (HV) pixel distributions within an image, represented by horizontal
and vertical projections. Given a grayscale image I(x, y), the horizontal and vertical
IPs are defined as follows in Eqs. (15) and (16).

HP yð Þ ¼
X
i∈ xy

I i; jð Þ (15)

VP xð Þ ¼
X
j∈ yx

I i; yð Þ (16)

where HP and VP are the horizontal and vertical IP, respectively. xy and yx
denote the set of horizontal pixels at the vertical pixel y and the set of vertical pixels
at the horizontal pixel x, respectively.

3.4.3 Database search for candidate pothole image frames using ellipse fitting and HVIP

With a visual comparison of 99% efficiency for the pothole database search,
Table 3 shows the results using the pothole search engine (PSE). The ellipse detec-
tion indicates the presence of defect or no-defect within the image, and also defines
the orientation of the pothole with respect to the longitudinal profile of the road.
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available for the Kinect, online. For each input disparity map i, the plane corners
are extracted, defining a polygon. For each point xd inside the polygon, the
corresponding disparity d is used for computing a depth value zd using z ¼ 1

c1duþc0,
where d ¼ du since the measured disparities are used, and c0 and c1 are part of the
depth camera’s intrinsics. The correspondences xd; yd; zd
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are used for computing

3D Xc points originating a 3D point cloud. To each 3D point cloud, a plane is fitted
using a standard total least squares algorithm.

3.4 Pothole search engine

As a pre-processing step and prior to the segmentation and clustering of the RGB
and depth data, pothole search engine (PSE) is necessary. It is then possible to
extract potholes-only images for further autonomous processing. This can be
accomplished by using a 2-class k-means clustering of the candidate RGB image
frames, and is confirmed using ellipsoidal fitting on the classified binary image
frame.

3.4.1 k-means clustering and edge ellipse fitting for pothole search

Since the data collected comprises of pothole and non-pothole pavement defect
image frames, the first preprocessing step after the calibration is to eliminate the
non-pothole images from the database. Using unsupervised classification on the
acquired RGB data frames, images with potential potholes are selected based on k-
means clustering [46], and adaptive median filtering. From the candidate potholes
images, edge lines are estimated and the corresponding ellipse(s) are fitted using
least squares optimization. This algorithm is applied in a batch processing mode,
and the efficiency of the approach is then confirmed by using visual inspection and
comparison.

3.4.2 Horizontal and vertical integral projection (HVIP)

Integral projection (IP) has the discriminative to accumulate and resolve the
pixel histograms into pothole and non-potholes pixels, by analyzing the horizontal
and vertical (HV) pixel distributions within an image, represented by horizontal
and vertical projections. Given a grayscale image I(x, y), the horizontal and vertical
IPs are defined as follows in Eqs. (15) and (16).

HP yð Þ ¼
X
i∈ xy

I i; jð Þ (15)

VP xð Þ ¼
X
j∈ yx

I i; yð Þ (16)

where HP and VP are the horizontal and vertical IP, respectively. xy and yx
denote the set of horizontal pixels at the vertical pixel y and the set of vertical pixels
at the horizontal pixel x, respectively.

3.4.3 Database search for candidate pothole image frames using ellipse fitting and HVIP

With a visual comparison of 99% efficiency for the pothole database search,
Table 3 shows the results using the pothole search engine (PSE). The ellipse detec-
tion indicates the presence of defect or no-defect within the image, and also defines
the orientation of the pothole with respect to the longitudinal profile of the road.
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The results of horizontal and vertical IP (HVIP) analysis for several pavement
images with varied sized pixels are presented in Table 3. As observed from the test
results, a structurally healthy pavement image with non-potholes (e.g., test image
#2) is generally characterized by recognizably stable signals of both horizontal and
vertical integral projections. On the other hand, the integral projections of images
containing potholes (e.g., test images #1, #3 and #4), has peak(s) in either the
vertical or horizontal or both IPs, depending on the strength or the severity of the
pothole and lighting conditions. Where both the horizontal and vertical signals are
strong, the locations of the two peaks tend to be relatively close to each other. Thus
in addition to the ellipsoidal fitting, HVIP can effectively be used in the extraction
of pothole and non-pothole image frames in a pothole database search engine
system. In the PSE search system, data acquired under varied illumination condi-
tions were tested, to ensure the effectiveness of the system with data of different
resolutions.

4. Pothole metrology data parametrization

Figure 4 illustrates the conceptual approximation of a pothole with dimensional
parameters that define the pothole metrology as: width, depth, surface area and
volume. Assuming the potholes have the shape of a circular paraboloid, then in 2D
they can be represented by the function f x; yð Þ ¼ x2 þ y2.

4.1 Pothole depth determination using depth image

The depth-image plane (Figure 4) is one of the noise factors, whereby the plane
is not necessarily parallel to the pavement surface. The noise points, which are the
non-defect points between the pavement-pothole plane and the camera, have to be
filtered out for the accurate depth detection and the subsequent 2D-pothole detec-
tion from the depth image. The general principle of removing the outlier points
(noise), is by determining the local minimum of each column and then subtracting
from the column itself in order to extract the pothole from the rest of data [47]. The
minimum of each column defines the depth below which the pothole starts on the
road pavement surface, and is referred to as the depth-image plane. Using this
approach, the depths di including the maximum depth dimax can be quantified, and
the mean depth di for a given pothole is also computed.

Figure 4.
Representation and approximation of pothole metrology elements: depth, width, surface area and volume.
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The results of horizontal and vertical IP (HVIP) analysis for several pavement
images with varied sized pixels are presented in Table 3. As observed from the test
results, a structurally healthy pavement image with non-potholes (e.g., test image
#2) is generally characterized by recognizably stable signals of both horizontal and
vertical integral projections. On the other hand, the integral projections of images
containing potholes (e.g., test images #1, #3 and #4), has peak(s) in either the
vertical or horizontal or both IPs, depending on the strength or the severity of the
pothole and lighting conditions. Where both the horizontal and vertical signals are
strong, the locations of the two peaks tend to be relatively close to each other. Thus
in addition to the ellipsoidal fitting, HVIP can effectively be used in the extraction
of pothole and non-pothole image frames in a pothole database search engine
system. In the PSE search system, data acquired under varied illumination condi-
tions were tested, to ensure the effectiveness of the system with data of different
resolutions.

4. Pothole metrology data parametrization

Figure 4 illustrates the conceptual approximation of a pothole with dimensional
parameters that define the pothole metrology as: width, depth, surface area and
volume. Assuming the potholes have the shape of a circular paraboloid, then in 2D
they can be represented by the function f x; yð Þ ¼ x2 þ y2.

4.1 Pothole depth determination using depth image

The depth-image plane (Figure 4) is one of the noise factors, whereby the plane
is not necessarily parallel to the pavement surface. The noise points, which are the
non-defect points between the pavement-pothole plane and the camera, have to be
filtered out for the accurate depth detection and the subsequent 2D-pothole detec-
tion from the depth image. The general principle of removing the outlier points
(noise), is by determining the local minimum of each column and then subtracting
from the column itself in order to extract the pothole from the rest of data [47]. The
minimum of each column defines the depth below which the pothole starts on the
road pavement surface, and is referred to as the depth-image plane. Using this
approach, the depths di including the maximum depth dimax can be quantified, and
the mean depth di for a given pothole is also computed.

Figure 4.
Representation and approximation of pothole metrology elements: depth, width, surface area and volume.
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4.2 Pothole width measurement

The width of a pothole can be defined by the semi-major a and semi-minor b
axes, on the assumption that an ellipse, based on the major path elliptic regression,
is used pothole shape extraction [48]. To determine the lateral width of the pothole,
it can be estimated using a circular paraboloid, which is an elliptical paraboloid.
And, an elliptical paraboloid is a surface with parabolic cross-sections in
2-orthogonal directions and 1-elliptical cross-section in the other orthogonal
direction. Using an edge detection algorithm, the near-true shape of the pothole is
first derived using the proposed SFCM, and then an elliptical fit is used to approx-
imate the shape, from which the axes are defined for the calculation of the surface
area and volume of the pothole.

4.3 Pothole surface area determination

In order to determine the surface area of the pothole, the optimally detected
edge is used to fit the shape of the pothole as either elliptic paraboloid or circular
paraboloid. While the former is defined by the dimensions of semi-major axis a and
semi-minor axis b, the latter is defined by the estimated radius r. The surface area is
then computed by using the surface integrals of either of the paraboloids [49], as
respectively shown in Eqs. (17) and (18) for the elliptic and circular paraboloids.

ð17Þ

Ar ¼ π

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r2ð Þ3

q
(18)

If pixels counts are used, then Eq. (19) can be implemented, [8]. Whereby in
Eq. (19), l is the pixel size and Ip is the binary value of pixel at coordinate position
(x,y). The area Ap is estimated on the basis of the average of a 2 � 2 window.

Ap ¼ l2 �
X
x

X
y

Ip x; yð Þ (19)

4.4 Pothole volume estimation

According to [50], if T is a closed region bounded by a surface S, and F is a
vector field defined at each point of T and on its boundary surface, then

Ð Ð Ð
TFdv is

the volume integral of F through the bounded region T. As in case for the surface
area of a pothole, the area is either estimated by an elliptic paraboloid or a circular
paraboloid. The volume of the elliptic paraboloid V can be estimated according to
Eq. (20), and the volume Vr 0f the pothole is estimated using a circular paraboloid
as in Eq. (21).

V ¼ 4
3
πabdmax (20)

Vr ¼ πr4

2
(21)

Since the depth for each pixel di is obtainable from the depth image, the inte-
gration of all small volumes represented by each pixel leads to the total volume of
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area within the frame [51]. Therefore the estimated volume Vd in terms of the pixel
depth is given by Eq. (22)

Vd ¼ l2p �
X
y

X
x

Id x; yð Þ � Ip x; yð Þ (22)

where Vd is the total pothole volume, and Id x; yð Þ is depth of pixel p at location
x; yð Þ.

4.5 Prototype implementation strategy for pothole detection
using low-cost sensor

Figure 5 illustrates the processing steps in implementing the detection, and
visualization potholes and related metrological parameters from the Kinect v2.0
RGB-D, based on the experimental iMMSS data capture system. In summary the
processing system should comprise of data acquisition and geometric transforma-
tion; preprocessing for noise minimization; cascaded pothole detection approach
from fused RGB-D data using dual-clustering approach comprising of k-means and
spatial fuzzy c-means, and a parallel processing system for pothole area and volume
detection from RGB and depth imagery.

Figure 5.
Processing pipelines for pothole detection based on cascaded dual-clustering and pothole metrology
quantification and visualization from multimodal iMMSS low-cost RGB-D sensor system.
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4.2 Pothole width measurement
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ð17Þ

Ar ¼ π

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r2ð Þ3

q
(18)
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According to [50], if T is a closed region bounded by a surface S, and F is a
vector field defined at each point of T and on its boundary surface, then
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the volume integral of F through the bounded region T. As in case for the surface
area of a pothole, the area is either estimated by an elliptic paraboloid or a circular
paraboloid. The volume of the elliptic paraboloid V can be estimated according to
Eq. (20), and the volume Vr 0f the pothole is estimated using a circular paraboloid
as in Eq. (21).
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Since the depth for each pixel di is obtainable from the depth image, the inte-
gration of all small volumes represented by each pixel leads to the total volume of
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area within the frame [51]. Therefore the estimated volume Vd in terms of the pixel
depth is given by Eq. (22)

Vd ¼ l2p �
X
y

X
x

Id x; yð Þ � Ip x; yð Þ (22)

where Vd is the total pothole volume, and Id x; yð Þ is depth of pixel p at location
x; yð Þ.

4.5 Prototype implementation strategy for pothole detection
using low-cost sensor

Figure 5 illustrates the processing steps in implementing the detection, and
visualization potholes and related metrological parameters from the Kinect v2.0
RGB-D, based on the experimental iMMSS data capture system. In summary the
processing system should comprise of data acquisition and geometric transforma-
tion; preprocessing for noise minimization; cascaded pothole detection approach
from fused RGB-D data using dual-clustering approach comprising of k-means and
spatial fuzzy c-means, and a parallel processing system for pothole area and volume
detection from RGB and depth imagery.

Figure 5.
Processing pipelines for pothole detection based on cascaded dual-clustering and pothole metrology
quantification and visualization from multimodal iMMSS low-cost RGB-D sensor system.
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5. Some experimental results and analysis

5.1 Pothole detection using SFCM segmentation

The results for the clustering of the RGB imagery using FCM and SFCM are
comparatively presented. Where there is low spectral heterogeneity, the first Prin-
cipal Components Transform image (PCT-band 1) is used in the FCM and SFCM
clustering. The results in Table 4 shows that the inclusion of the spatial neighbor-
hood information using the SFCM, results in a more compact detection of the
potholes, by segmenting the potholes from the non-potholes and ensuring homoge-
neity within the pothole itself, hence taking the spatial cues in clustering. Further-
more, the SFCM performs much better than FCM especially under different lighting
conditions.

5.2 Pothole depth imagery representation

Defects on pavements are defined as surface deformations that are greater than a
threshold as illustrated in Figure 6(b). Since the captured depth data is corrupted
with noise, the depth-image plane as illustrated in Figure 4 (Figures 6(b) and 6
(c)), is not necessarily parallel to the surface that is under inspection. This is solved
by fitting a plane to the points in the depth image (Figure 6(b)), that are not
farther than a threshold from the IR camera (Figure 6(c)). By using the random
sample consensus (RANSAC) algorithm [52], the plane is fitted to the points, and
the depth image is subtracted from the fitted plane, with the results in Figure 6(d).
To discriminate between the depressions (potholes) and the flat regions (non-
potholes), the Otsu’s thresholding algorithm is used. Sample results of the depth-
image segmentation are sequentially presented in Figure 6.

5.3 Feature based RGB-D data fusion for enhanced pothole segmentation

In this section, an illustration on the potential of fusion of the depth and color
image at the object or feature level is demonstrated. A possible two-way fusion
approach comprising of either: (i) pre-pothole detection fusion involving the
enhancement of the color image with the depth image, or (ii) post-pothole detec-
tion fusion of the pothole defect features as independently determined from the
RGB and depth images respectively is proposed and conceptually represented in
Figure 7. The first approach presents a joint segmentation approach, which is
similar to extracting consistent layers from the image where each layer segment in
terms of both color and depth. It is common for real scene object, like pavement
pothole surfaces, to be characterized by different intensities and a small range of
depths. The incorporation of the depth information into the segmentation process,
allows for the detection of real pothole object boundaries instead of just coherent
color regions, and the objective is to enhance the application relevant features in the
resultant fused image product.

The potential and significance of fusion of RGB and depth imagery is illustrated
in Figures 8 and 9, using the pothole edge identification from the RGB and depth
image data. Figure 8 shows an RGB and depth (RGB-D) single frame pavement
data acquired Kinect experimental setup. The RGB is smoothened (left frame) using
the median filter, while hole-filling using the joint bilateral filter is applied to the
depth image (right frame). It is observed that the two images complement each
other. Comparing the corrected image datasets, it is observed that the depth image
clearly defines the pothole edges as compared to the fuzzy representation of the
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potholes), the Otsu’s thresholding algorithm is used. Sample results of the depth-
image segmentation are sequentially presented in Figure 6.

5.3 Feature based RGB-D data fusion for enhanced pothole segmentation

In this section, an illustration on the potential of fusion of the depth and color
image at the object or feature level is demonstrated. A possible two-way fusion
approach comprising of either: (i) pre-pothole detection fusion involving the
enhancement of the color image with the depth image, or (ii) post-pothole detec-
tion fusion of the pothole defect features as independently determined from the
RGB and depth images respectively is proposed and conceptually represented in
Figure 7. The first approach presents a joint segmentation approach, which is
similar to extracting consistent layers from the image where each layer segment in
terms of both color and depth. It is common for real scene object, like pavement
pothole surfaces, to be characterized by different intensities and a small range of
depths. The incorporation of the depth information into the segmentation process,
allows for the detection of real pothole object boundaries instead of just coherent
color regions, and the objective is to enhance the application relevant features in the
resultant fused image product.

The potential and significance of fusion of RGB and depth imagery is illustrated
in Figures 8 and 9, using the pothole edge identification from the RGB and depth
image data. Figure 8 shows an RGB and depth (RGB-D) single frame pavement
data acquired Kinect experimental setup. The RGB is smoothened (left frame) using
the median filter, while hole-filling using the joint bilateral filter is applied to the
depth image (right frame). It is observed that the two images complement each
other. Comparing the corrected image datasets, it is observed that the depth image
clearly defines the pothole edges as compared to the fuzzy representation of the
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edges by the color image (Figure 9). This implies that it is possible to improve the
pothole detection from RGB imagery through fusion of the RGB and depth image
datasets (feature fusion) or through post-segmentation fusion (object fusion). For
this chapter, only a discussion and potential illustration is presented.

5.4 Evaluation of results and quantification of pothole metrology parameters

An evaluation of the low-cost pavement pothole detection system is carried out
using 55 depth image frames comprising of 35 images with potholes and 20 defect-
free frames were evaluated. The results of the illustrative evaluation are presented
in Tables 5 and 6, respectively in terms of the confusion matrix and the overall
performance indices: TP, TN, FP, and FN which respectively represent the true
positive, true negative, false positive and false negative. In Table 6, accuracy is
defined as the proportion of the true classifications in the test dataset, while preci-
sion is the proportion of true positive classifications against all positive

Figure 6.
(a) Pothole depth image. (b) Corresponding depth data to RGB image in (a). (c) Plane fitting using
RANSAC [52]. (c) Relative depth obtained from subtracting the depth values from the fitted plane.
(d) Rotated gray-scale representation of the relative depth values. (e) Detected pothole defect obtained from
binarizing image (d) using the Otsu’s thresholding. (f) Depth map of the detected pothole with dimensions in
millimeters (cm).
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classifications. The overall results show that the detection rate for potholes was at
82.8% degree of accuracy.

In terms of the pothole metrology measurements, Table 7 presents a sample
summary of the results for the metrologic data quantification as characterized by:
length and width, mean depth, mean surface area and volume of the potholes
within image frames, and the resulting relative errors. From the results in Table 7,
it is observed that while for some pothole defects the estimated dimensions are close
to the ground-truth manual measurements, in few cases i.e., less 25% of the images,
the relative error is more than 20%. This observed error magnitude in the pothole-
detection system was attributed to the shape and edge complexity of the potholes,
which are mathematically complex to represent and estimate appropriately and
accurately as demonstrated in Figure 6.

Figure 7.
Conceptual framework for the RGB-D pothole defect detection based on pre-detection image feature fusion and
post-detection object fusion.

Figure 8.
Comparing RGB imagery (a) and filtered depth map for pothole and non-pothole mapping on asphalt
pavement.
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classifications. The overall results show that the detection rate for potholes was at
82.8% degree of accuracy.

In terms of the pothole metrology measurements, Table 7 presents a sample
summary of the results for the metrologic data quantification as characterized by:
length and width, mean depth, mean surface area and volume of the potholes
within image frames, and the resulting relative errors. From the results in Table 7,
it is observed that while for some pothole defects the estimated dimensions are close
to the ground-truth manual measurements, in few cases i.e., less 25% of the images,
the relative error is more than 20%. This observed error magnitude in the pothole-
detection system was attributed to the shape and edge complexity of the potholes,
which are mathematically complex to represent and estimate appropriately and
accurately as demonstrated in Figure 6.
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Conceptual framework for the RGB-D pothole defect detection based on pre-detection image feature fusion and
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Figure 8.
Comparing RGB imagery (a) and filtered depth map for pothole and non-pothole mapping on asphalt
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Figure 9.
Illustration of the significance of depth in pothole edge mapping in relation to pothole data fusion and improved
detection. (i) RGB image. (ii) Depth map.

Prediction Ground truth

Classified Defective Defect-free

Defective (potholes) TP = 40 FP = 5

Defect-free (non-potholes) FN = 15 TN = 50

Table 5.
Confusion matrix of the evaluated pothole-defect detection system.
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This chapter presents a robust approach for cost-effect detection of potholes on
asphalt pavements. By first proposing a system for pavement surface mapping using
Kinect v2.o and based on the iMMSS hardware-software system, the implementa-
tion first incorporates k-means clustering and horizontal-vertical integration as data
search or filtering algorithms, followed with spatial fuzzy c-means (SPCM) seg-
mentation for pothole and non-pothole detection. The results of the processing
illustrates the potential of using RGB and depth image in the detection of potholes
based on low-cost consumer grade sensors, and shows the potential of fusing
RGB + depth data for improved pothole detection.

From the experimental analysis, it is conclusive that using a single Kinect may
not only limit the maximum traveling speed for data collection, but does not also
cover the whole width of a traffic lane. This means that the field of view (FOV) can
be increased by determining and using an array of Kinect sensors so that the lateral
data collection extent can be increased. Further, the development of suitable depth
and RGB fusion should be investigated both at object and at feature fusion levels.

In summary, it is demonstrated that low-cost and high-performance vision and
depth sensors are capable of providing new possibilities for achieving autonomous
inspection of pavement structures, and are suitable for overcoming the spatial and
temporal limitations associated with both the manual human-based inspection and
the expensive techniques. Overall, the findings of the study are significant, in terms
of the new data and their processing challenges and results.

Acknowledgements

This research work was carried with the framework of research sponsorship by
the Alexander von Humboldt Foundation (Germany), and the author would like to
acknowledge and thank the Alexander von Humboldt Foundation for the financial
support.

Defect
ID#

Ground-truth Proposed
method

Relative error Proposed iMMSS method

Length
(cm)

Width
(cm)

Length
(cm)

Width
(cm)

Length
(%)

Width
(%)

Mean
depth
(cm)

Mean
area
(cm2)

Volume
(cm3)

1 53.5 48.8 52.2 45.4 2.43 7.00 4.4 21.38 94.072

6 26.1 17.8 29.1 13.9 11.49 28.26 5.6 27.21 152.376

11 64.4 60.1 60.9 63.4 5.43 5.49 3.8 18.46 70.148

27 45.9 47.7 42.0 46.3 8.50 2.94 .59 28.66 169.094

Table 7.
Sample comparison of detected pothole metrological parameters with ground-truth measurements.

169

On the Use of Low-Cost RGB-D Sensors for Autonomous Pothole Detection with Spatial…
DOI: http://dx.doi.org/10.5772/intechopen.88877



Figure 9.
Illustration of the significance of depth in pothole edge mapping in relation to pothole data fusion and improved
detection. (i) RGB image. (ii) Depth map.

Prediction Ground truth

Classified Defective Defect-free

Defective (potholes) TP = 40 FP = 5

Defect-free (non-potholes) FN = 15 TN = 50

Table 5.
Confusion matrix of the evaluated pothole-defect detection system.

Index Accuracy (%) Precision (%) Recall (%)

Value 82.8 88.8 72.7

Table 6.
Overall performance of the pothole-defect detection system.

168

Geographic Information Systems in Geospatial Intelligence

6. Conclusions

This chapter presents a robust approach for cost-effect detection of potholes on
asphalt pavements. By first proposing a system for pavement surface mapping using
Kinect v2.o and based on the iMMSS hardware-software system, the implementa-
tion first incorporates k-means clustering and horizontal-vertical integration as data
search or filtering algorithms, followed with spatial fuzzy c-means (SPCM) seg-
mentation for pothole and non-pothole detection. The results of the processing
illustrates the potential of using RGB and depth image in the detection of potholes
based on low-cost consumer grade sensors, and shows the potential of fusing
RGB + depth data for improved pothole detection.

From the experimental analysis, it is conclusive that using a single Kinect may
not only limit the maximum traveling speed for data collection, but does not also
cover the whole width of a traffic lane. This means that the field of view (FOV) can
be increased by determining and using an array of Kinect sensors so that the lateral
data collection extent can be increased. Further, the development of suitable depth
and RGB fusion should be investigated both at object and at feature fusion levels.

In summary, it is demonstrated that low-cost and high-performance vision and
depth sensors are capable of providing new possibilities for achieving autonomous
inspection of pavement structures, and are suitable for overcoming the spatial and
temporal limitations associated with both the manual human-based inspection and
the expensive techniques. Overall, the findings of the study are significant, in terms
of the new data and their processing challenges and results.

Acknowledgements

This research work was carried with the framework of research sponsorship by
the Alexander von Humboldt Foundation (Germany), and the author would like to
acknowledge and thank the Alexander von Humboldt Foundation for the financial
support.

Defect
ID#

Ground-truth Proposed
method

Relative error Proposed iMMSS method

Length
(cm)

Width
(cm)

Length
(cm)

Width
(cm)

Length
(%)

Width
(%)

Mean
depth
(cm)

Mean
area
(cm2)

Volume
(cm3)

1 53.5 48.8 52.2 45.4 2.43 7.00 4.4 21.38 94.072

6 26.1 17.8 29.1 13.9 11.49 28.26 5.6 27.21 152.376

11 64.4 60.1 60.9 63.4 5.43 5.49 3.8 18.46 70.148

27 45.9 47.7 42.0 46.3 8.50 2.94 .59 28.66 169.094

Table 7.
Sample comparison of detected pothole metrological parameters with ground-truth measurements.

169

On the Use of Low-Cost RGB-D Sensors for Autonomous Pothole Detection with Spatial…
DOI: http://dx.doi.org/10.5772/intechopen.88877



Author details

Yashon Ombado Ouma
Department of Civil Engineering, Geomatics Section, University of Botswana,
Gaborone, Botswana

*Address all correspondence to: yashon.ouma@gmail.com

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

170

Geographic Information Systems in Geospatial Intelligence

References

[1] Ouma YO, Hahn M. Wavelet-
morphology based detection of incipient
linear cracks in asphalt pavements from
RGB camera imagery and classification
using circular radon transform.
Advanced Engineering Informatics.
2016;30(3):481-499

[2] Yan WY, Yuan X-X. A low-cost
video-based pavement distress
screening system for low-volume roads.
Journal of Intelligent Transportation
Systems: Technology, Planning, and
Operations. 2018;22(5):376–389

[3] Huang J, Liu W, Sun X. A pavement
crack detection method combining 2D
with 3D information based on
Dempster-Shafer theory. Computer-
Aided Civil and Infrastructure
Engineering. 2014;29(4):299-313

[4] Schnebele E, Tanyu BF, CervoneG,
Waters N. Review of remote sensing
methodologies for pavementmanagement
and assessment. European Transportation
Research Review. 2015;7(2):1-19

[5] Zakeri H, Nejad FM, Fahimifar A,
Torshizi AD, Zarandi MHF. A multi-
stage expert system for classification of
pavement cracking. In: IFSA World
Congress and NAFIPS annual meeting
(IFSA/NAFIPS), 2013 Joint. 2013

[6] Adu-Gyamfi Y, Okine NA,
Garateguy G, Carrillo R, Arce GR.
Multiresolution information mining for
pavement crack image analysis. Journal
of Computing in Civil Engineering.
2011;26(6):741-749

[7] Jahanshahi MR, Kelly JS, Masri SF,
Sukhatme GS. A survey and evaluation
of promising approaches for automatic
image-based defect detection of bridge
structures. Structure and Infrastructure
Engineering. 2009;5(6):455-486

[8] Ouma YO, Hahn M. Pothole
detection on asphalt pavements from

2D-colour pothole images using fuzzy
c-means clustering and morphological
reconstruction. Automation in
Construction. 2017;83:196-211

[9] Zakeri H, Nejad FM, Fahimifar A.
Image based techniques for crack
detection, classification and
quantification in asphalt pavement: A
review. Archives of Computational
Methods in Engineering. 2017;24(4):
935-977

[10] Zhou J, Huang PS, Chiang F-P.
Wavelet-based pavement distress
detection and evaluation. Optical
Engineering. 2006;45(2):027007

[11] Cord A, Chambon S. Automatic road
defect detection by textural pattern
recognition based on AdaBoost.
Computer-Aided Civil and
Infrastructure Engineering. 2012;27(4):
244-259

[12] Werro P, Robinson I, Benbow E,
Wright A. SCANNER accredited
surveys on local roads in England –

accreditation, QA and audit testing –

annual report 2009–10. Wokingham,
Berkshire: Transportation Research
Laboratory; 2010

[13] Siddiqui AA. A new inspection
method based on RGB-D profiling [MSc
thesis]. Blacksburg, Virginia: Virginia
Polytechnic Institute and State
University; 2015

[14] Pöhlmann STL, Harkness EF,
Taylor CJ, Astley SM. Evaluation of
Kinect 3D sensor for healthcare
imaging. Journal of Medical and
Biological Engineering. 2016;36(6):
857-870

[15] Pagliari D, Pinto L. Calibration of
Kinect for Xbox one and comparison
between the two generations of
Microsoft sensors. Sensors. 2015;15:
27569-27589

171

On the Use of Low-Cost RGB-D Sensors for Autonomous Pothole Detection with Spatial…
DOI: http://dx.doi.org/10.5772/intechopen.88877



Author details

Yashon Ombado Ouma
Department of Civil Engineering, Geomatics Section, University of Botswana,
Gaborone, Botswana

*Address all correspondence to: yashon.ouma@gmail.com

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

170

Geographic Information Systems in Geospatial Intelligence

References

[1] Ouma YO, Hahn M. Wavelet-
morphology based detection of incipient
linear cracks in asphalt pavements from
RGB camera imagery and classification
using circular radon transform.
Advanced Engineering Informatics.
2016;30(3):481-499

[2] Yan WY, Yuan X-X. A low-cost
video-based pavement distress
screening system for low-volume roads.
Journal of Intelligent Transportation
Systems: Technology, Planning, and
Operations. 2018;22(5):376–389

[3] Huang J, Liu W, Sun X. A pavement
crack detection method combining 2D
with 3D information based on
Dempster-Shafer theory. Computer-
Aided Civil and Infrastructure
Engineering. 2014;29(4):299-313

[4] Schnebele E, Tanyu BF, CervoneG,
Waters N. Review of remote sensing
methodologies for pavementmanagement
and assessment. European Transportation
Research Review. 2015;7(2):1-19

[5] Zakeri H, Nejad FM, Fahimifar A,
Torshizi AD, Zarandi MHF. A multi-
stage expert system for classification of
pavement cracking. In: IFSA World
Congress and NAFIPS annual meeting
(IFSA/NAFIPS), 2013 Joint. 2013

[6] Adu-Gyamfi Y, Okine NA,
Garateguy G, Carrillo R, Arce GR.
Multiresolution information mining for
pavement crack image analysis. Journal
of Computing in Civil Engineering.
2011;26(6):741-749

[7] Jahanshahi MR, Kelly JS, Masri SF,
Sukhatme GS. A survey and evaluation
of promising approaches for automatic
image-based defect detection of bridge
structures. Structure and Infrastructure
Engineering. 2009;5(6):455-486

[8] Ouma YO, Hahn M. Pothole
detection on asphalt pavements from

2D-colour pothole images using fuzzy
c-means clustering and morphological
reconstruction. Automation in
Construction. 2017;83:196-211

[9] Zakeri H, Nejad FM, Fahimifar A.
Image based techniques for crack
detection, classification and
quantification in asphalt pavement: A
review. Archives of Computational
Methods in Engineering. 2017;24(4):
935-977

[10] Zhou J, Huang PS, Chiang F-P.
Wavelet-based pavement distress
detection and evaluation. Optical
Engineering. 2006;45(2):027007

[11] Cord A, Chambon S. Automatic road
defect detection by textural pattern
recognition based on AdaBoost.
Computer-Aided Civil and
Infrastructure Engineering. 2012;27(4):
244-259

[12] Werro P, Robinson I, Benbow E,
Wright A. SCANNER accredited
surveys on local roads in England –

accreditation, QA and audit testing –

annual report 2009–10. Wokingham,
Berkshire: Transportation Research
Laboratory; 2010

[13] Siddiqui AA. A new inspection
method based on RGB-D profiling [MSc
thesis]. Blacksburg, Virginia: Virginia
Polytechnic Institute and State
University; 2015

[14] Pöhlmann STL, Harkness EF,
Taylor CJ, Astley SM. Evaluation of
Kinect 3D sensor for healthcare
imaging. Journal of Medical and
Biological Engineering. 2016;36(6):
857-870

[15] Pagliari D, Pinto L. Calibration of
Kinect for Xbox one and comparison
between the two generations of
Microsoft sensors. Sensors. 2015;15:
27569-27589

171

On the Use of Low-Cost RGB-D Sensors for Autonomous Pothole Detection with Spatial…
DOI: http://dx.doi.org/10.5772/intechopen.88877



[16] Sell J, O'Connor P. The Xbox one
system on a chip and kinect sensor.
IEEE Micro. 2014;2:44-53

[17] Kolb A, Barth E, Koch R, Larsen R.
Time-of-flight sensors in computer
graphics. Computer Graphics Forum.
2010;29(1):141–159

[18] Mutto CD, Zanuttigh P,
Cortelazzo GM. Time-of-flight Cameras
and Microsoft Kinect. Springer Briefs in
Electrical and Computer Engineering.
New York: Springer-Verlag; 2012. Ch. 2.
p. 21

[19] Shotton J, Sharp T, Kipman A,
Fitzgibbon A, Finocchio M, Blake A,
et al. Real-time human pose recognition
in parts from single depth images.
Communications of the ACM. 2013;
56(1):116-124

[20] Khoshelham K, Elberink O.
Accuracy and resolution of kinect depth
data for indoor mapping applications.
Sensors: Journal on the Science and
Technology of Sensors and Biosensors.
2012;12(2):1437-1454

[21] Murthy SBS, Varaprasad G.
Detection of potholes in autonomous
vehicle. IET Intelligent Transport
Systems. 2014;8(6):543-549

[22] Koch C, Jog G, Brilakis I. Automated
pothole distress assessment using
asphalt pavement video data. Journal of
Computingin Civil Engineering. 2013;
27(4):370-378

[23] Lokeshwor H, Das LK, Sud SK.
Method for automated assessment of
potholes, cracks and patches from road
surface video clips. Procedia—Social
and Behavioral Sciences. 2013;104:
312-321

[24] Parker R. Algorithms for Image
Processing and Computer Vision. 2nd
ed. Vol. 2011. New York, NY: John
Wiley & Sons, Inc; 2011

[25] Wang P, Hu Y, Dai Y, Tian M.
Asphalt pavement pothole detection and
segmentation based on wavelet energy
field. Mathematical Problems in
Engineering. 2017;2017; Article ID
1604130, 13 pages. DOI: 10.1155/2017/
1604130

[26] Zhang J, Hu J. Image segmentation
based on 2D Otsu method with
histogram analysis. Proceedings of
Computer Science and Software
Engineering, CSSE 2008. 2008;6:
105-108

[27] Xu D, Zhao P, Gui W, Yang C,
Xie Y. Research on spectral clustering
algorithms based on building different
affinity matrix. In: 25th Chinese Control
and Decision Conference (CCDC); 25–
27 May. Vol. 2013. 2013. pp. 3160-3165

[28] Dunn JC. A fuzzy relative of the
ISODATA process and its use in
detecting compact well-separated
clusters. Journal of Cybernetics. 1973;
3(3):32-57

[29] Bezdek JC. Pattern Recognition with
Fuzzy Objective Function Algorithms.
MA, USA: Kluwer Academic Publishers
Norwell; 1981

[30] Chuang K-S, Tzeng H-L, Chen S,
Wu J, Chen T-J. Fuzzy C-means
clustering with spatial information for
image segmentation. Journal of
Computerized Medical Imaging and
Graphics. 2006;30:9-15

[31] Choudhry MS, Kapoor R.
Performance analysis of fuzzy C-means
clustering methods for MRI image
segmentation. Procedia Computer
Science. 2016;89:749-758

[32] Chen L, Lin H, Li S. Depth image
enhancement for Kinect using region
growing and bilateral filter. In: IEEE 21st
International Conference on Pattern
Recognition (ICPR). Vol. 2012. 2012.
pp. 3070-3073

172

Geographic Information Systems in Geospatial Intelligence

[33] Matyunin S, Vatolin D,
Berdnikov Y, Smirnov M. Temporal
filtering for depth maps generated by
kinect depth camera. In: 3DTV
Conference: The True Vision-Capture,
Transmission and Display of 3D Video.
2011. pp. 1-4

[34] Camplani M, Salgado L. Efficient
Spatio-temporal hole filling strategy for
kinect depth maps. Proceedings of SPIE.
2012;82900E:2012

[35] Jung SW. Enhancement of image
and depth map using adaptive joint
trilateral filter. IEEE Transactions on
Circuits and Systems for Video
Technology. 2013;23(2):258-269

[36] Liu S, Wang Y, Wang J, Wang H,
Zhang J, Pan C. Kinect depth restoration
via energy minimization with
TV21regularization. In: Proc. IEEE
International Conference on Image
Processing. 2013. pp. 724-724

[37] Tomasi C, Manduchi R. Bilateral
filtering for gray and color images. In:
Proceedings of the 6th IEEE
International Conference in Computer
Vision. 1998. pp. 839-846

[38] Yang Q, Ahuja N, Yang R, Tan K-H,
Davis J, Culbertson B, et al. Fusion of
median and bilateral filtering for range
image upsampling. IEEE Transactions on
Image Processing. 2013;22(12):4841-4852

[39] Petschnigg G, Agrawala M,
Hoppe H, Szeliski R, Cohen M,
Toyama K. Digital photography with
flash and no-flash image pairs. ACM
Transactions on Graphics. 2004;23(3):
664-672

[40] Eisemann E, Durand F. Flash
photography enhancement via intrinsic
relighting. ACM Transactions on
Graphics. 2004;23(3):673-678

[41] Huber P. Robust Statistics. New
York, NY, USA:Wiley; 1981

[42] Khoshelham K. Automated
localization of a laser scanner in indoor
environments using planar objects. In:
Proceedings of International Conference
on Indoor Positioning and Indoor
Navigation (IPIN); 15–17 September
2010; Zürich, Switzerland. 2010

[43] Su PC, Shen J, Xu W, Cheung SC,
Luo Y. A fast and robust extrinsic
calibration for RGB-D camera networks.
Sensors. 2018;18:235

[44] Bouguet J-Y. Camera Calibration
Toolbox for Matlab. 2015. Available
from: http://www.vision.caltech.edu/
-bouguetj/calib_doc

[45] Herrera D, Kannala CJ, Heikkilä J.
Joint depth and color camera calibration
with distortion correction. IEEE
Transactions on Pattern Analysis and
Machine Intelligence. 2012;34(10):2012

[46] Quintanilla-Dominguez J, Ojeda-
Magaña B, Cortina-Januchs MG,
Ruelas R, Vega-Corona A, Andina D.
Image segmentation by fuzzy and
possibilistic clustering algorithms for
the identification of microcalcifications.
Sharif University of Technology Scientia
Iranica. 2011;18:580-589

[47] Moazzam I, Kamal K, Mathavan S,
Usman S, Rahman M. Metrology and
visualization of potholes using the
Microsoft Kinect sensor. In: Proceedings
of the 16th International IEEE Annual
Conference on Intelligent
Transportation Systems. Vol. 2013.
2013. pp. 1284-1291

[48] Koch C, Brilakis I. Pothole detection
in asphalt pavement images. Advanced
Engineering Informatics. 2011;25(3):
507-515

[49] Goldstein LJ, Lay DC, Schneider DI,
Asmar NH. Calculus and its
Applications. London: Pearson
Education International; 2007

173

On the Use of Low-Cost RGB-D Sensors for Autonomous Pothole Detection with Spatial…
DOI: http://dx.doi.org/10.5772/intechopen.88877



[16] Sell J, O'Connor P. The Xbox one
system on a chip and kinect sensor.
IEEE Micro. 2014;2:44-53

[17] Kolb A, Barth E, Koch R, Larsen R.
Time-of-flight sensors in computer
graphics. Computer Graphics Forum.
2010;29(1):141–159

[18] Mutto CD, Zanuttigh P,
Cortelazzo GM. Time-of-flight Cameras
and Microsoft Kinect. Springer Briefs in
Electrical and Computer Engineering.
New York: Springer-Verlag; 2012. Ch. 2.
p. 21

[19] Shotton J, Sharp T, Kipman A,
Fitzgibbon A, Finocchio M, Blake A,
et al. Real-time human pose recognition
in parts from single depth images.
Communications of the ACM. 2013;
56(1):116-124

[20] Khoshelham K, Elberink O.
Accuracy and resolution of kinect depth
data for indoor mapping applications.
Sensors: Journal on the Science and
Technology of Sensors and Biosensors.
2012;12(2):1437-1454

[21] Murthy SBS, Varaprasad G.
Detection of potholes in autonomous
vehicle. IET Intelligent Transport
Systems. 2014;8(6):543-549

[22] Koch C, Jog G, Brilakis I. Automated
pothole distress assessment using
asphalt pavement video data. Journal of
Computingin Civil Engineering. 2013;
27(4):370-378

[23] Lokeshwor H, Das LK, Sud SK.
Method for automated assessment of
potholes, cracks and patches from road
surface video clips. Procedia—Social
and Behavioral Sciences. 2013;104:
312-321

[24] Parker R. Algorithms for Image
Processing and Computer Vision. 2nd
ed. Vol. 2011. New York, NY: John
Wiley & Sons, Inc; 2011

[25] Wang P, Hu Y, Dai Y, Tian M.
Asphalt pavement pothole detection and
segmentation based on wavelet energy
field. Mathematical Problems in
Engineering. 2017;2017; Article ID
1604130, 13 pages. DOI: 10.1155/2017/
1604130

[26] Zhang J, Hu J. Image segmentation
based on 2D Otsu method with
histogram analysis. Proceedings of
Computer Science and Software
Engineering, CSSE 2008. 2008;6:
105-108

[27] Xu D, Zhao P, Gui W, Yang C,
Xie Y. Research on spectral clustering
algorithms based on building different
affinity matrix. In: 25th Chinese Control
and Decision Conference (CCDC); 25–
27 May. Vol. 2013. 2013. pp. 3160-3165

[28] Dunn JC. A fuzzy relative of the
ISODATA process and its use in
detecting compact well-separated
clusters. Journal of Cybernetics. 1973;
3(3):32-57

[29] Bezdek JC. Pattern Recognition with
Fuzzy Objective Function Algorithms.
MA, USA: Kluwer Academic Publishers
Norwell; 1981

[30] Chuang K-S, Tzeng H-L, Chen S,
Wu J, Chen T-J. Fuzzy C-means
clustering with spatial information for
image segmentation. Journal of
Computerized Medical Imaging and
Graphics. 2006;30:9-15

[31] Choudhry MS, Kapoor R.
Performance analysis of fuzzy C-means
clustering methods for MRI image
segmentation. Procedia Computer
Science. 2016;89:749-758

[32] Chen L, Lin H, Li S. Depth image
enhancement for Kinect using region
growing and bilateral filter. In: IEEE 21st
International Conference on Pattern
Recognition (ICPR). Vol. 2012. 2012.
pp. 3070-3073

172

Geographic Information Systems in Geospatial Intelligence

[33] Matyunin S, Vatolin D,
Berdnikov Y, Smirnov M. Temporal
filtering for depth maps generated by
kinect depth camera. In: 3DTV
Conference: The True Vision-Capture,
Transmission and Display of 3D Video.
2011. pp. 1-4

[34] Camplani M, Salgado L. Efficient
Spatio-temporal hole filling strategy for
kinect depth maps. Proceedings of SPIE.
2012;82900E:2012

[35] Jung SW. Enhancement of image
and depth map using adaptive joint
trilateral filter. IEEE Transactions on
Circuits and Systems for Video
Technology. 2013;23(2):258-269

[36] Liu S, Wang Y, Wang J, Wang H,
Zhang J, Pan C. Kinect depth restoration
via energy minimization with
TV21regularization. In: Proc. IEEE
International Conference on Image
Processing. 2013. pp. 724-724

[37] Tomasi C, Manduchi R. Bilateral
filtering for gray and color images. In:
Proceedings of the 6th IEEE
International Conference in Computer
Vision. 1998. pp. 839-846

[38] Yang Q, Ahuja N, Yang R, Tan K-H,
Davis J, Culbertson B, et al. Fusion of
median and bilateral filtering for range
image upsampling. IEEE Transactions on
Image Processing. 2013;22(12):4841-4852

[39] Petschnigg G, Agrawala M,
Hoppe H, Szeliski R, Cohen M,
Toyama K. Digital photography with
flash and no-flash image pairs. ACM
Transactions on Graphics. 2004;23(3):
664-672

[40] Eisemann E, Durand F. Flash
photography enhancement via intrinsic
relighting. ACM Transactions on
Graphics. 2004;23(3):673-678

[41] Huber P. Robust Statistics. New
York, NY, USA:Wiley; 1981

[42] Khoshelham K. Automated
localization of a laser scanner in indoor
environments using planar objects. In:
Proceedings of International Conference
on Indoor Positioning and Indoor
Navigation (IPIN); 15–17 September
2010; Zürich, Switzerland. 2010

[43] Su PC, Shen J, Xu W, Cheung SC,
Luo Y. A fast and robust extrinsic
calibration for RGB-D camera networks.
Sensors. 2018;18:235

[44] Bouguet J-Y. Camera Calibration
Toolbox for Matlab. 2015. Available
from: http://www.vision.caltech.edu/
-bouguetj/calib_doc

[45] Herrera D, Kannala CJ, Heikkilä J.
Joint depth and color camera calibration
with distortion correction. IEEE
Transactions on Pattern Analysis and
Machine Intelligence. 2012;34(10):2012

[46] Quintanilla-Dominguez J, Ojeda-
Magaña B, Cortina-Januchs MG,
Ruelas R, Vega-Corona A, Andina D.
Image segmentation by fuzzy and
possibilistic clustering algorithms for
the identification of microcalcifications.
Sharif University of Technology Scientia
Iranica. 2011;18:580-589

[47] Moazzam I, Kamal K, Mathavan S,
Usman S, Rahman M. Metrology and
visualization of potholes using the
Microsoft Kinect sensor. In: Proceedings
of the 16th International IEEE Annual
Conference on Intelligent
Transportation Systems. Vol. 2013.
2013. pp. 1284-1291

[48] Koch C, Brilakis I. Pothole detection
in asphalt pavement images. Advanced
Engineering Informatics. 2011;25(3):
507-515

[49] Goldstein LJ, Lay DC, Schneider DI,
Asmar NH. Calculus and its
Applications. London: Pearson
Education International; 2007

173

On the Use of Low-Cost RGB-D Sensors for Autonomous Pothole Detection with Spatial…
DOI: http://dx.doi.org/10.5772/intechopen.88877



[50] Lyons L. Mathematics for Science
Students. UK: Cambridge University
Press; 2000

[51] Jahanshahi MR, Jazizadeh F,
Masri SF, Becerik-Gerber B. An
unsupervised approach for autonomous
pavement defect detection and
quantification using an inexpensive
depth sensor. Journal of Computing in
Civil Engineering. 2013;27(6):743-754

[52] Qian X, Ye C. NCC-RANSAC: A fast
plane extraction method for Noisy range
data. IEEE Transactions on Cybernetics.
2014;44(12):2771-2783

174

Geographic Information Systems in Geospatial Intelligence



[50] Lyons L. Mathematics for Science
Students. UK: Cambridge University
Press; 2000

[51] Jahanshahi MR, Jazizadeh F,
Masri SF, Becerik-Gerber B. An
unsupervised approach for autonomous
pavement defect detection and
quantification using an inexpensive
depth sensor. Journal of Computing in
Civil Engineering. 2013;27(6):743-754

[52] Qian X, Ye C. NCC-RANSAC: A fast
plane extraction method for Noisy range
data. IEEE Transactions on Cybernetics.
2014;44(12):2771-2783

174

Geographic Information Systems in Geospatial Intelligence



Geographic Information 
Systems in Geospatial 

Intelligence
Edited by Rustam B. Rustamov

Edited by Rustam B. Rustamov

Earth observation systems, by use of space science and technology advances, present 
a large-scale opportunity for applying remote sensing methods with geographical 

information system (GIS) developments. Integrating these two methods makes 
it possible to achieve high-accuracy satellite data processing. This book considers 

aspects of GIS technology applications with space science technology and innovation 
approaches. It examines the potential of Earth observation satellite systems as well 

as existing challenges and problems in the field. Chapters cover topics such as RGB-D 
sensors for autonomous pothole detection, machine learning in GIS, interferometric 

synthetic aperture radar (InSAR) modeling, and others.

Published in London, UK 

©  2020 IntechOpen 
©  undefined / iStock

ISBN 978-1-83880-504-3

G
eographic Inform

ation System
s in G

eospatial Intelligence

ISBN 978-1-83969-129-4


	Geographic Information Systems in Geospatial Intelligence
	Contents
	Preface
	Chapter1
InSAR Modeling of Geophysics Measurements
	Chapter2
Expanding Navigation Systems by Integrating It with Advanced Technologies
	Chapter3
A Review of the Machine Learning in GIS for Megacities Application
	Chapter4
Study of Equatorial Plasma Bubbles Using ASI and GPS Systems
	Chapter5
Spectral Optimization of Airborne Multispectral Camera for Land Cover Classification: Automatic Feature Selection and Spectral Band Clustering
	Chapter6
Clustering Techniques for Land Use Land Cover Classification of Remotely Sensed Images
	Chapter7
Building an Integrated Database of Road Design Elements
	Chapter8
On the Use of Low-Cost RGB-D Sensors for Autonomous Pothole Detection with Spatial Fuzzy -Means Segmentation

