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Preface

This text is intended for a one- or two-semester undergraduate course in
abstract algebra. Traditionally, these courses have covered the theoretical
aspects of groups, rings, and fields. However, with the development of
computing in the last several decades, applications that involve abstract
algebra and discrete mathematics have become increasingly important, and
many science, engineering, and computer science students are now electing
to minor in mathematics. Though theory still occupies a central role in the
subject of abstract algebra and no student should go through such a course
without a good notion of what a proof is, the importance of applications
such as coding theory and cryptography has grown significantly.

Until recently most abstract algebra texts included few if any applications.
However, one of the major problems in teaching an abstract algebra course
is that for many students it is their first encounter with an environment that
requires them to do rigorous proofs. Such students often find it hard to see
the use of learning to prove theorems and propositions; applied examples
help the instructor provide motivation.

This text contains more material than can possibly be covered in a single
semester. Certainly there is adequate material for a two-semester course, and
perhaps more; however, for a one-semester course it would be quite easy to
omit selected chapters and still have a useful text. The order of presentation
of topics is standard: groups, then rings, and finally fields. Emphasis can be
placed either on theory or on applications. A typical one-semester course
might cover groups and rings while briefly touching on field theory, using
Chapters 1 through 6, 9, 10, 11, 13 (the first part), 16, 17, 18 (the first
part), 20, and 21. Parts of these chapters could be deleted and applications
substituted according to the interests of the students and the instructor. A
two-semester course emphasizing theory might cover Chapters 1 through 6,
9, 10, 11, 13 through 18, 20, 21, 22 (the first part), and 23. On the other
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hand, if applications are to be emphasized, the course might cover Chapters
1 through 14, and 16 through 22. In an applied course, some of the more
theoretical results could be assumed or omitted. A chapter dependency chart
appears below. (A broken line indicates a partial dependency.)

Chapters 1-6

l

---- Chapter 8 Chapter 9 Chapter 7

l

Chapter 10

l

Chapter 11

|

-4 Chapter 13 Chapter 16 Chapter 12 Chapter 14

l l

Chapter 17 Chapter 15

l

3 Chapter 18 Chapter 20 Chapter 19

l

Chapter 21

| i

e Chapter 22
} |

R RS Chapter 23 F--------------------

Though there are no specific prerequisites for a course in abstract algebra,
students who have had other higher-level courses in mathematics will generally
be more prepared than those who have not, because they will possess a bit
more mathematical sophistication. Occasionally, we shall assume some basic
linear algebra; that is, we shall take for granted an elementary knowledge
of matrices and determinants. This should present no great problem, since
most students taking a course in abstract algebra have been introduced to
matrices and determinants elsewhere in their career, if they have not already
taken a sophomore- or junior-level course in linear algebra.
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Exercise sections are the heart of any mathematics text. An exercise set
appears at the end of each chapter. The nature of the exercises ranges over
several categories; computational, conceptual, and theoretical problems are
included. A section presenting hints and solutions to many of the exercises
appears at the end of the text. Often in the solutions a proof is only sketched,
and it is up to the student to provide the details. The exercises range in
difficulty from very easy to very challenging. Many of the more substantial
problems require careful thought, so the student should not be discouraged
if the solution is not forthcoming after a few minutes of work.

There are additional exercises or computer projects at the ends of many
of the chapters. The computer projects usually require a knowledge of
programming. All of these exercises and projects are more substantial in
nature and allow the exploration of new results and theory.

Sage (sagemath.org) is a free, open source, software system for ad-
vanced mathematics, which is ideal for assisting with a study of abstract
algebra. Comprehensive discussion about Sage, and a selection of relevant
exercises, are provided in an electronic format that may be used with the
Sage Notebook in a web browser, either on your own computer, or at a public
server such as sagenb.org. Look for this supplement at the book’s website:
abstract.pugetsound.edu. In printed versions of the book, we include a
brief description of Sage’s capabilities at the end of each chapter, right after
the references.

The open source version of this book has received support from the
National Science Foundation (Award # 1020957).
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1

Preliminaries

A certain amount of mathematical maturity is necessary to find and study
applications of abstract algebra. A basic knowledge of set theory, mathe-
matical induction, equivalence relations, and matrices is a must. Even more
important is the ability to read and understand mathematical proofs. In
this chapter we will outline the background needed for a course in abstract
algebra.

1.1 A Short Note on Proofs

Abstract mathematics is different from other sciences. In laboratory sciences
such as chemistry and physics, scientists perform experiments to discover
new principles and verify theories. Although mathematics is often motivated
by physical experimentation or by computer simulations, it is made rigorous
through the use of logical arguments. In studying abstract mathematics, we
take what is called an axiomatic approach; that is, we take a collection of
objects § and assume some rules about their structure. These rules are called
azxioms. Using the axioms for S, we wish to derive other information about
S by using logical arguments. We require that our axioms be consistent; that
is, they should not contradict one another. We also demand that there not
be too many axioms. If a system of axioms is too restrictive, there will be
few examples of the mathematical structure.

A statement in logic or mathematics is an assertion that is either true
or false. Consider the following examples:

e 3+56— 13+ 8/2.
o All cats are black.

e 24+3=05.
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e 2x = 6 exactly when z = 4.

o If az? + bz +c =0 and a # 0, then

. —b++vb? —4ac
N 2a '

o 23 — 422+ 5x — 6.

All but the first and last examples are statements, and must be either true
or false.

A mathematical proof is nothing more than a convincing argument
about the accuracy of a statement. Such an argument should contain enough
detail to convince the audience; for instance, we can see that the statement
“2rx = 6 exactly when x = 4” is false by evaluating 2 - 4 and noting that
6 # 8, an argument that would satisfy anyone. Of course, audiences may
vary widely: proofs can be addressed to another student, to a professor, or
to the reader of a text. If more detail than needed is presented in the proof,
then the explanation will be either long-winded or poorly written. If too
much detail is omitted, then the proof may not be convincing. Again it
is important to keep the audience in mind. High school students require
much more detail than do graduate students. A good rule of thumb for an
argument in an introductory abstract algebra course is that it should be
written to convince one’s peers, whether those peers be other students or
other readers of the text.

Let us examine different types of statements. A statement could be as
simple as “10/5 = 2”; however, mathematicians are usually interested in
more complex statements such as “If p, then ¢,” where p and ¢ are both
statements. If certain statements are known or assumed to be true, we
wish to know what we can say about other statements. Here p is called
the hypothesis and ¢ is known as the conclusion. Consider the following
statement: If az? 4+ bx + ¢ = 0 and a # 0, then

b= Vb2 —4dac
- 2a '

x

The hypothesis is az? + bx 4+ ¢ = 0 and a # 0; the conclusion is

—b+ b2 —4ac

2a

xr =

Notice that the statement says nothing about whether or not the hypothesis
is true. However, if this entire statement is true and we can show that
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ax?® + bx + ¢ = 0 with a # 0 is true, then the conclusion must be true. A
proof of this statement might simply be a series of equations:

ar’ +bx+c=0

Tt T T
—b+ Vb? — dac
T = )
2a

If we can prove a statement true, then that statement is called a propo-
sition. A proposition of major importance is called a theorem. Sometimes
instead of proving a theorem or proposition all at once, we break the proof
down into modules; that is, we prove several supporting propositions, which
are called lemmas, and use the results of these propositions to prove the
main result. If we can prove a proposition or a theorem, we will often,
with very little effort, be able to derive other related propositions called
corollaries.

Some Cautions and Suggestions

There are several different strategies for proving propositions. In addition to
using different methods of proof, students often make some common mistakes
when they are first learning how to prove theorems. To aid students who
are studying abstract mathematics for the first time, we list here some of
the difficulties that they may encounter and some of the strategies of proof
available to them. It is a good idea to keep referring back to this list as a
reminder. (Other techniques of proof will become apparent throughout this
chapter and the remainder of the text.)

e A theorem cannot be proved by example; however, the standard way to
show that a statement is not a theorem is to provide a counterexample.

e Quantifiers are important. Words and phrases such as only, for all, for
every, and for some possess different meanings.
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e Never assume any hypothesis that is not explicitly stated in the theorem.
You cannot take things for granted.

e Suppose you wish to show that an object exists and is unique. First
show that there actually is such an object. To show that it is unique,
assume that there are two such objects, say r and s, and then show
that r = s.

e Sometimes it is easier to prove the contrapositive of a statement.
Proving the statement “If p, then ¢” is exactly the same as proving the
statement “If not ¢, then not p.”

e Although it is usually better to find a direct proof of a theorem, this
task can sometimes be difficult. It may be easier to assume that the
theorem that you are trying to prove is false, and to hope that in the
course of your argument you are forced to make some statement that
cannot possibly be true.

Remember that one of the main objectives of higher mathematics is
proving theorems. Theorems are tools that make new and productive ap-
plications of mathematics possible. We use examples to give insight into
existing theorems and to foster intuitions as to what new theorems might be
true. Applications, examples, and proofs are tightly interconnected—much
more so than they may seem at first appearance.

1.2 Sets and Equivalence Relations

Set Theory

A set is a well-defined collection of objects; that is, it is defined in such
a manner that we can determine for any given object x whether or not x
belongs to the set. The objects that belong to a set are called its elements
or members. We will denote sets by capital letters, such as A or X; if a is
an element of the set A, we write a € A.

A set is usually specified either by listing all of its elements inside a pair
of braces or by stating the property that determines whether or not an object
x belongs to the set. We might write

X ={x1,29,..., 2}
for a set containing elements x1, o, ..., T, or

X = {x: x satisfies P}
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if each = in X satisfies a certain property P. For example, if F is the set of
even positive integers, we can describe E by writing either

E=1{2,4,6,...} or E ={z:xisan even integer and z > 0}.

We write 2 € E when we want to say that 2 is in the set E, and —3 ¢ E to
say that —3 is not in the set F.
Some of the more important sets that we will consider are the following:

N = {n: n is a natural number} = {1,2,3,...};
Z ={n:nisaninteger} = {...,—1,0,1,2,...};
Q = {r: r is a rational number} = {p/q : p,q € Z where q # 0};
R = {z : z is a real number};

C = {z: z is a complex number}.

We find various relations between sets and can perform operations on
sets. A set A is a subset of B, written A C B or B D A, if every element of
A is also an element of B. For example,

{4,5,8} € {2,3,4,5,6,7,8,9}

and
NczcQcRcC.

Trivially, every set is a subset of itself. A set B is a proper subset of a
set Aif B C Abut B # A. If A is not a subset of B, we write A ¢ B; for
example, {4,7,9} ¢ {2,4,5,8,9}. Two sets are equal, written A = B, if we
can show that A C B and B C A.

It is convenient to have a set with no elements in it. This set is called
the empty set and is denoted by ). Note that the empty set is a subset of
every set.

To construct new sets out of old sets, we can perform certain operations:
the union AU B of two sets A and B is defined as

AUB={z:zx€ Aorx € B};
the intersection of A and B is defined by
ANB={z:2z€ Aand z € B}.
If A={1,3,5} and B = {1,2,3,9}, then
AUuB=1{1,2,3,5,9} and ANB={1,3}.
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We can consider the union and the intersection of more than two sets. In
this case we write "
Jai=4u...u4,
i=1
and
n
(N 4i=A1Nn...N4,
i=1
for the union and intersection, respectively, of the sets Aq,..., A,.

When two sets have no elements in common, they are said to be disjoint;
for example, if E is the set of even integers and O is the set of odd integers,
then E and O are disjoint. Two sets A and B are disjoint exactly when
ANB=0.

Sometimes we will work within one fixed set U, called the universal set.
For any set A C U, we define the complement of A, denoted by A’, to be
the set

A'={x:2 €U and x ¢ A}.

We define the difference of two sets A and B to be

A\B=ANB' ={z:2€ Aand z ¢ B}.

Example 1. Let R be the universal set and suppose that
A={reR:0<2x<3} and B={reR:2<zx<4}.
Then

ANB={recR:2<z<3}

AUB={zeR:0<z <4}

A\B={zrzeR:0<x <2}
A'={zeR:z<0orx>3}.

Proposition 1.1 Let A, B, and C be sets. Then
1. AUA=A, , ANA=A, and A\ A= 0;
2. AUD=A and AND = 0;
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3. AU(BUC)=(AUB)UC and AN (BNC)=(ANB)NC;
4. AUB=BUA and ANB = BnA;

5. AU(BNC) =(AUB)N(AUQ);

6. AN(BUC)=(ANB)U(ANC).

Proor. We will prove (1) and (3) and leave the remaining results to be
proven in the exercises.
(1) Observe that

AUA={z:z € Aorz e A}

={z:ze A}
=A

and

ANA={z:z € Aand z € A}
={zx:xe A}
= A.

Also, ANA=ANnA =0.
(3) For sets A, B, and C,

AU(BUC)=AU{z:z € BorzeC}
={zx:x€AorzeB, orzeC}
={zx:x€AorzeB}UC
=(AUB)UC.

A similar argument proves that AN (BNC)=(ANnB)NC. O

Theorem 1.2 (De Morgan’s Laws) Let A and B be sets. Then
1. (AuB) =A'"NnB;
2. (ANB) = A'UB.

PROOF. (1) We must show that (AU B) ¢ AN B and (AUB) > A'NnB.
Let x € (AU B)". Then © ¢ AU B. So x is neither in A nor in B, by the
definition of the union of sets. By the definition of the complement, z € A’
and z € B’. Therefore, z € AN B’ and we have (AU B) c A'NB'.
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To show the reverse inclusion, suppose that x € A’N B’. Then z € A’
and x € B', andsox ¢ Aand x ¢ B. Thus z ¢ AUB and so z € (AU B)'.
Hence, (AUB) D A nB" andso (AUB) =A'nB.

The proof of (2) is left as an exercise. O

Example 2. Other relations between sets often hold true. For example,
(A\B)N(B\ A) =0.
To see that this is true, observe that

(A\B)Nn(B\A)=(AnB)n(Bn A"
=AnA'nBnB
= 0.

Cartesian Products and Mappings

Given sets A and B, we can define a new set A x B, called the Cartesian
product of A and B, as a set of ordered pairs. That is,

Ax B={(a,b) :a € Aandbec B}

Example 3. If A= {z,y}, B=1{1,2,3}, and C = (), then A x B is the set

{(2,1), (x,2), (x,3), (4, 1), (¥, 2), (y,3)}

and
AxC=0.
[ |
We define the Cartesian product of n sets to be
Ay x - x Ay ={(a1,...,ap) :a; € Ajfori=1,...,n}.
IfA=A = Ay =--- = A, we often write A" for A x --- x A (where A

would be written n times). For example, the set R? consists of all of 3-tuples
of real numbers.

Subsets of A x B are called relations. We will define a mapping or
function f C A x B from a set A to a set B to be the special type of



1.2 SETS AND EQUIVALENCE RELATIONS 9

relation in which for each element a € A there is a unique element b € B
such that (a,b) € f; another way of saying this is that for every element in

A, f assigns a unique element in B. We usually write f : A — B or A 1 B.
Instead of writing down ordered pairs (a,b) € A x B, we write f(a) =b or
f:aw—b. The set A is called the domain of f and

f(A)={f(a):ac A} C B

is called the range or image of f. We can think of the elements in the
function’s domain as input values and the elements in the function’s range
as output values.

A B

Figure 1.1. Mappings

Example 4. Suppose A = {1,2,3} and B = {a,b,c}. In Figure 1.1 we
define relations f and g from A to B. The relation f is a mapping, but g is
not because 1 € A is not assigned to a unique element in B; that is, g(1) = a
and g(1) = b. [ |

Given a function f: A — B, it is often possible to write a list describing
what the function does to each specific element in the domain. However, not
all functions can be described in this manner. For example, the function
f :R — R that sends each real number to its cube is a mapping that must
be described by writing f(x) = 23 or f: x — 23.
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Consider the relation f : Q — Z given by f(p/q) = p. We know that
1/2 = 2/4, but is f(1/2) = 1 or 2?7 This relation cannot be a mapping
because it is not well-defined. A relation is well-defined if each element in
the domain is assigned to a unique element in the range.

If f: A— B is amap and the image of f is B, i.e., f(A) = B, then f
is said to be onto or surjective. In other words, if there exists an a € A
for each b € B such that f(a) = b, then f is onto. A map is one-to-one
or injective if ay # ay implies f(a1) # f(a2). Equivalently, a function is
one-to-one if f(a1) = f(az) implies a; = a2. A map that is both one-to-one
and onto is called bijective.

Example 5. Let f : Z — Q be defined by f(n) = n/1. Then f is one-to-one
but not onto. Define g : Q — Z by g(p/q) = p where p/q is a rational number
expressed in its lowest terms with a positive denominator. The function g is
onto but not one-to-one. ]

Given two functions, we can construct a new function by using the range
of the first function as the domain of the second function. Let f : A — B
and g : B — C' be mappings. Define a new map, the composition of f and

g from A to C, by (g0 f)(x) = g(f(x)).

Figure 1.2. Composition of maps
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Example 6. Consider the functions f : A — B and g : B — C' that are
defined in Figure 1.2(a). The composition of these functions, go f: A — C,
is defined in Figure 1.2(b). [

Example 7. Let f(z) = 22 and g(x) = 2z + 5. Then
(fog)(x) = flg(x)) = (22 +5)* = 42® + 20z + 25

and
(g0 /)(x) = g(f(x)) =22° +5.

In general, order makes a difference; that is, in most cases fog=#go f. B

Example 8. Sometimes it is the case that fog=go f. Let f(x) = 2% and
g(x) = /z. Then

(fog)(x) = flg(x) = f(Vz)= (V) =2

and

(90 f)(@) = g(f(2)) = g(a?) = Va3 = z.

Example 9. Given a 2 X 2 matrix
A= (‘CL Z) :
we can define a map Ty : R? — R? by
Ta(z,y) = (ax + by, cx + dy)
for (x,y) in R2. This is actually matrix multiplication; that is,
(¢ 2)0)-(E5a)
c d) \y cx+dy)

Maps from R” to R™ given by matrices are called linear maps or linear
transformations. |

Example 10. Suppose that S = {1,2,3}. Define a map 7 : S — S by

(1) =2, m(2) =1, m(3) = 3.
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This is a bijective map. An alternative way to write 7 is

1 2 3 _ 123‘
m(l) m T
<() (2) (3)) (2 1 3)

For any set S, a one-to-one and onto mapping © : S — S is called a
permutation of S. ]
Theorem 1.3 Let f: A— B, g: B—C, and h:C — D. Then
1. The composition of mappings is associative; that is, (hog)of = ho(gof);
2. If f and g are both one-to-one, then the mapping g o f is one-to-one;
3. If f and g are both onto, then the mapping g o f is onto;

4. If f and g are bijective, then so is go f.

PrROOF. We will prove (1) and (3). Part (2) is left as an exercise. Part (4)
follows directly from (2) and (3).
(1) We must show that

ho(goef)=(hog)of.

For a € A we have

(3) Assume that f and g are both onto functions. Given ¢ € C, we must
show that there exists an a € A such that (go f)(a) = g(f(a)) = c¢. However,
since g is onto, there is a b € B such that g(b) = c. Similarly, there is an
a € A such that f(a) = b. Accordingly,

(90 f)a) =g(f(a)) = g(b) = c.
g

If S is any set, we will use idg or id to denote the identity mapping
from S to itself. Define this map by id(s) = sforalls € S. Amapg: B— A
is an tnverse mapping of f : A - Bif go f = ids and fog = idp; in
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other words, the inverse function of a function simply “undoes” the function.
A map is said to be invertible if it has an inverse. We usually write f~1
for the inverse of f.

Example 11. The function f(x) = 23 has inverse f~!(z) = ¢/z by Exam-
ple 8. |

Example 12. The natural logarithm and the exponential functions, f(x) =
Inz and f~!(z) = €%, are inverses of each other provided that we are careful
about choosing domains. Observe that

and
FHf@) = (ne) =™ =2

whenever composition makes sense. |

()

Then A defines a map from R? to R? by

Example 13. Suppose that

Ta(z,y) = 3z +y, 5z + 2y).

We can find an inverse map of T4 by simply inverting the matrix A; that is,
Tgl =T4-1. In this example,

AT = (—25 31> 5
hence, the inverse map is given by
T (z,y) = (22 — y, —5z + 3y).
It is easy to check that
Tgl oTy(x,y) =Tao TA_l(x, y) = (z,y).
Not every map has an inverse. If we consider the map

Tp(z,y) = (3z,0)
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30
5= o)

then an inverse map would have to be of the form

given by the matrix

Tg'(,y) = (az + by, cx + dy)

and
(z,y) =T o Tz (z,y) = (3ax + 3by, 0)

for all x and y. Clearly this is impossible because y might not be 0. ]

Example 14. Given the permutation

/1 23
T™=\2 31

on S = {1,2,3}, it is easy to see that the permutation defined by

(123
T = 31 2

is the inverse of 7. In fact, any bijective mapping possesses an inverse, as we
will see in the next theorem. ]

Theorem 1.4 A mapping is invertible if and only if it is both one-to-one
and onto.

PROOF. Suppose first that f: A — B is invertible with inverse g : B — A.
Then g o f = idy is the identity map; that is, g(f(a)) = a. If a1,a9 € A
with f(a1) = f(a2), then a; = g(f(a1)) = g(f(a2)) = az. Consequently, f is
one-to-one. Now suppose that b € B. To show that f is onto, it is necessary
to find an a € A such that f(a) = b, but f(g(b)) = b with g(b) € A. Let
a=g(b).

Now assume the converse; that is, let f be bijective. Let b € B. Since f
is onto, there exists an a € A such that f(a) = b. Because f is one-to-one, a
must be unique. Define g by letting ¢g(b) = a. We have now constructed the
inverse of f. U
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Equivalence Relations and Partitions

A fundamental notion in mathematics is that of equality. We can generalize
equality with the introduction of equivalence relations and equivalence classes.
An equivalence relation on a set X is a relation R € X x X such that

e (z,x) € R for all z € X (reflexive property);
e (x,y) € R implies (y,z) € R (symmetric property);
o (z,y) and (y,2) € R imply (z,2) € R (transitive property).

Given an equivalence relation R on a set X, we usually write x ~ y instead
of (z,y) € R. If the equivalence relation already has an associated notation
such as =, =, or =, we will use that notation.

Example 15. Let p, ¢, v, and s be integers, where ¢ and s are nonzero.
Define p/q ~ r/s if ps = qr. Clearly ~ is reflexive and symmetric. To show
that it is also transitive, suppose that p/q ~ r/s and r/s ~ t/u, with ¢, s,
and u all nonzero. Then ps = qr and ru = st. Therefore,

psu = qru = qst.

Since s # 0, pu = gt. Consequently, p/q ~ t/u. |

Example 16. Suppose that f and g are differentiable functions on R. We
can define an equivalence relation on such functions by letting f(z) ~ g(z)
if f'(x) = ¢'(x). It is clear that ~ is both reflexive and symmetric. To
demonstrate transitivity, suppose that f(x) ~ g(z) and g(z) ~ h(z). From
calculus we know that f(z) — g(z) = ¢; and g(x) — h(z) = ca, where ¢; and
co are both constants. Hence,

and f'(x) — h'(z) = 0. Therefore, f(z) ~ h(z). [ |

Example 17. For (x1,y1) and (w2,%2) in R?) define (z1,y1) ~ (z2,y2) if
2?2 +y? = 223 + y3. Then ~ is an equivalence relation on R2. [

Example 18. Let A and B be 2 x 2 matrices with entries in the real numbers.
We can define an equivalence relation on the set of 2 x 2 matrices, by saying
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A ~ B if there exists an invertible matrix P such that PAP~! = B. For

example, if
1 2 ~18 33
A= (—1 1) and - B = <—11 20)’

then A ~ B since PAP~1 = B for

P:G g)

Let I be the 2 x 2 identity matrix; that is,

(5 9)

Then TAI~! = JAI = A; therefore, the relation is reflexive. To show
symmetry, suppose that A ~ B. Then there exists an invertible matrix P
such that PAP~! = B. So

A=P'Bp=pP'BPH L

Finally, suppose that A ~ B and B ~ C. Then there exist invertible matrices
P and @ such that PAP™! = B and QBQ~! = C. Since

C=QBQ '=QPAP'Q ' = (QP)A(QP) ™,

the relation is transitive. Two matrices that are equivalent in this manner
are said to be stmilar. |

A partition P of a set X is a collection of nonempty sets X1, Xo,...
such that X; N X; = () for i # j and |J, X = X. Let ~ be an equivalence
relation on a set X and let € X. Then [x] = {y € X : y ~ z} is called the
equivalence class of x. We will see that an equivalence relation gives rise
to a partition via equivalence classes. Also, whenever a partition of a set
exists, there is some natural underlying equivalence relation, as the following
theorem demonstrates.

Theorem 1.5 Given an equivalence relation ~ on a set X, the equivalence
classes of X form a partition of X. Conversely, if P = {X;} is a partition of
a set X, then there is an equivalence relation on X with equivalence classes
X;.
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PROOF. Suppose there exists an equivalence relation ~ on the set X. For
any = € X, the reflexive property shows that = € [z] and so [z] is nonempty.
Clearly X = (J,cx[z]. Now let z,y € X. We need to show that either
[z] = [y] or [z] N [y] = 0. Suppose that the intersection of [z] and [y] is not
empty and that z € [x] N [y]. Then z ~ z and z ~ y. By symmetry and
transitivity  ~ y; hence, [z] C [y]. Similarly, [y] C [z] and so [z] = [y].
Therefore, any two equivalence classes are either disjoint or exactly the same.

Conversely, suppose that P = {X;} is a partition of a set X. Let two
elements be equivalent if they are in the same partition. Clearly, the relation
is reflexive. If x is in the same partition as y, then y is in the same partition
as x, so « ~ y implies y ~ . Finally, if z is in the same partition as y and y
is in the same partition as z, then x must be in the same partition as z, and
transitivity holds. U

Corollary 1.6 Two equivalence classes of an equivalence relation are either
disjoint or equal.

Let us examine some of the partitions given by the equivalence classes in
the last set of examples.

Example 19. In the equivalence relation in Example 15, two pairs of
integers, (p,q) and (r, s), are in the same equivalence class when they reduce
to the same fraction in its lowest terms. |

Example 20. In the equivalence relation in Example 16, two functions f(z)
and g(x) are in the same partition when they differ by a constant. |

Example 21. We defined an equivalence class on R? by (z1,y1) ~ (x2,%2)
if 23 + y? = 23 + y3. Two pairs of real numbers are in the same partition
when they lie on the same circle about the origin. |

Example 22. Let r and s be two integers and suppose that n € N. We
say that r is congruent to s modulo n, or r is congruent to s mod n, if
r — s is evenly divisible by n; that is, » — s = nk for some k € Z. In this case
we write 7 = s (mod n). For example, 41 = 17 (mod 8) since 41 — 17 =24
is divisible by 8. We claim that congruence modulo n forms an equivalence
relation of Z. Certainly any integer r is equivalent to itself since r —r = 0 is
divisible by n. We will now show that the relation is symmetric. If r = s
(mod n), then r —s = —(s—r) is divisible by n. So s —r is divisible by n and
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s =r (mod n). Now suppose that r = s (mod n) and s =t (mod n). Then
there exist integers k£ and [ such that » — s = kn and s — ¢t = In. To show
transitivity, it is necessary to prove that r — ¢ is divisible by n. However,

r—t=r—s+s—t=kn+Iln=(k+10)n,

and so r — t is divisible by n.
If we consider the equivalence relation established by the integers modulo
3, then

0]=1{...,-3,0,3,6,...},
] ={..,-21,47...}
2] ={...,~1,2,5,8,...}.

Notice that [0] U[1] U[2] = Z and also that the sets are disjoint. The sets [0],
[1], and [2] form a partition of the integers.

The integers modulo n are a very important example in the study of
abstract algebra and will become quite useful in our investigation of various
algebraic structures such as groups and rings. In our discussion of the integers
modulo n we have actually assumed a result known as the division algorithm,
which will be stated and proved in Chapter 2. ]

Exercises

1. Suppose that

A={z:zeNand z is even},
B = {z:2 € N and « is prime},
C ={z:z € N and x is a multiple of 5}.

Describe each of the following sets.
(a) ANB (¢c) AUB
(b) BNnC (d) An(BUC)

2. f A={a,b,c}, B=1{1,2,3}, C = {z}, and D = {J, list all of the elements in
each of the following sets.
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(a) AxB (¢) AxBxC
(b) Bx A (d) AxD

3. Find an example of two nonempty sets A and B for which A x B= B x A is
true.

Prove AU = A and ANO=10.

Prove AUB=BUAand ANB=DBnNA.
Prove AU(BNC)=(AUB)N(AUC).
Prove AN (BUC)=(ANB)U(ANC).
Prove A C B if and only if AN B = A.
Prove (ANB) =A"UB'.

10. ProveAuB:(AmB)U(A\B)U(B\A).
11. Prove (AU B =(AxC)u(BxC).
12. Prove (AN B)\ B = 0.

13. Prove (AUB)\ B= A\ B.

14. Prove A\ (BUC) = (A\ B)n(A\ ).

15. Prove AN(B\C)=(ANB)\ (ANC).

16. Prove (A\ B)U(B\ A)=(AUB)\ (AN B).

© ® N e

) %
)

17. Which of the following relations f : Q — Q define a mapping? In each case,
supply a reason why f is or is not a mapping.

(@) fo/a) =255 © Flo/n) =25
(0) £(o/a) = - @ £p/a) = 75 =

18. Determine which of the following functions are one-to-one and which are onto.
If the function is not onto, determine its range.

(a) f:R — R defined by f(x) =

(b) f:7Z — Z defined by f(n) =

(¢) f:R — R defined by f(z) =

(d) f:7Z — 7Z defined by f(z) = 2?2

=sinz

19. Let f: A — B and g : B — C be invertible mappings; that is, mappings such
that f=1 and g—! exist. Show that (go f)™' = f~log™L.

20. (a) Define a function f : N — N that is one-to-one but not onto.
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21.

22.

23.

24.

25.

26.

27.
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(b) Define a function f : N — N that is onto but not one-to-one.

Prove the relation defined on R? by (z1,y1) ~ (w2,y2) if 23 + 97 = 23 + ¢3 is
an equivalence relation.

Let f: A— B and g: B — C be maps.
(a

) If f and g are both one-to-one functions, show that g o f is one-to-one.
(b) If go f is onto, show that g is onto.
)

)

(c) If g o f is one-to-one, show that f is one-to-one.
(d) If g o f is one-to-one and f is onto, show that g is one-to-one.

(e) If go f is onto and g is one-to-one, show that f is onto.
Define a function on the real numbers by

z+1
r—1"

fz) =
What are the domain and range of f7 What is the inverse of f? Compute
foftand f~lof.
Let f: X =Y be a map with Ay, A> C X and By, By C Y.
(a) Prove f(Al U Ag) = f(Al) @] f(AQ)

(b) Prove f(A1 NAs) C f(A1) N f(As). Give an example in which equality
fails.

(c) Prove f~1(ByUBy) = f~Y(By) U f~1(By), where
f7'(B)={zeX: f(z) € B}.

(d) Prove f~1(B1N By) = f~'(B1) N f~(Ba).
(¢) Prove 1Y\ B) = X\ J1(B)

Determine whether or not the following relations are equivalence relations on
the given set. If the relation is an equivalence relation, describe the partition
given by it. If the relation is not an equivalence relation, state why it fails to
be one.

(a) c~yinRifx >y (¢) x~yinRif lz—y| <4

(b) m~ninZif mn >0 (d) m~ninZif m =n (mod 6)
Define a relation ~ on R? by stating that (a,b) ~ (c,d) if and only if
a? 4+ b? < ¢® + d?. Show that ~ is reflexive and transitive but not symmetric.

Show that an m x n matrix gives rise to a well-defined map from R™ to R™.
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28.

29.

Find the error in the following argument by providing a counterexample.
“The reflexive property is redundant in the axioms for an equivalence relation.
If z ~ y, then y ~ x by the symmetric property. Using the transitive property,
we can deduce that x ~ z.”

Projective Real Line. Define a relation on R?\ (0,0) by letting (z1,y1) ~
(22, y2) if there exists a nonzero real number A such that (z1,y1) = (Aza, Aya).
Prove that ~ defines an equivalence relation on R? \ (0,0). What are the
corresponding equivalence classes? This equivalence relation defines the
projective line, denoted by P(R), which is very important in geometry.
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The Integers

The integers are the building blocks of mathematics. In this chapter we
will investigate the fundamental properties of the integers, including mathe-
matical induction, the division algorithm, and the Fundamental Theorem of
Arithmetic.

2.1 Mathematical Induction

Suppose we wish to show that

nn+1)

2
for any natural number n. This formula is easily verified for small numbers
such as n =1, 2, 3, or 4, but it is impossible to verify for all natural numbers
on a case-by-case basis. To prove the formula true in general, a more generic
method is required.

Suppose we have verified the equation for the first n cases. We will
attempt to show that we can generate the formula for the (n + 1)th case
from this knowledge. The formula is true for n = 1 since

- 1(1+1)
= 5
If we have verified the first n cases, then
n(n+1
1+2—|—---—|—n—|—(n—|—1)_(2)+n+1
_ n?+3n+2
B 2
(A D[(n+1)+1]
5 .

23
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This is exactly the formula for the (n + 1)th case.

This method of proof is known as mathematical induction. Instead of
attempting to verify a statement about some subset S of the positive integers
N on a case-by-case basis, an impossible task if S is an infinite set, we give a
specific proof for the smallest integer being considered, followed by a generic
argument showing that if the statement holds for a given case, then it must
also hold for the next case in the sequence. We summarize mathematical
induction in the following axiom.

First Principle of Mathematical Induction. Let S(n) be a statement
about integers for n € N and suppose S(ng) is true for some integer ng. If
for all integers k with k > ng S(k) implies that S(k + 1) is true, then S(n)
is true for all integers n greater than ny.

Example 1. For all integers n > 3, 2" > n + 4. Since
8=2>3+4+4=17,

the statement is true for ng = 3. Assume that 28 > k + 4 for k > 3. Then
2F+1l = 2. 28 > 2(k + 4). But

2k+4)=2k+8>k+5=(k+1)+4

since k is positive. Hence, by induction, the statement holds for all integers
n > 3. [ |

Example 2. Every integer 10" 4 3. 10" + 5 is divisible by 9 for n € N.
Forn =1,
101 +3-10+5=135=9-15

is divisible by 9. Suppose that 105t + 3. 10% 4 5 is divisible by 9 for k > 1.
Then

10F+D+L 4 3 q0F+L 5 = 10542 4 3. 10 450 — 45
=10(10*! + 310" + 5) — 45

is divisible by 9. ]

Example 3. We will prove the binomial theorem using mathematical

induction; that is,
(a+b)" =Y (Z) a"o"r,

k=0
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where a and b are real numbers, n € N, and

(1) = o

is the binomial coeflicient. We first show that

("Zl) B @ i <;£1>'

This result follows from

<Z> * (ki1> - k!(nni PR 1)!(Zl—k+ 0!
(n+1)!

TR+ 1k
-(")

If n = 1, the binomial theorem is easy to verify. Now assume that the result
is true for n greater than or equal to 1. Then

(a4 b)"" = (a+b)(a+b)"

= (a+b) <Z <Z> akb”_k>
k=0
_ n (Z) ak ik o Zn: <Z> gFpnti-k
k=0 k=0
— an—i—l + i <k n 1) alcbn—l—l—k + i <Z> akbn—l—l—k + bn-‘rl
k=1 N k=1
— gt Zn: Kk; i 1> 4 <Z>} akprti—k gl
k=1

(” + 1> gk

|
[z

k
k=0

We have an equivalent statement of the Principle of Mathematical Induc-
tion that is often very useful.

Second Principle of Mathematical Induction. Let S(n) be a statement
about integers for n € N and suppose S(ng) is true for some integer ng. If



26 CHAPTER 2 THE INTEGERS

S(no), S(no+1),...,S(k) imply that S(k+1) for k& > ng, then the statement
S(n) is true for all integers n greater than nyg.

A nonempty subset S of Z is well-ordered if S contains a least element.
Notice that the set Z is not well-ordered since it does not contain a smallest
element. However, the natural numbers are well-ordered.

Principle of Well-Ordering. Every nonempty subset of the natural num-
bers is well-ordered.

The Principle of Well-Ordering is equivalent to the Principle of Mathe-
matical Induction.

Lemma 2.1 The Principle of Mathematical Induction implies that 1 is the
least positive natural number.

PROOF. Let S = {n € N:n >1}. Then 1 € S. Now assume that n € S;
that is, n > 1. Since n+1 > 1, n+1 € S; hence, by induction, every natural
number is greater than or equal to 1. (|

Theorem 2.2 The Principle of Mathematical Induction implies the Princi-
ple of Well-Ordering. That is, every nonempty subset of N contains a least
element.

ProOOF. We must show that if S is a nonempty subset of the natural numbers,
then S contains a smallest element. If S contains 1, then the theorem is true
by Lemma 2.1. Assume that if S contains an integer k such that 1 < k <mn,
then S contains a smallest element. We will show that if a set S contains
an integer less than or equal to n 4+ 1, then S has a smallest element. If
S does not contain an integer less than n 4+ 1, then n + 1 is the smallest
integer in S. Otherwise, since S is nonempty, S must contain an integer less
than or equal to n. In this case, by induction, S contains a smallest integer.

d

Induction can also be very useful in formulating definitions. For instance,
there are two ways to define n!, the factorial of a positive integer n.

e The explicit definition: n!=1-2-3---(n—1) - n.

e The inductive or recursive definition: 1! = 1 and n! = n(n — 1)! for
n > 1.

Every good mathematician or computer scientist knows that looking at prob-
lems recursively, as opposed to explicitly, often results in better understanding
of complex issues.



2.2 THE DIVISION ALGORITHM 27

2.2 The Division Algorithm

An application of the Principle of Well-Ordering that we will use often is the
division algorithm.

Theorem 2.3 (Division Algorithm) Let a and b be integers, with b > 0.
Then there exist unique integers q and r such that

a=bqg+r
where 0 < r < b.

PRroOOF. This is a perfect example of the existence-and-uniqueness type of
proof. We must first prove that the numbers ¢ and r actually exist. Then
we must show that if ¢’ and r’ are two other such numbers, then ¢ = ¢’ and
r=r.

Ezistence of q and r. Let

S={a—0bk:keZand a—bk > 0}.

If 0 € S, then b divides a, and we can let ¢ = a/band r =0. If 0 ¢ S, we
can use the Well-Ordering Principle. We must first show that S is nonempty.
Ifa>0,thena—0b-0€ S. If a <0, then a —b(2a) =a(l —2b) € S. In
either case S # ). By the Well-Ordering Principle, S must have a smallest
member, say r = a — bq. Therefore, a = bq + r, r > 0. We now show that
r < b. Suppose that » > b. Then

a—blg+1)=a—-bg—b=r—>b>0.

In this case we would have a — b(¢ + 1) in the set S. But then a —b(g+1) <
a—bg, which would contradict the fact that » = a — bq is the smallest member
of S. Sor <b. Since 0 ¢ S, r #b and so r < b.
Uniqueness of q and r. Suppose there exist integers r, 7', ¢, and ¢’ such
that
a=bg+r,0<r<hb and a=>bq +7',0<1r" <b.

Then bg +r = bq’ + r’. Assume that ' > r. From the last equation we have
b(q — ¢') = r' — r; therefore, b must divide ' —r and 0 < ' —r <o/ < b.
This is possible only if 7/ — 7 = 0. Hence, r =1’ and q = ¢'. O

Let a and b be integers. If b = ak for some integer k, we write a | b. An
integer d is called a common divisor of a and b if d | a and d | b. The
greatest common divisor of integers a and b is a positive integer d such
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that d is a common divisor of @ and b and if d’ is any other common divisor
of a and b, then d’ | d. We write d = ged(a, b); for example, ged(24, 36) = 12
and ged(120,102) = 6. We say that two integers a and b are relatively
prime if ged(a,b) = 1.

Theorem 2.4 Let a and b be nonzero integers. Then there exist integers r
and s such that
ged(a, b) = ar + bs.

Furthermore, the greatest common divisor of a and b is unique.
PROOF. Let
S ={am+bn:m,n € Z and am + bn > 0}.

Clearly, the set S is nonempty; hence, by the Well-Ordering Principle S
must have a smallest member, say d = ar + bs. We claim that d = ged(a, b).
Write a = dgq + r’ where 0 <7’ <d . If 7/ > 0, then

r =a—dq
=a — (ar + bs)q
=a—arq—bsq

=a(1l —rq) + b(—sq),

which is in S. But this would contradict the fact that d is the smallest
member of S. Hence, r’ = 0 and d divides a. A similar argument shows that
d divides b. Therefore, d is a common divisor of a and b.

Suppose that d’ is another common divisor of @ and b, and we want to
show that d’' | d. If we let a = d'h and b = d’k, then

d=ar+bs=dhr +dks=d(hr+ks).

So d’ must divide d. Hence, d must be the unique greatest common divisor
of a and b. (|

Corollary 2.5 Let a and b be two integers that are relatively prime. Then
there exist integers r and s such that ar + bs = 1.
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The Euclidean Algorithm

Among other things, Theorem 2.4 allows us to compute the greatest common
divisor of two integers.

Example 4. Let us compute the greatest common divisor of 945 and 2415.
First observe that

2415 =945 -2 + 525
945 = 525-1 + 420
925 =420-1+ 105
420 =105-4+0.

Reversing our steps, 105 divides 420, 105 divides 525, 105 divides 945, and
105 divides 2415. Hence, 105 divides both 945 and 2415. If d were another
common divisor of 945 and 2415, then d would also have to divide 105.
Therefore, ged(945,2415) = 105.

If we work backward through the above sequence of equations, we can
also obtain numbers r and s such that 945r + 2415s = 105. Observe that

105 = 525+ (—1) - 420
=525+ (—1) - [945 + (—1) - 525]
=2-525+(—1)-945
=2-[2415+ (—2) - 945] 4+ (—1) - 945
=2-2415+ (—5) - 945.
So r = —b5 and s = 2. Notice that r and s are not unique, since r = 41 and
s = —16 would also work. |
To compute ged(a,b) = d, we are using repeated divisions to obtain a
decreasing sequence of positive integers ry > ro > -+ > r, = d; that is,
b=aq +7m
a=T1q2 + T2

1 =1T12q3 + 13

Th—2 = Tn—1qn + Tn

Tn—1 = 'nQn+1-
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To find r and s such that ar + bs = d, we begin with this last equation and
substitute results obtained from the previous equations:
d=r1n
= Tn—-2 — T'n—-14n
=Tn—2 — Qn<rn—3 - Qn—lTn—Q)

= —QpTn-3 + (1 + QnQn—l)rn—Q

= ra + sb.

The algorithm that we have just used to find the greatest common divisor d
of two integers a and b and to write d as the linear combination of a and b is
known as the Fuclidean algorithm.

Prime Numbers

Let p be an integer such that p > 1. We say that p is a prime number, or
simply p is prime, if the only positive numbers that divide p are 1 and p
itself. An integer n > 1 that is not prime is said to be composite.

Lemma 2.6 (Euclid) Let a and b be integers and p be a prime number. If
p | ab, then either p | a orp | b.

PROOF. Suppose that p does not divide a. We must show that p | b. Since
ged(a, p) = 1, there exist integers r and s such that ar + ps = 1. So

b= b(ar + ps) = (ab)r + p(bs).
Since p divides both ab and itself, p must divide b = (ab)r + p(bs). O
Theorem 2.7 (Euclid) There exist an infinite number of primes.

PRrRoOOF. We will prove this theorem by contradiction. Suppose that there
are only a finite number of primes, say p1,p2,...,pn. Let P = pips---pp+ 1.
Then P must be divisible by some p; for 1 < ¢ < n. In this case, p; must
divide P — p1ps - - - pp, = 1, which is a contradiction. Hence, either P is prime
or there exists an additional prime number p # p; that divides P. O

Theorem 2.8 (Fundamental Theorem of Arithmetic) Let n be an
integer such that n > 1. Then

n=pip2-- - Pk,
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where p1,...,pr are primes (not necessarily distinct). Furthermore, this
factorization is unique; that is, if

n=4qiq2---q,

then k =1 and the q;’s are just the p;’s rearranged.

Proor. Uniqueness. To show uniqueness we will use induction on n. The
theorem is certainly true for n = 2 since in this case n is prime. Now assume
that the result holds for all integers m such that 1 < m < n, and

n=pip2---Pr = q192 41,

where py <py <--- <ppand ¢ < ¢ < --- < ¢. By Lemma 2.6, p; | ¢; for
somei=1,...,land q; | pj for some j =1,..., k. Since all of the p;’s and ¢;’s
are prime, p1 = ¢; and g1 = p;. Hence, p1 = ¢1 since p1 <p; =q1 < ¢; = p1.
By the induction hypothesis,
n'=pypr=q - q

has a unique factorization. Hence, k =1 and ¢; = p; fori =1,... k.

Ezxistence. To show existence, suppose that there is some integer that
cannot be written as the product of primes. Let S be the set of all such
numbers. By the Principle of Well-Ordering, S has a smallest number, say
a. If the only positive factors of a are a and 1, then a is prime, which is a
contradiction. Hence, a = ajas where 1 < a1 < a and 1 < as < a. Neither
a1 € S nor ag € S, since a is the smallest element in S. So

ap =pi--pr
ay = q1-- s

Therefore,
a=a1a2 =p1---Prq1---4gs-

So a ¢ S, which is a contradiction. O

]  Historical Note |
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Prime numbers were first studied by the ancient Greeks. Two important results
from antiquity are Euclid’s proof that an infinite number of primes exist and the
Sieve of Eratosthenes, a method of computing all of the prime numbers less than a
fixed positive integer n. One problem in number theory is to find a function f such
that f(n) is prime for each integer n. Pierre Fermat (16017-1665) conjectured that
22" 41 was prime for all n, but later it was shown by Leonhard Euler (1707-1783)
that i
22" 4+ 1 = 4,294,967,297

is a composite number. One of the many unproven conjectures about prime numbers
is Goldbach’s Conjecture. In a letter to Euler in 1742, Christian Goldbach stated
the conjecture that every even integer with the exception of 2 seemed to be the sum
of two primes: 4 =2+2,6 =3+3,8=3+05, .... Although the conjecture has been
verified for the numbers up through 100 million, it has yet to be proven in general.
Since prime numbers play an important role in public key cryptography, there is
currently a great deal of interest in determining whether or not a large number is
prime. ]

Exercises

1. Prove that
12+22+.“+n2:n(n+1)(2n+1)

6
for n € N.
2. Prove that ) )
13498 4o g o )
4
for n € N.
3. Prove that n! > 2" for n > 4.
4. Prove that
n(3n — 1)z

r4+4e+Te+---4+ Bn—2)x = 5

for n € N.
5. Prove that 10"™1 + 10" + 1 is divisible by 3 for n € N.
6. Prove that 4-10%" +9-10>"~! + 5 is divisible by 99 for n € N.
7. Show that

1
Jaras - -a, < — ay.
142 n_nz k

8. Prove the Leibniz rule for f(™ (z), where f(™) is the nth derivative of f; that

is, show that
n

19 = ()10 @ o),

k=0
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9.
10.

11.

12.

13.

14.

15.

16.

17.

Use induction to prove that 1 +2 422 4 ... 427 =271 _ 1 for n € N.

Prove that
L SRS SN
2 6 nn+1) n+l1

for n € N.
If = is a nonnegative real number, then show that (1 + z)® — 1 > na for
n=0,1,2,...

Power Sets. Let X be a set. Define the power set of X, denoted P(X),
to be the set of all subsets of X. For example,

P({a’ b}) = {(Z)’ {a}7 {b}’ {a7 b}}

For every positive integer n, show that a set with exactly n elements has a
power set with exactly 2™ elements.

Prove that the two principles of mathematical induction stated in Section 2.1
are equivalent.

Show that the Principle of Well-Ordering for the natural numbers implies that
1 is the smallest natural number. Use this result to show that the Principle of
Well-Ordering implies the Principle of Mathematical Induction; that is, show
that if S C N such that 1 € S and n+ 1 € S whenever n € S, then S = N.

For each of the following pairs of numbers a and b, calculate ged(a,b) and
find integers r and s such that ged(a,b) = ra + sb.

(a) 14 and 39 (d) 471 and 562
(b) 234 and 165 (e) 23,771 and 19,945
(¢) 1739 and 9923 (f) —4357 and 3754

Let a and b be nonzero integers. If there exist integers r» and s such that
ar + bs = 1, show that a and b are relatively prime.

Fibonacci Numbers. The Fibonacci numbers are
1,1,2,3,5,8,13,21,....

We can define them inductively by f1 =1, fo =1, and fr41o = fny1 + fn for
n € N.

(a) Prove that f,, < 2"
(b) Prove that f,i1fn1 = f2+(=1)", n>2.
(c) Prove that f, = [(1+v5)" — (1 — v/5)"]/2"V/5.
(d) Show that lim, oo fn/far1 = (V5 —1)/2.
)

(e) Prove that f,, and f,, 11 are relatively prime.
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18

19.

20.

21.

22.

23.

24.
25.
26.

27.
28.
29.
30.
31.
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. Let a and b be integers such that ged(a,b) = 1. Let r and s be integers such
that ar + bs = 1. Prove that

ged(a, s) = ged(r,b) = ged(r, s) = 1.
Let z,y € N be relatively prime. If zy is a perfect square, prove that  and y
must both be perfect squares.

Using the division algorithm, show that every perfect square is of the form
4k or 4k + 1 for some nonnegative integer k.

Suppose that a, b, r, s are pairwise relatively prime and that
a® + b2 =r?
a? —b? =%

Prove that a, r, and s are odd and b is even.

Let n € N. Use the division algorithm to prove that every integer is congruent
mod n to precisely one of the integers 0,1,...,n — 1. Conclude that if r is
an integer, then there is exactly one s in Z such that 0 < s < n and [r] = [s].
Hence, the integers are indeed partitioned by congruence mod n.

Define the least common multiple of two nonzero integers a and b,
denoted by lem(a, b), to be the nonnegative integer m such that both a and b
divide m, and if @ and b divide any other integer n, then m also divides n.
Prove that any two integers a and b have a unique least common multiple.

If d = ged(a, b) and m = lem(a, b), prove that dm = |ab|.
Show that lem(a,b) = ab if and only if ged(a,b) = 1.

Prove that ged(a,c) = ged(b, ¢) = 1 if and only if ged(ab, ¢) = 1 for integers
a, b, and c.

Let a,b,c € Z. Prove that if ged(a,b) =1 and a | be, then a | c.

Let p > 2. Prove that if 2P — 1 is prime, then p must also be prime.
Prove that there are an infinite number of primes of the form 6n + 1.
Prove that there are an infinite number of primes of the form 4n — 1.

Using the fact that 2 is prime, show that there do not exist integers p and
g such that p? = 2¢%. Demonstrate that therefore v/2 cannot be a rational
number.



EXERCISES 35

Programming Exercises

1.

The Sieve of Eratosthenes. One method of computing all of the prime
numbers less than a certain fixed positive integer IV is to list all of the numbers
n such that 1 < n < N. Begin by eliminating all of the multiples of 2. Next
eliminate all of the multiples of 3. Now eliminate all of the multiples of
5. Notice that 4 has already been crossed out. Continue in this manner,
noticing that we do not have to go all the way to N; it suffices to stop at v/N.
Using this method, compute all of the prime numbers less than N = 250.
We can also use this method to find all of the integers that are relatively
prime to an integer N. Simply eliminate the prime factors of N and all of
their multiples. Using this method, find all of the numbers that are relatively
prime to N = 120. Using the Sieve of Eratosthenes, write a program that will
compute all of the primes less than an integer V.

Let N® = NU {0}. Ackermann’s function is the function 4 : N® x N0 — N°
defined by the equations

A0, y) =y +1,
Az +1,0) = A(z,1),
Alx+1Ly+1) = Az, Az + 1,y)).

Use this definition to compute A(3,1). Write a program to evaluate Acker-
mann’s function. Modify the program to count the number of statements
executed in the program when Ackermann’s function is evaluated. How many
statements are executed in the evaluation of A(4,1)? What about A(5,1)?

Write a computer program that will implement the Euclidean algorithm. The
program should accept two positive integers a and b as input and should
output ged(a,b) as well as integers r and s such that

ged(a,b) = ra + sb.

References and Suggested Readings
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Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers.
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[4] Vanden Eynden, C. Elementary Number Theory. 2nd ed. Waveland Press,
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Sage Sage’s original purpose was to support research in number theory, so
it is perfect for the types of computations with the integers that we have in
this chapter.



Groups

We begin our study of algebraic structures by investigating sets associated
with single operations that satisfy certain reasonable axioms; that is, we want
to define an operation on a set in a way that will generalize such familiar
structures as the integers Z together with the single operation of addition,
or invertible 2 x 2 matrices together with the single operation of matrix
multiplication. The integers and the 2 x 2 matrices, together with their
respective single operations, are examples of algebraic structures known as
groups.

The theory of groups occupies a central position in mathematics. Modern
group theory arose from an attempt to find the roots of a polynomial in
terms of its coeflicients. Groups now play a central role in such areas as
coding theory, counting, and the study of symmetries; many areas of biology,
chemistry, and physics have benefited from group theory.

3.1 Integer Equivalence Classes and Symmetries

Let us now investigate some mathematical structures that can be viewed as
sets with single operations.

The Integers mod n

The integers mod n have become indispensable in the theory and applications
of algebra. In mathematics they are used in cryptography, coding theory,
and the detection of errors in identification codes.

We have already seen that two integers a and b are equivalent mod n if n
divides a —b. The integers mod n also partition Z into n different equivalence
classes; we will denote the set of these equivalence classes by Z,,. Consider

37
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the integers modulo 12 and the corresponding partition of the integers:

0] ={...,-12,0,12,24, ...},
[1]={...,—-11,1,13,25,...},

1] ={...,—1,11,23,35,...}.

When no confusion can arise, we will use 0,1,...,11 to indicate the equiva-
lence classes [0], [1],. .., [11] respectively. We can do arithmetic on Z,. For
two integers a and b, define addition modulo n to be (a+b) (mod n); that is,
the remainder when a + b is divided by n. Similarly, multiplication modulo
n is defined as (ab) (mod n), the remainder when ab is divided by n.

Table 3.1. Multiplication table for Zg

01 2 3 4 5 6 7
0jo0 0 0 0 0 0 0 O
110 1 2 3 4 5 6 7
210 2 4 6 0 2 4 6
310 3 6 1 4 7 2 5
410 4 0 4 0 4 0 4
510 5 2 7 4 1 6 3
610 6 4 2 0 6 4 2
7TI0 7 6 5 4 3 2 1

Example 1. The following examples illustrate integer arithmetic modulo n:

74+4=1 (mod 5) 7-3=1 (mod 5)
3+5=0 (mod 8) 3:5=7 (mod 8)
3+4=7 (mod 12) 3-4=0 (mod 12).

In particular, notice that it is possible that the product of two nonzero
numbers modulo n can be equivalent to 0 modulo n. |

Example 2. Most, but not all, of the usual laws of arithmetic hold for
addition and multiplication in Z,. For instance, it is not necessarily true
that there is a multiplicative inverse. Consider the multiplication table for
Zsg in Table 3.1. Notice that 2, 4, and 6 do not have multiplicative inverses;
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that is, for n = 2, 4, or 6, there is no integer k such that kn =1 (mod 8).
|

Proposition 3.1 Let Z, be the set of equivalence classes of the integers
mod n and a,b,c € Zy,.

1. Addition and multiplication are commutative:
a+b=b+a (modn)
ab=ba (mod n).

2. Addition and multiplication are associative:

(a+b)+c=a+(b+c) (modn)
(ab)e = a(bc) (mod n).

3. There are both an additive and a multiplicative identity:
a+0=a (modn)

a-1=a (modn).

4. Multiplication distributes over addition:

a(b+c¢) =ab+ac (mod n).

5. For every integer a there is an additive inverse —a:

a+ (—a)=0 (mod n).

6. Let a be a nonzero integer. Then ged(a,n) = 1 if and only if there exists
a multiplicative inverse b for a (mod n); that is, a nonzero integer b
such that

ab=1 (mod n).

Proor. We will prove (1) and (6) and leave the remaining properties to be
proven in the exercises.

(1) Addition and multiplication are commutative modulo n since the
remainder of a + b divided by n is the same as the remainder of b+ a divided
by n.
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(6) Suppose that ged(a,n) = 1. Then there exist integers r and s such
that ar +ns = 1. Since ns = 1 —ar, ra = 1 (mod n). Letting b be the
equivalence class of 7, ab =1 (mod n).

Conversely, suppose that there exists a b such that ab = 1 (mod n).
Then n divides ab — 1, so there is an integer k£ such that ab — nk = 1. Let
d = ged(a,n). Since d divides ab — nk, d must also divide 1; hence, d = 1.

O
Symmetries
Figure 3.1. Rigid motions of a rectangle
A B
identity
D C D C
A B C D
180°
rotation
D A
A A
reflection
_
vertical aris
D D
A C
reflection
horizontal axis
D B

A symmetry of a geometric figure is a rearrangement of the figure
preserving the arrangement of its sides and vertices as well as its distances
and angles. A map from the plane to itself preserving the symmetry of an
object is called a rigid motion. For example, if we look at the rectangle in
Figure 3.1, it is easy to see that a rotation of 180° or 360° returns a rectangle
in the plane with the same orientation as the original rectangle and the same
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relationship among the vertices. A reflection of the rectangle across either
the vertical axis or the horizontal axis can also be seen to be a symmetry.
However, a 90° rotation in either direction cannot be a symmetry unless the
rectangle is a square.

Figure 3.2. Symmetries of a triangle

B B
identity y A B C
= (A B c>
A c A C
B A
rotation (A B C
P=\B c A
A Cc C B
B C
rotation (A B C
P2=\c A4 B
A C B A
B C
reflection A B C
“1—<A C B>
A C A B
B B
reflection A B C
“2_<0 B A)
A c C A
B A

=
QQ
N

reflection (A
u3 = <B
A C B C

Let us find the symmetries of the equilateral triangle AABC. To find a
symmetry of AABC, we must first examine the permutations of the vertices
A, B, and C and then ask if a permutation extends to a symmetry of the
triangle. Recall that a permutation of a set S is a one-to-one and onto
map 7 : S — 5. The three vertices have 3! = 6 permutations, so the triangle
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has at most six symmetries. To see that there are six permutations, observe
there are three different possibilities for the first vertex, and two for the
second, and the remaining vertex is determined by the placement of the first
two. So we have 3-2-1 = 3! = 6 different arrangements. To denote the
permutation of the vertices of an equilateral triangle that sends A to B, B
to C, and C to A, we write the array

A B C
329
Notice that this particular permutation corresponds to the rigid motion
of rotating the triangle by 120° in a clockwise direction. In fact, every
permutation gives rise to a symmetry of the triangle. All of these symmetries
are shown in Figure 3.2.

A natural question to ask is what happens if one motion of the triangle
ANABC is followed by another. Which symmetry is pjp1; that is, what
happens when we do the permutation p; and then the permutation pu;?
Remember that we are composing functions here. Although we usually multiply
left to right, we compose functions right to left. We have

(11p1)(A) = p1(p1(A)) = i (B) =C
(t1p1)(B) = p(p1(B)) = m(C) = B
(11p1)(C) = p1(p1(C)) = 1 (A) = A.

This is the same symmetry as puo. Suppose we do these motions in the
opposite order, p; then pi. It is easy to determine that this is the same
as the symmetry us; hence, pip1 # pip1- A multiplication table for the
symmetries of an equilateral triangle AABC' is given in Table 3.2.

Notice that in the multiplication table for the symmetries of an equilateral
triangle, for every motion of the triangle o there is another motion o’ such
that aa’ = id; that is, for every motion there is another motion that takes
the triangle back to its original orientation.

3.2 Definitions and Examples

The integers mod n and the symmetries of a triangle or a rectangle are both
examples of groups. A binary operation or law of composition on a set
G is a function G x G — G that assigns to each pair (a,b) € G X G a unique
element a o b, or ab in G, called the composition of a and b. A group (G, o)
is a set G together with a law of composition (a,b) — a o b that satisfies the
following axioms.
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Table 3.2. Symmetries of an equilateral triangle
o |id p1 p2 p1 p2 p3
id | id p1 p2 1 p2 M3
pr | pr p2 id  p3 o p1 g2
p2 | p2 id p1 p2 p3
pr | g1 g2 pszoid o opr p2
pe | p2  ps 1 op2 id o p
M3 | g3 op1 op2 opr op2 id

e The law of composition is associative. That is,
(aob)oc=ao(boc)
for a,b,c € G.

e There exists an element e € G, called the tdentity element, such that
for any element a € G

eocoa—=aoe—=a.

e For each element a € G, there exists an inverse element in G,
denoted by a~!, such that

acat=a"loa=c.

A group G with the property that aob = bo a for all a,b € G is called
abelian or commutative. Groups not satisfying this property are said to
be nonabelian or noncommutative.

Example 3. The integers Z = {...,—1,0,1,2,...} form a group under the
operation of addition. The binary operation on two integers m,n € Z is just
their sum. Since the integers under addition already have a well-established
notation, we will use the operator + instead of o; that is, we shall write m+n
instead of m on. The identity is 0, and the inverse of n € Z is written as —n
instead of n~!'. Notice that the integers under addition have the additional
property that m +n = n + m and are therefore an abelian group. |

Most of the time we will write ab instead of a o b; however, if the group
already has a natural operation such as addition in the integers, we will use
that operation. That is, if we are adding two integers, we still write m + n,
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Table 3.3. Cayley table for (Zs, +)

+10 1 2 3 4
0|0 1 2 3 4
1711 2 3 4 0
212 3 4 0 1
313 4 0 1 2
414 0 1 2 3

—n for the inverse, and 0 for the identity as usual. We also write m —n
instead of m + (—n).

It is often convenient to describe a group in terms of an addition or
multiplication table. Such a table is called a Cayley table.

Example 4. The integers mod n form a group under addition modulo n.
Consider Zs, consisting of the equivalence classes of the integers 0, 1, 2, 3,
and 4. We define the group operation on Zs by modular addition. We write
the binary operation on the group additively; that is, we write m + n. The
element 0 is the identity of the group and each element in Zs has an inverse.
For instance, 2+ 3 = 34+ 2 = 0. Table 3.3 is a Cayley table for Zs. By
Proposition 3.1, Z,, = {0,1,...,n — 1} is a group under the binary operation
of addition mod n. [ |

Example 5. Not every set with a binary operation is a group. For example,
if we let modular multiplication be the binary operation on Z,,, then Z,, fails
to be a group. The element 1 acts as a group identity since 1 -k =k-1=k
for any k € Z,; however, a multiplicative inverse for 0 does not exist since
0-k=k-0=0 for every k in Z,. Even if we consider the set Z, \ {0},
we still may not have a group. For instance, let 2 € Zg. Then 2 has no
multiplicative inverse since

2=0 1-2=2

By Proposition 3.1, every nonzero k does have an inverse in Z, if k is
relatively prime to n. Denote the set of all such nonzero elements in Z, by
U(n). Then U(n) is a group called the group of units of Z,. Table 3.4 is
a Cayley table for the group U(8). [ |
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Table 3.4. Multiplication table for U(8)

|1 3 5 71
1[1 3 5 7
3/3 1 7 5
505 7 1 3
717 5 3 1

Example 6. The symmetries of an equilateral triangle described in Sec-
tion 3.1 form a nonabelian group. As we observed, it is not necessarily true
that af = fa for two symmetries « and S. Using Table 3.2, which is a
Cayley table for this group, we can easily check that the symmetries of an
equilateral triangle are indeed a group. We will denote this group by either
S3 or D3, for reasons that will be explained later. |

Example 7. We use My(R) to denote the set of all 2 x 2 matrices. Let
GLy(R) be the subset of My(R) consisting of invertible matrices; that is, a

matrix
a b
a=(23)

is in GLy(R) if there exists a matrix A~! such that AA™! = A71A = I,
where [ is the 2 x 2 identity matrix. For A to have an inverse is equivalent to
requiring that the determinant of A be nonzero; that is, det A = ad — be # 0.
The set of invertible matrices forms a group called the general linear group.
The identity of the group is the identity matrix

1 0
1= (0 1) |
The inverse of A € GLy(R) is

ad —bc \—c «a
The product of two invertible matrices is again invertible. Matrix multipli-
cation is associative, satisfying the other group axiom. For matrices it is

not true in general that AB = BA; hence, GLy(R) is another example of a
nonabelian group. |
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Example 8. Let

where i> = —1. Then the relations I? = J? = K? = -1, [J =K, JK =1,
KI =J,JIl = —-K, KJ = —1I, and IK = —J hold. The set Qg =
{£1,£I,4+J,£K} is a group called the quaternion group. Notice that Qg
is noncommutative. |

Example 9. Let C* be the set of nonzero complex numbers. Under the
operation of multiplication C* forms a group. The identity is 1. If z = a 4 bi
is a nonzero complex number, then

1 a—bi

a? + b2
is the inverse of z. It is easy to see that the remaining group axioms hold. H

A group is finite, or has finite order, if it contains a finite number of
elements; otherwise, the group is said to be infinite or to have infinite
order. The order of a finite group is the number of elements that it contains.
If G is a group containing n elements, we write |G| = n. The group Zs is a
finite group of order 5; the integers Z form an infinite group under addition,
and we sometimes write |Z| = oo.

Basic Properties of Groups

Proposition 3.2 The identity element in a group G is unique; that is, there
exists only one element e € G such that eqg = ge = g for all g € G.

PROOF. Suppose that e and €’ are both identities in G. Then eg = ge = g
and €¢'g = ge/ = g for all g € G. We need to show that e = ¢’. If we think
of e as the identity, then ee’ = ¢’; but if € is the identity, then ee’ = e.
Combining these two equations, we have e = ee’ = ¢€’. O

Inverses in a group are also unique. If ¢’ and ¢g” are both inverses of an
element ¢ in a group G, then g¢’ = ¢'g = e and gg” = ¢"g = e. We want
to show that ¢’ = ¢”, but ¢ = ¢'e = ¢'(99") = (¢'9)9” = eg” = g"". We
summarize this fact in the following proposition.



3.2 DEFINITIONS AND EXAMPLES 47

Proposition 3.3 If g is any element in a group G, then the inverse of g,

g~ 1, is unique.

Proposition 3.4 Let G be a group. If a,b € G, then (ab)™! =b~ta~!.

PROOF. Let a,b € G. Then abb~'a™! = aea™' = aa™! = e. Similarly,
b~la~lab = e. But by the previous proposition, inverses are unique; hence,
(ab)™t =bta L. O

Proposition 3.5 Let G be a group. For anya € G, (a™')"! =a.

PROOF. Observe that a=1(a~!)~! = e. Consequently, multiplying both sides
of this equation by a, we have

(a_l)_l = e(a_l)_1 = aa_l(a_l)_l = qe = a.
]

It makes sense to write equations with group elements and group opera-
tions. If @ and b are two elements in a group G, does there exist an element
x € G such that ax = b7 If such an x does exist, is it unique? The following
proposition answers both of these questions positively.

Proposition 3.6 Let G be a group and a and b be any two elements in G.
Then the equations ax = b and ra = b have unique solutions in G.

PROOF. Suppose that ax = b. We must show that such an z exists.
Multiplying both sides of az = b by a~!, we have x = ex = a tax = a~'b.
To show uniqueness, suppose that 1 and xo are both solutions of ax = b;
then az; = b = azy. So x1 = a tax; = a laxs = x9. The proof for the
existence and uniqueness of the solution of xa = b is similar. O

Proposition 3.7 If G is a group and a,b,c € G, then ba = ca implies b = ¢
and ab = ac implies b = c.

This proposition tells us that the right and left cancellation laws
are true in groups. We leave the proof as an exercise.

We can use exponential notation for groups just as we do in ordinary
algebra. If G is a group and g € G, then we define ¢° = e. For n € N, we
define

9"=9-9--y
—
n times

and

n times
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Theorem 3.8 In a group, the usual laws of exponents hold; that is, for all
g,.heq,

1. g™g" = g™ for all m,n € Z;

o

(g™)™ = g™ for all m,n € Z;
3. (gh)" = (h~tg=Y)™™ for all n € Z. Furthermore, if G is abelian, then
(gh)" = gh.

We will leave the proof of this theorem as an exercise. Notice that
(gh)™ # ¢g"h™ in general, since the group may not be abelian. If the group
is Z or Z,, we write the group operation additively and the exponential
operation multiplicatively; that is, we write ng instead of ¢g". The laws of
exponents now become

1. mg+ng = (m+n)g for all m,n € Z;
2. m(ng) = (mn)g for all m,n € Z;
3. m(g+ h) = mg + mh for all n € Z.

It is important to realize that the last statement can be made only because
7, and Z,, are commutative groups.

[ ]  Haistorical Note | ]

Although the first clear axiomatic definition of a group was not given until the
late 1800s, group-theoretic methods had been employed before this time in the
development of many areas of mathematics, including geometry and the theory of
algebraic equations.

Joseph-Louis Lagrange used group-theoretic methods in a 1770-1771 memoir to
study methods of solving polynomial equations. Later, Evariste Galois (1811-1832)
succeeded in developing the mathematics necessary to determine exactly which
polynomial equations could be solved in terms of the polynomials’ coefficients.
Galois’ primary tool was group theory.

The study of geometry was revolutionized in 1872 when Felix Klein proposed
that geometric spaces should be studied by examining those properties that are
invariant under a transformation of the space. Sophus Lie, a contemporary of Klein,
used group theory to study solutions of partial differential equations. One of the
first modern treatments of group theory appeared in William Burnside’s The Theory
of Groups of Finite Order [1], first published in 1897. ]
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3.3 Subgroups

Definitions and Examples

Sometimes we wish to investigate smaller groups sitting inside a larger group.
The set of even integers 27 = {...,—2,0,2,4,...} is a group under the
operation of addition. This smaller group sits naturally inside of the group
of integers under addition. We define a subgroup H of a group G to be a
subset H of GG such that when the group operation of G is restricted to H,
H is a group in its own right. Observe that every group G with at least two
elements will always have at least two subgroups, the subgroup consisting of
the identity element alone and the entire group itself. The subgroup H = {e}
of a group G is called the trivial subgroup. A subgroup that is a proper
subset of G is called a proper subgroup. In many of the examples that we
have investigated up to this point, there exist other subgroups besides the
trivial and improper subgroups.

Example 10. Consider the set of nonzero real numbers, R*, with the group
operation of multiplication. The identity of this group is 1 and the inverse
of any element a € R* is just 1/a. We will show that

Q* = {p/q : pand g are nonzero integers}

is a subgroup of R*. The identity of R* is 1; however, 1 = 1/1 is the quotient
of two nonzero integers. Hence, the identity of R* is in Q*. Given two
elements in Q*, say p/q and r/s, their product pr/qs is also in Q*. The
inverse of any element p/q € Q* is again in Q* since (p/q)~! = ¢/p. Since
multiplication in R* is associative, multiplication in Q* is associative. |

Example 11. Recall that C* is the multiplicative group of nonzero complex
numbers. Let H = {1,—1,4,—i}. Then H is a subgroup of C*. It is quite
easy to verify that H is a group under multiplication and that H C C*. N

Example 12. Let SLy(R) be the subset of GL2(R) consisting of matrices
of determinant one; that is, a matrix

a b
(02
is in SLy(R) exactly when ad — be = 1. To show that SL2(R) is a subgroup
of the general linear group, we must show that it is a group under matrix
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multiplication. The 2 x 2 identity matrix is in SLs(R), as is the inverse of
the matrix A:
Al = ( d b) :
—c a

It remains to show that multiplication is closed; that is, that the product of
two matrices of determinant one also has determinant one. We will leave this
task as an exercise. The group SLo(R) is called the special linear group.
[ |

Example 13. It is important to realize that a subset H of a group G can
be a group without being a subgroup of G. For H to be a subgroup of G
it must inherit G’s binary operation. The set of all 2 x 2 matrices, M (R),
forms a group under the operation of addition. The 2 x 2 general linear
group is a subset of My(R) and is a group under matrix multiplication, but
it is not a subgroup of My (R). If we add two invertible matrices, we do not
necessarily obtain another invertible matrix. Observe that

10 n -1 0\ (00
01 0 -1/ \0 0)’
but the zero matrix is not in GLa(R). [

Example 14. One way of telling whether or not two groups are the same
is by examining their subgroups. Other than the trivial subgroup and the
group itself, the group Z4 has a single subgroup consisting of the elements
0 and 2. From the group Zs, we can form another group of four elements
as follows. As a set this group is Zs X Zo. We perform the group operation
coordinatewise; that is, (a,b)+ (¢,d) = (a+¢,b+d). Table 3.5 is an addition
table for Zs x Zs. Since there are three nontrivial proper subgroups of
Zs X Lo, Hy = {(0,0),(0,1)}, Hy = {(0,0),(1,0)}, and Hs = {(0,0),(1,1)},

Zy4 and Zo X Zo must be different groups. |
+ [ (00 (0,1) (1,00 (1,1)
(0,0) | (0,0) (0,1) (1,00 (1,1)
(0,1) | (0,1) (0,00 (1,1) (1,0
(1,0) | (1,0) (1,1) (0,0) (0,1)
(L1 | (1,1) (1,00 (0,1) (0,0)

Table 3.5. Addition table for Zy X Zo
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Some Subgroup Theorems

Let us examine some criteria for determining exactly when a subset of a
group is a subgroup.

Proposition 3.9 A subset H of G is a subgroup if and only if it satisfies
the following conditions.

1. The identity e of G is in H.
2. Ifhl,hg S H, then hihy € H.
3. Ifhe H, then h~' € H.

PRrROOF. First suppose that H is a subgroup of G. We must show that
the three conditions hold. Since H is a group, it must have an identity ep.
We must show that ey = e, where e is the identity of G. We know that
egery = ey and that eeg = ege = ey; hence, eeg = egey. By right-hand
cancellation, e = ey. The second condition holds since a subgroup H is a
group. To prove the third condition, let h € H. Since H is a group, there is
an element b/ € H such that hh' = h’h = e. By the uniqueness of the inverse
in G, k' =hL.

Conversely, if the three conditions hold, we must show that H is a
group under the same operation as G; however, these conditions plus the
associativity of the binary operation are exactly the axioms stated in the
definition of a group. O

Proposition 3.10 Let H be a subset of a group G. Then H 1is a subgroup
of G if and only if H # 0, and whenever g,h € H then gh™' is in H.

PROOF. Let H be a nonempty subset of G. Then H contains some element
g. So gg ' =eisin H. If g € H, then eg~! = ¢! is also in H. Finally,
let g,h € H. We must show that their product is also in H. However,
g(h~Y~! = gh € H. Hence, H is indeed a subgroup of G. Conversely, if
g and h are in H, we want to show that gh™! € H. Since h is in H, its
inverse h~! must also be in H. Because of the closure of the group operation,
gh ' e H. O

Exercises

1. Find all z € Z satisfying each of the following equations.
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2.

10.
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(a) 3z =2 (mod 7) (d) 92 =3 (mod 5)
(b) 5z +1=13 (mod 23) (e) 5z =1 (mod 6)
(¢) Bz +1=13 (mod 26) (f) 3z =1 (mod 6)

Which of the following multiplication tables defined on the set G = {a,b, ¢,d}
form a group? Support your answer in each case.

ola b ¢ d ola b ¢ d
ala ¢ d a ala b ¢ d
(a) b|b b ¢ d (¢) b|b ¢ d a
clc d a b clc d a b
d|d a b c d|d a b c
ola b ¢ d ola b ¢ d
ala b ¢ d ala b ¢ d
(b) b|lb a d ¢ (d b|b a ¢ d
clc d a b clc b a d
d|{d ¢ b a d|{d d b c

Write out Cayley tables for groups formed by the symmetries of a rectangle
and for (Z4,+). How many elements are in each group? Are the groups the
same? Why or why not?

Describe the symmetries of a rhombus and prove that the set of symmetries
forms a group. Give Cayley tables for both the symmetries of a rectangle and
the symmetries of a rhombus. Are the symmetries of a rectangle and those of
a rhombus the same?

Describe the symmetries of a square and prove that the set of symmetries is
a group. Give a Cayley table for the symmetries. How many ways can the
vertices of a square be permuted? Is each permutation necessarily a symmetry
of the square? The symmetry group of the square is denoted by Dj.

Give a multiplication table for the group U(12).

Let S =R\ {—1} and define a binary operation on S by a *b = a + b+ ab.
Prove that (.5, %) is an abelian group.

Give an example of two elements A and B in GL2(R) with AB # BA.
Prove that the product of two matrices in SLs(R) has determinant one.

Prove that the set of matrices of the form

1
0
0

O = 8
RS B
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11.

12.

13.
14.

15.
16.

17.

18.
19.

20.

21.

22.
23.

is a group under matrix multiplication. This group, known as the Hetsen-
berg group, is important in quantum physics. Matrix multiplication in the
Heisenberg group is defined by

Prove that det(AB) = det(A) det(B) in GL2(R). Use this result to show that
the binary operation in the group GLy(R) is closed; that is, if A and B are
in GLa(R), then AB € GLa(R).

Let Z% = {(a1,az,...,a,) : a; € Za}. Define a binary operation on Z% by
(al,ag,...,an)—|—(b1,b2,...,bn):(al—i—bl,ag—i—bg,...,an—i—bn).

Prove that Z3 is a group under this operation. This group is important in
algebraic coding theory.

Show that R* = R\ {0} is a group under the operation of multiplication.

Given the groups R* and Z, let G = R* X Z. Define a binary operation o on G
by (a,m) o (b,n) = (ab,m + n). Show that G is a group under this operation.

Prove or disprove that every group containing six elements is abelian.

Give a specific example of some group G and elements g,h € G where
(gh)™ # g"h".

Give an example of three different groups with eight elements. Why are the
groups different?

Show that there are n! permutations of a set containing n items.

Show that
0+a=a+0=a (modn)

for all a € Z,,.

Prove that there is a multiplicative identity for the integers modulo n:
a-1=a (mod n).
For each a € Z,, find a b € Z,, such that
a+b=b+a=0 (mod n).
Show that addition and multiplication mod n are associative operations.
Show that multiplication distributes over addition modulo n:

a(b+c)=ab+ac (mod n).
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24

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.
39.

40.
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. Let a and b be elements in a group G. Prove that ab®a~! = (aba~1!)" for
n € 7.

Let U(n) be the group of units in Z,. If n > 2, prove that there is an element
k € U(n) such that k? =1 and k # 1.

Prove that the inverse of g1 g2 - - - g, is g;lg;il - '91_1~

Prove the remainder of Proposition 3.6: if G is a group and a,b € G, then
the equation za = b has unique solutions in G.

Prove Theorem 3.8.

Prove the right and left cancellation laws for a group Gj; that is, show that in
the group G, ba = ca implies b = ¢ and ab = ac implies b = ¢ for elements
a,b,c €.

Show that if a? = e for all elements a in a group G, then G must be abelian.

Show that if G is a finite group of even order, then there is an a € G such
that @ is not the identity and a? = e.

Let G be a group and suppose that (ab)? = a?b? for all @ and b in G. Prove
that G is an abelian group.

Find all the subgroups of Z3 x Zs. Use this information to show that Zs x Zs
is not the same group as Zgy. (See Example 14 for a short description of the
product of groups.)

Find all the subgroups of the symmetry group of an equilateral triangle.
Compute the subgroups of the symmetry group of a square.
Let H = {2% : k € Z}. Show that H is a subgroup of Q*.

Let n=0,1,2,... and nZ = {nk : k € Z}. Prove that nZ is a subgroup of Z.
Show that these subgroups are the only subgroups of Z.

Let T = {z € C* : |z| = 1}. Prove that T is a subgroup of C*.

Let G consist of the 2 x 2 matrices of the form

cosf) —sinf

sinf  cos@
where 6 € R. Prove that G is a subgroup of SLz(R).
Prove that

G={a+ bV2: a,b € Q and a and b are not both zero}

is a subgroup of R* under the group operation of multiplication.
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41.

42.

43.
44.

45.

46.

47.

48.

49.

50.
51.
52.
53.

54.

55.

Let G be the group of 2 x 2 matrices under addition and

(s Yomra

Prove that H is a subgroup of G.

Prove or disprove: SLy(Z), the set of 2 X 2 matrices with integer entries and
determinant one, is a subgroup of SLs(R).

List the subgroups of the quaternion group, Qs.

Prove that the intersection of two subgroups of a group G is also a subgroup
of G.

Prove or disprove: If H and K are subgroups of a group G, then H U K is a
subgroup of G.

Prove or disprove: If H and K are subgroups of a group G, then HK = {hk :
h € H and k € K} is a subgroup of G. What if G is abelian?

Let G be a group and g € G. Show that
Z(G)={z € G:gx=uzgforall ge G}

is a subgroup of G. This subgroup is called the center of G.

Let ¢ and b be elements of a group G. If a*b = ba and a® = e, prove that
ab = ba.

Give an example of an infinite group in which every nontrivial subgroup is
infinite.

Give an example of an infinite group in which every proper subgroup is finite.
If zy =z~ 'y~ for all x and y in G, prove that G must be abelian.
If (zy)? = zy for all z and y in G, prove that G must be abelian.

Prove or disprove: Every nontrivial subgroup of an nonabelian group is
nonabelian.

Let H be a subgroup of G and
CH)={9€eG:gh=hgforallhe H}.

Prove C'(H) is a subgroup of G. This subgroup is called the centralizer of
H in G.

Let H be a subgroup of G. If g € G, show that gHg™! is also a subgroup of
G.
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0 50000™ 30042 %6

Figure 3.3. A UPC code

Additional Exercises: Detecting Errors

Credit card companies, banks, book publishers, and supermarkets all take advantage
of the properties of integer arithmetic modulo n and group theory to obtain error
detection schemes for the identification codes that they use.

1. UPC Symbols. Universal Product Code (UPC) symbols are now found on
most products in grocery and retail stores. The UPC symbol is a 12-digit code
identifying the manufacturer of a product and the product itself (Figure 3.3).
The first 11 digits contain information about the product; the twelfth digit is
used for error detection. If dids - - - di2 is a valid UPC number, then

3-di+1-dy+3-dg+---+3-dy1+1-di2=0 (mod 10).
(a) Show that the UPC number 0-50000-30042-6, which appears in Fig-
ure 3.3, is a valid UPC number.
(b) Show that the number 0-50000-30043-6 is not a valid UPC number.
(c) Write a formula to calculate the check digit, djo, in the UPC number.

(d) The UPC error detection scheme can detect most transposition errors;
that is, it can determine if two digits have been interchanged. Show
that the transposition error 0-05000-30042-6 is not detected. Find a
transposition error that is detected. Can you find a general rule for the
types of transposition errors that can be detected?

(e) Write a program that will determine whether or not a UPC number is
valid.

2. It is often useful to use an inner product notation for this type of error
detection scheme; hence, we will use the notion

(di,dg,...,d) (w1,ws,...,wr) =0 (mod n)
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to mean
dywy + dowg + -+ dpwp, =0 (mod n).

Suppose that (dy,da,...,dk) - (w1, ws, ..., wx) =0 (mod n) is an error detec-
tion scheme for the k-digit identification number dyds - - - di, where 0 < d; < n.
Prove that all single-digit errors are detected if and only if ged(w;,n) =1 for
1<i<k.

3. Let (dy,ds,...,dg) - (w1, wsa,...,wg) = 0 (mod n) be an error detection
scheme for the k-digit identification number dyds - - - dj, where 0 < d; < n.
Prove that all transposition errors of two digits d; and d; are detected if and
only if ged(w; — wj,n) =1 for i and j between 1 and k.

4. ISBN Codes. Every book has an International Standard Book Number
(ISBN) code. This is a 10-digit code indicating the book’s publisher and title.
The tenth digit is a check digit satisfying

(dl,dg,...,dlo) . (10,9,...,1) =0 (mod 11).

One problem is that dyy might have to be a 10 to make the inner product zero;
in this case, 11 digits would be needed to make this scheme work. Therefore,
the character X is used for the eleventh digit. So ISBN 3-540-96035-X is a
valid ISBN code.

(a) Is ISBN 0-534-91500-0 a valid ISBN code? What about ISBN 0-534-
91700-0 and ISBN 0-534-19500-07

(b) Does this method detect all single-digit errors? What about all transpo-
sition errors?

(¢) How many different ISBN codes are there?

(d) Write a computer program that will calculate the check digit for the
first nine digits of an ISBN code.

(e) A publisher has houses in Germany and the United States. Its German
prefix is 3-540. If its United States prefix will be 0-abc, find abc such
that the rest of the ISBN code will be the same for a book printed in
Germany and in the United States. Under the ISBN coding method
the first digit identifies the language; German is 3 and English is 0.
The next group of numbers identifies the publisher, and the last group
identifies the specific book.

References and Suggested Readings
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Sage The first half of this text is about group theory. Sage includes
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development since 1986. Many of Sage’s computations for groups ultimately
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Cyclic Groups

The groups Z and Z,, which are among the most familiar and easily under-
stood groups, are both examples of what are called cyclic groups. In this
chapter we will study the properties of cyclic groups and cyclic subgroups,
which play a fundamental part in the classification of all abelian groups.

4.1 Cyclic Subgroups

Often a subgroup will depend entirely on a single element of the group;
that is, knowing that particular element will allow us to compute any other
element in the subgroup.

Example 1. Suppose that we consider 3 € Z and look at all multiples (both
positive and negative) of 3. As a set, this is

3Z=1{..,-3,0,3,6,...}.

It is easy to see that 37Z is a subgroup of the integers. This subgroup is
completely determined by the element 3 since we can obtain all of the other
elements of the group by taking multiples of 3. Every element in the subgroup
is “generated” by 3. |

Example 2. If H = {2" : n € Z}, then H is a subgroup of the multiplicative
group of nonzero rational numbers, Q*. If a = 2™ and b = 2" are in H, then
ab™! =2m27" = 2™=" i5 also in H. By Proposition 3.10, H is a subgroup
of Q* determined by the element 2. |

99
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Theorem 4.1 Let G be a group and a be any element in G. Then the set
(a) ={d* : k e 7}

is a subgroup of G. Furthermore, (a) is the smallest subgroup of G that
contains a.

PROOF. The identity is in (a) since a” = e. If g and h are any two elements

in (a), then by the definition of (a) we can write g = a” and h = a™ for some
integers m and n. So gh = a™a" = ™1™ is again in (a). Finally, if g = @™ in
(a), then the inverse g~! = a~" is also in (a). Clearly, any subgroup H of G
containing a must contain all the powers of a by closure; hence, H contains
(a). Therefore, (a) is the smallest subgroup of G' containing a. O

Remark. If we are using the “4” notation, as in the case of the integers
under addition, we write (a) = {na : n € Z}.

For a € G, we call {a) the cyclic subgroup generated by a. If G contains
some element a such that G = (a), then G is a cyclic group. In this case a
is a generator of G. If a is an element of a group G, we define the order
of a to be the smallest positive integer n such that o™ = e, and we write
|a] = n. If there is no such integer n, we say that the order of a is infinite
and write |a] = co to denote the order of a.

Example 3. Notice that a cyclic group can have more than a single generator.
Both 1 and 5 generate Zg; hence, Zg is a cyclic group. Not every element in
a cyclic group is necessarily a generator of the group. The order of 2 € Zg is
3. The cyclic subgroup generated by 2 is (2) = {0,2,4}. [ |

The groups Z and Z, are cyclic groups. The elements 1 and —1 are
generators for Z. We can certainly generate Z, with 1 although there may
be other generators of Z,, as in the case of Zg.

Example 4. The group of units, U(9), in Zg is a cyclic group. As a set,
U(9) is {1,2,4,5,7,8}. The element 2 is a generator for U(9) since

2l=2 22=14

2%=8 2=

=5 20=1
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Example 5. Not every group is a cyclic group. Consider the symmetry
group of an equilateral triangle S3. The multiplication table for this group
is Table 3.2. The subgroups of S5 are shown in Figure 4.1. Notice that every
subgroup is cyclic; however, no single element generates the entire group.

|

TS

{id, p1,p2}  {id,n}  {id, e} {id, pu3}

\\//

{ud}
Figure 4.1. Subgroups of S3

Theorem 4.2 Fvery cyclic group is abelian.

PROOF. Let G be a cyclic group and a € G be a generator for G. If g and h
are in (G, then they can be written as powers of a, say ¢ = a” and h = a°.

Since

_ s _ r+ts _ _s+tr _ s 1 __
gh=d"a’=a""=a°"" =a’a" = hg,

G is abelian. O

Subgroups of Cyclic Groups

We can ask some interesting questions about cyclic subgroups of a group
and subgroups of a cyclic group. If G is a group, which subgroups of G are
cyclic? If G is a cyclic group, what type of subgroups does G possess?

Theorem 4.3 Fvery subgroup of a cyclic group is cyclic.

PROOF. The main tools used in this proof are the division algorithm and
the Principle of Well-Ordering. Let G be a cyclic group generated by a and
suppose that H is a subgroup of G. If H = {e}, then trivially H is cyclic.
Suppose that H contains some other element g distinct from the identity.
Then g can be written as a™ for some integer n. We can assume that n > 0.
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Let m be the smallest natural number such that ™ € H. Such an m exists
by the Principle of Well-Ordering.

We claim that h = a™ is a generator for H. We must show that every
h' € H can be written as a power of h. Since h' € H and H is a subgroup of
G, I/ = aF for some positive integer k. Using the division algorithm, we can
find numbers ¢ and r such that £ = mq + r where 0 < r < m; hence,

a¥ = @M = (a™)%" = hia".

So a" = a*h 9. Since a* and h~7 are in H, a” must also be in H. However,
m was the smallest positive number such that a™ was in H; consequently,
r =0 and so k = mgq. Therefore,

B =a* =a™ = hl
and H is generated by h. O
Corollary 4.4 The subgroups of Z. are exactly nZ forn =0,1,2,....

Proposition 4.5 Let G be a cyclic group of order n and suppose that a is
a generator for G. Then a* = e if and only if n divides k.

PRrOOF. First suppose that a® = e. By the division algorithm, k = ng +r
where 0 < r < n; hence,

e =a" = a1t

=a"a" =ed" =ad.
Since the smallest positive integer m such that a” = e is n, r = 0.
Conversely, if n divides k, then k = ns for some integer s. Consequently,

g

Theorem 4.6 Let G be a cyclic group of order n and suppose that a € G
is a generator of the group. If b = a¥, then the order of b is n/d, where
d = ged(k,n).

PRrROOF. We wish to find the smallest integer m such that e = b™ = a*™.
By Proposition 4.5, this is the smallest integer m such that n divides km or,
equivalently, n/d divides m(k/d). Since d is the greatest common divisor of
n and k, n/d and k/d are relatively prime. Hence, for n/d to divide m(k/d)
it must divide m. The smallest such m is n/d. O
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Corollary 4.7 The generators of Zy are the integers v such that 1 <r <n
and ged(r,n) = 1.

Example 6. Let us examine the group Z¢. The numbers 1, 3, 5, 7, 9, 11,
13, and 15 are the elements of Zjg that are relatively prime to 16. Each of
these elements generates Zi4. For example,

1-9=9 2.:9=2 3:9=11
4.-9=4 5:-9=13 6-9=6
7-9=15 8-9=28 9-9=1

10-9=10 11-9=3 12.9=12
13-9=5 14.9=14 15-9="17.

|
4.2 Multiplicative Group of Complex Numbers
The complex numbers are defined as
C={a+Vbi:a,beR},
where 2 = —1. If 2 = a + bi, then a is the real part of z and b is the

imaginary part of z.
To add two complex numbers z = a + bi and w = ¢ + di, we just add the
corresponding real and imaginary parts:

z4+w=(a+bi)+ (c+di)=(a+c)+ (b+d)i.

Remembering that i2 = —1, we multiply complex numbers just like polyno-
mials. The product of z and w is

(a+ bi)(c+ di) = ac + bdi® + adi + bei = (ac — bd) + (ad + be)i.

Every nonzero complex number z = a + bi has a multiplicative inverse;
that is, there exists a 27! € C* such that zz7! = 27'2 = 1. If 2 = a + bi,

then '
4, a—bi

R
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The complex conjugate of a complex number z = a + bt is defined to be
Z = a — bi. The absolute value or modulus of z = a+ bi is |z| = Va? + b?.

Example 7. Let 2z =24 37 and w =1 — 2¢. Then

stw=(2+3i)+(1—2i) =3+

and
zw=(2+3i)(1 —2i) =8 —1.
Also,
1:3_31'
13 13
|z| = V13
zZ=2—-3i
[ |
Y
21 =24+ 31
z3=—3+2i-
0 T
'22:1—2i

Figure 4.2. Rectangular coordinates of a complex number

There are several ways of graphically representing complex numbers. We
can represent a complex number z = a + bi as an ordered pair on the zy
plane where a is the x (or real) coordinate and b is the y (or imaginary)
coordinate. This is called the rectangular or Cartesian representation.
The rectangular representations of z; =2+ 3¢, 20 =1 —2¢, and 23 = —3+ 2
are depicted in Figure 4.2.

Nonzero complex numbers can also be represented using polar coordi-
nates. To specify any nonzero point on the plane, it suffices to give an angle
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a—+ b

Figure 4.3. Polar coordinates of a complex number

0 from the positive x axis in the counterclockwise direction and a distance r
from the origin, as in Figure 4.3. We can see that

z=ua+bi=r(cosh+isinh).

Hence,
r=|z| = Va?+ b2
and
a=1rcosf
b=rsinb.

We sometimes abbreviate r(cos@ + isinf) as rcisd. To assure that the
representation of z is well-defined, we also require that 0° < 6 < 360°. If the
measurement is in radians, then 0 < 6 < 27.

Example 8. Suppose that z = 2¢is60°. Then
a=2cos60° =1

and
b = 2sin60° = V/3.

Hence, the rectangular representation is z = 1 + /3.
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Conversely, if we are given a rectangular representation of a complex
number, it is often useful to know the number’s polar representation. If

z:S\f—Sﬁi, then
r=+va2+b=v36=6

and )
0 = arctan (a> = arctan(—1) = 315°,

s0 3v/2 — 327 = 6 ¢is 315°. [ ]

The polar representation of a complex number makes it easy to find prod-
ucts and powers of complex numbers. The proof of the following proposition
is straightforward and is left as an exercise.

Proposition 4.8 Let z = rcisf and w = scis¢ be two nonzero complex
numbers. Then
zw = rscis(f + ¢).

Example 9. If z = 3 cis(7/3) and w = 2cis(7/6), then zw = 6 cis(w/2) = 6i.
|

Theorem 4.9 (DeMoivre) Let z = rcisf be a nonzero complex number.
Then
[rcisf]" = r" cis(nf)

form=12,....

Proor. We will use induction on n. For n = 1 the theorem is trivial.
Assume that the theorem is true for all k£ such that 1 < k£ <n. Then

2V =y

= r"(cosnf + isinnb)r(cos f + isinf)

= "1 {(cos nf cos § — sinnf sin @) + i(sin nd cos § + cos nd sin 6)]
= " cos(nf + 0) + isin(nd + 6))

= " cos(n + 1) + isin(n + 1)4).
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O

Example 10. Suppose that z = 1 + i and we wish to compute z'°. Rather
than computing (1 + i)!° directly, it is much easier to switch to polar
coordinates and calculate 219 using DeMoivre’s Theorem:

Z].O — (1 + ,L')].O

(a())"

The Circle Group and the Roots of Unity

The multiplicative group of the complex numbers, C*, possesses some inter-
esting subgroups. Whereas Q* and R* have no interesting subgroups of finite
order, C* has many. We first consider the circle group,

T={zeC:|z|=1}.
The following proposition is a direct result of Proposition 4.8.
Proposition 4.10 The circle group is a subgroup of C*.

Although the circle group has infinite order, it has many interesting finite
subgroups. Suppose that H = {1, —1,i,—:}. Then H is a subgroup of the
circle group. Also, 1, —1, ¢, and —i are exactly those complex numbers that
satisfy the equation z* = 1. The complex numbers satisfying the equation
2™ =1 are called the nth roots of unity.

Theorem 4.11 If 2™ = 1, then the nth roots of unity are

. (Qkﬂ')
z=cis | — |,
n

where k =0,1,...,n — 1. Furthermore, the nth roots of unity form a cyclic
subgroup of T of order n.
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Proor. By DeMoivre’s Theorem,

2k
2" = cis <nnﬂ> = cis(2km) = 1.

The z’s are distinct since the numbers 2k7/n are all distinct and are greater
than or equal to 0 but less than 27. The fact that these are all of the roots
of the equation z™ = 1 follows from from Corollary 17.6, which states that a
polynomial of degree n can have at most n roots. We will leave the proof
that the nth roots of unity form a cyclic subgroup of T as an exercise. [l

A generator for the group of the nth roots of unity is called a primitive
nth root of unity.

Example 11. The 8th roots of unity can be represented as eight equally
spaced points on the unit circle (Figure 4.4). The primitive 8th roots of
unity are

gt
w3:_ﬁ+£i
2 2
s__V2_ V2
W = B 22
. V22
w =-——-—=1
2 2

4.3 The Method of Repeated Squares'

Computing large powers can be very time-consuming. Just as anyone can
compute 22 or 28, everyone knows how to compute

21000000

2

However, such numbers are so large that we do not want to attempt the
calculations; moreover, past a certain point the computations would not be
feasible even if we had every computer in the world at our disposal. Even
writing down the decimal representation of a very large number may not be

1The results in this section are needed only in Chapter 7.
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S

Figure 4.4. 8th roots of unity

reasonable. It could be thousands or even millions of digits long. However, if
we could compute something like 237398332 (mod 46389), we could very easily
write the result down since it would be a number between 0 and 46,388. If
we want to compute powers modulo n quickly and efficiently, we will have to
be clever.

The first thing to notice is that any number a can be written as the sum
of distinct powers of 2; that is, we can write

a:2k1+2k2+,,,+2kn’

where k1 < ko < .-+ < k,. This is just the binary representation of a.
For example, the binary representation of 57 is 111001, since we can write
57 =20 4923 424 4 95,

The laws of exponents still work in Z,; that is, if b = a*

(mod n) and
c¢=a? (mod n), then bc = a®™¥ (mod n). We can compute a?* (mod n) in
k multiplications by computing

a?’ (mod n)

a® (mod n)

o (mod n).
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Each step involves squaring the answer obtained in the previous step, dividing
by n, and taking the remainder.

Example 12. We will compute 2713?! (mod 481). Notice that
321 = 20 4 26 4 28,
hence, computing 27132! (mod 481) is the same as computing
2712422 = 9712° . 2712° . 271" (mod 481).
So it will suffice to compute 2712° (mod 481) where i = 0,6,8. It is very
easy to see that
2712 = 73,441 (mod 481)
=329 (mod 481).
We can square this result to obtain a value for 2712° (mod 481):
2717 = (2712)2  (mod 481)
= (329)? (mod 481)
=1,082,411 (mod 481)
=16 (mod 481).

2n+1

We are using the fact that (a®")? = a®>?" = a (mod n). Continuing, we

can calculate

271 =419 (mod 481)
and
2712 =16 (mod 481).
Therefore,
27132 = 27124242 (10d 481)
=271%".2712° . 2717 (mod 481)
=271-419-16 (mod 481)
=1,816,784 (mod 481)
=47 (mod 481).
u

The method of repeated squares will prove to be a very useful tool when
we explore RSA cryptography in Chapter 7. To encode and decode messages
in a reasonable manner under this scheme, it is necessary to be able to
quickly compute large powers of integers mod n.
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Exercises

1. Prove or disprove each of the following statements.

(a
(b

U(8) is cyclic.

All of the generators of Zgy are prime.
(c
(d

(e) A group with a finite number of subgroups is finite.

Q is cyclic.

)
)
)
) If every proper subgroup of a group G is cyclic, then G is a cyclic group.

2. Find the order of each of the following elements.

(a) 5 € Zno (C) \/g € R* (e) 72 in Zoyg
(b) V3€ER (d) —ieC* (f) 312 in Zyn

3. List all of the elements in each of the following subgroups.

The subgroup of Z generated by 7
The subgroup of Zs4 generated by 15
All subgroups of Z1»

All subgroups of Zgg

All subgroups of Z13

The subgroup generated by 3 in U(20)

The subgroup generated by 5 in U(18)

The subgroup of R* generated by 7

The subgroup of C* generated by ¢ where i2 = —1

)

)

)

)

)

) All subgroups of Zs
)

)

)

)

) The subgroup of C* generated by 2i
)

The subgroup of C* generated by (1 +414)/v/2
(m) The subgroup of C* generated by (1 + v/31)/2

4. Find the subgroups of GLy(R) generated by each of the following matrices.
@ (5 0) @ () o (4 )
o (5 ') @ (5 ) o (Y i)

5. Find the order of every element in Zsg.

6. Find the order of every element in the symmetry group of the square, Dy.
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10.

11.
12.

13.

14.

15.

16.

17.

18.

CHAPTER 4 CYCLIC GROUPS

What are all of the cyclic subgroups of the quaternion group, Qg?
List all of the cyclic subgroups of U(30).
List every generator of each subgroup of order 8 in Z3s.

Wy

Find all elements of finite order in each of the following groups. Here the “x
indicates the set with zero removed.

(a) Z (b) @ (c) R

If a>* = e in a group G, what are the possible orders of a?

Find a cyclic group with exactly one generator. Can you find cyclic groups
with exactly two generators? Four generators? How about n generators?

For n < 20, which groups U(n) are cyclic? Make a conjecture as to what is
true in general. Can you prove your conjecture?

Let
0 1 0 -1
A= (_1 O) and B = (1 _1)
be elements in GLy(R). Show that A and B have finite orders but AB does

not.

Evaluate each of the following.

(a) (3—2i)+ (5i—6) (d) (9—14)(9—1)
(b) (4 —5i) — (4i — 4) (e) i
(¢) (5 — 4i)(T + 2i) () (1+14)+ (1+1)

Convert the following complex numbers to the form a + bi.

(a) 2cis(7/6) (¢) 3cis(m)
(b) 5cis(97/4) (d) cis(7mw/4)/2

Change the following complex numbers to polar representation.

(a) 1—14 (c) 2421 (e) —3i
(b) —5 (d) V3 +i (f) 2i+2V3

Calculate each of the following expressions.
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19.

20.

21.

22.

23.

24.
25.

26.
27.

28.

29.
30.

31.

L)t (@) ((1-)/2)"
(6) (~v2-V2i)®
~i)!0 () (-2+2)7°

(a) [z = [7] (d) |2+ w] < [z] + [w]
(b) 2% = || (€) [z —w| > ]z] - [w]]
(c) 27t =7Z/|2? () [zw] = |2[[w|

List and graph the 6th roots of unity. What are the generators of this group?
What are the primitive 6th roots of unity?

List and graph the 5th roots of unity. What are the generators of this group?
What are the primitive 5th roots of unity?

Calculate each of the following.

(a) 2923171 (mod 582) (c) 20719521 (mod 4724)
(b) 2557341 (mod 5681) (d) 971321 (mod 765)

Let a,b € G. Prove the following statements.

(a) The order of a is the same as the order of a=!.
(b) For all g € G, |a| = g7 ag|.
(¢) The order of ab is the same as the order of ba.
Let p and ¢ be distinct primes. How many generators does Z,q have?

Let p be prime and r be a positive integer. How many generators does Z,,-
have?

Prove that Z, has no nontrivial subgroups if p is prime.

If g and h have orders 15 and 16 respectively in a group G, what is the order
of (g) N (h)?

Let a be an element in a group G. What is a generator for the subgroup
(@™) N {a™)?

Prove that Z,, has an even number of generators for n > 2.

Suppose that G is a group and let a, b € G. Prove that if |a| = m and |b| = n
with ged(m,n) = 1, then (a) N (b) = {e}.

Let G be an abelian group. Show that the elements of finite order in G form
a subgroup. This subgroup is called the torsion subgroup of G.
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32

33.

34.

35.
36.

37.
38.

39.
40.

41.
42.
43.
44.
45.
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. Let G be a finite cyclic group of order n generated by z. Show that if y = z*
where ged(k,n) = 1, then y must be a generator of G.

If G is an abelian group that contains a pair of cyclic subgroups of order 2,
show that G must contain a subgroup of order 4. Does this subgroup have to
be cyclic?

Let G be an abelian group of order pg where ged(p,q) = 1. If G contains
elements a and b of order p and g respectively, then show that G is cyclic.

Prove that the subgroups of Z are exactly nZ for n =0,1,2,....

Prove that the generators of Z,, are the integers r such that 1 < r < n and
ged(r,n) = 1.

Prove that if G has no proper nontrivial subgroups, then G is a cyclic group.

Prove that the order of an element in a cyclic group G must divide the order
of the group.

For what integers n is —1 an nth root of unity?

If z=r(cosf + isinf) and w = s(cos¢ + isin¢) are two nonzero complex
numbers, show that

zw = rs[cos(0 4+ ¢) + isin(f + @)].

Prove that the circle group is a subgroup of C*.

Prove that the nth roots of unity form a cyclic subgroup of T of order n.
Prove that ™ =1 and o™ = 1 if and only if a? = 1 for d = ged(m,n).
Let z € C*. If |z| # 1, prove that the order of z is infinite.

Let z = cosf + isinf be in T where § € Q. Prove that the order of z is
infinite.

Programming Exercises

1.

Write a computer program that will write any decimal number as the sum
of distinct powers of 2. What is the largest integer that your program will
handle?

. Write a computer program to calculate a® (mod n) by the method of repeated
squares. What are the largest values of n and x that your program will accept?
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Sage Sage support for cyclic groups is a little spotty — but this situation
could change soon.
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Permutation Groups

Permutation groups are central to the study of geometric symmetries and to
Galois theory, the study of finding solutions of polynomial equations. They
also provide abundant examples of nonabelian groups.

Let us recall for a moment the symmetries of the equilateral triangle
NABC from Chapter 3. The symmetries actually consist of permutations
of the three vertices, where a permutation of the set S = {A, B,C} is a
one-to-one and onto map 7 : S — S. The three vertices have the following

six permutations.
A C A B C
C B B C A
B
A

(358
cs) 5% (Gio)

(G 5)
(5o %)

We have used the array
to denote the permutation that sends A to B, B to C, and C to A. That is,

D =W

A— B
B—C
C— A

The symmetries of a triangle form a group. In this chapter we will study
groups of this type.

76
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5.1 Definitions and Notation

In general, the permutations of a set X form a group Sx. If X is a finite
set, we can assume X = {1,2,...,n}. In this case we write S,, instead of
Sx. The following theorem says that .S, is a group. We call this group the
symmetric group on n letters.

Theorem 5.1 The symmetric group on n letters, Sy, is a group with n!
elements, where the binary operation is the composition of maps.

PROOF. The identity of S, is just the identity map that sends 1 to 1, 2 to
2,...,nton. If f:8, =5, is a permutation, then f~! exists, since f is
one-to-one and onto; hence, every permutation has an inverse. Composition
of maps is associative, which makes the group operation associative. We
leave the proof that |S,| = n! as an exercise. O

A subgroup of S, is called a permutation group.

Example 1. Consider the subgroup G of S5 consisting of the identity
permutation id and the permutations

1
7= 1
N
= \3
1
=13

The following table tells us how to multiply elements in the permutation
group G.

NN NN NN

_ W W W oW

U s O
o2

olid o T W
id|id o T u
oo id p T
Tl T p oid o
Wl pw T o id

Remark. Though it is natural to multiply elements in a group from left to
right, functions are composed from right to left. Let o and 7 be permutations
on aset X. To compose o and 7 as functions, we calculate (co7)(z) = o(7(x)).
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That is, we do 7 first, then o. There are several ways to approach this
inconsistency. We will adopt the convention of multiplying permutations
right to left. To compute o1, do T first and then o. That is, by o7(x) we
mean o(7(x)). (Another way of solving this problem would be to write
functions on the right; that is, instead of writing o(x), we could write (x)o.
We could also multiply permutations left to right to agree with the usual
way of multiplying elements in a group. Certainly all of these methods have
been used.

Example 2. Permutation multiplication is not usually commutative. Let

(1 2 4
7= \4 1 3

3

9
(12 3 4
T=\2 1 4 3/)°

Then
/(12 3 4
97=\1 4 3 2)°
but
(12 3 4
TO7\3 21 4)°

Cycle Notation

The notation that we have used to represent permutations up to this point is
cumbersome, to say the least. To work effectively with permutation groups,
we need a more streamlined method of writing down and manipulating
permutations.

A permutation o € Sx is a cycle of length k if there exist elements
ai,as,...,ar € X such that
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and o(z) = z for all other elements = € X. We will write (a1, ag, ..., ax) to
denote the cycle o. Cycles are the building blocks of all permutations.

Example 3. The permutation

1 2 3 45 6 7
7= (6 351 4 2 7) = (162354)
is a cycle of length 6, whereas
1 2 3 456
= (1 4235 6> = (243

is a cycle of length 3.
Not every permutation is a cycle. Consider the permutation

1 2 3 4 5 6
(2 L1 a 5>_(1243)(56).

This permutation actually contains a cycle of length 2 and a cycle of length 4.
|

Example 4. It is very easy to compute products of cycles. Suppose that
o= (1352) and T = (256).
If we think of ¢ as
13, 3 — 9, 95— 2, 21,

and 7 as
2+ 5, 5 6, 61— 2,

then for o7 remembering that we apply 7 first and then o, it must be the
case that
13, 35, 5 — 6, 6—2—1,

or o7 = (1356). If p = (1634), then ou = (1652)(34). |

Two cycles in Sx, 0 = (a1,a2,...,a;) and 7 = (b1, ba,...,b;), are dis-
joint if a; # b; for all ¢ and j.

Example 5. The cycles (135) and (27) are disjoint; however, the cycles
(135) and (347) are not. Calculating their products, we find that

(135)(27) = (135)(27)
(135)(347) = (13475).



80 CHAPTER 5 PERMUTATION GROUPS

The product of two cycles that are not disjoint may reduce to something less
complicated; the product of disjoint cycles cannot be simplified. ]

Proposition 5.2 Let o and T be two disjoint cycles in Sx. Then o = 70.

PROOF. Let 0 = (a1,as9,...,a;) and 7 = (b1, ba,...,b). We must show
that o7(z) = 7o(z) for all x € X. If x is neither in {ay,a2,...,a;} nor
{b1,ba,...,b;}, then both o and 7 fix . That is, o(z) = = and 7(x) = =.
Hence,

Do not forget that we are multiplying permutations right to left, which is
the opposite of the order in which we usually multiply group elements. Now
suppose that = € {a1,az,...,a;}. Then 0(a;) = a(; mod k)+1; that is,

al —r as

ag —r as

Ap—1 — ak

ar — aq.
However, 7(a;) = a; since o and 7 are disjoint. Therefore,

o1(a;) = o(7(a;))

= o(a;)

= Q(; mod k)+1
= 7'(Cl(z‘ mod k)+1)
= 7(o(as))

= 10(a;).
Similarly, if = € {b1,bs,...,b}, then o and 7 also commute. d

Theorem 5.3 FEvery permutation in S, can be written as the product of
disjoint cycles.

PROOF. We can assume that X = {1,2,...,n}. Let o0 € Sy, and define X;
to be {o(1),02(1),...}. The set X is finite since X is finite. Now let i be
the first integer in X that is not in X; and define Xs by {o(i),%(3),...}.
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Again, X5 is a finite set. Continuing in this manner, we can define finite
disjoint sets X3, X4,.... Since X is a finite set, we are guaranteed that this
process will end and there will be only a finite number of these sets, say r.
If o; is the cycle defined by

o= {17 1ER

then o = 0109 -+ - 0. Since the sets X1, Xo,..., X, are disjoint, the cycles
01,09,...,0, must also be disjoint. O

Example 6. Let

/123456
77\6 4315 2
(1 2 3 45 6
"T“3 2156 4
Using cycle notation, we can write
o = (1624)
T = (13)(456)
or = (136)(245)
To = (143)(256).

|
Remark. From this point forward we will find it convenient to use cycle
notation to represent permutations. When using cycle notation, we often
denote the identity permutation by (1).

Transpositions

The simplest permutation is a cycle of length 2. Such cycles are called
transpositions. Since

(a1,a2,...,a,) = (a1ay)(a1an-1) - - - (a1a3)(a1az),

any cycle can be written as the product of transpositions, leading to the
following proposition.

Proposition 5.4 Any permutation of a finite set containing at least two
elements can be written as the product of transpositions.
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Example 7. Consider the permutation
(16)(253) = (16)(23)(25) = (16)(45)(23)(45)(25).

As we can see, there is no unique way to represent permutation as the product
of transpositions. For instance, we can write the identity permutation as
(12)(12), as (13)(24)(13)(24), and in many other ways. However, as it turns
out, no permutation can be written as the product of both an even number
of transpositions and an odd number of transpositions. For instance, we
could represent the permutation (16) by

(23)(16)(23)

or by
(35)(16)(13)(16)(13)(35)(56),

but (16) will always be the product of an odd number of transpositions. W

Lemma 5.5 If the identity is written as the product of r transpositions,
id="Ti7T0" " Tp,

then r is an even number.

Proor. We will employ induction on r. A transposition cannot be the
identity; hence, r > 1. If » = 2, then we are done. Suppose that r > 2. In
this case the product of the last two transpositions, 7,._17., must be one of
the following cases:

(ab)(ab) = id
(be)(ab) = (ac)(be
(cd)(ab) = (ab)(cd)
(ac)(ab) = (ab)(be),

where a, b, ¢, and d are distinct.
The first equation simply says that a transposition is its own inverse. If
this case occurs, delete 7._17, from the product to obtain

id="T1Ty* Tr_3Tr_2.

By induction r — 2 is even; hence, » must be even.
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In each of the other three cases, we can replace 7,._17, with the right-hand
side of the corresponding equation to obtain a new product of r transpositions
for the identity. In this new product the last occurrence of a will be in the
next-to-the-last transposition. We can continue this process with 7,_o7,._
to obtain either a product of » — 2 transpositions or a new product of r
transpositions where the last occurrence of a is in 7,_o. If the identity is the
product of r — 2 transpositions, then again we are done, by our induction
hypothesis; otherwise, we will repeat the procedure with 7, _g7._o.

At some point either we will have two adjacent, identical transpositions
canceling each other out or a will be shuffled so that it will appear only in
the first transposition. However, the latter case cannot occur, because the
identity would not fix a in this instance. Therefore, the identity permutation
must be the product of r — 2 transpositions and, again by our induction
hypothesis, we are done. O

Theorem 5.6 If a permutation o can be expressed as the product of an even
number of transpositions, then any other product of transpositions equaling
o must also contain an even number of transpositions. Similarly, if o can
be expressed as the product of an odd number of transpositions, then any
other product of transpositions equaling o must also contain an odd number
of transpositions.

PROOF. Suppose that
O =0102" O =TIT2" " Tp,

where m is even. We must show that n is also an even number. The inverse
of 071 is o, -+ - 01. Since

td=00m - 01 =T TpOm 01,

n must be even by Lemma 5.5. The proof for the case in which ¢ can be
expressed as an odd number of transpositions is left as an exercise. O

In light of Theorem 5.6, we define a permutation to be even if it can be
expressed as an even number of transpositions and odd if it can be expressed
as an odd number of transpositions.

The Alternating Groups

One of the most important subgroups of S, is the set of all even permutations,
A,. The group A, is called the alternating group on n letters.
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Theorem 5.7 The set A, is a subgroup of S,.

PROOF. Since the product of two even permutations must also be an even
permutation, A, is closed. The identity is an even permutation and therefore
is in A,,. If o is an even permutation, then

0‘:0‘10‘2...0-7.7

where o; is a transposition and r is even. Since the inverse of any transposition

is itself,

o= OpOp_1++"01

is also in A,,. O

Proposition 5.8 The number of even permutations in S,, n > 2, is equal
to the number of odd permutations; hence, the order of Ay, is n!/2.

PRrROOF. Let A, be the set of even permutations in S,, and B,, be the set of
odd permutations. If we can show that there is a bijection between these
sets, they must contain the same number of elements. Fix a transposition o
in S,. Since n > 2, such a o exists. Define

Ao 1 A, — B,

by

Ao (T) =0T

Suppose that A\, (7) = Ag(p). Then o7 = op and so
r=0 ltor = 0710;1 = L.

Therefore, A, is one-to-one. We will leave the proof that A\, is surjective to
the reader. O

Example 8. The group Ay is the subgroup of S4 consisting of even permu-
tations. There are twelve elements in Ay:

(1) (12)(34) (13)(24) (14)(23)
(123) (132) (124) (142)
(134) (143) (234) (243).

One of the end-of-chapter exercises will be to write down all the subgroups
of A4. You will find that there is no subgroup of order 6. Does this surprise
you? [ |
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[ ]  Historical Note |

Lagrange first thought of permutations as functions from a set to itself, but it was
Cauchy who developed the basic theorems and notation for permutations. He was
the first to use cycle notation. Augustin-Louis Cauchy (1789-1857) was born in
Paris at the height of the French Revolution. His family soon left Paris for the
village of Arcueil to escape the Reign of Terror. One of the family’s neighbors there
was Pierre-Simon Laplace (1749-1827), who encouraged him to seek a career in
mathematics. Cauchy began his career as a mathematician by solving a problem
in geometry given to him by Lagrange. Over 800 papers were written by Cauchy
on such diverse topics as differential equations, finite groups, applied mathematics,
and complex analysis. He was one of the mathematicians responsible for making
calculus rigorous. Perhaps more theorems and concepts in mathematics have the
name Cauchy attached to them than that of any other mathematician. [ ]

Figure 5.1. A regular n-gon

5.2 Dihedral Groups

Another special type of permutation group is the dihedral group. Recall the
symmetry group of an equilateral triangle in Chapter 3. Such groups consist
of the rigid motions of a regular n-sided polygon or n-gon. For n = 3,4,...,
we define the nth dihedral group to be the group of rigid motions of a
regular n-gon. We will denote this group by D,,. We can number the vertices
of a regular n-gon by 1,2,... . n (Figure 5.1). Notice that there are exactly
n choices to replace the first vertex. If we replace the first vertex by k, then
the second vertex must be replaced either by vertex k 4 1 or by vertex k — 1;
hence, there are 2n possible rigid motions of the n-gon. We summarize these
results in the following theorem.
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Theorem 5.9 The dihedral group, Dy, is a subgroup of S, of order 2n.

rotation
_—

Figure 5.2. Rotations and reflections of a regular n-gon

Theorem 5.10 The group D,, n > 3, consists of all products of the two
elements r and s, satisfying the relations

r'" =1id
s =id
srs=r""L

PROOF. The possible motions of a regular n-gon are either reflections or
rotations (Figure 5.2). There are exactly n possible rotations:
360° 360° 360°
id, —,2 - yoey(m—1)- .
n

n n

We will denote the rotation 360°/n by r. The rotation r generates all of the
other rotations. That is,

360°
P =k .
n
Label the n reflections s1, s, ..., s,, where s; is the reflection that leaves

vertex k fixed. There are two cases of reflection, depending on whether n
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_

1 1
6 2 2 6
5 3 3 5
4 4
1 1
5.2 2.5
R —
4 3 3 4

Figure 5.3. Types of reflections of a regular n-gon

is even or odd. If there are an even number of vertices, then 2 vertices are
left fixed by a reflection. If there are an odd number of vertices, then only
a single vertex is left fixed by a reflection (Figure 5.3). In either case, the
order of sj, is two. Let s = s;. Then s2 = id and r™ = id. Since any rigid
motion t of the n-gon replaces the first vertex by the vertex k, the second
vertex must be replaced by either k + 1 or by k — 1. If the second vertex is
replaced by k + 1, then ¢t = r*~1. If it is replaced by k — 1, then ¢ = rF~1s.
Hence, r and s generate D,,; that is, D,, consists of all finite products of r

and s. We will leave the proof that srs = r~! as an exercise. O
N ! %
1 : — 2
AY | 7/

N | 7
. ! .

N | 7’

A : 7/

—_F - - - - - - = |74 — |-
/‘\

// | \\

7 ! N
’ ! N
7/ : A
e | AY
’ I N
4 ‘ 3

Figure 5.4. The group D,
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Example 9. The group of rigid motions of a square, Dy, consists of eight
elements. With the vertices numbered 1, 2, 3, 4 (Figure 5.4), the rotations
are

and the reflections are

S1 = (24)
sg = (13).

The order of Dy is 8. The remaining two elements are

rs1 = (12)(34)
351 = (14)(23).

Figure 5.5. The motion group of a cube

The Motion Group of a Cube

We can investigate the groups of rigid motions of geometric objects other
than a regular n-sided polygon to obtain interesting examples of permutation
groups. Let us consider the group of rigid motions of a cube. One of the first
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questions that we can ask about this group is “what is its order?” A cube
has 6 sides. If a particular side is facing upward, then there are four possible
rotations of the cube that will preserve the upward-facing side. Hence, the
order of the group is 6-4 = 24. We have just proved the following proposition.

Proposition 5.11 The group of rigid motions of a cube contains 24 ele-
ments.

Theorem 5.12 The group of rigid motions of a cube is Sy.

Figure 5.6. Transpositions in the motion group of a cube

ProOF. From Proposition 5.11, we already know that the motion group of
the cube has 24 elements, the same number of elements as there are in Sy.
There are exactly four diagonals in the cube. If we label these diagonals 1,
2, 3, and 4, we must show that the motion group of the cube will give us
any permutation of the diagonals (Figure 5.5). If we can obtain all of these
permutations, then Sy and the group of rigid motions of the cube must be
the same. To obtain a transposition we can rotate the cube 180° about the
axis joining the midpoints of opposite edges (Figure 5.6). There are six such
axes, giving all transpositions in Sy. Since every element in Sy is the product
of a finite number of transpositions, the motion group of a cube must be Sy.

O

Exercises

1. Write the following permutations in cycle notation.
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(a) (c)
1 2 3 4 5 1 2 3 45
(2 4 1 5 3) (3 5 1 4 2)

v 1 2 3 45 @ 1 2 3 45
(4 2 51 3) <1 4 3 2 5)

2. Compute each of the following.

(a) (1345)(234) (i) (123)(45)(1254)

(b) (12)(1253) (j) (1254)100

(c) (143)(23)(24) (k) [(1254)]

(d) (1423)(34)(56)(1324) (1) 1(1254)%]

(e) (1254)(13)(25) (m) (12)7*

(f) (1254)(13)(25)? (n) (12537)~*

(g) (1254)71(123)(45)(1254) (0) [(12)(34)(12)(47)] "

(h) (1254)%(123)(45) (p) [(1235)(467)]*

3. Express the following permutations as products of transpositions and identify
them as even or odd.

(a) (14356) (d) (17254)(1423)(154632)
(b) (156)(234)
(c) (1426)(142) (e) (142637)

4. Find (ay,az,...,a,)" !
5. List all of the subgroups of S;. Find each of the following sets.
(a) {c€84:0(1) =3}
(b) {o€84:0(2)=2}
(c) {s €84:0(1) =3 and o(2) =2}
Are any of these sets subgroups of S4?
Find all of the subgroups in A4. What is the order of each subgroup?
Find all possible orders of elements in S; and A7.

Show that A1y contains an element of order 15.

© ® N o

Does Ag contain an element of order 267

10. Find an element of largest order in S, for n = 3,...,10.
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11.
12.

13.

14.

15.

16.

17.
18.
19.
20.

21.

22.

23.
24.
25.

26.

27.

28.

What are the possible cycle structures of elements of A5? What about Ag?

Let 0 € S,, have order n. Show that for all integers ¢ and j, 0! = o7 if and
only if i = j (mod n).

Let 0 =01 -0, € Sy, be the product of disjoint cycles. Prove that the order
of o is the least common multiple of the lengths of the cycles o1,...,0.m,.

Using cycle notation, list the elements in Ds. What are r and s? Write every
element as a product of r and s.

If the diagonals of a cube are labeled as Figure 5.5, to which motion of
the cube does the permutation (12)(34) correspond? What about the other
permutations of the diagonals?

Find the group of rigid motions of a tetrahedron. Show that this is the same
group as Ay.

Prove that S, is nonabelian for n > 3.
Show that A,, is nonabelian for n > 4.
Prove that D,, is nonabelian for n > 3.

Let 0 € S,,. Prove that ¢ can be written as the product of at most n — 1
transpositions.

Let 0 € S,. If 0 is not a cycle, prove that o can be written as the product of
at most n — 2 transpositions.

If 0 can be expressed as an odd number of transpositions, show that any
other product of transpositions equaling ¢ must also be odd.

If o is a cycle of odd length, prove that o2 is also a cycle.
Show that a 3-cycle is an even permutation.

Prove that in A,, with n > 3, any permutation is a product of cycles of
length 3.

Prove that any element in S, can be written as a finite product of the following
permutations.

(a) (12),(13),...,(1n)
(b) (12),(23),...,(n—1,n)
(c) (12),(12...n)

Let G be a group and define a map A, : G — G by A;(a) = ga. Prove that
Ag is a permutation of G.

Prove that there exist n! permutations of a set containing n elements.
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29. Recall that the center of a group G is
Z(G)={g9 € G:gx=uxgforall x € G}.
Find the center of Dg. What about the center of D1¢? What is the center of
D,?
30. Let 7 = (a1, as,...,ax) be a cycle of length k.
(a) Prove that if ¢ is any permutation, then

oro t = (0(ar),0(az),...,o(ax))

is a cycle of length k.

(b) Let p be a cycle of length k. Prove that there is a permutation o such
that ot~ ! = p.

31. For v and 3 in S,,, define a ~ f3 if there exists an o € S, such that caoc™! = 3.
Show that ~ is an equivalence relation on S,,.

32. Let 0 € Sx. If 0" (x) =y, we will say that z ~ y.

(a) Show that ~ is an equivalence relation on X.
(b) If 0 € A, and 7 € S,,, show that 77107 € 4,.
(¢) Define the orbit of z € X under o € Sx to be the set

Ovo ={y:a~y}

Compute the orbits of «, 3, where

a = (1254)
B = (123)(45)
v = (13)(25).

(d) If Oy 0 NOy,» # 0, prove that O, , = O, ,. The orbits under a permu-
tation o are the equivalence classes corresponding to the equivalence
relation ~.

(e) A subgroup H of Sx is transitive if for every z,y € X, there exists
a o € H such that o(z) = y. Prove that (o) is transitive if and only if
Oy = X for some z € X.

33. Let a € S, for n > 3. If a8 = pa for all § € S, prove that a must be the
identity permutation; hence, the center of S,, is the trivial subgroup.

34. If o is even, prove that a~! is also even. Does a corresponding result hold if
« is odd?

35. Show that a~ '8~ 'af is even for a, 8 € Sp,.
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36. Let r and s be the elements in D,, described in Theorem 5.10.

(a) Show that srs =r~1.
(b) Show that r*s = sr=* in D,,.
(c) Prove that the order of r* € D,, is n/ged(k, n).
Sage A permutation group is a very concrete representation of a group,

and Sage support for permutations groups is very good — making Sage a
natural place for beginners to learn about group theory.
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Cosets and Lagrange’s
Theorem

Lagrange’s Theorem, one of the most important results in finite group theory,
states that the order of a subgroup must divide the order of the group. This
theorem provides a powerful tool for analyzing finite groups; it gives us an
idea of exactly what type of subgroups we might expect a finite group to
possess. Central to understanding Lagranges’s Theorem is the notion of a
coset.

6.1 Cosets
Let G be a group and H a subgroup of G. Define a left coset of H with
representative g € G to be the set
gH ={gh:h e H}.
Right cosets can be defined similarly by
Hg={hg:he H}.

If left and right cosets coincide or if it is clear from the context to which type
of coset that we are referring, we will use the word coset without specifying
left or right.

Example 1. Let H be the subgroup of Zg consisting of the elements 0 and
3. The cosets are

0+H=3+H={0,3}
1+H=4+H=/{1,4}
24+ H=5+H={25}.

94
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We will always write the cosets of subgroups of Z and Z,, with the additive
notation we have used for cosets here. In a commutative group, left and
right cosets are always identical. |

Example 2. Let H be the subgroup of S3 defined by the permutations
{(1), (123), (132)}. The left cosets of H are

(1)H = (123)H = (132)H = {(1), (123),(132)}
(12)H = (13)H = (23)H = {(12),(13),(23)}.
The right cosets of H are exactly the same as the left cosets:
H(1) = H(123) = H(132) = {(1),(123),(132)}
H(12) = H(13) = H(23) = {(12),(13),(23)}.

It is not always the case that a left coset is the same as a right coset. Let
K be the subgroup of S3 defined by the permutations {(1), (12)}. Then the
left cosets of K are

(MK = (12)K = {(1),(12)}
(13)K = (123)K = {(13), (123)}
(23)K = (132)K = {(23), (132)};

however, the right cosets of K are

The following lemma is quite useful when dealing with cosets. (We leave
its proof as an exercise.)

Lemma 6.1 Let H be a subgroup of a group G and suppose that g1,g92 € G.
The following conditions are equivalent.

1. g1H = g2H;
2. Hgy' = Hgy'';

3. ¢1H C g2H;
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4. g2 € ng;
D. gl_lgg €eH.

In all of our examples the cosets of a subgroup H partition the larger
group G. The following theorem proclaims that this will always be the case.

Theorem 6.2 Let H be a subgroup of a group G. Then the left cosets of H
in G partition G. That is, the group G is the disjoint union of the left cosets
of H in G.

ProoOF. Let g1 H and goH be two cosets of H in G. We must show that
either ¢1H N goH = 0 or g1H = goH. Suppose that g1H N goH # () and
a € gtH NgoH. Then by the definition of a left coset, a = g1h1 = goho
for some elements h; and ho in H. Hence, g1 = QQthl_l or g1 € goH. By
Lemma 6.1, g1 H = g2 H. O

Remark. There is nothing special in this theorem about left cosets. Right
cosets also partition G; the proof of this fact is exactly the same as the proof
for left cosets except that all group multiplications are done on the opposite
side of H.

Let G be a group and H be a subgroup of G. Define the index of H
in G to be the number of left cosets of H in G. We will denote the index
by [G : H].

Example 3. Let G = Zg and H = {0,3}. Then [G : H| = 3. |

Example 4. Suppose that G = S3, H = {(1),(123),(132)}, and K =
{(1),(12)}. Then [G: H] =2 and |G : K| = 3. |

Theorem 6.3 Let H be a subgroup of a group G. The number of left cosets
of H in G is the same as the number of right cosets of H in G.

PROOF. Let Ly and Ry denote the set of left and right cosets of H in
G, respectively. If we can define a bijective map ¢ : Ly — Ry, then the
theorem will be proved. If gH € Ly, let ¢(¢gH) = Hg~'. By Lemma 6.1,
the map ¢ is well-defined; that is, if g1H = g2 H, then Hgl_1 = HgQ_I. To
show that ¢ is one-to-one, suppose that

Hg,' = ¢(g1H) = ¢(g2H) = Hgy

Again by Lemma 6.1, g1 H = goH. The map ¢ is onto since ¢(g ' H) = Hg.
O
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6.2 Lagrange’s Theorem

Proposition 6.4 Let H be a subgroup of G with g € G and define a map
¢: H— gH by ¢(h) = gh. The map ¢ is bijective; hence, the number of
elements in H is the same as the number of elements in gH .

PrROOF. We first show that the map ¢ is one-to-one. Suppose that ¢(h;) =
¢(he) for elements hq, ho € H. We must show that hy = he, but ¢(hy) = ghy
and ¢(hg) = gha. So ghy = gha, and by left cancellation h; = ha. To show
that ¢ is onto is easy. By definition every element of gH is of the form gh
for some h € H and ¢(h) = gh. O

Theorem 6.5 (Lagrange) Let G be a finite group and let H be a subgroup
of G. Then |G|/|H| =[G : H] is the number of distinct left cosets of H in
G. In particular, the number of elements in H must divide the number of
elements in G.

PROOF. The group G is partitioned into [G : H| distinct left cosets. Each
left coset has |H| elements; therefore, |G| = [G : H]|H]. O

Corollary 6.6 Suppose that G is a finite group and g € G. Then the order
of g must divide the number of elements in G.

Corollary 6.7 Let |G| = p with p a prime number. Then G is cyclic and
any g € G such that g # e is a generator.

PRrROOF. Let g be in G such that g # e. Then by Corollary 6.6, the order of
g must divide the order of the group. Since [(g)| > 1, it must be p. Hence, g
generates G. g

Corollary 6.7 suggests that groups of prime order p must somehow look
like Z,,.

Corollary 6.8 Let H and K be subgroups of a finite group G such that
G D H D K. Then
[G:K|]=|G: H|H : K]

PROOF. Observe that

e I A LI I G .
G K] = [ = 1) 1] =G HIH K],
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The converse of Lagrange’s Theorem is false. The group A4 has
order 12; however, it can be shown that it does not possess a subgroup of
order 6. According to Lagrange’s Theorem, subgroups of a group of order 12
can have orders of either 1, 2, 3, 4, or 6. However, we are not guaranteed that
subgroups of every possible order exist. To prove that A4 has no subgroup
of order 6, we will assume that it does have such a subgroup H and show
that a contradiction must occur. Since A4 contains eight 3-cycles, we know
that H must contain a 3-cycle. We will show that if H contains one 3-cycle,
then it must contain more than 6 elements.

Proposition 6.9 The group A4 has no subgroup of order 6.

PROOF. Since [A4 : H] = 2, there are only two cosets of H in A4. Inasmuch
as one of the cosets is H itself, right and left cosets must coincide; therefore,
gH = Hg or gHg~! = H for every g € A4. Since there are eight 3-cycles in
Ay, at least one 3-cycle must be in H. Without loss of generality, assume that
(123) is in H. Then (123)~! = (132) must also be in H. Since ghg~! € H
for all g € A4 and all h € H and

(124)(123)(124) 7! = (124)(123)(142) = (243)
(243)(123)(243) ! = (243)(123)(234) = (142)
we can conclude that H must have at least seven elements
(1), (123), (132), (243), (243) " = (234), (142), (142) " = (124).
Therefore, A4 has no subgroup of order 6. O

In fact, we can say more about when two cycles have the same length.

Theorem 6.10 Two cycles 7 and p in S, have the same length if and only

if there exists a o € Sy, such that u = oro™!.

PROOF. Suppose that

T:(al,ag,...,ak)
m = (bl,bg,...,bk).

Define o to be the permutation
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Then p = oro™ L.

Conversely, suppose that 7 = (a1, ag,...,a) is a k-cycle and o € S,,. If
o(a;) = b and 0(a; mod k)+1) = V', then u(b) = b'. Hence,

p=(o(ar),0(az),...,o(ax)).

Since o is one-to-one and onto, p is a cycle of the same length as 7. O

6.3 Fermat’s and Euler’s Theorems

The Euler ¢-function is the map ¢ : N — N defined by ¢(n) =1 for n =1,
and, for n > 1, ¢(n) is the number of positive integers m with 1 <m <n
and ged(m,n) = 1.

From Proposition 3.1, we know that the order of U(n), the group of units
in Z,, is ¢(n). For example, |U(12)| = ¢(12) = 4 since the numbers that are
relatively prime to 12 are 1, 5, 7, and 11. For any prime p, ¢(p) =p — 1. We
state these results in the following theorem.

Theorem 6.11 Let U(n) be the group of units in Z,. Then |U(n)| = ¢(n).

The following theorem is an important result in number theory, due to
Leonhard Euler.

Theorem 6.12 (Euler’s Theorem) Let a and n be integers such that n >
0 and ged(a,n) = 1. Then a®™ =1 (mod n).

PROOF. By Theorem 6.11 the order of U(n) is ¢(n). Consequently, a®™ =1
for all @ € U(n); or a®™ — 1 is divisible by n. Therefore, a®™ =1 (mod n).
U

If we consider the special case of Euler’s Theorem in which n = p is prime
and recall that ¢(p) = p — 1, we obtain the following result, due to Pierre de
Fermat.

Theorem 6.13 (Fermat’s Little Theorem) Let p be any prime number
and suppose that p fa. Then

a?'=1 (mod p).

Furthermore, for any integer b, b = b (mod p).
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[ ]  Historical Note | ]

Joseph-Louis Lagrange (1736-1813), born in Turin, Italy, was of French and Italian
descent. His talent for mathematics became apparent at an early age. Leonhard Euler
recognized Lagrange’s abilities when Lagrange, who was only 19, communicated to
Euler some work that he had done in the calculus of variations. That year he was
also named a professor at the Royal Artillery School in Turin. At the age of 23 he
joined the Berlin Academy. Frederick the Great had written to Lagrange proclaiming
that the “greatest king in Europe” should have the “greatest mathematician in
Europe” at his court. For 20 years Lagrange held the position vacated by his mentor,
Euler. His works include contributions to number theory, group theory, physics
and mechanics, the calculus of variations, the theory of equations, and differential
equations. Along with Laplace and Lavoisier, Lagrange was one of the people
responsible for designing the metric system. During his life Lagrange profoundly
influenced the development of mathematics, leaving much to the next generation of
mathematicians in the form of examples and new problems to be solved. [ ]

Exercises

1. Suppose that G is a finite group with an element g of order 5 and an element
h of order 7. Why must |G| > 357

2. Suppose that G is a finite group with 60 elements. What are the orders of
possible subgroups of G7

3. Prove or disprove: Every subgroup of the integers has finite index.
4. Prove or disprove: Every subgroup of the integers has finite order.

5. List the left and right cosets of the subgroups in each of the following.

(a) (8) in Zoy (e) Anin S,

(b) (3) in U(8) (f) Dy in Sy

(c) 3Z in Z (¢) TinC*

(d) Aqin Sy (h) H = {(1),(123), (132)} in S,

6. Describe the left cosets of SLy(R) in GLy(R). What is the index of SLy(R)

7. Verify Euler’s Theorem for n = 15 and a = 4.

8. Use Fermat’s Little Theorem to show that if p = 4n + 3 is prime, there is no

solution to the equation 22 = —1 (mod p).



EXERCISES 101

9. Show that the integers have infinite index in the additive group of rational
numbers.

10. Show that the additive group of real numbers has infinite index in the additive
group of the complex numbers.

11. Let H be a subgroup of a group G and suppose that gi,g2> € G. Prove that
the following conditions are equivalent.

(a) g1 H = g2 H
(b) Hgi ' =Hgy'
(c) 1 H C goH
(d) g2 € nH

12. If ghg~! € H for all g € G and h € H, show that right cosets are identical to
left cosets.

13. What fails in the proof of Theorem 6.3 if ¢ : Ly — Ry is defined by
¢(gH) = Hg?

14. Suppose that g = e. Show that the order of g divides n.

15. Modify the proof of Theorem 6.10 to show that any two permutations «, 8 € S,
have the same cycle structure if and only if there exists a permutation ~
such that 8 = yay~!. If 8 = yay~! for some v € S, then o and 3 are

conjugate.

16. If |G| = 2n, prove that the number of elements of order 2 is odd. Use this
result to show that G must contain a subgroup of order 2.

17. Suppose that [G : H] = 2. If a and b are not in H, show that ab € H.
18. If [G : H] = 2, prove that gH = Hg.

19. Let H and K be subgroups of a group G. Prove that gH N gK is a coset of
HN K inG.

20. Let H and K be subgroups of a group G. Define a relation ~ on G by a ~ b
if there exists an h € H and a k € K such that hak = b. Show that this
relation is an equivalence relation. The corresponding equivalence classes are
called double cosets. Compute the double cosets of H = {(1), (123), (132)}
in A4.

21. Let G be a cyclic group of order n. Show that there are exactly ¢(n) generators
for G.

22. Let n = p{'p5?---p;* be the factorization of n into distinct primes. Prove

that ) ) )
ot =n(1-5) (1-5) = (1-50):
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23. Show that

n=> ¢(d

for all positive integers n.

Sage Sage can create all the subgroups of a group, so long as the group is
not too large. It can also create the cosets of a subgroup.



7

Introduction to
Cryptography

Cryptography is the study of sending and receiving secret messages. The aim
of cryptography is to send messages across a channel so only the intended
recipient of the message can read it. In addition, when a message is received,
the recipient usually requires some assurance that the message is authentic;
that is, that it has not been sent by someone who is trying to deceive the
recipient. Modern cryptography is heavily dependent on abstract algebra
and number theory.

The message to be sent is called the plaintext message. The disguised
message is called the ciphertext. The plaintext and the ciphertext are both
written in an alphabet, consisting of letters or characters. Characters can
include not only the familiar alphabetic characters A, ..., Z and a, ..., z but
also digits, punctuation marks, and blanks. A cryptosystem, or cipher,
has two parts: encryption, the process of transforming a plaintext message
to a ciphertext message, and decryption, the reverse transformation of
changing a ciphertext message into a plaintext message.

There are many different families of cryptosystems, each distinguished by
a particular encryption algorithm. Cryptosystems in a specified cryptographic
family are distinguished from one another by a parameter to the encryption
function called a key. A classical cryptosystem has a single key, which must
be kept secret, known only to the sender and the receiver of the message. If
person A wishes to send secret messages to two different people B and C,
and does not wish to have B understand C’s messages or vice versa, A must
use two separate keys, so one cryptosystem is used for exchanging messages
with B, and another is used for exchanging messages with C.

Systems that use two separate keys, one for encoding and another for
decoding, are called public key cryptosystems. Since knowledge of the

103
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encoding key does not allow anyone to guess at the decoding key, the encoding
key can be made public. A public key cryptosystem allows A and B to send
messages to C' using the same encoding key. Anyone is capable of encoding
a message to be sent to C', but only C knows how to decode such a message.

7.1 Private Key Cryptography

In single or private key cryptosystems the same key is used for both
encrypting and decrypting messages. To encrypt a plaintext message, we
apply to the message some function which is kept secret, say f. This function
will yield an encrypted message. Given the encrypted form of the message,
we can recover the original message by applying the inverse transformation
f~1. The transformation f must be relatively easy to compute, as must f~!;
however, f must be extremely difficult to guess at if only examples of coded
messages are available.

Example 1. One of the first and most famous private key cryptosystems
was the shift code used by Julius Caesar. We first digitize the alphabet by
letting A = 00,B = 01,...,7Z = 25. The encoding function will be

f(p) = p+ 3 mod 26;
that is, A— D,B— FE,...,Z — (C. The decoding function is then
f~Hp) = p— 3 mod 26 = p + 23 mod 26.

Suppose we receive the encoded message DOJHEUD. To decode this message,
we first digitize it:
3,14,9,7,4,20, 3.

Next we apply the inverse transformation to get
0,11,6,4,1,17,0,

or ALGEBRA. Notice here that there is nothing special about either of the
numbers 3 or 26. We could have used a larger alphabet or a different shift.
[ |

Cryptanalysis is concerned with deciphering a received or intercepted
message. Methods from probability and statistics are great aids in deciphering
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an intercepted message; for example, the frequency analysis of the characters
appearing in the intercepted message often makes its decryption possible.

Example 2. Suppose we receive a message that we know was encrypted by
using a shift transformation on single letters of the 26-letter alphabet. To
find out exactly what the shift transformation was, we must compute b in
the equation f(p) = p+ b mod 26. We can do this using frequency analysis.
The letter E = 04 is the most commonly occurring letter in the English
language. Suppose that S = 18 is the most commonly occurring letter in the
ciphertext. Then we have good reason to suspect that 18 = 4 + b mod 26, or
b = 14. Therefore, the most likely encrypting function is

f(p) = p+ 14 mod 26.
The corresponding decrypting function is
f~1(p) = p+ 12 mod 26.

It is now easy to determine whether or not our guess is correct. |

Simple shift codes are examples of monoalphabetic cryptosystems.
In these ciphers a character in the enciphered message represents exactly
one character in the original message. Such cryptosystems are not very
sophisticated and are quite easy to break. In fact, in a simple shift as
described in Example 1, there are only 26 possible keys. It would be quite
easy to try them all rather than to use frequency analysis.

Let us investigate a slightly more sophisticated cryptosystem. Suppose
that the encoding function is given by

f(p) = ap + b mod 26.

-1

We first need to find out when a decoding function f~' exists. Such a

decoding function exists when we can solve the equation
c = ap+ bmod 26

for p. By Proposition 3.1, this is possible exactly when a has an inverse or,
equivalently, when ged(a,26) = 1. In this case

f~Yp)=a"'p—atbmod 26.
Such a cryptosystem is called an affine cryptosystem.

Example 3. Let us consider the affine cryptosystem f(p) = ap + b mod 26.
For this cryptosystem to work we must choose an a € Zyg that is invertible.
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This is only possible if ged(a, 26) = 1. Recognizing this fact, we will let a = 5
since ged(5,26) = 1. It is easy to see that a~! = 21. Therefore, we can take
our encryption function to be f(p) = 5p + 3 mod 26. Thus, ALGEBRA is
encoded as 3,6,7,23,8,10,3, or DGHXIKD. The decryption function will be

f71(p) = 21p — 21 - 3 mod 26 = 21p + 15 mod 26.
]

A cryptosystem would be more secure if a ciphertext letter could rep-
resent more than one plaintext letter. To give an example of this type of
cryptosystem, called a polyalphabetic cryptosystem, we will generalize
affine codes by using matrices. The idea works roughly the same as before;
however, instead of encrypting one letter at a time we will encrypt pairs of
letters. We can store a pair of letters p; and ps in a vector

o= ()

Let A be a 2 x 2 invertible matrix with entries in Zsg. We can define an
encoding function by

f(p) = Ap + b,

where b is a fixed column vector and matrix operations are performed in
Zog. The decoding function must be

T p)=A4""p-A""b.

Example 4. Suppose that we wish to encode the word HELP. The corre-
sponding digit string is 7,4,11,15. If

35
=(03)
(2 2
A _<25 3)'

If b= (2,2), then our message is encrypted as RRCR. The encrypted letter
R represents more than one plaintext letter. |

then

Frequency analysis can still be performed on a polyalphabetic cryptosys-
tem, because we have a good understanding of how pairs of letters appear
in the English language. The pair th appears quite often; the pair ¢z never
appears. To avoid decryption by a third party, we must use a larger matrix
than the one we used in Example 4.



7.2 PUBLIC KEY CRYPTOGRAPHY 107

7.2 Public Key Cryptography

If traditional cryptosystems are used, anyone who knows enough to encode a
message will also know enough to decode an intercepted message. In 1976,
W. Diffie and M. Hellman proposed public key cryptography, which is based
on the observation that the encryption and decryption procedures need not
have the same key. This removes the requirement that the encoding key be
kept secret. The encoding function f must be relatively easy to compute,
but f~! must be extremely difficult to compute without some additional
information, so that someone who knows only the encrypting key cannot
find the decrypting key without prohibitive computation. It is interesting
to note that to date, no system has been proposed that has been proven to
be “one-way;” that is, for any existing public key cryptosystem, it has never
been shown to be computationally prohibitive to decode messages with only
knowledge of the encoding key.

The RSA Cryptosystem

The RSA cryptosystem introduced by R. Rivest, A. Shamir, and L. Adleman
in 1978, is based on the difficulty of factoring large numbers. Though it is not
a difficult task to find two large random primes and multiply them together,
factoring a 150-digit number that is the product of two large primes would
take 100 million computers operating at 10 million instructions per second
about 50 million years under the fastest algorithms currently known.

The RSA cryptosystem works as follows. Suppose that we choose two
random 150-digit prime numbers p and ¢q. Next, we compute the product
n = pq and also compute ¢(n) =m = (p — 1)(¢ — 1), where ¢ is the Euler
¢-function. Now we start choosing random integers F until we find one that
is relatively prime to m; that is, we choose E such that ged(E, m) = 1. Using
the Euclidean algorithm, we can find a number D such that DE = 1 (mod m).
The numbers n and F are now made public.

Suppose now that person B (Bob) wishes to send person A (Alice) a
message over a public line. Since F and n are known to everyone, anyone can
encode messages. Bob first digitizes the message according to some scheme,
say A =00,B =02,...,Z = 25. If necessary, he will break the message into
pieces such that each piece is a positive integer less than n. Suppose z is one
of the pieces. Bob forms the number y = ¥ mod n and sends y to Alice.
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For Alice to recover x, she need only compute z = y” mod n. Only Alice
knows D.

Example 5. Before exploring the theory behind the RSA cryptosystem
or attempting to use large integers, we will use some small integers just to
see that the system does indeed work. Suppose that we wish to send some
message, which when digitized is 25. Let p = 23 and ¢ = 29. Then

n = pq = 667

and
6(n) =m = (p— 1)(g — 1) = 616.

We can let E = 487, since gcd(616,487) = 1. The encoded message is
computed to be
25"7 mod 667 = 169.

This computation can be reasonably done by using the method of repeated
squares as described in Chapter 4. Using the Euclidean algorithm, we
determine that 191F = 1 4+ 151m; therefore, the decrypting key is (n, D) =
(667,191). We can recover the original message by calculating

169! mod 667 = 25.

Now let us examine why the RSA cryptosystem works. We know that
DE =1 (mod m); hence, there exists a k such that

DE =km + 1 = ke(n) + 1.

There are two cases to consider. In the first case assume that ged(z,n) = 1.
Then by Theorem 6.12,

yP = (aP)P = 2PF = Pt = (22M)kg = (1)%2 = 2 mod n.

So we see that Alice recovers the original message z when she computes
yP mod n.

For the other case, assume that ged(z,n) # 1. Since n = pg and = < n,
we know x is a multiple of p or a multiple of ¢, but not both. We will describe
the first possibility only, since the second is entirely similar. There is then
an integer r, with r < g and = = rp. Note that we have ged(z,q) = 1 and
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that m = ¢(n) = (p — 1)(¢ — 1) = ¢(p)¢(q). Then, using Theorem 6.12, but
now mod q,

2P = ghe@)oa) — (x@@))keP) — (1)k¢(P) = 1 mod q.

So there is an integer ¢ such that z*™ = 1 + tq. Thus, Alice also recovers the
message in this case,

D _ kmtl _ ok

y =2""r = (14+tq)r = x +tq(rp) = x + trn = x mod n.

We can now ask how one would go about breaking the RSA cryptosystem.
To find D given n and F, we simply need to factor n and solve for D by using
the Euclidean algorithm. If we had known that 667 = 23 - 29 in Example 5,
we could have recovered D.

Message Verification

There is a problem of message verification in public key cryptosystems. Since
the encoding key is public knowledge, anyone has the ability to send an
encoded message. If Alice receives a message from Bob, she would like to
be able to verify that it was Bob who actually sent the message. Suppose
that Bob’s encrypting key is (n/, E') and his decrypting key is (n’, D’). Also,
suppose that Alice’s encrypting key is (n, F) and her decrypting key is
(n, D). Since encryption keys are public information, they can exchange
coded messages at their convenience. Bob wishes to assure Alice that the
message he is sending is authentic. Before Bob sends the message x to Alice,
he decrypts x with his own key:

7' =2z mod n/.
Anyone can change x’ back to x just by encryption, but only Bob has the
ability to form 2’. Now Bob encrypts ' with Alice’s encryption key to form

y = 2% mod n,
a message that only Alice can decode. Alice decodes the message and then
encodes the result with Bob’s key to read the original message, a message
that could have only been sent by Bob.

[ ]  Historical Note | ]

Encrypting secret messages goes as far back as ancient Greece and Rome. As we
know, Julius Caesar used a simple shift code to send and receive messages. However,
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the formal study of encoding and decoding messages probably began with the Arabs
in the 1400s. In the fifteenth and sixteenth centuries mathematicians such as Alberti
and Viete discovered that monoalphabetic cryptosystems offered no real security.
In the 1800s, F. W. Kasiski established methods for breaking ciphers in which
a ciphertext letter can represent more than one plaintext letter, if the same key
was used several times. This discovery led to the use of cryptosystems with keys
that were used only a single time. Cryptography was placed on firm mathematical
foundations by such people as W. Friedman and L. Hill in the early part of the
twentieth century.

During World War IT mathematicians were very active in cryptography. Efforts
to penetrate the cryptosystems of the Axis nations were organized in England and in
the United States by such notable mathematicians as Alan Turing and A. A. Albert.
The period after World War I saw the development of special-purpose machines for
encrypting and decrypting messages. The Allies gained a tremendous advantage in
World War IT by breaking the ciphers produced by the German Enigma machine
and the Japanese Purple ciphers.

By the 1970s, interest in commercial cryptography had begun to take hold.
There was a growing need to protect banking transactions, computer data, and
electronic mail. In the early 1970s, IBM developed and implemented LUZIFER, the
forerunner of the National Bureau of Standards’ Data Encryption Standard (DES).

The concept of a public key cryptosystem, due to Diffie and Hellman, is very
recent (1976). It was further developed by Rivest, Shamir, and Adleman with the
RSA cryptosystem (1978). It is not known how secure any of these systems are.
The trapdoor knapsack cryptosystem, developed by Merkle and Hellman, has been
broken. It is still an open question whether or not the RSA system can be broken.
At the time of the writing of this book, the largest number factored is 135 digits
long, and at the present moment a code is considered secure if the key is about
400 digits long and is the product of two 200-digit primes. There has been a great
deal of controversy about research in cryptography in recent times: the National
Security Agency would like to keep information about cryptography secret, whereas
the academic community has fought for the right to publish basic research.

Modern cryptography has come a long way since 1929, when Henry Stimson,
Secretary of State under Herbert Hoover, dismissed the Black Chamber (the State
Department’s cryptography division) in 1929 on the ethical grounds that “gentlemen
do not read each other’s mail.” ]

Exercises

1. Encode IXLOVEXMATH using the cryptosystem in Example 1.

2. Decode ZLOOA WKLVA EHARQ WKHA ILQDO, which was encoded using
the cryptosystem in Example 1.

3. Assuming that monoalphabetic code was used to encode the following secret
message, what was the original message?
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10.

11.

12.

NBQFRSMXZF YAWJUFHWFF ESKGQCFWDQ AFNBQFTILO FCWP

What is the total number of possible monoalphabetic cryptosystems? How
secure are such cryptosystems?

Prove that a 2 x 2 matrix A with entries in Zog is invertible if and only if

ged(det(A), 26) = 1.
)

use the encryption function f(p) = Ap + b to encode the message CRYP-
TOLOGY, where b = (2,5)*. What is the decoding function?

Given the matrix

Encrypt each of the following RSA messages x so that x is divided into blocks
of integers of length 2; that is, if x = 142528, encode 14, 25, and 28 separately.
(a) n=3551,F =629,2 = 31
(b) n=2257,E =47, =23
(¢) n=120979, E = 13251, 2 = 142371
(d) n=45629, E = 781,z = 231561
Compute the decoding key D for each of the encoding keys in Exercise 7.
Decrypt each of the following RSA messages y.
(a) n=3551,D =1997,y = 2791
(b) n=5893,D =81,y =34
(¢) n=120979, D = 27331,y = 112135
(d) n=79403,D = 671,y = 129381

For each of the following encryption keys (n, E) in the RSA cryptosystem,
compute D.

(a) (n,E) = (451,231)

(b) (n, E) = (3053,1921)

(¢) (n, E) = (37986733,12371)

(d) (n, E) = (16394854313, 34578451)

Encrypted messages are often divided into blocks of n letters. A message such
as THE WORLD WONDERS WHY might be encrypted as JIW OCFRJ
LPOEVYQ IOC but sent as JIW OCF RJL POE VYQ IOC. What are the
advantages of using blocks of n letters?

Find integers n, F, and X such that
XP =X (modn).

Is this a potential problem in the RSA cryptosystem?
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13. Every person in the class should construct an RSA cryptosystem using primes
that are 10 to 15 digits long. Hand in (n, E') and an encoded message. Keep
D secret. See if you can break one another’s codes.

Additional Exercises: Primality and Factoring

In the RSA cryptosystem it is important to be able to find large prime numbers
easily. Also, this cryptosystem is not secure if we can factor a composite number
that is the product of two large primes. The solutions to both of these problems
are quite easy. To find out if a number n is prime or to factor n, we can use trial
division. We simply divide n by d = 2,3,...,/n. Either a factorization will be
obtained, or n is prime if no d divides n. The problem is that such a computation
is prohibitively time-consuming if n is very large.

1. A better algorithm for factoring odd positive integers is Fermat’s factor-
ization algorithm.

(a) Let n = ab be an odd composite number. Prove that n can be written
as the difference of two perfect squares:

n=a"—y* = (z —y)(x+y).
Consequently, a positive odd integer can be factored exactly when we
can find integers x and y such that n = 22 — 2.

(b) Write a program to implement the following factorization algorithm
based on the observation in part (a).

x4 [Vn]

y+1

1: while m27y2>n do
y+—y+1
if 22 —y? <n then
rT+—zx+1
Yy 1
goto 1
else if 22 —y? =0 then
as—zr—y
b+—2ax+y
write n=axb

The expression [1/n | means the smallest integer greater than or equal
to the square root of n. Write another program to do factorization
using trial division and compare the speed of the two algorithms. Which
algorithm is faster and why?
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2. Primality Testing. Recall Fermat’s Little Theorem from Chapter 6. Let p
be prime with ged(a, p) = 1. Then a?~! =1 (mod p). We can use Fermat’s
Little Theorem as a screening test for primes. For example, 15 cannot be
prime since

21571 =9M =4 (mod 15).

However, 17 is a potential prime since
2171 =916 =1 (mod 17).
We say that an odd composite number n is a pseudoprime if
2""1 =1 (mod n).
Which of the following numbers are primes and which are pseudoprimes?

(a) 342 (c) 601 (e) 771
(b) 811 (d) 561 (f) 631

3. Let n be an odd composite number and b be a positive integer such that
ged(b,n) = 1. If b1 = 1 (mod n), then n is a pseudoprime base b.
Show that 341 is a pseudoprime base 2 but not a pseudoprime base 3.

4. Write a program to determine all primes less than 2000 using trial division.
Write a second program that will determine all numbers less than 2000 that
are either primes or pseudoprimes. Compare the speed of the two programs.
How many pseudoprimes are there below 20007

There exist composite numbers that are pseudoprimes for all bases to which
they are relatively prime. These numbers are called Carmichael numbers.
The first Carmichael number is 561 = 3-11-17. In 1992, Alford, Granville, and
Pomerance proved that there are an infinite number of Carmichael numbers [4].
However, Carmichael numbers are very rare. There are only 2163 Carmichael
numbers less than 25 x 10?. For more sophisticated primality tests, see [1],
[6], or [7].
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Sage With Sage’s excellent implementations of basic number-theory com-
putations, it is easy to work non-trivial examples of RSA and the exercises
about primality and factoring.
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Algebraic Coding Theory

Coding theory is an application of algebra that has become increasingly
important over the last several decades. When we transmit data, we are
concerned about sending a message over a channel that could be affected
by “noise.” We wish to be able to encode and decode the information in a
manner that will allow the detection, and possibly the correction, of errors
caused by noise. This situation arises in many areas of communications,
including radio, telephone, television, computer communications, and even
compact disc player technology. Probability, combinatorics, group theory,
linear algebra, and polynomial rings over finite fields all play important roles
in coding theory.

8.1 Error-Detecting and Correcting Codes

Let us examine a simple model of a communications system for transmitting
and receiving coded messages (Figure 8.1).

Uncoded messages may be composed of letters or characters, but typically
they consist of binary m-tuples. These messages are encoded into codewords,
consisting of binary n-tuples, by a device called an encoder. The message
is transmitted and then decoded. We will consider the occurrence of errors
during transmission. An error occurs if there is a change in one or more
bits in the codeword. A decoding scheme is a method that either converts
an arbitrarily received n-tuple into a meaningful decoded message or gives
an error message for that n-tuple. If the received message is a codeword
(one of the special n-tuples allowed to be transmitted), then the decoded
message must be the unique message that was encoded into the codeword.
For received non-codewords, the decoding scheme will give an error indication,
or, if we are more clever, will actually try to correct the error and reconstruct
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Figure 8.1. Encoding and decoding messages

the original message. Our goal is to transmit error-free messages as cheaply
and quickly as possible.

Example 1. One possible coding scheme would be to send a message several
times and to compare the received copies with one another. Suppose that the
message to be encoded is a binary n-tuple (x1,x2,...,2,). The message is
encoded into a binary 3n-tuple by simply repeating the message three times:

(1,22, 2p) = (T1,22, .., Ty, T1, T2, ..o, Ty T1, X2, - -+, Tny).

To decode the message, we choose as the ith digit the one that appears in the
ith place in at least two of the three transmissions. For example, if the original
message is (0110), then the transmitted message will be (0110 0110 0110).
If there is a transmission error in the fifth digit, then the received codeword
will be (0110 1110 0110), which will be correctly decoded as (0110).! This

We will adopt the convention that bits are numbered left to right in binary n-tuples.
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triple-repetition method will automatically detect and correct all single errors,
but it is slow and inefficient: to send a message consisting of n bits, 2n extra
bits are required, and we can only detect and correct single errors. We will
see that it is possible to find an encoding scheme that will encode a message
of n bits into m bits with m much smaller than 3n. |

Example 2. Fven parity, a commonly used coding scheme, is much
more efficient than the simple repetition scheme. The ASCII (American
Standard Code for Information Interchange) coding system uses binary 8-
tuples, yielding 2% = 256 possible 8-tuples. However, only seven bits are
needed since there are only 27 = 128 ASCII characters. What can or should
be done with the extra bit? Using the full eight bits, we can detect single
transmission errors. For example, the ASCII codes for A, B, and C are

A = 6519 = 010000015,
B = 6619 = 010000102,
C = 6719 = 010000115.

Notice that the leftmost bit is always set to 0; that is, the 128 ASCII
characters have codes

000000002 = 010,

011111119 = 1271¢.

The bit can be used for error checking on the other seven bits. It is set to
either 0 or 1 so that the total number of 1 bits in the representation of a
character is even. Using even parity, the codes for A, B, and C now become

A = 010000012,
B = 010000102,
C = 110000115.

Suppose an A is sent and a transmission error in the sixth bit is caused by
noise over the communication channel so that (0100 0101) is received. We
know an error has occurred since the received word has an odd number of
1’s, and we can now request that the codeword be transmitted again. When
used for error checking, the leftmost bit is called a parity check bit.

By far the most common error-detecting codes used in computers are
based on the addition of a parity bit. Typically, a computer stores information
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in m-tuples called words. Common word lengths are 8, 16, and 32 bits. One
bit in the word is set aside as the parity check bit, and is not used to store
information. This bit is set to either 0 or 1, depending on the number of 1’s
in the word.

Adding a parity check bit allows the detection of all single errors because
changing a single bit either increases or decreases the number of 1’s by one,
and in either case the parity has been changed from even to odd, so the new
word is not a codeword. (We could also construct an error detection scheme
based on odd parity; that is, we could set the parity check bit so that a
codeword always has an odd number of 1’s.) |

The even parity system is easy to implement, but has two drawbacks.
First, multiple errors are not detectable. Suppose an A is sent and the first
and seventh bits are changed from 0 to 1. The received word is a codeword,
but will be decoded into a C instead of an A. Second, we do not have the
ability to correct errors. If the 8-tuple (1001 1000) is received, we know that
an error has occurred, but we have no idea which bit has been changed. We
will now investigate a coding scheme that will not only allow us to detect
transmission errors but will actually correct the errors.

Received Word
000 001 010 011 100 101 110 111
Transmitted 000 0 1 1 2 1 2 2 3
Codeword 111 3 2 2 1 2 1 1 0

Table 8.1. A repetition code

Example 3. Suppose that our original message is either a 0 or a 1, and
that 0 encodes to (000) and 1 encodes to (111). If only a single error occurs
during transmission, we can detect and correct the error. For example, if a
101 is received, then the second bit must have been changed from a 1 to a 0.
The originally transmitted codeword must have been (111). This method
will detect and correct all single errors.

In Table 8.1, we present all possible words that might be received for the
transmitted codewords (000) and (111). Table 8.1 also shows the number of
bits by which each received 3-tuple differs from each original codeword. W
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Maximum-Likelihood Decoding

The coding scheme presented in Example 3 is not a complete solution to the
problem because it does not account for the possibility of multiple errors.
For example, either a (000) or a (111) could be sent and a (001) received.
We have no means of deciding from the received word whether there was a
single error in the third bit or two errors, one in the first bit and one in the
second. No matter what coding scheme is used, an incorrect message could
be received: we could transmit a (000), have errors in all three bits, and
receive the codeword (111). It is important to make explicit assumptions
about the likelihood and distribution of transmission errors so that, in a
particular application, it will be known whether a given error detection
scheme is appropriate. We will assume that transmission errors are rare, and,
that when they do occur, they occur independently in each bit; that is, if p
is the probability of an error in one bit and ¢ is the probability of an error
in a different bit, then the probability of errors occurring in both of these
bits at the same time is pg. We will also assume that a received n-tuple is
decoded into a codeword that is closest to it; that is, we assume that the
receiver uses maximume-likelihood decoding.

Figure 8.2. Binary symmetric channel

A binary symmetric channel is a model that consists of a transmitter
capable of sending a binary signal, either a 0 or a 1, together with a receiver.
Let p be the probability that the signal is correctly received. Then g =1—p
is the probability of an incorrect reception. If a 1 is sent, then the probability
that a 1 is received is p and the probability that a 0 is received is ¢ (Figure 8.2).
The probability that no errors occur during the transmission of a binary
codeword of length n is p™. For example, if p = 0.999 and a message
consisting of 10,000 bits is sent, then the probability of a perfect transmission
is

(0.999)1%:99 ~ 0.00005.
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Theorem 8.1 If a binary n-tuple (x1,...,x,) is transmitted across a bi-
nary symmetric channel with probability p that no error will occur in each
coordinate, then the probability that there are errors in exactly k coordinates is

N\ &k n—k
(k)qp .

Proor. Fix k different coordinates. We first compute the probability that
an error has occurred in this fixed set of coordinates. The probability of an
error occurring in a particular one of these k coordinates is ¢; the probability
that an error will not occur in any of the remaining n — k coordinates is
p. The probability of each of these n independent events is ¢*p"*. The
number of possible error patterns with exactly k errors occurring is equal to

(1) =

the number of combinations of n things taken k at a time. Each of these
error patterns has probability ¢*p"~* of occurring; hence, the probability of
all of these error patterns is

g

Example 4. Suppose that p = 0.995 and a 500-bit message is sent. The
probability that the message was sent error-free is

p" = (0.995)%% ~ 0.082.

The probability of exactly one error occurring is
<7ll> g~ = 500(0.005)(0.995)49 ~ 0.204.

The probability of exactly two errors is

4
(Z) @p" = M(o.oom?(o.ggs)‘*% ~ 0.257.

The probability of more than two errors is approximately

1—0.082 —0.204 — 0.257 = 0.457.
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Block Codes

If we are to develop efficient error-detecting and error-correcting codes, we
will need more sophisticated mathematical tools. Group theory will allow
faster methods of encoding and decoding messages. A code is an (n, m)-block
code if the information that is to be coded can be divided into blocks of
m binary digits, each of which can be encoded into n binary digits. More
specifically, an (n, m)-block code consists of an encoding function

E: 73 =75
and a decoding function
D7y — 75

A codeword is any element in the image of E. We also require that E be
one-to-one so that two information blocks will not be encoded into the same
codeword. If our code is to be error-correcting, then D must be onto.

Example 5. The even-parity coding system developed to detect single errors
in ASCII characters is an (8, 7)-block code. The encoding function is

E(x7,x6,...,21) = (x8,27,...,21),

where xg = x7 + x¢ + - - - + 1 with addition in Z. [ |

Let x = (21,...,2,) and y = (y1,...,yn) be binary n-tuples. The
Hamming distance or distance, d(x,y), between x and y is the number
of bits in which x and y differ. The distance between two codewords is the
minimum number of transmission errors required to change one codeword into
the other. The minimum distance for a code, dpyin, is the minimum of all
distances d(x,y), where x and y are distinct codewords. The weight, w(x),
of a binary codeword x is the number of 1’s in x. Clearly, w(x) = d(x, 0),
where 0 = (00---0).

Example 6. Let x = (10101), y = (11010), and z = (00011) be all of the
codewords in some code C. Then we have the following Hamming distances:

d(x,y) =4, d(x,z) = 3, d(y,z) = 3.

The minimum distance for this code is 3. We also have the following weights:
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The following proposition lists some basic properties about the weight of
a codeword and the distance between two codewords. The proof is left as an
exercise.

Proposition 8.2 Let x, y, and z be binary n-tuples. Then
1. w(x) =d(x,0);
2. d(x,y)
3. d(x,y)=0
4. d(x,y) = d(y,x);
5. d(x,y) <d

The weights in a particular code are usually much easier to compute than
the Hamming distances between all codewords in the code. If a code is set
up carefully, we can use this fact to our advantage.

Suppose that x = (1101) and y = (1100) are codewords in some code. If
we transmit (1101) and an error occurs in the rightmost bit, then (1100) will
be received. Since (1100) is a codeword, the decoder will decode (1100) as
the transmitted message. This code is clearly not very appropriate for error
detection. The problem is that d(x,y) = 1. If x = (1100) and y = (1010)
are codewords, then d(x,y) = 2. If x is transmitted and a single error occurs,
then y can never be received. Table 8.2 gives the distances between all 4-bit
codewords in which the first three bits carry information and the fourth is

an even parity check bit. We can see that the minimum distance here is 2;
hence, the code is suitable as a single error-correcting code.

0000 0011

ja=}
—
)
—_
ja)
—
—_

0

—
]
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0011
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Table 8.2. Distances between 4-bit codewords
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To determine exactly what the error-detecting and error-correcting ca-
pabilities for a code are, we need to analyze the minimum distance for the
code. Let x and y be codewords. If d(x,y) = 1 and an error occurs where
x and y differ, then x is changed to y. The received codeword is y and no
error message is given. Now suppose d(x,y) = 2. Then a single error cannot
change x to y. Therefore, if din = 2, we have the ability to detect single
errors. However, suppose that d(x,y) = 2, y is sent, and a noncodeword z is
received such that

d(x,z) =d(y,z) = 1.

Then the decoder cannot decide between x and y. Even though we are aware
that an error has occurred, we do not know what the error is.

Suppose dmin > 3. Then the maximum-likelihood decoding scheme
corrects all single errors. Starting with a codeword x, an error in the
transmission of a single bit gives y with d(x,y) = 1, but d(z,y) > 2 for any
other codeword z # x. If we do not require the correction of errors, then
we can detect multiple errors when a code has a minimum distance that is
greater than 3.

Theorem 8.3 Let C be a code with duyin = 2n+ 1. Then C' can correct any
n or fewer errors. Furthermore, any 2n or fewer errors can be detected in C.

PROOF. Suppose that a codeword x is sent and the word y is received with
at most n errors. Then d(x,y) < n. If z is any codeword other than x, then

2n+1<d(x,z) <d(x,y) +d(y,z) <n+d(y,z).

Hence, d(y,z) > n + 1 and y will be correctly decoded as x. Now suppose
that x is transmitted and y is received and that at least one error has
occurred, but not more than 2n errors. Then 1 < d(x,y) < 2n. Since the
minimum distance between codewords is 2n 4+ 1, y cannot be a codeword.
Consequently, the code can detect between 1 and 2n errors. O

Example 7. In Table 8.3, the codewords ¢; = (00000), c2 = (00111),
c3 = (11100), and ¢4 = (11011) determine a single error-correcting code. W

[ ]  Historical Note | ]

Modern coding theory began in 1948 with C. Shannon’s paper, “A Mathematical
Theory of Information” [7]. This paper offered an example of an algebraic code, and
Shannon’s Theorem proclaimed exactly how good codes could be expected to be.
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00000 00111 11100 11011
00000 0 3 3 4
00111 3 0 4 3
11100 3 4 0 3
11011 4 3 3 0

Table 8.3. Hamming distances for an error-correcting code

Richard Hamming began working with linear codes at Bell Labs in the late 1940s
and early 1950s after becoming frustrated because the programs that he was running
could not recover from simple errors generated by noise. Coding theory has grown
tremendously in the past several years. The Theory of Error-Correcting Codes,
by MacWilliams and Sloane [5], published in 1977, already contained over 1500
references. Linear codes (Reed-Muller (32, 6)-block codes) were used on NASA’s
Mariner space probes. More recent space probes such as Voyager have used what
are called convolution codes. Currently, very active research is being done with
Goppa codes, which are heavily dependent on algebraic geometry. [

8.2 Linear Codes

To gain more knowledge of a particular code and develop more efficient
techniques of encoding, decoding, and error detection, we need to add
additional structure to our codes. One way to accomplish this is to require
that the code also be a group. A group code is a code that is also a subgroup
of Zy.

To check that a code is a group code, we need only verify one thing. If
we add any two elements in the code, the result must be an n-tuple that is
again in the code. It is not necessary to check that the inverse of the n-tuple
is in the code, since every codeword is its own inverse, nor is it necessary to
check that 0 is a codeword. For instance,

(11000101) + (11000101) = (00000000).

Example 8. Suppose that we have a code that consists of the following
7-tuples:

(0000000) (0001111) (0010101
(0100110) (0101001) (0110011
(1000011) (1001100) (1010110
(1100101) (1101010) (1110000

0011010)
0111100

1011001)
1111111).

— — — —
N~~~
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It is a straightforward though tedious task to verify that this code is also
a subgroup of Zg and, therefore, a group code. This code is a single error-
detecting and single error-correcting code, but it is a long and tedious process
to compute all of the distances between pairs of codewords to determine
that dnin = 3. It is much easier to see that the minimum weight of all the
nonzero codewords is 3. As we will soon see, this is no coincidence. However,
the relationship between weights and distances in a particular code is heavily
dependent on the fact that the code is a group. |

Lemma 8.4 Let x and 'y be binary n-tuples. Then w(x +y) = d(x,y).

PROOF. Suppose that x and y are binary n-tuples. Then the distance
between x and y is exactly the number of places in which x and y differ.
But x and y differ in a particular coordinate exactly when the sum in the
coordinate is 1, since

1+1=0
0+0=0
1+0=1
0+1=1.

Consequently, the weight of the sum must be the distance between the two
codewords. O

Theorem 8.5 Let dyin be the minimum distance for a group code C. Then
dmin 18 the minimum of all the nonzero weights of the nonzero codewords in
C. That is,

dmin = min{w(x) : x # 0}.

PROOF. Observe that

dmin = min{d(x,y) : x #y}
= min{d(x,y) : x+y # 0}
=min{fw(x+y):x+y # 0}
= min{w(z) : z # 0}.
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Linear Codes

From Example 8, it is now easy to check that the minimum nonzero weight
is 3; hence, the code does indeed detect and correct all single errors. We
have now reduced the problem of finding “good” codes to that of generating
group codes. One easy way to generate group codes is to employ a bit of
matrix theory.

Define the inner product of two binary n-tuples to be

X-y=x1y1 + -+ TpYn,

where x = (21,22,...,7,)" and y = (y1,¥2,...,¥n)" are column vectors.>

For example, if x = (011001)* and y = (110101)*, then x -y = 0. We can
also look at an inner product as the product of a row matrix with a column
matrix; that is,

Xy =x'y
Y1
— (a1 wy e ) vz
Yn

=x1Y1 + x2y2 + - - + TpYn.

Example 9. Suppose that the words to be encoded consist of all binary
3-tuples and that our encoding scheme is even-parity. To encode an arbitrary
3-tuple, we add a fourth bit to obtain an even number of 1’s. Notice that
an arbitrary n-tuple x = (z1, 2, ...,%,)" has an even number of 1’s exactly
when z1 + x5 + - - + x, = 0; hence, a 4-tuple x = (21, 22,23, 24)" has an
even number of 1's if x1 + xz9 + 3+ 24 =0, or

x'lzxtlz(xl To XT3 w4)

—_ = =

This example leads us to hope that there is a connection between matrices
and coding theory. ]

2Since we will be working with matrices, we will write binary n-tuples as column vectors
for the remainder of this chapter.
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Let M, xn(Z2) denote the set of all m x n matrices with entries in Zs. We
do matrix operations as usual except that all our addition and multiplication
operations occur in Zg. Define the null space of a matrix H € My, xn(Z2)
to be the set of all binary n-tuples x such that Hx = 0. We denote the null
space of a matrix H by Null(H).

Example 10. Suppose that

01 01
H=11 111
0 011

= o O

For a 5-tuple x = (1, z2, 3, T4, 75)" to be in the null space of H, Hx = 0.
Equivalently, the following system of equations must be satisfied:

To+x4=0
r1+x2+23+24=0
x3+ x4 + 25 = 0.

The set of binary 5-tuples satisfying these equations is
(00000) (11110) (10101) (01011).

This code is easily determined to be a group code. |

Theorem 8.6 Let H be in My,xn(Z2). Then the null space of H is a
group code.

PROOF. Since each element of Z7 is its own inverse, the only thing that really
needs to be checked here is closure. Let x,y € Null(H) for some matrix H
in My, 5n(Z2). Then Hx = 0 and Hy = 0. So

Hx+y)=Hx+Hy=0+0=0.

Hence, x 4+ y is in the null space of H and therefore must be a codeword.
O

A code is a linear code if it is determined by the null space of some
matrix H € M, x,,(Zs).

Example 11. Let C be the code given by the matrix

000111
H=10 11 011
101 001



128 CHAPTER 8 ALGEBRAIC CODING THEORY

Suppose that the 6-tuple x = (010011)" is received. It is a simple matter of
matrix multiplication to determine whether or not x is a codeword. Since

0
Hx=1|1],
1

the received word is not a codeword. We must either attempt to correct the
word or request that it be transmitted again. |

8.3 Parity-Check and Generator Matrices

We need to find a systematic way of generating linear codes as well as fast
methods of decoding. By examining the properties of a matrix H and by
carefully choosing H, it is possible to develop very efficient methods of
encoding and decoding messages. To this end, we will introduce standard
generator and canonical parity-check matrices.

Suppose that H is an m X n matrix with entries in Zs and n > m.
If the last m columns of the matrix form the m x m identity matrix, I,,,
then the matrix is a canonical parity-check matriz. More specifically,
H = (A | I), where A is the m x (n —m) matrix

ai;p a2 -+ QAln-m
a1 az2 - A2p-m
aml Am2 " Omn-m

and I, is the m x m identity matrix

1 0 0
0 1 0
o 0 --- 1

With each canonical parity-check matrix we can associate an n x (n —m)
standard generator matriz

G- (I”Am>.
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Our goal will be to show that Gx = y if and only if Hy = 0. Given a
message block x to be encoded, G will allow us to quickly encode it into a
linear codeword y.

Example 12. Suppose that we have the following eight words to be encoded:
(000), (001), (010), ..., (111).

For
011
A=11 1 0},
1 01

the associated standard generator and canonical parity-check matrices are

1 00
010
0 01
G = 0 1 1
110
1 01
and
011100
H=1|1 10 01 0],
101 001
respectively.

Observe that the rows in H represent the parity checks on certain bit
positions in a 6-tuple. The 1’s in the identity matrix serve as parity checks
for the 1’s in the same row. If x = (21, 22, 3, x4, 5, T6), then

Ty + T3+ x4
O=Hx=|xz14+z20+ 25 |,
r1 + 3+ X6

which yields a system of equations:
2o+ a3+ x4 =0

x1+x2+ x5 =0
r1+x3+x6 = 0.

Here x4 serves as a check bit for zo and z3; =5 is a check bit for 1 and x9;
and xg is a check bit for 1 and x3. The identity matrix keeps x4, x5, and xg
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from having to check on each other. Hence, 1, x2, and x3 can be arbitrary
but z4, x5, and xg must be chosen to ensure parity. The null space of H is
easily computed to be

(000000) (001101) (010110) (011011)
(100011) (101110) (110101) (111000).

An even easier way to compute the null space is with the generator matrix

G (Table 8.4). [ ]
Message Word | Codeword

X Gx

000 000000
001 001101
010 010110
011 011011
100 100011
101 101110
110 110101
111 111000

Table 8.4. A matrix-generated code

Theorem 8.7 If H € M,;,xn(Z2) is a canonical parity-check matriz, then
Null(H) consists of all x € Z% whose first n —m bits are arbitrary but whose
last m bits are determined by Hx = 0. Each of the last m bits serves as an
even parity check bit for some of the first n —m bits. Hence, H gives rise to
an (n,n —m)-block code.

We leave the proof of this theorem as an exercise. In light of the theorem,
the first n — m bits in x are called information bits and the last m bits
are called check bits. In Example 12, the first three bits are the information
bits and the last three are the check bits.

Theorem 8.8 Suppose that G is an n x k standard generator matriz. Then
C = {y :Gx =y forx e le} is an (n, k)-block code. More specifically, C
18 a group code.

ProOOF. Let Gx; = y; and Gxo = y2 be two codewords. Then y; + y2 is in
C since
G(x1 +x2) = Gx1 + Gxa = y1 + y2.
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We must also show that two message blocks cannot be encoded into the same
codeword. That is, we must show that if Gx = Gy, then x = y. Suppose
that Gx = Gy. Then

Gx—Gy=G(x—-y)=0.

However, the first k coordinates in G(x —y) are exactly 1 — y1, ..., T — Yx,
since they are determined by the identity matrix, I, part of G. Hence,
G(x —y) = 0 exactly when x = y. O

Before we can prove the relationship between canonical parity-check
matrices and standard generating matrices, we need to prove a lemma.

Lemma 8.9 Let H = (A| I,,) be an m x n canonical parity-check matriz

and G = (I”gm be the corresponding n x (n—m) standard generator matriz.
Then HG = 0.

ProOF. Let C'= HG. The ijth entry in C' is
Cij = Z hikgr;

o
= higi+ Y, hagk

k=1 k=n—m-+1
n—m n
= @bkt D i (men) kG
k=1 k=n—m+1
= aj + a;j
=0,
where
1, i=j
dij = o
0, i#j
is the Kronecker delta. O

Theorem 8.10 Let H = (A | I,,,) be an m x n canonical parity-check matric

and let G = (I"gm> be the n x (n —m) standard generator matriz associated

with H. Let C be the code generated by G. Then y s in C if and only if

Hy = 0. In particular, C' is a linear code with canonical parity-check matrix
H.
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Proor. First suppose that y € C. Then Gx =y for some x € Z35'. By
Lemma 8.9, Hy = HGx = 0.

Conversely, suppose that y = (y1,...,y,)" is in the null space of H. We
need to find an x in Z ™" such that Gx' = y. Since Hy = 0, the following
set of equations must be satisfied:

a11y1 +ay2 + -+ a1 p—mYn—m + Yn—m+1 =0
a21y1 + azy2 + -+ a2 n—mYn—m + Yn—m+1 = 0

Am1Y1 + am2y2 + - + Gmn—mYn—m + Yn—m+1 = 0.

Equivalently, ¥n—m+1, .-, Yn are determined by y1,...,Yn—m:

Yn—m+1 = @11Y1 + a12Y2 + - + A1 n—mYn—m

Yn—m—+1 = @21Y1 + a22y2 + - + A2 n—mYn—m

Yn—m+1 = Gm1Y1 + am2Yy2 + ** + Ampn—mYn—m-

Consequently, we can let z; = y; fori=1,...,n—m. O

It would be helpful if we could compute the minimum distance of a linear
code directly from its matrix H in order to determine the error-detecting
and error-correcting capabilities of the code. Suppose that

e; = (100---00)"
ey = (010---00)"

e, = (000---01)"

are the n-tuples in Z5 of weight 1. For an m x n binary matrix H, He; is
exactly the ith column of the matrix H.

Example 13. Observe that

— =
—_ O
S O =
S = O
— o O

OO O = O

Il
=)
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We state this result in the following proposition and leave the proof as
an exercise.

Proposition 8.11 Let e; be the binary n-tuple with a 1 in the ith coordinate
and 0’s elsewhere and suppose that H € My, xn(Z2). Then He; is the ith
column of the matriz H.

Theorem 8.12 Let H be an m x n binary matriz. Then the null space of
H is a single error-detecting code if and only if no column of H consists
entirely of zeros.

PROOF. Suppose that Null(H) is a single error-detecting code. Then the
minimum distance of the code must be at least 2. Since the null space is a
group code, it is sufficient to require that the code contain no codewords of
less than weight 2 other than the zero codeword. That is, e; must not be a
codeword for ¢ = 1,...,n. Since He; is the ith column of H, the only way
in which e; could be in the null space of H would be if the ith column were
all zeros, which is impossible; hence, the code must have the capability to
detect at least single errors.

Conversely, suppose that no column of H is the zero column. By Propo-
sition 8.11, He; # 0. U

Example 14. If we consider the matrices

1110
H=|1001
11 00

= o O

and
1 11 00
H,=|1 0 0 0 0},
1 1 0 0 1

then the null space of Hj is a single error-detecting code and the null space
of Hs is not. [ |

We can even do better than Theorem 8.12. This theorem gives us
conditions on a matrix H that tell us when the minimum weight of the code
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formed by the null space of H is 2. We can also determine when the minimum
distance of a linear code is 3 by examining the corresponding matrix.

Example 15. If we let
1 110
H=[1 0 0 1
1 100

and want to determine whether or not H is the canonical parity-check matrix
for an error-correcting code, it is necessary to make certain that Null(H) does
not contain any 4-tuples of weight 2. That is, (1100), (1010), (1001), (0110),
(0101), and (0011) must not be in Null(H). The next theorem states that
we can indeed determine that the code generated by H is error-correcting by
examining the columns of H. Notice in this example that not only does H
have no zero columns, but also that no two columns are the same. |

Theorem 8.13 Let H be a binary matriz. The null space of H is a single
error-correcting code if and only if H does not contain any zero columns and
no two columns of H are identical.

PROOF. The n-tuple e; + e; has 1’s in the ith and jth entries and 0’s
elsewhere, and w(e; 4+ e;) = 2 for i # j. Since

OzH(ei—i—ej):Hei—i—Hej

can only occur if the ¢th and jth columns are identical, the null space of H
is a single error-correcting code. O

Suppose now that we have a canonical parity-check matrix H with three
rows. Then we might ask how many more columns we can add to the
matrix and still have a null space that is a single error-detecting and single
error-correcting code. Since each column has three entries, there are 23 = 8
possible distinct columns. We cannot add the columns

0\ /1\ /o0\ /o0
ol,(o].l1].[o0
o/ \o/ \o/ \1

So we can add as many as four columns and still maintain a minimum
distance of 3.

In general, if H is an m X n canonical parity-check matrix, then there
are n — m information positions in each codeword. Each column has m
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bits, so there are 2™ possible distinct columns. It is necessary that the
columns 0, eq,...,e, be excluded, leaving 2™ — (1 4+ n) remaining columns
for information if we are still to maintain the ability not only to detect but
also to correct single errors.

8.4 Efficient Decoding

We are now at the stage where we are able to generate linear codes that
detect and correct errors fairly easily, but it is still a time-consuming process
to decode a received n-tuple and determine which is the closest codeword,
because the received n-tuple must be compared to each possible codeword
to determine the proper decoding. This can be a serious impediment if the
code is very large.

Example 16. Given the binary matrix

11100
H=101 01 0
10 001

and the 5-tuples x = (11011)" and y = (01011)*, we can compute

0
Hx= 10 and Hy =
0

—_ o -

Hence, x is a codeword and y is not, since x is in the null space and y is not.
Notice that Hx is identical to the first column of H. In fact, this is where
the error occurred. If we flip the first bit in y from 0 to 1, then we obtain x.

If H is an m x n matrix and x € Z3, then we say that the syndrome of
x is Hx. The following proposition allows the quick detection and correction
of errors.

Proposition 8.14 Let the m x n binary matrix H determine a linear code
and let x be the received n-tuple. Write X as x = ¢ + e, where ¢ is the
transmitted codeword and e is the transmission error. Then the syndrome
Hx of the received codeword x is also the syndrome of the error e.

Proor. Hx = H(c+e)=Hc+ He=0+ He = He. O
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This proposition tells us that the syndrome of a received word depends
solely on the error and not on the transmitted codeword. The proof of the
following theorem follows immediately from Proposition 8.14 and from the
fact that He is the ith column of the matrix H.

Theorem 8.15 Let H € M4, (Z2) and suppose that the linear code corre-
sponding to H 1is single error-correcting. Let r be a received n-tuple that was
transmitted with at most one error. If the syndrome of r is 0, then no error
has occurred; otherwise, if the syndrome of r is equal to some column of H,
say the ith column, then the error has occurred in the ith bit.

Example 17. Consider the matrix

101100
H=|0 11 010
111001
and suppose that the 6-tuples x = (111110)%, y = (111111)%, and z =

(010111)* have been received. Then

1 1 1
Hx=|1|,Hy=1|1|,Hz=|0
1 0 0

Hence, x has an error in the third bit and z has an error in the fourth bit. The
transmitted codewords for x and z must have been (110110) and (010011),
respectively. The syndrome of y does not occur in any of the columns of the
matrix H, so multiple errors must have occurred to produce y. |

Coset Decoding

We can use group theory to obtain another way of decoding messages. A
linear code C' is a subgroup of Z3j. Coset or standard decoding uses the
cosets of C' in Zj to implement maximum-likelihood decoding. Suppose
that C is an (n, m)-linear code. A coset of C' in Zf is written in the form
x + C, where x € ZJ. By Lagrange’s Theorem (Theorem 6.5), there are
2"~ distinct cosets of C' in Zj.

Example 18. Let C be the (5,3)-linear code given by the parity-check
matrix

H =

e )
— O
o O
o~ o
— o O
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Cosets

C (00000) (01101) (10011) (11110)
(10000) + (10000) (11101) (00011) (01110)
(01000) + (01000) (00101) (11011) (10110)
(00100) + (00100) (01001) (10111) (11010)
(00010) + (00010) (01111) (10001) (11100)
(00001) + C | (00001) (01100) (10010) (11111)
(10100) + C | (00111) (01010) (10100) (11001)
(00110) + C | (00110) (01011) (10101) (11000)

Table 8.5. Cosets of C

The code consists of the codewords
(00000) (01101) (10011) (11110).

There are 2°~2 = 23 cosets of C' in Z3, each with order 22 = 4. These cosets
are listed in Table 8.5. [

Our task is to find out how knowing the cosets might help us to decode
a message. Suppose that x was the original codeword sent and that r is the
n-tuple received. If e is the transmission error, then r = e+x or, equivalently,
x = e +r. However, this is exactly the statement that r is an element in the
coset e + C'. In maximum-likelihood decoding we expect the error e to be as
small as possible; that is, e will have the least weight. An n-tuple of least
weight in a coset is called a coset leader. Once we have determined a coset
leader for each coset, the decoding process becomes a task of calculating
r + e to obtain x.

Example 19. In Table 8.5, notice that we have chosen a representative
of the least possible weight for each coset. These representatives are coset
leaders. Now suppose that r = (01111) is the received word. To decode r,
we find that it is in the coset (00010) + C; hence, the originally transmitted
codeword must have been (01101) = (01111) + (00010). [

A potential problem with this method of decoding is that we might have
to examine every coset for the received codeword. The following proposition
gives a method of implementing coset decoding. It states that we can
associate a syndrome with each coset; hence, we can make a table that
designates a coset leader corresponding to each syndrome. Such a list is
called a decoding table.
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Syndrome | Coset Leader
(000) (00000)
(001) (00001)
(010) (00010)
(011) (10000)
(100) (00100)
(101) (01000)
(110) (00110)
(111) (10100)

Table 8.6. Syndromes for each coset

Proposition 8.16 Let C be an (n, k)-linear code given by the matriz H and
suppose that x and y are in Zy. Then x and 'y are in the same coset of C if
and only if Hx = Hy. That is, two n-tuples are in the same coset if and
only if their syndromes are the same.

Proor. Two n-tuples x and y are in the same coset of C' exactly when
x —y € C; however, this is equivalent to H(x —y) =0 or Hx = Hy. O

Example 20. Table 8.6 is a decoding table for the code C given in Exam-
ple 18. If x = (01111) is received, then its syndrome can be computed to

be
0

Hx= |1
1

Examining the decoding table, we determine that the coset leader is (00010).
It is now easy to decode the received codeword. ]

Given an (n, k)-block code, the question arises of whether or not coset
decoding is a manageable scheme. A decoding table requires a list of cosets
and syndromes, one for each of the 2" % cosets of C. Suppose that we have
a (32,24)-block code. We have a huge number of codewords, 224, yet there
are only 232724 = 28 = 256 cosets.

Exercises

1. Why is the following encoding scheme not acceptable?

Information: 0 1 2 3 4 5 6 7 8
Codeword: 000 001 010 011 101 110 111 000 001
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2. Without doing any addition, explain why the following set of 4-tuples in Zj3
cannot be a group code.

(0110) (1001) (1010) (1100)
3. Compute the Hamming distances between the following pairs of n-tuples.

(a) (011010), (011100) (¢c) (00110), (01111)
(b) (11110101), (01010100) (d) (1001), (0111)

4. Compute the weights of the following n-tuples.

(a) (011010) (c) (01111)
(b) (11110101) (d) (1011)

5. Suppose that a linear code C' has a minimum weight of 7. What are the
error-detection and error-correction capabilities of C'?

6. In each of the following codes, what is the minimum distance for the code?
What is the best situation we might hope for in connection with error detection
and error correction?

(a) (011010) (011100) (110111) (110000)

( ) (
(b) (011100) (011011) (111011) (100011)
(000000) (010101) (110100) (110011)
(
0

(¢) (000000) (011100) (110101) (110001)

(
(d) (0110110) (0111100) (1110000) (1111111)
(1001001) (1000011) (0001111) (0000000)

7. Compute the null space of each of the following matrices. What type of
(n, k)-block codes are the null spaces? Can you find a matrix (not necessarily
a standard generator matrix) that generates each code? Are your generator
matrices unique?

(a) ()
01000 100 11
10101 01011
10010
(d)
(b)
L o100 0 0001111
0110011
110100
1010101
0oL 00l 0110011
110001
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10.

11.

12.

13.
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Construct a (5,2)-block code. Discuss both the error-detection and error-
correction capabilities of your code.

Let C be the code obtained from the null space of the matrix
01 0 01
H=[1 01 0 1
001 11
Decode the message
01111 10101 01110 00011

if possible.

Suppose that a 1000-bit binary message is transmitted. Assume that the
probability of a single error is p and that the errors occurring in different
bits are independent of one another. If p = 0.01, what is the probability of
more than one error occurring? What is the probability of exactly two errors
occurring? Repeat this problem for p = 0.0001.

Which matrices are canonical parity-check matrices? For those matrices
that are canonical parity-check matrices, what are the corresponding stan-
dard generator matrices? What are the error-detection and error-correction
capabilities of the code generated by each of these matrices?

(a)

110 00 1 110
001 00 10 0 1
00 0 10
10 0 0 1
(d)
(b)

01100 0 0001 0O0O0

0110100
1101 00

101 0 0 10
0 10010 0110001
110 0 01

List all possible syndromes for the codes generated by each of the matrices in
the previous exercise.

Let
01 1 11
H=10 0 0 1 1
1 01 0 1
Compute the syndrome caused by each of the following transmission errors.

(a) An error in the first bit
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14.

15.

16.

17.

18.

19.

(b) An error in the third bit

(¢) An error in the last bit

(d) Errors in the third and fourth bits
Let C be the group code in Z3 defined by the codewords (000) and (111).
Compute the cosets of H in Z3. Why was there no need to specify right or

left cosets? Give the single transmission error, if any, to which each coset
corresponds.

For each of the following matrices, find the cosets of the corresponding code
C. Give a decoding table for each code if possible.

(a) (c)

01000 10011
10101 <01011>
10010
(d)
(b)
00100 1001111
11010 1110011
01010 1010101
11001 1110010

Let x, y, and z be binary n-tuples. Prove each of the following statements.
(a) w(x) = d(x,0)
(b) d(x,y) =d(x+z,y +2)
(c) dx,y) =w(x—y)

A metric on a set X is a map d : X x X — R satisfying the following
conditions.

(a) d(x,y) >0 for all x,y € X;

(b) d(x,y) = 0 exactly when x =y;
(c) d(x,y) = d(y,x);

(d) dx,y) < d(x,z) +d(z,y)

In other words, a metric is simply a generalization of the notion of distance.
Prove that Hamming distance is a metric on Z5. Decoding a message actually
reduces to deciding which is the closest codeword in terms of distance.

Let C be a linear code. Show that either the 7th coordinates in the codewords
of C' are all zeros or exactly half of them are zeros.

Let C be a linear code. Show that either every codeword has even weight or
exactly half of the codewords have even weight.
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20.

21.

22.

23.

24.

25.

26.
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Show that the codewords of even weight in a linear code C' are also a linear
code.

If we are to use an error-correcting linear code to transmit the 128 ASCII
characters, what size matrix must be used? What size matrix must be used
to transmit the extended ASCII character set of 256 characters? What if we
require only error detection in both cases?

Find the canonical parity-check matrix that gives the even parity check bit code
with three information positions. What is the matrix for seven information
positions? What are the corresponding standard generator matrices?

How many check positions are needed for a single error-correcting code with
20 information positions? With 32 information positions?

Let e; be the binary n-tuple with a 1 in the ith coordinate and 0’s elsewhere
and suppose that H € M, «,,(Z3). Show that He; is the ith column of the
matrix H.

Let C be an (n, k)-linear code. Define the dual or orthogonal code of C
to be
Ct={xecZ}:x-y=0foralyecC}

(a) Find the dual code of the linear code C' where C' is given by the matrix

11
0 0
10

O ==

0 0
0 1
1 0

(b) Show that C* is an (n,n — k)-linear code.

(c) Find the standard generator and parity-check matrices of C and C*.
What happens in general? Prove your conjecture.

Let H be an m X n matrix over Zs, where the ith column is the number 7
written in binary with m bits. The null space of such a matrix is called a
Hamming code.

(a) Show that the matrix

0001 11
H=10 1 1 0 0 1
101 010

generates a Hamming code. What are the error-correcting properties of
a Hamming code?

(b) The column corresponding to the syndrome also marks the bit that
was in error; that is, the ith column of the matrix is ¢ written as a
binary number, and the syndrome immediately tells us which bit is in
error. If the received word is (101011), compute the syndrome. In which
bit did the error occur in this case, and what codeword was originally
transmitted?
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(¢) Give a binary matrix H for the Hamming code with six information
positions and four check positions. What are the check positions and
what are the information positions? Encode the messages (101101) and
(001001). Decode the received words (0010000101) and (0000101100).
What are the possible syndromes for this code?

(d) What is the number of check bits and the number of information bits
in an (m,n)-block Hamming code? Give both an upper and a lower
bound on the number of information bits in terms of the number of
check bits. Hamming codes having the maximum possible number of
information bits with k check bits are called perfect. Every possible
syndrome except 0 occurs as a column. If the number of information
bits is less than the maximum, then the code is called shortened. In
this case, give an example showing that some syndromes can represent
multiple errors.

Programming Exercises

Write a program to implement a (16, 12)-linear code. Your program should be

able to encode and decode messages using coset decoding. Once your program is

written, write a program to simulate a binary symmetric channel with transmission

noise.

Compare the results of your simulation with the theoretically predicted error

probability.
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Isomorphisms

Many groups may appear to be different at first glance, but can be shown to
be the same by a simple renaming of the group elements. For example, Z4
and the subgroup of the circle group T generated by ¢ can be shown to be the
same by demonstrating a one-to-one correspondence between the elements
of the two groups and between the group operations. In such a case we say
that the groups are isomorphic.

9.1 Definition and Examples

Two groups (G,-) and (H,o) are isomorphic if there exists a one-to-one
and onto map ¢ : G — H such that the group operation is preserved; that is,

¢(a-b) = ¢(a) o ¢(b)

for all @ and b in G. If G is isomorphic to H, we write G = H. The map ¢
is called an tsomorphism.

Example 1. To show that Z4 = (i), define a map ¢ : Zs — (i) by ¢(n) = i".
We must show that ¢ is bijective and preserves the group operation. The
map ¢ is one-to-one and onto because

Since
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the group operation is preserved. |

Example 2. We can define an isomorphism ¢ from the additive group of
real numbers (R, +) to the multiplicative group of positive real numbers
(R*,-) with the exponential map; that is,

Ba+y) = & = eV = 9(x)o(y).

Of course, we must still show that ¢ is one-to-one and onto, but this can be
determined using calculus. |

Example 3. The integers are isomorphic to the subgroup of Q* consisting
of elements of the form 2”. Define a map ¢ : Z — Q* by ¢(n) = 2". Then

d(m +n) = 2™ = 2Mm2" = $(m)p(n).

By definition the map ¢ is onto the subset {2 : n € Z} of Q*. To show that
the map is injective, assume that m # n. If we can show that ¢(m) # ¢(n),
then we are done. Suppose that m > n and assume that ¢(m) = ¢(n). Then
2™ = 2" or 27" = 1, which is impossible since m —n > 0. |

Example 4. The groups Zg and Zi5 cannot be isomorphic since they have
different orders; however, it is true that U(8) = U(12). We know that

U(8) ={1,3,5,7}
U(12) = {1,5,7,11}.

An isomorphism ¢ : U(8) — U(12) is then given by

1—1
3—5
57
7— 11.

The map ¢ is not the only possible isomorphism between these two groups.
We could define another isomorphism ¢ by (1) =1, ¢(3) = 11, ¢(5) = 5,
¥(7) = 7. In fact, both of these groups are isomorphic to Zg x Zs (see
Example 14 in Chapter 3). |

Example 5. Even though S3 and Zg possess the same number of elements,
we would suspect that they are not isomorphic, because Zg is abelian and
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Ss is nonabelian. To demonstrate that this is indeed the case, suppose that
¢ : Zg — Ss is an isomorphism. Let a,b € S3 be two elements such that
ab # ba. Since ¢ is an isomorphism, there exist elements m and n in Zg
such that

¢(m)=a and ¢(n)="o.

However,
ab = ¢(m)p(n) = ¢(m +n) = ¢(n +m) = ¢(n)p(m) = ba,

which contradicts the fact that a and b do not commute. |
Theorem 9.1 Let ¢ : G — H be an isomorphism of two groups. Then the
following statements are true.

1. ¢=': H — G is an isomorphism.

2. |G| = |H]|.

3. If G is abelian, then H is abelian.

4. If G is cyclic, then H is cyclic.

5. If G has a subgroup of order n, then H has a subgroup of order n.

PROOF. Assertions (1) and (2) follow from the fact that ¢ is a bijection. We
will prove (3) here and leave the remainder of the theorem to be proved in
the exercises.

(3) Suppose that h; and hg are elements of H. Since ¢ is onto, there
exist elements g1, g2 € G such that ¢(g1) = h1 and ¢(g2) = he. Therefore,

hiha = ¢(91)¢(92) = ¢(g192) = #(g9291) = ¢(g2)P(g1) = hahi.

We are now in a position to characterize all cyclic groups.
Theorem 9.2 All cyclic groups of infinite order are isomorphic to Z.

PROOF. Let G be a cyclic group with infinite order and suppose that a is a
generator of G. Define a map ¢ : Z — G by ¢ : n — a™. Then

d(m+n) =a™™™ =a"a" = ¢(m)p(n).
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To show that ¢ is injective, suppose that m and n are two elements in Z,
where m # n. We can assume that m > n. We must show that a™ # a”.
Let us suppose the contrary; that is, " = a™. In this case ™" = e, where
m — n > 0, which contradicts the fact that a has infinite order. Our map
is onto since any element in GG can be written as a™ for some integer n and

¢(n) =a™. O
Theorem 9.3 If G is a cyclic group of order n, then G is isomorphic to Zi,.

PRrROOF. Let G be a cyclic group of order n generated by a and define a
map ¢ : Z, — G by ¢ : k — a¥, where 0 < k < n. The proof that ¢ is an
isomorphism is one of the end-of-chapter exercises. O

Corollary 9.4 If G is a group of order p, where p is a prime number, then
G is isomorphic to Zy.

PrOOF. The proof is a direct result of Corollary 6.7. 0

The main goal in group theory is to classify all groups; however, it makes
sense to consider two groups to be the same if they are isomorphic. We state
this result in the following theorem, whose proof is left as an exercise.

Theorem 9.5 The isomorphism of groups determines an equivalence rela-
tion on the class of all groups.

Hence, we can modify our goal of classifying all groups to classifying all
groups up to itsomorphism; that is, we will consider two groups to be the
same if they are isomorphic.

Cayley’s Theorem

Cayley proved that if G is a group, it is isomorphic to a group of permutations
on some set; hence, every group is a permutation group. Cayley’s Theorem
is what we call a representation theorem. The aim of representation theory
is to find an isomorphism of some group G that we wish to study into a
group that we know a great deal about, such as a group of permutations or
matrices.

Example 6. Consider the group Zs. The Cayley table for Zs is as follows.

+10 1 2
0]0 1 2
111 2 0
212 0 1
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The addition table of Z3 suggests that it is the same as the permutation
group G = {(0), (012), (021)}. The isomorphism here is

0 1
0»—><0 1
01 2
1»—>(1 9 0>_(012)
0 1
2%<2 !

Theorem 9.6 (Cayley) FEvery group is isomorphic to a group of permuta-
tions.

PROOF. Let G be a group. We must find a group of permutations G that is
isomorphic to G. For any g € G, define a function Ay : G — G by \y(a) = ga.
We claim that A\, is a permutation of G. To show that ), is one-to-one,
suppose that A\g(a) = Ag(b). Then

ga = Ag(a) = Ag(b) = gb.

Hence, a = b. To show that )\, is onto, we must prove that for each a € G,
there is a b such that A\,(b) = a. Let b = g~ 'a.

Now we are ready to define our group G. Let
G={)\:9€G}.

We must show that G is a group under composition of functions and find
an isomorphism between G and G. We have closure under composition of
functions since

(Ag o Ap)(a) = Ag(ha) = gha = Agp(a).
Also,

Ae(a) =ea=a

and
(Ag-10Ag)(a) = A\g-1(ga) = g rga =a = \(a).

We can define an isomorphism from G to G by ¢ : g — Ag- The group
operation is preserved since

P(gh) = Agh = AgAn = &(g9)p(h).
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It is also one-to-one, because if ¢(g)(a) = ¢(h)(a), then
ga = Aga = A\pa = ha.

Hence, g = h. That ¢ is onto follows from the fact that ¢(g) = A\, for any
A €G. O

The isomorphism g — )4 is known as the left regular representation

of G.

[ ]  Historical Note | ]

Arthur Cayley was born in England in 1821, though he spent much of the first
part of his life in Russia, where his father was a merchant. Cayley was educated at
Cambridge, where he took the first Smith’s Prize in mathematics. A lawyer for much
of his adult life, he wrote several papers in his early twenties before entering the
legal profession at the age of 25. While practicing law he continued his mathematical
research, writing more than 300 papers during this period of his life. These included
some of his best work. In 1863 he left law to become a professor at Cambridge.
Cayley wrote more than 900 papers in fields such as group theory, geometry, and
linear algebra. His legal knowledge was very valuable to Cambridge; he participated
in the writing of many of the university’s statutes. Cayley was also one of the people
responsible for the admission of women to Cambridge. [ ]

9.2 Direct Products

Given two groups G and H, it is possible to construct a new group from the
Cartesian product of G and H, G x H. Conversely, given a large group, it is
sometimes possible to decompose the group; that is, a group is sometimes
isomorphic to the direct product of two smaller groups. Rather than studying
a large group G, it is often easier to study the component groups of G.

External Direct Products

If (G,-) and (H, o) are groups, then we can make the Cartesian product of
G and H into a new group. As a set, our group is just the ordered pairs
(g,h) € G x H where g € G and h € H. We can define a binary operation
on G x H by

(91, h1)(g2, ha) = (91 - g2, h1 0 ha);

that is, we just multiply elements in the first coordinate as we do in G and
elements in the second coordinate as we do in H. We have specified the
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particular operations - and o in each group here for the sake of clarity; we
usually just write (g1, h1)(g2, h2) = (9192, hih2).

Proposition 9.7 Let G and H be groups. The set G X H is a group under
the operation (g1, h1)(g2, ha) = (9192, h1he) where g1,g2 € G and hi,hs € H.

PRroOF. Clearly the binary operation defined above is closed. If e and ey
are the identities of the groups G and H respectively, then (eq,ep) is the
identity of G x H. The inverse of (g,h) € G x H is (g~,h™1). The fact
that the operation is associative follows directly from the associativity of G
and H. O

Example 7. Let R be the group of real numbers under addition. The
Cartesian product of R with itself, R x R = R?, is also a group, in which the
group operation is just addition in each coordinate; that is, (a,b) + (¢,d) =
(a4 ¢,b+ d). The identity is (0,0) and the inverse of (a,b) is (—a,—b). W

Example 8. Consider
Z2 X ZQ = {(07 0)7 (07 1)7 (17 0)7 (17 1)}

Although Zs X Zo and Z,4 both contain four elements, it is easy to see
that they are not isomorphic since for every element (a,b) in Zg X Zo,
(a,b) + (a,b) = (0,0), but Z4 is cyclic. |

The group G x H is called the external direct product of G and H.
Notice that there is nothing special about the fact that we have used only
two groups to build a new group. The direct product

HGi:Glegx---xGn

i=1

of the groups G1,Ga,...,G, is defined in exactly the same manner. If
G =Gy =Gy =" =Gy, we often write G™ instead of G; X Gg X - -+ X G,.

Example 9. The group Z3, considered as a set, is just the set of all binary
n-tuples. The group operation is the “exclusive or” of two binary n-tuples.
For example,

(01011101) + (01001011) = (00010110).

This group is important in coding theory, in cryptography, and in many
areas of computer science. [ |
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Theorem 9.8 Let (g,h) € G x H. If g and h have finite orders r and s
respectively, then the order of (g,h) in G x H is the least common multiple
of r and s.

PROOF. Suppose that m is the least common multiple of r and s and let
n = (g, h)|. Then

(9. h)™ = (g™, h"™) = (ec.en)

(9" h") = (9, h)" = (ec, en).
Hence, n must divide m, and n < m. However, by the second equation, both
r and s must divide n; therefore, n is a common multiple of r and s. Since

m is the least common multiple of r and s, m < n. Consequently, m must
be equal to n. O

Corollary 9.9 Let (g1,...,9n) € [[ Gi. If gi has finite order r; in G;, then
the order of (g1,...,gn) in [ Gi is the least common multiple of r1, ...,y

Example 10. Let (8,56) € Z12 X Zgp. Since ged(8,12) = 4, the order of 8
is 12/4 = 3 in Zq3. Similarly, the order of 56 in Zg is 15. The least common
multiple of 3 and 15 is 15; hence, (8,56) has order 15 in Zis X Zgo. |

Example 11. The group Zo x Zs consists of the pairs

(0,0), (0,1), (0,2), (1,0), (1,1), (1,2).

In this case, unlike that of Zs X Zs and Z4, it is true that Zo x Z3s = Zs.
We need only show that Zy x Zs is cyclic. It is easy to see that (1,1) is a
generator for Zo X Zs. |

The next theorem tells us exactly when the direct product of two cyclic

groups is cyclic.

Theorem 9.10 The group Zy, X Z, is isomorphic to Zpmy if and only if
ged(m,n) = 1.

PROOF. Assume first that if Z,, X Z, = Zny, then ged(m,n) = 1. To
show this, we will prove the contrapositive; that is, we will show that if
ged(m,n) = d > 1, then Z,, x Z, cannot be cyclic. Notice that mn/d is
divisible by both m and n; hence, for any element (a,b) € Zy, X Zy,

(a,b) + (a,b) + -+ + (a,b) = (0,0).

mn/d times
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Therefore, no (a,b) can generate all of Z,, X Z,.
The converse follows directly from Theorem 9.8 since lem(m,n) = mn if
and only if ged(m,n) = 1. O

Corollary 9.11 Let ny,...,n be positive integers. Then

k
117
i=1

if and only if ged(ni, nj) =1 fori # j.

1

v/

Corollary 9.12 [f
m:pi’l pzk’

where the p;s are distinct primes, then
Zm gZpil X+ X Zpik.
PROOF. Since the greatest common divisor of pf* and pjj is 1 for i # j, the
proof follows from Corollary 9.11. U
In Chapter 13, we will prove that all finite abelian groups are isomorphic
to direct products of the form
Zpil X - X szk

where p1,...,pr are (not necessarily distinct) primes.

Internal Direct Products

The external direct product of two groups builds a large group out of
two smaller groups. We would like to be able to reverse this process and
conveniently break down a group into its direct product components; that
is, we would like to be able to say when a group is isomorphic to the direct
product of two of its subgroups.

Let G be a group with subgroups H and K satisfying the following
conditions.

e G=HK={hk:he H ke K};
e HNK = {e};
e hk =khforall ke K and h € H.
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Then G is the internal direct product of H and K.

Example 12. The group U(8) is the internal direct product of
H=1{1,3} and K ={1,5}.
[

Example 13. The dihedral group Dg is an internal direct product of its
two subgroups

H = {id,r3} and K = {id,r*,r* s,1%s 15}

It can easily be shown that K = S3; consequently, Dg & Zo X Ss. |

Example 14. Not every group can be written as the internal direct product
of two of its proper subgroups. If the group S5 were an internal direct product
of its proper subgroups H and K, then one of the subgroups, say H, would
have to have order 3. In this case H is the subgroup {(1),(123),(132)}. The
subgroup K must have order 2, but no matter which subgroup we choose for
K, the condition that hk = kh will never be satisfied for h € H and k € K.

|

Theorem 9.13 Let G be the internal direct product of subgroups H and K.
Then G is isomorphic to H x K.

PRrROOF. Since G is an internal direct product, we can write any element g € G
as g = hk for some h € H and some k € K. Defineamap ¢: G — H x K

by ¢(g) = (hvk)

The first problem that we must face is to show that ¢ is a well-defined
map; that is, we must show that A and k are uniquely determined by g.
Suppose that g = hk = h'K’. Then h='h/ = k(k’)~! is in both H and K, so
it must be the identity. Therefore, h = h' and k = k’, which proves that ¢ is,
indeed, well-defined.

To show that ¢ preserves the group operation, let g1 = h1k1 and go = hoks
and observe that

#(g192) = ¢(h1kihoks)
= ¢(h1hakiks)
= (h1ha, k1ks)
= (h1,k1)(ho, k2)
= ¢(91)0(92)-
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We will leave the proof that ¢ is one-to-one and onto as an exercise. O

Example 15. The group Zg is an internal direct product isomorphic to
{0,2,4} x {0, 3}. ]

We can extend the definition of an internal direct product of G to a
collection of subgroups Hi, Ho, ..., H, of G, by requiring that

e G=HHy---H, ={hihy---hy: h; € H;};
o H;N(UjziHj) = {e};
° hihj = hjhi for all h; € H; and hj € Hj.
We will leave the proof of the following theorem as an exercise.

Theorem 9.14 Let G be the internal direct product of subgroups H;, where
i=1,2,...,n. Then G is isomorphic to [[; H;.

Exercises

1. Prove that Z = nZ for n # 0.

2. Prove that C* is isomorphic to the subgroup of GL2(R) consisting of matrices

of the form
a b
-b a

4. Prove that U(8) is isomorphic to the group of matrices

(D6 50 S)

Show that U(5) is isomorphic to U(10), but U(12) is not.

3. Prove or disprove: U(8) = Zy.

Show that the nth roots of unity are isomorphic to Z,.
Show that any cyclic group of order n is isomorphic to Z,,.
Prove that Q is not isomorphic to Z.

Let G =R\ {—1} and define a binary operation on G by

© % N o oo

a*xb=a-+ b+ ab.

Prove that G is a group under this operation. Show that (G, %) is isomorphic
to the multiplicative group of nonzero real numbers.
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10.

11.
12.
13.

14.

15.
16.

17.

18.

19.

20.

Show that the matrices

1 00 1 0 0 010
010 0 01 1 00
0 01 0 1 0 0 01
0 0 1 0 0 1 010
1 00 01 0 0 01
010 1 00 100

form a group. Find an isomorphism of G with a more familiar group of
order 6.

Find five non-isomorphic groups of order 8.
Prove Sy is not isomorphic to D1s.

Let w = cis(27/n) be a primitive nth root of unity. Prove that the matrices

w 0 01
A—(O w_1> and B_<1 O>

generate a multiplicative group isomorphic to D,,.

Show that the set of all matrices of the form

+1 n
2= ).

where n € Z,, is a group isomorphic to D,,.
List all of the elements of Z4 X Zs.

Find the order of each of the following elements.

(a
(b
(c
(d

3,4) in Zy x Zg
6, 1574) in Zgo X Z45 X Z24
5, ].0, 15) in ZQ5 X Z25 X Z25

)
)
)
) (8,8,8) in Z1g X Zaoyg X Zso

o~ o~ o~ o~

Prove that D4 cannot be the internal direct product of two of its proper
subgroups.

Prove that the subgroup of Q* consisting of elements of the form 2™3™ for
m,n € 7 is an internal direct product isomorphic to Z x Z.

Prove that S5 x Zs is isomorphic to Dg. Can you make a conjecture about
Ds,,? Prove your conjecture. [Hint: Draw the picture.]

Prove or disprove: Every abelian group of order divisible by 3 contains a
subgroup of order 3.
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21

22.

23.

24.
25.
26.

27.
28.
29.
30.
31.

32.
33.

34.

35.
36.
37.

38.
39.
40.
41.
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. Prove or disprove: Every nonabelian group of order divisible by 6 contains a
subgroup of order 6.

Let G be a group of order 20. If G has subgroups H and K of orders 4 and 5
respectively such that hk = kh for all h € H and k € K, prove that G is the
internal direct product of H and K.

Prove or disprove the following assertion. Let G, H, and K be groups. If
Gx K=2HxK, then G H.

Prove or disprove: There is a noncyclic abelian group of order 51.

Prove or disprove: There is a noncyclic abelian group of order 52.

Let ¢ : G1 — G2 be a group isomorphism. Show that ¢(z) = e if and only if
x=e.

Let G = H. Show that if G is cyclic, then so is H.

Prove that any group G of order p, p prime, must be isomorphic to Z,,.
Show that S, is isomorphic to a subgroup of A, ;2.

Prove that D,, is isomorphic to a subgroup of S,,.

Let ¢ : Gi — G9 and ¢ : G5 — G5 be isomorphisms. Show that ¢! and
1 o ¢ are both isomorphisms. Using these results, show that the isomorphism
of groups determines an equivalence relation on the class of all groups.

Prove U(5) = Z,. Can you generalize this result to show that U(p) & Z,_1?

Write out the permutations associated with each element of S3 in the proof
of Cayley’s Theorem.

An automorphism of a group G is an isomorphism with itself. Prove that
complex conjugation is an automorphism of the additive group of complex
numbers; that is, show that the map ¢(a + bi) = a — bi is an isomorphism
from C to C.

Prove that a + ib — a — ib is an automorphism of C*.
Prove that A +— B~'AB is an automorphism of SLy(R) for all B in GLy(R).

We will denote the set of all automorphisms of G by Aut(G). Prove that
Aut(@G) is a subgroup of S¢g, the group of permutations of G.

Find Aut(Z).

Find two nonisomorphic groups G and H such that Aut(G) = Aut(H).

Let G be a group and g € G. Define a map i, : G — G by i4(z) = gzg™'.

Prove that i, defines an automorphism of G. Such an automorphism is called
an tnner automorphism. The set of all inner automorphisms is denoted
by Inn(G).
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42

43.

44.

45.

46.

47.
48.
49.

50.
ol.

52.

53.
54.
55.

. Prove that Inn(G) is a subgroup of Aut(G).
What are the inner automorphisms of the quaternion group Qg? Is Inn(G) =
Aut(G) in this case?

Let G be a group and g € G. Define maps A\, : G — G and p, : G = G by
Ag(7) = gz and py(x) = zg~'. Show that iy = p, o A, is an automorphism of
G. The isomorphism g — pg is called the right regular representation
of G.

Let G be the internal direct product of subgroups H and K. Show that the
map ¢ : G — H x K defined by ¢(g) = (h, k) for g = hk, where h € H and

k € K, is one-to-one and onto.

Let G and H be isomorphic groups. If G has a subgroup of order n, prove
that H must also have a subgroup of order n.

If G =G and H = H, show that G x H =G x H.
Prove that G x H is isomorphic to H x G.

Let nq,...,n, be positive integers. Show that

k
H Lip; = Lin,..m,,
i=1

if and only if ged(n;, n;) =1 for i # j.
Prove that A x B is abelian if and only if A and B are abelian.

If G is the internal direct product of Hy, Hs, ..., H,, prove that G is isomor-
phic to [[, H;.

Let Hy, and Hs be subgroups of G; and G, respectively. Prove that H; x Hy
is a subgroup of G; X Gbs.
Let m,n € Z. Prove that (m,n) = (d) if and only if d = ged(m, n).
Let m,n € Z. Prove that (m) N (n) = (I} if and only if I = lem(m, n).
Groups of order 2p. In this series of exercises we will classify all groups of
order 2p, where p is an odd prime.

(a) Assume G is a group of order 2p, where p is an odd prime. If a € G,

show that A must have order 1, 2, p, or 2p.

(b) Suppose that G an element of order 2p. Prove that G isomorphic to
Zsp. Hence, G is cyclic.

(c) Suppose that G does not contain an element of order 2p. Show that
GG must contain an element of order p. Hint: Assume that G does not
contain an element of order p.
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(d)
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Suppose that G does not contain an element of order 2p. Show that G
must contain an element of order 2.

Let P be a subgroup of G with order p and y € G have order 2. Show
that yP = Py.

Suppose that G does not contain an element of order 2p and P = (z)
is a subgroup of order p generated by z. If y is an element of order 2,
then yz = 2"y for some 2 < k < p.

Suppose that G does not contain an element of order 2p. Prove that G
is not abelian.

Suppose that G does not contain an element of order 2p and P = (z)
is a subgroup of order p generated by z and y is an element of order 2.
Show that we can list the elements of G as {z'y? |0 <i < p,0<j < 2}.

Suppose that G does not contain an element of order 2p and P = (z)
is a subgroup of order p generated by z and y is an element of order 2.
Prove that the product (z%y’)(2"y*) can be expressed as a uniquely as
z™My™ for some non negative integers m, n. Thus, conclude that there is
only one possibility for a non-abelian group of order 2p, it must therefore
be the one we have seen already, the dihedral group.

Sage Sage can quickly determine if two permutation groups are isomorphic,
even though this should, in theory, be a very difficult computation.
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Normal Subgroups and
Factor Groups

If H is a subgroup of a group G, then right cosets are not always the same
as left cosets; that is, it is not always the case that gH = Hg for all g € G.
The subgroups for which this property holds play a critical role in group
theory: they allow for the construction of a new class of groups, called factor
or quotient groups. Factor groups may be studied by using homomorphisms,
a generalization of isomorphisms.

10.1 Factor Groups and Normal Subgroups

Normal Subgroups

A subgroup H of a group G is normal in G if gH = Hg for all g € G. That
is, a normal subgroup of a group G is one in which the right and left cosets
are precisely the same.

Example 1. Let G be an abelian group. Every subgroup H of G is a normal
subgroup. Since gh = hg for all g € G and h € H, it will always be the case
that gH = Hg. |

Example 2. Let H be the subgroup of S3 consisting of elements (1) and
(12). Since
(123)H = {(123),(13)} and H(123) = {(123),(23)},

H cannot be a normal subgroup of S3. However, the subgroup N, consisting
of the permutations (1), (123), and (132), is normal since the cosets of N are

N ={(1),(123),(132)}
(12)N = N(12) = {(12), (13), (23)}.

159
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The following theorem is fundamental to our understanding of normal
subgroups.

Theorem 10.1 Let G be a group and N be a subgroup of G. Then the
following statements are equivalent.

1. The subgroup N is normal in G.
2. Forallge G, gNg~* C N.

3. Forallge G, gNg~* = N.

PROOF. (1) = (2). Since N is normal in G, gN = Ng for all g € G. Hence,
for a given ¢ € G and n € N, there exists an n’ in N such that gn = n/g.
Therefore, gng™' =n’ € N or gNg~' C N.

(2) = (3). Let g € G. Since gNg~! C N, we need only show N C gNg~1.
Forn € N, g7'ng =g 'n(g~!)~! € N. Hence, g~'ng = n’ for some n’ € N.
Therefore, n = gn’g~! is in gNg~ .

(3) = (1). Suppose that gNg=! = N for all g € G. Then for any n € N
there exists an n’ € N such that gng~' = n’. Consequently, gn = n’g or

gN C Ng. Similarly, Ng C gN. O

Factor Groups

If N is a normal subgroup of a group G, then the cosets of N in G form
a group G/N under the operation (aN)(bN) = abN. This group is called
the factor or quotient group of G and N. Our first task is to prove that
G/N is indeed a group.

Theorem 10.2 Let N be a normal subgroup of a group G. The cosets of N
in G form a group G/N of order [G : N].

PROOF. The group operation on G/N is (aN)(bN) = abN. This operation
must be shown to be well-defined; that is, group multiplication must be
independent of the choice of coset representative. Let alN = bN and ¢cN = dN.
We must show that

(aN)(cN) = acN = bdN = (bN)(dN).
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Then a = bn; and ¢ = dny for some n; and ny in N. Hence,

acN = bnidna N
= bnidN
=bn1Nd
=bNd
= bdN.

The remainder of the theorem is easy: eN = N is the identity and g~'N is
the inverse of gN. The order of G/N is, of course, the number of cosets of
N in G. O

It is very important to remember that the elements in a factor group are
sets of elements in the original group.

Example 3. Consider the normal subgroup of S3, N = {(1), (123), (132)}.
The cosets of N in S3 are N and (12)N. The factor group S3/N has the
following multiplication table.

| N
N N  (12)N
(12)N | (12) N N

This group is isomorphic to Zo. At first, multiplying cosets seems both
complicated and strange; however, notice that S3/N is a smaller group. The
factor group displays a certain amount of information about S3. Actually,
N = As, the group of even permutations, and (12) N = {(12), (13), (23)} is the
set of odd permutations. The information captured in G/N is parity; that is,
multiplying two even or two odd permutations results in an even permutation,
whereas multiplying an odd permutation by an even permutation yields an
odd permutation. [ |

Example 4. Consider the normal subgroup 3Z of Z. The cosets of 3Z in Z
are

04+3Z=1{...,—3,0,3,6,...}
143Z={...,-2,1,4,7,..}
24+3Z=1{..,-1,2,58,...}.

The group Z/3Z is given by the multiplication table below.
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+ |0+3Z 1+43Z 2+3%Z
0+3Z |[0+3Z 1+3Z 2+3Z
1+3Z | 1+3Z 2+3Z 0+ 3%
2+3Z | 243Z 0+3Z 1+3Z

In general, the subgroup nZ of Z is normal. The cosets of Z/nZ are

nz
1+ nZ
2+ n

(n—1)+nZ.

The sum of the cosets k + 7Z and | + Z is k + | + Z. Notice that we have
written our cosets additively, because the group operation is integer addition.
[ |

Example 5. Consider the dihedral group D,,, generated by the two elements
r and s, satisfying the relations

r" =id
s? =id
Srs = r L

The element r actually generates the cyclic subgroup of rotations, Ry, of D,.
Since srs~! = srs = r~! € R, the group of rotations is a normal subgroup
of D,; therefore, D, /R, is a group. Since there are exactly two elements in
this group, it must be isomorphic to Zs. |

10.2 The Simplicity of the Alternating Group

Of special interest are groups with no nontrivial normal subgroups. Such
groups are called simple groups. Of course, we already have a whole
class of examples of simple groups, Z,, where p is prime. These groups are
trivially simple since they have no proper subgroups other than the subgroup
consisting solely of the identity. Other examples of simple groups are not
so easily found. We can, however, show that the alternating group, A,, is
simple for n > 5. The proof of this result requires several lemmas.

Lemma 10.3 The alternating group A, is generated by 3-cycles for n > 3.
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ProOF. To show that the 3-cycles generate A,,, we need only show that
any pair of transpositions can be written as the product of 3-cycles. Since
(ab) = (ba), every pair of transpositions must be one of the following:

0

Lemma 10.4 Let N be a normal subgroup of A,, where n > 3. If N
contains a 3-cycle, then N = A,,.

ProoOF. We will first show that A, is generated by 3-cycles of the specific
form (ijk), where i and j are fixed in {1,2,...,n} and we let k vary. Every
3-cycle is the product of 3-cycles of this form, since

107 (ija)2

(ijb)(ija)?
(i4b)*(ija)
(ija)*(ije)(ijb)* (ija).

—

iab

jab

abc

—~
~— ~— ~— ~~—
I

Now suppose that N is a nontrivial normal subgroup of A,, for n > 3 such
that N contains a 3-cycle of the form (ija). Using the normality of N, we
see that

[(i5)(ak)](ija)?((ij)(ak)] ™" = (ijk)

is in N. Hence, N must contain all of the 3-cycles (ijk) for 1 < k <n. By
Lemma 10.3, these 3-cycles generate A,; hence, N = A,,. O

Lemma 10.5 Forn > 5, every normal subgroup N of A, contains a 3-cycle.

PRrOOF. Let o be an arbitrary element in a normal subgroup N. There are
several possible cycle structures for o.

e o is a 3-cycle.

o is the product of disjoint cycles, o = 7(ajas---a,) € N, where r > 3.

o is the product of disjoint cycles, o = 7(ajazas)(asasag).

e 0 = 7(ajagas), where 7 is the product of disjoint 2-cycles.
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e 0 = 7(ajaz)(agay), where 7 is the product of an even number of disjoint
2-cycles.

If o is a 3-cycle, then we are done. If N contains a product of disjoint
cycles, o, and at least one of these cycles has length greater than 3, say
o =r7(ajaz---a,), then

(ara2a3)0(arazas)™"

is in N since N is normal; hence,
-1 —1
g (alagag)a(alagag)

is also in N. Since

o1 ajagas)o (alagag)_l

=0 l(alagag)a(alagag)

= (ajag - ) r=Yaraza3)T(aras - - - a,)(a1azas)
= (a1arar—1 - - - az)(araz2a3)(aras - - - a,)(arasaz)
(a1a3ar)

N must contain a 3-cycle; hence, N = A,.
Now suppose that N contains a disjoint product of the form

o = 1(ajazas)(asasae).

Then
o YNarazay)o(aragas) ™t € N
since
(ara0a4)0(arazay) ™ € N.
So

o1 (a1a2a4)a(a1a2a4)*1
= [r(ayaza3)(asasae)] " (a1a0aq)T(a1a2a3) (asasae)(a1asay) ™
= (agagas)(aiazas)T L (ayasaq)7(araza3)(asasag) (ayasaz)
= (agapas)(arazaz)(arazaq)(arazas)(asasas)(aagas)
= (arasaza6a3).

So N contains a disjoint cycle of length greater than 3, and we can apply
the previous case.
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Suppose N contains a disjoint product of the form o = 7(ajazas), where
7 is the product of disjoint 2-cycles. Since 0 € N, ¢? € N, and
02 = T(alagag)T(alagag)

= (a1azaz).

So N contains a 3-cycle.
The only remaining possible case is a disjoint product of the form

o =7(a1az)(asas),
where 7 is the product of an even number of disjoint 2-cycles. But

U_l(a1a2a3)0(a1a2a3)_1

1

is in N since (ajasas)o(aiazas)™" is in N; and so

J_l(a1a2a3)0(a1a2a3)_1
= 7'_1(alag)(a3a4)(alagag)T(alag)(a3a4)(a1a2a3)_1

= (alag) (a2a4).

Since n > 5, we can find b € {1,2,...,n} such that b # a1, az2,as,as. Let
w = (ayasb). Then

1 Yaras)(agas) p(aras)(azay) € N
and

p " (araz)(agas)p(araz) (azas)
= (a1bas)(aras)(azaq)(arasb)(ajas)(azay)

= (ajasb).
Therefore, N contains a 3-cycle. This completes the proof of the lemma. [
Theorem 10.6 The alternating group, Ay, is simple for n > 5.

PROOF. Let N be a normal subgroup of A,. By Lemma 10.5, N contains
a 3-cycle. By Lemma 10.4, N = A,; therefore, A, contains no proper
nontrivial normal subgroups for n > 5. O

]  Historical Note |
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One of the foremost problems of group theory has been to classify all simple finite
groups. This problem is over a century old and has been solved only in the last few
years. In a sense, finite simple groups are the building blocks of all finite groups. The
first nonabelian simple groups to be discovered were the alternating groups. Galois
was the first to prove that As was simple. Later mathematicians, such as C. Jordan
and L. E. Dickson, found several infinite families of matrix groups that were simple.
Other families of simple groups were discovered in the 1950s. At the turn of the
century, William Burnside conjectured that all nonabelian simple groups must have
even order. In 1963, W. Feit and J. Thompson proved Burnside’s conjecture and
published their results in the paper “Solvability of Groups of Odd Order,” which
appeared in the Pacific Journal of Mathematics. Their proof, running over 250
pages, gave impetus to a program in the 1960s and 1970s to classify all finite simple
groups. Daniel Gorenstein was the organizer of this remarkable effort. One of the
last simple groups was the “Monster,” discovered by R. Greiss. The Monster, a
196,833 x 196,833 matrix group, is one of the 26 sporadic, or special, simple groups.
These sporadic simple groups are groups that fit into no infinite family of simple
groups. [

Exercises

1. For each of the following groups G, determine whether H is a normal subgroup
of G. If H is a normal subgroup, write out a Cayley table for the factor group
G/H.

(a) G=Syand H = Ay

(b) G=As and H = {(1),(123), (132)}
(¢) G=Sysand H =D,

(d) G=Qsand H={1,-1,1,-1I}

() G=7Z and H =5Z

2. Find all the subgroups of Ds. Which subgroups are normal? What are all
the factor groups of D4 up to isomorphism?

3. Find all the subgroups of the quaternion group, Js. Which subgroups are
normal? What are all the factor groups of Qg up to isomorphism?

4. Let T be the group of nonsingular upper triangular 2 x 2 matrices with entries
in R; that is, matrices of the form

(6 2)
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11.

12.

13.

14.

where a, b, ¢ € R and ac # 0. Let U consist of matrices of the form
1 =z
0o 1)’

(a) Show that U is a subgroup of T
(b) Prove that U is abelian.

(¢) Prove that U is normal in T'.
(d) Show that T/U is abelian.

(e) Is T normal in GLy(R)?

where x € R.

. Show that the intersection of two normal subgroups is a normal subgroup.
. If G is abelian, prove that G/H must also be abelian.
. Prove or disprove: If H is a normal subgroup of G such that H and G/H are

abelian, then G is abelian.

. If G is cyclic, prove that G/H must also be cyclic.
. Prove or disprove: If H and G/H are cyclic, then G is cyclic.
10.

Let H be a subgroup of index 2 of a group G. Prove that H must be a normal
subgroup of GG. Conclude that S, is not simple.

Let G be a group of order p?, where p is a prime number. If H is a subgroup
of G of order p, show that H is normal in G. Prove that G must be abelian.

If a group G has exactly one subgroup H of order k, prove that H is normal
in G.

Define the centralizer of an element g in a group G to be the set
Clg) ={z € G:zg=gx}.

Show that C(g) is a subgroup of G. If g generates a normal subgroup of G,
prove that C(g) is normal in G.

Recall that the center of a group G is the set
Z(G)={xeG:zg=grforall ge G }.

(a) Calculate the center of Ss.

(b) Calculate the center of GLa(R).

(c) Show that the center of any group G is a normal subgroup of G.
(d) If G/Z(G) is cyclic, show that G is abelian.
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15. Let G be a group and let G’ = (aba~'b~1); that is, G’ is the subgroup of all
finite products of elements in G of the form aba~'b~'. The subgroup G’ is
called the commutator subgroup of G.

(a) Show that G’ is a normal subgroup of G.

(b) Let N be a normal subgroup of G. Prove that G/N is abelian if and
only if N contains the commutator subgroup of G.

Sage Sage can esily determine if a subgroup is normal or not. If so, it
can create the quotient group. However, the construction creates a new
permuation group, isomorphic to the quotient group, so its utility is limited.
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Homomorphisms

11.1 Group Homomorphisms

One of the basic ideas of algebra is the concept of a homomorphism, a
natural generalization of an isomorphism. If we relax the requirement
that an isomorphism of groups be bijective, we have a homomorphism. A
homomorphism between groups (G,-) and (H,o) is a map ¢ : G — H
such that

d(g1 - 92) = ¢(g1) © B(g2)

for g1, g2 € G. The range of ¢ in H is called the homomorphic image of ¢.

Two groups are related in the strongest possible way if they are isomorphic;
however, a weaker relationship may exist between two groups. For example,
the symmetric group 5, and the group Zs are related by the fact that .S, can
be divided into even and odd permutations that exhibit a group structure
like that Zo, as shown in the following multiplication table.

‘ even odd

even | even odd
odd | odd even

We use homomorphisms to study relationships such as the one we have just
described.

Example 1. Let G be a group and g € G. Define a map ¢ : Z — G by
¢(n) = g". Then ¢ is a group homomorphism, since

p(m+n)=g"t" = g"g" = p(m)p(n).

This homomorphism maps Z onto the cyclic subgroup of G generated by g.
|

169
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Example 2. Let G = GL2(R). If

a b
A= 4
is in G, then the determinant is nonzero; that is, det(A) = ad — be # 0.
Also, for any two elements A and B in G, det(AB) = det(A) det(B). Using

the determinant, we can define a homomorphism ¢ : GLa(R) — R* by
A — det(A). |

Example 3. Recall that the circle group T consists of all complex numbers
z such that |z|] = 1. We can define a homomorphism ¢ from the additive
group of real numbers R to T by ¢ : 6 — cosf + isinf. Indeed,

d(a+ B) = cos(a+ B) + isin(a+ )
= (cosavcos B — sin asin B) + i(sin a cos 8 + cos a sin f3)
= (cosa + isina) + (cos 3 4 isin 3)
= ¢(a)p(B).
Geometrically, we are simply wrapping the real line around the circle in a

group-theoretic fashion. [ ]

The following proposition lists some basic properties of group homomor-
phisms.

Proposition 11.1 Let ¢ : G1 — G be a homomorphism of groups. Then
1. If e is the identity of G1, then ¢(e) is the identity of Ga;
2. For any element g € Gy, ¢(g7 1) = [¢(g)]~%;
3. If Hy is a subgroup of G1, then ¢(Hy) is a subgroup of Ga;

4. If Hy is a subgroup of Go, then ¢~ (Hy) = {g € G1 : ¢(g) € Ha} is a
subgroup of Gy. Furthermore, if Hy is normal in Go, then ¢~ (Ha) is
normal in G1.

PROOF. (1) Suppose that e and e’ are the identities of G7 and G, respectively;
then

e'd(e) = ¢(e) = d(ee) = d(e)o(e).

By cancellation, ¢(e) = ¢€’.
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(2) This statement follows from the fact that

d(g7e(g) = d(g7'g) = d(e) =e.

(3) The set ¢(H;) is nonempty since the identity of Gy is in ¢(Hy).
Suppose that H;p is a subgroup of G; and let x and y be in ¢(Hy). There
exist elements a,b € H; such that ¢(a) = x and ¢(b) = y. Since

zy~h = ¢(a)[p(0)] 7" = d(ab™") € $(Hn),

¢(H1) is a subgroup of G2 by Proposition 3.10.

(4) Let Hy be a subgroup of Gy and define H; to be ¢~!(Hz); that is,
H; is the set of all g € G such that ¢(g) € He. The identity is in H; since
d(e) = e. If a and b are in Hy, then ¢(ab™!) = ¢(a)[¢(b)] ™! is in Hy since Ho
is a subgroup of G5. Therefore, ab~! € H; and H; is a subgroup of Gy. If
H, is normal in G, we must show that g~ 'hg € H; for h € H; and g € G;.
But

¢(g™"hg) = [6(9)] " ¢(h)¢(g) € Ho,
since Hj is a normal subgroup of Go. Therefore, g~'hg € H;. O

Let ¢ : G — H be a group homomorphism and suppose that e is the
identity of H. By Proposition 11.1, ¢~!({e}) is a subgroup of G. This
subgroup is called the kernel of ¢ and will be denoted by ker ¢. In fact, this
subgroup is a normal subgroup of G since the trivial subgroup is normal in
H. We state this result in the following theorem, which says that with every
homomorphism of groups we can naturally associate a normal subgroup.

Theorem 11.2 Let ¢ : G — H be a group homomorphism. Then the kernel
of ¢ is a normal subgroup of G.

Example 4. Let us examine the homomorphism ¢ : GLo(R) — R* defined by
A — det(A). Since 1 is the identity of R*, the kernel of this homomorphism
is all 2 x 2 matrices having determinant one. That is, ker¢ = SLa(R).

|

Example 5. The kernel of the group homomorphism ¢ : R — C* defined
by ¢(0) = cos@ +isinf is {2mn : n € Z}. Notice that ker ¢ = Z. |

Example 6. Suppose that we wish to determine all possible homomorphisms
¢ from Z7 to Z14. Since the kernel of ¢ must be a subgroup of Z7, there are
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only two possible kernels, {0} and all of Z7. The image of a subgroup of
Z7 must be a subgroup of Zi2. Hence, there is no injective homomorphism;
otherwise, Z12 would have a subgroup of order 7, which is impossible. Conse-
quently, the only possible homomorphism from Z7 to Zis is the one mapping
all elements to zero. ]

Example 7. Let G be a group. Suppose that ¢ € G and ¢ is the homomor-
phism from Z to G given by ¢(n) = ¢g"™. If the order of g is infinite, then the
kernel of this homomorphism is {0} since ¢ maps Z onto the cyclic subgroup
of G generated by g. However, if the order of g is finite, say n, then the
kernel of ¢ is nZ. [ |

11.2 The Isomorphism Theorems

Though at first it is not evident that factor groups correspond exactly to
homomorphic images, we can use factor groups to study homomorphisms.
We already know that with every group homomorphism ¢ : G — H we can
associate a normal subgroup of G, ker ¢; the converse is also true. Every
normal subgroup of a group G gives rise to homomorphism of groups.

Let H be a normal subgroup of G. Define the natural or canonical
homomorphism

¢»:G—G/H

by
¢(g) = gH.

This is indeed a homomorphism, since

o(g192) = 9192H = g1HgoH = ¢(91)9(92).

The kernel of this homomorphism is H. The following theorems describe the
relationships among group homomorphisms, normal subgroups, and factor
groups.

Theorem 11.3 (First Isomorphism Theorem) Ifvy : G — H is a group
homomorphism with K = ker, then K is normal in G. Let ¢ : G — G/ K
be the canonical homomorphism. Then there exists a unique isomorphism
n:G/K — ¢(G) such that p = ne.
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PRrROOF. We already know that K is normal in G. Define  : G/K — 1(G) by
n(gK) =¥ (g). We must first show that this is a well-defined map. Suppose
that g1 K = g2 K. For some k € K, g1k = g2; consequently,

(1K) =v¥(g1) = ¢¥(91)¢(k) = Y(g1k) = ¢(g2) = n(g2K).

Since n(g1K) = 1n(g2K), n does not depend on the choice of coset represen-
tative. Clearly n is onto ¥ (G). To show that n is one-to-one, suppose that

1(91K) = n(g2K). Then ¢ (g1) = ¢(g2). This implies that 1(g; 'g2) = e, or
91_192 is in the kernel of v; hence, gl_lggK = K; that is, g1 K = g2 K. Finally,
we must show that 7 is a homomorphism, but

(91K g2K) = n(g9192K)
¥(9192)
¥(g1)1(g2)
n(g1 K)n(g2 k).

O

Mathematicians often use diagrams called commutative diagrams to
describe such theorems. The following diagram “commutes” since ¥ = n¢.

Y

G H

G/K

Example 8. Let G be a cyclic group with generator g. Define a map
¢ :7Z — G by n+ g™ This map is a surjective homomorphism since

p(m+n)=g"t" = g"g" = p(m)p(n).

Clearly ¢ is onto. If |g| = m, then ¢™ = e. Hence, ker¢ = mZ and
Z]ker ¢ = Z/mZ = G. On the other hand, if the order of g is infinite, then
ker = 0 and ¢ is an isomorphism of G and Z. Hence, two cyclic groups are
isomorphic exactly when they have the same order. Up to isomorphism, the
only cyclic groups are Z and Z,,. |
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Theorem 11.4 (Second Isomorphism Theorem) Let H be a subgroup
of a group G (not necessarily normal in G) and N a normal subgroup of G.
Then HN is a subgroup of G, H N N is a normal subgroup of H, and

H/HANN = HN/N.

PrOOF. We will first show that HN = {hn : h € H,n € N} is a subgroup of
G. Suppose that hini, hang € HN. Since N is normal, (he) *nihy € N. So

(h1n1)(hang) = hiha((ha) ™ 'niha)ng
isin HN. The inverse of hn € HN is in HN since
(hn) "t =n"th7t = A7 (An AT,

Next, we prove that H NN is normal in H. Let h € H andn € HN N.
Then h~'nh € H since each element is in H. Also, h™'nh € N since N is
normal in G; therefore, h~'nh € HN N.

Now define a map ¢ from H to HN/N by h — hN. The map ¢ is onto,
since any coset hnlN = AN is the image of h in H. We also know that ¢ is a
homomorphism because

d(h') = hW'N = hNK'N = ¢(h)p(h').

By the First Isomorphism Theorem, the image of ¢ is isomorphic to H/ ker ¢;
that is,
HN/N = ¢(H) = H/ker ¢.

Since

kero={he H:he N} =HNN,
HN/N = ¢(H) = H/H N N. O

Theorem 11.5 (Correspondence Theorem) Let N be a normal sub-
group of a group G. Then H — H/N ‘s a one-to-one correspondence between
the set of subgroups H containing N and the set of subgroups of G/N.
Furthermore, the normal subgroups of H correspond to normal subgroups

of G/N.

PROOF. Let H be a subgroup of G containing N. Since N is normal
in H, H/N makes sense. Let aN and bN be elements of H/N. Then
(aN)(b~*N) = ab~'N € H/N; hence, H/N is a subgroup of G/N.
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Let S be a subgroup of G/N. This subgroup is a set of cosets of N. If
H ={ge€ G:gN € S}, then for hi,he € H, we have that (h;N)(haN) =
hh/N € S and hl_lN € S. Therefore, H must be a subgroup of G. Clearly,
H contains N. Therefore, S = H/N. Consequently, the map H — N/H is
onto.

Suppose that H; and Hy are subgroups of G containing N such that
Hl/N = HQ/N. If hi € Hl, then hiN € Hl/N. Hence, hiN = hoN C Hy
for some ho in Hy. However, since N is contained in Hs, we know that
hi € Hy or Hi C Hs. Similarly, Ho C H;. Since H;y = Hj, the map
H — N/H is one-to-one.

Suppose that H is normal in G and N is a subgroup of H. Then it
is easy to verify that the map G/N — G/H defined by gN +— gH is a
homomorphism. The kernel of this homomorphism is H/N, which proves
that H/N is normal in G/N.

Conversely, suppose that H/N is normal in G/N. The homomorphism

given by

G/N
G—>G/N—>W

has kernel H. Hence, H must be normal in G. O

Notice that in the course of the proof of Theorem 11.5, we have also
proved the following theorem.

Theorem 11.6 (Third Isomorphism Theorem) Let G be a group and
N and H be normal subgroups of G with N C H. Then

G/

G/H = T

Example 9. By the Third Isomorphism Theorem,
Z)mZ = (Z/mnZ)/(mZ/mnZ).

Since |Z/mnZ| = mn and |Z/mZ| = m, we have |mZ/mnZ| = n. [

Exercises

1. Prove that det(AB) = det(A)det(B) for A, B € GL3(R). This shows that
the determinant is a homomorphism from GL2(R) to R*.
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2. Which of the following maps are homomorphisms? If the map is a homomor-
phism, what is the kernel?

(a) ¢:R* = GL2(R) defined by

é(a) = (é 2)

(b) ¢ : R — GL2(R) defined by
(¢) ¢: GLy(R) — R defined by

(d) ¢: GLy(R) — R* defined by

(e )=

(e) ¢:Mz(R) — R defined by

(¢ 4) =

where My (R) is the additive group of 2 x 2 matrices with entries in R.

3. Let A be an m x n matrix. Show that matrix multiplication, z +— Ax, defines
a homomorphism ¢ : R™ — R™.

4. Let ¢ : Z — Z be given by ¢(n) = Tn. Prove that ¢ is a group homomorphism.
Find the kernel and the image of ¢.

5. Describe all of the homomorphisms from Zo4 to Zqg.
6. Describe all of the homomorphisms from Z to Zqs.
7. In the group Zag, let H = (4) and N = (6).
(a) List the elements in HN (we usually write H + N for these additive
groups) and H N N.
(b) List the cosets in HN/N, showing the elements in each coset.
(¢) List the cosets in H/(H N N), showing the elements in each coset.

(d) Give the correspondence between HN/N and H/(H N N) described in
the proof of the Second Isomorphism Theorem.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

If G is an abelian group and n € N, show that ¢ : G — G defined by g — g"
is a group homomorphism.

If  : G — H is a group homomorphism and G is abelian, prove that ¢(G) is
also abelian.

If ¢ : G — H is a group homomorphism and G is cyclic, prove that ¢(G) is
also cyclic.

Show that a homomorphism defined on a cyclic group is completely determined
by its action on the generator of the group.

Let G be a group of order p?, where p is a prime number. If H is a subgroup
of G of order p, show that H is normal in G. Prove that G must be abelian.

If a group G has exactly one subgroup H of order k, prove that H is normal
in G.

Prove or disprove: Q/Z = Q.

Let G be a finite group and N a normal subgroup of G. If H is a subgroup
of G/N, prove that ¢~!(H) is a subgroup in G of order |H| - |N|, where
¢ : G — G/N is the canonical homomorphism.

Let G1 and G5 be groups, and let H; and Hs be normal subgroups of G; and
G respectively. Let ¢ : G1 — G2 be a homomorphism. Show that ¢ induces
a natural homomorphism ¢ : (G1/H1) = (G2/Hs) if ¢(H,) C H,.

If H and K are normal subgroups of G and H N K = {e}, prove that G is
isomorphic to a subgroup of G/H x G/K.

Let ¢ : G1 — G4 be a surjective group homomorphism. Let H; be a normal
subgroup of G and suppose that ¢(H;) = Hs. Prove or disprove that
Gl/Hl = GQ/HQ.

Let ¢ : G — H be a group homomorphism. Show that ¢ is one-to-one if and
only if ¢~t(e) = {e}.

Given a homomorphism ¢ : G — H define a relation ~ on G by a ~ b if
¢(a) = ¢(b) for a,b € G. Show this relation is an equivalence relation and
describe the equivalence classes.

Additional Exercises: Automorphisms

1.

2.

Let Aut(G) be the set of all automorphisms of G; that is, isomorphisms from
G to itself. Prove this set forms a group and is a subgroup of the group of
permutations of G; that is, Aut(G) < Sg.

An inner automorphism of G,

ig: G — G,
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is defined by the map

Zg(x) = gxg_lv

for g € G. Show that i, € Aut(G).

The set of all inner automorphisms is denoted by Inn(G). Show that Inn(G)
is a subgroup of Aut(G).

Find an automorphism of a group G that is not an inner automorphism.
Let G be a group and i, be an inner automorphism of G, and define a map
G — Aut(G)

by
g ig.

Prove that this map is a homomorphism with image Inn(G) and kernel Z(G).
Use this result to conclude that

G/Z(G) = Inn(G).

Compute Aut(S3) and Inn(S3). Do the same thing for Dy.
Find all of the homomorphisms ¢ : Z — Z. What is Aut(Z)?
Find all of the automorphisms of Zs. Prove that Aut(Zg) = U(8).

For k € Z,, define a map ¢y : Z, — Z, by a — ka. Prove that ¢ is a
homomorphism.

Prove that ¢y is an isomorphism if and only if k is a generator of Z,,.

Show that every automorphism of Z,, is of the form ¢y, where k is a generator
of Z,,.

Prove that v : U(n) — Aut(Zy,) is an isomorphism, where ¢ : k — ¢y.

Sage Sage can create homomorphisms between groups, which can be used
directly as functions, and then queried for their kernels and images. So there
is great potential for exploring the many fundamental relationships between
groups, normal subgroups, quotient groups and properties of homomorphisms.
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Matrix Groups and
Symmetry

When Felix Klein (1849-1925) accepted a chair at the University of Erlangen,
he outlined in his inaugural address a program to classify different geometries.
Central to Klein’s program was the theory of groups: he considered geometry
to be the study of properties that are left invariant under transformation
groups. Groups, especially matrix groups, have now become important in
the study of symmetry and have found applications in such disciplines as
chemistry and physics. In the first part of this chapter, we will examine some
of the classical matrix groups, such as the general linear group, the special
linear group, and the orthogonal group. We will then use these matrix groups
to investigate some of the ideas behind geometric symmetry.

12.1 Matrix Groups

Some Facts from Linear Algebra

Before we study matrix groups, we must recall some basic facts from linear
algebra. One of the most fundamental ideas of linear algebra is that of a linear
transformation. A linear transformation or linear map T : R" — R™
is a map that preserves vector addition and scalar multiplication; that is, for
vectors x and y in R™ and a scalar a € R,

Tx+y)=T(x)+T(y)
T(ay) = oT(y).

An m x n matrix with entries in R represents a linear transformation from
R™ to R™. If we write vectors x = (z1,...,2,)" and y = (y1,...,y,)" in R"

179
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as column matrices, then an m X n matrix

ail ai2 e Aln

a1 a2 o a2n
A =

Gm1  Gm2 Gmn

maps the vectors to R™ linearly by matrix multiplication. Observe that if «
is a real number,

Alx+y)=Ax+ Ay and  aAx = A(ax),
where

I
Z2

Tn
We will often abbreviate the matrix A by writing (a;;).

Conversely, if T': R™ — R is a linear map, we can associate a matrix A
with T" by considering what 7" does to the vectors

e; = (1,0,...,0)"

e = (0,1,...,0)°

e, =(0,0,...,1)"

t

We can write any vector x = (z1,...,%,)" as

r1€e1 + xoes + - - + TpH€N.

Consequently, if

T(e1) = (a11,a21, -, am1)",

T(ez) = (a12,a22, - - -, am2)",

T(en) = (alna A2y - - - 7amn)t
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then

T(x) =T(x1e1 + xoeg + -+ - + xp€y)
=x1T(e1) + x2T(e2) + -+ x,T(ey)

n n t
= Zalkxk‘w . 'azamkl‘k‘
k=1 k=1

= Ax.

Example 1. If we let 7' : R> — R? be the map given by
T(x1,x2) = (221 + Sxe, —4x1 + 329),

the axioms that T must satisfy to be a linear transformation are easily
verified. The column vectors Te; = (2, —4)" and Tey = (5, 3)" tell us that T

is given by the matrix
2 5
A= (_ 4 3> |

Since we are interested in groups of matrices, we need to know which
matrices have multiplicative inverses. Recall that an n X n matrix A is
invertible exactly when there exists another matrix A~! such that AA™! =
A71A = I, where

10 --- 0

0 1 0
I:

00 --- 1

is the n x n identity matrix. From linear algebra we know that A is invertible
if and only if the determinant of A is nonzero. Sometimes an invertible
matrix is said to be nonsingular.

Example 2. If A is the matrix

then the inverse of A is
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We are guaranteed that A~ exists, since det(A) =2-3 —5-1 = 1 is nonzero.
|

Some other facts about determinants will also prove useful in the course
of this chapter. Let A and B be n x n matrices. From linear algebra we have
the following properties of determinants.

e The determinant is a homomorphism into the multiplicative group of
real numbers; that is, det(AB) = (det A)(det B).

e If A is an invertible matrix, then det(A~!) = 1/det A.

e If we define the transpose of a matrix A = (a;;) to be A* = (aj;), then
det(A?) = det A.

e Let T be the linear transformation associated with an n x n matrix A.
Then T multiplies volumes by a factor of |det A|. In the case of R?,
this means that T' multiplies areas by |det A|.

Linear maps, matrices, and determinants are covered in any elementary
linear algebra text; however, if you have not had a course in linear algebra,
it is a straightforward process to verify these properties directly for 2 x 2
matrices, the case with which we are most concerned.

The General and Special Linear Groups

The set of all n x n invertible matrices forms a group called the general
linear group. We will denote this group by GL,(R). The general linear
group has several important subgroups. The multiplicative properties of
the determinant imply that the set of matrices with determinant one is a
subgroup of the general linear group. Stated another way, suppose that
det(A) = 1 and det(B) = 1. Then det(AB) = det(A)det(B) = 1 and
det(A™1) = 1/det A = 1. This subgroup is called the special linear group
and is denoted by SL,(R).

Example 3. Given a 2 X 2 matrix
a b
=)

the determinant of A is ad — be. The group G'La(R) consists of those matrices
in which ad — bc # 0. The inverse of A is

1 d —b
A7l = :
ad — be (—c a )
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i (d b
“\—c a /)

Geometrically, SLa(R) is the group that preserves the areas of parallelograms.

Let
11
= 01)

be in SLy(R). In Figure 12.1, the unit square corresponding to the vectors
x = (1,0)" and y = (0,1)" is taken by A to the parallelogram with sides
(1,0)" and (1,1); that is, Ax = (1,0)* and Ay = (1,1)". Notice that these
two parallelograms have the same area. |

If Aisin SLy(R), then

(1,1)

(1,0) o (1,0) o
Figure 12.1. SLy(R) acting on the unit square

The Orthogonal Group O(n)

Another subgroup of GL,(R) is the orthogonal group. A matrix A is or-
thogonal if A=! = A'. The orthogonal group consists of the set of all
orthogonal matrices. We write O(n) for the n x n orthogonal group. We
leave as an exercise the proof that O(n) is a subgroup of GL,(R).

Example 4. The following matrices are orthogonal:

-1/v2 0 1/v2
<Z/5 —4/5>’ (1/2 —\/3/2>, V6 —2/V6 1/v6
/5 3/5 V3/2  1/2 V3 1VE 1/V3
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There is a more geometric way of viewing the group O(n). The orthogonal
matrices are exactly those matrices that preserve the length of vectors. We
can define the length of a vector using the Fuclidean inner product, or
dot product, of two vectors. The Euclidean inner product of two vectors

x=(21,...,x,)  and y = (y1,...,yn)" is
!
¢ Y2
<X,y>:Xy:($17ﬂj‘2,...,l‘n) : :x1y1++xnyn
Un

We define the length of a vector x = (z1,...,2,)" to be

Ill = /o) =/ + -+ a2

Associated with the notion of the length of a vector is the idea of the distance
between two vectors. We define the distance between two vectors x and y
to be ||x —y||. We leave as an exercise the proof of the following proposition
about the properties of Euclidean inner products.

Proposition 12.1 Let x, y, and w be vectors in R"™ and o € R. Then

L (xy)=(y,x).

2. (x,y +W) = (x,) + (x, W),

3. {ax,y) = (x,ay) = a(x,y).

4. (x,x) > 0 with equality exactly when x = 0.
5. If (x,y) =0 for all x in R™, then y = 0.

Example 5. The vector x = (3,4)" has length v/32 + 42 = 5. We can also
see that the orthogonal matrix

- (4

preserves the length of this vector. The vector Ax = (—7/5,24/5)" also has
length 5. ]



12.1 MATRIX GROUPS 185

Since det(AA") = det(]) =1 and det(A) = det(A"), the determinant of
any orthogonal matrix is either 1 or —1. Consider the column vectors

of the orthogonal matrix A = (a;;). Since AA* = I, (a,,as) = 8,5, where

1 r=s
Ors = { 0 r#s
is the Kronecker delta. Accordingly, column vectors of an orthogonal matrix
all have length 1; and the Euclidean inner product of distinct column vectors is
zero. Any set of vectors satisfying these properties is called an orthonormal
set. Conversely, given an n xn matrix A whose columns form an orthonormal
set, A7l = At
We say that a matrix A is distance-preserving, length-preserving,
or inner product-preserving when |Tx—Ty| = [|[x—y]|, [|Tx]| = ||x]|, or
(Tx,Ty) = (x,y), respectively. The following theorem, which characterizes
the orthogonal group, says that these notions are the same.

Theorem 12.2 Let A be an n X n matriz. The following statements are
equivalent.

1. The columns of the matrix A form an orthonormal set.
2. A7l =A%

3. For vectors x and 'y, (Ax, Ay) = (x,y).

4. For vectors x and y, ||[Ax — Ay|| = ||x —y|-

5. For any vector x, | Ax|| = ||x]|.

PRrOOF. We have already shown (1) and (2) to be equivalent.
(2) = 3).
(Ax, Ay) = (Ax)' Ay
=x'A'Ay
x'y
{x,y).
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(3) = (2). Since
(x,x) = (Ax, Ax)
=x'A'Ay
= (x, A'Ax),

we know that (x,(A'A — I)x) = 0 for all x. Therefore, A'A —1T = 0 or
A7l =AY

(3) = (4). If A is inner product-preserving, then A is distance-preserving,
since

|Ax — Ay|* = [ A(x — y)|?
= (A(x—y), A(x—y))
={x-y,x-y)
=[x -yl

(4) = (5). If A is distance-preserving, then A is length-preserving.
Letting y = 0, we have

[Ax]| = [[Ax — Ay || = [lx — y || = [Ix]|-

(5) = (3). We use the following identity to show that length-preserving
implies inner product-preserving;:

(e,y) = 5 [+ 312 = xI” ~ ]

Observe that
(Ax, Ay) = 5 [l 4% + Ay|* ~ | Ax]* ~ | Ay]”
[IAGe + )| ~ [ Ax]” - |14y ]

[l +y1% = IxI* = Iy 11?]

1
2
1
T2
1
T2
= (x,y).

0

Example 6. Let us examine the orthogonal group on R? a bit more closely.
An element T € O(2) is determined by its action on e; = (1,0)" and
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(sin @, — cos )

(a,b) (cos 6, sin0)

Figure 12.2. O(2) acting on R?

ey = (0,1)% If T(e;) = (a,b)", then a® +b? = 1 and T(e2) = (—b,a)". Hence,
T can be represented by

A (@ —b\ _ [cosf —sinf
~\b a ) \sinf cosf )’
where 0 < 6 < 27. A matrix T in O(2) either reflects or rotates a vector
in R? (Figure 12.2). A reflection about the horizontal axis is given by the

matrix
1 0
0o -1/’

whereas a rotation by an angle 6 in a counterclockwise direction must come
from a matrix of the form

cosf)  sinf

sinf —cosf)’

A reflection about a line ¢ is simply a reflection about the horizontal axis
followed by a rotation. If det A = —1, then A gives a reflection. |

Two of the other matrix or matrix-related groups that we will consider
are the special orthogonal group and the group of Euclidean motions. The
special orthogonal group, SO(n), is just the intersection of O(n) and
SL,(R); that is, those elements in O(n) with determinant one. The Fu-
clidean group, E(n), can be written as ordered pairs (A,x), where A is in
O(n) and x is in R™. We define multiplication by

(A,x)(B,y) = (AB, Ay + x).
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The identity of the group is (I,0); the inverse of (A,x) is (A~!, ~A7!x). In
Exercise 6, you are asked to check that E(n) is indeed a group under this

operation.
/ X+y

Figure 12.3. Translations in R?

12.2 Symmetry

An isometry or rigid motion in R” is a distance-preserving function f
from R™ to R™. This means that f must satisfy

1F(x) = FI)I = lx =l

for all x,y € R™. It is not difficult to show that f must be a one-to-one map.
By Theorem 12.2, any element in O(n) is an isometry on R"; however, O(n)
does not include all possible isometries on R™. Translation by a vector x,
Ty(x) = x +y is also an isometry (Figure 12.3); however, T' cannot be in
O(n) since it is not a linear map.

We are mostly interested in isometries in R?. In fact, the only isome-
tries in R? are rotations and reflections about the origin, translations, and
combinations of the two. For example, a glide reflection is a translation
followed by a reflection (Figure 12.4). In R™ all isometries are given in the
same manner. The proof is very easy to generalize.

Lemma 12.3 An isometry f that fizes the origin in R? is a linear transfor-
mation. In particular, f is given by an element in O(2).
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Figure 12.4. Glide reflections

PROOF. Let f be an isometry in R? fixing the origin. We will first show that
f preserves inner products. Since f(0) =0, || f(x)| = ||x]|; therefore,

Ix[1* = 207 (), f(3)) + Iy 1I* = IF )P = 2(f(x), F(3) + [F )
= {(f(x) = f(¥), fF(x) = f(¥))
2

= [[F(x) = F)l
= |lx -y
= <X—y,X—y>

= [Ix* = 2(x,y) + Iyl

Consequently,

(fx), f(y) = (xy).
Now let e; and e be (1,0)" and (0, 1), respectively. If

= (x1,22) = z1€] + T2€2,

f(x) = (f(x), fler))f(er) + (f(x), f(e2)) f(e2) = x1f(e1) + z2f(e2).

The linearity of f easily follows. O

For any arbitrary isometry, f, Txf will fix the origin for some vector
x in R?; hence, Ty f(y) = Ay for some matrix A € O(2). Consequently,
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f(y) = Ay + x. Given the isometries

f(y) =Ay +x;
9(y) = By + xa,

their composition is
fl9(y)) = f(By +x2) = ABy + Axa + x;1.

This last computation allows us to identify the group of isometries on R?
with F(2).

Theorem 12.4 The group of isometries on R? is the Euclidean group, E(2).

A symmetry group in R” is a subgroup of the group of isometries on
R” that fixes a set of points X C R2. It is important to realize that the
symmetry group of X depends both on R™ and on X. For example, the
symmetry group of the origin in R! is Z,, but the symmetry group of the
origin in R? is O(2).

Theorem 12.5 The only finite symmetry groups in R? are Z,, and D,,.

PROOF. Any finite symmetry group G in R? must be a finite subgroup of
O(2); otherwise, G would have an element in F(2) of the form (A, x), where
x £ 0. Such an element must have infinite order.

By Example 6, elements in O(2) are either rotations of the form

Ry — <cos § —sin 9>

sinf cosf

or reflections of the form

T — (cosgzﬁ —singb) <1 0 > _ <cos¢> sin ¢ >
¢~ \sing cos¢ 0 —1) \sing —cos¢)"’
Notice that det(Rg) = 1, det(Ty) = —1, and Tg = I. We can divide the
proof up into two cases. In the first case, all of the elements in G have
determinant one. In the second case, there exists at least one element in G
with determinant —1.
Case 1. The determinant of every element in G is one. In this case every

element in G must be a rotation. Since G is finite, there is a smallest angle,
say 6o, such that the corresponding element Ry, is the smallest rotation in
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the positive direction. We claim that Ry, generates G. If not, then for some
positive integer n there is an angle 61 between nfy and (n + 1)6y. If so, then
(n+1)0y — 01 corresponds to a rotation smaller than 6y, which contradicts
the minimality of 6.

Case 2. The group G contains a reflection T'. The kernel of the homo-
morphism ¢ : G — {—1,1} given by A — det(A) consists of elements whose
determinant is 1. Therefore, |G/ ker ¢| = 2. We know that the kernel is cyclic
by the first case and is a subgroup of G of, say, order n. Hence, |G| = 2n.
The elements of G are

Ry,...,Ry "\ TRy,...,TR;™".
These elements satisfy the relation
TRyT = R,".

Consequently, G must be isomorphic to D,, in this case. O

Figure 12.5. A wallpaper pattern in R?

The Wallpaper Groups

Suppose that we wish to study wallpaper patterns in the plane or crystals in
three dimensions. Wallpaper patterns are simply repeating patterns in the
plane (Figure 12.5). The analogs of wallpaper patterns in R?® are crystals,
which we can think of as repeating patterns of molecules in three dimensions
(Figure 12.6). The mathematical equivalent of a wallpaper or crystal pattern
is called a lattice.

Let us examine wallpaper patterns in the plane a little more closely.
Suppose that x and y are linearly independent vectors in R?; that is, one
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Figure 12.6. A crystal structure in R3

vector cannot be a scalar multiple of the other. A lattice of x and y is the
set of all linear combinations mx + ny, where m and n are integers. The
vectors x and y are said to be a basis for the lattice.

Figure 12.7. A lattice in R?

Notice that a lattice can have several bases. For example, the vectors
(1,1)* and (2,0)* have the same lattice as the vectors (—1,1)" and (-1, —1)*
(Figure 12.7). However, any lattice is completely determined by a basis.
Given two bases for the same lattice, say {x1,x2} and {y1,y2}, we can write

Y1 = a1X1 + qioXa

y2 = Bix1 + Paxa,
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where a1, a9, (1, and P2 are integers. The matrix corresponding to this

transformation is
a1 9
U= .
(ﬁl 52)

If we wish to give x; and x2 in terms of y; and ys, we need only calculate

U~!; that is,
G-
Y2 X2)

Since U has integer entries, U~! must also have integer entries; hence the
determinants of both U and U~! must be integers. Because UU ! = I,

det(UU ™) = det(U) det(U™1) = 1;

consequently, det(U) = £1. A matrix with determinant +1 and integer
entries is called unimodular. For example, the matrix

G 2)

is unimodular. It should be clear that there is a minimum length for vectors
in a lattice.

We can classify lattices by studying their symmetry groups. The sym-
metry group of a lattice is the subgroup of E(2) that maps the lattice to
itself. We consider two lattices in R? to be equivalent if they have the same
symmetry group. Similarly, classification of crystals in R? is accomplished
by associating a symmetry group, called a space group, with each type of
crystal. Two lattices are considered different if their space groups are not the
same. The natural question that now arises is how many space groups exist.

A space group is composed of two parts: a translation subgroup and
a point group. The translation subgroup is an infinite abelian subgroup
of the space group made up of the translational symmetries of the crystal;
the point group is a finite group consisting of rotations and reflections of
the crystal about a point. More specifically, a space group is a subgroup of
G C E(2) whose translations are a set of the form {(/,t) : ¢t € L}, where L
is a lattice. Space groups are, of course, infinite. Using geometric arguments,
we can prove the following theorem (see [5] or [6]).

Theorem 12.6 Ewvery translation group in R? is isomorphic to 7. x 7.

The point group of G is Gy = {A : (A,b) € G for some b}. In particular,
Go must be a subgroup of O(2). Suppose that x is a vector in a lattice
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Rectangular
Square Rhombic
Parallelogram
Hexagonal

VAVAVAN

Figure 12.8. Types of lattices in R?

L with space group G, translation group H, and point group Gg. For any
element (A,y) in G,

(A, y)(LLx)(Ay) ™ = (A Ax+y)(A", —A"ly)
= (AA™Y, —AA 'y + Ax +y)
= (I, Ax);

hence, (I, Ax) is in the translation group of G. More specifically, Ax must
be in the lattice L. It is important to note that Gy is not usually a subgroup
of the space group Gj; however, if T' is the translation subgroup of GG, then
G/T = Gy. The proof of the following theorem can be found in [2], [5], or [6].

Theorem 12.7 The point group in the wallpaper groups is isomorphic to
Ly, or D, where n =1,2,3,4,6.

To answer the question of how the point groups and the translation
groups can be combined, we must look at the different types of lattices.
Lattices can be classified by the structure of a single lattice cell. The possible
cell shapes are parallelogram, rectangular, square, rhombic, and hexagonal
(Figure 12.8). The wallpaper groups can now be classified according to the
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types of reflections that occur in each group: these are ordinarily reflections,
glide reflections, both, or none.

Table 12.1. The 17 wallpaper groups

Notation and Reflections
Space Groups | Point Group | Lattice Type | or Glide Reflections?
pl 7 parallelogram | none

p2 Zo parallelogram | none

p3 Zs hexagonal none

p4 Zy square none

p6 Zg hexagonal none

pm Dy rectangular reflections

pg Dy rectangular glide reflections
cm D1 rhombic both

pmm Dy rectangular reflections

pmg Dy rectangular glide reflections
pgg Do rectangular both

c2mm Do rhombic both

p3ml, p3lm Ds hexagonal both

p4m, pdg Dy square both

p6m Dg hexagonal both

Theorem 12.8 There are exactly 17 wallpaper groups.

LiRa
REEi)
Lind
naka

Figure 12.9. The wallpaper groups p4m and p4g

S
IR

pdm

3
S
Na)

The 17 wallpaper groups are listed in Table 12.1. The groups p3m1l and
p31lm can be distinguished by whether or not all of their threefold centers lie
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on the reflection axes: those of p3m1 must, whereas those of p31m may not.
Similarly, the fourfold centers of p4m must lie on the reflection axes whereas
those of p4g need not (Figure 12.9). The complete proof of this theorem can
be found in several of the references at the end of this chapter, including [5],
[6], [10], and [11].

[ ]  Historical Note | ]

Symmetry groups have intrigued mathematicians for a long time. Leonardo da Vinci
was probably the first person to know all of the point groups. At the International
Congress of Mathematicians in 1900, David Hilbert gave a now-famous address
outlining 23 problems to guide mathematics in the twentieth century. Hilbert’s
eighteenth problem asked whether or not crystallographic groups in n dimensions
were always finite. In 1910, L. Bieberbach proved that crystallographic groups
are finite in every dimension. Finding out how many of these groups there are in
each dimension is another matter. In R? there are 230 different space groups; in
R* there are 4783. No one has been able to compute the number of space groups
for R® and beyond. It is interesting to note that the crystallographic groups were
found mathematically for R? before the 230 different types of crystals were actually
discovered in nature. ]

Exercises

1. Prove the identity

(x,y) =5 [Ilx+yl* = IIxI* = lyl*] -

DO =

2. Show that O(n) is a group.

3. Prove that the following matrices are orthogonal. Are any of these matrices

in SO(n)?
(a) (c)
1/V2 —1/V2 4/v5 0 3/V5
e 3/é2) 4 o s
(b) (d)

/3 2/3 —2/3
(1/\/5 2/\/S> -2/3 2/3 1/3
—2/v5 1/\/5 -2/3 1/3 2/3
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4. Determine the symmetry group of each of the figures in Figure 12.10.

10.
11.
12.

13.

(b)

Figure 12.10.

Let x, y, and w be vectors in R” and a € R. Prove each of the following
properties of inner products.

(@) (x.3) = (%)
x,y+w) =(x,y)+ (x,w).
(ax,y) = (x,ay) = a{x,y).
(x,x) > 0 with equality exactly when x = 0.
If (x,y) =0 for all x in R™, then y = 0.
Verify that

E(n)={(A,x): A€ O(n) and x € R"}

is a group.
Prove that {(2,1),(1,1)} and {(12,5),(7,3)} are bases for the same lattice.

Let G be a subgroup of E(2) and suppose that T' is the translation subgroup
of G. Prove that the point group of G is isomorphic to G/T.

Let A € SLy(R) and suppose that the vectors x and y form two sides of a
parallelogram in R2. Prove that the area of this parallelogram is the same as
the area of the parallelogram with sides Ax and Ay.

Prove that SO(n) is a normal subgroup of O(n).
Show that any isometry f in R™ is a one-to-one map.

Show that an element in E(2) of the form (A, x), where x # 0, has infinite
order.

Prove or disprove: There exists an infinite abelian subgroup of O(n).
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14.

15.

16.

17.

18.
19.
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Let x = (21, 72) be a point on the unit circle in R?; that is, 22 + 2% = 1. If
A € O(2), show that Ax is also a point on the unit circle.

Let G be a group with a subgroup H (not necessarily normal) and a normal
subgroup N. Then G is a semidirect product of N by H if

e HNN = {id};
e HN =(.
Show that each of the following is true.

(a) Ss is the semidirect product of As by H = {(1), (12)}.
(b) The quaternion group, (s, cannot be written as a semidirect product.

(¢) E(2) is the semidirect product of O(2) by H, where H consists of all
translations in R2.

Determine which of the 17 wallpaper groups preserves the symmetry of the
pattern in Figure 12.5.

Q
Q
Q

Determine which of the 17 wallpaper groups preserves the symmetry of the
pattern in Figure 12.11.

Figure 12.11.

Find the rotation group of a dodecahedron.

For each of the 17 wallpaper groups, draw a wallpaper pattern having that
group as a symmetry group.
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The Structure of Groups

The ultimate goal of group theory is to classify all groups up to isomorphism;
that is, given a particular group, we should be able to match it up with a
known group via an isomorphism. For example, we have already proved that
any finite cyclic group of order n is isomorphic to Z,; hence, we “know” all
finite cyclic groups. It is probably not reasonable to expect that we will ever
know all groups; however, we can often classify certain types of groups or
distinguish between groups in special cases.

In this chapter we will characterize all finite abelian groups. We shall also
investigate groups with sequences of subgroups. If a group has a sequence of
subgroups, say

G:HnDHn_lD"'DHlDHO:{e},

where each subgroup H; is normal in H;;1 and each of the factor groups
H;1/H; is abelian, then G is a solvable group. In addition to allowing us to
distinguish between certain classes of groups, solvable groups turn out to be
central to the study of solutions to polynomial equations.

13.1 Finite Abelian Groups

In our investigation of cyclic groups we found that every group of prime order
was isomorphic to Z,, where p was a prime number. We also determined
that Zyn = Zpy, X Zy, when ged(m,n) = 1. In fact, much more is true. Every
finite abelian group is isomorphic to a direct product of cyclic groups of
prime power order; that is, every finite abelian group is isomorphic to a
group of the type

Zpiq X oo X Zp%n.

200
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First, let us examine a slight generalization of finite abelian groups.
Suppose that G is a group and let {g;} be a set of elements in G, where i
is in some index set I (not necessarily finite). The smallest subgroup of G
containing all of the g;’s is the subgroup of G generated by the g;’s. If this
subgroup of G is in fact all of G, then G is generated by the set {g; : i € I'}.
In this case the g;’s are said to be the generators of G. If there is a finite
set {g; : i € I} that generates G, then G is finitely generated.

Example 1. Obviously, all finite groups are finitely generated. For example,
the group Ss is generated by the permutations (12) and (123). The group
Z X Ly, is an infinite group but is finitely generated by {(1,0),(0,1)}. 1

Example 2. Not all groups are finitely generated. Consider the rational
numbers Q under the operation of addition. Suppose that Q is finitely

generated with generators p1/qi,...,pn/qn, where each p;/q; is a fraction
expressed in its lowest terms. Let p be some prime that does not divide
any of the denominators qi,...,q,. We claim that 1/p cannot be in the

subgroup of Q that is generated by p1/q1,- - ., Pn/qn, since p does not divide
the denominator of any element in this subgroup. This fact is easy to see
since the sum of any two generators is

Pi/a + pj/a; = Pig; + iai)/(2a;)-

Theorem 13.1 Let H be the subgroup of a group G that is generated by
{9i € G:i€1}. Then h € H exactly when it is a product of the form

h=gi' g5
where the g;, ’s are not necessarily distinct.

The reason that powers of a fixed ¢g; may occur several times in the
product is that we may have a nonabelian group. However, if the group is
abelian, then the g;’s need occur only once. For example, a product such as
a=3b%a" could always be simplified (in this case, to a*b?).

PROOF. Let K be the set of all products of the form gil . -gf;", where the
gi,’s are not necessarily distinct. Certainly K is a subset of H. We need
only show that K is a subgroup of G. If this is the case, then K = H, since
H is the smallest subgroup containing all the g;’s.
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Clearly, the set K is closed under the group operation. Since g? =1,
the identity is in K. It remains to show that the inverse of an element
g= g]fl o gzk: in K must also be in K. However,

-1 k Eny—1 —kn —k
g :(911"‘9%) :(91 g,

in

O

Now let us restrict our attention to finite abelian groups. We can express
any finite abelian group as a finite direct product of cyclic groups. More
specifically, letting p be prime, we define a group G to be a p-group if every
element in G has as its order a power of p. For example, both Zs x Zy and
Zy4 are 2-groups, whereas Zo7 is a 3-group. We shall prove that every finite
abelian group is isomorphic to a direct product of cyclic p-groups. Before we
state the main theorem concerning finite abelian groups, we shall consider a
special case.

Theorem 13.2 Every finite abelian group G is the direct product of p-groups.

PRrROOF. If |G| = 1, then the theorem is trivial. Suppose that the order of G
is greater than 1, say

where p1, ..., p, are all prime, and define G; to be the set of elements in G of
order pf for some integer k. Since G is an abelian group, we are guaranteed
that G; is a subgroup of G for i = 1,...,n. We must show that

G:Glx---xGn.

That is, we must be able to write every g € G as a unique product g, - - - gp,
where g, is of the order of some power of p;. Since the order of g divides
the order of G, we know that

gl = ' pl2 - pln

for integers f(1,...,[8,. Letting a; = |g]/pfi, the a;’s are relatively prime;

hence, there exist integers by, ...,b, such that a1by + --- 4+ a,b, = 1. Conse-
quently,

g= galb1+"'+anbn — galbl .. ganbn
Since

b )
g(azbZ)pi — gbz|g| =e,
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it follows that ¢%® must be in G;. Let g; = g%%. Then g = g1 --- g, and
GiNGj = {e} for i # j.

To show uniqueness, suppose that g = g1 --- g = h1 - - hn, with h; € G;.
Then

e=(g1-gn)(h1---hp) L =gihyt - guhy
The order of gih;1 is a power of p;; hence, the order of glhfl - gnhi s the
least common multiple of the orders of the gihi_l. This must be 1, since the
order of the identity is 1. Therefore, |gih;1| =lorgi=h;fori=1,...,n.
O

We shall now state the Fundamental Theorem of Finite Abelian Groups.
Theorem 13.3 (Fundamental Theorem of Finite Abelian Groups)
Every finite abelian group G is isomorphic to a direct product of cyclic groups

of the form
Zp?l X Zpg2 X X Zp%n

where the p;’s are primes (not necessarily distinct).

Example 3. Suppose that we wish to classify all abelian groups of order
540 = 22 .33 . 5. The Fundamental Theorem of Finite Abelian Groups tells
us that we have the following six possibilities.

o Zo X Lo X 13 X Lz X L3 X ZLs;

ZgXZQXZgXZgXZg);

ZQ XZQ X 227 ><Z5;

Z4XZ3XZgXZgXZ5;

Z4XZ3XZQXZ5;

Z4 X Z27 X Z5.
u

The proof of the Fundamental Theorem relies on the following lemma.

Lemma 13.4 Let G be a finite abelian p-group and suppose that g € G has
mazximal order. Then G can be written as (g) x H for some subgroup H of G.
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PRrROOF. Suppose that the order of G is p”. We shall induct on n. If n =1,
then G is cyclic of order p and must be generated by ¢g. Suppose now that
the statement of the lemma holds for all integers k£ with 1 < k < n and
let g be of maximal order in G, say |g| = p™. Then a?” = ¢ for all a € G.
Now choose h in G such that h ¢ (g), where h has the smallest possible
order. Certainly such an h exists; otherwise, G = (g) and we are done. Let
H = (h).

We claim that (g) N H = {e}. It suffices to show that |H| = p. Since
|hP| = |h|/p, the order of AP is smaller than the order of h and must be in
(g9) by the minimality of h; that is, h? = ¢g" for some number r. Hence,

(gT’)mel _ (hp)pm*l _ hprn _ e’
and the order of ¢" must be less than or equal to p™ . Therefore, ¢" cannot
generate (g). Notice that p must occur as a factor of r, say r = ps, and
hP = g" = gP®. Define a to be g~*h. Then a cannot be in (g); otherwise, h
would also have to be in (g). Also,

@’ = g PhP = g"hP = hPRP =,

We have now formed an element a with order p such that a ¢ (g). Since h
was chosen to have the smallest order of all of the elements that are not in
(9) |H| = p.

Now we will show that the order of gH in the factor group G/H must
be the same as the order of g in G. If |gH| < |g| = p™, then

H=(gH)" " =g " H;
hence, gP" " must be in (g) N H = {e}, which contradicts the fact that the
order of g is p". Therefore, gH must have maximal order in G/H. By the
Correspondence Theorem and our induction hypothesis,

G/H = (¢gH) x K/H

for some subgroup K of G containing H. We claim that (g) N K = {e}. If
be (¢g)NK, then bH € (gH)NK/H = {H} and b € (g9 N H = {e}. Tt
follows that G = (¢g) K implies that G = (g) x K. O

The proof of the Fundamental Theorem of Finite Abelian Groups follows
very quickly from Lemma 13.4. Suppose that G is a finite abelian group and
let g be an element of maximal order in G. If (g) = G, then we are done;
otherwise, G = Zy x H for some subgroup H contained in G by the lemma.
Since |H| < |G|, we can apply mathematical induction.
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We now state the more general theorem for all finitely generated abelian
groups. The proof of this theorem can be found in any of the references at
the end of this chapter.

Theorem 13.5 (The Fundamental Theorem of Finitely Generated
Abelian Groups) FEvery finitely generated abelian group G is isomorphic
to a direct product of cyclic groups of the form

Zpi‘l pr;z X oo X Lpon X LX -+ X L,

where the p;’s are primes (not necessarily distinct).

13.2 Solvable Groups

A subnormal series of a group G is a finite sequence of subgroups
G:HnDanlD"'DHlDHO:{e},

where H; is a normal subgroup of H; . If each subgroup H; is normal in G,
then the series is called a normal series. The length of a subnormal or
normal series is the number of proper inclusions.

Example 4. Any series of subgroups of an abelian group is a normal series.
Consider the following series of groups:

Z D 9Z D 45Z D 180Z D {0},
Zos D (2) D (6) D (12) D {0}.

Example 5. A subnormal series need not be a normal series. Consider the
following subnormal series of the group Dy:

Dq 5 {(1), (12)(34), (13)(24), (14)(23)} O {(1), (12)(34)} D {(1)}.

The subgroup {(1), (12)(34)} is not normal in Dy; consequently, this series is
not a normal series. |

A subnormal (normal) series {Kj} is a refinement of a subnormal
(normal) series {H;} if {H;} C {K;}. That is, each H; is one of the Kj.

Example 6. The series

Z D 37 D 9Z D 457 D 90Z D 180Z > {0}
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is a refinement of the series
Z D 9Z D 45Z D 180Z D {0}.

The correct way to study a subnormal or normal series of subgroups,
{H;} of G, is actually to study the factor groups H;y1/H;. We say that two
subnormal (normal) series {H;} and {K;} of a group G are isomorphic if
there is a one-to-one correspondence between the collections of factor groups
{Hi1/Hi} and {Kj1/K;}.

Example 7. The two normal series

Zeo O (3) D (15) D {0}
Zeo D <4> D) <20> D) {0}

of the group Zgo are isomorphic since

Zeo/(3) = (20)/{0} = Z3
(3)/(15) = (4)/(20) = Zs
(15)/{0} = Zeo/(4) = Za.

A subnormal series {H;} of a group G is a composition series if all
the factor groups are simple; that is, if none of the factor groups of the
series contains a normal subgroup. A normal series {H;} of G is a principal
series if all the factor groups are simple.

Example 8. The group Zgg has a composition series
Zeo D (3) D (15) D (30) D {0}

with factor groups

Zeo/(3) = Zs
(3)/(15) = Zs
(15)/(30) = Zy

(30)/{0} = Zs.
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Since Zgo is an abelian group, this series is automatically a principal series.
Notice that a composition series need not be unique. The series

Zeo D (2) D (4) D (20) D {0}

is also a composition series. |

Example 9. For n > 5, the series
Sp DA, D {(1)}

is a composition series for S,, since S, /A, = Zs and A, is simple. |

Example 10. Not every group has a composition series or a principal series.
Suppose that

{0}=HOCH1C"'CHn_1CHn:Z

is a subnormal series for the integers under addition. Then H; must be of
the form nZ for some n € N. In this case Hy/Hy = nZ is an infinite cyclic
group with many nontrivial proper normal subgroups. |

Although composition series need not be unique as in the case of Zgg, it
turns out that any two composition series are related. The factor groups of
the two composition series for Zgg are Zs, Zo, Z3, and Zs; that is, the two
composition series are isomorphic. The Jordan-Holder Theorem says that
this is always the case.

Theorem 13.6 (Jordan-Hdélder) Any two composition series of G are
isomorphic.

Proor. We shall employ mathematical induction on the length of the
composition series. If the length of a composition series is 1, then G must
be a simple group. In this case any two composition series are isomorphic.

Suppose now that the theorem is true for all groups having a composition
series of length k, where 1 < k < n. Let

G=H,D>H,1D---DH; DHy={e}
GZKmDKm_lD"'DK1DK0:{€}
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be two composition series for G. We can form two new subnormal series for
G since H; N K,,_1 is normal in H; 1 N K,,—1 and K; N H,_1 is normal in
K1 N Hy 1

GZHNDHn_lDHn_lﬁKm_1D"'DﬂoﬂKm_lz{e}
G:KmDKm_1DKm_lﬂHn_lD~-3KoﬂHn_1:{e}.

Since H;NK,;,—1 is normal in H; 1 NK,,_1, the Second Isomorphism Theorem
(Theorem 11.4) implies that

(Hiyin N K1) /(HiN K1) = (Hig1 N K1) /(Hi 0 (Hig1 N K1)
= Hi(Hip1 N K1)/ H;,

where H; is normal in H;(H;y1 N Ky,—1). Since {H;} is a composition
series, H;+1/H; must be simple; consequently, H;(H;+1 N K,,—1)/H; is either
H;i1/H; or H;/H;. That is, H;(H;4+1 N K,,—1) must be either H; or H;y;.
Removing any nonproper inclusions from the series

Hy, 1 DH, 1NKy_1D---DHyNK;-1 = {e},

we have a composition series for H,,_1. Our induction hypothesis says that
this series must be equivalent to the composition series

H,_1D---DH; D Hy= e}
Hence, the composition series
G=H,D>H, 1D>--DH; DHy={e}
and
G=H,DH, 1DH, 1NKy_1D--DHyNKp_1={e}

are equivalent. If H,,_1 = K,,_1, then the composition series { H;} and {K}
are equivalent and we are done; otherwise, H,,_1K,,_1 is a normal subgroup
of G properly containing H,_1. In this case H,_1K,,—1 = G and we can
apply the Second Isomorphism Theorem once again; that is,

Km—l/(Km—l N Hn—l) = (Hn—le—l)/Hn—l = G/Hn—l.
Therefore,

G:HnDHn_lDHn_lﬂKm_lD“-DHoﬂKm_lz{e}
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and
G=K, OKn12>OKn-1NH,.1D---DKyNH,—1= {6}

are equivalent and the proof of the theorem is complete. O

A group G is solvable if it has a composition series {H;} such that
all of the factor groups H;;1/H; are abelian. Solvable groups will play a
fundamental role when we study Galois theory and the solution of polynomial
equations.

Example 11. The group S is solvable since
512 Ay D {(1), (12)(34), (13)(24), (14)(23)} > {(1)}
has abelian factor groups; however, for n > 5 the series
Sn D An D {(1)}

is a composition series for S,, with a nonabelian factor group. Therefore, .S,
is not a solvable group for n > 5. |

Exercises

1. Find all of the abelian groups of order less than or equal to 40 up to isomor-
phism.

2. Find all of the abelian groups of order 200 up to isomorphism.
3. Find all of the abelian groups of order 720 up to isomorphism.

4. Find all of the composition series for each of the following groups.

(a) Z12 (e) S3 X Zy
(b) Zasg (f) Sa

(¢) The quaternions, Qg (g) Sp,n>5
(d) Da (h) Q

5. Show that the infinite direct product G = Zs X Zg X --- is not finitely
generated.

6. Let G be an abelian group of order m. If n divides m, prove that G has a
subgroup of order n.
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10.

11.

12.

13.

14.
15.

16.
17.

18.

19.

20.
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A group G is a torsion group if every element of G has finite order. Prove
that a finitely generated abelian torsion group must be finite.

Let G, H, and K be finitely generated abelian groups. Show that if G x H =
G x K, then H =2 K. Give a counterexample to show that this cannot be
true in general.

Let G and H be solvable groups. Show that G x H is also solvable.

If G has a composition (principal) series and if N is a proper normal subgroup
of G, show there exists a composition (principal) series containing N.

Prove or disprove: Let N be a normal subgroup of G. If N and G/N have
composition series, then G must also have a composition series.

Let N be a normal subgroup of G. If N and G/N are solvable groups, show
that G is also a solvable group.

Prove that G is a solvable group if and only if G has a series of subgroups
G=P,DP, 1 D---DPlDPoz{e}

where P; is normal in P;;; and the order of P;;1/P; is prime.
Let G be a solvable group. Prove that any subgroup of G is also solvable.

Let G be a solvable group and N a normal subgroup of G. Prove that G/N
is solvable.

Prove that D,, is solvable for all integers n.

Suppose that G has a composition series. If N is a normal subgroup of G,
show that N and G/N also have composition series.

Let G be a cyclic p-group with subgroups H and K. Prove that either H is
contained in K or K is contained in H.

Suppose that G is a solvable group with order n > 2. Show that G contains
a normal nontrivial abelian subgroup.

Recall that the commutator subgroup G’ of a group G is defined as
the subgroup of G generated by elements of the form a~'b~'ab for a,b € G.
We can define a series of subgroups of G by G = G, G = @', and
GU+1) — (G(i))/.

(a) Prove that GU+1) is normal in (G(®). The series of subgroups
G(O) :GDG(I) DG(2) DEEE

is called the derived series of G.
(b) Show that G is solvable if and only if G(") = {e} for some integer n.
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21. Suppose that G is a solvable group with order n > 2. Show that G contains
a normal nontrivial abelian factor group.

22. Zassenhaus Lemma. Let H and K be subgroups of a group G. Suppose
also that H* and K* are normal subgroups of H and K respectively. Then

(a) H*(H N K*) is a normal subgroup of H*(H N K).
(b) K*(H* N K) is a normal subgroup of K*(H N K).

() HY(HNEK)/H'(HNK")=K"(HNK)/K*(H* NK)
~ (HNK)/(H*NK)(HNK").

[Hint: Use the diagram in Figure 13.1. The Zassenhaus Lemma is often
referred to as the Butterfly Lemma because of this diagram.|

H K

I HNK

(H*NK)(HNKY)

H* K*

H"NK HnNnK*

Figure 13.1. The Zassenhaus Lemma

23. Schreier’s Theorem. Use the Zassenhaus Lemma to prove that two sub-
normal (normal) series of a group G have isomorphic refinements.

24. Use Schreier’s Theorem to prove the Jordan-Hoélder Theorem.
Programming Exercises

Write a program that will compute all possible abelian groups of order n. What is
the largest n for which your program will work?



212 CHAPTER 13 THE STRUCTURE OF GROUPS

References and Suggested Readings

Each of the following references contains a proof of the Fundamental Theorem of
Finitely Generated Abelian Groups.

[1] Hungerford, T. W. Algebra. Springer, New York, 1974. .
[2] Lang, S. Algebra. 3rd ed. Springer, New York, 2002.
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Sage Sage is able to create direct products of cyclic groups, though they
are realized as permutation groups. This is a situation that should improve.
However, with a classification of finite abelian groups, we can describe how
to construct in Sage every group of order less than 16.
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Group Actions

Group actions generalize group multiplication. If G is a group and X is an
arbitrary set, a group action of an element g € G and x € X is a product,
gx, living in X. Many problems in algebra may best be attacked via group
actions. For example, the proofs of the Sylow theorems and of Burnside’s
Counting Theorem are most easily understood when they are formulated in
terms of group actions.

14.1 Groups Acting on Sets

Let X be a set and G be a group. A (left) action of G on X is a map
G x X — X given by (g,z) — gz, where

1. ex =z for all x € X;
2. (9192)r = g1(gex) for all z € X and all g1,¢92 € G.

Under these considerations X is called a G-set. Notice that we are not
requiring X to be related to G in any way. It is true that every group G
acts on every set X by the trivial action (g, x) — x; however, group actions
are more interesting if the set X is somehow related to the group G.

Example 1. Let G = GL2(R) and X = R?. Then G acts on X by left
multiplication. If v € R? and I is the identity matrix, then Iv = v. If
A and B are 2 x 2 invertible matrices, then (AB)v = A(Bv) since matrix
multiplication is associative. |

Example 2. Let G = D4 be the symmetry group of a square. If X =
{1,2,3,4} is the set of vertices of the square, then we can consider Dy to

213
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consist of the following permutations:
{(1),(13),(24), (1432),(1234), (12)(34), (14)(23), (13)(24) }.

The elements of Dy act on X as functions. The permutation (13)(24) acts
on vertex 1 by sending it to vertex 3, on vertex 2 by sending it to vertex 4,

and so on. It is easy to see that the axioms of a group action are satisfied.
[ |

In general, if X is any set and G is a subgroup of S, the group of all
permutations acting on X, then X is a G-set under the group action
(0,2) = o(x)

forc € G and z € X.

Example 3. If we let X = @, then every group G acts on itself by the
left regular representation; that is, (g,z) — Ag(x) = gz, where )\, is left
multiplication:

e T=XNZ—=€rx =2
(gh) - = Aghx = AgApx = A\g(hx) =g - (h - x).

If H is a subgroup of G, then G is an H-set under left multiplication by
elements of H. [ ]

Example 4. Let G be a group and suppose that X = G. If H is a subgroup
of G, then G is an H-set under conjugation; that is, we can define an action
of H on G,
HxG— G,

via

(h,g) =+ hgh™
for h € H and g € G. Clearly, the first axiom for a group action holds.
Observing that

(h1ha, ) = hihag(hihe) ™"
= hi(haghy ")y
= (M, (h2, 9)),

we see that the second condition is also satisfied. [ |
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Example 5. Let H be a subgroup of G and Ly the set of left cosets of H.
The set Ly is a G-set under the action

(9,xH) — gzH.

Again, it is easy to see that the first axiom is true. Since (g¢’)xH = g(¢'xH),
the second axiom is also true. |

If G acts on a set X and z,y € X, then z is said to be G-equivalent to
y if there exists a g € G such that gr = y. We write x ~qg y or & ~ y if two
elements are G-equivalent.

Proposition 14.1 Let X be a G-set. Then G-equivalence is an equivalence
relation on X.

PROOF. The relation ~ is reflexive since ex = x. Suppose that x ~ y for
z, € X. Then there exists a g such that gx = y. In this case g~ 'y = z;
hence, y ~ x. To show that the relat